This page intentionally left blank.
Preface

This document is a contract deliverable with an approval code of 3. As such, it does not require formal Government approval. This document is delivered for information only, but is subject to approval as meeting contractual requirements.

Any questions should be addressed to:

Data Management Office
The ECS Project Office
Raytheon Company
1616 McCormick Dr.
Upper Marlboro, MD 20774-5301
This page intentionally left blank.
Abstract

This Training Course Outline lists a series of sub-tasks that will be used to define a comprehensive course of instruction for ECS. The training addressed in this outline is related to the specific system design, components and operation of the current baseline of the system and does not include training on management and personal development.

Keywords: training, instructional design, courseware
This page intentionally left blank.
Change Information Page

List of Effective Pages

<table>
<thead>
<tr>
<th>Page Number</th>
<th>Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Revised</td>
</tr>
<tr>
<td>iii through x</td>
<td>Revised</td>
</tr>
<tr>
<td>1 through 40</td>
<td>Revised</td>
</tr>
</tbody>
</table>

Document History

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Status/Issue</th>
<th>Publication Date</th>
<th>CCR Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>625-CD-601-001</td>
<td>Original</td>
<td>March 2001</td>
<td></td>
</tr>
<tr>
<td>625-CD-601-002</td>
<td>Revised</td>
<td>September 2002</td>
<td></td>
</tr>
<tr>
<td>625-CD-601-003</td>
<td>Revised</td>
<td>July 2003</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Preface

Abstract

Introduction
Identification ... 1
Scope .. 1
Purpose .. 1
Status and Schedule ... 1
Organization ... 1

Related Documentation
Parent Document .. 3
Applicable Documents .. 3
Information Documents ... 3
 Information Documents Referenced 3
 Information Documents Not Referenced 3

Course Outline
Volume 2: Not Used .. 7
Volume 2A: Introduction and Detailed System Overview; Science Data Processing
 Internal Training ... 7
Volume 3: Problem Management ... 8
Volume 4: System Administration .. 9
Volume 5: Network Administration ... 11
Volume 6: Production Planning and Processing ... 11
Volume 7: Resource Planning .. 14
Volume 8: Ingest .. 16
Volume 9: Data Distribution .. 17
Volume 10: Archive ... 18
Volume 11: Database Administration .. 19
Volume 12: Configuration Management .. 23
Volume 13: User Services .. 24
Volume 14: Not Used .. 25
Volume 15: Not Used .. 27
Volume 16: Science Software Integration & Test ... 27
Volume 17: System Troubleshooting .. 32
Volume 18: Advanced Production Planning and Processing .. 32

Training Schedule

Course Duration .. 37

Abbreviations and Acronyms
Introduction

Identification
Training Material Volume 1 is part of Contract Data Requirements List (CDRL) Item 129, whose requirements are specified in Data Item Description (DID) 625/OP3 and is a required deliverable under the Earth Observing System Data and Information System (EOSDIS) Core System (ECS), Contract (NAS5-60000).

Scope
Training Material Volume 1 (Course Outline) provides an overview of available courses developed to support operator training for ECS. Each lesson contains a list of tasks grouped together by subject, required to operate ECS. These tasks serve as the foundation of the Operator Training course and define expectations for each lesson.

Purpose
The course outline highlights the learning path for curriculum development as well as course conduct. Lesson objectives are formed using the tasks listed in the course outline. These objectives will serve as the basis for Student Guide and slide presentation material development and course conduct. Once the course outline is completed, curriculum development can be completed and subsequent training courses conducted.

Status and Schedule
This lesson module provides detailed information about training for the current baseline of the system. Revisions are submitted as needed.

Organization
This document is organized as follows:

- Introduction: The Introduction presents the document identification, scope, purpose, and organization.
- Related Documentation: Related Documentation identifies parent, applicable and information documents associated with this document.
- Course Outline: This section identifies and defines the lesson topics, duration and scope for the course.
This page intentionally left blank.
Related Documentation

Parent Document
The parent document is the document from which this ECS Training Material’s scope and content are derived.

423-41-01 Goddard Space Flight Center, EOSDIS Core System (ECS) Statement of Work

Applicable Documents
The following documents are referenced within this ECS Training Material, or are directly applicable, or contain policies or other directive matters that are binding upon the content of this document:

420-05-03 Goddard Space Flight Center, Earth Observing System (EOS) Performance Assurance Requirements for the EOSDIS Core System (ECS)

423-41-02 Goddard Space Flight Center, Functional and Performance Requirements Specification for the Earth Observing System Data and Information System (EOSDIS) Core System (ECS)

Information Documents

Information Documents Referenced
The following documents are referenced herein and amplify or clarify the information presented in this document. These documents are not binding on the content of the ECS Training Material.

609-CD-610 Release 6B Operations Tools Manual for the ECS Project
611-CD-610 Mission Operation Procedures for the ECS Project

Information Documents Not Referenced
The following documents, although not referenced herein and/or not directly applicable, do amplify or clarify the information presented in this document. These documents are not binding on the content of the ECS Training Material.

300-TP-002 Database Descriptions for Synergy III
305-CD-610 Release 6B Segment/Design Specification for the ECS Project
311-CD-620 Release 6B Data Management Subsystem (DMS) Database Design and Database Schema Specifications for the ECS Project
<table>
<thead>
<tr>
<th>Document ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>311-CD-621</td>
<td>Release 6B INGEST (INS) Database Design and Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-622</td>
<td>Release 6B Interoperability Subsystem (IOS) Database Design and Database Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-623</td>
<td>Release 6B Planning and Data Processing Subsystem Database Design and Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-624</td>
<td>Release 6B Science Data Server Database Design and Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-625</td>
<td>Release 6B Storage Management and Data Distribution Subsystems Database Design and Database Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-626</td>
<td>Release 6B Subscription Server Database Design and Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-627</td>
<td>Release 6B Systems Management Subsystem Database Design and Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-628</td>
<td>Release 6B Registry Database Design and Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-630</td>
<td>Release 6B Product Distribution Subsystem (PDS) Database Design and Database Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>311-CD-631</td>
<td>Release 6B NameServer Database Design and Schema Specifications for the ECS Project</td>
</tr>
<tr>
<td>313-CD-610</td>
<td>Release 6B ECS Internal Interface Control Document for the ECS Project</td>
</tr>
<tr>
<td>334-CD-610</td>
<td>6B Science System Release Plan for the ECS Project</td>
</tr>
<tr>
<td>601-CD-001</td>
<td>Maintenance and Operations Management Plan for the ECS Project</td>
</tr>
<tr>
<td>603-CD-003</td>
<td>ECS Operational Readiness Plan for Release 2.0</td>
</tr>
<tr>
<td>604-CD-001</td>
<td>Operations Concept for the ECS Project: Part 1-- ECS Overview</td>
</tr>
<tr>
<td>605-CD-002</td>
<td>Release B SDPS/CSMS Operations Scenarios for the ECS Project</td>
</tr>
<tr>
<td>607-CD-001</td>
<td>ECS Maintenance and Operations Position Descriptions</td>
</tr>
<tr>
<td>152-TP-001</td>
<td>ACRONYMS for the EOSDIS Core System (ECS) Project</td>
</tr>
<tr>
<td>152-TP-003</td>
<td>Glossary of Terms for the EOSDIS Core System (ECS) Project</td>
</tr>
<tr>
<td>184-TP-001</td>
<td>Terra Spacecraft Ephemeris and Attitude Data Preprocessing</td>
</tr>
<tr>
<td>211-TP-007</td>
<td>Transition Plan 6A.04 to 6A.XX (6A.05) for the ECS Project</td>
</tr>
<tr>
<td>220-TP-001</td>
<td>Operations Scenarios - ECS Release B.0 Impacts</td>
</tr>
</tbody>
</table>
910-TDA-022 Custom Code Configuration Parameters for ECS

500-1002 Goddard Space Flight Center, Network and Mission Operations Support (NMOS) Certification Program, 1/90

Course Outline

The Operator Training Course is grouped into modular lessons based on common task groupings and operational requirements. Each lesson outline will contain a lesson description, a list of recommended class attendees (by position), Commercial Off-the-Shelf (COTS) hardware (HW) and software (SW) requirements, duration (lab and lecture) and a list of sub-tasks required to satisfy the overall lesson objective using tools described in Document 609-CD-610 and procedures described in Document 611-CD-610. The course consists of the following lessons:

Volume 2: Not Used

Volume 2A: Introduction and Detailed System Overview; Science Data Processing Internal Training

Volume 2A provides an introduction and detailed system overview of the Earth Observing System Data and Information System (EOSDIS) Core System (ECS) Release 6B design and internal interfaces. It summarizes materials presented in a dynamic, animated visual presentation, and includes a copy of the visuals. The instruction briefly addresses the program context of ECS within NASA’s Earth Science Enterprise, introduces the systems that make up ECS at a site, describes each subsystem and its Computer Software Configuration Items (CSCIs), including system elements and interfaces, and then describes system functioning in the context of operational scenarios. This lesson is designed to provide the operations staff with sufficient knowledge and information to satisfy all lesson objectives.

Attendees: All Distributed Active Archive Center (DAAC) ECS Operator and Support personnel, all System Monitoring and Coordination Center (SMC) ECS Operator and Support personnel, all Sustaining Engineer Organization (SEO) & Integrated Logistic Support (ILS) personnel, all Investigator support personnel and all Independent Verification and Validation (IV & V) contractor personnel.

Prerequisites: None.

Duration: 13 Hours Lecture

Sub-tasks:

1. Program Overview.
 a. ECS Mission.

2. Subsystem and Functions.
 a. Data Server.
 b. Product Distribution System.
 c. Ingest.
d. Spatial Subscription Server.
e. Data Pool.
f. Client.
g. Data Management.
h. Order Manager.
i. Planning.
j. Data Processing.
k. System Management Support.
l. Communication.

3. ECS Operational Functioning.
a. ASTER DAR Support.
b. ASTER Data Production and Chaining.
c. ASTER Expedited Data.
d. User Registration.
e. Landsat Processing System Data Insertion.
f. Landsat Data Access.

Practical Exercises: NA

Volume 3: Problem Management

Volume 3 provides a detailed description of the different tasks that are required in order to report a problem. The lesson includes a detailed review of the trouble ticket process.

Attendees: All DAAC ECS Operator and Support personnel, all SMC ECS Operator and Support personnel, all SEO & ILS personnel, all Investigator support personnel and all IV & V contractor personnel.

Prerequisites: Introduction and Detailed System Overview; Science Data Processing Internal Training lesson.

Duration: 2 Hours (1 Lecture, 1 Lab)

Sub-tasks:
1. Trouble Ticket.
a. Introduction.
b. Writing a Trouble Ticket (TT).
c. Documenting changes.
d. Problem resolution.
e. Preparing and processing a TT through the problem resolution process.
f. Working with the ECS System Operational Support (SOS) Help Desk.
g. Making emergency fixes.

Practical Exercises: The student will perform the following hands-on training exercises:

1. Students will write a Trouble Ticket (TT).
2. Students will document TT changes.
3. Students will evaluate trouble tickets and critique the description and assignment of severity.

Volume 4: System Administration

Volume 4 provides a detailed description of the different tasks that are required in order to perform system administration of ECS. The lesson includes a detailed review of the initial program loads for all system upgrades, mode management, performing COTS administration, performing system backups and restores, adding/modifying user accounts, assigning access privileges, server startup/shutdown and performing general security features.

Attendees: SMC Representative, DAAC System Administrators, Sustaining Engineering personnel, DAAC Computer Operator and DAAC System Engineer.

Prerequisites: None.

Duration: 7 Hours (4 Lecture, 3 Lab)

Sub-tasks:

1. Secure Shell (SSH)
 a. Secure Access to ECS DAACs
 b. Setting Up SSH
 c. Remote SSH Access
 d. Changing Your Passphrase

2. System Startup and Shutdown
 a. Cold Startup By Subsystem
 b. Warm Startup
 c. Normal Shutdown
 d. Emergency Shutdown
 e. System Shutdown by Server
3. Checking the Health and Status of the System
 a. WhatsUp Gold
 b. Whazzup???
 c. ECS Assistant and ECS Monitor

4. Tape Operations
 a. Networker Administrative Screen
 b. Labeling Tapes
 c. Indexing Tapes

5. System Backups and Restores
 a. Incremental Backup
 b. Full System Backup
 c. Single or Multiple File Restore
 d. Complete System Restore

6. User Administration
 a. Screening Personnel
 b. Adding a New User
 c. Deleting a User
 d. Changing a User’s Account Configuration
 e. Changing User Access Privileges
 f. Changing a User Password
 g. Checking a File/Directory Access Privilege Status
 h. Changing a File/Directory Access Privilege
 i. Moving a User’s Home Directory

7. Commercial Off-The-Shelf (COTS) Administration
 a. Installation
 b. Log Files
 c. COTS Configuration

8. Security
 a. Generating Security Reports
 b. Reviewing User Activity Data
 c. User Audit Trail Information
Practical Exercises. The student will perform the following hands-on training exercises:

1. System Startup and Shutdown
2. Tape Operations, System Backup and Restore
3. User Administration
4. System Maintenance

Volume 5: Network Administration

Volume 5 provides a detailed description of the different tasks that are needed in order to monitor the performance of the network. The Network Administration lesson includes a review of the network configuration and topology, network performance monitoring, inter-DAAC network issues and network fault analysis.

Attendees: SMC Representative, Sustaining Engineering personnel, DAAC System Administrator, DAAC Resource Manager, DAAC System Engineer.

Prerequisites: Introduction and Detailed System Overview; Science Data Processing Internal Training and Problem Reporting lessons.

Duration: 6 Hours (3 Lecture, 3 Lab)

Sub-tasks:

1. Network Topology
2. Network Hardware Components.
3. ECS Domain Name Services (DNS) Structures
4. Network Security
 a. ECS Network Connectivity
 b. Specific Security Limitations
5. Route Add scripts

Practical Exercises. The student will perform the following hands-on training exercises:

1. Describe Network Topology
2. Perform Network Monitoring and Management Activities.

Volume 6: Production Planning and Processing

Volume 6 provides a detailed description of the process for setting processing priorities, creating, modifying, and implementing a production plan for a site, monitoring production, and troubleshooting production planning and processing.
Attendees: DAAC Production Monitor, DAAC Production Planner, DAAC Resource Planner, DAAC System Engineer, DAAC System Test Engineer, DAAC SW Maintenance Engineer, DAAC Science Coordinator, DAAC Science Software I&T Support Engineer, Sustaining Engineering personnel and DAAC User Services Representative.

Prerequisites: Introduction and Detailed System Overview; Science Data Processing Internal Training and Problem Reporting lessons.

Duration: 20 Hours (10 Lecture, 10 Lab)

Sub-tasks:
1. Production Planning and Processing context.
2. Production requests.
3. Logging in to ECS hosts.
4. Launching the Production Request Editor.
5. Creating/updating/deleting a production request.
6. Reviewing/deleting data processing requests.
7. Launching planning workbench related GUIs.
9. Cleaning the PDPS database and science processing disks.
10. Troubleshooting production planning problems.
11. Production processing.
12. Launching the AutoSys GUI control panel.
13. Configuring AutoSys screens/displays.
14. Reviewing hardware status.
15. Monitoring/controlling job processing.
16. Tuning system parameters.
17. Troubleshooting processing problems.
18. Launching the QA Monitor.
20. Regenerating granules.
Practical Exercises: The student will perform the following hands-on training exercises:

1. Students will log in to ECS Hosts.
2. Students will launch the Production Request Editor.
3. Students will create a new production request using the Production Request Editor GUI.
4. Students will create new production requests using the Production Request Generator (command-line interface).
5. Students will edit/modify a production request.
6. Students will delete a production request.
7. Students will review data processing requests.
8. Students will delete a data processing request.
9. Students will launch the Production Strategies GUI.
10. Students will launch Planning Workbench-related GUIs.
11. Students will define a production strategy.
12. Students will create a new production plan.
13. Students will review a plan timeline.
14. Students will clean the PDPS database and science processing disks.
15. Students will troubleshoot production planning problems.
16. Students will launch the AutoSys GUI Control Panel.
17. Students will configure AutoSys runtime options.
18. Students will review hardware status (including changing hardware status views).
19. Students will monitor/control job processing.
20. Students will respond to alarms (including selecting alarms to be displayed).
21. Students will specify job selection criteria and review job activities.
22. Students will determine the ownership of an AutoSys job.
23. Students will modify job status (including sending an event to a job) using AutoSys.
24. Students will review activity reports and job dependency reports.
25. Students will define and run monitors/browsers.
26. Students will troubleshoot processing problems.
27. Students will launch the QA Monitor GUI.
28. Students will update Quality Assurance (QA) metadata.
29. Students will regenerate granules in response to loss of files from the archive.
Volume 7: Resource Planning

Volume 7 provides a detailed description of how to define production resources to the planning subsystem, create resource reservation requests, integrate all resource reservation requests into a resource plan for a site, review the resource timeline, and troubleshoot resource planning problems.

Attendees: SMC Representative, DAAC Production Monitor, DAAC Resource Manager, DAAC Production Planner, DAAC Resource Planner, DAAC System Engineer, DAAC System Test Engineer, DAAC SW Maintenance Engineer, DAAC Science Coordinator, DAAC Science Software I&T Support Engineer, DAAC User Services Representative and Sustaining Engineering personnel.

Prerequisites: Introduction and Detailed System Overview; Science Data Processing Internal Training and Problem Reporting lessons.

Duration: 4 Hours (2 Lecture, 2 Lab)

Sub-tasks:
1. Resource planning concepts.
 a. ECS context.
 b. Planning subsystem.
 c. Data processing subsystem.
 d. Resource definition and resource scheduling processes.
2. Logging in to ECS hosts.
3. Launching and shutting down resource planning applications.
 a. Launching resource planning applications.
 b. Shutting down resource planning applications.
4. Defining resources.
 a. Adding or modifying resources.
 b. Deleting a resource.
5. Creating a resource reservation request.
6. Editing a resource reservation request.
 a. Editing a resource reservation request.
 b. Validating or rejecting a resource reservation request.
 c. Approving a resource reservation request.
 d. Committing resource reservation requests.
e. Deleting a resource reservation request.
7. Reviewing a resource timeline.
8. Tuning system parameters.
 a. Tuning system configuration parameters.
 b. Monitoring the load on processing resources.
 c. Strategies for tuning.
 a. Trouble symptoms.
 b. Fault recovery.
 c. Troubleshooting a resource planning failure.
 d. Troubleshooting procedures.

Practical Exercises: The student will perform the following hands-on training exercises:
1. Students will log in to ECS hosts.
2. Students will launch resource planning applications.
3. Students will shut down resource planning applications.
4. Students will determine actual processing resources to be added to the resource planning list.
5. Students will add resources to the resource planning list.
6. Students will modify resources on the resource planning list.
7. Students will delete resources from the resource planning list.
8. Students will create a resource reservation request.
9. Students will edit/modify a resource reservation request.
10. Students will validate or reject a resource reservation request.
11. Students will approve resource reservation requests.
12. Students will commit resource reservation requests.
13. Students will delete a resource reservation request.
14. Students will review a resource timeline.
15. Students will troubleshoot resource planning problems.
Volume 8: Ingest

Volume 8 provides a detailed description of the process for receiving and archiving data from external data providers. It includes methods for monitoring the performance of ingest requests, ingesting from hard media, modifying ingest parameters, and troubleshooting ingest problems.

Attendees: DAAC Archive Manager, DAAC Ingest Distribution/Technician, DAAC System Engineer, DAAC System Test Engineer, DAAC User Services Representative and Sustaining Engineering personnel.

Prerequisites: Introduction and Detailed System Overview; Science Data Processing Internal Training and Problem Reporting lessons.

Duration: 8 Hours (4 Lecture, 4 Lab)

Sub-tasks:
1. Ingest concepts.
2. Logging in to ECS Hosts.
3. Launching the ECS Ingest and Storage Management Control GUIs.
4. Handling cross-DAAC or cross-mode ingest.
5. Monitoring ingest status.
7. Performing hard (physical) media ingest.
8. Modifying ingest tunable parameters and performing file transfers.

Practical Exercises: The student will perform the following hands-on training exercises:
1. Students will log in to ECS hosts.
2. Students will launch the ECS Ingest GUI.
3. Students will launch the Storage Management Control GUI.
4. Students will handle cross-DAAC or cross-mode ingest.
5. Students will monitor/control ingest requests.
6. Students will view the ingest history log.
7. Students will verify the archiving of ingested data.
8. Students will clean the polling directories.
9. Students will perform hard media ingest.
10. Students will modify external data provider information.
11. Students will modify system parameters using the ECS Ingest GUI.
12. Students will transfer files using the ECS Ingest GUI.
13. Students will modify system parameters using isql.
14. Students will troubleshoot ingest problems.

Volume 9: Data Distribution

Volume 9 provides information to support the operators in distributing ECS science data using various media. This lesson describes the process for distribution of products to the user community and data processing. Operation of the Order Manager (OM) GUI is included, as is operation of the Product Distribution System (PDS).

Attendees: DAAC Archive Manager, DAAC Ingest/Distribution Technician, DAAC System Engineer, DAAC System Test Engineer, DAAC SW Maintenance Engineer, DAAC User Services Representative and Sustaining Engineering personnel.

Prerequisites: Introduction and Detailed System Overview; Science Data Processing Internal Training and Problem Reporting lessons.

Duration: 20 Hours (10 Lecture, 10 Lab)

Sub-tasks:
1. Distribution concepts.
2. Logging in to ECS hosts.
3. Launching the Data Distribution Operator and Storage Management Control GUIs.
5. Modifying preambles.
6. Configuring storage management polling and deleting files from cache.
7. Monitoring storage management server operations.
8. Launching the Order Manager GUI.
9. Performing order manager operations.
10. Tuning data server subsystem parameters.
11. Troubleshooting DDIST and Order Manager GUI problems.
12. PDS operations.
13. Starting up PDS.
14. Shutting down PDS.
15. Monitoring/controlling product processing using PDS.
16. Monitoring/controlling order processing using the PDSIS OI.
17. Using the PDS and PDSIS cleanup managers.
18. Troubleshooting PDS Problems.

Practical Exercises: The student will perform the following hands-on training exercises:
1. Students will log in to ECS hosts.
2. Students will launch the data distribution operator and storage management control GUIs.
3. Students will monitor/control data distribution requests.
4. Students will modify preambles.
5. Students will configure storage management polling.
6. Students will delete files from cache.
7. Students will view storage management event log information.
8. Students will monitor storage management server operations.
9. Students will launch the OM GUI.
10. Students will respond to an open intervention.
11. Students will resubmit completed distribution requests.
12. Students will view a completed intervention.
13. Students will check OM queue status.
14. Students will monitor order manager server statistics.
15. Students will view the OM GUI log.
16. Students will modify OM configuration parameters.
17. Students will modify system parameters.
18. Students will troubleshoot data distribution (DDIST) problems.
19. Students will troubleshoot OM GUI problems.
20. Students will start up PDS.
21. Students will shut down PDS.
22. Students will monitor/control product processing using PDS.
23. Students will monitor/control order processing using the PDSIS OI.
24. Students will troubleshoot PDS problems.

Volume 10: Archive

Volume 10 reviews the process for archiving data. This lesson includes a description of processing for monitoring the ingest/archival/distribution performance, maintaining configuration of peripherals and data servers, documenting archive errors, maintaining archive
processing queue (both storing and retrieval), managing archive content and capacity, submitting new data archive requests to the Science Coordinator and providing archive status.

Attendees: DAAC Archive Manager, DAAC Ingest Distribution Technician, DAAC System Engineer, DAAC System Test Engineer, DAAC SW Maintenance Engineer, DAAC User Services Representative and Sustaining Engineering personnel.

Prerequisites: Introduction and Detailed System Overview; Science Data Processing Internal Training and Problem Reporting lessons.

Duration: 8 Hours (4 Lecture, 4 Lab)

Sub-tasks:

1. Overview of Archive Processing.
 a. Hardware.
 b. Software.
 c. Data Sources and Uses.

2. Starting and shutting down AMASS.
 a. Starting the AMASS Tape Archive System.
 b. Shutting Down AMASS Tape Archive System.
 c. Rebooting AMASS.
 d. Entering the Archive after AMASS is Started.

3. Archive Storage Structures.
 a. Storage element relationships.
 b. Launching DSS GUIs.
 c. Archive resource management.

4. Insert data into the archive.
 a. Archive insert scenario.

5. Monitor archive requests.
 a. Request Status window.
 b. Distrib’n Requests window.

6. Retrieving data from the archive.

7. Deleting Granules.
 a. Deletion capability and features.
 b. Deletion sequence.
c. Undelete Capability

8. Loading archive media.
 a. Automatically loading archive media.
 b. Manually loading archive media.
 c. Formatting a volume.
 d. Remove media.

 a. Creating offsite backups.
 b. Creating a backup for AMASS.
 c. Replacing the AMASS database backup volume.
 d. Create replacement backups manually from existing archives.

10. Restore Archive Data.
 a. Use of backup data for recovery.

11. AMASS Graphical User Interface.

12. Archive Monitoring and Troubleshooting.
 b. Recovery from failure to store or retrieve data.
 c. Checksum de-activation.

 b. Using the Data Pool Maintenance GUI.
 c. Troubleshooting DPM GUI Problems.
 d. Using the Spatial Subscription Server (NSBRV) GUI.
 e. Working with Data Pool scripts.
 f. Working with the DataPool Order Status & Control GUI.

Practical Exercises: The student perform the following hands-on training exercises:
1. Students will start and shut down AMASS.
2. Students will use the Data Distribution GUI to examine the list of distribution requests.
3. Students will monitor an archive request.
4. Students will monitor retrieval of data from the archive.
5. Students will use the Granule Delete capability to delete granules from the archive and inventory.

6. Students will load archive media.

7. Students will use AMASS commands and utilities to monitor archive and AMASS activities and status.

8. Students will run the amass_log script to display AMASS messages.

9. Students will use the Data Pool Maintenance GUI to monitor and control Data Pool insert actions.

10. Students will use the NSBRV GUI to display subscriptions in the NSBRV database, view acquire and notification actions in the Action Queue, manage bundling orders, and display statistics on NSBRV processing of events and actions.

11. Students will run the Update Granule Utility to extend the period of retention for a single granule in the Data Pool.

11. Students will invoke the Data Pool Cleanup Utility from the command line.

14. Students will use the Batch Insert Utility to insert granules from the archive into the Data Pool.

15. Students will launch the DataPool Order Status & Control GUI and review Data Pool orders and their order items.

Volume 11: Database Administration

Volume 11 provides a functional overview of the ECS databases and detailed descriptions of the tasks required to maintain the database system including the operations interface to perform database administration, product installation and disk storage management, backup and recovery, managing SQL server login accounts and privileges, database tuning and performance monitoring, database security and auditing, database integrity monitoring, and database troubleshooting.

Attendees: DAAC Database Administrator, DAAC Science Data Specialist, DAAC System Engineer, DAAC System Test Engineer, DAAC SW Maintenance Engineer, DAAC User Services Representative and Sustaining Engineering personnel.

Prerequisites: Introduction and Detailed System Overview; Science Data Processing Internal Training and Problem Reporting lessons.

Duration: 7 Hours (5 Lecture, 2 Lab)

Sub-tasks:
1. ECS Overview.
 a. The EOSDIS Core System (ECS).
 b. ECS Database Management
2. ECS Database Administrator (DBA) Responsibilities
3. Starting and Stopping Servers
4. Creating Database Devices and Logical Volumes
 a. Database Devices
 b. Logical Volumes
5. Installing Databases and Patches
 a. Custom Databases
 b. COTS Databases
6. Configuring Databases
 a. Configuration Parameters
 b. Configuration Parameters and the Configuration Registry
7. Working with Indexes, Segments, and Caches
 a. Indexes
 b. Segments
 c. Caches
8. Backing Up and Recovering Data
 a. Backups
 b. Database Recovery
9. Establishing Database Security
 a. Discretionary Access Controls
 b. Identification and Authentication Controls
 c. Auditing
 d. ECS Security Directive
10. Copying, Replicating, and Extracting Data
 a. Copying Databases
 b. Individual Databases
 c. Bulk Copying
11. Replication System Administration
 a. Replication System Administrator Tasks
 b. DAAC DBA Replication Roles and Tasks
 c. Database Replication

12. Performance Monitoring, Tuning, and Problem Reporting
 a. Database Monitoring
 b. Database Tuning

13. Ensuring Database Quality

14. Sybase Troubleshooting
 a. Space Usage
 b. Deadlocks

15. Oracle Procedures

Practical Exercises. The student will perform the following hands-on training exercises:

1. Start servers
2. Create new database devices
3. Configure databases using the Configuration Registry GUI
5. Perform a database backup
6. Perform database recovery
7. Troubleshoot chronic deadlocks on a database host.

Volume 12: Configuration Management

Volume 12 provides a detailed description of the different tasks that need to be accomplished in order to: record and manage proposed and approved Configuration Change Requests (CCR); record, report, manage and distribute changes to custom ECS software, science software and database control files; record, report and maintain system-level changes to the as-built operational baseline; generate the Configuration Status Accounting Records (CSAR); manage, enter, maintain and update documents related to the operational baseline.

Attendees: SMC Representative, DAAC Configuration Management Administrator, DAAC SW Maintenance Engineer and Sustaining Engineering personnel.

Prerequisites: Introduction and Detailed System Overview; Science Data Processing Internal Training and Problem Reporting lessons.
Duration: 6 Hours (3 Lecture, 3 Lab)

Sub-tasks:
1. M&O role in ECS CM activities.
2. Configuration Control Board (CCB) process.
3. Configuration Change Requests (CCR) process.
4. Impact analysis.
5. Software baselines and changes.
6. Hardware baselines and changes.
 a. Software transfer and installation.
 b. Configuration parameters and the Configuration Registry.
7. Changes to the baseline.
 a. Physical asset management and monitoring.
 b. Baseline management.
 c. Inventory Logistic Maintenance (ILM) management.

Practical Exercises: The student will perform the following hands-on training exercises:
1. Students will generate a CCR for hardware upgrade.
2. Students will generate a CCR for a software change.
3. Students will generate a CCR to document hardware and software changes.
4. Students will prepare distribution lists for review of the proposed changes.
5. Students will perform updates to the baseline manager for software change.
6. Students will use the Configuration Registry GUI to review configuration parameters.
7. Students will perform updates to the inventory/logistical management system for a hardware change.

Volume 13: User Services

Volume 13 provides a detailed description of the different tasks that relate to providing support to the user community. The type of services reviewed in this lesson include user account management, processing an order, canceling an order, managing subscriptions and Data Pool, cross-DAAC referral process, and cross-DAAC order tracking.

Attendees: DAAC User Services Representative, DAAC System Engineer, DAAC System Test Engineer, DAAC SW Maintenance Engineer and Sustaining Engineering personnel.

Prerequisites: Introduction and Detailed System Overview; Science Data Processing Internal Training and Problem Reporting lessons.

Duration: 8 Hours (4 Lecture, 4 Lab) [EDC only: 12 Hours (5 Lecture, 7 Lab)]
Sub-tasks:

1. The User Services Role.
 a. Identify major user services responsibilities.
 b. Relate “super user” activities to user support.

2. ECS user account management.
 a. Retrieving a user account.
 b. Creating a user account.
 c. Creating an account from Uniform Resource Locator (URL) registration.
 d. Editing/Modifying an existing account.
 e. Deleting an ECS account.
 f. Canceling an ECS account.
 g. Changing an ECS user’s password.
 h. Troubleshooting account management problems.

3. Processing an Order.
 a. Creating/Updating a user contact log record.
 b. Verifying an account with the User Profile screen.
 c. Data search and order.
 d. Update User Contact Log.

4. Canceling an order.
 a. ECS Order Tracking.
 b. Canceling the order.
 c. Troubleshooting order tracking problems.

5. Subscriptions and Data Pool Management.
 b. Using the Spatial Subscription Server GUI.
 c. Troubleshooting Spatial Subscription Server Problems
 d. Guidelines for Selecting Data for Data Pool Insertion.
 f. Data Pool FTP Service.

6. Data dictionary maintenance.
 a. Update attribute/keyword mapping.
b. Exporting valids.
c. Importing valids.
d. Troubleshooting Data Dictionary Maintenance Tool problems.

7. Cross-DAAC referral processing.
 a. Referral to another DAAC.
 b. Receiving a referral from another DAAC.

8. Cross-DAAC order tracking.
 a. Tracking to another DAAC.
 c. Responding to a tracking request from another DAAC.

9. ASTER DAR creation and submission (EDC only).

10. On-Demand product requests (EDC only).

Practical Exercises: The student will perform the following hands-on training exercises:

1. Students will list five major responsibilities of User Services.
2. Students will retrieve a user account.
3. Students will create a user account.
4. Students will create a user contact log entry.
5. Students will retrieve user information.
6. Students will locate data via the search and order tool.
7. Students will order data.
8. Students will update the user contact log.
9. Students will cancel an order.
10. Students will use the Spatial Subscription Server GUI to display ECS events for which a subscription can be created.
11. Students will display subscriptions in the Spatial Subscription Server database.
12. Students will add a subscription to trigger a Data Pool insert.
13. Students will extend the period of retention for a Data Pool insert subscription and associate the subscription with a theme.
14. Students will cancel a subscription.
15. Students will use the Spatial Subscription Server GUI to add a bundling order.
17. Students will use the Data Dictionary Maintenance Tool to create a valids export file.
18. Students will perform cross-DAAC order tracking.
19. Students will create and submit an ASTER DAR (EDC only).
20. Students will use the EOS Data Gateway (EDG) tool to create an ASTER production request.

Volume 14: Not Used

Volume 15: Not Used

Volume 16: Science Software Integration & Test

Volume 16 provides a detailed description of the process required to acquire an algorithm package, register Earth Science Data Types, check the science software, compile and link the science software, run a PGE in a simulated SCF environment, examine the PGE produced log files, perform file comparison, update the PDPS database and Science data server, integrate science software into the EOSDIS environment, test the new science software to verify its operability and advertise the availability of the PGE data using the Advertising Server.

Attendees: DAAC Science Software I&T Support Engineer, DAAC Science Data Specialist, DAAC System Engineer, DAAC Production Planner, DAAC Production Monitor, DAAC Resource Manager, DAAC SW Maintenance Engineer and Sustaining Engineering personnel.

Prerequisites: Introduction and Detailed System Overview; Science Data Processing Internal Training and Problem Reporting lessons.

Duration: 40 Hours (20 Lecture, 20 Lab)

Sub-tasks:

1. Release 6B Architecture Overview of ECS as it applies to SSI&T.
2. The ECS Assistant.
 b. Perform System Monitoring.
 c. Open /View Log Files for a Selected Server.
3. Science Software Configuration Management
 a. Create a view in ClearCase.
 b. Create a new directory.
 c. Import files into ClearCase.
 d. Check out a file from ClearCase.
 e. Check a modified element into ClearCase.
4. Science Software Integration and Test (SSI&T) Manager Graphical User Interface (GUI).
 a. Science Software Integration and Test Flow
 c. SSIT Manager Overview.
 d. SSIT Manager GUI.
 e. SSIT Manager Tools and running of the SSI&T manager.
5. Acquiring and Unpacking the Delivered Algorithm Package (DAP).
 a. Acquire the Algorithm Package via FTP.
 b. Unpack a DAP SSIT Software.
 c. Subscribe to the DAP.
 d. Perform a DAP Insert Using SSIT Manager.
6. DAP Acquire.
 a. Perform a DAP Acquire Using SSIT Manager.
7. Insert and update a Science Software Archive Package (SSAP).
8. Standards Checking of Science Software Overview.
 a. Update the Process Control File (PCF).
 b. Compile Status Message Facility (SMF) Files.
 c. Build Science Software with the SCF Version of the SDP Toolkit.
 d. Build Science Software with the DAAC Version of the SDP Toolkit.
10. Run a PGE in a Simulated SCF Environment.
 a. Set Up the Environment for Running the PGE.
 b. Run and Profile the PGE.
11. Prepare Earth Science Data Types (ESDT).
12. Review of Production Rules
 b. Production Rules Technical Information.
 c. Production Rules Syntax.
13. Production Requests
14. Types of Processing
 a. Routine Processing
b. Reprocessing

c. Ad-Hoc Reprocessing

d. On-Demand Processing

15. Production Rules
 a. Syntax of Production Rules
 b. Basic Temporal Production Rule
 c. Advanced Temporal Production Rule
 d. Alternate Input and Optional Input Production Rules
 e. Minimum/Maximum Number of Granules Production Rule
 f. Optional DPRs Production Rule
 g. Intermittent Activation Production Rule
 h. Metadata Checks and Metadata Query Production Rules
 i. Data Day Production Rule
 j. Spatial Query Production Rule
 k. Tiling Production Rule
 l. Closest Granule Production Rule
 m. Orbital Processing Production Rule

16. DPREP
 a. Introduction.
 b. SSI&T Activity for DPREP.
 c. DPREP Processes and Procedures.
 d. Setups for DPREP.

17. PGE Registration and Test Data Preparation.
 a. PGE Registration.
 b. PGE ODL Preparation.
 c. ESDT ODL Preparation.
 d. Operational Metadata.
 e. SSIT Operational Metadata Update GUI.

18. Test Data Preparation and Insertion of Data Granules.
 a. Generate a Metadata Configuration File (Source MCF).
 b. Create a Target MCF (.met) for a Dynamic/Static Granule.
 c. Insert Static Data Granules into the Data Server.
d. Insert Dynamic Data Granules to the Science Data Server.

19. Place the Science Software Executable (SSEP) onto Science Data Server.
 a. Package onto Science Data Server.

20. PGE Planning Processing and Product Retrieval
 a. Use the Production Request Editor to View Production Request and to Define a
 New Production Request.
 b. Use the Production Planning Workbench.
 c. Monitor Production using Autosys.
 d. Use the Q/A Monitor.

 a. Examine PGE Log Files.
 b. Examine PDPS-Related Scripts and Message Files.
 c. Examine AutoSys JIL Scripts.
 d. Examine Application Log Files (ALOG).

22. File Comparison and Data Visualization.
 a. Use the GUI HDF File Comparison GUI.
 b. View Product Metadata, HDF Image Objects and IDL Tool with the EOSView
 Tool
 c. Raster Mapping Fundamentals.

Practical Exercises: The Students will perform the following hands-on training exercises:

1. Students will use ECS Assistant to:
 b. Open/View Log Files for a Selected Server.
 c. Monitor Server Status.

2. Students will create a new directory using ClearCase.

3. Students will bring up and utilize the SSI&T Manager.

4. Students will FTP and unpack a DAP.

5. Students will import files into ClearCase.

6. Students will perform a DAP Insert using SSIT Manager.

7. Students will perform a DAP Acquire Using SSIT Manager.
8. Students will insert a Science Software Archive Package (SSAP).
9. Students will perform standards checking.
10. Students will check files using the Prohibited Function Checker.
11. Students will check process control files (PCF) Command Line Version.
12. Students will set up a SDP Toolkit Environment.
13. Students will carry out compile procedures used to produce a PGE.exe.
14. Students will register a PGE Tar File with an Insertion Script.
15. Students will Compile Status Message Facility (SMF) files.
16. Students will compile and link a PGE with SCF version of the SDP toolkit.
17. Students will compile and link a PGE with DAAC version of the SDP toolkit.
18. Students will set up the Environment for Running a PGE.
19. Students will run and Profile a PGE.
20. Students will Install/Remove an ESDT using the Science Data Server Operator GUI.
21. Students will install an ESDT using ECS Assistant.
22. Students will use ECS Assistant to View Database.
23. Students will use Browser to View ECS Science PDPS/IOS database.
24. Students will examine the Production Rules established for a selected PGE and see what changes to various files had to accompany a selected production rule.
25. Students will examine the DPREP files of an existing PGE and follow the production history to where the DPREP files are made ready for an Instrument PGE.
26. Students will perform PGE Registration and Test Data Preparation.
27. Students will perform Test Data Preparation and Insertion of Data Granules.
28. Students will prepare a Science Software Executable (SSEP) Package for placement onto Science Data Server.
29. Students will demonstrate PGE Planning Processing and Product Retrieval.
30. Students will perform Postprocessing and General Investigation.
31. Students will perform File Comparison and Data Visualization.
32. Student will determine what information to report or forward on with a successful PGE execution.
Volume 17: System Troubleshooting

Volume 17 provides a detailed description of the different tasks that are required in order to perform system troubleshooting. The lesson includes a detailed review of the system monitoring capabilities, troubleshooting process and trouble ticket set-up and processing.

Attendees: SMC Representative, DAAC Computer Operator, DAAC System Administrators, DAAC Maintenance Coordinator, DAAC System Engineer, DAAC System Test Engineer, DAAC SW Maintenance Engineer, DAAC User Services Representative and Sustaining Engineering personnel.

Prerequisites: Introduction and Detailed System Overview; Science Data Processing Internal Training and Problem Reporting lessons.

Duration: 16 Hours (6 Lecture, 10 Lab)

Sub-tasks:

1. Configuration Parameters
 a. Configuration Registry
 b. General Configuration Parameters

2. System/Performance monitoring.
 a. Accessing the EOS Mission Support Network (EMSn) Web Page
 b. Log in to ECS
 c. Checking the health and status of the network.
 1) WhatsUp Gold.
 2) Launching WhatsUp Gold and displaying the network map.
 3) Responding to color alerts and obtaining status of a node.
 4) Configuring a popup menu for a node or multiple nodes.
 5) Using Network Tools.
 6) Using WhatsUp Gold logs.
 7) Starting Whazzup and monitoring the status of hosts and servers.
 8) ECS Assistant and ECS Monitor.
 9) Tivoli Management Environment.

2. Problem analysis/troubleshooting.
 a. Analysis/troubleshooting System.
 b. Analysis/troubleshooting COTS hardware.
 1) Documenting hardware problems with the ILM tool.
c. Performing preventive maintenance.

d. Analysis and Troubleshooting of COTS software.

e. Specific ECS custom software check-out and troubleshooting.
 1) Checking server status.
 2) Checking server log files.
 3) Recovering from a Connectivity problem.
 4) Recovering from a Database Access Problem.
 5) Recovering from a Missing Mount Point or Other File Access Problem.
 6) Recovering from a Subscription Server/NSBRV Problem.
 7) Recovering from Granule Insertion Problems.
 8) Handling an Acquire Failure.
 9) Recovering from Ingest Problems.
 10) Recovering from PDPS Plan Creation/Activation and PGE Problems.
 11) Recovering from QA Monitor Problems.
 12) Recovering from Problems with ESDTs, DAP Insertion, or SSI&T.
 13) Recovering from Problems with Data Search and Order.
 14) Recovering from Problems with Data Pool.
 15) Recovering from Data Distribution Problems.
 16) Recovering from Problems with Submission of an ASTER Data Acquisition Request (EDC Only).
 17) Recovering from Problems with On-Demand Product Requests (EDC Only).

3. Trouble Ticket (TT).
 1) Launching Remedy forms and tools.
 2) Adding users to Remedy.
 3) Changing privileges in Remedy.
 4) Generating Trouble Ticket Reports.
 b. Performing operational work-around.

Practical Exercises: The student perform the following hands-on training exercises:

1. Students will perform system monitoring.
2. Students will perform a diagnostic check on the system.
3. Students will document a hardware using the ILM tool.
4. Students will add users to Remedy.
5. Students will change privileges in Remedy.
6. Students will generate Trouble Ticket reports.
7. Students will conduct detailed check-out and troubleshooting of ECS custom software.

Volume 18: Advanced Production Planning and Processing

Volume 18 provides significant practice in defining production resources; scheduling resource reservations; creating and implementing production requests, production strategies, and production plans for a site; monitoring the processing of production jobs; and troubleshooting problems in resource planning, production planning, and production processing.

Attendees: DAAC Production Monitor, DAAC Production Planner.

Prerequisites: Introduction and Detailed System Overview; Science Data Processing Internal Training, Problem Management, and Production Planning and Processing lessons.

Duration: 16 Hours (16 Lab)

Sub-tasks:

Practical Exercises: The student will perform the following hands-on training exercises:

1. Students will log in to ECS hosts.
2. Students will launch resource planning applications.
3. Students will shut down resource planning applications.
4. Students will determine actual processing resources to be added to the resource planning list.
5. Students will add resources to the resource planning list.
6. Students will modify resources on the resource planning list.
7. Students will delete resources from the resource planning list.
8. Students will create resource reservation requests.
9. Students will edit/modify resource reservation requests.
10. Students will validate or reject resource reservation requests.
11. Students will approve resource reservation requests.
12. Students will commit resource reservation requests.
13. Students will delete a resource reservation request.
14. Students will review a resource timeline.
15. Students will troubleshoot resource planning problems.
16. Students will launch the Production Request Editor.
17. Students will create new production requests using the Production Request Editor GUI.
18. Students will create new production requests using the Production Request Generator (command-line interface).
19. Students will delete a production request.
20. Students will review data processing requests.
21. Students will delete a data processing request.
22. Students will launch the Production Strategies GUI.
23. Students will launch Planning Workbench-related GUIs.
24. Students will define a production strategy.
25. Students will create a new production plan.
26. Students will review a production plan timeline.
27. Students will save and reset the PDPS database.
28. Students will clean the PDPS database.
29. Students will clean the DPS disks.
30. Students will troubleshoot production planning problems.
31. Students will launch the AutoSys GUI Control Panel.
32. Students will monitor/control job processing.
33. Students will view PDPS database entries using isql.
34. Students will troubleshoot processing problems.
35. Students will view product granules using EOSView.
36. Students will review production history granules.
37. Students will review FAILPGE granules.
Training Schedule

Course Duration

Table 1 provides a summary of the course duration. This summary is tied to the duration of each lesson and reflects the lecture to lab ratio for each lesson.

<table>
<thead>
<tr>
<th>LESSON</th>
<th>DURATION (Hrs)</th>
<th>LECTURE/LAB (Hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Detailed System Overview</td>
<td>13</td>
<td>13/0</td>
</tr>
<tr>
<td>Problem Management</td>
<td>2</td>
<td>1/1</td>
</tr>
<tr>
<td>System Administration</td>
<td>7</td>
<td>4/3</td>
</tr>
<tr>
<td>Network Administration</td>
<td>6</td>
<td>3/3</td>
</tr>
<tr>
<td>Database Administration</td>
<td>7</td>
<td>5/2</td>
</tr>
<tr>
<td>Production Planning and Processing</td>
<td>20</td>
<td>10/10</td>
</tr>
<tr>
<td>Resource Planning</td>
<td>4</td>
<td>2/2</td>
</tr>
<tr>
<td>Ingest</td>
<td>8</td>
<td>4/4</td>
</tr>
<tr>
<td>Data Distribution</td>
<td>20</td>
<td>10/10</td>
</tr>
<tr>
<td>Archive</td>
<td>8</td>
<td>4/4</td>
</tr>
<tr>
<td>Configuration Management</td>
<td>6</td>
<td>3/3</td>
</tr>
<tr>
<td>User Services</td>
<td>8 (EDC 12)</td>
<td>4/4 (EDC 5/7)</td>
</tr>
<tr>
<td>Science Software I&T</td>
<td>40</td>
<td>20/20</td>
</tr>
<tr>
<td>System Troubleshooting</td>
<td>16</td>
<td>6/10</td>
</tr>
<tr>
<td>Advanced Production Planning and Processing</td>
<td>16</td>
<td>0/16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>181 (EDC 185)</td>
<td>89/92 (EDC 90/95)</td>
</tr>
</tbody>
</table>
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM-1</td>
<td>EOS AM Mission spacecraft 1, morning spacecraft series—ASTER, CERES, MISR, MODIS and MOPITT instruments</td>
</tr>
<tr>
<td>API</td>
<td>Applications Program Interface</td>
</tr>
<tr>
<td>CBT</td>
<td>Computer Based Training</td>
</tr>
<tr>
<td>CDR</td>
<td>Critical Design Review</td>
</tr>
<tr>
<td>CDRL</td>
<td>Contract Data Requirements List</td>
</tr>
<tr>
<td>CM</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial Off-the-Shelf</td>
</tr>
<tr>
<td>CR</td>
<td>Classroom presentation equipment</td>
</tr>
<tr>
<td>CSCI</td>
<td>Computer Software Configuration Item</td>
</tr>
<tr>
<td>DAAC</td>
<td>Distributed Active Archive Center</td>
</tr>
<tr>
<td>DBA</td>
<td>Database Administration</td>
</tr>
<tr>
<td>DCN</td>
<td>Document Change Notice</td>
</tr>
<tr>
<td>DID</td>
<td>Data Item Description</td>
</tr>
<tr>
<td>DPS</td>
<td>Data Processing Subsystem</td>
</tr>
<tr>
<td>DSS</td>
<td>Data Server Subsystem</td>
</tr>
<tr>
<td>ECS</td>
<td>EOSDIS Core System</td>
</tr>
<tr>
<td>EMSn</td>
<td>EOS Mission Support Network</td>
</tr>
<tr>
<td>EOC</td>
<td>EOS Operations Center</td>
</tr>
<tr>
<td>EOSDIS</td>
<td>Earth Observing System Data Information System</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>IDR</td>
<td>Interim Design Release</td>
</tr>
<tr>
<td>ILM</td>
<td>Inventory/Logistic Management</td>
</tr>
<tr>
<td>ILS</td>
<td>Integrated Logistics Support</td>
</tr>
<tr>
<td>IV&V</td>
<td>Independent Verification and Validation</td>
</tr>
<tr>
<td>LSM</td>
<td>Local System Management</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>M&O</td>
<td>Maintenance and Operations</td>
</tr>
<tr>
<td>MSS</td>
<td>Management Subsystem</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NSBRV</td>
<td>Spatial Subscription Server</td>
</tr>
<tr>
<td>PDS</td>
<td>Product Distribution System</td>
</tr>
<tr>
<td>PI</td>
<td>Principle Investigator</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>QO</td>
<td>Quality Office</td>
</tr>
<tr>
<td>S/C</td>
<td>Spacecraft</td>
</tr>
<tr>
<td>SE</td>
<td>Sustaining Engineering</td>
</tr>
<tr>
<td>SEO</td>
<td>Sustaining Engineering Organization</td>
</tr>
<tr>
<td>SMC</td>
<td>System Monitoring and Coordination Center</td>
</tr>
<tr>
<td>SME</td>
<td>Subject Matter Expert</td>
</tr>
<tr>
<td>SMO</td>
<td>System Management Office</td>
</tr>
<tr>
<td>SSI&T</td>
<td>Science Software Integration and Test</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>T³</td>
<td>Train-the-Trainer</td>
</tr>
</tbody>
</table>