This page intentionally left blank.
Preface

This document is a contract deliverable with an approval code of 3. As such, it does not require formal Government approval. This document is delivered for information only, but is subject to approval as meeting contractual requirements.

Any questions should be addressed to:

Data Management Office
The ECS Project Office
Raytheon Systems Company
1616 McCormick Dr.
Upper Marlboro, MD 20774-5301

Note: This document contains change bars to indicate the addition or revision of material since the issuance of the predecessor document containing training material for Release 5B of the Earth Observing System Data and Information System (EOSDIS) Core System (ECS).
This page intentionally left blank.
Abstract

This is Volume 17 of a series of lessons containing the training material for Release 6A of the Earth Observing System Data and Information System (EOSDIS) Core System (ECS). This lesson provides a detailed description of the different tasks that are required to perform system troubleshooting. The lesson includes a detailed review of the system monitoring capabilities, hardware and software troubleshooting process, and trouble ticket set-up and processing.

Keywords: training, instructional design, course objective, system troubleshooting, trouble ticket, Whazzup, Tivoli, maintenance, Inventory/Logistical Management (ILM) tool
Change Information Page

List of Effective Pages

<table>
<thead>
<tr>
<th>Page Number</th>
<th>Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Original</td>
</tr>
<tr>
<td>iii through xii</td>
<td>Original</td>
</tr>
<tr>
<td>1 through 144</td>
<td>Original</td>
</tr>
<tr>
<td>Slide Presentation 1 through 104</td>
<td>Original</td>
</tr>
</tbody>
</table>

Document History

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Status/Issue</th>
<th>Publication Date</th>
<th>CCR Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>625-CD-617-001</td>
<td>Original</td>
<td>March 2001</td>
<td></td>
</tr>
</tbody>
</table>
This page intentionally left blank.
Configuration Parameters

Configuration Registry .. 9
General Configuration Parameters .. 9

System Performance Monitoring

Accessing the EOSDIS Backbone Network (EBnet) Web Page .. 13
Log in to ECS .. 15
Checking the Health and Status of the Network ... 17
 Starting Whazzup and Monitoring the Status of Hosts and Servers 20
ECS Assistant and ECS Monitor ... 21
Tivoli Management Environment ... 26
 Tivoli Management Region ... 28
 Tivoli Policy Region ... 30
 Distributed Monitoring ... 32
 Tivoli Enterprise Console ... 35

Problem Analysis/Troubleshooting

Analysis/Troubleshooting: System .. 37
Analysis/Troubleshooting: COTS Hardware .. 38
 The ILM Tool .. 39
Failover/Switchover .. 52
Performing Preventive Maintenance .. 59
Analysis/Troubleshooting: COTS Software .. 59
COTS Software Licenses .. 60
Installing COTS Software .. 60
Safeguarding COTS Software Media .. 61
Obtaining COTS Software Support .. 61
Troubleshooting of Custom Software

Implementation of Modifications ... 65
Obtaining Custom Software Support .. 66
General ECS Troubleshooting ... 67
Using Whazzup and ECS Monitor to Check the Status of Hosts and Servers ... 77
Checking Server Log Files ... 78
Recovering from a Connectivity/DCE Problem .. 79
Using cdswbrowser to Check DCE Entries for a Server 82
Checking for Consistency between Calling and Called DCE Entries 84
Recovering from a Database Access Problem ... 84
Recovering from a Missing Mount Point or Other File Access Problem 85
Recovering from a Subscription Server Problem .. 87
Recovering from Granule Insertion Problems .. 88
Handling an Acquire Failure .. 94
Recovering from Ingest Problems .. 99
Recovering from PDPS Plan Creation/Activation and PGE Problems 100
Recovering from QA Monitor Problems .. 102
Recovering from Problems with ESDTs, DAP Insertion, or SSI&T 105
Recovering from Problems with Data Search and Order 108
Recovering from Data Distribution Problems .. 113
Recovering from Problems with Submission of an ASTER Data Acquisition Request (EDC Only) ... 116
Recovering from Problems with On-Demand Product Requests (EDC Only) ... 120
Trouble Ticket (TT)

Using Problem Report Software .. 127
 Adding Users to Remedy ... 127
 Changing Privileges in Remedy .. 130
 Changing Remedy Configuration .. 134
 Generating Trouble Ticket Reports .. 136
Performing Operational Work-around .. 139

Practical Exercise

Perform Activities Related to System Monitoring and Troubleshooting ... 141

Slide Presentation

Slide Presentation Description .. 143
Introduction

Identification
Training Material Volume 17 is part of Contract Data Requirements List (CDRL) Item 129, whose requirements are specified in Data Item Description (DID) 625/OP3 and is a required deliverable under the Earth Observing System Data and Information System (EOSDIS) Core System (ECS), Contract (NAS5-6000).

Scope
Training Material Volume 17 describes the process and procedures for ECS System Troubleshooting. This lesson is designed to provide the operations staff with sufficient knowledge and information to satisfy all lesson objectives.

Purpose
The purpose of this Student Guide is to provide a detailed course of instruction that forms the basis for understanding System Troubleshooting. Lesson objectives are developed and will be used to guide the flow of instruction for this lesson. The lesson objectives will serve as the basis for verifying that all lesson topics are contained within this Student Guide and slide presentation material.

Status and Schedule
This lesson module provides detailed information about training for Release 6A. Subsequent revisions will be submitted as needed.

Organization
This document is organized as follows:

Introduction: The Introduction presents the document identification, scope, purpose, and organization.
Related Documentation: Related Documentation identifies parent, applicable and information documents associated with this document.
Student Guide: The Student Guide identifies the core elements of this lesson. All Lesson Objectives and associated topics are included.
Slide Presentation: Slide Presentation is reserved for all slides used by the instructor during the presentation of this lesson.
This page intentionally left blank.
Related Documentation

Parent Document
The parent document is the document from which this ECS Training Material’s scope and content are derived.

423-41-01 Goddard Space Flight Center, EOSDIS Core System (ECS) Statement of Work

Applicable Documents
The following documents are referenced within this ECS Training Material, or are directly applicable, or contain policies or other directive matters that are binding upon the content of this document:

420-05-03 Goddard Space Flight Center, Earth Observing System (EOS) Performance Assurance Requirements for the EOSDIS Core System (ECS)

423-41-02 Goddard Space Flight Center, Functional and Performance Requirements Specification for the Earth Observing System Data and Information System (EOSDIS) Core System (ECS)

Information Documents

Information Documents Referenced
The following documents are referenced herein and amplify or clarify the information presented in this document. These documents are not binding on the content of the ECS Training Material.

611-CD-600 Mission Operation Procedures for the ECS Project
910-TDA-022 Custom Configuration Parameters for ECS Release 6A

Information Documents Not Referenced
The following documents, although not referenced herein and/or not directly applicable, do amplify or clarify the information presented in this document. These documents are not binding on the content of the ECS Training Material.

305-CD-600 Release 6A Segment/Design Specification for the ECS Project
311-CD-600 Release 6A Data Management Subsystem Database Design and Database Schema Specifications for the ECS Project
311-CD-601 Release 6A Ingest Database Design and Database Schema Specifications for the ECS Project
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>311-CD-602</td>
<td>Release 6A Interoperability Subsystem (IOS) Database Design and</td>
</tr>
<tr>
<td></td>
<td>Database Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-603</td>
<td>Release 6A Planning and Data Processing Subsystem Database Design</td>
</tr>
<tr>
<td></td>
<td>and Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-604</td>
<td>Release 6A Science Data Server Database Design and Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-605</td>
<td>Release 6A Storage Management and Data Distribution Subsystems</td>
</tr>
<tr>
<td></td>
<td>Database Design and Database Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-606</td>
<td>Release 6A Subscription Server Database Design and Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-607</td>
<td>Release 6A Systems Management Subsystem Database Design and Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-608</td>
<td>Release 6A Registry Database Design and Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>313-CD-600</td>
<td>Release 6A ECS Internal Interface Control Document for the ECS Project</td>
</tr>
<tr>
<td>334-CD-600</td>
<td>6A Science System Release Plan for the ECS Project</td>
</tr>
<tr>
<td>601-CD-001</td>
<td>Maintenance and Operations Management Plan for the ECS Project</td>
</tr>
<tr>
<td>603-CD-003</td>
<td>ECS Operational Readiness Plan for Release 2.0</td>
</tr>
<tr>
<td>604-CD-001</td>
<td>Operations Concept for the ECS Project: Part 1-- ECS Overview</td>
</tr>
<tr>
<td>605-CD-002</td>
<td>Release B SDPS/CSMS Operations Scenarios for the ECS Project</td>
</tr>
<tr>
<td>607-CD-001</td>
<td>ECS Maintenance and Operations Position Descriptions</td>
</tr>
<tr>
<td>152-TP-001</td>
<td>ACRONYMS for the EOSDIS Core System (ECS) Project</td>
</tr>
<tr>
<td>152-TP-003</td>
<td>Glossary of Terms for the EOSDIS Core System (ECS) Project</td>
</tr>
<tr>
<td>211-TP-005</td>
<td>Transition Plan 4PX to 4PY, 4PY to 5A, and 5A to 5B for the ECS Project</td>
</tr>
<tr>
<td>220-TP-001</td>
<td>Operations Scenarios - ECS Release B.0 Impacts</td>
</tr>
<tr>
<td>500-1002</td>
<td>Goddard Space Flight Center, Network and Mission Operations Support (NMOS) Certification Program, 1/90</td>
</tr>
</tbody>
</table>
System Troubleshooting Overview

Lesson Overview

This lesson will provide you with the process for system/performance monitoring, problem analysis and troubleshooting of system hardware and software, and administration of the trouble ticket system. It provides practical experience in using the tools you will need for resolving system problems and minimizing system down time.

Lesson Objectives

Overall Objective - The overall objective of this lesson is proficiency in the methodology and procedures for system troubleshooting of the Earth Observing System Data and Information System (EOSDIS) Core System (ECS).

Condition - The student will be given a copy of 611-CD-600-001 Mission Operation Procedures for the ECS Project, 609-CD-600-001 Release 6A Operations Tools Manual, and a workstation console with access to ECS software tools including Trouble Ticket, Fault/Performance Management, Whazzup???, Tivoli, ECS Assistant/Monitor, and Management Services Subsystem (MSS) graphical user interface (GUI) tools.

Standard - The student will use the tools in accordance with prescribed methods and complete required procedures without error.

Specific Objective 1 - The student will describe the role of configuration parameters in ECS and explain the use and purpose of the ECS Configuration Registry database and Graphical User Interface (GUI).

Condition - The student will be given a copy of 611-CD-600-001 Mission Operation Procedures for the ECS Project, 609-CD-600-001 Release 6A Operations Tools Manual, and a workstation console with access to ECS software.

Standard - The student will use correctly state the dependence of server configurations on the values of configuration parameters stored in the Configuration Registry database and identify the ECS Configuration Registry GUI as the means of making configuration parameter changes that are authorized by Configuration Management.

Specific Objective 2 - The student will conduct system performance monitoring, to include checking the health and status of the network and accessing the EOSDIS Backbone Network (EBnet) Web Page.

Condition - The student will be given a copy of 611-CD-600-001 Mission Operation Procedures for the ECS Project, 609-CD-600-001 Release 6A Operations Tools Manual, and a workstation console with access to ECS software.

Standard - The student will use Whazzup and ECS Monitor in accordance with specified procedures and without error to check the status of system servers.
Specific Objective 3 - The student will perform problem analysis and troubleshooting, to include analysis and troubleshooting of the system, analysis and troubleshooting of commercial off-the-shelf (COTS) hardware and software.

Condition - The student will be given a copy of 611-CD-600-001 Mission Operation Procedures for the ECS Project, 609-CD-600-001 Release 6A Operations Tools Manual, and a workstation console with access to ECS software tools including Trouble Ticket, Fault/Performance Management, Whazzup???, Tivoli, ECS Assistant/Monitor, and Management Services Subsystem (MSS) graphical user interface (GUI) tools.

Standard - The student will use the GUI tools without error in accordance with applicable procedures to perform the required troubleshooting and maintenance activities.

Specific Objective 4 - The student will use the Inventory/Logistical Management (ILM) tool to prepare a maintenance work order and a maintenance work order modification.

Condition - The student will be given a copy of 611-CD-600-001 Mission Operation Procedures for the ECS Project, 609-CD-600-001 Release 6A Operations Tools Manual, and a workstation console with access to ECS software tools including the ILM tool.

Standard - The student will use the ILM tool without error in accordance with applicable procedures to prepare the required work order and work order modification.

Specific Objective 5 - The student will perform the procedures required for switchover from a failed primary processor to a backup processor and switch back to the primary processor upon its return to service.

Condition - The student will be given a copy of 611-CD-600-001 Mission Operation Procedures for the ECS Project and workstation consoles with access to ECS software tools.

Standard - The student will perform the necessary procedures without error and complete the initial switchover in less than 30 minutes.

Specific Objective 6 - The student will perform the procedures required for general check out and diagnosis of failures related to operations with custom ECS software.

Condition - The student will be given troubleshooting procedures, a copy of 611-CD-600-001 Mission Operation Procedures for the ECS Project, 609-CD-600-001 Release 6A Operations Tools Manual, and a workstation console with access to ECS software tools including Trouble Ticket, Fault/Performance Management, Whazzup???, Tivoli, ECS Assistant/Monitor, and Management Services Subsystem (MSS) graphical user interface (GUI) tools.

Standard - The student will use the information and available tools without error in accordance with applicable procedures to perform the required troubleshooting activities.

Specific Objective 7 - The student will perform the functions required to set up and manage trouble ticket processing, including administrative set-up of user accounts and privileges in the trouble ticket software.

Condition - The student will be given a copy of 611-CD-600-001 Mission Operation Procedures for the ECS Project, 609-CD-600-001 Release 6A Operations Tools Manual, and a workstation console with access to ECS software tools including Trouble Ticket,
Fault/Performance Management, Whazzup???, Tivoli, ECS Assistant/Monitor, and Management Services Subsystem (MSS) graphical user interface (GUI) tools.

Standard - The student will use the GUI tools without error in accordance with applicable procedures to perform the required trouble ticket functions.

Importance

This lesson provides students with the knowledge and skills needed for effective system troubleshooting and maintenance of the ECS. It is structured to provide useful skills and knowledge concerning ECS operation and the tools for identifying system problems and returning malfunctioning system hardware and software to normal operational status. It provides useful instruction and practical exercises in maintaining ECS in an operationally ready condition, and is therefore vital to students who are preparing for a number of different positions with responsibilities in maintaining that system readiness, including positions as:

- Computer Operator, System Administrator, and Maintenance Coordinator at the DAAC.
- System Engineer, System Test Engineer, System Administrator, and Software Maintenance Engineer at the System Operational Support (SOS) group or at the Sustaining Engineering Organization (SEO).
- System Engineer, System Test Engineer, and Software Maintenance Engineer at the DAAC.
This page intentionally left blank.
Configuration Parameters

There are many configurable parameters associated with ECS software. Some of them are set by default to values that may be appropriate for most operating conditions. Others may be set to values that may or may not be appropriate for the requirements of operations at a particular DAAC. Some parameters may be changed using ECS Graphical User Interfaces (GUIs) specifically designed to monitor and control functions related to particular subsystems. Others may require changes to a configuration file (i.e., edit the file using UNIX vi editor) or database (typically done by the Database Administrator). \textit{Note: Before changing any configuration parameter, make certain either that it is not under configuration control or that you have obtained any necessary approval specified in local Configuration Management policies and procedures.}

Configuration Registry

ECS configuration parameters are manageable by a \textit{Configuration Registry}. The Configuration Registry Server provides a single interface to retrieve configuration attribute-value pairs for ECS Servers from the Configuration Registry Database, via a Sybase Server. The Configuration Registry Server maintains an internal representation of the tree in which configuration attribute-value pairs are stored. General configuration parameters used by many servers are stored in higher nodes in the tree. Parameters specific to a single ECS Server are contained in the leaf nodes of the tree. ECS provides a script tool to load the Configuration Registry database from data in configuration files. Once the Configuration Registry is loaded, if the configuration files are moved or otherwise made inaccessible to the software, the software goes to the Configuration Registry to obtain needed configuration parameters. There is also a Configuration Registry GUI to view and edit configuration data in the database. Changes to the Configuration Registry typically are under the control of the Database Administrator and Configuration Management.

General Configuration Parameters

Training lessons for specific DAAC functions (e.g., Ingest, Production Planning and Processing, Data Distribution) address configuration parameters related to those functions. Table 1 identifies a few of the ECS subsystem applications, key system configuration parameters, known defaults, and known desirable values along with known effects or factors that may influence the values to which they are set. This is a very limited and preliminary representation of a large amount of configuration parameter information that ECS is making available in published and dynamic baseline information. More information, including data on parameters, units of measure, defaults, recommendations, and site/platform specific UNIX parameters can be obtained on the web at \texttt{http://cmdm.east.hitc.com}, in the 920 series of Technical Documents.
<table>
<thead>
<tr>
<th>Application(s)</th>
<th>Parameter</th>
<th>Default Value</th>
<th>Desired Value and Known Effects/Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Various (each application has log files affected by these parameters)</td>
<td>AppLogSize</td>
<td>= 50000 to = 1000000</td>
<td>Varied; For Ingest, = 50000 For DPS, = 20000 For SDSRV, = 500000 For DDIST, = 1000000</td>
</tr>
<tr>
<td></td>
<td>AppLogLevel</td>
<td>0</td>
<td>Discretionary; 0 provides a full trace recording of all events, 1 provides messages related to all major events, 2 yields just records of errors, and 3 turns recording off.</td>
</tr>
<tr>
<td></td>
<td>DebugLevel</td>
<td>3</td>
<td>Discretionary; 3 provides a full trace recording of all events, 2 provides messages related to all major events, 1 yields just records of errors, and 0 turns recording off. The Debug level for SDSRV and the HDF EOS Server should be set to 2. Level 2 will display messages when SDSRV is making a RPC to another server or SYBASE. When the Debug level is set to three, large amounts of metadata are output to the log file. For searches of granules that have big descriptors (Landsat), the difference in the search time can be as much as 30 times more if the debug level is set to 3.</td>
</tr>
<tr>
<td>Application(s)</td>
<td>Parameter</td>
<td>Default Value</td>
<td>Desired Value and Known Effects/Factors</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>EcDsScienceDataServer</td>
<td>DSS_NUM_GEN_CATALOGS</td>
<td>15</td>
<td>Controls how many DsMdCatalog objects get created within SDSRV on startup; has direct impact on the number of SYBASE connections held by SDSRV.</td>
</tr>
<tr>
<td></td>
<td>SDSRV_CATALOG_CONNECT_INSTRUCTIONS</td>
<td>SQSOnly</td>
<td>Controls how the DsMdCatalog connects to the database; default causes each object to create only 1 connection. Setting the value to “SybaseAndSQS” causes each object to create two connections and offers performance gains by using direct SQL Server connections where possible. Do not set to “SybaseOnly” because it will then not support spatial data processing.</td>
</tr>
<tr>
<td></td>
<td>SDSRV_AUTO_INSPECT_SWITCH</td>
<td>On</td>
<td>Controls whether SDSRV returns commonly inspected metadata attributes as part of search requests; when the value is “on” a Remote Procedure Call (RPC) is eliminated for frequently inspected attributes.</td>
</tr>
<tr>
<td></td>
<td>SDSRV_NUM_INT_SESSION</td>
<td>128</td>
<td>Controls the maximum number of concurrent sessions SDSRV will start to execute asynchronous acquire requests in the queue. If this number is set too low and there are a lot of Landsat requests, the other requests may never be serviced.</td>
</tr>
<tr>
<td></td>
<td>NumOfHDFServer</td>
<td>3</td>
<td>(NOTE: HDF-EOS Servers required only at sites doing Landsat-7 distribution.) Should be a minimum of 3.</td>
</tr>
</tbody>
</table>
Table 1. General Configuration Parameters (continued)

<table>
<thead>
<tr>
<th>Application(s)</th>
<th>Parameter</th>
<th>Default Value</th>
<th>Desired Value and Known Effects/Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcDsStArchiveServer</td>
<td>CHECKSUMSTATUS</td>
<td>OFF</td>
<td>Controls whether a checksum is calculated for each file inserted into the archive. If value is ON, this time-consuming and CPU-intensive process can have a significant impact on performance.</td>
</tr>
<tr>
<td></td>
<td>ListenThreads</td>
<td>7</td>
<td>Maximum = 125</td>
</tr>
<tr>
<td>EcDsStCacheManagerServer</td>
<td>ListenThreads</td>
<td>7</td>
<td>Pull Monitor is single threaded</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum = 125</td>
</tr>
<tr>
<td>EcDsStPullMonitorServer</td>
<td>ListenThreads</td>
<td>1</td>
<td>Based on DCE practice of setting the inbound rpc queue to no more than 8 times the number of Pull Monitor listen threads; if there are more than 8 FtpDis listen threads, some of the requests sent to Pull Monitor may be lost.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum = 125</td>
</tr>
<tr>
<td>EcDsStStagingDiskServer</td>
<td>ListenThreads</td>
<td>7</td>
<td>Only one request can be processed at a time.</td>
</tr>
<tr>
<td>EcDsStD3Server</td>
<td>ListenThreads</td>
<td>7</td>
<td>Threads for each request from DDIST for media distribution, plus extra for pinging the server; value can be up to 30.</td>
</tr>
</tbody>
</table>

Although Table 1 addresses many important configuration parameters, it does not provide an exhaustive list, even of general configuration parameters. The values assigned to system parameters can affect ECS functioning and performance. Any changes that are considered must be investigated in view of anticipated changes in the way the system operates. When troubleshooting system problems, it may also be helpful to determine whether there have been any recent changes to system parameters that could be responsible for impaired performance, and to reset suspect parameters to default and/or recommended values, coordinating with the Database Administrator or Configuration Management Administrator as appropriate.
System Performance Monitoring

The key to maintaining ECS in an operationally ready state is effective performance monitoring.

- System operators – close monitoring of progress and status of system and subsystem functions that are the focus of their jobs.
 - Notice any serious degradation of system performance that has an impact on their abilities to conduct their jobs successfully and meet user needs.
- System administrators and system maintenance personnel – monitor overall system functions and performance.
 - Administrative and maintenance oversight of system.
 - Watch for system problem alerts.
 - Use monitoring tools to create special monitoring capabilities.
 - Check for notification of system events.

Accessing the EOSDIS Backbone Network (EBnet) Web Page

The EOS Mission Support Network (EMSn), formerly Ebnet, is a Wide Area Network (WAN) that provides, in combination with other institutional and public networks, connectivity between geographically distributed EOSDIS facilities to support ECS mission operations and data production functions. Specifically, its functions include:

- provides connectivity between the ECS DAACs, the EOS Data and Operations System (EDOS) facilities, affiliated data centers, and other designated EOSDIS sites.
- serves as the interface between EDOS, the DAACs, and the NASA Internet (NI).
- transporting spacecraft command, control, and science data nationwide on a continuous basis, 24 hours a day, 7 days a week.
- transports real-time mission-critical data related to the health and safety of on-orbit space systems and raw science telemetry as well as pre-launch testing and launch support.
- transports science data collected from spacecraft instruments and various levels of processed science data including expedited data sets, production data sets, and rate-buffered science data.
- provides wide-area communications through common carrier circuits for internal EOSDIS communications.
- interface to Exchange Local Area Networks (LANs) which provide communications between the WAN and site-specific LANs.
The NASA Communications (Nascom) organization at Goddard Space Flight Center (GSFC) maintains a home page for the EBnet (see Figure 1) on the World Wide Web at the following Universal Resource Location (URL):

This web site provides an overview of the EBnet as well as current data on its status and performance. Consequently, it can be a useful source of information when you are monitoring system performance. To access the EBnet Web Page, use the following procedure.

Accessing the EOSDIS Backbone Network (EBnet) Web Page

1. On workstation $x0msh##$, at the UNIX prompt in a terminal window, type **Netscape** at a UNIX command prompt and then press the **Return/Enter** key.
 - **NOTE:** The x in the workstation name will be a letter designating your site: g = GSFC, m = SMC, l = LaRC, e = EDC, n = NSIDC, o = ORNL, a = ASF, j = JPL; the $$##$$ will be an identifying two-digit number (e.g., l0msh03 indicates a management services subsystem hp workstation at LaRC).
 - The starting page selected to appear on launch of the browser is displayed.

2. Click on the **Location** window of the starting page.
 - The contents of the **Location** window are highlighted.

3. Enter http://beroulli.gsfc.nasa.gov/EBnet/ in the **Location** window.

4. Press the **Return/Enter** key on the keyboard.
 - The EOSDIS Backbone Network (EBnet) home page is displayed.
Log in to ECS

Many system monitoring and troubleshooting procedures require logging in to ECS, and may involve remote access to distributed hosts. When log in is required in the many procedures specified in this lesson, the procedure simply states "Log in to the host for . . ." or "At the UNIX prompt on the host for . . ." to avoid needless repetition of steps that are likely to be well known. The log-in steps, using the secure shell (ssh) protocol, are presented once here for reference. These steps assume that the operator is logged completely out of the system at the beginning. To log in, use the following procedure.
Log in to ECS

1. To access the desktop environment, enter your user ID and password at the initial screen.
 - The Common Desktop Environment (CDE) is displayed.

2. To access a UNIX terminal window, select "Terminal" from the pull-up menu at the arrow button at the bottom of the window.
 - The Common Desktop Environment (CDE) is displayed.

3. If you will want to display a Graphical User Interface (GUI) at the local terminal, it may be necessary to type `setenv DISPLAY <local terminal ID (e.g., ip address)>:0.0` and then press the Return/Enter key.
 - The DISPLAY variable may default to the desired terminal; to check it, type `echo $DISPLAY`, and then press the Return/Enter key.
 - The set value of the DISPLAY variable is displayed.

4. To start the log-in to the desired remote host, type `/tools/bin/ssh <hostname>` and then press the Return/Enter key.
 - If you receive the message, Host key not found from the list of known hosts. Are you sure you want to continue connecting (yes/no)? type yes ("y" alone does not work).
 - If you have previously set up a secure shell passphrase and executed sshremote, a prompt to Enter passphrase for RSA key '<user@localhost>' appears; continue with Step 5.
 - If you have not previously set up a secure shell passphrase; go to Step 6.
 - Note: If you need to log in to the remote host as an account other than yourself (e.g., root), the ssh command takes the form `ssh -l <account> <hostname>`.

5. If a prompt to Enter passphrase for RSA key '<user@localhost>' appears, type your Passphrase and then press the Return/Enter key. Go to Step 7.
 - The prompt indicates successful log in to the selected host.

6. At the '<user@remotehost>''s password: prompt, type your Password and then press the Return/Enter key.
 - The prompt indicates successful log in to the selected host.

7. Log in is complete.
Checking the Health and Status of the Network

ECS is heavily dependent on the use of computer networks. Whazzup??? is a management tool that provides operators and maintainers with a means of monitoring and checking the network, for quickly identifying parts of the network that may have problems, and for isolating faults on the network. It is a web-based application, and is therefore accessed by means of browser software. It provides the following general features:

- host and mode views of network resources.
- status information on resources (indicated by color coding: purple indicates inability to ping the specified host, blue indicates incomplete data collection, red indicates that the server is down, and yellow indicates that a warning threshold has been exceeded).
- performance monitoring capability.

Another set of tools for monitoring and managing network resources is ECS Assistant and its companion, ECS Monitor, which offer:

- installation support.
- indication of network and server status and changes.
- easy-to-use capability to ping all servers.

Figure 2 shows the welcome screen for Whazzup. The welcome screen has buttons and links at the bottom permitting an operator to view status by various means (e.g., host, mode), verify modes and view what servers may be down, and access data on performance. Figure 3 shows an example of a view, obtained by clicking on the Performance link at the bottom of the welcome screen, listing various performance statistics for the hosts in a table with one row for each host. This screen provides a quick overview of the system status; if Whazzup is unable to ping a host, the row for that host is highlighted in purple. Figure 4 shows an example of a view, obtained by selecting "What's Down" from a menu activated by clicking on the Verify Mode button at the bottom of the screen, showing servers that are down in the different modes. This view will also identify any hosts that Whazzup is unable to ping, highlighting their entries in purple.
Figure 2. Whazzup Welcome Screen
Figure 3. Whazzup?? Performance Stats Screen. Row highlight is purple, indicating inability to ping the host.
Starting Whazzup and Monitoring the Status of Hosts and Servers

The Whazzup?? tool is accessible through use of a web browser. To access the tool and obtain a quick view of what servers may be down, use the following procedure.

Start Whazzup and View What's Down

1. On workstation x0ins02, at the UNIX prompt in a terminal window, type `netscape &` and then press the Return/Enter key.

 - NOTE: The x in the workstation name will be a letter designating your site: g = GSFC, m = SMC, l = LaRC, e = EDC, n = NSIDC, o = ORNL, a = ASF, j = JPL (e.g., 10ins02 indicates an interface host workstation at LaRC).
In the location field, type **http://x0ins02u:5150** and press the **Return/Enter** key.

- **NOTE:** The **x** in the workstation name will be a letter designating your site:
 - **g** = GSFC, **m** = SMC, **l** = LaRC, **e** = EDC, **n** = NSIDC, **o** = ORNL, **a** = ASF, **j** = JPL
 (e.g., **10ins02** indicates an interface host workstation at LaRC).

- The **EcMsWz-Whazzup??** screen is displayed.

At the bottom of the screen, click on the **Verify Mode** option button and, in the resulting pop-up menu, drag the cursor to highlight the option **What’s Down**.

- The screen displays a table showing **Required Servers Currently Down . . .**, listing by mode the servers that are down.

Move the mouse to position the cursor on the **Performance** link, click the **Right Mouse Button**, and select **Open Link in New Window**.

- The **Performance Stats** screen is displayed in a new window, showing information that may help determine the reason for any servers being down.

If desired, click on the link for any host to obtain more detailed information.

- An information screen for the selected host is displayed, showing data on system memory, disk utilization, process information, and network information.

ECS Assistant and ECS Monitor

The Whazzup tool provides a quick look capability to note whether any servers are down. The ECS Assistant and ECS Monitor tools provide additional easy-to-use tools that offer a server monitoring and ping capability (ECS Monitor) as well as support for installation (ECS Assistant). ECS Assistant permits staging ESRTs and DLLU into their directories (CUSTOM/data/ESS for ESRTs and CUSTOM/lib/ESS for DLLs). Figure 5 shows the ECS Assistant GUI for access to manager functions (upper left) and the ECS Assistant subsystem manager GUI.
To run the ECS Assistant, use the following procedure.

Starting ECS Assistant

1. Log in to one of the host machines.

2. At the UNIX prompt on the host from which the ECS Assistant is to be run, type `setenv ECS_HOME /usr/ecs`, and then press the Return/Enter key.
 - To verify the setting, type `echo $ECS_HOME`, and then press the Return/Enter key.

3. At the UNIX prompt, type `cd /tools/common/ea`, and then press the Return/Enter key. Then type `EcCoAssist /tools/common/ea &`, and then press the Return/Enter key.
 - `/tools/common/ea` is the path where ECS Assistant is installed, and also where EcCoScriptlib may be found.
 - The ECS Assistant GUI is displayed.

4. At the ECS Assistant GUI, click the **Subsystem Manager** pushbutton.
 - The Subsystem Manager GUI is displayed.
5 Select a mode by clicking on the down arrow at the right end of the Mode field and then on the desired mode name in the resulting list.

- The selected mode is displayed in the Mode field and colored indicators show the installation status for components in that mode on the host; the legend for the color indications is at the lower right on the Subsystem Manager window.

6 In the list of subsystems, double click on the name of the subsystem of interest.

- One or more component groups appear below the selected subsystem name.

7 Double click on the name of a component group.

- One or more application groups appear below the selected component group name.

8 Double click on the name of the application group of interest.

- The applications or servers in the selected group are listed below the name of the group.

9 Single click on the name of an application or server of interest.

- The selected application or server is highlighted.

- Detailed installation information is displayed in the Installation Statistics window.

Slide 16

ECS Monitor provides a convenient way to monitor the status of the servers by listing their up/down condition. The **ECS Monitor** GUI is shown in Figure 6; the status flag for a server is up or down indicating whether or not that server is running, and for a server that is running, the window shows the process ID (PID), the user ID, and the start time. The ECS Monitor also includes near the top of the window a button labelled **cdsping all servers** . . . that permits an operator to ping all servers. Figure 7 shows the resulting **ECS Monitor cdsping** window.
Figure 6. ECS Monitor GUI
Figure 7. ECS Monitor cdsping GUI
To start up the ECS Monitor GUI, use the following procedure.

Using the ECS Assistant Server Monitor

Log in to one of the host machines.

1. At the UNIX prompt on the host from which the ECS Assistant is to be run, type `setenv ECS_HOME /usr/ecs`, and then press the Return/Enter key.
 - To verify the setting, type `echo $ECS_HOME`, and then press the Return/Enter key.

2. At the UNIX prompt, type `cd /tools/common/ea`, and then press the Return/Enter key.
 - `/tools/common/ea` is the path where ECS Monitor is installed.

3. Then type `EcCoMonitorGui /tools/common/ea <mode> &`, and then press the Return/Enter key.
 - `/tools/common/ea` is the path where EcCoScriptlib may be found.
 - The **ECS Monitor GUI** is displayed, showing the status (UP or DOWN) of the servers on the current host in the mode specified in the command, as indicated near the top left corner of the window.
 - The status “UP/DOWN” indicates whether a listed server is running.

4. To see which host each server is running on, click the **cdsping all servers…** button.
 - The **ECS Monitor (cdsping)** GUI is displayed.
 - The host name for each running server is listed, and whether or not it is listening.

5. Both the **Server Monitor** and **cdsping** GUI can be updated by clicking the **update** button in the GUI.
 - This causes the list to update to the current status.

6. To monitor other servers, log in to other hosts and launch the ECS Monitor GUI in the desired mode, as in steps 2-4.

7. To exit, click the **EXIT** button.
 - This terminates display of the monitor GUI.

Tivoli Management Environment

Another powerful COTS program used to monitor the system is Tivoli Management Environment. Version 3.6 is the current version installed at the DAACs. Tivoli is based on a core program, Tivoli Framework, to which specific user applications are added to meet management and monitoring requirements. These applications, when configured for specific
ECS functions, provide detailed information and notification of events on a programmable polling basis.

Specific Tivoli Environment applications used in ECS are:

- **Tivoli Enterprise Console.** A rules-based management application that collects, processes, and automatically responds to common management events.

- **Tivoli Software Distribution** (previously Tivoli Courier). A management application that provides for the distribution and installation of software on machines in a heterogeneous networking computing environment.

- **Tivoli Distributed Monitoring** (previously Tivoli Sentry). A management application for monitoring system and application resources and generating events and alarms on a network-wide basis. It provides availability data and performs automated actions based on the monitored data.

Tivoli Management Environment, when used in conjunction with Whazzup??? and ECS Monitor, can provide detailed, current data on system status. Figure 9 depicts the component relationship of Tivoli Management Environment and the three applications used in ECS.
Tivoli Management Region

The core of a Tivoli Management Environment is the Tivoli Management Region, or TMR. It consists physically of a primary Server and its clients. In ECS, the TMR is normally installed on the MSS Server. As an example, for GSFC, it is located on g0msh08, and for the VATC it is installed on t1msh01.

Complete installation instructions and release notes for Tivoli Management Environment, Version 3.6 Upgrade for the ECS Project, are contained in the ECS Project document 914-TDA-043-REV01.

The program is accessed by various levels of administrators. During installation, the installer assumes the highest level of administrator, the Super Administrator. After installation, other administrators are created and provided specific authorization roles as required, such as Senior, Admin, and User. Administrators can only create other administrator accounts that have capabilities equal to, or less than, their own level.

Figure 10 illustrates the Tivoli Startup screen, which appears briefly upon starting the program. The Administrator Desktop, illustrated in Figure 11, is displayed immediately after the appearance of the Startup screen. As shown in Figure 11, the Desktop screen features icons which permit access to various administrative functions.

![Figure 10. Tivoli Startup Screen](image)
To run Tivoli, execute the procedure steps that follow:

Tivoli startup procedure

1. Log in to a host machine.

2. At the UNIX prompt on the host from which Tivoli is to be run, type `setenv DISPLAY hostname:0.0` and press the **Return/Enter** key. **Note:** If the host has been remotely accessed via ssh then do not use the `setenv DISPLAY` command again. Doing so will compromise system security.
 - The hostname is the name of the machine on which Tivoli is to be displayed, i.e., the machine you are using.
 - To verify the setting, type `echo $DISPLAY` and then press the **Return/Enter** key.
3 At the UNIX prompt, using secure shell, log on to the Tivoli host, x0mshxx. Type ssh x0mshxx and then press the Return/enter key. Enter <your passphrase> and then press the Return/Enter key.
 • You are logged into the Tivoli host machine.

4 Type cd /etc/Tivoli and then press the Return/Enter key.
 • You are in the Tivoli directory on host x0mshxx.

5 Type source setup_env.csh and then press the Return/Enter key.
 • The environment variables for Tivoli are set.

6 Type tivoli –f and then press the Return/Enter key.
 • The Tivoli Startup screen appears briefly, followed by the TME Administrator Desktop.

Tivoli Policy Region

Monitoring of system resources uses displays that are organized analogous to a hierarchical file structure. Accessed through the top-level policy region icon, displayed on the Administrator Desktop (Figure 11), subsequent screens display specific hosts and agents. A policy region is a special collection of resources that share one or more common policies. An administrator can create special sub-policy regions to monitor specific areas of interest. Policy sub-regions can be arbitrarily nested and can contain any desired set of managed resources.

Figure 12 and Figure 12a show the Policy Region content for the VATC system under TMR t1msh01. It has been populated with the individual hosts and other managed resources under Tivoli management purview.
Figure 12. Policy Region content for t1msh01 in the VATC

Figure 12a. Policy Region content for t1msh01 in the VATC, continued
Distributed Monitoring

The component of Tivoli Management Environment that establishes system monitoring criteria is the Tivoli Distributed Monitoring application. Tivoli Distributed Monitoring checks the status of a variety of networked resources, such as systems, applications, and processes. Through the use of profiles, Distributed Monitoring enables system administrators to set monitoring policy and to change monitoring parameters for any number of related, remote systems from a single location. Distributed Monitoring profiles also define automated responses. These responses can be as simple as changing the status of an icon or sending E-mail to an administrator, or as complex as sending an SNMP trap or running a user-specified program or script.

Key items that can be set for any given monitor are:

- Set the response level.
- Determine monitor trigger.
- Send a Tivoli Notice.
- Activate a Pop-up Window.
- Change an icon’s status.
- Send E-mail.
- Log to a file.
- Run a program.

An example of a monitor profile is shown in Figure 13. It is the profile edit screen establishing a Daemon Monitor on the VATC host t1msh01.

![Figure 13. Daemon Monitor Profile Edit Page](image)
Multiple monitoring profiles can be created and distributed across several hosts. Figure 14 shows a partial profile manager screen for performance monitors and their respective hosts.
Administrators can also determine monitor profiles assigned to specific hosts. Figure 15 shows a portion of the monitor profiles active on host t1msh01 in the VATC.

![Monitor Profiles active for t1msh01](image)

Figure 15. Monitor Profiles active for t1msh01

To determine Monitor Profiles active on a specific host, execute the procedure steps that follow:

Display Active Tivoli Monitor Profiles procedure

1. Start Tivoli using the Tivoli Startup Procedure.
 - The Tivoli Startup screen appears temporarily, followed by the TME Administrator Desktop screen (Figure 11).

2. Double-click on the region icon to display Policy Region components.
 - A scrollable window of components is displayed (Figure 12).

3. Double-click on any component icon.
 - A scrollable window of Monitor Profiles is displayed (Figure 15).

4. Double-click on any specific Profile Monitor icon to determine profile characteristics (Figure 13).
Tivoli Enterprise Console

The component of Tivoli Management Environment that provides the interface for system monitoring is the Tivoli Enterprise Console. It monitors events defined by the administrator across individual or groups of items. An event is any significant change in the state of an application or system resource, such as a network or host. The Event Console is the interface that an administrator uses to receive notification of events and to respond to events. An Event Group is depicted in the Event Groups event console dialog. There is one icon for each event group that is monitored. Figure 16 shows the Tivoli Enterprise Console Event Groups for the VATC.

![Tivoli Enterprise Console Event Groups](image)

Figure 16. Tivoli Enterprise Console Event Groups

As in previous hierarchical displays, the Enterprise Console icons can be stepped through to determine specific errors in addition to any programmed notifications as determined by the administrator.
Although ECS is designed to be a robust computer network system, the complexity of its hardware and software components and interfaces provides a wealth of potential sources for system failures or other non-conformance problems. Fortunately, the tools available in ECS provide several avenues of assistance to help you detect and isolate problems in the system. Furthermore, there is an accumulating information base at the web site for the System Monitoring and Coordination Center (SMC) that may provide helpful insights and tips in solving system problems. The URL for the SMC site is http://m0mss01.ecs.nasa.gov/smc/. At the site, click on the link for Frequently Asked Questions (FAQ).

Analysis/Troubleshooting: System

Some of the Commercial Off-The Shelf (COTS) software products that are part of ECS provide alerts or warnings when there are system problems. For example,:

- **Whazzup??**
 - color alerts to indicate problems.
- **AutoSys/Xpert.**
 - color/auditory alerts to indicate job status/failures.
- **Tivoli.**
 - “thermometer” icon showing high temperature to indicate failure.

Many of the COTS products as well as the software developed specifically for ECS generate error messages and event messages to indicate errors and status. The interpretation of these messages and suggested corrective actions can be found in 609-CD-600-001 Release 6A Operations Tools Manual. Some products also generate logs to capture and provide more detailed information about indicated problems (e.g., Tivoli Enterprise Console system monitoring log, with a focus on software events).

As is ever the case with a complex system, the effectiveness of troubleshooting depends on knowledge of the system and its documentation, applied systematically to diagnose problems. Your knowledge and skill may be called upon only after a user or an operator has already attempted some problem solving (e.g., based upon error messages displayed directly to the screen) and then submitted a trouble ticket. The effectiveness of your troubleshooting is maximized by:
• thorough documentation of the problem.
 – date/time of problem occurrence.
 – hardware/software.
 – initiating conditions.
 – symptoms, including log entries and messages on GUIs/screens.
• verification.
 – identify/review relevant publications (e.g., COTS product manuals, ECS tools and procedures manuals).
 – replicate problem.
• identification.
 – review product/subsystem logs.
• analysis.
 – detailed event review (e.g., logs).
 – troubleshooting procedures.
 – determination of cause/action.

Analysis/Troubleshooting: COTS Hardware
The ECS hardware is composed almost entirely of commercial, off-the-shelf (COTS) products, for which there are vendor maintenance warranties and/or COTS hardware support contracts. When a system problem is discovered, there is an initial troubleshooting/diagnostics procedure to be followed which is generic – i.e., not limited to hardware problems. However, when a hardware problem is indicated, the procedure refers the problem to the Maintenance Coordinator for hardware corrective maintenance. System troubleshooting tools and principles apply:
• Whazzup?? for quick assessment of status.
• Application and debug logs for sequence of events.
• Initial troubleshooting.
 – Review error message against hardware operator manual.
 – Verify connections (power, network, interface cables).
 – Run internal systems and/or network diagnostics.
 – Review system logs for evidence of previous problems.
 – Attempt system reboot.
If problem is hardware (e.g., software has been working and reboot is unsuccessful), report it to the Maintenance Coordinator – i.e., refer problem for preparation of a maintenance Work Order in Inventory/Logistical Management (ILM) software.

The ILM Tool

The ILM tool is one application of XRP-II (the other is Baseline Manager. The main screen of XRP-II, illustrated in Figure 17, permits access to four menus (Note: Depending on the access level established for you by the XRP-II administrator, you may not have access to all of the menus):

- **Baseline Management** menu provides access to functions for maintaining control item and bill of material information.

- **ILM Main Menu** provides access to functions for Inventory/Logistical Management (ILM) services, including entry and management of EIN (Equipment Identification Number) information and management of the EIN structure for the ECS inventory, as well as entry of maintenance Work Orders and other maintenance records.

- **System Utilities Menu** provides access to functions for maintaining information that spans functional domains, and for importing and exporting records.

- **System Tools** menu provides access to functions for managing the security, health, and configuration of XRP-II.
The user interface for XRP-II is a Character User Interface (CHUI). The various screens are accessible through navigation of a hierarchical menu structure. Figure 18 illustrates that structure for ILM. Data concerning maintenance actions can be added, modified, or deleted by selecting an appropriate data entry screen from the Maintenance Menu. Data entry screens permit modification of the master file (or catalog) that describes maintenance actions individually. Each screen accesses a particular set of records and contains a unique set of fields corresponding to an item’s class. All screens function in essentially the same way, and use bottom-line commands such as those shown in the Work Order Entry screen illustrated in Figure 13. A bottom-line command is executed by typing its first letter, or, in the case of those preceded by a slash (/), by typing the slash and the first letter.
Figure 18. XRP-II Hierarchical Menu Structure for ILM.

Figure 19. ILM Work Order Entry Screen.
A problem that is not resolved through initial troubleshooting will often require troubleshooting teamwork by the Maintenance Coordinator, the System Administrator, and perhaps a Network Analyst. These troubleshooters may perform additional steps to resolve the problem:

- specific troubleshooting procedures described in COTS hardware manuals.
- non-replacement intervention (e.g., adjustment).
- replace hardware with maintenance spare.
 - locally purchased (non-stocked) item.
 - installed (hot-swappable, excess capacity) spares (e.g., RAID storage, power supplies, network cards, tape drives).

If the hardware problem is not resolved by the actions of the local staff, it may be necessary to request assistance through the Maintenance Coordinator from a maintenance contractor for on-site hardware support. Suppose, for example, that you are a Maintenance Coordinator and Whazzup?? has indicated a problem with one of the Sun workstations, that initial troubleshooting finds the workstation to be inoperable, that a hardware problem report has been forwarded to you, and that you and System Administrator cannot resolve the problem through additional troubleshooting. That workstation is hard down. The correct approach is:

- Organize the data on the problem and use ILM software to prepare a maintenance Work Order.
- Call the support provider’s technical support center to obtain on-site assistance.
 - Provide them with the background data.
 - Obtain a case reference number from them.
 - Update the ILM record to reflect the time and date of the call and the case number.
 - Notify the originator of the problem that the contractor is on the way.
- Arrange for site access for the maintenance technician.
 - Record arrival time.
 - Escort technician to hardware.
 - Assist in problem resolution (e.g., arrange equipment shutdown, demonstrate problem).
 - Obtain any needed technical references that are available at the site.
- Update the ILM record with actions taken to correct the problem and delay time experienced for the repair, including start/stop times and reasons for each delay.
• For any replaced part, update the ILM record with additional supporting data (Work Order Parts Replacement History).

 − Part number of the new item.

 − Serial numbers of the old and new items.

 − Equipment Identification Number (EIN) assigned to the new item (if applicable).

 − Model number of replacement Line Replaceable Unit (LRU). [Note: If the model number of the replacement LRU is different from the part removed, a configuration change request (CCR) is required for configuration management.]

 − Name of the item replaced.

The following procedures are applicable to help you implement this approach.

In preparation to request on-site hardware support from the maintenance contractor to repair the down Sun workstation, use the following procedure to obtain the background information needed.

Obtaining On-Site Hardware Support: Background Information

1. Collect information needed to obtain contract maintenance support.

 • Obtain **make, model, serial number**, and **location** of the failed system from the hardware database.

 • Obtain description of problem and symptoms from the **problem report**.

 • Identify the **criticality** of the COTS hardware experiencing the problem.

2. Determine maintenance provider data.

 • Obtain **name**, and **telephone number** of the maintenance provider.

 • Obtain **access code** needed to obtain support.

 • Obtain **telephone number** of the support provider’s technical support center.

 • Obtain **name** of site authorized contact person.

Once you have collected the background information you need to contact the maintenance vendor, make the contact and then enter a Work Order record into the ILM tool. Use the following procedure.
Use ILM to Prepare a Maintenance Work Order

1. On workstation \texttt{x0mss##}, at the UNIX prompt in a terminal window, type \texttt{ilmusr <ipaddress> xterm} at a UNIX command prompt and then press the \texttt{Return} key.

 \begin{itemize}
 \item NOTE: The \texttt{x} in the workstation name will be a letter designating your site: \texttt{g} = GSFC, \texttt{m} = SMC, \texttt{l} = LaRC, \texttt{e} = EDC, \texttt{n} = NSIDC, \texttt{o} = ORNL, \texttt{a} = ASF, \texttt{j} = JPL; the \texttt{##} will be an identifying two-digit number (e.g., \texttt{e0mss02} indicates a management services subsystem workstation at EDC).
 \item A script is executed which determines the operator’s terminal type from the environment, prompts for a terminal ID, and establishes a Baseline Manager/ILM operating environment. XRP-II is then started and the \textbf{Main Screen} is displayed.
 \end{itemize}

2. Type the number 2 (for \textbf{ILM Main Menu}) and press the \texttt{Return/Enter} key.

 \begin{itemize}
 \item The \textbf{ILM Main Menu} screen is displayed.
 \end{itemize}

3. Type the number 6 (for \textbf{Maintenance Menu}) and press the \texttt{Return/Enter} key.

 \begin{itemize}
 \item The \textbf{Maintenance Menu} screen is displayed.
 \end{itemize}

4. Type the number 1 (for \textbf{Work Order Entry}) and press the \texttt{Return/Enter} key.

 \begin{itemize}
 \item The \textbf{Work Order Entry} CHUI screen is displayed, with the cursor at the \textbf{Work Order:} field; the screen is in the \textbf{ADD} mode.
 \end{itemize}

5. Press the \texttt{Return/Enter} key.

 \begin{itemize}
 \item The system generated \textbf{WORK ORDER ID} is displayed in the text field and the cursor moves to the \textbf{PARENT EIN:} field.
 \end{itemize}

6. Type the EIN of the parent item, and then press the \texttt{Return/Enter} key.

 \begin{itemize}
 \item The typed entry is displayed in the \textbf{PARENT EIN:} field, and data from the EIN file for the parent are displayed in the \textbf{Serial Number:}, \textbf{Name:}, \textbf{OEM Part:}, \textbf{OEM Desc:}, \textbf{Location:}, \textbf{Building:}, and \textbf{Room:} fields. Initial values (which may be changed) are displayed in the \textbf{NOTIFICATION DATE:}, \textbf{NOTIFICATION TIME:}, \textbf{MFG/DEV:}, \textbf{VENDOR:}, and \textbf{MAINT VENDOR:} fields.
 \item As an option instead of typing the EIN of the parent, the operator may type \texttt{/Z} and zoom out to the EIN list, scroll to the desired EIN, type \texttt{t} to tag the desired EIN, and then type \texttt{Q} (for \textbf{Quit}) to make the entry and populate the associated fields.
 \item The cursor is displayed in the \textbf{TROUBLE TICKET:} field.
 \end{itemize}
If applicable, type the identification number of an associated trouble ticket (e.g., if a trouble ticket was initially prepared for the problem), and then press the Return/Enter key.

- The field may be bypassed by just pressing the Return/Enter key.
- The typed entry is displayed in the TROUBLE TICKET: field and the cursor is displayed in the NOTIFICATION DATE: field.

Type the date (using format mm/dd/yy) on which notification of the problem was received and then press the Return/Enter key.

- To bypass the field, leaving the displayed current date, just press the Return/Enter key.
- The typed entry is displayed in the NOTIFICATION DATE: field, and the cursor is displayed in the NOTIFICATION TIME: field.

Type the time (using format hh:mm) at which notification of the problem was received and then press the Return/Enter key.

- To bypass the field, leaving the displayed current time, just press the Return/Enter key.
- The typed entry is displayed in the NOTIFICATION TIME: field, and the cursor is displayed in the PRIORITY: field.

Type a priority consistent with local policy and assessment (e.g., in this exercise, type 1), and then press the Return/Enter key.

- The typed entry is displayed in the PRIORITY: field, and the cursor is displayed in the SUBMITTER: field.

Type your employee code number and then press the Return/Enter key.

- The typed entry is displayed in the SUBMITTER: field, and the cursor is displayed in the FAILURE DATE: field.
- As an option instead of typing the employee code number, the operator may type /Z and zoom out to a list of code numbers and employees, scroll to the desired entry, type t to tag the desired entry, and then type Q (for Quit) to make the entry.

Type the actual failure date (using format mm/dd/yy), and then press the Return/Enter key.

- The typed entry is displayed in the FAILURE DATE: field and the cursor is displayed in the FAILURE TIME: field.

Type the actual failure time (using format hh:mm), and then press the Return/Enter key.

- The typed entry is displayed in the FAILURE TIME: field, and the cursor is displayed in the MFG/DEV field.
14. Type the ID of the manufacturer or developer, and then press the Return/Enter key.
 • The typed entry is displayed in the MFG/DEV: field, and the cursor is displayed in the VENDOR: field.
 • As an option instead of typing the ID, the operator may type /Z and zoom out to a list of manufacturers/developers, scroll to the desired entry, type t to tag the desired entry, and then type Q (for Quit) to make the entry. Note: This option is only available if the information has previously been entered using the Vendor Master Maintenance screen.

15. Type the code for the vendor from whom the item was purchased and then press the Return/Enter key.
 • The typed entry is displayed in the VENDOR: field, and the cursor is displayed in the MAINT VENDOR: field.

16. Type the ID of the maintenance vendor, and the press the Return/Enter key.
 • The typed entry is displayed in the MAINT VENDOR: field, and the cursor is displayed in the VENDOR CALL DATE: field.
 • As an option instead of typing the ID, the operator may type /Z and zoom out to a list of maintenance vendors, scroll to the desired entry, type t to tag the desired entry, and then type Q (for Quit) to make the entry. Note: This option is only available if the information has previously been entered using the Vendor Master Maintenance screen.

17. Type the date (using format mm/dd/yy) on which the vendor was called and informed of the problem, and then press the Return/Enter key.
 • The typed entry is displayed in the VENDOR CALL DATE: field and the cursor is displayed in the TIME: field.

18. Type the time (using format hh:mm) at which the vendor was called and informed of the problem, and then press the Return/Enter key.
 • The typed entry is displayed in the TIME: field, and the cursor is displayed in the VENDOR CONTACT NAME: field.

19. Type the name of the person who was contacted at the vendor, and the press the Return/Enter key.
 • The typed entry is displayed in the VENDOR CONTACT NAME: field, and the cursor is displayed in the VENDOR REFERENCE: field.
Optional: Type any desired information in reference to the vendor (up to 20 characters), and then press the Return/Enter key.

- The entry may be bypassed by just pressing the Return/Enter key.
- The typed entry is displayed in the VENDOR REFERENCE: field, and the cursor is displayed in the TEXT: field.

Type /z to open a free-form text window, then type any pertinent details on the failure or repair. (Note: To keep the entered text visible, press the Return/Enter key when the cursor reaches the edge of the screen during typing of each line.) Press the F3 key to exit when done.

- The free-form text window is closed, the notation T is displayed in the TEXT: field, and the cursor is displayed in the CODE: field.

Optional: Type any desired two-character code that has been established for identified specific needs, and then press the Return/Enter key.

- This field may be bypassed by just pressing the Return/Enter key.
- The typed entry is displayed in the CODE: field, and the cursor is displayed in the NOTE: field.

Optional: Type any desired note (up to 60 characters) to be added to the Work Order, and then press the F3 key to exit.

- The typed entry is displayed in the NOTE: field, and the ADD mode is terminated. (Note: If you have pressed the Return/Enter key instead of the F3 key, the screen remains in the ADD mode and the cursor is displayed at the top in the WORK ORDER: field; you must press the F3 key to exit.)

When the Work Order Entry screen is exited, the system copies all active children for the parent EIN into the work order. The operator then uses the Work Order Modification screen to record and track details about the failure.

- Main Work Order Modification screen is used to record down times, and, when a vendor service call is complete, the vendor times and any appropriate notes.
- The Items pages accessible from the Work Order Modification screen are used to designate which item(s) failed, and any new replacement parts, as well as accompanying notes.

Suppose that the vendor was called and has made a service call lasting one hour to isolate and repair the problem for which you created a maintenance Work Order entry. The problem was isolated to one of the children of the parent EIN, which was replaced to complete the repair. Use the following procedure to document the down time and service call.
Use ILM to Prepare a Maintenance Work Order Modification

1 On workstation x0mss##, at the UNIX prompt in a terminal window, type ilmusr
 <ipaddress> xterm at a UNIX command prompt and then press the Return key.

 • NOTE: The x in the workstation name will be a letter designating your site:
 g = GSFC, m = SMC, l = LaRC, e = EDC, n = NSIDC, o = ORNL, a = ASF,
 j = JPL; the ## will be an identifying two-digit number (e.g., e0mss02 indicates a
 management services subsystem workstation at EDC).

 • A script is executed which determines the operator’s terminal type from the
 environment, prompts for a terminal ID, and establishes a Baseline Manager/ILM
 operating environment. XRP-II is then started and the Main Screen is displayed.

2 Type the number 2 (for ILM Main Menu) and press the Return/Enter key.

 • The ILM Main Menu screen is displayed.

3 Type the number 6 (for Maintenance Menu) and press the Return/Enter key.

 • The Maintenance Menu screen is displayed.

4 Type the number 2 (for Work Order Modification) and press the Return/Enter key.

 • The Work Order Modification CHUI screen (form) is displayed, with the cursor at
 the Work Order: field; the screen is in the QUERY mode.

5 Type V (for View) to toggle the view to the list of work orders.

 • The list of work orders is displayed, with the cursor at the Work Order identification
 of the first item in the list.

6 Use the arrow keys to scroll down the list to the entry for the Work Order you previously
 entered.

 • If necessitated by a very long list, you may type N (for Next) to scroll down a page at
 a time; typing P (for Prior) scrolls up a page at a time.

 • If you know the identifier for the Work Order you want to modify, you may type F
 (for Find), which displays an entry field into which you can type the identifier. Then
 press the F5 key to initiate the Find action. It is possible to search on other columns
 by pressing the Return/Enter key after typing F and before typing the search item.

7 When the cursor is in the line for the desired Work Order entry, type V (for View) to
 toggle back to the form display.

 • The Work Order Modification form is displayed with data for the selected Work
 Order entry.

8 Repeatedly press the Return/Enter key to move the cursor through the form until it is
 displayed in the VENDOR ARRIVE DATE: field.

 • The cursor is displayed in the VENDOR ARRIVE DATE: field.
9 Type /M (for Modify).
 • The screen shows the MODIFY mode menu at the bottom, indicating MODIFY mode.

10 Type the date (using format mm/dd/yy) on which the vendor arrived and then press the Return/Enter key.
 • The typed entry is displayed in the VENDOR ARRIVE DATE: field, and the cursor is displayed in the VENDOR ARRIVE TIME: field.

11 Type the time (using format hh:mm) at which the vendor arrived and then press the Return/Enter key.
 • The typed entry is displayed in the VENDOR ARRIVE TIME: field, and the cursor is displayed in the VENDOR COMPLETE DATE: field.

12 Type the date (using format mm/dd/yy) on which the vendor completed the repair and then press the Return/Enter key.
 • The typed entry is displayed in the VENDOR COMPLETE DATE: field, and the cursor is displayed in the VENDOR COMPLETE TIME: field.

13 Type the time (using format hh:mm) at which the vendor completed the repair and then press the Return/Enter key.
 • The typed entry is displayed in the VENDOR COMPLETE TIME: field, and the cursor is displayed in the MFG/DEV: field.

14 Press the Return/Enter key repeatedly until the cursor is displayed in the NOTE: field.
 • The cursor is displayed in the NOTE: field.

15 Type /N (for Note).
 • A free-text field is displayed.

16 Type any pertinent notes to document events related to the failure and repair.
 • The typed entry is displayed in the free-text entry area.

17 Press the F3 key to exit the free-text entry area.
 • The free-text entry area is closed and the cursor is displayed in the NOTE: field.

18 Press the Return/Enter key repeatedly until the cursor is displayed in the first START DATE: field.
 • The cursor is displayed in the first START DATE: field.

19 Type the date on which the system failure was first noted, and then press the Return/Enter key.
 • The typed entry is displayed in the START DATE: field, and the cursor is displayed in the first END DATE: field.
20 Type the date on which switchover (if applicable) or repair began (i.e., the end of Administrative and Logistics Delay Time -- ALDT), and then press the Return/Enter key.

• The typed entry is displayed in the first END DATE: field, and the cursor is displayed in the first START TIME: field.

21 Type the time at which the system failure was first noted, and then press the Return/Enter key.

• The typed entry is displayed in the first START TIME: field, and the cursor is displayed in the first END TIME: field.

22 Type the time at which switchover (if applicable) or repair began (i.e., the end of ALDT), and then press the Return/Enter key.

• The typed entry is displayed in the first END TIME: field, and the cursor is displayed in the first REASON: field.

23 Type the code identify the reason for the first down time entry, and then press the Return/Enter key.

• If desired, you may type /Z (for Zoom) to display a list of reason codes. You may then use the down arrow key to scroll down the list to the desired code, type T to tag the entry, and then type Q (for Quit) to enter the code in the REASON: field.

• The typed (or selected) entry is displayed in the REASON: field, and the cursor is displayed in the next START DATE: field.

24 Repeat steps 19 - 23, using as many Time-Date-Reason blocks as applicable and necessary, to enter starting and ending dates, times, and reason codes for additional down time attributable to repair activities, switchover activities, and total chargeable down time, respectively.

• The time and reason data are displayed in the appropriate fields. When the Return/Enter key is pressed in the last REASON: field, the QUERY mode menu is displayed at the bottom of the screen, and the cursor remains in the REASON: field.

25 Type R (for Right).

• The screen display shifts to show the Chargeable Hours page, and the cursor is displayed in the Work Order: field.

26 Press the Return/Enter key.

• The cursor is displayed in the ALDT: field.

27 Type /M (for Modify).

• The screen shows the MODIFY mode menu at the bottom, indicating MODIFY mode.
28 Type the number of hours chargeable to ALDT, and then press the Return/Enter key.
 • The typed entry is displayed in the ALDT: field, and the cursor is displayed in the TIME TO REPAIR: field.

29 Type the number of hours chargeable to the repair, and then press the Return/Enter key.
 • The typed entry is displayed in the ALDT: field, and the cursor is displayed in the SWITCHOVER TIME: field.

30 If applicable, type the number of hours chargeable to switchover activities, and then press the Return/Enter key.
 • The typed entry is displayed in the SWITCHOVER TIME: field, and the cursor is displayed in the TOTAL CHARGEABLE DOWNTIME: field.

31 Type the total number of hours of down time, and then press the Return/Enter key.
 • The typed entry is displayed in the TOTAL CHARGEABLE DOWNTIME: field, the QUERY mode menu is displayed at the bottom of the screen, and the cursor remains in the TOTAL CHARGEABLE DOWNTIME: field.

32 Type I (for Items).
 • The items page is displayed for the first child item of the parent EIN, with the cursor positioned at the COMPONENT EIN: field.

33 To record the replacement of the item, repeatedly type N (for Next) until the page for the replaced item is located.
 • If there are a large number of child items, the location of the desired item may be facilitated by typing V (for View) to toggle to the list view. Then use the arrow keys to scroll through the list to locate the item and type V again to display the form for that item.

34 Repeatedly press the Return/Enter key until the cursor is displayed in the REPLACE (R) OR NEW (N): field.
 • The cursor is displayed in the REPLACE (R) OR NEW (N): field.

35 Type /M (for Modify).
 • The screen shows the MODIFY mode menu at the bottom, indicating MODIFY mode.

36 Type R, and then press the Return/Enter key.
 • The typed entry is displayed in the REPLACE (R) OR NEW (N): field, and the cursor is displayed in the REPLACE OR ADD DATE: field.
37 Type the date (using format mm/dd/yy) on which the replacement was made, and then press the Return/Enter key.
 • The typed entry is displayed in the REPLACE OR ADD DATE: field, and the cursor is displayed in the RECORD EVENTS: field.

38 Type /Z (for Zoom).
 • A free-text entry field is displayed.

39 Type failure/repair details in the free-text entry field, and press the F3 key when done.
 • The free-text entry field is closed, a T is displayed in the RECORD EVENTS: field to indicate that text has been entered, and the QUERY mode menu is displayed at the bottom of the screen.

40 Type Q (for Quit).
 • The ILM Maintenance menu is displayed.

In unusual cases, it may be necessary to resort to non-standard hardware support procedures. In the event that the maintenance contractor’s assigned technician is not providing timely successful repair, or if the maintenance action is otherwise unsatisfactory, it may be necessary to escalate the problem to bring it to the attention of the support contractor’s management. The escalation is achieved by calling the maintenance contractor’s technical support center and providing them with the case reference number. Another non-standard support approach, which may be costly and is to be used only as a last resort for mission-critical repairs, is Time and Material (T&M) support. For T&M support, the local Maintenance Coordinator must obtain authorization from the ILS Maintenance Coordinator or, if that person is unavailable, from the Sustaining Engineering Organization (SEO).

Failover/Switchover

In the ECS context, "failover" refers to the configuration of a fall-back platform for key system components (e.g., Ingest Server) permitting switchover to that platform to recover key functionality in a reasonably short period of time in the event of loss of the primary platform. The switchover capability can also be used to switch to the backup server operation for maintenance or software upgrade purposes. After repair of the primary platform, control is switched back from the normally secondary platform to the normally primary platform ("failback"). In the case of Ingest, for example, the ICL hardware consists of one pair of SGI servers (Ingest Server). One server in the pair acts as the "hot" server, and the other is a "warm" standby backup. The Redundant Array of Inexpensive Disks (RAID) device between the two servers is dual ported to both machines (each machine "sees" the entire RAID), but only one of the hosts (the primary) is actively addressing the RAID at any one time. Figure 20 illustrates the concept in the context of the Ingest subsystem.
For the implementation of the failover scheme, aside from the dual physical connection of the RAID, a number of specific changes are made to the host system, network, and peripheral device configuration. The result is that a virtual ip is established for the host, so that the ip address for the host can be the same regardless of which physical platform has RAID control.

In the procedure for executing the switchover, a script on the secondary host establishes control (e.g., takes ownership of the RAID, remounts partitions, recovers the database) and a script on the MSS File Server cleans up Cell Directory Service (CDS) entries. The procedure may require switching the HiPPI connection (e.g., the EDC DAAC uses HiPPI connection with Ingest, and so for Ingest "Failover" at EDC, the HiPPI connection must also be switched). Switchover also entails flushing of the Address Resolution Protocol (ARP) tables in the local and external interface routers, as well as starting ECS custom code on the backup platform. The following procedure may be used to illustrate switchover. The example uses the Ingest context, but the procedure is generic and applicable for hosts other than Ingest.

Switchover from Primary Host to Backup Host

1. Upon indication of failure of a primary host (e.g., on the Whazzup??? Performance display, the row for the Ingest host `x0icg01` turns purple), log in to the backup host (e.g., for Ingest, `e0icg02`, `g0icg02`, `l0icg02`); log in as `root`.

Figure 20. "Failover" concept.
Execute the failover script on the backup host (e.g., to execute the failover script on the Ingest backup, type `/failover/scripts/failover_to_icg02` and then press the Return/Enter key).

- The script execution gives RAID control to the secondary host.
- Note: For maximum efficiency, do not wait for completion of a step before proceeding; proceed immediately to the next steps unless the procedure directs otherwise.

Initiate clearing of the ARP cache in the Ebnet router by calling the Communications Manager (e.g., at GSFC, call 301-286-6141), with the request (an appropriate request for Ingest is: "This is <name>, <position title> at ECS and we are going to our backup Ingest host; to support this, we need the IPNOC to clear the ARP cache in router <router name>. Please advise us when this has been accomplished. My phone number is <phone number>. My pager number (if any) is <pager number>.")

- Note: Router name is `er32-1` (GSFC), `larc-gw1` (LaRC), or `edc-gw1` (EDC).

Initiate clearing of the ARP table in the PowerHub 8000 by calling the on-duty network administrator with the request.

- The network administrator will log in to the router as root, enter the `<password>`, then enter `ip arp clear`, and finally enter `bye`.

Log in as root to the MSS File Server host (e.g., `e0mss01`, `g0mss10`, `l0mss10`)

Execute the appropriate failover script on the MSS File Server (e.g., to execute the failover script for Ingest, type `/tools/admin/scripts/Failover_to_<x>icg02_CDS.sh` and then press the Return/Enter key).

The script execution cleans up the CDS entries. For failover of SGI hosts attached to the HiPPI network (otherwise, go to Step 8), execute the HiPPI switchover as follows (Note: EDC is the only DAAC that currently uses the HiPPI connection with Ingest):
• Ensure that the HiPPI interface is disabled on the primary host. If the host is down, the port will be disabled; otherwise, log in to the host as root and execute the command `hipc ntl hip0 reject`.

• Log in to the HiPPI switch (telnet or connected terminal).

• Become "system" user.

• Execute command `set huntgroup <n_1> <n_2>`.

 − Note: \(n_1 \) and \(n_2 \) are numbers unique to ECS sites and hosts; refer to Appendix A of `ECS Failover Design`, Document 920-xx-xxx-xxx for the numbers needed for the specific site and host/subsystem.

• Execute command `save h`.

• Log off HiPPI switch.

• Log in to the secondary host as root and re-configure its HiPPI interface to assume the IP address of the primary host by executing the command `ifconfig hip0 inet <ip address>`.

 − Note: \(ip \text{ address} \) is the site- and host-unique "virtual" IP address established for the primary host to enable the failover/switchover to occur; refer to Appendix A of `ECS Failover Design`, Document 920-xx-xxx-xxx for the IP address needed for the specific site and host/subsystem.

7 Before proceeding to Step 9, verify successful hardware switchover, as follows:

• Verify that the completion message was issued at the end of Step 2.

• To verify that the L0_buffer and data2 file systems were successfully mounted on the secondary host, on that host type `df -kl` and then press the Return/Enter key; the returned display should be similar to the following:

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Type</th>
<th>kbytes</th>
<th>use</th>
<th>avail</th>
<th>%use</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/root</td>
<td>xfs</td>
<td>3913496</td>
<td>2344612</td>
<td>1568884</td>
<td>60</td>
<td>/</td>
</tr>
<tr>
<td>/dev/dsk/xlv/buffer</td>
<td>xfs</td>
<td>137775872</td>
<td>74247840</td>
<td>63528032</td>
<td>54</td>
<td>/L0_buffer</td>
</tr>
<tr>
<td>/dev/dsk/xlv/data</td>
<td>xfs</td>
<td>4097740</td>
<td>2557500</td>
<td>1540240</td>
<td>63</td>
<td>/data2</td>
</tr>
<tr>
<td>/dev/dsk/xlv/data</td>
<td>xfs</td>
<td>8950996</td>
<td>1628004</td>
<td>7322992</td>
<td>19</td>
<td>/data1</td>
</tr>
</tbody>
</table>

• To verify that the l0buffer is exported, on the secondary host enter the command `exportfs`: the returned display should be similar to the following:

 - `L0_buffer/OPS/icl`
 - `L0_buffer/TS1/icl`
 - `L0_buffer/TS2/icl`

• Verify that Sybase is running on the secondary host. (e.g., have the Database Administrator type `isql -U<username> -P<password> -S<servername_srvr>` and verify that prompt >1 appears; type `quit` to exit).
• Verify the ability to log in to the virtual host from another platform (e.g., from remote platform, use the `ssh <x>vicgaa.<daac>b.ecs.nasa.gov` command and log in to the virtual host).

• To verify that swap space is available on the new primary, type `swap -In` and then press the Return/Enter key; the return should be similar to the following:

<table>
<thead>
<tr>
<th>#</th>
<th>path</th>
<th>pri</th>
<th>pswap</th>
<th>free</th>
<th>maxswap</th>
<th>vswap</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>/dev/dsk/dks1d3s1</td>
<td>3</td>
<td>2.10g</td>
<td>2.06g</td>
<td>2.10g</td>
<td>0.00k</td>
</tr>
<tr>
<td>1</td>
<td>/dev/swap</td>
<td>0</td>
<td>512.00m</td>
<td>2.56m</td>
<td>512.00m</td>
<td>0.00k</td>
</tr>
</tbody>
</table>

Once the system is operational again with the backup supporting the virtual IP address, it is necessary to boot the primary in standalone mode (i.e., single-user mode) and immediately execute the script `/failover/scripts/dead_boot.<host_type>` (e.g., for Ingest, execute `/failover/scripts/dead_boot.icg`). This script disables ip aliasing and disables launching of Sybase at startup. After the script is run, the primary host can be returned to multiuser mode and hardware troubleshooting/repair can occur. When the repair is completed, the following procedure can be executed to accomplish failback to the now available primary host.

Switchover from Backup Host to Primary Host

1. When ready, log in to the backup host (e.g., for Ingest, e0icg02, g0icg02, l0icg01); log in as `root`.

2. On the backup host, stop all ECS functions and shut down all ECS code [refer to the procedure Shutdown an Application (Document 611-CD-600-001, Section 7.3.3)]. Then kill the Subagent on the backup.

3. Execute the failback script on the backup host (e.g., to execute the failback script on the Ingest backup, type `/failover/scripts/failback_to_icg01` and then press the Return/Enter key).

 • The script execution relinquishes control of shared filesystems.

 • **Note:** For maximum efficiency, do not wait for completion of a step before proceeding; proceed immediately to the next steps unless the procedure directs otherwise.
4 Initiate clearing of the ARP cache in the Ebnet router by calling the Communications Manager (e.g., at GSFC, call 301-286-6141), with the request (an appropriate request for Ingest is: "This is <name>, <position title> at ECS and we are going back to our primary Ingest host; to support this, we need the IPNOC to clear the ARP cache in router <router name>. Please advise us when this has been accomplished. My phone number is <phone number>. My pager number (if any) is <pager number>.")

- **Note:** Router name is **er32-1** (GSFC), **larc-gw1** (LaRC), or **edc-gw1** (EDC).

5 Initiate clearing of the ARP table in the PowerHub 8000 by calling the on-duty network administrator with the request.

- The network administrator will log in to the router as **root**, enter the `<password>`, then enter `ip arp clear`, and finally enter `bye`.

6 Log in as **root** to the primary host (e.g., for Ingest, **e0icg01**, **g0icg01**, **l0icg01**).

7 Execute the script for the primary host to resume control (e.g., for Ingest, type `/failover/scripts/resume_prime.icg`).

- The script execution gives RAID control to the primary host.

8 Log in as **root** to the MSS File Server host (e.g., **e0mss01**, **g0mss10**, **l0mss10**).

9 Execute the appropriate failback script on the MSS File Server (e.g., to execute the failback script for Ingest, type `/tools/admin/scripts/Failback_to_<x>icg01_CDS.csh` and then press the **Return/Enter** key).

- The script execution cleans up the CDS entries.

10 **For failover of SGI hosts attached to the HiPPI network** (otherwise, go to Step 11), execute the HiPPI switchover as follows (**Note:** EDC is the only DAAC that currently uses the HiPPI connection with Ingest):

- Log in to the secondary host as **root** and re-configure its HiPPI interface to its own IP address by executing the command `ifconfig hip0 inet <ip address>`.
 - **Note:** `ip address` is the site- and host-unique IP address for the secondary host; refer to Appendix A of *ECS Failover Design*, Document 920-xx-xxx-xxx for the IP address needed for the specific site and host/subsystem.
• Log in to the primary host as root and enable the HiPPI interface by executing the command hipcntl hip0 accept.
• Log in to the HiPPI switch (telnet or connected terminal).
• Become "system" user.
• Execute command set huntgroup <n1> <n2>.
 – Note: n1 and n2 are numbers unique to ECS sites and hosts; refer to Appendix A of ECS Failover Design, Document 920-xx-xxx-xxx for the numbers needed for the specific site and host/subsystem.
• Execute command save h.
• Log off HiPPI switch.

11 Before proceeding to Step 12, verify successful hardware switchover, as follows:
• Verify that the completion message was issued at the end of Step 7.
• To verify that the L0_buffer and data2 file systems were successfully mounted on the primary host, on that host type df -kI and then press the Return/Enter key; the returned display should be similar to the following.

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Type</th>
<th>kbytes</th>
<th>use</th>
<th>avail</th>
<th>%use</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/root</td>
<td>xfs</td>
<td>3913496</td>
<td>2344612</td>
<td>1568884</td>
<td>60</td>
<td>/</td>
</tr>
<tr>
<td>/dev/dsk/xlv/buffer</td>
<td>xfs</td>
<td>137775872</td>
<td>74247840</td>
<td>63528032</td>
<td>54</td>
<td>/L0_buffer</td>
</tr>
<tr>
<td>/dev/dsk/xlv/data2</td>
<td>xfs</td>
<td>4097740</td>
<td>2557500</td>
<td>1540240</td>
<td>63</td>
<td>/data2</td>
</tr>
<tr>
<td>/dev/dsk/xlv/data</td>
<td>xfs</td>
<td>8950996</td>
<td>1628004</td>
<td>7322992</td>
<td>19</td>
<td>/data1</td>
</tr>
</tbody>
</table>
• To verify that the l0buffer is exported, on the primary host enter the command exportfs: the returned display should be similar to the following:

/L0_buffer/OPS/icl
/L0_buffer/TS1/icl
/L0_buffer/TS2/icl
• Verify that Sybase is running on the primary host. (e.g., have the Database Administrator type isql -U<username> -P<password> -S<servername_srvr> and verify that prompt >1 appears; type quit to exit).
• Verify the ability to log in to the virtual host from another platform (e.g., from remote platform, use the ssh <x>vicgaa.<daac>b.ecs.nasa.gov command and log in to the virtual host).
To verify that swap space is available on the new primary, type swap -ln and then press the **Return/Enter** key; the return should be similar to the following:

<table>
<thead>
<tr>
<th>#</th>
<th>path</th>
<th>pri</th>
<th>pswap</th>
<th>free</th>
<th>maxswap</th>
<th>vswap</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>/dev/dsk/dks1d3s1</td>
<td>3</td>
<td>2.10g</td>
<td>2.06g</td>
<td>2.10g</td>
<td>0.00k</td>
</tr>
<tr>
<td>1</td>
<td>/dev/swap</td>
<td>0</td>
<td>512.00m</td>
<td>2.56m</td>
<td>512.00m</td>
<td>0.00k</td>
</tr>
</tbody>
</table>

Performing Preventive Maintenance

There are few ECS hardware items that may require scheduled preventive maintenance. Notable items are the E-Systems Modular Automated Storage Systems (EMASS) robot, the StorageTek (STK) robot, and associated tape drives. Other items that may require periodic maintenance are the stackers and drives used for media distribution, and printers.

- Scheduled by the local Maintenance Coordinator.
- Coordinated with maintenance organization and using organization.
 - Scheduled to be performed by maintenance organization and to coincide with any corrective maintenance if possible.
 - Scheduled to minimize operational impact.
- Documented using ILM maintenance record.
 - Use *Preventative Maintenance* items screen to designate which items in the EIN file should have regularly scheduled maintenance.
 - Use *Generate PM Orders* screen to generate work orders for items needing preventive maintenance.

Analysis/Troubleshooting: COTS Software

The maintenance of COTS software items in ECS requires the management of software maintenance contracts with software vendors. This element includes:

- maintaining software use licenses.
- obtaining telephone assistance in resolving COTS software problems.
- obtaining software patches.
- obtaining software upgrades.

COTS software vendor support is contracted by the ECS procurement office at the ECS Development Facility (EDF).

- First year is under warranty support.
- Subsequent support is acquired through contract extension/modification as needed.
• COTS software support contracts data are maintained in a database used by the ECS Integrated Logistic Support (ILS) office to monitor and track contract expiration dates and terms.

• Local Maintenance Coordinators (LMC) can request changes to COTS software support contracts by contacting ILS Support.

 − Contact by e-mail can be made by using ilsmaint@eos.hitec.com as the address.

 − Phone contact can be made using the number 1-800-ECS-DATA (1-800-327-3282), selecting Option #3 and entering 0726 as the extension.

COTS Software Licenses

Licenses to use COTS software vary by the type of software and the software vendors’ policies. License types include:

- per seat.
- per site.
- specific number of concurrent users.
- unlimited users.
- lifetime use without regard to number of users or location.

COTS software licenses are maintained in a property database. The ECS Property Administrator:

- maintains the master copy of COTS software license agreements.
- maintains the COTS software license database.
- distributes COTS software for installation at the DAACs.

The ECS Program reflects several different license restrictions based on the license types negotiated for the different COTS software products used. In general, the license restrictions are imposed through a software program that runs on a license server at the DAAC. It tracks the instances of a program in use, and when the limit is reached, it precludes access by additional operators until use falls below the limit.

Installing COTS Software

The approval of appropriate CCBs is required prior to the loading of COTS software upgrades or other packages on any ECS platform. The approval process requires systematic Configuration Management (CM) procedures and documentation to ensure appropriate control of the ECS baseline and of changes to the baseline. Once the approval is received, the site Local Maintenance Coordinator notifies those personnel who will accomplish the installation (e.g., Release Installation Team, System Administrator, Network Administrator, Software Maintenance Engineer).
For ECS, there is one major tool used to facilitate CM control of software installation:

- **ClearCase®** – Provides a mountable file system that is used to store version-controlled data, such as source files, binary files, object libraries and spreadsheets.

The ClearCase® tool is used primarily for the ECS Science Software Integration and Test (SSI&T) function, but it is also applied to control changes in custom software and customized portions of some COTS software packages (e.g., configuration files).

At the DAAC, the COTS software installation actions are executed by the DAAC Software Maintenance Engineer and the System Administrator, with support as needed from ECS Development. Installation proceeds systematically. The installation is generally straightforward:

- the COTS software is installed with any ECS customization (e.g., configuration files).
- the Version Description Document (VDD) gets final updates for system and center-specific material identified by ESDIS or the operational centers, and the final VDD is available.

Safeguarding COTS Software Media

Any residual COTS software media and commercial documentation should be protected by appropriate means. For example, it may be desirable to store them in locked cabinets provided for the purpose at the DAAC. Should there be a need for access to these materials (e.g., a requirement to reload a COTS software product), keys for these cabinets can be made available from the Operations Coordinator during operating hours.

Obtaining COTS Software Support

Support of COTS software involves both site capability and contracted support. Site support is provided by the System Administrator and the Software Maintenance Engineer. When site support personnel confirm that a problem is attributable to the COTS software, the COTS Software vendor’s technical support center/help desk is contacted by authorized personnel at the site. When a system problem is discovered, there is an initial troubleshooting/diagnostics procedure to be followed which is generic – i.e., not limited to software problems. However, when a software problem is indicated, the procedure refers the problem to the Maintenance Coordinator for software corrective maintenance. System troubleshooting tools and principles apply:

- Review server logs for sequence of events.
- Initial troubleshooting.
 - Review error message against software operator manual; prepare trouble ticket.
 - Review system logs for evidence of previous problems.
- Attempt software reload.
- If problem is software (e.g., hardware has been working and reload does not correct the problem), report it to the Maintenance Coordinator – i.e., forward the trouble ticket.

A problem that is not resolved through initial troubleshooting will often require troubleshooting teamwork by the Maintenance Coordinator, the System Administrator, and perhaps a Network Analyst. These troubleshooters may perform additional steps to resolve the problem:

- specific troubleshooting procedures described in COTS software manuals.
- review of the software vendor’s web site’s solutions database to learn of any solutions for similar problems.
- exercise any embedded or down-loadable software diagnostic routine that will determine the status of the COTS software on the equipment.
- exercise of any locally devised troubleshooting/diagnostic procedures.
- non-replacement intervention (e.g., adjustment of thresholds or other tunable parameters).

If the software problem is not resolved by the actions of the local staff, it may be necessary to request assistance through the Maintenance Coordinator from a maintenance contractor for on-site software support. Suppose, for example, that you are a Maintenance Coordinator and the site Software Maintenance Engineer has determined there is a problem with one of the COTS software packages used for Configuration Management, that initial troubleshooting finds the problem unable to be corrected locally, that a trouble ticket has been forwarded to you, and that you and System Administrator are not able to resolve the problem through additional troubleshooting. The correct approach is:
• Organize the data on the problem, find data on the appropriate support provider, and update the trouble ticket with this information.
 – Locate information such as software vendor technical support center/help desk telephone numbers, names of personnel authorized (by site and software) to contact the vendor, and the authorization/access codes available to the site’s Local Maintenance Coordinator from the ECS ILS office.

• Contact the support provider’s technical support center/help desk to obtain on-site assistance.
 – Provide them with the background data.
 – Obtain a case reference number from them.
 – Update the trouble ticket to reflect the time and date of the call and the case number.
 – Notify the originator of the problem that the contractor has been alerted to the problem.

• Maintain coordination with the vendor for the solution and ensure compliance with Configuration Management requirements.
 – Software vendor’s technical support center/help desk verifies contract support authorization and assists in pinpointing the COTS software problem to provide a recommended solution.
 – Solution may include a patch, a work-around, or a fix in a future release of the software.
 – Assist in problem resolution (If a patch exists to correct the problem, the patch will be identified and provided by the software vendor over the Internet or mailed to the requester. If a patch is required but not available, the requester and the vendor together determine the seriousness of the problem. If the problem is critical, a temporary patch or work-around may be provided, with permanent solution to be implemented in a future update or release.).
 – The DAAC and Project Configuration Control Boards (CCBs) must authorize the patch to be installed as a permanent solution. This decision may be made after the fact, in accordance with emergency procedures required to continue to operate.

• Update trouble ticket with actions taken to correct the problem and delay time experienced for the solution, including reasons for each delay.

In preparation to request software support from the software vendor to resolve the problem, use the following procedure to obtain the background information needed.
Obtaining On-Site Software Support: Background Information

1 Collect information needed to obtain contract maintenance support.
 - Obtain version, release, serial number, and location of the failed software from the software database.
 - Obtain description of problem and symptoms from trouble ticket.
 - Identify the criticality of the COTS software experiencing the problem.

2 Locate information on the software support vendor.
 - Obtain name, and telephone number of the software support vendor.
 - Obtain access code needed to obtain support.
 - Obtain telephone number of the software support vendor’s technical support center.
 - Obtain name of site authorized contact person.

3 Record data on maintenance needed and maintenance provider into the trouble ticket.

In unusual cases, it may be necessary to resort to non-standard software support procedures. In the event that the software support vendor’s technical support center/help desk is not providing timely successful solutions, or if the maintenance action is otherwise unsatisfactory, it may be necessary to escalate the problem to the ECS System Operations Support (SOS) group in M&O or to the Sustaining Engineering Organization (SEO). These organizations are staffed with senior systems engineers knowledgeable on COTS software and can assist with diagnosing the problem. The site Local Maintenance Coordinator may go directly to the software vendor or to the ILS Logistics Engineer to obtain an escalation of software vendor support, resulting in increased vendor management review of the problem resolution, the assignment of additional resources to resolve the problem, and/or a more highly qualified technician assigned to resolve the software problem.
Troubleshooting of Custom Software

During operations, master copies of the custom software code are maintained at the ECS Development Facility (EDF). However, there may be a need to change the baseline configuration established at a given site. Changes can be driven from many sources, including the M&O organization. When changes are approved, the M&O organization performs the modification.

- Software Change Manager, ClearCase®, provides the vehicle to store and maintain the local library.

- Governing policies and minimum developed software component level that may be removed from (checked out for maintenance) or reintroduced to the master library are defined by the developers’ determination of code modules.

- Configuration Management (CM) requirements apply (e.g., for configuration identification, configuration change control, and configuration status accounting).

Maintenance changes to the ECS baseline may come from any of several sources, such as:

- Changes directed by the M&O CCB.
- Site-level CCB-directed changes to configuration items, subject to ESDIS delegation of responsibility for site-level control (e.g., science software).
- Developer modifications or upgrades.
- User- or operator-initiated trouble tickets.

Implementation of Modifications

A controlled build procedure provides structure for the implementation of changes.

- Each ECS organization selects a responsible engineer (RE) for each build.
- The SOS RE establishes the set of CCRs to be included in the system build.
- Site/center REs determine applicability of any site-unique extensions for the build.
- System and center REs establish schedules for implementation, integration, and test.
- The SOS RE maintains the integrated system- and center-specific CCR list and schedule.
- The SOS RE maintains the VDD, updating it with authorized changes. Center REs provide appendices as needed to describe any center-unique additions/modifications to the build.
- The RE (or designated team) for a CCR uses the configuration-controlled library at EDF to obtain the correct version of the source code/files. The RE/team implements
the change, performs programmer testing, and updates the documentation (design, interface, and procedures documents).

Obtaining Custom Software Support

Note: The maintenance of science software and data items provided by the Science Computing Facilities (SCFs) is not the responsibility of the ECS on-site maintenance engineers. Problem resolutions and changes to this software will be handled under the auspices of local DAAC CM activities and the ESDIS CCB in the same manner as new releases to baselined science software.

Problems with ECS custom software are one type of impetus for generating trouble tickets (TTs):

- Anomalies.
- Apparent incorrect execution by an ECS software configuration item.
- Inefficiencies.
- Sub-optimal use of system resources.
- TTs may be submitted by users, operators, customers, analysts, maintenance personnel, and management staff.
- TTs capture supporting information and data related to the problem.

Troubleshooting is conducted on an ad hoc basis. Just as with COTS software problems, however, it is conducted systematically.

- Site-level activity is initiated by the Operations Supervisor assigning a trouble ticket to the Problem Investigator.
- Problem Investigator contacts ECS Help Desk if necessary, where support may be obtained from SOS/SE Office Maintenance Programmers, Responsible Engineers, and ECS Developers at the ECS Development Facility (EDF).
- EDF has the same software and computer equipment variants as the sites, and may be able to duplicate anomalies seen in an on-site system to derive effective resolutions or work-arounds as required until a permanent solution can be implemented.
- A Problem Review Board assigns a priority and the problem is assigned to an organization for work-off. The organization assigns a Responsible Engineer to work off the TT or Non-Conformance Report (NCR). Using the data captured in the TT, the Responsible Engineer conducts a technical investigation to attempt to isolate the source of the reported problem.
- If the problem is caused by a non-ECS element (e.g., an interface problem with an external system, poor resource usage by a science algorithm, poor performance by a non-ECS service), the TT and supporting data are provided to the maintainer of that element. An ECS CCR may also be proposed to protect ECS from potential threats of future problems identical or similar to that documented in the TT.
General ECS Troubleshooting

The troubleshooting approach presented here is derived in part from procedures applicable during system installation and general checkout, but it also includes procedures applicable for analyzing symptoms or problems encountered in specific operations involving specific subsystems. Many ECS problems can be traced to accessibility and communications among the multiple clients and servers on which ECS functions are so heavily dependent. Figure 21 provides a chart identifying problem categories at a top level. In the chart, each category is listed in a separate box with an associated identifying number and a reference to a numbered procedure for troubleshooting problems in that category. Figure 22 consists of a series of flow charts reflecting the numbered procedures. The numbered procedures with detailed troubleshooting steps are presented in the pages following Figure 22. If a problem presents specific symptoms suggesting a failure of a type known to be associated with a specific subsystem or a specific function (e.g., Ingest, Planning, Data Processing, Data Distribution), it may be helpful to refer to troubleshooting guidance and procedures presented in lessons addressing that subsystem or function. Otherwise, use the top-level chart in Figure 21 to locate an appropriate detailed flowchart and step-by-step procedure for troubleshooting. The detailed charts in Figure 22 depict troubleshooting flow and decisions. Exit from the flow reflects either resolution of the problem or failure to identify and resolve it. If the problem cannot be identified and resolved without help within a reasonable period of time, the appropriate response is to call the help desk and submit a trouble ticket in accordance with site and system Problem Management policy.

![Figure 21. Top-Level Problem Categories](image-url)
Procedure 1.1

Using Whazzup?? and ECS Monitor to Check the Status of Hosts and Servers

1.1.1

Whazzup indicates host can be pinged?

Yes

No

1.1.2

coping and/or ps -ef | grep <serverprocess> find server up and listening?

Yes

No

1.1.3

Can Server Be Started with ECS Assistant?

Yes

No

Figure 22a. 1.0: Server Status Checks

Procedure 2.1

Checking Server Log Files

2.1.1

Log File Indicates Possible Problem with DCE or Connectivity?

Yes

No

Figure 22b. 2.0: Checking Server Log Files
Figure 22c. 3.0: Connectivity/DCE Problems

Figure 22d. 4.0: Database Access Problems
Procedure 2.1

Checking Server Log Files

2.1.2 File(s) exist in path where log file indicates server is looking?

Yes

No

Resolve Problem (e.g., Move File) and Re-Initiate Process

2.1.3 Process owner has correct account permissions?

Yes

Yes

Recovering from a Missing Mount Point Problem

No

Yes

DB Administrator or System Administrator

Resolve Problem

5.1.1 Directory of remote host accessible?

Yes

No

System Administrator:
Re-Establish Mount Point

5.1.2 DB Administrator can log into database with Username and Password used by SBSRV?

Yes

No

(DB Administrator) Resolve Problem/ Restart Sybase

Exit

Exit

Figure 22e. 5.0: File Access Problems

Procedure 6.1

Recovering from a Subscription Server Problem

6.1.1 Subscription Server is up and listening?

Yes

No

Restart Server

6.1.2 (DB Administrator) can log into database with Username and Password used by SBSRV?

Yes

No

(DB Administrator) Resolve Problem/ Restart Sybase

Exit

Exit

Figure 22f. 6.0: Subscription Problems
Procedure 7.1

Recovering from a Granule Insertion Problem

7.1.1 SDSRV and/or associated server debug logs show communication problem?

Yes

No

3.0

7.1.2 Archive Server directory reflects insertion of the granule in question?

Yes

No

Archive Manager Resolve Failure to Store Data

4.0

7.1.3 Insertion reflected in the Inventory Database?

Yes

No

Exit

Procedure 2.1

Checking Server Log Files

5.0

7.1.4 Did directory to/from which copy is being made is visible on machine being used?

Yes

No

5.0

7.1.5 Was a staging disk created for the inserted file?

Yes

No

3.0

7.1.6 Was the volume groups in the archive correctly setup and online?

Yes

No

6.0

7.1.7 Archive Manager Check Resolve Problem

2.1.4 Subscription triggered by the insertion?

Yes

No

Exit

Figure 22g. 7.0: Granule Insertion Problems

Procedure 8.1

Handling an Acquire Failure

8.2.1 Did SDSRV receive the acquire request from SBSRV?

Yes

No

1.0

8.2.2 Archive Server and Request Manager Server debug logs indicate successful acquire?

Yes

No

(Resolve Manager) Resolve Failure to Retrieve Data

8.2.3 Did file and metadata reach DDIST staging area?

Yes

No

1.0

8.2.4 Debug logs for Staging Disk and/or Staging Monitor show successful staging?

Yes

No

1.0

8.2.5 DDIST Staging Disk space adequate for staging the files?

Yes

No

Free Up Additional Space (e.g., Purge Expired Files)

Exit

Figure 22h. 8.0: Acquire Problems
Figure 22i. 9.0: Ingest Problems

Procedure 9.1
Recovering from Ingest Problems

9.1.1 Ingest

- Technician able to resolve problem with operational solution?
 - Yes
 - Exit
 - No
 - Test Ingest of appropriate type reflected in Archive and Inventory?
 - Yes
 - Exit
 - No
 - No

Figure 22j. 10.0: Planning and Data Processing Problems

Procedure 10.1
Recovering from a PDPS Plan Creation/Activation and PGE Problem

10.1.1 PDPS Staff able to resolve problem with operational solution?
- Yes
- Exit
- No
- Checking Server Log Files

10.1.2 Does a plan for sample PGEs complete?
- Yes
- Exit
- No

10.1.3 Does user receive e-mail notice of FTP push?
- Yes
- Exit
- No

10.1.4 Were files pushed to the correct directory?
- Yes
- Exit
- No

- Were files being moved to Post SDSTM machines?
 - Yes
 - Exit
 - No

- Did CDSP Maching machines with which DDISK Communicates, Re-Boot and If Necessary?
Figure 22k. 11.0: Quality Assessment Problems

Figure 22l. 12.0: Problems with ESDTs, DAP Insertion, SSI&T
Figure 22m. 13.0: Problems with Data Search and Order
Figure 22n. 14.0: Data Distribution Problems

Procedure 14.1

Recovering from Data Distribution Problems

1. FtP Server debug log shows distribution to the appropriate destination?
 - Yes (Exit)
 - No

2. 1.13
 - Yes (Exit)
 - No

3. 14.12
 - Yes (Exit)
 - No

4. 14.1.3
 - Yes (Exit)
 - No

5. 14.1.4
 - Yes (Exit)
 - No

6. 14.1.5
 - Yes (Exit)
 - No

7. Establish Directory on ID distribution is ExternalPush, Resolve Path W/ ExternalUser

Procedure 2.1

Checking Server Log Files

1. Yes (Exit)

2. No (Exit)

Figure 22o. 15.0: Problems with Data Acquisition Requests (EDC Only)

Procedure 15.1

Recovering from Problems with Submission of an ASTER Data Acquisition Request (EDC Only)

1. User is authorized to submit a DAR?
 - Yes (Exit)
 - No

2. 15.1.2
 - Yes (Exit)
 - No

3. 15.1.3
 - Yes (Exit)
 - No

4. 2.1.15
 - Yes (Exit)
 - No

5. 2.1.16
 - Yes (Exit)
 - No

6. 2.1.17
 - Yes (Exit)
 - No

Procedure 2.1

Checking Server Log Files

1. Yes (Exit)

2. No (Exit)

Note: Figures 22n and 22o illustrate the flow of procedures and decision points for recovering from data distribution and data acquisition problems, respectively. Each figure contains a series of questions and actions to diagnose and resolve issues, with flowchart elements indicating decision points and outcomes.
Figure 22p. Problems with On-Demand Production Requests (EDC Only)
Using Whazzup and ECS Monitor to Check the Status of Hosts and Servers

As noted in a previous section of this lesson, Whazzup provides the primary means for a quick check on the status of ECS hosts and servers. The program's displays provide a series of screens that enable progressively deeper access into system information that may help diagnose problems. The ECS Monitor also provides server status, and enables the operator to ping servers. A basic first step in troubleshooting is typically to run a quick check to ensure that the necessary servers are up and listening. Use the following procedure.

Check the Status of Hosts and Servers (Procedure 1.1)

1. Log in to workstation x0ins02 and use the Netscape browser to launch Whazzup (see detailed procedure in a previous section of this lesson).
 - NOTE: The x in the workstation name will be a letter designating your site: g = GSFC, m = SMC, l = LaRC, e = EDC, n = NSIDC, o = ORNL, a = ASF, j = JPL (e.g., l0ins02 indicates an interface host workstation at LaRC).
 - The EcMsWz-Whazzup??? window is displayed.

2. At the bottom of the screen, click on the Performance link.
 - The screen displays a Performance Stats table showing statistics on the various ECS hosts
 - Any hosts that cannot be pinged are highlighted in purple, necessitating resolution of a potential hardware or connection problem.

3. If Whazzup shows no hosts highlighted in purple, click on the Verify Mode option button at the bottom of the screen and, in the resulting pop-up menu, drag the cursor to highlight the option What's Down.
 - The screen displays a table showing Required Servers Currently Down . . . , listing by mode any servers that are down.

4. If Whazzup indicates that a required server is down, go to Step 6; otherwise continue with Step 5.

5. Click the cdsping all servers... button.
 - The ECS Monitor (cdsping) GUI is displayed.
 - The host name for each running server is listed, and whether or not it is listening.
If Whazzup indicates that a required server is down, or if cdsping indicates that a required server is not listening, log in to the host for that server and use a script to start the server (see Document 611-CD-600-001, Section 26.10.1 Using Scripts to Start Up/Shut Down Servers).

To check that the server started, repeat steps 1 - 4.

- If the server did not start, continue with the procedure Checking Server Log Files (Procedure 2.1).

Checking Server Log Files

The functioning of ECS requires communication among servers in a Distributed Computing Environment (DCE). Therefore, if system performance degradations occur, initial things to look for include DCE connection problems. Some of these may be reflected in the log files (e.g., error messages at server start up). Log files can often provide information that will identify possible sources of disruption in server function (including a server failing to start) or communications, suggesting additional checks or actions that may help resolve the problem. It may be necessary to examine logs both on the server being called and on the server from which the call is made. If there is no evidence of these or other types of problems in the server log and the problem is unresolved (e.g., the server still cannot be started), it will be necessary to prepare a Trouble Ticket and refer the problem to the Help Desk/Sustaining Engineering.

Servers typically generate an application log and a debug log. There may also be other logs helpful in trouble-shooting (e.g., data processing .err logs, script logs). The procedure for checking a log file starts with the assumption that the operator has logged in to ECS.

Checking Server Log Files (Procedure 2.1)

1. Log in to the host for the server and log(s) to be examined.

2. Type `cd /usr/ecs/<MODE>/CUSTOM/logs` and then press the Return/Enter key.
 - The prompt reflects the change to directory `/usr/ecs/<MODE>/CUSTOM/logs`.

3. To view a server log, type `pg filename` and then press the Return/Enter key.
 - `filename` refers to the log file to be reviewed (e.g., `EcDsScienceDataServer.ALOG`, `EcDsScienceDataServerDebug.log`).
 - The first page of the log file is displayed; additional sequential pages can be displayed by pressing the Return/Enter key at the : prompt.
 - Although this procedure has been written for the `pg` command, any UNIX editor or visualizing command (e.g., `vi`, `more`, `tail`) can be used to review the log file.
 - Typically, the `<server>Debug.log` captures more detailed information than the `<server>.ALOG`. However, for some servers (e.g., SDSRV), there may be significant detail in the `<server>.ALOG`. It is also important to note that the DebugLevel parameter setting in the Configuration Registry determines the level of
detail captured in the `<server>Debug.log` (0 is off, a setting of 1 captures status and errors, a setting of 2 captures major events, and a setting of 3 is a full trace recording of all activity). If the `DebugLevel` has been set to one of the lower levels during operations, the System Administrator may set it to 3 during troubleshooting. Similarly, the `AppLogLevel` parameter setting determines the level of detail captured in the `<server>.ALOG` (0 provides a full trace recording of all events, 1 provides messages related to all major events, 2 yields just records of errors, and 3 turns recording off).

4 Review the log file(s) to determine if there are any indications of connection problems (DCE) or errors at start up.
 - The log file for the called server may contain an error message concerning `PF Init` or some DCE error or problem.
 - The log file for the server from which the call originated may indicate a DCE or other connection problem (e.g., `Binding not found in cache . . . , DCE error: invalid binding . . . , Unable to get resource . . .`).
 - This procedure is applicable for reviewing logs for different types of errors and events on ECS servers.

5 Exit the log file (e.g., from `pg`, type `q` and then press the `Return/Enter` key).

6 If one or more log files indicate connection problems or DCE errors, continue with the procedure for Recovering from a Connectivity/DCE Problem (Procedure 3.1).

Recovering from a Connectivity/DCE Problem

If a review of relevant log files suggests that there may be a problem with connectivity or DCE, there are several actions that may restore server and communications accessibility. Use the following procedure. The procedure starts with the assumption that the operator is logged in to ECS.

Recovering from a Connectivity/DCE Problem (Procedure 3.1)

1 Ensure the "up" status of the server(s) in question using Whazzup??? and ECS Monitor to view the status of hosts and application servers, and use ECS Assistant to restart any server that is down.

 - Refer to specific procedures in previous sections of this lesson and Sections 3.7.2 and 3.7.3 of 611-CD-600-001 *Mission Operation Procedures for the ECS Project.*
2 From the command line prompt, attempt to ping the server(s) in question by typing `ping_by_name /.:subsys/ecss<mode>/<server>`.
- The following type of response should be returned:
 - Read CDS entry / . . . /<cell>/subsys/ecsservers/<host>/Server/ . . .
 - Binding . . .
 - Checking interfaces . . .
 - interface . . .
 - Checking objects . . .
 - object UUID . . .
 - Trying interface . . .
 - Attempt to resolve the endpoint . . .
 - attempt to ping . . .
 - SERVER RESPONDS to ping (17 ms)
 - checking server principal name . . .
 - principal / . . . /<cell>/<server>
 - checking statistics . . .
 - calls in / out: 15 / 578
 - packets in / out: 825 / 725
- If the server does not respond, return to Step 1.

3 Log in to the host for the called server; from the command line prompt, type `/tools/bin/dceverify` and then press the Return/Enter key.
- If DCE is working properly, the return should identify the host, operating system, and DCE cell, and show that the system, Daemons, security, and CDS are OK. The output should be similar to the following:

```
DCE Verification - v1.0
----------------------------------------------------------------------
Host: <hostname>
OS:  SunOS 5.5.1
DCE Cell: <xxxxx.xxxx.xxx>
System:  OK
DCE Daemons:  OK
Security:  OK
CDS:  OK
```
- If the output does not verify that DCE is OK, it may be necessary to have DCE restarted on the server host.
From the command line prompt, type `/tools/bin/dcestatus` and then press the **Return/Enter** key.

- If DCE is working properly, the return should provide DCE information and status on the daemons that are running on the host. The output should be similar to the following:

```
***************DCE Information*******************************
Machine_type is: SunOS
The Machine Name is <name>
The OS Patch Level is ---> ( nn)
The Cell Name is: /.../<xxxxx.xxxx.xxx>
The Clearinghouses are:
/.../<xxxxx.xxxx.xxx>/<xxxxxxx>._ch
/.../<yyyyyy.yyyy.yyyy>/<yyyyyyyy>._ch
***************DCE Patch Level for SUN**********************
DCE Patch Level is Transarc DCE 1.1
Solaris 2.5
Patch <nn> <date>
US Version
Copyright <date> by Transarc Corp.
```

- If the output does not indicate DCE information and daemons running, it may be necessary to have DCE restarted on the server host.

If **dceverify** and **dcestatus** return appropriate information on the host for the called server, repeat steps 3 and 4 for the host from which the call originated.

- If necessary, have DCE restarted on the server host.

If **dceverify** and **dcestatus** return appropriate information on both the called and calling server host, continue with the procedure for **Using cdstbrowser to Check DCE Entries for a Server (Procedure 3.2)** (subsequent section of this lesson).
Using *cdsbrowser* to Check DCE Entries for a Server

Even if DCE is functioning properly on server hosts, there may be problems with DCE entries for server applications. In order for ECS to function, the calling server or client must use the correct DCE entry for the server in question. The *cdsbrowser* is a useful tool for checking DCE entries. Figure 23 shows two screens from the *cdsbrowser*. The screen on the left side of the figure is the initial screen, and the one on the right shows an example of entries associated with an ECS server.

![Figure 23. Screens from the *cdsbrowser*](image)

Conduct the following procedure to use the *cdsbrowser* to check DCE entries for a server.
Using `cdsbrowser` to Check DCE Entries for a Server (Procedure 3.2)

1. Log-in to the `cdsbrowser` host (e.g., `e0msh03`, `g0msh08`, `l0msh03`, or `n0msh03`).
2. At the UNIX prompt, type `dce_login UserID`, and then press the Return/Enter key.
 - A Password: prompt is displayed.
3. At the Password: prompt, type `<DCEPasswd>B`, and then press the Return/Enter key.
 - A UNIX prompt is displayed.
 - NOTE: You can check that the DCE login is successful by typing `klist`, and the pressing the Return/Enter key; if the DCE login is successful, the logged in principal will be displayed, along with other DCE information.
4. Type `cd /opt/dce/bin` and then press the Return/Enter key.
 - The prompt indicates a change to the `/opt/dce/bin` directory.
5. Type `cdsbrowser &`, and then press the Return/Enter key.
 - The `cdsbrowser` initial GUI screen is displayed.
6. Double click on the `/subsys` line on the GUI.
 - The screen shows the contents of the selected directory.
7. Double click on the `/subsys/ecs` line on the GUI.
 - The screen shows ECS modes and servers.
8. Double click on the `/subsys/ecs/servers` line on the GUI.
 - The screen shows the subsystem machines directories.
9. Double click on the `/subsys/ecs/servers/<serverhost>` line on the GUI.
 - The screen shows the server directory for the selected `<serverhost>`.
10. Double click on the `/subsys/ecs/servers/<serverhost>/<server>` line on the GUI.
 - The screen shows the server entries for the selected `<server>`. If DCE entries are missing, or if an entry shows an icon labeled "o" (for "object") instead of "s" (for "server"), have the DCE Administrator or Operations Supervisor restart DCE on the host for which entries are missing.
 - If the DCE entries reflected in the `cdsbrowser` are OK, continue with the procedure for Checking for Consistency between Calling and Called DCE Entries (Procedure 3.3) (subsequent section of this lesson).
Checking for Consistency between Calling and Called DCE Entries

If a client cannot reach a server, it is possible that the client is calling with a name different from that in the DCE entry for that server. Use the following procedure to check for consistency.

Checking for Consistency between Calling and Called DCE Entries (Procedure 3.3)

1. Examine the debug log (/usr/ecs/<mode>/CUSTOM/logs/<server>Debug.log) of the server from which the call originated to determine the DCE entry being used for the called server, as reflected in the error message (e.g., "Unable to reach /.:/subsys/ecs/servers/<serverhost>/<server>/<servername>").
 - Refer to the procedure for Checking Server Log Files (Procedure 2.1) (previous section of this lesson).

2. Compare the DCE entry noted in Step 1 with the DCE Entry for the called server reflected in the cdsbrowser.
 - Refer to the procedure for Using cdsbrowser to Check DCE Entries for a Server (Procedure 3.2) (previous section of this lesson).

3. If the DCE entry for the called server is different from the one being used by the server/client from which the call originates, ask the DCE Administrator to resolve the conflict.

Recovering from a Database Access Problem

Sybase is the database engine for most ECS data stores. If a server is unable to access the database, or if there is some other problem with Sybase, ECS operation will be impaired. Use the following procedure to recover from a database access problem.

Recovering from a Database Access Problem (Procedure 4.1)

1. Log-in to the Sybase host for the appropriate server.
 - Hosts for the various Sybase servers at the different DAACs are listed in document 920-TDx-009, where x is E for EDC, L for LaRC, G for GSFC, or N for NSIDC.

2. Type `ps -ef | grep dataserver`, and then press the Return/Enter key.
 - If active Sybase dataserver processes are displayed, go to Step 3.
 - If no active Sybase dataserver processes are displayed, have the Database Administrator restart Sybase.
3 If examining processes on the Sybase host for SDSRV (e.g., e0acg01, g0acg01, l0acg02, n0acg01), it is important that the Sybase start time is prior to the start time of SQS. To check this, type `ps -ef | grep sqs`, and then press the Return/Enter key. (*Note:* If not on the host for SDSRV, this does not apply; go to Step 4.)

- If an active SQS process is displayed normally with a start time after the start time of the Sybase dataserver processes, go to Step 4.
- If SQS process start time is prior to the start time of the Sybase dataserver processes, have the Database Administrator restart SQS.

4 Log-in to the host for the appropriate application server.

- Hosts for the various custom applications at the different DAACs are listed in document 920-TDx-502, where x is E for EDC, L for LaRC, G for GSFC, or N for NSIDC; a short, easy-to-use hardware/software mapping is available as document 910-TDA-005.

5 Type `grep Sybase <logfilename>` to check for Sybase errors.

- Any Sybase entries in entries for the named logfile are displayed.

6 If one or more Sybase entries indicate an error condition, restart the server to re-establish the connection.

Recovering from a Missing Mount Point or Other File Access Problem

Correct functioning of ECS is dependent on client access to needed files, which may be in a remote network location. Often, server logs can be a source of error information that suggests a resolution for an access problem. Review of a server log may indicate, for example, that a server is using a particular path to look for a file that is not at that location. The resolution may be simply to ensure that the needed file is available in the location specified in the path. Access may also be prevented by permission restrictions. Examination of a server log may reveal a failed attempt to write to a database, resulting from incorrect permissions. The resolution in this case may be simply to use a different account with the correct permissions, or to have the Database Administrator or System Administrator reset the permissions.

Mount points provide remote access to shared file systems across networks, allowing a client to attach remote directory trees to a point within its local file system. If a mount point is lost, any of a client's ECS functions depending upon access through that mount point to files on a remote machine will be degraded or blocked. Use the following procedure to check for and recover from a missing mount point.

Recovering from a Missing Mount Point Problem (Procedure 5.1)

1 Log-in to the machine that the server is trying to access.

- Hosts for the various custom applications at the different DAACs are listed in document 920-TDx-502, where E for EDC, L for LaRC, G for GSFC, or N for NSIDC; a short, easy-to-use hardware/software mapping is available as document 910-TDA-005.
2 Type `cd /usr/ecs/<mode>/CUSTOM/<HWCI>/<machine_name>/data`<ref>press the Return/Enter key, and then list the contents of the directory (i.e., type `ls` and then press the Return/Enter key).</ref>

- For `<HWCI>`, enter the name of the hardware configuration item directory to be accessed (the directory `/usr/ecs/<mode>/CUSTOM` may be listed to display available directories). For `<machine_name>`, enter the name of the directory for the host to be accessed.

3 If the `ls` command returns nothing, that indicates that the mount point is gone; the System Administrator will have to re-establish the mount point using standard procedure guidance in the appropriate Engineering Technical Directive.
Recovering from a Subscription Server Problem

Many elements of ECS functioning rely upon the health and correct operation of the Subscription Server (SBSRV). Archive insertions or deletions of data are accompanied by notification from the Science Data Server (SDSRV) to SBSRV, and in response, based on stored subscriptions, SBSRV initiates actions specified in the subscriptions. Therefore, if SBSRV is not functioning properly or if it is not communicating successfully with SDSRV or other ECS elements, ECS operations will be impaired. Use the following procedure to ensure that SBSRV is functioning properly or to recover from a problem with SBSRV.

Recovering from a Subscription Server Problem (Procedure 6.1)

1. Check to ensure that the subscription server is up and listening.
 - Launch ECS Assistant on the Interface Server host and execute procedures to monitor the status of the subscription server and `cdsping all servers` using appropriate procedures.
 - If the server is up and listening, go to Step 3.

2. If SBSRV is down or not listening, use the procedure `Using Scripts to Start Up/Shut Down Servers` (Document 611-CD-600-001, Section 26.10.1) to stop and then restart the server.

3. Use the SBSRV GUI to add an FTPpush subscription for insertion of a small data file (e.g., AST_L1BT).
 - Use appropriate procedures [e.g., `Fulfilling a Need for a One-Time Subscription` (Document 611-CD-600-001, Section 19.4.1)].

4. Have the Database Administrator (DBA) log into Sybase using the UserName and Password that the server is using.
 - Have DBA log on to the SBSRV database host (i.e., `x0ins01`, where `x` is `g` for GSFC, `l` for LaRC, `e` for EDC, or `n` for NSIDC). Then type `isql -UEcSbSubServer -Sx0ins02_srvr`, then press the `Return/Enter` key, and, when prompted, enter the appropriate password.
 - If the Sybase access attempt is successful, the ISQL prompt `1>` is displayed. Type `exit` and press the `Return/Enter` key.
 - If the Sybase access attempt is not successful (i.e., the ISQL prompt is not displayed), it may be necessary to restart Sybase, using appropriate procedures (refer to `Database Administrator Responsibilities`, Document 611-CD-600-001, Section 4.3).
Recovering from Granule Insertion Problems

Successful data storage functions are the heart of ECS. Successful ingest of data or processing of data to produce new science data granules require that Storage Management (STMGT) is inserting the product into the archive and that Science Data Server (SDSRV) is inserting the associated metadata into the inventory. Staging disks and staging monitors for the Archive server and the Ingest FTP server are also involved in this process. To check the functioning of these elements, it is necessary that the ESDTs are installed and available, and that subscriptions have been registered as noted in previous sections of this lesson. Have the Ingest/Distribution Technician insert a small file. Then, use the following procedure to recover from granule insertion problems.

Recovering from Granule Insertion Problems (Procedure 7.1)

1. Log into the host for SDSRV (e.g., e0acs05, g0acs03, l0acs03, n0acs04) and review the server log (`EcDsScienceDataServerDebug.log`); refer to **Checking Server Log Files** (previous section of this lesson).
 - Examine the section of the log with entries near the time of the problem, looking for error messages that indicate communication failure.
 - If the log file entries indicate a communication problem, note the server(s) with which there is impairment or disruption of communication.
 - Repeat this step for the Archive Server (e.g., on host x0drg01 where x is g for GSFC, l for LaRC, e for EDC, or n for NSIDC) where the server log to examine is `EcDsStArchiveServerDebug.log`, and, as indicated in any entries referring to associated communications problems, `EcDsStStagingDiskServerDebug.log` and `EcDsStCacheManagerServerDebug.log`. Also on host x0drg01, repeat this step for the Request Manager Server (EcDsStRequestManagerServerDebug.log).
 - As indicated in any entries referring to associated communications problems, repeat this step for the Advertising Server (e.g., on host x0ins02 where x is g for GSFC, l for LaRC, e for EDC, or n for NSIDC) where the server log to examine is `EcIoAdServerDebug.log`, and for the Subscription Server (e.g., on host x0ins01 where x is g for GSFC, l for LaRC, e for EDC, or n for NSIDC) where the server log to examine is `EcSbSubServerDebug.log`.
 - If there are no apparent communications problems, go to Step 2.
 - Use appropriate procedures to resolve any communications problems [refer to **Recovering from a Connectivity/DCE Problem (Procedure 3.1)** (previous section of this lesson)].
Note: To run the Check Archive script **EcDsCheckArchive**, it is necessary to enter eight database-specific parameters when prompted during the running of the script: STMGT SQL server name, STMGT database name, STMGT SQL server user ID, STMGT SQL server database password, SDSRV SQL server name, SDSRV database name, SDSRV SQL server user ID, and SDSRV database password. To facilitate the smooth execution of the script, the parameters may be set as environmental variables instead. The parameters are not readily available to most operators; therefore, you will need to obtain them from the Database Administrator or have the Database Administrator run the script for you, using steps 2 through 4.

2. On the host for the Archive Server (x0drg01), type **cd /usr/ecs/<mode>/CUSTOM/utilities** and then press the **Return/Enter** key.
 - The prompt reflects the directory change to **/usr/ecs/<mode>/CUSTOM/utilities**.

3. Type **EcDsCheckArchive <mode>**.
 - The Check Archive script runs; the displayed information should be similar to the following:

```
==============================================================
This script is designed to validate the Inventory
against the Archive.

The user must select the menu option associated with the
Volume Group to be validated

Please press [RETURN] to continue
```

4. Follow the on-screen prompts for the script, entering the necessary parameters.
 - The script provides indication of any discrepancies between the presence of granules in the Archive and entries in the inventory (metadata). Note that the appearance of a discrepancy is not necessarily indication of a failure (e.g., if a granule has been deleted but the inventory database has not been cleaned up, there may be inventory entries for which there are no granules in the archive), but a problem may be indicated if a discrepancy is apparent for a granule that you just inserted. Note also that this script would not reveal a problem if you attempted to insert a granule which failed to get inserted and also had its metadata fail to be inserted into the inventory (i.e., no granule and no inventory entry = no discrepancy). Therefore, if the script reveals no discrepancies, it may still be useful to conduct a direct examination to determine if the granule has been inserted.
5 On the host for the Archive Server (x0drg01 [or x0drg0n]), type the directory change command `cd /dss_stk1/<mode>/<data_type_directory>` and then press the Return/Enter key.
 • The prompt indicates change to the /dss_stk1/<mode>/<data_type_directory> directory.

6 Type `ls -al | grep "<date>"` where "<date>" is a three-letter abbreviation for the month followed by a number indicating the day (e.g., "Apr 21"), and then press the Return/Enter key.
 • If the inserted file is displayed, with date and time of entry, go to Step 7.
 • If the inserted file is not displayed, have the Ingest/Distribution Technician insert the file again. If this succeeds (i.e., the file is now listed), go to Step 7; otherwise, have the Archive Manager conduct the procedure for Recovery from Failure to Store or Retrieve Data (Document 611-CD-600-001, Section 17.6.6).

7 Determine if the inserted file is reflected in the Inventory Database (Database Administrator function) by logging into Sybase on the host for SDSRV [use procedure similar to steps 4 and 5 of Recovering from a Subscription Server Problem (Procedure 6.1) (previous section of this lesson)] and then selecting the data type.
 • If the inserted file is reflected in the Inventory Database, go to Step 8.
 • If the inserted file is not reflected in the Inventory Database, perform the procedure for Recovery from a Database Access Problem (Procedure 4.1) (previous section of this lesson).

8 Determine if the directory from/to which the copy is being made is visible on the machine being used; check the mount points on the Archive host and the SDSRV host [use the procedure Recovering from a Missing Mount Point Problem (Procedure 5.1) (previous section of this lesson)].
 • If the mount points are OK, go to Step 9.
 • If necessary, re-establish the mount point(s).

9 If you inserted the file with the DSS Driver, go to Step 11. If you used Ingest to insert the file, on the Ingest host (e.g., e0icg01, g0icg01, l0icg01) examine the drp- or icl-mounted staging directory to determine if a staging disk was created. To do this, first type `cd /usr/ecs/<mode>/CUSTOM/drp/<host>/data/staging/cache` (or type `cd /usr/ecs/<mode>/CUSTOM/icl/<host>/data/StagingArea/cache`), then press the Return/Enter key.
 • The prompt reflects a change to the specified directory. [Note: Be sure that you are checking the correct mount/host. Most ingests use Ingest subsystem staging areas (i.e., icl), but others may not. Media ingest (e.g., from D3 tape) typically involves staging in a dip area. For a polling ingest for data from EDOS, the polling directory may serve as the staging area. Some data are staged directly to working storage in the Data Server subsystem. If in doubt, consult Ingest/Archive personnel.]
Type `ls -al | more` and then press the Return/Enter key.

- Any staging areas are listed in output similar to the following sample:

```
-rw-rw-r-- 1 cmshared cmshared 320663592 Feb 6 11:51 :SC:MOD000.001:11856:2:CCSDS
```

- If a staging area for the inserted file appears at the end of the list, go to Step 11.

- If no staging area appears for the inserted file, it is possible that the ingest failed and that the staging area was immediately removed as part of clean-up. Check the Ingest logs (e.g., `EclnReqMgrDebug.log`, `EclnAutoDebug.log`, `EclnGranDebug.log`, or `EclnGranDebug.log`, depending on the type of Ingest) [refer to the procedure for Recovering from an Ingest Problem (Procedure 9.1) (subsequent section of this lesson)] to determine if a staging disk was created. If no staging disk was created, perform the procedure Recovering from a Connectivity/DCE Problem (Procedure 3.1) (previous section of this lesson).

11 Have the Archive Manager ensure that the Archive volume groups are set up correctly [refer to Use Storage Management GUIs to Display Archive Path Information (Archive Lesson, 625-CD-010-002)].

12 Have the Archive Manager ensure that the volume groups are on line [refer to Using the AMASS GUI to View Volume Group and Volume Information (Archive Lesson, 625-CD-010-002)].

13 Examine the server logs to determine if the subscription was triggered by the insertion [refer to the procedure for Checking Server Log Files (Procedure 2.1) (previous section of this lesson)].

- On the SDSRV host (e.g., `e0acs05`, `g0acs03`, `l0acs03`, `n0acs04`), examine `EcDsScienceDataServerDebug.log` to determine if SDSRV sent a trigger (event notification); the entry should be similar to the following:

```
05/06/99 12:51:53: DsBtBsrvrNotifier: Notification sent to sbsrv for INSERT of SC:AST_L1BT.001:2059.
```

- On the SBSRV host (e.g., `e0ins01`, `g0ins01`, `l0ins01`, `n0ins01`), examine `EcSbSubServer.ALOG` to determine if SBSRV received the trigger; the entry should be similar to the following:

```
P ID : 3020:MsgLink :0 meaningfulName :EcSbTriggerEventRequestTriggerTrigger
Msg: Triggering event for EventID = 74 Priority: 0 Time : 05/06/99 12:51:54
P ID : 3020:MsgLink :0 meaningfulName :EcSbTriggerEventRequestTriggerTrigger0
Msg: Firing subscriptions for event #74 Priority: 0 Time : 05/06/99 12:51:54
```
Note: EventID = 74 identifies the event as Insert of AST_L1BT. This information may be obtained from the list of events on the Subscription GUI, or by examining the EcSbSubServerDebug.log and noting the EventID specified there when the subscription was established.

Note: It is also possible to check for the SBSRV receipt of the trigger by examining EcSbSubServerDebug.log. However, the amount of information to be sifted in that log may complicate the task. If you choose to use EcSbSubServerDebug.log, you should look for entries similar to the following:

05/06/99 12:51:54: EcSbTriggerEventRequest:Trigger: Triggering event for EventID = 74.

```
SC:AST_L1BT.001:2201)
--UnnamedPL[
---CollectionDescriptionClass[ShortName(AST_L1BT) VersionID(1)]
---ECSDataGranule[SizeMBECSDataGranule(0.001000000047497451)
ProductionDateTime(07/10/98 14:49:27)]
---SingleDateTime[TimeOfDay(09:12:34.567890) CalendarDate(07/30/98)]
---SpatialDomainContainer[]
---AdditionalAttributes[
----AdditionalAttributesContainer[AdditionalAttributeName(ASTERGRANULEID)
-----InformationContent[
------ParameterValue[ParameterValue(AST_L1BT1997032015:00:01199703200001)]
----AdditionalAttributesContainer[AdditionalAttributeName(DAR_ID)
-----InformationContent[
------ParameterValue[ParameterValue(12345678)]
] ] ]
---nonScienceData[
----DATAGROUP[unsignedDataFile(tahoe-north-middle.MTA)
internalFileName(:SC:AST_L1BT.001:2201:1.HDF-EOS) checksum(0) fileSize(517)
ArchiveID(DRP1_TS1:AST_L1BT.001) backupIdentifier() offsiteIdentifier() ESDTStatus(1)
archiveDescription(None)]
----DATAGROUP[unsignedDataFile(tahoe-north-middle.hdf)
internalFileName(:SC:AST_L1BT.001:2201:2.HDF-EOS) checksum(0) fileSize(5410105)
ArchiveID(DRP1_TS1:AST_L1BT.001) backupIdentifier() offsiteIdentifier() ESDTStatus(1)
archiveDescription(None)] SizeMBECSDataGranule(5.410622119903564)]
```
On the SBSRV host (e.g., e0ins01, g0ins01, l0ins01, n0ins01), examine EcSbSubServerDebug.log to determine if SBSRV sent an acquire request to SDSRV; the entry should be similar to the following:

```
05/06/99 12:51:55: EcSbSubscription::Execute: Action = ACQUIRE :
-parameters[FTPUSER(jrattiga) FTPPASSWORD(abc123) FTPHOST(t1dps04) FTPPUSH DEST((home/jrattiga/push) ECSUSERPROFILE(tester) DDISTNOTIFYTYPE(MAIL) DDIST
MEDIATYPE(FtpPush) DDISTMEDIATYPE(FILEFORMAT)]
05/06/99 12:51:55: Execute acquire here
rpcId ------------ Dump of RPC ID ------------
Transaction ID: [fc6905d4-03d3-11d3-8f4a-c676e82eaa77]
Sub Transaction ID: [SDSV]
Readable tag: []
Server ID: [SBSV]
Subindex: [0]

-------------------------------------------------
05/06/99 12:51:56: new RpcID = ------------ Dump of RPC ID ------------
Transaction ID: [fc6905d4-03d3-11d3-8f4a-c676e82eaa77]
Sub Transaction ID: [SDSV]
Readable tag: []
Server ID: [SBSV]
Subindex: [1]

-------------------------------------------------
05/06/99 12:51:56: name = UR
05/06/99 12:51:56: === found UR =====
```

On the DDIST host (e.g., e0dis02, g0dis02, l0dis02, n0dis02), examine the log EcDsDistributionServerDebug.log to determine if an e-mail notification was sent to the user identified in the subscription; the output should be similar to the following:

```
05/06/99 12:52:41: Media::SendNotificationMessage.(myNotify,mySite,myConfig->GetMode(),mailAddress): (), TS1, cmts1@t1ins02u.ecs.nasa.gov
Media::SendNotificationMessage: Getting e-mail address from configuration file.
05/06/99 12:52:41: DdDsDoneQueue::Thread Was marked SyncDone and Signaled.
RequestId= 125125210220554
```

If the subscription trigger activity is not reflected in the logs, or the log shows an error message indicating trigger failure, perform the procedure for Recovering from a Subscription Server Problem (Procedure 6.1) (previous section of this lesson).

If the logs indicate that the subscription triggers worked properly, continue with the procedure for Handling an Acquire Failure (Procedure 8.1) (subsequent section of this lesson).
Handling an Acquire Failure

As a first check, it is appropriate to determine if the acquire request appears in the list of System Requests on the Science Data Server GUI. If the acquire request does not appear on the Science Data Server GUI, you will need to determine where the breakdown occurred. Diagnosing an acquire failure requires detailed examination of the following system log files and directories associated with the process:

- Science Data Server log file (EcDsScienceDataServerDebug.log).
- Archive Server log file (EcDsStArchiveServerDebug.log).
- STMGT Request Manager Server log file (EcDsStRequestManagerDebug.log)
- Staging Area.
 - Presence of the relevant file.
 - Staging Disk log files (EcDsStStagingDiskServerDebug.log or EcDsStStagingMonitorServerDebug.log).
 - Space available in the staging area.

In addition, note that a number of servers, clients, or other software running on various hosts, as reflected in Table 2, may be involved at various times in processing an acquire request. More information useful in troubleshooting may appear in related logs on these hosts.

Table 2. Hosts, Servers, Clients and Other Software Relevant to Acquires

<table>
<thead>
<tr>
<th>HOST</th>
<th>SERVER/CLIENT/OTHER SOFTWARE</th>
</tr>
</thead>
</table>
| Distribution Server (e.g., x0dis02) | Distribution Server (EcDsDistribution Server)
8mm Server (EcDsSt8MMServer)
D3 Server (EcDsStD3Server)
Request Manager Server (EcDsStRequestManagerServer) |
| Working Storage (e.g., x0wkg01) | Archive Server (EcDsStArchiveServer)
Cache Manager Server (EcDsStCacheManagerServer)
Staging Disk Server (EcDsStStagingDiskServer) |
| SDSRV Server (e.g., x0acs03) | Science Data Server (EcDsScienceDataServer)
HDF EOS Server (EcDsHdfEosServer) |
| Access/Process Coordinators (APC) Server (e.g., x0acg01) | Archive Server (EcDsStArchiveServer)
FTP Distribution Server (EcDsStFtpDisServer)
Cache Manager Server (EcDsStCacheManagerServer)
Staging Disk Server (EcDsStStagingDiskServer)
Pull Monitor Server (EcDsStPullMonitorServer) |
| FSMS Server (e.g., x0drg01) | Archive Server (EcDsStArchiveServer)
Cache Manager Server (EcDsStCacheManagerServer)
Staging Disk Server (EcDsStStagingDiskServer) |
| Interface Server 02 (e.g., x0ins01) | Subscription Server (EcSbSubServer)
Event Server (EcSbEventServer) |
Use the following procedure to:

- make the initial check on the Science Data Server GUI.
- follow up with checks of the Science Data Server log file, Archive Server log file, and Request Manager log file.
- determine if a failure occurred during copying of the files to a staging area (and if so, whether there is sufficient staging space available).

Handling an Acquire Failure (Procedure 8.1)

1. Examine the System Requests displayed on the Science Data Server GUI to determine if SDSRV received the acquire request from SBSRV [use procedure Monitor Science Data Server Request Processing (Document 611-CD-600-001, Section 16.7.5)].

2. On the SDSRV Server host (e.g., e0acs05, g0acs03, l0acs03, n0acs04), review the server logs (EcDsScienceDataServer.ALOG, EcDsScienceDataServerDebug.log); refer to Checking Server Log Files (previous section of this lesson).

 - Examine the section of the log with entries near the time of the problem, looking for messages that indicate whether the relevant file was successfully acquired.

 - The EcDsScienceDataServer.ALOG file should contain entries identifying the file to be acquired by the ShortName of the corresponding ESDT; entries should be similar to the following:

 PID : 29168: MsgLink :0 meaningful :name :DsSrSessionExecuteRequestStart0

 Msg: Request ID b5156038-03d3-11d3-8d16-c676e2ea2eaa77:????: executing:

 DsSrRequest (1): DsShSciRequestImp: [svr: ScienceDS, pri: NORMAL domain:]:

 (DsShSciCommandImp service: INSERT num parameters: 3 category: Parameters are:

 - UnnamedPL[SHORTNAME(AST_L1BT) VERSIONID(001)

 -- MAINGROUP[SHORTNAME(AST_L1BT) VERSIONID(001]

 --- METADATAFILEGROUP[METADATAFILE(/home/cmops/data/SCAST_L1BT.0011279.met)]

 --- DATAFILEGROUP[DATAFILE(/home/cmops/data/tahoe-north-middle.MTA)]

 --- DATAFILEGROUP[DATAFILE(/home/cmops/data/tahoe-north-middle.hdf)]

 WC)

 - The EcDsScienceDataServerDebug.log file should contain entries regarding the acquire activity. The following types of messages should be included in the log file:

 05/06/99 12:52:01:

 About to execute Statement: exec ProcInsertReqDomain 2205, "UR:10:DsShESDT

 05/06/99 12:52:01:

 About to execute Statement: ProcInsertAcquireCmd 2206, 2205, 3, null, null, "tester",

 "FtpPush", "MAIL", "FILEFORMAT", null, "jratiga", "abc123", "t1dps04", "/home/jratiga

 /push", null, null
• If the ShortName does not appear in the file, with a timestamp corresponding to the
time of the attempted acquire, SDSRV may not be running, or may not be
communicating with other servers. Check to be sure the server is up [refer to Using
Whazzup and ECS Monitor to Check the Status of Hosts and Servers (previous
section of this lesson)] and, if appropriate, check for connectivity problems [refer to
Recovering from a Connectivity/DCE Problem (previous section of this lesson)].

• If the log file does contain entries for the relevant ShortName, and indicates that two
files (the file and its associated metadata file) are being distributed, SDSRV has
completed its role in the acquire. Go to the next step.

• If the ALOG contains the ShortName, and also contains an error showing that the
data file time stamp does not match the time stamp required by the acquire, the data
file needs to be removed from the Science Data Server and reinserted.
 – This is usually done using a script called DsDbCleanGranules.

 3 To inspect the Archive Server log and Request Manager Server log for error messages
associated with the acquire, on the Archive host (e.g., e0drg01, g0drg01, l0drg01,
n0drg01), review the respective server logs (EcDsStArchiveServerDebug.log,
EcDsStRequestManagerServerDebug.log); refer to Checking Server Log Files
(previous section of this lesson).

 • Examine the sections of the logs with entries near the time of the problem, looking
for messages that indicate whether the Request Manager handled the request and
whether the Archive Server log shows that the relevant file was successfully
acquired.

 • If the logs indicate that the relevant file was successfully acquired, go to the next
step.

 • If the file was not successfully acquired, have the Archive Manager perform the
procedure Recovery from Failure to Store or Retrieve Data (Document 611,
Section 17.6.6) to troubleshoot and correct any AMASS problems.

 4 To determine whether the file being acquired (or a link to it) and its associated metadata
file arrived in the Data Distribution staging area, on the Distribution Server (e.g.,
e0dis02, g0dis02, l0dis02, n0dis02) type cd /usr/ecs/<mode>/CUSTOM/drp/
<archivehost>/data/staging/cache and then press the Return/Enter key.
 • The prompt indicates the change to the specified directory.

 5 Type Is -lrt and then press the Return/Enter key.
 • The contents of the directory are displayed.
Review the listing to determine whether the relevant file and its metadata file arrived in the staging area.

- The display should contain entries similar to the following:

 - lrwxrwxr-x 1 cmshared cmshared 75 Apr 26 12:52 L7CPF19980518_19980518.01 ->
 /usr/ecs/TS1/CUSTOM/drp/raven/data/staging/cache/:SC:L7CPF.001:1427:1.ASCII
 - -rw-rw-rw- 1 cmshared cmshared 14802 Apr 26 12:52 SCL7CPF.0011427.met
 - -rw-rw-r-- 1 cmshared cmshared 111 Apr 26 13:01 staging.disk.filename.list
 - -rw-rw-r-- 1 cmshared cmshared 2044 Apr 26 13:01 PACKING.LST.115124935248431

- If the relevant files were not successfully staged, the staging log files may reveal the cause; go to Step 7.

- If the relevant files were successfully staged, an acquire failure could be a result of problems with related servers or software (see Table 1). Ensure that the necessary hosts and servers are up [refer to Using Whazzup and ECS Monitor to Check the Status of Hosts and Servers (previous section of this lesson)].

7 To inspect the Staging Disk log for error messages associated with the acquire, on the APC Server host (e.g., e0acg01, g0acg01, l0acg02, n0acg01), review the server logs (e.g., EcDsStStagingDiskServerDebug.log; EcDsStCacheManagerServerDebug.log); refer to Checking Server Log Files (previous section of this lesson).

- Examine the section of each log with entries near the time of the problem, looking for messages that indicate whether the relevant files were successfully staged.

- If the relevant files were not successfully staged, the cause may be a lack of space in the staging area; go to Step 8.

- If the relevant files were successfully staged, an acquire failure could be a result of problems with related servers or software (see Table 1). Ensure that the necessary hosts and servers are up [refer to Using Whazzup and ECS Monitor to Check the Status of Hosts and Servers (previous section of this lesson)].

8 To check the space available in the staging area, on the Distribution Server (e.g., e0dis02, g0dis02, l0dis02, n0dis02) type cd /usr/ecs/<mode>/CUSTOM/drp/<archivehost>/data and then press the Return/Enter key.

- The prompt indicates the change to the specified directory.
9 Type `df -k`. (be sure to include the ".") and then press the **Enter** key.

- The filesystem, staging disk space capacity in kbytes, amount used, amount available, and percent of capacity are displayed, as in the following example:

  ```
  Filesystem  kbytes used  avail capacity Mounted on
  t1drg01:/usr/ecs/TS1/CUSTOM/drp/t1drg01/data
             225209856 173253056  51956800   77%
  /data1/ecs/TS1/CUSTOM/drp/t1drg01/data
  ```

- If there is not adequate space for staging the relevant files, it will be necessary to free up additional space (e.g., by purging expired files from cache).
Recovering from Ingest Problems

Ingest problems may vary significantly, with symptoms manifested that are specific to the type of Ingest being attempted. If a problem occurs, there is usually helpful information available on the Ingest GUI and it should be examined first. Ingest's many interfaces with other ECS subsystems mean that ingest problems may be traced not only to the Ingest subsystem itself, but also to numerous other ECS subsystems. Moreover, Ingest has interfaces with external data providers, and therefore problems may often be traced to communications with them. The Ingest lesson (Document 625-CD-008-002) provides detailed information on tracing Ingest problems, and if a problem occurs, the Ingest Technician/Archive Manager may often be able to resolve it through application of some of the procedures described in that lesson. Specifically, the Ingest Technician/Archive Manager should initially examine error indications and data available on the Ingest GUI and review relevant log files for error indications, including logs for the Ingest GUI, the Ingest Request Manager, the Ingest Granule Server, and the relevant Ingest Client. Ingest personnel can also perform procedures for:

- Recovering from a Faulty DAN.
- Recovering from Exceeding the Volume Threshold.
- Recovering from Exceeding the Maximum Number of Concurrent Requests.
- Recovering from Insufficient Disk Space.
- Recovering from Exceeding the Expiration Date/Time Period.
- Recovering from File Transfer (ftp) Error.
- Recovering from Processing Errors.

If they are unable to solve the problem, there may be some additional troubleshooting related to granule insertion that will be helpful. After Ingest personnel exhaust relevant troubleshooting procedures from the Ingest lesson (Document 625-CD-008-002), use the following procedure to ensure that the manifested Ingest Problem does not reflect granule insertion problems. If the problem cannot be identified and fixed without help within a reasonable period of time, the appropriate response is to call the help desk or submit a trouble ticket in accordance with site Problem Management policy.

Recovering from Ingest Problems (Procedure 9.1)

1. Have the Ingest Technician perform a test ingest of an appropriate type (i.e., polling ingest of MODIS L0 data, ingest of AST_L1BT data from D3 tape, polling ingest of Attitude data without delivery record, polling ingest of L7 IAS data with delivery record, auto ingest of L7 Format 1 and Format 2 data), depending on the type of ingest associated with the problem.
2 Ensure that the insertion worked normally and that the insertion is reflected in the Archive and Inventory Databases, and perform any necessary corrective actions if the insertion did not work.

- Use the procedure for Recovering from Granule Insertion Problems (Procedure 7.1) (previous section of this lesson).

Recovering from PDPS Plan Creation/Activation and PGE Problems

Many ECS functions, particularly those related to the Planning and Data Processing Subsystems (PDPS), are dependent on correct registration and functioning of the science algorithms, or Product Generation Executives (PGEs). The initiation of successful PDPS functions is dependent on the ability to create and activate production plans. The correct functioning of PGEs is in turn dependent on the functioning of SDSRV and STMG1T in data insertion and archiving, as well as related communications. If there is a production planning problem, planning personnel have some initial troubleshooting that they can do using the guidance in Troubleshooting Production Planning Problems (Production Planning and Processing Lesson, Document 625-CD-006-002). Production personnel may apply guidance for Troubleshooting Processing Problems (Production Planning and Processing Lesson, Document 625-CD-006-002). If they are unable to resolve the problem, additional troubleshooting may be necessary. Troubleshooting PGE problems typically includes inserting a small file to check that data insertion and archiving functions are working, as well as checking PDPS mount points and then examining PDPS and SDSRV logs to search for evidence of communications failure during PGE execution. It may also be helpful to have PDPS personnel create and activate a plan using sample PGEs such as ETS and ACT. Use the following procedure to recover from problems with plan creation or activation and the running of PGEs.

Recovering from PDPS Plan Creation/Activation and PGE Problems (Procedure 10.1)

1 Examine the server logs to determine if PDPS communicated with SDSRV during the PGE execution associated with the problem, using the procedure for Checking Server Log Files (Procedure 2.1) (previous section of this lesson).

- On the host for the Queuing Server (e0ps04, g0ps06, l0ps03, or n0ps08), examine EcDpPrJobMgmtDebug.log and EcDpPrDeletionDebug.log.

- On the host for SDSRV (e0acs05, g0acs03, l0acs03, or n0acs04), examine EcDsScienceDataServerDebug.log.

- If the logs indicate evidence of communication failure, perform the procedure for Recovering from a Connectivity/DCE Problem (Procedure 3.1) (previous section of this lesson); if the log suggests a database access failure, perform the procedure for Recovering from a Database Access Problem (Procedure 4.1) (previous section of this lesson).
2 Ensure that PDPS personnel have thoroughly reviewed the problem using procedures for **Troubleshooting Processing Problems** [refer to Production Planning and Processing Lesson (Document 625-CD-006-002)].

- When a PGE binary fails, a failed PGE granule is stored in the archive; this is essentially a tar file of the PDPS run-time directory. It may be helpful to retrieve the relevant failed PGE granule from the archive and examine the information for indications of the problem. If there is indication of a problem with the PGE binary, it may be necessary to refer the problem to SSI&T personnel for solution.

3 Insert a small file using the DSS Driver.

- The DSS driver is used for inserting data into the data server (archive), performing acquires from the archive, and/or searching the archive for granules. It is launched by running a script, `EcTsDsClientDriverStart`, on the SDSRV host (e0acs05, g0acs03, l0acs03, or n0acs04). Then you follow prompts on the screen to specify data insert, main data type, any accompanying metadata, and filename(s).

4 Ensure that the insert into the SDSRV database and Archive worked and that the insertion is reflected in the Archive and Inventory Databases, and perform any necessary corrective actions if the insertion and associated triggers did not work.

- Use the procedure for **Recovering from Granule Insertion Problems (Procedure 7.1)** (previous section of this lesson).

5 Determine if the Planning and Data Processing Subsystems (PDPS) mount point is visible on the SDSRV host (e0acs05, g0acs03, l0acs03, or n0acs04) and on the Archive Server host (e0drg01, g0drg01, l0drg1, or n0drg01) by following the procedure for **Recovering from a Missing Mount Point Problem (Procedure 5.1)** (previous section of this lesson).

6 To check out PDPS functions, have planning personnel create and activate a plan to run ACT and ETS PGEs, using applicable procedures to create production requests [refer to the procedure **Create New Production Request** (Document 611-CD-600-001, Section 13.1.2)] and to create and activate the plan [refer to the procedure **Create New Production Plan** (Document 611-CD-600-001, Section 13.2.3)].

- Ensure that the necessary input and static files are present in SDSRV, using as guidance Steps 2, 3, and 4 of the procedure for **Recovering from Granule Insertion Problems (Procedure 7.1)** (previous section of this lesson).

- Ensure that the necessary ESDTs (e.g., for AST_09T, AST_08, and AST_05) are installed, using applicable procedures [e.g., **Recovering from Problems with ESDTs, DAP Insertion, SSI&T (Procedure 12.1)** (subsequent section of this lesson) and **Add Science Data Server Data Types** (Document 611-CD-600-001, Section 16.7.3)].

- Ensure that there is a subscription for AST_08 FTPpush entered into SBSRV, using appropriate procedures [e.g., **Fulfilling a Need for a One-Time Subscription** (Document 611-CD-600-001, Section 19.4.1)].
On the Queuing Server host (e0sp04, g0sp06, l0sp03, or n0sp08) or the Science Processor host (e0spg01, g0spg01, l0spg01, or n0spg03), check the PDPS run-time directories, as follows:

- Type `cd /usr/ecs/<mode>/CUSTOM/pdps/<processor_host>/data/DpPrRm/<processor_host>_disk/<PGE_directory>/<PGE#version_no.>` and the press the Return/Enter key.
- List the files (i.e., type `ls -al | more` and then press the Return/Enter key). Note: At the completion of a successful or unsuccessful PGE run, its run-time directory is cleaned up. Therefore, you will only see run-time directories for PGEs that are currently running or for which execution has been stopped. If execution is stopped, conduct troubleshooting in accordance with procedures for Handling a Job that is Hanging in AutoSys [refer to Production Planning and Processing Lesson (Document 625-CD-006-002)].

Determine if the user in the subscription received an e-mail message concerning the FTPPush [refer to Step 13 of the procedure for Recovering from Granule Insertion Problems (Procedure7.1) (previous section of this lesson)].

Determine if the files were pushed to the correct directory [refer to the procedure for Recovering from Data Distribution Problems (Procedure14.1) (subsequent section of this lesson)].

Execute `cdsping` of machines with which DDIST communicates from x0dis02 [refer to the procedure for Using ECS Assistant to Monitor Server Status (Document 611-CD-600-001, Section 3.7.3.2)].

- It may be necessary to reboot any machine(s) from which there is no response [refer to the procedure for Warm - By Subsystem Startup (Document 611-CD-600-001, Section 3.1.1.2)].

Recovering from QA Monitor Problems

The Quality Assurance (QA) Monitor GUI is used to record the results of a QA check on a science data product, updating the QA flag in the metadata. This function is dependent on the presence in SDSRV of the data to be evaluated for quality. The operator uses the tool to execute a query of SDSRV to locate and retrieve the data (and/or its production history), and to return the results of the QA assessment in a metadata update. Some problems may result in the display of user messages; these are identified in Appendix A of the Operations Tools Manual (Document 609-CD-600-001, Table A.2.9-7) along with potential impacts, causes, and corrective actions. Most of the QA Monitor user messages result from problems with system communications or run-time errors, and the proposed corrective actions for the operator are often to exit the GUI and try again later. For other problems related to the system query, use the following procedure.
Recovering from QA Monitor Problems (Procedure 11.1)

1 Ensure that the data on which to perform QA are in the SDSRV.

 • On the host for the Archive Server (x0drg01), type the directory change command `cd /dss_stk1/<mode>/<data_type_directory>` and then press the Return/Enter key.
 − The prompt indicates change to the `/dss_stk1/<mode>/<data_type_directory>` directory.

 • Type `ls -al | grep "<date>"` where "<date>" is a three-letter abbreviation for the month followed by a number indicating the day (e.g., "Apr 21"), and then press the Return/Enter key.
 − A list of files is displayed, showing date and time of entry for each.
 − If the desired file is displayed in the list, go to Step 2.
 − If the desired file is not displayed, have the inserted again (e.g., from processing). If this succeeds (i.e., the file is now listed), go to Step 2; otherwise, have the Archive Manager conduct the procedure for Recovery from Failure to Store orRetrieve Data (Document 611-CD-600-001, Section 17.6.6).

2 On the host for SDSRV (e.g., e0acs05, g0acs03, l0acs03, n0acs04), examine the SDSRV logs (i.e., EcDsScienceDataServer.ALOG, EcDsScienceDataServerDebug.log). Use the procedure for Checking Server Log Files (Procedure 2.2) (previous section of this lesson) and look for evidence that the data query from the QA Monitor GUI was successfully received.

 • If the log shows that SDSRV received the query, go to Step 3.

 • If there is no entry indicating the query, log in to the host for the QA Monitor GUI (e.g., e0pls02, g0pls01, l0pls02, n0pls02) and examine the QA Monitor GUI logs (i.e., EcDpPrQaMonitorGUI.ALOG, EcDpPrQaMonitorDebug.log). Use the procedure for Checking Server Log Files (previous section of this lesson) and look for evidence of a communications failure. If necessary, perform the procedure Recovering from a Connectivity/DCE Problem (Procedure 3.1) (previous section of this lesson).
3 On the host for the QA Monitor GUI (e.g., e0pls03, g0pls01, l0pls02, n0pls02), examine the QA Monitor GUI logs (i.e., EcDpPrQaMonitorGUI.ALOG, EcDpPrQaMonitorDebug.log). Use the procedure for Checking Server Log Files (Procedure 2.2) (previous section of this lesson) and look for evidence that the query results were returned from SDSRV.

- If the log shows that the query was not returned, log in to the host for SDSRV (e.g., e0acs05, g0acs03, l0acs03, n0acs04) and examine the SDSRV logs (i.e., EcDsScienceDataServer.ALOG, EcDsScienceDataServerDebug.log). Use the procedure for Checking Server Log Files (previous section of this lesson) and look for evidence of a communications failure. If necessary, perform the procedure Recovering from a Connectivity/DCE Problem (Procedure 3.1) (previous section of this lesson).
Recovering from Problems with ESDTs, DAP Insertion, or SSI&T

Each ECS data collection is described by an Earth Science Data Type (ESDT), made known to the system by an ESDT descriptor file and associated software code which is built into the Data Server’s dynamic link library (DLL) to perform the services. The ESDT descriptor is composed of sections containing the following information:

- Collection level metadata attributes with values contained in the descriptor.
- Granule level metadata attributes whose values are supplied primarily by the Product Generation Executives (PGEs) during runtime.
- Valid values and ranges for the attributes.
- List of services for the data and events that trigger responses throughout the system.

The ESDTs for all data collections to be input to or output from the PGEs must be built and registered in ECS data server software before any of the PGEs can be run under the automated processing system. Any corruption or other problem with an ESDT descriptor or related files may cause degradation or disruption of ECS functioning.

Delivered Algorithm Packages (DAPs) are the means by which ECS receives new Science Software. The insertion of a DAP is dependent on an appropriate ESDT being installed, but otherwise, the Ingest and insertion of DAPs, and the handling of DAP acquires for Science Software Integration and Test (SSI&T), share features with other insertions and acquires. Accordingly, troubleshooting of problems with DAP insertion and acquires follows procedures similar to those for troubleshooting of other insertions and acquires.

Tools and GUIs for Science Software Integration and Test (SSI&T) are essential for the testing of new science algorithms and for preparing them for integration into the ECS operating environment. If these tools and GUIs are not properly installed, or if the system cannot perform inserts and FTPpush functions, SSI&T will be prevented or degraded. The SSI&T process entails testing new PGEs for data processing, and therefore many SSI&T problems are problems with PGEs. Accordingly, useful guidance may be found in troubleshooting procedures applicable to processing problems (refer to Troubleshooting Processing Problems in the Production Planning and Processing Lesson, Document 625-CD-006-002) or problems with PGEs (refer to Recovering from Planning and Data Processing Problems (Procedure 10.1), previous section of this lesson). Additional useful guidance may be found in the Science Software Integration and Test Lesson (refer to Appendix A. Troubleshooting and General Investigation, Document 625-CD-016-002). If these approaches do not readily resolve the problem, the following procedure may help ensure that the relevant software components are properly installed, DAPs can be inserted or acquired, and pushes from SDSRV are working to support SSI&T.
Recovering from Problems with ESDTs, DAP Insertion, or SSI&T (Procedure 12.1)

1. Check to ensure that involved subsystems and their computer software configuration items (CSCIs) are correctly installed and that the associated servers are functioning.
 - Launch the Science Data Server (SDSRV) GUI and review the ESDTs listed on the Data Types tab in the Names column to ensure that there is an ESDT for the data to be inserted (e.g., via Ingest, Processing, or other insertion). Use appropriate procedures (e.g., from Document 611-CD-600-001, Section 16.7.1 Starting the Science Data Server Operator GUI and Section 16.7.2 View the Science Data Server Data Type Information). If the needed ESDT is not available, it may be necessary to install or re-install it using appropriate procedures (e.g., from Document 611-CD-600-001, Section 16.7.3 Add Science Data Server Data Types).
 - Launch the Subscription Server (SBSRV) GUI and review the registered Events to ensure that the event associated with the problem is registered. Use appropriate procedures (e.g., from Document 611-CD-600-001, Section 19.4.2 Fulfilling a Need for an Open-Ended Subscription). If the event is not registered, it may be necessary to install or re-install the associated ESDT using appropriate procedures (e.g., from Document 611-CD-600-001, Section 16.7.3 Add Science Data Server Data Types).
 - At the host for IOS and DDICT (e.g., e0ins01, g0ins02, l0ins02, n0ins02), launch the ECS Assistant and check for the presence of installed components and functioning of related servers for IOS and DDICT. Use appropriate procedures (e.g., from a previous section of this lesson, Starting ECS Assistant and Using the ECS Assistant Server Monitor). If EcloAdServer or ECDmDictServer is not "up," restart the server(s) using appropriate procedures [e.g., Using Scripts to Start Up/Shut Down Servers (Document 611-CD-600-001, Section 26.10.1)].
 - Ensure that Data Processing Subsystem and its computer software configuration items (CSCIs) are correctly installed [i.e., use ECS Assistant on the AIT Workstation (e.g., e0ais02, g0ais05, l0ais09) to check installed components for the Algorithm Integration and Test Tools; refer to procedure Using ECS Assistant to Monitor Server Status (Document 611-CD-600-001, Section 3.7.3.2)].
 - If the items are not correctly installed, it may be necessary to reinstall the software; e.g., refer to Handling an ESDT Installation Failure (Appendix A of the Science Software Integration and Test Lesson, Document 625-CD-016-002).
2 Ensure the registration of events for any ESDT associated with the problem.

- On the SDSRV GUI, locate the ESDT either by scrolling through the list, or by typing all or part of the event name in the **Find** field and then clicking on the **Find** button. Click on the ESDT, and then click on the **View** button to display the **Descriptor Information** for the ESDT. In the **Descriptor Information** window, scroll to the end of the displayed information and review the last few lines to see the event data (**GROUP=EVENT**). Typically, there will be information for three types of events:
 - Insert.
 - Delete.
 - Update Metadata.

You may also check for the presence of events by checking or asking the Database Administrator to check for their presence in the Science Data Server Database on the SDSRV database host (**g0acg01, l0acg02, n0acg01, e0acg01**).

- If no events are listed for the ESDT associated with the problem, or there seems to be a problem with event information available through the SDSRV GUI, it may be necessary to re-install the ESDT, using appropriate procedures (e.g., from Document 611-CD-600-001, Section 16.7.3 **Add Science Data Server Data Types**).

3 Review the SDSRV log files to determine if there were any errors associated with communications between SDSRV and IOS, SBSRV, or DDICT.

- Use appropriate procedures [e.g., **Checking Server Log Files (Procedure 2.1)** (previous section of this lesson)]. If there are indications of communication failure, check for connection or DCE problems [refer to **Recovering from a Connectivity/DCE Problem (Procedure 3.1)** (previous section of this lesson)].

4 If necessary, perform collection mapping for the Data Dictionary (DDICT).

- When an ESDT is re-installed, or when a new ESDT is installed, use the Data Dictionary Maintenance Tool (DDMT) to update the mapping for all collections. If this step is omitted, the system will not function correctly. [Refer to the procedure for **Update Data Dictionary Attribute/Keyword Mapping** (in User Services Lesson, 625-CD-013-002).]

5 Ensure that it is possible to insert into the SDSRV database and Archive and that the insertion is reflected in the Archive and Inventory Databases, and perform any necessary corrective actions if the insertion did not work.

- Use the procedure for **Recovering from Granule Insertion Problems (Procedure 7.1)** (previous section of this lesson).
6 Ensure the presence of the DAP or relevant data in the archive and that SDSRV can perform FTPpushes.

- Use the procedure for Recovering from Data Distribution Problems (Procedure 14.1) (subsequent section of this lesson).

Recovering from Problems with Data Search and Order

Data search functions are critical for user access to ECS collections. Data search is dependent on data being present in the Archive and reflected in the inventory, either as a result of ingest operations or as products of data processing.

Data search functions, as well as other ECS Operations, rely on correct functioning of the V0 Gateway (V0GTWY) and the Data Dictionary (DDICT), and on up-to-date mapping of valid attributes and keywords for the collections to be searched. It is therefore important to make certain that there is connectivity between V0GTWY and DDICT, and that they are able to communicate.

Data order by a registered user must function correctly if ECS products are to be distributed. Data order is dependent on successful data search. In addition, SDSRV must be able to support distribution by various means (e.g., FTPpull, FTPpush, media), and the account and any directory to be used by FtpDis must be valid. Use the following procedure to recover from problems with functions for data search, including connectivity between the V0GTWY and DDICT, and data order by a registered user.

Recovering from Problems with Data Search and Order (Procedure 13.1)

1 Ensure that appropriate data have been ingested and/or produced and are in SDSRV.

- On the host for the Archive Server (x0drg01 [or x0drg0n]), type the directory change command `cd /dss_stk1/<mode>:/<data_type_directory>` and then press the Return/Enter key.
 - The prompt indicates change to the `/dss_stk1/<mode>:/<data_type_directory>` directory.

- Type `ls -al | grep <granuleUR>` and then press the Return/Enter key.
 - If the appropriate file(s) are displayed in the list, with date and time of entry for each, go to Step 2.
 - If appropriate file(s) are not displayed, have the file(s) inserted again (e.g., from Ingest or Processing). If this succeeds (i.e., file(s) are now listed), go to Step 2; otherwise, have the Archive Manager conduct the procedure for Recovery from Failure to Store or Retrieve Data (Document 611-CD-600-001, Section 17.6.6).
On the host for SDSRV (e.g., e0acs05, g0acs03, l0acs03, n0acs04), examine EcDsScienceDataServerDebug.log for evidence of problems with search activity.

- If there is an error message indicating "Archive center not available . . . ," it may be necessary to "Update All Collections" using the button for that update on the Map Attributes tab of the Data Dictionary Maintenance Tool.

On the V0GTWY host (i.e., x0ins02, where x is g for GSFC, l for LaRC, e for EDC, or n for NSIDC), type cd /usr/ecs/<mode>/CUSTOM/logs, and then press the Return/Enter key.

- The prompt indicates a change to directory /usr/ecs/<mode>/CUSTOM/logs.

To view the V0GTWY debug log, type more EcDmV0ToEcsGatewayDebug.log and then press the Return/Enter key. [This procedure uses the more command, but any UNIX editor or visualizing command (e.g., vi, pg, view, tail) may be used to view the file.]

- This displays the file contents. Near the beginning, with date and time reflecting server start-up, the file should contain a SQL SELECT entry similar to:

```
04/07/99 16:02:39: ~~~SQL STATEMENT IS: SELECT distinct
t1.collectionId,t1.siteId,t1.ShortName, upper(t4.keywordName),
t1.VersionId,t1.ArchiveCenter FROM DmDdECSCollection t1,
DmDdInfoMgrCollXref t2, DmDdEquivalentAttributes t3,
DmDdStringDomain t4, DmDdAttributeXref t5 WHERE t1.collectionId =
t2.collectionId AND t1.siteId = t2.siteId AND upper(t1.LongName) =
"LANDSAT-7 LEVEL-0R WRS-SCENE" AND t2.infoMgrName =
"[MDC: DSSDSRV]" AND t5.siteId = t1.siteId AND t5.collectionId =
t1.collectionId AND t5.collectionIdRef=t3.collectionId AND
t5.siteIdRef=t3.siteId AND t5.attributeIdRef=t3.attributeId AND
t4.collectionId=t3.collectionId AND t4.siteId=t3.siteId AND
t4.attributeId=t3.attributeId AND 3.equivalentAttributeName=
"DATASET_ID"
```

and, further down in the output, still with date and time reflecting server start-up, the file should contain an entry similar to the following:

```
04/07/99 16:02:43: End of StartMonitoring.
```

If the start-up information is correct, it indicates that the V0GTWY is using a valid isql query; go to Step 3.

- If the log does not display start-up information, there may be a problem with DCE; refer to the procedure for Recovering from a Connectivity/DCE Problem (Procedure 3.1) (previous section of this lesson).

- If the log displays only part of the information (e.g., does not contain an entry for End of StartMonitoring), there may be a problem with port assignment. It may be necessary to re-assign ports to eliminate a conflict and then stop and restart the
V0GTWY server; use the procedure Stop an Application/Program (Document 611-CD-600-001, Section 7.3.3) to stop the server, and then restart it using the procedure Using Scripts to Start Up/Shut Down Servers (Document 611-CD-600-001, Section 26.10.1).

5 Ensure that there is compatibility between the collection mapping database being used by the ECS Data Dictionary and the EOS Data Gateway Web Client.

- Ensure that collection mapping has been performed with the Data Dictionary Maintenance Tool after any removal, installation, or re-installation of ESDTs [use the procedure Update Data Dictionary Attribute/Keyword Mapping (in User Services Lesson, 625-CD-013-002)].

- Contact the EOSDIS V0 Information Management System (IMS) to ensure that any recently exported ECS valids have successfully passed their two-week valids update cycle and that the changes are currently operational. If the changes are not operational, it will be necessary to re-initiate the data search after the V0 IMS has implemented the changes.

6 To begin a check on functions for data order by a registered user, use the Data Distribution (DDIST) GUI to determine if DDIST is handling a request for the data and to monitor the progress of the request [refer to the procedure for Monitoring/Controlling Data Distribution Requests (Document 611-CD-600-001, Section 18.2.2)].

- The DDIST GUI may provide error messages to which the Distribution Technician can respond [refer to Appendix A of Operations Tools Manual (Document 609-CD-600-001, Table A.2.4-2)], and there are actions for troubleshooting data distribution problems that the Archive and/or Distribution personnel can perform [refer to procedure for Recovering from a Data Distribution Failure (Data Distribution lesson, Document 625-CD-009-002)].

7 On the DDIST host (e.g., e0dis02, g0dis02, l0dis02, n0dis02), examine the log EcsDsDistributionServerDebug.log to determine if an e-mail notification was sent to the user identified in the subscription; the output should be similar to the following:

```
05/06/99 12:52:41: Media::SendNotificationMessage.(myNotify,mySite,myConfig->GetMode(),mailAddress): (, , TS1, cmts1@t1ins02u.ecs.nasa.gov
Media::SendNotificationMessage: Getting e-mail address from configuration file.
05/06/99 12:52:41: DdDsDoneQueue::Thread Was marked SyncDone and Signaled.
RequestID= 125125210220554
```

- The timing of this step may depend on the type of distribution being requested. If it is an FTPpull, the e-mail notification of data availability occurs prior to the pull attempt. If it is an FTPpush or a media distribution, the e-mail notification occurs after the data are shipped.
Examine the server logs to determine where the order failed, using the procedure for Checking Server Log Files (Procedure 2.1) (previous section of this lesson). Check EcDmV0ToECSGatewayDebug.log on the V0GTWY host (e.g., e0ins02, g0ins02, l0ins02, n0ins02), EcDStFtpDisServerDebug.log, EcDStArchiveServerDebug.log, EcDStStagingDiskServerDebug.log, and EcDStCacheManagerServerDebug.log on the STMTG host (e.g., e0drg01, g0drg01, l0drg01, n0drg01), EcDsScienceDataServerDebug.log on the SDSRV host (e.g., e0acs03, g0acs03, l0acs03, n0acs04), and EcDsDistributionServerDebug.log on the DDIST host (e.g., e0dis02, g0dis02, l0dis02, n0dis02). Also check related .ALOG files.

- Look specifically at the SDSRV .ALOG (EcDsScienceDataServer.ALOG) for evidence that the request was received. You should see information similar to the following for FTPpull:

Priority: 0
Time : 05/18/99 10:44:55
PID : 5722:
Msg: Request ID 3c82ffee-0d30-11d3-a305-c67ee82eaa77:
DsSrRequest (1): DsShSciRequestImp [srv: ScienceDS, pri: NORMAL domain:0:]:
(DsShSciCommandImp: service: ACQUIRE num parameters: 2 category: Parameters are:- UnnamedPL[DDISTMEDIATYPE(FtpPull) ECSUSERPROFILE(L7CPF-Pull)] DISTRIBUTION)

or the following for FTPpush (note that information about FTP user is included):

Priority: 0
Time : 05/18/99 10:48:10
PID : 5722:
Msg: Request ID b0f09aac-0d30-11d3-a305-c67ee82eaa77:
DsSrRequest (1): DsShSciRequestImp [srv: ScienceDS, pri: NORMAL domain:0:]:
(DsShSciCommandImp: service: ACQUIRE num parameters: 7 category: Parameters are:- UnnamedPL[DDISTMEDIATYPE(FtpPush) DDISTMEDIAFMT(FILEFORMAT) ECSUSERPROFILE(L7CPF-Push) FTPUSER(cmshared) FTPPASSWORD(*******)] FTPHOST(t1acs03) FTPPUSHDEST(/home/bmyer/TS1_data)] DISTRIBUTION)

Note: It is also possible to examine the System Requests displayed on the Science Data Server GUI to determine if SDSRV received the acquire request from the V0GTWY [use procedure Monitor Science Data Server Request Processing (Document 611-CD-600-001, Section 16.7.5)].

- If appropriate entries are missing, or there is other evidence of a communications disruption or failure, perform the procedure Recovering from a Connectivity/DCE Problem (Procedure 3.1) (previous section of this lesson).

Determine if there are data in the staging area, performing any corrective actions necessary.

- Use Steps 4 - 9 of the procedure for Handling an Acquire Failure (Procedure 8.1) (previous section of this lesson).
10 Execute cdsping of machines with which DDIST communicates from x0dis02 [refer to the procedure for Using ECS Assistant to Monitor Server Status (Document 611-CD-600-001, Section 3.7.3.2)].

- It may be necessary to reboot any machine(s) from which there is no response [refer to the procedure for Warm - By Subsystem Startup (Document 611-CD-600-001, Section 3.1.1.2)].

11 On the System Management Support Subsystem (MSS) host (e.g., e0mss21, g0mss21, l0mss21, n0mss21), launch the ECS Order Tracking GUI and determine if the order is reflected in MSS order tracking [refer to the procedure for ECS Order Tracking (Document 611-CD-600-001, Section 19.3.1)].

- If the ECS Order Tracking GUI does not reflect the order, it may be instructive to examine the Order Tracking database (Database Administrator function) by logging into Sybase on the relevant MSS host [use procedure similar to steps 4 and 5 of Recovering from a Subscription Server Problem (Procedure 6.1) (previous section of this lesson)] and then selecting the User Name.

- If the order is not reflected in the Order Tracking database, perform the procedure for Recovery from a Database Access Problem (Procedure 4.1) (previous section of this lesson).

12 If the order is for an L7 scene, on the DSS working storage host (e.g., e0wkg01, g0wkg01, l0wkg01) examine the HDFEOS Server log (EcDsHdfEosServer.ALOG) to ensure that the HDF Server received the request. The log should contain entries similar to the following:

- PID : 728:MsgLink :0 meaningfullname :DsCsOutputFileOpenHDFEOSFileSuccess

 Msg: HDFEOS output file opened Priority: 0 Time : 05/17/99 15:41:20

- PID : 728:MsgLink :0 meaningfullname :DsHrDCENonConfConcreteNonConfGetAsyncResultsAsyncRPCDoneOk

 Msg: Asynchronous RPC has finished with status OK.
 Priority: 0 Time : 05/17/99 15:41:20

- PID : 728:MsgLink :0 meaningfullname :DsCsOutputFileCloseOutputFileSuccessful

 Msg: HDFEOS output file closed Priority: 0 Time : 05/17/99 15:41:20

- If the log does not reflect the request, perform the procedure Recovering from a Connectivity/DCE Problem (Procedure 3.1) (previous section of this lesson).
Recovering from Data Distribution Problems

Data distribution is key to any ECS functions that require the copying of data from the Archive. These functions include not only providing data to external users, but also providing data to internal ECS components.

Distribution on various media (e.g., 8mm tape) is generally limited to providing data for external users. The FTPpull process is also generally for external distribution. It is needed to fulfill L7 data orders and other FTPpull orders. The FTPpush process is central to many key ECS functions. For example, it is the means by which data are distributed among components of ECS (e.g., as needed for data processing). Therefore, FTPpush must be working in order to run PGEs. All ECS data distributions are dependent on the presence of the required data in the SDSRV database and in the Archive.

The distribution process may be tested in an acquire with the DSS Driver. The FTP processes use the FtpDis server. The FTPpull process uses the FTPpull Monitor server. Media distributions use appropriate servers for peripheral media. Therefore, the appropriate servers must be up and functioning correctly in order for data distribution to be successful. Use the following procedure to recover from data distribution problems.
Recovering from Data Distribution Problems (Procedure 14.1)

1. Ensure that the Data Distribution personnel have attempted appropriate operational solutions.
 - Refer to the section on Troubleshooting Data Distribution Problems and the procedure for Recovering from a Data Distribution Failure in the training lesson on Data Distribution (Document 625-CD-509-002).

2. Use the Data Distribution (DDIST) GUI to determine if DDIST is handling a request for the data and to monitor the progress of the request [refer to the procedure for Monitoring/Controlling Data Distribution Requests (Document 611-CD-600-001, Section 18.2.2)].
 - The DDIST GUI can be used to monitor the distribution request that is the focus of the problem. For troubleshooting/test purposes, use the DSS Driver to execute an acquire by the relevant distribution method and monitor its progress. A DSS Driver acquire uses system resources similar to those involved in a distribution of data to end users, although the resources used for a DSS Driver FTPpush are somewhat different from the system resources used in an internal distribution (e.g., for processing).

3. On the destination host for the files, execute `ls -l` command(s) to determine if the directory exists.
 - If the appropriate directory is reflected, go to Step 5.
 - If the directory does not exist, it is necessary to create it (e.g., have Production Planning and Processing personnel ensure that the target directory exists, creating it if necessary, or use the command `mkdir <directory name>`).
 - **Note:** If the distribution is for FTPpush to a user outside of ECS, it may be necessary to coordinate with that user to ensure that you have the correct information about the path to which the data are to be pushed, or that the appropriate directory is available.
For an internal push or pull by FTP, examine the server logs to determine if the files were distributed to the correct directory, using the procedure for Checking Server Log Files (Procedure 2.1) (previous section of this lesson).

- If the server log EcDsStFtpDisServerDebug.log on the STMT host (e.g., e0drg01, g0drg01, l0drg01, n0drg01) properly reflects the push in an entry similar to the following, go to Step 6:

```
```

Note: For FTP push to end users, the server log of interest is EcDsStFtpDisServerDebug.log on the APC Server (e.g., e0acg01, g0acg01, l0acg02, n0acg01), and the path to which the data are pushed should reflect a location external to ECS.

- If there is no entry, examine the DDIST log EcDsDistributionServerDebug.log on the DDIST host (e.g., e0dis02, g0dis02, l0dis02, n0dis02) for indication that the distribution has been suspended or that there is some other problem with the distribution; if necessary perform the procedure Recovering from a Data Distribution Failure (Data Distribution Lesson, Document 625-CD-509-002).

Examine the server log (EcDsStFtpDisServerDebug.log) for an attempt to write to the directory with the result "Permission Denied," using the procedure for Checking Server Log Files (Procedure 2.1) (previous section of this lesson).

- If there is no evidence of incorrect permissions, go to Step 6 to determine if there are data in the staging area for the push.

- Incorrect permissions can be corrected by using a different account with the correct permissions, or by resetting the permissions. For Production Planning and Processing functions, it may be necessary to set up specific accounts planned for use in those functions.

On the appropriate host (e.g., e0drg01, g0drg01, l0drg01, n0drg01), type `cd /usr/ecs/<mode>/CUSTOM/drp/<host>/data/staging/cache` and then press the Return/Enter key.

- The prompt reflects the change to the specified directory.

Type `ls` and then press the Return/Enter key.

- If the file(s) are properly listed in output similar to the following, go to Step 8:

```
:SC:AST_L1B.001:1411:1.HDF-EOS SCAST_L1BT.11411.met
Niger-L1B-4.hdfe staging.disk.filename.list
PACKING.LST.582292669708
```

- If the file(s) are not listed, it may indicate that there is insufficient space in the staging area for the staging disk. Examine the DDIST log EcDsDistributionServer Debug.log on the DDIST host (e.g., e0dis02, g0dis02, l0dis02, n0dis02) for indication of that or other problem with the distribution; if necessary perform the
procedure Recovering from a Data Distribution Failure (Data Distribution Lesson, Document 625-CD-009-002).

8 Examine the server logs to determine the last successful communication, using the procedure for Checking Server Log Files (Procedure 2.1) (previous section of this lesson). Check EcDsStFtpDisServerDebug.log, EcDsStArchiveServerDebug.log, EcDsStStagingDiskServerDebug.log, and EcDsStCacheManagerServerDebug.log on the STMGT host (e.g., e0drg01, g0drg01, l0drg01, n0drg01), EcDsScienceDataServerDebug.log on the SDSRV host (e.g., e0acs03, g0acs03, l0acs03, n0acs04), and EcDsDistributionServerDebug.log on the DDIST host (e.g., e0dis02, g0dis02, l0dis02, n0dis02).

• If there is evidence of a communications disruption or failure, perform the procedure Recovering from a Connectivity/DCE Problem (Procedure 3.1) (previous section of this lesson).

9 Execute cdsping of machines with which DDIST communicates from x0dis02 [refer to the procedure for Using ECS Assistant to Monitor Server Status (Document 611-CD-600-001, Section 3.7.3.2)].

• It may be necessary to reboot any machine(s) from which there is no response [refer to the procedure for Warm - By Subsystem Startup (Document 611-CD-600-001, Section 3.1.1.2)].

Recovering from Problems with Submission of an ASTER Data Acquisition Request (EDC Only)

Authorized scientists will use the ECS Java DAR Tool to submit ASTER Data Acquisition Requests to the ASTER Ground Data System (GDS) in Japan. The Java DAR Tool and submission of DARs is supported by the EROS Data Center (EDC), where associated subscriptions are placed for notification that the data resulting from the requests have been received, and where the data will be archived. Use the following procedure to recover from problems with submission of an ASTER DAR.

Recovering from Problems with Submission of an ASTER Data Acquisition Request

1 Check to ensure that the user attempting the DAR submission is an ECS User with a registered account with DAR permissions enabled.

• Use the ECS Account Management GUI to profile the user's account and review the associated DAR Information [refer to Edit/Modify DAR Information (Document 611-CD-600-001, section 19.1.4.6)]. If the user is not authorized to submit a DAR, it may be necessary to refer that user to the U.S. ASTER website at http://asterweb.jpl.nasa.gov and the link there for Obtaining Data.
• (Note: When a user account is authorized for DAR permissions, ECS submits a request to the ASTER GDS for establishment of a corresponding authorization there. If an otherwise authorized user receives a message on the Java DAR Tool refusing a DAR submission, it may be necessary to coordinate with the ASTER GDS to verify that they have taken the action necessary to establish an account there.)

2 Verify that the necessary servers are "up" and listening; use the command line `ps -ef | grep <server process>`, or otherwise monitor server status [refer to Using ECS Assistant to Monitor Server Status and cdsping all servers (Document 611-CD-600-001, section 3.7.3.2) or Using Whazzup and ECS Monitor to Check the Status of Servers and Servers (previous section of this lesson), and, if necessary, Using Scripts to Start Up/Shut Down Servers (Document 611-CD-600-001, Section 26.10.1)]. The following servers are necessary:

- EcMsAcRegUserSrvr (on e0mss21).
- EcGwDARServer (on e0ins01).
- EcSbSubSrvr (on e0ins01).
- EcCsMojoGateway (on e0ins01).
- EcClWbJessProxyServer (on e0ins02).
- EcClWbFolioidProxyServer (on e0ins02).
- EcIoAdServer (on e0ins02).
- Netscape Enterprise Server (on e0dms03)

3 Check the configuration parameters for the DAR Gateway in the Configuration Registry (may be a Configuration Manager or Database Administrator function) to make sure that the correct IP address and port number for the ASTER GDS are reflected.

- The parameters should reflect information similar to the following:

  ```
  #GDS API parameters
  GdsIPAddress  = 210.138.101.43
  GdsPort       = 10500
  GdsTimeOut    = 10
  ```

 (Note: The specific IP Address and Port should be set to values that are correct for the ASTER GDS. During testing before operational connection to the GDS, these values are set to reflect site-specific and mode-specific connection to the ASTER GDS simulator.)
Examine the server log files for activity reflecting the DAR submission [refer to the procedure for Checking Server Log Files (Procedure 2.1) (previous section of this lesson)].

- The `jess.log` (on e0ins02, in `/usr/ecs/<mode>/CUSTOM/jdt`) should reflect the start of a session and user log-in for use of the Java DAR Tool, with entries similar to the following:

 20010123.154841 Logging all mojo transactions to '/tmp/mojotxn_<mode>.log'.
 20010123.154841 Listening for new connections on e0ins02u.ecs.nasa.gov, port <#####>
 20010123.162558 D:starting login for user <user ID>

and then reflect use of the tool to create a DAR with entries similar to the following:

 20010123.162559 <user ID>:Servlet.AuthServlet(980285158401):initialized
 20010123.162559 <user ID>:Servlet.AuthServlet(980285158401):processing
 20010123.162559 <user ID>:Servlet.ModelFileLogger(980285159497):First time user - initializing
 20010123.162559 <user ID>:Servlet.ModelFileLogger(980285159497):Copying default user info
 20010123.162559 <user ID>:Servlet.ModelFileLogger(980285159497):put
 Folder { UOID = "4242424242424242"; Name = "Untitled Folder";
 TimeStamp = "Dec 18 1999 13:00:00 EST"; }
 20010123.162559 <user ID>:Servlet.UserProfileServlet(980285159757):initialized
 20010123.162559 <user ID>:Servlet.UserProfileServlet(980285159757):processing
 20010123.162559 <user ID>:Servlet.UserProfileServlet(980285159757):Type listeners removed
 20010123.162559 <user ID>:Servlet.UserProfileServlet(980285159757):Object listeners removed
{Root, Root, 942338909056, 499530658}
 {Untitled Folder, Folder, 4242424242424242, 499531739}
 {0, XAR, 942338925546, 499529412}
 {General - Primary Attributes, PrimaryAttribute, 942338925608, 499524693}
 {General - Telescope Gains, TelescopeSetting, 942338925643, 499533322}
 {Spatial, SpatialSetting, 942338925724, 499533250}
 {Temporal, TemporalSetting, 942338925911, 499530170}
 {Coverage, CoverageDetailsSetting, 942338925991, 499529226}
and then indicate successful communication with the ASTER Ground Data System to submit the DAR and receive a DAR ID.

- If the log does not reflect appropriate activity associated with the submission of the DAR, ensure that the involved servers are up and listening [refer to Using Whazzup and ECS Monitor to Check the Status of Hosts and Servers (previous section of this lesson), and, if necessary, Using Scripts to Start Up/Shutdown Servers (Document 611-CD-600-001, Section 26.10.1)]. It may also be necessary to ensure that DCE is functioning properly [refer to the procedure for Recovering from a DCE/Connectivity Problem (Procedure 3.1) (previous section of this lesson)].

If the `jess.log` reflects a start-up error similar to the following:

```
STARTUP ERROR:20010219.122212 Error: java.net.BindException: Addr
```

it will be necessary to restart `jess`. This necessitates obtaining the process ID (pid) for `java_vm_` (use the UNIX command `ps`) and stopping that process (use the UNIX command `kill -15 <pid>`), before issuing the command `start_jess <mode>` (on e0ins02, in `/usr/ecs/<mode>/CUSTOM/jdt/bin`).

Other error indications in the `jess.log` may be similar to the following:

```
20001218.125127 <user ID>:Servlet.ModelFileLogger(977160725207):done
20001218.125127 <user ID>:Servlet.SessionServlet(977160725690):done
20001218.125127 <user ID>:Servlet.AuthServlet(977160724063):done
20001221.115952 <user ID>:Closing session
20001221.115952 <user ID>:exception closing mojo socket: Broken pipe
20001221.115952 <user ID>:Removing session: <user ID>
```

and:

```
JDT::Error[999]:FATAL:jdt.services.xar.SubmissionAgent:REQUEST_HANDLING:ClWbJt.mojo.ConnectionException: ErrorCode 15011
Error received from GDS
```

```
ClWbJt.mojo.ConnectionException: ErrorCode 15011
.
.
```

119
Check the Subscription Server GUI to ensure that a subscription is registered for the DAR [refer to the procedure for Returning a List of Subscriptions (Document 611-CD-600-001, Section 19.4.3)].

- If the subscription is not reflected on the Subscription Server GUI, use the procedure Checking Server Log Files (previous section of this lesson) to determine if the EcCsMojoGatewayDebug.log indicates that a subscription request was sent to the subscription server, and to determine if the EcSbSubServerDebug.log indicates that the subscription server received the subscription request.

- If the subscription was not registered, check that the Subscription function is working properly [refer to the procedure for Recovering from a Subscription Server Problem (Procedure 6.1) (previous section of this lesson)].

Recovering from Problems with On-Demand Product Requests
(EDC Only)

Authorized users may use the On-Demand Form Request Manager (ODFRM) to submit requests for production of ASTER Digital Elevation Model (DEM) products or non-standard ASTER Level 1B products, and any user may use the ODFRM to order non-restricted ASTER higher-level products. Also, the ODFRM may be used to order a higher-level ASTER product at the time of submission of a DAR; the request is attached to the DAR. Such requests result in creation of an order for the higher-level product and in the submission of a Data Processing Request through the On-Demand Production Request Manager (ODPRM) in the Planning subsystem. The ODFRM Tool and submission of on-demand production requests is supported by the EROS Data Center (EDC). Use the following procedure to recover from problems with submission of an on-demand production request.

Recovering from Problems with Submission of an On-Demand Production Request

1. Check to ensure that the user attempting the on-demand production request submission is an ECS User with a registered account with any necessary permissions enabled.

 - Use the ECS Account Management GUI to profile the user's account and review the associated privilege information. If necessary and the user privileges have been authenticated, ASTER data access permission may be granted by means of a button on the Account Information subtab of the Profile Account tab on the SMC Account Management tool.
2 Verify that the necessary servers are "up" and listening; use the command line `ps -ef | grep <server process>`, or otherwise monitor server status [refer to Using ECS Assistant to Monitor Server Status and cdsping all servers (Document 611-CD-600-001, section 3.7.3.2) or Using Whazzup and ECS Monitor to Check the Status of Hosts and Servers (previous section of this lesson), and, if necessary, Using Scripts to Start Up/Shut Down Servers (Document 611-CD-600-001, Section 26.10.1)]. The following custom servers are necessary:

- EcMsAcRegUserSrvr (on e0mss21).
- EcMsAcOrderSrvr (on e0mss21).
- EcPlOdMgr (on e0pls02).
- EcCsRegistryServer (on e0dms03).
- EcSbSubSrvr (on e0ins01).
- EcloAdServer (on e0ins02).

3 If a user cannot access the ODFRM, check the Netscape Enterprise Server configuration file `/usr/ecs/<mode>/COTS/ns-home/<server_name>/config/magnus.conf` to make sure that the correct server ID, server name, IP address, and port number for the tool are reflected.

- The parameters should reflect information in format similar to the following:
  ```
  ServerID https-t1ins01
  ServerName t1ins01.vatc
  Address 198.118.232.40
  Port 80
  ```

4 Examine the server log files for activity reflecting connection to the On Demand Manager and successful submission of the on-demand request [refer to the procedure for Checking Server Log Files (Procedure 2.1) (previous section of this lesson)].

- The Netscape Enterprise Server access log reflects user access activities for the tool, and the errors log is similar to a Debug.log for server events. These logs may be found on e0dms03 in `/usr/ecs/<mode>/COTS/ns-home/<server_name>/logs`. The EcClOdProductRequest.ALOG (on e0ins02, in `/usr/ecs/<mode>/CUSTOM/logs`) should reflect the connection and submission of the request, with entries similar to the following:

```
PID : 20353:MsgLink :0 meaningfulname :ClOdProductSelection::MediaOptionsForm
Msg: MediaOptions Request Successful Priority : 0 Time : 12/15/00 10:22:25
PID : 20458:MsgLink :0 meaningfulname :SUCCESSFULLYCONNECTED
```
Ms g: Client Successfully connected to On Demand Server Priority : 0 Time : 12/15/00 10:24:03
PID : 20458:MsgLink :0 meaningfullname :ClOdProductRequest::SubmitProductRequest
Msg: Product Request Successfull Priority : 0 Time : 12/15/00 10:24:10
PID : 20458:MsgLink :0 meaningfullname :SUCCESSFULLYDISCONNECTED
Msg: Client Successfully disconnected from On Demand Server Priority : 0 Time : 12/15/00 10:24:10

• If the log shows evidence of a communications problem, refer to the procedure for Recovering from a DCE/Connectivity Problem (Procedure 3.1) (previous section of this lesson). Such evidence may be reflected in entries such as the following:

PID : 6892:MsgLink :0 meaningfullname :CsNsNsServiceLocClientmainNoValidBinding
Msg: Could not find a valid binding Priority : 2 Time : 12/18/00 12:56:49
PID : 6892:MsgLink :0 meaningfullname :EcFhExecutorExecuteHandlerHandleOODCEException
Msg: DCEOSFException caught Priority : 1 Time : 12/18/00 12:56:49
PID : 6892:MsgLink :0 meaningfullname :EcFhFaultHandlerHandleDCEOSFExceptionHandlingException
Msg: Caught DCE Error Number : 382312629 Priority : 1 Time : 12/18/00 12:56:49
PID : 6892:MsgLink :0 meaningfullname :CsNsNsServiceLocClientmainNoValidBinding
Msg: Could not find a valid binding Priority : 2 Time : 12/18/00 12:56:49
PID : 6892:MsgLink :0 meaningfullname :EcFhFaultHandlerHandleDCEOSFExceptionHandlingException
Msg: Caught DCE Error Number : 382312629 Priority : 1 Time : 12/18/00 12:57:05
PID : 6892:MsgLink :0 meaningfullname :EcFhFaultHandlerHandleDCEOSFExceptionHandlingException
Msg: Caught DCE Error Number : 382312629 Priority : 1 Time : 12/18/00 12:57:20
PID : 6892:MsgLink :0 meaningfullname :CsNsNsServiceLocClientmainNoValidBinding
Msg: Could not find a valid binding Priority : 2 Time : 12/18/00 12:57:20
PID : 6892:MsgLink :0 meaningfullname :EcFhFaultHandlerHandleDCEOSFExceptionHandlingException
Msg: Caught DCE Error Number : 382312629 Priority : 1 Time : 12/18/00 12:57:35
PID : 6892:MsgLink :0 meaningfullname :CsNsNsServiceLocClientmainNoValidBinding
Msg: Could not find a valid binding Priority : 2 Time : 12/18/00 12:57:35
PID : 6892:MsgLink :0 meaningfullname :EcFhFaultHandlerHandleDCEOSFExceptionHandlingException
Msg: Caught DCE Error Number : 382312629 Priority : 1 Time : 12/18/00 12:57:50
PID : 6892:MsgLink :0 meaningfullname :CsNsNsServiceLocClientmainNoValidBinding
Msg: Could not find a valid binding Priority : 2 Time : 12/18/00 12:57:51
PID : 6892:MsgLink :0 meaningfullname :ExcDCE
Msg: DCE Exeception: Unable to construct PlOdMsgProxy server object due to: No more bindings (dce / rpc) Priority : 2 Time : 12/18/00 12:57:51
On e0pls02, in `/usr/ecs/<mode>/CUSTOM/logs`, examine the `EcPLOdMgr.ALOG` for evidence that the request was received and properly handled by the On-Demand Production Request Manager.

- The log should contain entries similar to the following:

 PLS EcPLOdMgr Server Output log on t1pls01 starting at Thu Feb 15 11:54:19 EST 2001

 PID : 14658:ThreadID : 1 : MsgLink :0 meaningfulname :SEVERMAINPROCSTART

 PID : 14658:ThreadID : 1 : MsgLink :0 meaningfulname :ENTERMYSTART

 Msg: Creating instance of PLOdMsgDObj_1_0_Mgr Priority: 0 Time : 02/15/01 11:55:29

 PID : 14658:ThreadID : 1 : MsgLink :0 meaningfulname :MYSTARTREGISTERING

 Msg: Registering PLOdMsg_1_0_Mgr.... Priority: 0 Time : 02/15/01 11:55:31

 PID : 14658:ThreadID : 1 : MsgLink :0 meaningfulname :MYSTARTINITMSG

 Msg: Initializing Msg.... Priority: 0 Time : 02/15/01 11:55:32

 If the log shows evidence of errors, in entries such as the following:

 PID : 9785:ThreadID : 31 : MsgLink :0 meaningfulname :SUCCESSFULLYCONNECTED

 Msg: Client Successfully connected to Job Management Server Priority: 0 Time : 02/01/01 20:11:30

 PID : 9785:ThreadID : 31 : MsgLink :0 meaningfulname :NewState

 Msg: RequestId= 0300004313 NewState= Queued PDPS DPR Id= Priority: 0 Time : 02/01/01 20:11:58

 PID : 9785:ThreadID : 31 : MsgLink :0 meaningfulname :SUCCESSFULLYCONNECTED

 Msg: Client Successfully disconnected from Job Management Server Priority: 0 Time : 02/01/01 20:23:52

 - If the log shows evidence of errors, in entries such as the following:

 PID : 9785:ThreadID : 31 : MsgLink :0 meaningfulname :DpPrDbColValList::ValueAt

 Msg: Failed due to column maxGranReq not found in the list Priority: 2 Time : 02/01/01 20:40:31

 PID : 9785:ThreadID : 31 : MsgLink :0 meaningfulname

 :DpPrDbInterface<DpPrClass>::SelectAndReadObject with a list of where constraints

 Msg: Select succeeded. No row is retrieved into the given object. Priority: 2 Time : 02/01/01 20:40:31

 PID : 9785:ThreadID : 31 : MsgLink :82 meaningfulname

 :PICoPerformanceReadCANTREAD
Msg: Unable to read performance parms Priority: 2 Time: 02/01/01 20:40:31

PID: 9785:ThreadID: 31: MsgLink:0 meaningfulName: Notice

Msg: Opening a connection to DGS. Priority: 2 Time: 02/01/01 20:40:32

PID: 9785:ThreadID: 31: MsgLink:0 meaningfulName: Error

Msg: Connected to the socket server. Priority: 2 Time: 02/01/01 20:40:32

PID: 9785:ThreadID: 31: MsgLink:0 meaningfulName: Notice

Msg: Sending a Service Request to the socket server. Priority: 2 Time: 02/01/01 20:40:32

PID: 9785:ThreadID: 31: MsgLink:0 meaningfulName: Notice

Msg: ODL Tree was sent to the socket server. Priority: 2 Time: 02/01/01 20:40:32

PID: 9785:ThreadID: 31: MsgLink:0 meaningfulName: Notice

Msg: Received Service Request Results from the socket server. Priority: 2 Time: 02/01/01 20:41:31

PID: 9785:ThreadID: 31: MsgLink:0 meaningfulName: REQUESTSUBMISSIONFAILED

Msg: Request submission failed from PINonStandardOrder for request. 0300004317

Priority: 2 Time: 02/01/01 20:41:31

PID: 9785:ThreadID: 31: MsgLink:0 meaningfulName: CANTSUBMITL1REQUEST

Msg: Unable to submit L1B request to ECS-GDS for order 0300004046 Priority: 2 Time: 02/01/01 20:41:31

PID: 9785:ThreadID: 31: MsgLink:0 meaningfulName: CANTSUBMITL1

Msg: Unable to build PRs from order 0300004046 Priority: 2 Time: 02/01/01 20:41:31

PID: 9785:ThreadID: 31: MsgLink:0 meaningfulName: EcPoErrorA1

Msg: EcPoError::HandleRWE Error SybaseDatabaseError# RogueWaveDBToolsErrorCode =7; RogueWaveDBToolsErrorMessage

"[VENDORLIB] Vendor Library Error: ct_res_info(): user api layer: external error: This routine cannot be called when the command structure is idle."

SybaseErrorCode1 = 16843163; SybaseErrorMessage1 = ""

SybaseErrorCode2 = 1; SybaseErrorMessage2 = "ZZZZZ"

Priority: 0 Time: 02/01/01 20:41:31

...
• If the order is not reflected in the Order Tracking database, perform the procedure for Recovery from a Database Access Problem (Procedure 4.1) (previous section of this lesson).

• If the order is reflected in MSS order tracking, perform troubleshooting procedures related to production processing, using relevant steps in the procedure Recovering from PDPS Plan Creation/Activation and PGE Problems (Procedure 10.1) (previous section of this lesson).
This page intentionally left blank.
Trouble Ticket (TT)

We have seen that a system problem is typically documented using the Remedy COTS software product to prepare and update a problem report or trouble ticket (TT). Because there is a separate lesson that covers writing a trouble ticket, documenting changes, preparing and processing a trouble ticket through the failure resolution process, and making emergency fixes, these topics are not addressed in detail here. By now you are familiar with the requirements for using trouble tickets in ECS problem management. You know that troubleshooting and repair activities that involve changes to the system configuration require a configuration change request (CCR).

Using Problem Report Software

Although you are familiar with using Remedy to create and view trouble tickets, there are other functions associated with the maintenance and operation of the trouble ticket service that you may be required to manage as a System Administrator or other manager. Specifically, the following tasks associated with Remedy may be required of the TT administrator or others:

- adding users to Remedy.
- controlling and changing privileges in Remedy.
- modifying Remedy’s configuration.
- generating Trouble Ticket reports.

Let’s look at each of these functions.

Adding Users to Remedy

The TT Administrator uses the Remedy User schema to grant access to the Remedy tool. Users who leave the ECS program can be deleted. The Remedy Action Request System Administrator’s Guide, Chapter 2, “Defining Access Control,” summarizes license elements and access control. There are no license restrictions on the number of users who can be granted permission to create and query trouble tickets. The chapter also provides instructions on using the User schema (a "schema" represents a table in the Remedy database) to add registered users.

Figure 24 shows the screen layout for the Remedy User schema that is used for adding users. This screen is accessible to administrators with Administrator Group privileges by entering a Unix command beginning with the directory where Remedy is installed and invoking the user tool (e.g., on l0msh03, enter command /usr/ecs/model/COTS/remedy/bin/aruser &). This results in display of the user tool, from which you launch the User schema.
Figure 24. Remedy User Schema

Suppose, for example, that you wish to add Terry Bulticketer from the GSFC DAAC as a user with submit and query permissions. His e-mail address is tbultick@ecsgfcl.gsfc.nasa.gov, and his phone number is 301-614-4132. The data to be entered to add a user include:

- **Status** – is the user current or not?
- **License Type** – what type of license does the user have? The default, **Read**, includes submit and query permission.
- **Login Name** – the identifying name the user will enter to use the Remedy tool.
- **Password** – the identifying password the user will enter to use the Remedy tool.
- **Email Address** – the e-mail address of the user.
- **Group List** – specifies a user’s access control groups; must be left empty to grant only basic submit and query privileges.
- **Full Name** – the user’s full name.
- **Phone Number** – the user’s telephone number.
- **Home DAAC** – the user’s home DAAC.
• Default Notify Mechanism – the way in which the user will be notified of actions; if left blank, the method can be specified at the time an action is taken.

• Full Text License – the type of full text search license the user is to have; the default is None, which is what users will be assigned (full-text search is not part of ECS).

• Creator – the person who created the account.

The system generates the content of the other fields. Use the following procedure.

Adding a User to Remedy

1. Follow menu path File→Open Schema.
 • The Open Schema dialog box is displayed.

2. Double click on User from the list in the Open Schema dialog box, or click on User to highlight it and then click on the Apply button to load the schema.

3. Follow menu path File→Open Submit.
 • A Submit window is displayed.

4. If necessary, click on the toggle button in front of Current to indicate the user’s status (Current is the default).

5. Click on the toggle button in front of the desired license type (in this case, Read).

6. Enter the login name (in this case, tbultick) to be used to access Remedy into the Login Name field.

7. Enter the user’s e-mail address (in this case, tbultick@ecgsfc1.gsfc.nasa.gov) in the Email Address field.

8. Enter the user’s full name (Terry Bulticketer) in the Full Name field.

9. Enter the user’s telephone number (301-614-4132) in the Phone Number field.

10. Enter the user’s home DAAC (GSFC) in the Home DAAC field.

11. If you wish to select a default notification mechanism (e.g., e-mail), click on the toggle button in front of the desired selection (in this case, E-mail).

12. For Full Text License Type, ensure that the default, None, is selected; if necessary click on the toggle button in front of None.

13. Enter your name in the Creator field.

14. Click on the Apply button.
 • The information is saved to the database.

15. Click on the Dismiss button.
Changing Privileges in Remedy

Changing privileges in Remedy, or controlling privileges of those who have access to Remedy, is done by the TT Administrator. There are 18 Remedy privilege groups for ECS, and a change to the privileges of any group requires an approved Configuration Change Request (CCR). Access privileges provide permission to view a field, or to change it. The groups and their access privileges are defined in Document 611-CD-600-001 Mission Operation Procedures for the ECS Project, Section 8.2.6.

The Remedy Administrator’s Guide for OSF/Motif, Chapter 3, “Setting Up Users and Groups,” provides detailed information about access control and privileges. The administrator defines groups of users by using the User Tool to change the Group schema. A user’s privileges may be changed in two ways:

- changing the group to which the user is assigned.
- changing the access privileges of the group.

We have seen that the User schema is used to implement group assignment. To change the access privileges of a group, you use the Admin tool. It is accessed by entering a Unix command beginning with the directory where Remedy is installed and invoking the tool with an option (e.g., `<ar_install_dir>/bin/aradmin -s &`). Use of the option `-s` results in display of the Admin tool with the Schemas list displayed, as illustrated in Figure 25.

![Figure 25. Remedy Admin Tool, Schema List](image)
You set the schemas accessible to a group by selecting schema permissions in the **Group Access** window, illustrated in Figure 26.

![Figure 26. Remedy Admin, Group Access Window](image)

Use the following procedure to define group access for schemas (Remedy database tables)

Defining Group Access for Schemas

1. Follow menu path **Edit→Group Access**.
 - The **Group Access** window is displayed

2. Click on the **Group** list menu symbol icon (located at the right side of the **Group** field).
 - The **Groups** selection menu is displayed.
3 Select a group from the selection menu.

- The Group Access window indicates current permission settings for the selected group by means of radio buttons for each schema in the list, showing:
 - *visible* (i.e., available in the list of Schemas that can be opened by users in the selected group).
 - *hidden* (i.e., not available in the list of Schemas that can be opened by users in the selected group, except that users who have Customize permissions can make a hidden field visible).
 - *none* (i.e., not available).

4 For each item, set the schema permissions for the specified group, clicking on the appropriate radio button to select visible, hidden, or none as the permission for each schema.

5 Click on the Apply button.

- The option settings are saved.

6 Click on the Dismiss button.

- The window is closed.

The **Group Access – Schema Fields** window allows you to determine View or Change access to field data. It is accessible from the **Modify Schema** window, shown in Figure 27. The following procedure is applicable.

Defining Group Access for Schema Fields

1 From the Schema List in the Admin Tool, open a schema by double clicking on it.

- The **Modify Schema** window is displayed.

2 Follow menu path Attributes→Field Group Access.

- The **Group Access – Schema Fields** window is displayed.

3 Click on the Group list menu symbol icon.

- The **Groups** selection menu is displayed.
Select a group from the selection menu.

- The **Group Access – Schema Fields** window displays buttons that differ according to the group chosen.
- Groups with a group type of **View** only allow you to select View permissions for schema fields.
- Groups with a group type of **Change** allow you to select View and Change permissions.

Set the permissions for each field.

- Selecting **View** allows users to view the field data in the schema. Selecting **Change** allows users to view and change the field data in the schema.

Click on the **Apply** button.

- The permission settings are saved.

Click on the **Dismiss** button.

- The Group Access - Schema Fields window is closed.
Click on the **Apply** button in the Modify Schema window.
- The changes are now applied to the schema.

Click on the **Group** list menu symbol icon.
- The **Groups** selection menu is displayed.

Click on the **Dismiss** button.
- The Modify Schema window is closed.

Changing Remedy Configuration

The RelB-Trouble Tickets schema, or Trouble Ticket screen, contains several fields that provide picklists, or pull-down lists of valid entries from which a user can select in filling out a trouble ticket. During ECS deployment, it may be necessary or desirable to change the items in some of these picklists. Fields that provide picklists that may be modified are:

- User Contact Log (CL) Category.
- User Contact Log (CL) Contact Method.
- Configuration Item (CI).

Administrators with appropriate access can customize the pull-down pick-lists in a Remedy schema. This is accomplished through the Admin Tool by modifying the **RelB-CI**, **RelB-CL-Category**, and **RelB-CL-Contact Method** schemas, using the **Modify Menu** window illustrated in Figure 28. Procedure 8.2.7 in Document 611-CD-600-001 *Mission Operation Procedures for the ECS Project* refers to appropriate sections in the Remedy User’s Guide and the Remedy Administrator’s Guide. An approved Configuration Change Request (CCR) is required before implementing any of these changes.
Modifying Remedy’s Configuration uses the following procedure.

Modifying Remedy’s Configuration

1. Follow the **Category→Menus** menu path of the Admin Tool main window
 - The **Menu List** is displayed in the **Admin Tool**.
2. From the **Menu List** in the **Admin Tool**, open a menu by double-clicking on it.
 - Select from the list one of the following: **RelB-CI**, **RelB-CL-Category**, and **RelB-CL-Contact Method**.
 - The **Modify Menu** window is displayed.

![Figure 28. Remedy Modify Menu Window](image-url)
Select the level for which you want to add or modify menu choices by selecting the radio button next to the level’s label.

- To add or modify menu choices at the highest level, select Level 0. Select each successive menu level to modify the choices at that level.
- Menu choices added at levels below the top level (level 0) will be sub-items of the selected item at the next highest menu level.

Enter a label (the text that will show up in the menu).

- Enter a maximum of 30 characters.

If the text that you want to appear when the user selects this menu item differs from the label text, enter the text you want to appear in the Value field.

- Enter a maximum of 255 characters.
- If you do not enter different text, the label text (of the lowest menu level only) will be displayed when the user selects the item.

From the Add New Entries selection menu, select an option to determine whether the entry you are defining is added to the top of the current list of selections, the bottom of the list, or before or after the item that is currently selected.

Select Apply to add the item to the list, or select Modify to replace the currently selected item with the new label and text.

Repeat steps 3 through 7 for as many items as are needed at that menu level.

Generating Trouble Ticket Reports

A set of predefined reports is maintained in a public directory that should be downloaded to your personal configuration directory. Procedure 8.2.8 in Document 611-CD-600-001 Mission Operation Procedures for the ECS Project refers to appropriate instructions in the Remedy User’s Guide for copying files to share macros and custom reports. These reports are trouble ticket administrative reports generated for local and system-wide usage. There are several types of predefined reports, including:

- Assigned-to Report – provides a report of the number of Tickets assigned to technicians.
- Average Time to Close TTs – provides a report of the average time to close trouble tickets.
- Hardware Resource Report – provides a report sorted and grouped by Hardware Resources and Closing Codes.
• Number of Tickets by Status – provides the number of Trouble Tickets grouped by Status.

• Number of Tickets by Priority – provides the number of Trouble Tickets grouped by assigned priority.

• Review Board Report – provides a report of the details of TTs for the TT Review Board.

• SMC TT Report – provides a report to be sent to the SMC.

• Software Resource Report – provides a report sorted by Software Resources and their Closing Codes.

• Submitter Report – indicates by submitter the number and type of trouble tickets in the system.

• Ticket Status Report – provides a report sorted and grouped by Ticket Status.

• Ticket Status by Assigned-to – provides a report sorted and grouped by the last person assigned to a Trouble Ticket.

Procedure 8.2.8 in Document 611-CD-600-001 *Mission Operation Procedures for the ECS Project* refers to the Remedy User’s Guide, Chapter 5, “Reports” for instructions on working with reports. Most of the time, you will probably select a report from the list, using the Report window illustrated in Figure 29. If you choose to create your own custom report, these instructions provide detailed guidance on selecting report content, setting report layout, specifying the sorting and grouping of report content, generating statistics, setting report options, saving, using, and modifying custom reports, and generating report output.
Suppose you want to print a report on one of the provided custom reports, Ticket Status Report. Use the following procedure to create and print the report.

Using a Custom Report

1. Select the schema you want to work with by selecting the schema name in the Available Schemas list and then selecting the **Apply** button, or by double-clicking on the schema name (in this case, **RelB-Trouble Tickets**).

2. Define the query criteria to be applied to the search by filling in fields in the **Query** window or by using the query bar. (In this case, request all trouble tickets by clearing all fields and leaving the **Query** window blank.)

 - The query will return all RelB-Trouble Tickets.
3. From the Trouble Ticket main window in the User Tool, follow menu path **Query→Report**.
 - The **Report** dialog box appears.

4. Select the report you want from the **Custom Report Name** list by clicking on the report name (in this case, **Ticket Status Report**).
 - The **Custom Report Name** list contains all custom report files that are in all directories defined in your Path preference.
 - The custom report **Ticket Status Report** is loaded into the Report window with the report prototype visible. The custom report layout and page setup are applied to the set of trouble tickets defined in the query criteria.

5. Click on the **Report to Printer** button in the **Report** window.
 - If you have specified the print setup for the report, the report is printed. If you have not yet specified the print setup, the **Report Print - <schema>** dialog box appears.
 a) Specify whether you want to use the default printer or a specific printer by selecting from the list.
 b) Select the desired **Number of Copies**.
 c) Select the **Print** button to send your report to the printer.

Performing Operational Work-around

An operational work-around is a temporary modification to operations and user procedures that is entailed by resolution of a trouble ticket. It is characterized by several factors that may affect the way in which procedures are accomplished to conduct operations during the period of temporary inability to conduct operations using normal procedures:

- managed by the ECS Operations Coordinator at each center.
- master list of work-arounds and associated trouble tickets and configuration change requests (CCRs) kept in either hard-copy or soft-copy form for the operations staff.
- hard-copy and soft-copy procedure documents are “red-lined” for use by the operations staff.
- work-arounds affecting multiple sites are coordinated by the ECS organizations and monitored by ECS M&O Office staff.

The work-around is removed when the CCR that corrects the original problem is installed into the operational baseline.
This page intentionally left blank.
Practical Exercise

Introduction
This exercise is designed to practice key elements of the System Troubleshooting procedures. Perform the tasks identified in the exercise.

Equipment and Materials

Perform Activities Related to System Monitoring and Troubleshooting
1. Use ECS tools to perform system monitoring activities, including Whazzup?? and ECS Monitor for checking the health and status of the network and the web browser to access the EBnet Web Page.
2. Use Tivoli to check for event notifications.
3. Use Whazzup?? to view the status of servers in a subsystem. Use Whazzup?? to view the status of all servers in the OPS mode; use Whazzup?? to identify what servers are down in all modes.
4. Use the cdsbrowser to check DCE entries for servers.
5. Locate and review Debug.log and .ALOG files for SDSRV, ADSRV, SBSRV, DDICT, V0GTWY, INGST, Archive Server, STMGT, and PLANG.
6. Check mount points for PDPS on hosts for SDSRV and Archive Server.
7. Launch the SDSRV GUI and review the ESDTs listed on the Data Types tab.
8. Check the SDSRV cfg directory for *.evt files.
9. Launch the Data Dictionary Maintenance Tool and update the mapping for all collections.
10. List the contents of the Archive directory.
11. On host x0drg01, check the drp-mounted staging disk.
12. Add a user to Remedy. Then change that user’s privileges in two ways: first, change the group to which the user is assigned; then, change the access privileges of the group to which you last assign the user.
13. Follow Procedure 8.2.7 in Document 611-CD-600-001 Mission Operation Procedures for the ECS Project and use the Remedy Admin Tool to add a key word to the User Contact Log (CL) Contact Method pull-down pick-list in the RelB-Trouble Ticket schema.
This page intentionally left blank.
Slide Presentation

Slide Presentation Description
The following slide presentation represents the slides used by the instructor during the conduct of this lesson.
This page intentionally left blank.