
6. CSS Functional Requirements

Section 6 contains the requirements associated with the Communications Subsystem (CSS). This
includes the Common Facilities Service, Object Services and Distributed Object Framework
Services. This section specifies the functional requirements associated with the Distributed
Computing Configuration Item (DCCI) and is organized by the following sections:

6.1 General Requirements

6.2 Common Facility Services

6.3 Object Services

6.4 Distributed Object Framework

6-1 304-CD-003-002

6.1.1
C

S
S

 In
terface R

eq
u

irem
en

ts

T
he C

SS interfaces are identified in Figure 6.1-1.

6.1
G

en
eral R

eq
u

irem
en

ts

Mail
Centers External

Interface
without

ECS
ToolKit

FOS
Apps Users

CSMS::ISS

Hosts

File
Systems

Mail
Databases

CSS

EMail
Service Events

File Access Service Events

File Access Service Events
Virtual Terminal Service Events

TransportService Events

TimeService Events; ThreadService Events; LifeCycleService Events;
DOF Events; NamingService Events; SecurityService Events;

MessagePassingService Events; EMailService Events; FileAccess
Service Events; BBSService Events; EventLoggerService Events

SecuirtyService Events; MessagePassingService Events;

SecurityService Events; MessagePassingService Events

BBSService Events; VirtualTerminalServiceSecurity Events;

BBServiceView Events
EMailServiceView Events

VirtualTerminalServiceView Events (ECS staff only)
FileAccessServiceView Events (only at ECS sites)

EMailService Events
EMailService Events
BBSService Events

SDPS
Apps

ThreadService Events; LifeCycleService Events;
EventService Events; TimeService Events;

DOF Events; NamingService Events;

6-2
304-C

D
-003-002

EMailService Events; FileAccessService Events;
BBSService Events; EventLoggerService Events

TimeService Events; ThreadService Events;
LifeCycleService Events; NamingService Events;

CSMS::MSS
EMailService Events; FileAccessService Events;

EventLoggerService Events

Figure 6.1-1. CSS Interface Diagram

6.1.1.1 CSS/External Interface Requirements

The CSS interfaces with external systems for NTP time source.

The CSS interface requirement with external systems follows:

C-CSS-10090	 The CSS shall interface with a TBS external time source for coordinated
universal time (UTC).

6.1.1.2 CSS/SDPS Interface Requirements

Table 6-1 summarizes the CSS interface with the SDPS subsystem and includes the source and
destination of the interface, and a brief description of the data item.

Table 6-1. CSS/SDPS Subsystem Interface
Source Destination Data Description

CSS API Any SDPS subsystem Event
Event logger
Time
Message Passing
File Access

CSS server Any SDPS subsystems Electronic Mail
Bulletin Board
Virtual Terminal
Directory/Naming
Security

Any SDPS subsystem CSS server Service request
Authenticate V0 clients to ECS

The CSS interface requirement with the SDPS subsystem follows:

C-CSS-10100	 The CSS shall interface with the SDPS subsystems to exchange the data
items in Table 6-1 as specified in the ECS internal ICDs, 313-DV3-003.

6.1.1.3 CSS/FOS Interface Requirements

Table 6-2 summarizes the CSS interface with the FOS subsystem and includes the source and
destination of the interface, and a brief description of the data item.

6-3 304-CD-003-002

Table 6-2. CSS/FOS Subsystem Interface
Source Destination Data Description

CSS API Any FOS subsystem Event
Event logger
Time
Message Passing
File Access

CSS server Any FOS subsystem Electronic Mail
Bulletin Board
Virtual Terminal
Directory/Naming
Security

Any FOS subsystem CSS server Service request

The CSS interface requirement with the FOS subsystem follows:

C-CSS-10200	 The CSS shall interface with the FOS subsystems to exchange the data
items in Table 6-2 as specified in the ECS internal ICDs, 313-DV3-003.

6.1.1.4 CSS/MSS Interface Requirements

Table 6-3 summarizes the CSS interface with the MSS subsystem and includes the source and
destination of the interface, and a brief description of the data item.

Table 6-3. CSS/MSS Subsystem Interface
Source Destination Data Description

CSS API MSS Event logger
Message Passing
Time
File Access

CSS server MSS Electronic Mail
Bulletin Board
Virtual Terminal
Directory/Naming
Security
Message Passing

MSS CSS server Service request

The CSS interface requirement with the MSS subsystem follows:

C-CSS-10300	 The CSS shall interface with the MSS subsystems to exchange the data
items in Table 6-3 as specified in the ECS internal ICDs, 313-DV3-003.

6-4 304-CD-003-002

6.1.1.5 CSS/ISS Interface Requirements

Table 6-4 summarizes the CSS interface with the ISS subsystem and includes the source and
destination of the interface, and a brief description of the data item.

Table 6-4 CSS/ISS Subsystem Interface
Source Destination Data Description

CSS ISS Lower layer ISO services (TCP/UDP/IP)

ISS CSS None

The CSS interface requirement with the ISS subsystem follows:

C-CSS-10400	 The CSS shall interface with the ISS subsystems to exchange the data
items in Table 6-4 as specified in the ECS internal ICDs, 313-DV3-003.

6.1.2 CSS Performance Requirements

C-CSS-00200	 The CSS services shall allocate 10% of development resources for IV&V
activity.

6.1.3 CSS RMA Requirements

C-CSS-00010	 The CSS services shall have an operational availability of .998 and an
MDT of 20 minutes or less for critical services.

C-CSS-00020	 The CSS services shall have no single point of failure for functions
associated with network databases and configuration data.

C-CSS-00030	 The CSS services shall be extensible in its design to provide capability for
growth and enhancement.

C-CSS-00040	 The CSS services shall be compatible with POSIX-compliant Unix
platforms.

C-CSS-00100	 The CSS directory services shall maintain multiple copies of the
namespace on different hosts to provide fault tolerance.

6.1.4 CSS General Requirements

C-CSS-00500	 The CSS client services software shall be made available in the form of a
CSS toolkit to the developers.

C-CSS-00510 The CSS shall provide access to ECS data and services to the clients at the
DAACs and SCFs without distinction using ECS provided software.

Note: Providing same service requires that SCFs use DCE similar to the DAACs.6.2
Common Facility Services

6-5 304-CD-003-002

Common Facility Services are defined as those communication interfaces and uniform semantics
that are shared across applications. These services make applications easier to develop and
maintain across multiple application domains and include interactive tools for the operators and
programmatic interfaces for applications.

6.2 Common Facility Services

6.2.1 Electronic Mail Service

6.2.1.1 Overview Electronic Mail Service

This service provides interactive (for the operators) and programmatic (API, for the applications)
interfaces to manage electronic mail messages. A operator, for this discussion, is defined as a
member of the M&O staff. It is not the intention of the ECS to provide interactive mail capability
or mail stores for external end users.

Interactive interfaces provide a full set of functionality (see requirements below). The API is
limited in scope as it only addresses sending a message from within an application.

Following context diagram shows the data flows and interaction of the service with external
entities.

6-6 304-CD-003-002

Mail
Centers

Mail
Databases

Applications

M&O
Staff

Electronic
Mail

Service

receive
messages

send
messages

commands retrieve
data

store data

responses
(error or ok)

command
responses

send
messages

6-7
304-C

D
-003-002

Figure 6.2-1. Electronic Mail Context Diagram

6.2.1.2 Electronic Mail Service Functional Requirements

Requirements for this service are divided in three sections.

General section addresses the mail server requirements and the protocols & standards the service
needs to support.

MailTool section addresses the functionality of the interactive tool provided as part of ECS. It is
expected that these requirements will map directly into a COTS package and therefore will be
used for making a COTS selection.

Finally, the API section addresses the requirements for the programmatic interface provided to
the applications.

General

C-CSS-61010	 The CSS Electronic Mail Service shall interoperate and exchange
messages with external mail systems based on SMTP and X.400 protocols.

Note: Simple Mail Transfer Protocol (SMTP) is described in IETF RFC
821.

C-CSS-61020	 The CSS Electronic Mail Service shall be capable of sending and
receiving the Multi-purpose Internet Mail Extensions (MIME) messages.

Note: MIME is described in IETF RFCs 1521 and 1522.

C-CSS-61030	 The CSS Electronic Mail Service shall use the existing X.400 gateway
available at GSFC to support X.400 operations.

C-CSS-61040	 The CSS Electronic Mail Service shall provide translation between SMTP
and X.400 protocol.

C-CSS-61050 The CSS Electronic Mail Service shall be accessible in interactive mode.

C-CSS-61060	 The CSS Electronic Mail Service shall be accessible in non-interactive
mode via API.

C-CSS-61290	 The CSS Electronic Mail Service shall provide functionality to send reply
for a received message to

a. the author (Reply)

b. to all destinations addressed in the incoming message (ReplyAll)

c. named destinations (Forward).

MailTool

C-CSS-61310	 The CSS Electronic Mail Service shall provide a MAILBOX where all
incoming messages for operators will be stored.

6-8 304-CD-003-002

Note: Only M&O staff will be provided a MAILBOX. ECS does not
provide mail account to end users.

C-CSS-61320	 The CSS Electronic Mail Service shall provide operator defined folders to
store messages for long term archive.

C-CSS-61330	 The CSS Electronic Mail Service shall allow copying and/or moving
messages from the MAILBOX to the operator specified folders.

C-CSS-61360	 The CSS Electronic Mail Service shall be capable of showing a summary
of all messages in the MAILBOX or in a folder which minimally contains:

a. title/subject of the message

b. name of the author

c. date/time of the message origination

C-CSS-61370	 The CSS Electronic Mail Service shall provide an editor to compose a
message.

C-CSS-61380	 The CSS Electronic Mail Service shall provide a title/subject field for a
message.

C-CSS-61390	 The CSS Electronic Mail Service shall allow a message to be sent to
multiple destinations.

C-CSS-61400	 The CSS Electronic Mail Service shall allow destinations of the following
types:

a. a single user

b. a position which may be managed by one or many operators

c. a site which may consists of several operators

C-CSS-61410	 The CSS Electronic Mail Service shall provide a capability to maintain
public mailing lists (each list may contain multiple destination) which are
accessible to all operators.

C-CSS-61420	 The CSS Electronic Mail Service shall provide a capability to maintain
private mailing lists (each list may contain multiple destination) for
individual operators.

C-CSS-61430	 The CSS Electronic Mail Service shall allow attaching either text or binary
files to a message.

C-CSS-61440	 The CSS Electronic Mail Service shall allow discarding message(s) from
the MAILBOX without saving.

C-CSS-61450	 The CSS Electronic Mail Service shall have the capability to forward a
message.

6-9 304-CD-003-002

C-CSS-61460 The CSS Electronic Mail Service shall allow cut/copy/paste/delete/undo
operations in the editor.

C-CSS-61470 The CSS Electronic Mail Service shall provide navigation methods to go
the next or previous message in the MAILBOX or selected folder.

C-CSS-61490	 The CSS Electronic Mail Service shall provide the capability to search for
keywords in messages.

C-CSS-61500	 The CSS Electronic Mail Service shall provide the capability to search the
MAILBOX or a folder for keywords in title text.

C-CSS-61510	 The CSS Electronic Mail Service shall provide the capability to search the
MAILBOX or folders for a specific author.

Note: Above requirements for the search capability (490,500,510) may not
be achievable with COTS. These are under discussion and may be
changed or removed in a later version of this document.

C-CSS-61520	 The CSS Electronic Mail Service shall accept mailing lists as valid
destinations.

Application Program Interface (Non-interactive, API)

C-CSS-61800	 The CSS Electronic Mail Service shall provide the capability to send an
electronic mail message non-interactively from an application.

C-CSS-61810	 The CSS Electronic Mail Service shall allow attaching multiple text or
binary files to the mail message.

C-CSS-61820	 The CSS Electronic Mail Service shall accept a file name as input for the
message text.

C-CSS-61840	 The CSS Electronic Mail Service shall be capable of sending a message to
multiple destinations.

C-CSS-61850	 The CSS Electronic Mail Service shall accept mailing lists as valid
destinations.

6.2.2 File Access Service

6.2.2.1 Overview File Access Service

The file access service provides functionality for file transfers and management. The major
functions are to provide interactive access and application interfaces for distributing files.

Following context diagram shows the data flows and interaction of the service with external
entities.

6-10 304-CD-003-002

Host

File
Systems

Applications

Users

File
Access
Service

Security
Database

responses,
receive files

file transfer
requests

file transfer and
management commands

retrieve
data

store data

responses
(error or ok)

command responses

login, send commands,
send files

provides authentication
and authorization

6-11
304-C

D
-003-002

Figure 6.2-2. File Access Context Diagram

6.2.2 2 File Access Service Functional Requirements

Requirements for this service are divided in two sections.

Remote File Access (RFA) section requirements address functionality for providing transparent
access to remote files as if they were part of the local file system. RFA refers to the ability to
mount remote files and access them just like local files. For example, NFS and Distributed File
System (DFS, which is a component of OSF DCE) offer these capabilities.

The File Transfer section addresses the interactive and non-interactive file transfer capabilities
provided by the service.

Remote File Access

C-CSS-60300	 The CSS File Access Service shall provide transparent access to remote
files.

Note: Files on remote file systems, once mounted, are accessed just like
local files. All operations for the local files are available for the remote
files .

C-CSS-60310	 The CSS File Access Service shall support access control for the remote
files.

Note: User privileges are taken into account for granting access to remote
files.

C-CSS-60320	 The CSS File Access Service shall provide location independent naming
for the remote files.

Note: Name and location of a file in the file system is independent of the
user or file location. The files appear at the same location in the distributed
file system.

File Transfer Requirements

File transfer requirements are further divided into four sections.

General requirements address the protocols and types of files supported by the service.

Interactive Mode requirements address the functionality of the interactive tool used for file
transfers.

Non-interactive mode requirements address the scheduling option for file transfers which will be
done without user presence.

The File Transfer API section requirements address the functionality for the application
interface, which will be used by applications to transfer files.

6-12 304-CD-003-002

General

C-CSS-60500 The CSS File Access Service shall provide functionality for interactive
and non-interactive transfer of files (send and receive) between two host
systems.

C-CSS-60510	 The CSS File Access Service shall be capable of transferring ASCII and
binary files.

C-CSS-60520	 The CSS File Access Service shall support the File Transfer Protocol
(FTP).

Note: File Transfer Protocol (FTP) is described in IETF RFC 959.

C-CSS-60530	 The CSS File Access Service shall support the kerberized version of File
Transfer Protocol for secured file transfers.

Note: ECS provides kerberos server, ftp deamons and clients that support
kerberos protocols described in IETF RFC 1510.

Interactive Mode

C-CSS-60600	 The CSS File Access Service shall provide connection oriented operation
for file transfers.

Note: A connection, once open, may be used to send/receive multiple files.

C-CSS-60610	 The CSS File Access Service shall allow selection of the file type (ASCII
or binary).

C-CSS-60620	 The CSS File Access Service shall support proxy mode of operation which
enables transfer of files between two remote hosts.

C-CSS-60630 The CSS File Access Service shall provide capability to list remote files.

C-CSS-60640	 The CSS File Access Service shall support wildcards in files on the remote
host.

C-CSS-60650	 The CSS File Access Service shall support anonymous FTP which allows
read access to all users.

Note: File transfers require users to be authenticated (must have valid
accounts at the remote host). This capability allows any user (without an
account) to copy files from designated paths.

Non-interactive Mode

C-CSS-60800	 The CSS File Access Service shall provide an option for scheduling file
transfers in a batch mode.

6-13 304-CD-003-002

C-CSS-60810 The CSS File Access Service shall log results of the non-interactive
operations to operator specified log files.

C-CSS-60820 The CSS File Access Service shall provide an option to send alarms and
generate events if a scheduled operation fails.

File Transfer API

C-CSS-60900	 The CSS File Access Service shall provide an API which allows
applications to transfer files.

C-CSS-60910	 The CSS File Access Service shall allow for file type selection (ASCII or
Binary).

C-CSS-60920	 The CSS File Access Service shall accept authentication information for
file transfers.

6.2.3 Bulletin Board Service

6.2.3.1 Overview Bulletin Board Service

This service provides a forum for sharing ECS related information. The bulletin board service
consists of multiple bulletin boards (newsgroups) organized according to subjects. All users
(anyone on the internet, referred to as BBS User in this section) are allowed to browse and post
messages to the bulletin boards.

ECS staff post information that relates to ECS services, products, status, events and news for the
ECS users.

Users (both ECS and internet users) browse the bulletin boards, report problems, suggest
enhancements, ask questions, get information and share experiences with other users.

The following context diagram shows the data flows and interaction of the service with external
entities.

6.2.3.2 Bulletin Board Service Functional Requirements

Requirements for this service are divided in three sections.

General section addresses the bulletin board server requirements and the protocols/standards the
service needs to support.

Bulletin Board Tool requirements address the functionality of the interactive tool used for
browsing the bulletin boards.

The Bulletin Board API section requirements address the functionality of the interface provided
to the application programs for posting messages to ECS bulletin boards.

6-14 304-CD-003-002

ECS
Staff

ECS
Users

Bulletin
Board

Service

Application

Bulletin
Board

Database

send messages,
management commands send messages

receive messages,
command responses

responses
(error or ok)

responses,
browse service

commands,
post messages

store
data

retrieve
data

Figure 6.2-3. Bulletin Board Context Diagram

6-15 304-CD-003-002

General

C-CSS-62000 The CSS Bulletin Board Service shall be based on the following standards:

a. TCP/IP

b. NNTP

c. SMTP

d. Usenet message standard (IETF RFC 850, 1036)

Note: Network News Transfer Protocol (NNTP) is described in IETF
RFC 977

C-CSS-62010	 The CSS Bulletin Board Service shall support multiple (configurable)
bulletin boards (newsgroups).

Note: Different users may be interested in different kind of information.
For this reason, we need to provide multiple newsgroups classified by
subject.

C-CSS-62030	 The CSS Bulletin Board Service shall provide concurrent access to
multiple users (registered or non-registered).

C-CSS-62040	 The CSS Bulletin Board Service shall allow multiple messages for each
bulletin board.

C-CSS-62050 The CSS Bulletin Board Service shall host the user registration service.

Note: New users register using the bulletin board.

C-CSS-62060	 The CSS Bulletin Board Service shall provide the capability for copying
files.

Note: This will be the building block for toolkit distribution. Users can
copy files to their local system.

C-CSS-62070 The CSS Bulletin Board Service shall support download of ECS toolkits.

C-CSS-62080	 The CSS Bulletin Board Service shall collect and maintain access history
and statistical information for the service.

C-CSS-62100	 The CSS Bulletin Board Service shall provide capabilities to authorized
users (M&O staff) for:

a. creating new bulletin board

b. deleting existing bulletin board

c. deleting message(s) from a bulletin board

d. backing up bulletin boards

6-16 304-CD-003-002

e.	 forcing users off a bulletin board or the entire bulletin board
service for backup.

f. collecting access history and/or statistical information.

g. backing up bulletin boards.

C-CSS-62120	 The CSS Bulletin Board Service shall provide the capability to respond to
a posted message on a bulletin board by sending the response message to:

a. the bulletin board (follow up)

b. author of the original message (respond to author)

c. named destinations (forward)

C-CSS-62130	 The CSS Bulletin Board Service shall provide a “What’s new” feature
which informs the user of the new information available on the bulletin
boards.

Bulletin Board Tool

C-CSS-62300	 The CSS Bulletin Board Service shall be available to the users in
interactive mode.

C-CSS-62305	 The CSS Bulletin Board Service shall allow user to subscribe to bulletin
boards.

C-CSS-62310	 The CSS Bulletin Board Service shall allow user to unsubscribe bulletin
boards.

C-CSS-62320	 The CSS Bulletin Board Service shall allow user to select a subscribed
bulletin board for viewing summary of all messages in it.

C-CSS-62330	 The CSS Bulletin Board Service shall provide the capability to respond to
a message by sending the response to the bulletin board and/or to the
author of the message and/or any other operator specified destination.

C-CSS-62340 The CSS Bulletin Board Service shall provide capability:

a. to search for a string in message headers or in message text.

b. to search by author

c. to search by subject.

C-CSS-62350	 The CSS Bulletin Board Service shall provide a catch-up feature which
excludes user specified messages from appearing in the bulletin board
when it is viewed next time.

C-CSS-62360	 The CSS Bulletin Board Service shall allow the users to post messages to
bulletin board(s).

6-17 304-CD-003-002

C-CSS-62380 The CSS Bulletin Board Service shall allow users to copy/save a message
to their local system.

C-CSS-62390 The CSS Bulletin Board Service shall allow attaching ASCII or binary
files to a message.

Bulletin Board API

C-CSS-62800	 The CSS Bulletin Board Service shall interface for the applications to post
a message to bulletin boards.

C-CSS-62810	 The CSS Bulletin Board Service shall allow attaching ASCII and binary
files to a message.

C-CSS-62820	 The CSS Bulletin Board Service shall allow a message to be posted to
multiple bulletin boards.

Note: The proposed API requirements may not be achievable in COTS.
These are under discussion and may be changed or removed in a later
version.

6.2.4 Virtual Terminal Service

6.2.4.1 Overview Virtual Terminal Service

Virtual terminal (VT) hides the terminal characteristics and handling conventions from both the
operator and server host by allowing both parties to deal with a virtual device that has similar
capabilities. VT provides operators the capability to remotely log into ECS machines.

The following context diagram shows the service and its interactions with external sources.

6-18 304-CD-003-002

Get Security
Information

Commands

User

Responses

Commands

Responses

Figure 6.2-4. Virtual Terminal Context Diagram

Virtual
Terminal
Service

Remote
Host

Commands
Responses

6-19
304-C

D
-003-002

Security
Database

ECS Staff

6.2.4.2 Virtual Terminal Service Functional Requirements

C-CSS-63000	 The CSS Virtual Terminal shall provide a virtual device which hides the
physical terminal characteristics and handling conventions from both the
operator and the server host.

Note: Both parties deal with the virtual device that provides a basic set of
capabilities.

C-CSS-63010	 The CSS Virtual Terminal shall provide means to enhance characteristics
of the basic virtual device by mutual agreement between the two
communicating parties (option negotiations).

C-CSS-63020	 The CSS Virtual Terminal shall be based on industry standard and
accepted protocols (telnet and ktelnet).

Note:	 Telnet is described in IETF RFC 854, Kerberized telnet is described in
IETF 1411.

C-CSS-63040	 The CSS Virtual Terminal shall provide guest access to non-registered
users to log into the ECS guest server.

C-CSS-63050	 The CSS Virtual Terminal shall support kerberized version of the telnet
protocol for secure authentication of users.

C-CSS-63060 The CSS Virtual Terminal shall support X applications.

Note: This will unable the users to run GUI applications on the desktop.

6.2.5 Event Logger Service

6.2.5.1 Overview Event Logger Service

This service allows applications to log event and history information to a application defined file
which can later be used for fault, performance or statistical analysis. The service supports
application defined events and collects management and fault data. Each event in the file is given
a unique identifier.

The Event Logger service provides an API which records information to a log file. Browsing
and consolidation of the log files is supported by the Management Data Access Service.

The following context diagram shows the service and its interactions with external sources.

6-20 304-CD-003-002

Applications Event Logger Service

status information (error or ok)

log events

6-21
304-C

D
-003-002

writes
log
file

Datastore

Figure 6.2-5. Event Logger Context Diagram

6.2.5.2 Event Logger Service Functional Requirements

C-CSS-28000 CSS Event Logger Service shall provide capability to record event and
history data to a application specified log file.

Note: The data is logged to a flat file and later imported into a database.
Each event is assigned a unique identifier (eventid) to distinguish it from
other events in the system. The eventid is recorded in the log file.

C-CSS-28010	 CSS Event Logger Service shall accept and record event time (when the
event was generated, obtained from the Time Service) information.

C-CSS-28020	 CSS Event Logger Service shall accept and record the application
information (name and version of the calling application).

C-CSS-28025	 CSS Event Logger Service shall support predetermined logging levels that
provide different levels of information

Note: Three levels maybe defined as nominal, moderate and debug.

C-CSS-28030	 CSS Event Logger Service shall accept and record event message
information.

Note: Message text for the event will be based on c printf format and the
application will be able to pass in values for variables in the format
specification.

C-CSS-28040	 CSS Event Logger Service shall accept and record the event type
information. (Type of the event: fault, performance)

C-CSS-28060	 CSS Event Logger Service shall inform M&O staff if the event disposition
narrative by the application demands so.

Note: In this case, in addition to logging the event, the M&O staff is
informed.

C-CSS-28070	 CSS Event Logger Service shall record the operator/principle information
that is relevant for the generated event.

C-CSS-28080	 CSS Event Logger Service shall record the environment information for
the generated event.

Note: Environment information includes the OS name and version, the
DCE cell name. The type of information recorded will depend on the
event and the recording level.

6.3 Object Services

Object Services are defined as a collection of services (interfaces and objects) that support basic
functions for using and implementing objects. Object Services are general purpose, domain
independent and used for the construction of any distributed application.

6-22 304-CD-003-002

6.3.1 Event Service

6.3.1.1 Overview Event Service

The purpose of the Event Service is to support asynchronous communications between objects.
A standard remote procedure call results in the synchronous execution of an operation by an
object. If the operation defines parameters or return values, data is communicated between the
client and the server. A request is directed to a particular object. For the request to be successful,
both the client and the server must be available. If a request fails because the server is
unavailable, the client receives an exception and may take some appropriate action.

Event Service allows a more decoupled communication model between objects. For example, a
system administration tool may monitor and detect if a disk runs out of space. The software
managing a disk is unaware of the existence of the system administration tool. The software
simply reports that the disk is full. When a disk runs out of space, the system administration tool
opens a window to inform the operator which disk has run out of space.

The event service defines two roles for objects: the supplier role and the consumer role.
Suppliers produce event data and consumers process event data. Event data are communicated
between suppliers and consumers by issuing remote procedure calls.

There are two approaches to initiating event communication between suppliers and consumers.
The two approaches to initiating event communication are called the push model and the pull
model. The push model allows a supplier of events to initiate the transfer of the event data to
consumers. The pull model allows a consumer of events to request the event data from a supplier.
In the push model, the supplier is taking the initiative; in the pull model, the consumer is taking
the initiative. The communication type is generic , that is, all communication is by means of
generic push or pull operations, that take a single parameter that packages all the event data.

An event channel is an intervening object that allows multiple suppliers to communicate with
multiple consumers in an asynchronous fashion. An event channel is both a consumer and a
supplier of events.

Communication with an event channel is accomplished using DCE remote procedure calls.

6.3.1.2 Event Service Functional Requirements

C-CSS-23010	 The CSS Event Service shall provide asynchronous communication
between objects

C-CSS-23020	 The CSS Event Service shall provide a push API that allows a supplier of
events to initiate the transfer of the event data to consumers.

C-CSS-23030	 The CSS Event Service shall provide a pull API that allows a consumer of
events to request the event data from a supplier

C-CSS-23040	 The CSS Event Service shall provide an intervening object that allows
multiple suppliers to communicate with multiple consumers in a
decoupled fashion.

6-23 304-CD-003-002

C-CSS-23050 The CSS Event Service shall provide an API that communicates push
event data to the consumer from a supplier by invoking the operation and
passing the event data as a parameter.

C-CSS-23060 The CSS Event Service shall provide an API that terminates the push
event communication between supplier and consumer.

C-CSS-23070	 The CSS Event Service shall provide an API that blocks until the pull
event data is available or an exception is raised. It returns the event data
to the pull consumer.

C-CSS-23080	 The CSS Event Service shall provide an API that terminates the pull event
communication between supplier and consumer.

C-CSS-23090	 The CSS Event Service shall provide an API that connects a push supplier
to the intermediary for the push consumers.

C-CSS-23100	 The CSS Event Service shall provide an API that connects a pull
consumer to the intermediary for the pull suppliers.

C-CSS-23110	 The CSS Event Service shall provide an API that connects a pull supplier
to the intermediary for the pull consumers.

C-CSS-23120	 The CSS Event Service shall provide an API that connects a push
consumer to the intermediary for the push suppliers.

C-CSS-23130	 The CSS Event Service shall provide an API that returns a proxy that is
then used to connect a push-style consumer.

C-CSS-23140	 The CSS Event Service shall provide an API that returns a proxy that is
then used to connect a pull-style consumer.

C-CSS-23150	 The CSS Event Service shall provide an API that returns a proxy that is
then used to connect a push-style supplier.

C-CSS-23160	 The CSS Event Service shall provide an API that returns a proxy that is
then used to connect a pull-style supplier.

6.3.2 Directory/Naming Service

6.3.2.1 Overview Directory/Naming Service

Directory/Naming is one of the fundamental facilities needed in distributed environments to
uniquely associate a name with resources/principals along with some information so they can be
identified and located by the name even if the named resource changes physical address over
time.

Naming may be used more generally to store and retrieve any general information that required
to be made available across a network. This information could include a server's (an ECS search
program that is going to search the databases for a specified criteria) binding information, fileset

6-24 304-CD-003-002

(a file containing the forest vegetation for a specific time) locations, and a resource (a printer)
locations in a network, information about principals (the security namespace containing user
passwords, telephone numbers). The Naming service organizes this information in namespaces.

Servers use the Naming Service to register their location and protocol in the namespace. Clients,
knowing the name of the service they need to access, obtain from the Naming/Directory Service,
the location and other needed information such as the communication protocol, and then bind to
that service.

Similarly fileset location is kept in the namespace and users can retrieve files in a transparent
manner irrespective of their physical location. Naming service provides a naming interface that
support the basic naming operation. The Naming Service itself may be implemented in a variety
of ways. Therefore, a standard naming interface would define a uniform interface to a large class
of naming systems which can help improve portability of client-server applications across
networks with Naming Services implemented with different technologies.

Standard Naming interfaces also improve the modularity and the flexibility of distributed
computing. A directory agent maintains the namespace and performs directory service
operations. Directory agents can communicate with other standard namespaces to provide
directory services across multiple namespaces.

There are two widely known Name service specifications: ISO/CCITT X.500 and ARPA's DNS.
GDS is an implementation of the X.500 and BIND is an implementation of the DNS. Of the two,
BIND is widely used. Another widely used namespace is the OSF DCE's CDS. CSS will provide
an implementation of both the DNS and the X.500 namespaces, along with the OSF DCE's CDS
namespace.

6.3.2.2 Directory Service Functional Requirements:

Basic Functionality: The Directory service will provide the basic functionality.

C-CSS-20000	 The CSS Directory service shall provide the following basic functionality
to save and retrieve information into the local namespace.

a. Create/Delete/Get context (key)

b. List context

c. Set/Get attributes

d. Create/Delete attributes.

e. List attributes.

f. Set/Get attribute information.

C-CSS-20010	 The CSS shall provide implementations of the DNS and the X.500
namespaces.

Replication : To improve fault tolerance, copies of the namespace should be replicated across the
network to facilitate clients retrieving binding information in reasonable time. While all the

6-25 304-CD-003-002

replicas may be used for retrieval of information, only one of the replicas (master) should be
writable In order to maintain the integrity of the namespace against inconsistent updates. A
mechanism should be provided to periodically propagate changes in the master to the read-only
replicas.

The CSS Directory Service will maintain multiple copies of the namespace on different hosts to
provide fault tolerance as mentioned in the CSS RMA section.

C-CSS-20020	 The CSS Directory service shall provide a mechanism to periodically
update copies of the namespace from the namespace designated as the
master.

C-CSS-20025 The updating of the namespace shall be done

a. automatically.

b. manually by the administrator.

Distribution: Instead of storing the entire namespace in one place, it should be possible to break
it into several parts and distributed in several places. Replication can then be achieved at this
fine grain level allowing the administrators to have more replicas of those parts that are highly
used.

C-CSS-20030	 The CSS Directory Service shall provide the capability to partition the
namespace and distribute and maintain them at different hosts on the
network.

C-CSS-20040	 The CSS Directory Service shall provide the capability to replicate
partitions of the namespace on different hosts.

C-CSS-20050	 The CSS Directory service shall provide multiple directory agents which
cooperate among themselves through referral and chaining to perform
directory operations.

C-CSS-20060	 The CSS Directory service shall provide a way to denote the relative root
of the namespace.

Local cache: Since the namespace can grow to become very large, efficiency is achieved by
providing a local cache mechanism at clients where by all the latest binding information
retrieved so far is stored in the local cache and looked up first when it tries to resolve a binding
on behalf of a client. The disadvantage with this is that, the master database can be changed
without changing the local cache where by the binding information obtained from the local cache
may not be current.

C-CSS-20070	 The CSS Directory Service client shall maintain local cache to keep recent
lookup information from the namespace for more efficient further lookups.

Security: The directory module should interact with the security module to protect the contents
of the directory, to provide the information only to the authorized user, and to allow that user to
change the contents of the database as well as the permissions associated with the services.

6-26 304-CD-003-002

C-CSS-20080 The CSS Directory Service shall interact with the Security Service to
provide host based security to the entries in the namespace.

C-CSS-20085 The CSS Directory Service shall interact with the Security Service to
provide principal based security to the entries in the CDS namespace and
an enhanced host based security for the entries in the GDS namespace

Attributes: Sometimes it is advantageous for the servers to associate server defined attributes to
services. These are also called properties. Properties can then be used by clients or other
programs to prune services depending on a given criteria. Naming service should have provisions
to let the application developers define the schema and enter/retrieve attribute value pairs in
entries.

Extensibility: In order for the directory service to be extensible, it should support the X/Open
Federated Naming specification to be able to interact with the other standard directory services
supporting X.500, as well as the popular Domain Name Services (DNS). The Naming syntax is
different for these standards and Directory service should provide a way to translate the different
naming syntaxes among the local, X.500 and the DNS services. While supporting the basic
functionality supported by the local enterprise naming, CSS Directory service shall provide a
way to communicate with X.500 and DNS standard name services for name resolution.

C-CSS-20090	 The CSS Directory service shall define a minimum of 20 user defined
attribute types for application users to store/retrieve attribute information.

The GDS/CDS uses attribute ids in place of an attribute name while storing information in the
namespace. The namespace has a constraint that an entry in the namespace can not use the same
attribute type more than once. The attribute ids should be unique to avoid conflict with the
attribute ids used in other namespaces. As such unique ids for the attribute types need to be
obtained from standard bodies like the X/Open. DCE currently has ids for about 40 attribute
types. Application programmers can make use of these attribute types as long as the entry they
want to populate/edit won't use them. It is assumed that another 20 attributes types should be
enough for the application programmers to save additional application related information.

C-CSS-20110	 The CSS Directory service shall determine which naming service to use
from a given context.

C-CSS-20120	 The CSS Directory service shall provide a mechanism to communicate
with both X.500 and DNS naming services in resolving lookups.

C-CSS-20130	 The CSS Directory Service shall provide namespaces that are compatible
with the existing NASA X.500 and DNS directory services.

6.3.3 Security Service

6.3.3.1 Overview Security Service

In distributed systems, applications rely on services provided by servers running in different
address spaces running on heterogeneous platforms. Servers are independent and their main
functionality is to listen for client requests, process the request and send the results back to the

6-27 304-CD-003-002

clients. This division of processing can be done for any number of reasons such as efficiency,
availability of data etc. In addition to a client invoking a request, and the server processing that
request, both the client and the server may need to use mechanisms to protect resources as well
as the integrity of the data exchanged. These mechanisms comprise authentication, authorization,
data integrity and data privacy. While authentication is always used in every conversation
between a client and a server, the mechanisms for authorization, data integrity and privacy may
be used based on the need for those mechanisms. These are explained in detail in the section
below.

6.3.3.2 Security Service Functional Requirements

Authentication : Authentication is the process of verifying the validity of a principal. In order to
verify the identity of principals, systems usually associate a password (user given) with the
principal names and store and maintain these passwords inside the security registry. Users may
belong to groups. This group definition also needs to be maintained in the security registry. In a
network environment, principals want to access the resources over the network. In doing so, the
principal has to present his password in clear text along with the access request. But presenting
the password in clear text poses a number of risks and should be avoided. An authentication
mechanism to identify principals without passing the password in clear text is needed.

One way to deal with is to provide a central security service which keeps all the passwords in
encrypted form. A user who has properly identified a user name can then get an encrypted
password from the central database and then the local host which prompts the user to provide the
password is then encrypted the same way and then compared to see if a principal is a valid one.
There are various other ways (using secret key encryption, public key encryption, temporary
conversational key encryption) to achieve this and any one of them would be able to authenticate
principals with out passing the password in clear text over the network.

If temporary conversation keys are used to authenticate principals, usually they expire after a
system set finite time, before which each principal has to be re authenticated. Client/Server
programs running for more than this set time, have to re authenticate themselves with the security
server. This will prevent someone from stealing this temporary key and use it at a latter time, as
decrypting the temporary key should take longer than the key's expiration period. This should be
taken into consideration while designing the authentication service.

The authentication is usually done at three places. Initially when a principal wants to log in to the
system, the system should authenticate the user. When a client wants to make a request to a
server, the client may want to authenticate the server who is providing the service and similarly
the server may want to authenticate the client who is making the request. In the last two cases
(verifying the identify of the server and client), the authentication process can be done several
times depending the user needs. For example, the user may want to authenticate the server every
time a connection is made, or every time a request is made or for every packet of information
flowing.

There are two kinds of principals: active and non active principals. Active principals (persons)
while logging in, supply the password, which is then used to authenticate the user. Non active
principals can not supply the passwords interactively. In order to serve these passive users

6-28 304-CD-003-002

(servers), CSS will provide a way to get the password interactively and save it locally after
encrypting it. This local encrypted password will then be used to set the login context associated
with a server.

In order to provide services to non DCE clients, a gateway should be provided where a DCE
client is running. A non DCE user who can log (e.g. k-12 users) into the gateway is given access
to a DCE client application to communicate with the DCE servers. This local DCE client will
then assume a different identity given by the administrator. The CSS will provide APIs to
assume a different login context for applications.

C-CSS-21000	 The CSS Security service shall provide an API to verify the identity of
users.

C-CSS-21005	 The CSS Security service shall provide a unique session key for each
client session.

Note: The session key will be different for each client session, to prevent
an intruder from replaying a session.

C-CSS-21010	 The CSS Security service shall not transmit passwords in clear text across
networks.

C-CSS-21020	 The CSS Security service shall provide the capability to
create/modify/delete user accounts and privileges in the security registry.

C-CSS-21030	 The CSS Security service shall provide the capability to
define/modify/delete group information in the security registry.

C-CSS-21040	 The CSS Security service shall provide an API to limit the time after
which a login context will expire.

C-CSS-21050	 The CSS Security Service shall provide an API to refresh login contexts
before they expire.

C-CSS-21060	 The CSS Security Service shall provide an API to accept server keys
associated with services interactively at the startup of a service.

C-CSS-21070	 The CSS Security Service shall provide an API to store server keys
associated with servers to a disk file.

C-CSS-21080	 The CSS Security Service shall provide an API to retrieve the server keys
associated with services from a disk file at startup time to authenticate
the service.

C-CSS-21090	 The CSS Security Service shall provide an API to change the identity of
an application process through server keys.

C-CSS-21100	 The CSS Security service shall provide an API to challenge the
client/server to authenticate itself at the following three levels.

a. connect level

6-29 304-CD-003-002

b. request level

c. packet level

C-CSS-21105 The CSS Security Service shall notify the MSS Management Agent
Service upon a predetermined number of unsuccessful login attempts.

Authorization: Users/principals may be associated with several groups. Authorization is the
processing of deciding whether a given users/principals should be allowed to access a specified
services/resources and then allow/deny the service. In authorization, each resource is associated
with an access control list (ACL). Each ACL contains a list of entries specifying access
permissions to users or group of users. In host based authentication, the permissions set and the
principal set are fixed, and provide limited authentication capabilities: be able to authenticate
only one principal/group as opposed to multiple principals/groups. CSS will provide a
mechanisms for the programmer to define the permissions set and associate permissions to
multiple principals/groups.

Host based authentication allows only the owner of a resource to modify the ACL associated
with that resource. There will be provision to store these ACLs in persistent store. Besides the
server, any principal who is authorized to change the ACLs associated with a resource, such as
the M&O staff should be able to change the ACL. In order for other (authorized) users to edit the
ACLs, the server will provide a well known interface. Using this well known interface, third
party vendors can develop products to maintain the ACLs.

C-CSS-21110	 The CSS Security service shall authenticate the principal before checking
whether the principal is authorized to access a service/resources.

C-CSS-21120	 The CSS Security service shall provide an API to check the authorization
privileges of principals to access/control services/resources.

C-CSS-21130	 The CSS Security Service shall provide an API to define the permission
schema associated with a server/resource.

C-CSS-21140	 The CSS Security Service shall provide an API to create and maintain the
ACLs associated with the server/resource in a database.

C-CSS-21150	 The CSS Security Service shall provide an API to save/retrieve the ACL
database onto persistent store.

C-CSS-21160	 The CSS Security service shall provide the following APIs to MSS
security management applications to retrieve/modify the access control
lists associated with the ECS services/resources.

a. to identify the permissions available to a principal

b. to identify all the ACL managers protecting an object

c. to get the printable representation of the permissions

d. to locate the server with the writable copy of the ACL

6-30 304-CD-003-002

e. to read an ACL

f. to write an ACL

g. to test if the calling principal has some permissions

h. to test if another principal has some permissions.

Integrity: When data is transmitted over the network from one application to another, there
should be provision to preserve the integrity of the data. This is to make sure that the copy of the
data the receiver gets is exactly same as the data that the sender sends.

C-CSS-21170	 The CSS Security service shall provide an API to maintain the integrity of
the data passing between processes by using checksums at the following
three levels:

a. connect level

b. request level

c. packet level

Encryption: Encryption is the process of encoding a message into cipher text using a key. The
process of decoding the cipher text to its original form using a key is called decryption. The
encryption/decryption algorithms need not be secret. It is the key that protects the ciphered text
to be decrypted. The CSS security service will provide a mechanism to encrypt and transfer
messages and decrypt the received messages to maintain the privacy of the data that is being
transferred.

C-CSS-21180	 The CSS Security service shall provide an API to encrypt and send the
data passing between processes at the following three levels:

a. connect level

b. request level

c. packet level

C-CSS-21190	 The CSS Security service shall provide an API to receive and decrypt the
data passing between processes at the following three levels:

a. connect level

b. request level

c. packet level

C-CSS-21200	 The CSS Security service shall support the Data Encryption Standard
(DES) to encrypt and decrypt data.

General: In order to provide access information to the management applications, CSS security
service will log information into security logs whenever authentication and authorization services
are used.

6-31 304-CD-003-002

C-CSS-21210 The CSS Security service shall provide the capability to log audit
information into security logs whenever authentication and authorization
services are used. The audit information will contain the following:

a. Date and time of the event

b. User name

c. Type of event

d. Success or failure of the event

e. Origin of the request

6.3.4 Message Passing Service

6.3.4.1 Overview Message Passing Service

ECS distributed computing consists of several clients and server applications running on
different platforms. Clients send data to servers, which process the data and return the result to
the client. This interaction can be classified into 3 categories: synchronous, asynchronous and
deferred synchronous.

In synchronous mode, a client makes a request and passes control to the server. The server
services the request and returns the result back to the client, at which point the client gets back
the control. The program execution on the client side is blocked until the server returns from the
service. This is a blocking call and is called synchronous.

In asynchronous mode, the client makes a request with out losing control. The call won't return
anything, rather is used just to pass data to a service. Client processing can continue
simultaneously with the server processing. This is used in FOS applications to send real time
telemetry data to SCFs asychronously.

In deferred synchronous mode, the client makes a call and gets a ticket back from the server.
Both the server and the client can continue with the processing simultaneously. The client can at
a latter time communicate with the server to get the result of the request made earlier by
presenting the ticket. This is used mainly for computationally intensive applications, where the
return result is not needed right away to proceed with the processing at the client side. This is
used in FOS and SDPS applications which are computationally intensive.

FOS applications like the Off-line Analysis Request process uses this service to send analysis
data to the Off-line Analysis process and to receive the results of such analysis.

The FOS ECS Operations Control uses this to send schedule information to the ISTs.

SDPS process-intensive applications send the intermediate processing state/results to the user
interface to display the results of the process done so far.

Distributed Object Framework (Section 6.4) supports synchronous message passing. Only
asynchronous and deferred synchronous message passing is address here. In order to achieve

6-32 304-CD-003-002

asynchronous and deferred synchronous message passing, an intermediate buffering is
maintained, which collects all the messages sent and then sends them to the intended receivers.

6.3.4.2 Message Passing Service Functional Requirements

The CSS Message Passing should support both asynchronous and deferred synchronous
message passing.

C-CSS-22000	 The CSS Message service shall provide an API for senders to send
messages to receivers asynchronously without waiting for the receivers to
receive it.

C-CSS-22010	 The CSS Message service shall provide an API for senders to send
messages to receivers in a deferred synchronously manner through an
intermediary where by they can contact the intermediary at a latter time to
receive the result.

A sender may want to send the same message to different receivers. In such cases, the message
queue(intermediary) should save only one copy along with the information about different
servers.

C-CSS-22040	 The CSS Message Service shall provide an API for the sender to designate
multiple receivers for asynchronous messages.

While the sender wants to send a message to a receiver, it sends the message first to the
intermediate message queue. Sending the message from the sender to the message queue is
synchronous. In order to improve the performance, the message queue should be running on the
same host where the sender is running so the message passing doesn't involve passing it over the
network. There should be multiple instances of the message queues, so each sender that needs
to send messages can instantiate a separate instance of this service.

C-CSS-22050	 The CSS Message Service shall support multiple message queues so
different groups of processes can use different message queues.

Unclaimed messages after some set period of time, will be purged. If a message could not be
delivered in time and is being purged, then the message queue will send an event to the MSS
management agents.

C-CSS-22060	 The CSS Message Service shall purge a message from the message queue
after a user specified time irrespective of its delivery to the receivers.

C-CSS-22065	 The CSS Message Service shall log event messages to the MSS
management agents whenever the message service could not deliver a
message to any receiver in the time period set by the sender of the
message.

This service may use persistence service, in order to save itself onto disk and to read itself from
disk.

6-33 304-CD-003-002

C-CSS-22070 The CSS Message Service shall store undeliverable messages and retrieve
and transmit them later.

Message queues should support two kinds of models: push and pull. In push model, when a
message queue receives a message, it sends them to the receivers who have registered interest in
receiving that type of a message. In the pull model, it saves the messages, so that the receivers
can contact the message queue and pull the message from the message queue. The receiver call
should not be blocking, i.e., it should not wait until a message for it arrives at the queue. Rather it
should return with a message if one exists at the message queue, or return null to indicate that
there are not any messages available at the message queue.

C-CSS-22080	 The CSS Message Service shall provide an API for the receiver to register
interest in receiving messages from a certain sender.

C-CSS-22090	 The CSS Message Service shall provide the capability to locate and send
(push model) the messages to receivers.

C-CSS-22100	 The CSS Message Service shall provide a non blocking API for the
receiver to contact the message queue and get (pull model) the message.

Messages sent using this services, should support guaranteed delivery of the message to the
receivers.

C-CSS-22110	 The CSS Message service shall support guaranteed delivery of the
message to the receiver.

The service should support acknowledgments, where a sender wants to know whether a message
reached the receiver.

C-CSS-22120	 The CSS Message service shall provide an API for the sender of the
message to get the acknowledgment information the message service
receives from the receivers.

In deferred synchronous message, a message can be sent to only one receiver, in order to receive
the result associated with the operation. There should be a way for the sender to get the results of
a computation in deferred synchronous message passing.

C-CSS-22130	 The CSS Message service shall associate the receiver to a returned value
and maintain that information locally until the sender requests that
information.

C-CSS-22140	 The CSS Message Service shall provide an API for the sender of the
message to receive return information stored at the message queue.

If a receiver is not running at the arrival of a message, it should be stored and forwarded to the
receiver at a latter time.

C-CSS-22150	 The CSS Message Service shall defer sending a message to a receiver, if
the receiver is not active, and should try sending the message periodically
with a set interval of time until the receiver is active.

6-34 304-CD-003-002

6.3.5 Time Service

6.3.5.1 Overview Time Service

The Time Service keeps clocks in a network approximately in sync by adjusting the time kept by
the operating system at every node. Timestamps are used by many applications when recording
event occurrences to log. Most of the implementation detail of the Time Service is invisible to
the software developer.

Time Service provides operations to obtain timestamps based on Coordinated Universal Time
(UTC). The Time Service also translates different timestamp formats and perform calculations
on timestamps. The Time Service API provides the following functionality:

Retrieving timestamp information

Converting between binary timestamps that use different time structures

Converting between binary timestamps and ASCII representations

Converting between UTC time and local time

Manipulating binary timestamps

Comparing two binary time values

Calculating binary time values

Obtaining time zone information.

The Time Service includes clerks, local servers, global servers, couriers and time providers.
Every node has a clerk object. The clerk compare local system clock time with the correct time.
When the clerk observes incorrect system time, it queries local time servers for the correct time.
A calculation is made of the most probable time and an inaccuracy factor. Adjustments are made
to the nodes system time if needed.

Local time servers compare time periodically to keep their clocks in sync. Local time servers
only occur within a single local area network (LAN). Global time servers provide time outside of
their own LAN. Time communication between LANs is different than within a single LAN.
Couriers request time information from Global servers on behalf of local servers.

A Time Provider provides access to standardized or government controlled time devices such as
radios, satellites, or telephone lines. The servers within a Time Service query the Time Provider
for the current time. The Time Providers are considered the most accurate source of time
information.

6.3.5.2 Time Service Functional Requirements

C-CSS-25010	 The CSS Time Service shall adjust the time kept by the operating system
at every node.

C-CSS-25020 	 The CSS Time Service shall be used to obtain timestamps that are based
on Coordinated Universal Time (UTC).

6-35 304-CD-003-002

C-CSS-25030 The CSS Time Service shall provide an API to retrieve timestamp
information.

C-CSS-25040 The CSS Time Service shall provide an API for converting between binary
timestamps that use different time structures.

C-CSS-25050	 The CSS Time Service shall provide an API for converting between binary
timestamps and ASCII representations.

C-CSS-25060	 The CSS Time Service shall provide an API for converting between UTC
time and local time.

C-CSS-25070	 The CSS Time Service shall provide an API for manipulating binary
timestamps.

C-CSS-25080	 The CSS Time Service shall provide an API for comparing two binary
time values.

C-CSS-25090	 The CSS Time Service shall provide an API for calculating binary time
values.

C-CSS-25100	 The CSS Time Service shall provide an API for obtaining time zone
information.

C-CSS-25110 The CSS Time Service shall utilize a UTC based time provider.

C-CSS-25120	 The CSS Time Service shall provide the utilities required to synchronize
system time across all components.

C-CSS-25130	 The CSS Time Service shall have the capability to synchronize it's time to
one or more external time sources.

C-CSS-25140	 The CSS Time Service shall maintain an accuracy of 500 milliseconds
within all ECS distributed components.

6.3.6 Lifecycle Service

6.3.6.1 Overview Lifecycle Service

The purpose of the Life Cycle Services is to define services and conventions for creating objects
in different locations. A factory is an object that creates another object. Factories have well
defined IDL interfaces and implementations in some programming language. A factory is a
creation service providing "create_object" operation. To create an object, a client possesses an
object reference for a factory and issues an appropriate request on the factory. As a result, a new
object is created and typically an object reference is returned.

The client-server model assumes that servers are always available and functional. A number of
hosts have idling server processes waiting for client requests. In addition to poor server
utilization, this is also a drain on system resources. Servers may also be unavailable due to
network or system crashes and must be restarted. It is necessary to provide users with consistent

6-36 304-CD-003-002

access to servers. Rather than running all the servers all the time, it must be possible to provide
the illusion that servers are always active while efficiently utilizing resources.

In the Client-Server programming paradigm, application clients assume servers are always
available and active. This may not be always the case:

1. 	 Some servers may impose too high a resource drain to be run continuously. It would be
more advantageous to start these infrequently or lightly used servers only on demand,
thus saving on critical network and system resources. Thus the availability of a server
depends on the tradeoff between demand for that service and the overhead of running that
service.

2. 	 Even servers that need to be run all the time may not live through system or network
crashes. In the event of such crashes, a service is desired to restart these servers without
manual intervention.

The Lifecycle Service instantiates server instances dynamically. It intercepts client requests and
ensures that the necessary servers are running. If the server is not found, the Lifecycle Service
will start the required server on a supporting host in the DCE cell. It does not detect server
crashes. It merely ensures that a server is available to service a user request. Lifecycle maintains
a universal listener on every host and spawns application servers on demand.

6.3.6.2 Lifecycle Service Functional Requirements

C-CSS-24010	 The CSS Lifecycle Service shall provide a generic instantiation capability
that creates a new object for a client.

C-CSS-24020	 The CSS Lifecycle Service shall provide an API that accepts state
initialization information.

C-CSS-24030	 The CSS Lifecycle Service shall provide an API that accepts resource
preference information.

C-CSS-24040	 The CSS Lifecycle Service shall provide an API that returns an object
invocation handle.

C-CSS-24050	 The CSS Lifecycle Service shall ensure that a server is available to service
a user request.

C-CSS-24060	 The CSS Lifecycle Service shall act as an intermediary during the client
server connection phase.

6.3.7 Thread Service

6.3.7.1 Overview Thread Service

A thread can be defined as a lightweight process. Threads actually exist within a process. Like a
process, a thread has a program counter and other state information. The thread executes a
program. Unlike processes, all threads in a process share the same address space. Each thread has

6-37 304-CD-003-002

an identifier, scheduling policy, scheduling priority, error value, and data binding and the
required system resources to support flow of control.

The disadvantage of having threads is that they can be allocated concurrently. Since threads can
change data visible to other threads, the access to the shared data must be managed. Developing
with threads must account for the possibility that other threads may change shared data at any
point. Code that functions properly with multiple threads is called thread-safe.

Threads differ from the other Object Services in that threads do not involve networking. Threads
are a local service that affects the operation of a single program on a single node. Threads
provide an efficient and portable way to provide for asynchronous and concurrent processing,
both of which are requirements of network software.

Implementing a multithreaded server does not require calling any pthread routines. Simply
calling rpc_server_listen() with an argument value greater than 1 will cause each invocation of a
server operation to run as a distinct thread. Unless the server operation needs to create additional
threads for some reason, there is no need to explicitly call the pthread_routines. Since each server
operation executes as a result of an RPC, there is generally no need to synchronize their
termination.

Implementing a multithreaded server, however, does require protecting against conflicts between
different threads accessing the same data. Conflicts can occur because a thread can be timesliced
at any time. Whenever a thread accesses data that can be modified by another thread, there is a
potential for inconsistent behavior.

The PthreadMutex Interface is included for synchronizing threads. A mutex is a data object that
is in one of two states: locked or unlocked. Once a thread has locked a mutex, no other thread
can use it or lock it until it has been unlocked. A thread can lock a mutex by calling
PthreadMutex::Lock() and unlock it by calling PthreadMutex::Unlock(). If the mutex has already
been locked by another thread, PthreadMutex::Lock() will not return until the mutex becomes
available.

6.3.7.2 Thread Service Functional Requirements

C-CSS-26010	 The CSS Thread Service shall allow the option that each invocation of a
server operation to run as a distinct thread.

C-CSS-26020	 The CSS Thread Service shall protect against conflicts between different
threads accessing the same data.

C-CSS-26030	 The CSS Thread Service shall take into account the possibility that other
threads may change shared data at any point. Code that will function
correctly when executed by multiple concurrent threads is called
thread-safe.

C-CSS-26040	 The CSS Thread Service shall provide an API that synchronizes the access
of shared data between concurrent threads.

6-38 304-CD-003-002

C-CSS-26050 The CSS Thread Service shall provide a synchronizing object that is in
one of two states: locked or unlocked.

C-CSS-26060 The CSS Thread Service shall provide an API that allows each thread to
lock the synchronizing object before it accesses the shared data

C-CSS-26065	 The CSS Thread Service shall provide an API to release locks associated
with resources.

C-CSS-26070	 The CSS Thread Service shall provide an API that allows each thread to
unlock the synchronizing object when it is finished accessing that data.

C-CSS-26080	 The CSS Thread Service shall if the synchronizing object is locked by
another thread, block the thread requesting the lock.

6.4 Distributed Object Framework

6.4.1 Overview Distributed Object Framework (DOF)

Object Oriented applications consist of a number of interrelated objects. Each object is
characterized by a set of attributes and methods. Each object has a clear interface that identifies
the methods a user can invoke and get responses to. The object that requests information is called
the requester and the object that provides a service is called the provider. Each provider object
takes requests for operations that it has identified in the interface, performs the computations, and
passes the results back to the requester. Application development consists of defining and
instantiating the objects and passing messages (invoking methods) between the objects to
achieve its objective.

In single address space applications, all objects reside in the same address space. In a distributed
object framework, objects are distributed in multiple address spaces, spanning across
heterogeneous platforms. Object can reside anywhere in the network, but the basic contract
between an object and the users is the interface. Objects can be spread across the network due to
efficiency, availability of data. From the perspective of the requester of a service, the object
location (location independence), invocation (invocation independence) should be the same no
matter where the object is physically present.

Invoking methods amounts to passing messages between objects. If the objects are in different
address space, then the messaging should be done via network. Client/server paradigm supports
this kind of communication. In this paradigm, one side of the session (client) is allowed to make
requests, while the other side (server) may only make replies. Remote procedure call is a
communication method that is used to implement the client/server paradigm.

The server provides a certain operation and is called a subroutine/function for the clients to use.
In that sense, a normal program can be broken down into a number of subroutines and servers
implement the subroutines. Clients call these subroutines as if they are local. When a client
invokes one of these remotely implemented functions, program execution transfers from the
client to the server where it is processed. Once the execution is done, the result is passed back to
the caller, client and the program execution flow will be turned back to the client. In order to

6-39 304-CD-003-002

achieve this, there must be a standard interface definition language (IDL) to express the interface
in a clear way. This is a pseudo language for which mappings should exists so that the interface
expressed in IDL can be converted to high level languages like C using an IDL compiler. Once
the interface is expressed in a standard language, anybody (requester) who wants to make an
invocation can do so by adhering to the signatures present in the interface. The IDL should
support standard types, obey some lexical rules and have a language syntax to express the
interface in a crisp and unambiguous way and by preserving the semantics of the interface. Since
the data formats or internal representation of data may be different on different platforms, the
RPC mechanism should provide a way to convert the data into a standard format so that both the
receiver and the sender would interpret the data in the same way. The process of converting the
data into a standard format is called marshaling and the process of converting the data from the
standard format into a platform's internal format is called unmarshaling. This paradigm deals at
the program function level and has no notion of objects.

Distributed Object Framework (DOF) is like the process explained above, but instead of
differentiating at the functional level, it differentiates at the object level. Objects behavior is
captured in the interface definition language. Object implementation is carried on remote hosts,
which are responsible to execute procedures, update the object state and return the results. This
paradigm can makes use of inheritance while defining new interfaces by inheriting existing
interfaces. Implementation inheritance may also be possible as long as the implementation of the
super class exists within the scope of the current implementation. This paradigm also needs a
standard interface definition language and provide the mechanism to marshal and unmarshal
standard types. In this paradigm, an executing program (client) can instantiate an object at any
host which provides the implementation of that object and query that object to do certain
operations. In order to do that, two objects are created: one at the client and one at the server.
The object created at the server is the real object which implements the behavior of the object.
The object created at the client is called a surrogate object, whose main purpose is to
marshal/unmarshall the arguments, make call to the real object, and get the results back to the
calling program. From the clients perspective, the call is carried locally. The surrogate object
does all the underlying remote connect, instantiating the object and invoking the procedure. This
is transparent to the client and is done through the use of IDL and the supporting framework.

6.4.2 Distributed Object Framework Functional Requirements

Since the interface is a contract between the client and server (which may be running on different
platforms) there must a standard way to express the interface. This is done by adhering to a
standard IDL. There are several standard IDLs geared towards different needs, some already
defined and some being defined. IDL is a pseudo language and as such needs compilers to
transform the interfaces into standard high level languages. IDL compile generates stubs for the
client and for the server. The client and server software include these stubs and write the code.
This code is then compiled and linked with the runtime libraries to make it into a complete
application.

C-CSS-01000	 The CSS DOF Service shall provide a standards-based Interface Definition
Language (IDL) and language mappings to at least C and C++ (limited)
languages.

6-40 304-CD-003-002

Each interface written in the IDL will have a major and minor version numbers. For upward
compatible new interfaces, a new higher minor version will be used in the definition of the new
interface and the new implementation can be implemented which can replace the old
implementation. Clients requesting information, should then get the new implementation with
out any change in the client software. For non upward compatible versions, client software has to
be updated to reflect the changes in the interface.

C-CSS-01010	 The CSS DOF provided IDL shall support versioning of the interface
supporting minor and major versions.

C-CSS-01020	 The IDL supported minor versioning shall be upward compatible that
requires no changes in the client software to communicate with the new
implementation.

Since the client and server run in different address processes, error propagating is normal. Errors
occurring in the server should be propagated to the client in a consistent way. One way is to pass
error flags between the client and server for each method invocation. This is not a preferred way
because, error checking should be done after each method invocation. A more elegant approach
is to provide exception capabilities, where the servers can catch exceptions in their code and
through that exception in the clients code. This may pose some incompatibility problems as not
all high level languages support exception handling. So the framework should support passing
the general error status as automatically as a parameter.

C-CSS-01030	 The CSS DOF Service shall support the passing of the general error status
as a parameter in calls between the clients and servers automatically.

While making a request, the arguments are to be marshaled into a common network
representation format and sent to the server where they are unmarshaled into the local
representation. This will be transparent to the user of the service.

C-CSS-01040	 The CSS DOF Service shall provide the capability to marshal and
unmarshal the arguments and the returned value transparently while
making a remote procedure call.

IDLs support how to pass standard types over the network, by providing marshaling and
unmarshaling methods for the standard types. Objects themselves are types, but are user defined
types. Object frame work (IDL) should provide a mechanism to transfer user defined types
(objects) over the network by proving hooks to marshal and unmarshal them.

C-CSS-01050	 The CSS DOF Service shall provide the capability to marshal and
unmarshal standard types to/from a common standard format.

C-CSS-01060	 The CSS DOF Service shall provide the capability to define marshaling
and unmarshaling routines for user defined types.

In order to achieve location independence, DOF will make use of a central database to register
services with a user friendly names. All the needed information about a service like the protocol,
host, interface are will be saved in this central place so clients can find and bind to these services.
An interface can have multiple implementations. As such there should be a mechanism to

6-41 304-CD-003-002

distinguish implementations of an interface. Some times a client may want to use an a particular
implementation on a particular host. In order to aid this, there should be provision to identify
each object implementation uniquely. The DOF should register the services with the local
endpoint mapper, so the client can get the port number on which the service is being run. In order
to make the lookup of the services easier, there should be a way to classify the services into
different groups. If a service is being removed, then there should be a way to remove the service
information from the central database.

C-CSS-01070	 The CSS DOF Service shall provide server APIs to register/unregister
services in the namespaces (in different administrative domains) under
different views (server/group/profile).

C-CSS-01080	 The CSS DOF Service shall provide server APIs to register/unregister
different implementations of an interface in the namespace.

C-CSS-01090	 The CSS DOF Service shall provide server APIs to register/unregister
individual objects implementing an interface in the namespace.

C-CSS-01100	 The CSS DOF Service shall provide server APIs to register their services
using different protocols in the namespace.

C-CSS-01110	 The CSS DOF Service shall provide server APIs to register their services
with the local endpoint mapper with the proper port number.

C-CSS-01120	 The CSS DOF Service shall provide mechanisms to shutdown a service
gracefully, by allowing the servers to unregister the server information
from the namespace.

Since a server running can service several requests simultaneously, there should be a way to limit
the number of threads to service the incoming requests. If all the threads are used, then the server
manager has to keep the incoming requests into a queue and process them in that order.

C-CSS-01130	 The CSS DOF Service shall provide server APIs to limit the maximum
number of threads to use in servicing the requests concurrently.

In order to invoke a service, a client first has to find and bind to the service. The client obtains
the binding information (binding handle) from the central database by specifying a protocol and a
combination of a unique service name, a unique implementation type, a unique object name.

C-CSS-01140	 The CSS DOF Service shall provide client APIs to bind to services
(registered in the local namespace as well as remote namespaces) by using
any of the following information to achieve location transparency of
services.

a. a service name

b. an interface name

c. an object name

d. a host name and communication protocol

6-42 304-CD-003-002

e. an object reference

C-CSS-01150 The CSS DOF Service shall return gracefully by throwing an exception or
returning an error code when it can not retrieve the binding information or
can not resolve a binding.

Since lookups from the central database is expensive, a local cache is maintained containing
information about recent lookup information. While getting the information from the local cache
is efficient, the information present in the local cache may not be up to date. As such, there
should be a client selectable provision whether to use the local cache in the lookup.

C-CSS-01160	 The CSS DOF Service shall provide client APIs to specify a confidence
level of the binding information as follows:

a.	 a low confidence level indicating the use of a local cache to obtain
binding information

b.	 a medium confidence level indicating the DOF to get the binding
information from any of the directory replicas.

c.	 a high confidence level indicating the DOF to get the binding
information from the master copy of the directory services.

In order to provide security both the client and the server should be able to select the type of
authentication and authorization, data integrity and data privacy to be used on a request. This is
done using the security service. Since the server has a different identity than the identity of the
user who brings up the server, there should be a way to set the identity of the server to a different
principal.

C-CSS-01170	 The CSS DOF Service shall provide APIs to set/get the authentication
service type to be used between the server and the client.

C-CSS-01180	 The CSS DOF Service shall provide APIs to set/get authorization service
type to be used between the client and the server.

C-CSS-01190	 The CSS DOF Service shall provide APIs to maintain the integrity of the
data to be passed between the client and the server.

C-CSS-01200	 The CSS DOF Service shall provide APIs to maintain the privacy of the
data passed between the client and the server by encrypting and decrypting
the data.

C-CSS-01210	 The CSS DOF Service shall provide APIs to set the identity of a given
principal to a given process.

The DOF should support the underlying standard TCP and UDP communication protocols, and
should run on at least HP, DEC, IBM, SUN platforms. This framework should support
clients/servers developed under DCE.

C-CSS-01220	 The CSS DOF shall support the TCP and UDP communication protocols
to communicate between the servers and the clients.

6-43 304-CD-003-002

This page intentionally left blank.

6-44 304-CD-003-002

7. ISS Functional Requirements

Section 7 contains the requirements associated with the Internetworking Subsystem (ISS). This
includes requirements that pertain to the Networking Configuration Item (i.e., protocols
associated with Transport, Network, and Datalink and Physical Services) and to the
Internetworking Hardware Configuration Item (i.e., networking devices such as routers,
concentrators, switches, and cabling).

Release A networking services provided by ISS will include capabilities necessary to support
TRMM operations. They will also provide early interface test support for the AM-1, Landsat 7,
and COLOR missions. Release A will provide interoperability with NSI and the capability for
authorized users to access, search, access, and receive data holdings. ISS networks and services
will support the SMC, the EOC, and at GSFC, MSFC, LaRC, and EDC DAACs. Connectivity
between the four DAACs will be provided via the ESN WAN, which will have been transitioned
from V0 to ECS. ISS will also support data flows between V0 and ECS, as a part of V0-ECS
interoperability.

Section 7 is organized as follows.

•	 Section 7.1 contains general requirements pertaining to ISS, including interface requirements
(both external and internal), performance requirements, RMA requirements, and evolvability
requirements.

• Section 7.2 contains requirements pertaining to the Networking Configuration Item.

•	 Section 7.3 contains requirements pertaining to the Internetworking Hardware Configuration
Item.

7-1 304-CD-003-002

7.1 General Requirements

7.1.1 ISS Interface Requirements

Release A TRMM operations will require ISS internal (supporting SDPS and CSMS) and
external interfaces at three DAACs--GSFC, LaRC, and MSFC. ECS will archive and distribute
most of the data that TSDIS (the TRMM Science and Data Information Distribution System)
produces. TRMM data will flow from TSDIS to GSFC and MSFC each day via the ESN WAN
for archival at the two DAACs. Ancillary datasets will be sent from NOAA (Suitland) to GSFC.
In addition, Level 0 data from two of the TRMM instruments, CERES and LIS, will be
transported from the SDPF at Goddard to MSFC and LaRC, respectively, via NOLAN. At LaRC
and MSFC, the SDPS subsystem will process the CERES and LIS data using algorithms ported
from the SCFs. Algorithm integration and test will be performed by one SCF per instrument, and
in both cases these SCFs are local (on the campus) to their DAACs.

Release A early interface testing will require ISS services for the following functions:

•	 testing of FOS, including communications with EDOS (using the EDOS simulator to
send data via Ecom), communications to and from the ISTs, as well as planning,
scheduling, monitoring, analysis and commanding functions within the EOC;

• testing of AM-1 ingest, requiring an ISS interface with Ecom at GSFC and LaRC;

•	 testing of Landsat ingest will test the connectivity between the Landsat facility and the
EDC DAAC; and

•	 testing for Color will test the connectivity between the Color facility and the GSFC
DAAC.

7.1.1.1 ISS/External Interface Requirements

ISS provides for transport and network layer interfaces with all external systems. Currently, all
external interfaces use the Internet Protocol (IP) suite, and exchanges of data with all interfaces
could be characterized as exchanges of data and network layer protocol services as described by
the IP suite. Table 7-1 summarizes the ISS external interfaces to network providers and external
end systems, as required for Release A.

7-2 304-CD-003-002

Table 7-1. ISS/External Interfaces
ISS LAN Network Provider

Interface
External End System Interface

GSFC DAAC LAN NSI external users, including SCFs

GSFC DAAC LAN TSDIS LAN TSDIS

GSFC DAAC LAN ESN WAN (ISS) NOAA

GSFC DAAC LAN ESN WAN (ISS) International Partners

GSFC DAAC LAN GSFC Campus
Network

Color, external users located on the GSFC
Campus Network

GSFC DAAC LAN MSFC V0 DAAC LAN V0 systems

MSFC DAAC LAN NSI external users, including SCFs

MSFC DAAC LAN NOLAN SDPF (L0 LIS data)

MSFC DAAC LAN MSFC Campus
Network

external users located on the MSFC Campus
Network, including SCFs

MSFC DAAC LAN ESN WAN (ISS) International Partners

MSFC DAAC LAN LaRC V0 DAAC LAN V0 Systems

LaRC DAAC LAN NSI external users, including SCFs

LaRC DAAC LAN NOLAN SDPF (L0 CERES data)

LaRC DAAC LAN LaRC Campus
Network

external users located on the MSFC Campus
Network, including SCFs

LaRC DAAC LAN ESN WAN (ISS) International Partners

LaRC DAAC LAN LaRC V0 DAAC LAN V0 Systems

EDC DAAC LAN NSI external users, including SCFs

EDC DAAC LAN EDC Campus
Network

external users located on the EDC Campus
Network

EDC DAAC LAN Landsat Production
System Network

Landsat Production System

EDC DAAC LAN ESN WAN (ISS) International Partners

EDC DAAC LAN EDC V0 DAAC LAN V0 Systems

EOC LAN Ecom EDOS, EDF

EOC LAN ESN WAN (ISS) ISTs (TBD for Release A interface testing)

EOC LAN GSFC Campus
Network

ISTs located on the GSFC Campus

The external requirements for the ISS are as follows.

C-ISS-01000 	 The ISS shall interoperate with the V0 Wide Area Network to provide IR­
1 connectivity as specified in DID 220, "Communications Requirements
for the ECS project".

C-ISS-01010	 The ISS shall provide an interface between the V0 WAN and the MSFC,
LaRC and GSFC DAACs for the purpose of IR-1 interface testing.

7-3 304-CD-003-002

C-ISS-01020 The ISS shall interface with NSI or an alternate Internet provider at GSFC,
MSFC, LaRC and EDC to provide DAAC access to science users in
accordance with the following documents:

a.	 DID 220, "Communications Requirements for the ECS Project"
194-220-SE3-001

b.	 Interface Requirements Document between EOSDIS Core System
(ECS) and the NASA Science Internet (NSI), 194-219-SE1-001

C-ISS-01030	 The ISS shall provide for connectivity between the MSFC DAAC and
NOLAN for the ingest of L0 LIS data.

C-ISS-01040	 The ISS shall provide for connectivity between the LaRC DAAC and
NOLAN for the ingest of L0 CERES data.

C-ISS-01080	 The ISS shall reuse the V0 WAN in order to provide connectivity between
V0 network nodes and V1 network nodes and to provide interoperability
between the systems.

C-ISS-01090	 The ISS shall provide for local or metro area connectivity between V0
network nodes and V1 network nodes at GSFC, LaRC and MSFC DAAC
sites in order to provide interoperability between the systems.

C-ISS-01100	 The ISS shall provide for connectivity with TSDIS in order to transfer
TRMM data to the GSFC DAAC.

C-ISS-01110	 The ISS shall provide for connectivity with TSDIS in order to transfer
TRMM data to the MSFC DAAC via the ESN WAN.

C-ISS-01120	 The ISS shall provide for connectivity to the MSFC campus network to
enable transfer of data between SCF(s) located at MSFC and the MSFC
DAAC.

C-ISS-01130	 The ISS shall provide for connectivity to the LaRC campus network to
enable transfer of data between SCF(s) located at LaRC and the LaRC
DAAC.

C-ISS-01140	 The ISS shall provide for connectivity to the GSFC campus network to
enable transfer of data between SCF(s) located at GSFC and the GSFC
DAAC

C-ISS-01150	 The ISS shall provide for connectivity between the Landsat system and the
EDC DAAC to support the ingest of Landsat data.

C-ISS-01170	 The ISS shall provide for connectivity between the EOC and Ecom for
AM-1 interface testing.

C-ISS-01180	 The ISS shall provide for connectivity between the EOC and the ESN
Wide Area Network for AM-1 interface testing of EOC / IST
communications.

7-4 304-CD-003-002

C-ISS-01185 The ISS shall provide for connectivity to the designated international
partner (IP) pickup point for ASTER.

C-ISS-01195 The ISS shall provide for connectivity with Ecom at the following ECS
sites:

a. GSFC DAAC

b. GSFC EOC

c. LaRC DAAC

d. MSF DAAC

7.1.1.2 ISS/SDPS Interface Requirements

The ISS provides the networks and services to transport data between SDPS components at each
of the DAACs.

C-ISS-01220	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between SDPS
components at the GSFC DAAC.

C-ISS-01230	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between SDPS
components at the LaRC DAAC.

C-ISS-01240	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between SDPS
components at the EDC DAAC.

C-ISS-01250	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between SDPS
components at the MSFC DAAC.

7.1.1.3 ISS/FOS Interface Requirements

The ISS provides the networks and services to transport data between FOS components at the
EOC. (Using GFE'd circuits, ISS also provides the networks and services to transport data
between the EOC and ISTs. This is included in Section 7.1.1.1, ISS External Interfaces, C-ISS­
1180)

C-ISS-01190	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4
services between EOC components (in support of FOS interface testing at
Release A).

C-ISS-01200	 The topology of the EOC LANs shall not inhibit the reconfiguration of
FOS devices to support either operational or support functions.

C-ISS-01210	 The ISS shall provide the EOC with a separate network to support
functions that will not interfere with the EOC's Operational LAN.

7-5 304-CD-003-002

C-ISS-01215 The EOC's support LAN architecture shall be identical in function and
performance to that of the operational network.

7.1.1.4 ISS/CSMS Interface Requirements

The ISS provides the networks and services to transport data between CSMS components at the
DAACs, and between CSMS and SDPS and FOS components at the DAACs and EOC.

C-ISS-01255	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between CSMS
components at the GSFC DAAC.

C-ISS-01260	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between CSMS
components at the SMC.

C-ISS-01270	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between the SMC and the
GSFC DAAC.

C-ISS-01280	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between the SMC and the
EOC.

C-ISS-01290	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between the FOS EOC
components and the CSMS-provided LSM within the EOC.

C-ISS-01300	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between the CSMS and
the SDPS components at the MSFC DAAC.

C-ISS-01310	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between CSMS
components at the MSFC DAAC.

C-ISS-01320	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between CSMS and
SDPS components at the MSFC DAAC.

C-ISS-01330	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between CSMS
components at the LaRC DAAC.

C-ISS-01340	 The ISS shall provide LAN connectivity and OSI Layer 1 through 4 (i.e.,
from the physical to the transport layer) services between CSMS and
SDPS components at the LaRC DAAC.

7-6 304-CD-003-002

7.1.2 ISS Performance Requirements

The ISS performance requirements are detailed in Section 4.3.3, "ISS-INHCI Performance
Requirements."

7.1.3 RMA Requirements

C-ISS-04000	 The ISS LANs and WANs shall have an operational availability of 0.96 at
a minimum and an MDT of four (4) hours or less (1.5 hour design goal)
unless otherwise specified.

C-ISS-04020	 Backups of all router configuration files shall be maintained at the local
DAAC and the Network Management Facility (NMF).

C-ISS-04030 Each ESN WAN point of presence shall have a primary and backup router.

C-ISS-04040	 The EOC LAN shall have no single point of failure for critical real-time
functions.

C-ISS-04050	 The EOC Operational LAN shall provide the following levels of
availability and mean down time (MDT): for critical real-time data, .99980
availability, MDT < 1 minute; for non-critical real-time data, .99925,
MDT < 5 minutes.

C-ISS-04055	 The EOC Support LAN shall have an operational availability of at least
0.96 and shall have an MDT of no greater than 4 hours.

C-ISS-04060	 The portion of the DAAC LAN supporting the SDPS function of receiving
science data shall contribute to the function's operational availability of
0.999 at a minimum and an MDT of two (2) hours or less.

C-ISS-04070	 The portion of the DAAC LAN supporting the SDPS function of archiving
and distributing data shall contribute to the function's operational
availability of 0.98 at a minimum and an MDT of two (2) hours or less.

C-ISS-04080	 The portion of the DAAC LAN supporting user interfaces to SDPS Client
subsystem services shall contribute to the function's operational
availability of 0.993 at a minimum and an MDT of two (2) hours or less

C-ISS-04090	 The portion of the DAAC LAN supporting the SDPS function of
information searches on the ECS Directory shall contribute to the
function's operational availability of 0.993 at a minimum and an MDT of
two (2) hours or less .

C-ISS-04100	 The portion of the DAAC LAN supporting the SDPS function of Data
Acquisition Request (DAR) Submittal including TOOs shall contribute to
the function's operational availability of 0.993 at a minimum and an MDT
of two (2) hours or less.

7-7 304-CD-003-002

C-ISS-04110 The portion of the DAAC LAN supporting the SDPS function of metadata
ingest and update shall contribute to the function's operational availability
of 0.96 at a minimum and an MDT of four (4) hours or less.

C-ISS-04120	 The portion of the DAAC LAN supporting the SDPS function of
information searches on local holdings shall contribute to the function's
operational availability of 0.96 at a minimum and an MDT of four (4)
hours or less.

C-ISS-04130	 The portion of the DAAC LAN supporting the SDPS function of local
data order submission shall contribute to the function's operational
availability of 0.96 at a minimum and an MDT of four (4) hours or less.

C-ISS-04140	 The portion of the DAAC LAN supporting the SDPS function of local
data order submission across DAACs shall contribute to the function's
operational availability of 0.96 at a minimum and an MDT of four (4)
hours or less.

C-ISS-04150	 The portion of the DAAC LAN supporting the SDPS subsystems data base
management and maintenance interface shall contribute to the function's
operational availability of 0.96 at a minimum and an MDT of four (4)
hours or less.

7.1.4 Evolvability Requirements

C-ISS-06000	 The ISS network architecture shall enable expansion to GByte networks
including the ability to provide increased volume of data
distribution/access.

7.2 Networking Configuration Item
C-ISS-02000	 The ISS shall provide connection oriented transport services as specified

by the TCP protocol referenced in RFC 793.

C-ISS-02010	 The ISS shall provide the capability to filter packets based on the
port/socket of the transport layer protocol.

C-ISS-02020	 The ISS shall provide connectionless transport services as specified by the
UDP protocol referenced in RFC 768.

C-ISS-02030	 The ISS shall provide network layer services as specified by the Internet
Protocol (IP) suite referenced in RFC 791.

C-ISS-02040	 The ISS shall provide the capability to filter packets based upon network
layer source and/or destination addresses.

C-ISS-02050	 The ISS shall provide ICMP network layer service as specified by RFC
792.

7-8 304-CD-003-002

C-ISS-02060 The ISS shall provide network layer services in compliance with one or
more of the following protocols as appropriate to the type of the physical
network supported.

a.	 IP over Ethernet as specified in RFCs 894, 895, 826 (ARP), 903
(RARP)

b. IP over FDDI as specified in RFC 1188, 1390 (ARP, RARP)

c. IP over HiPPI as specified in RFC 1374 (includes ARP, RARP)

d. IP over SMDS as specified in RFC 1209 (includes ARP, RARP)

C-ISS-02510 The EOC LANs shall be capable of supporting multicasting.

C-ISS-02520	 The ISS shall provide services based on the Open Shortest Path First
(OSPF) protocol referenced in RFC 1583 to route traffic between the
source and destination nodes, maintain route databases, and exchange
routing information between networks.

C-ISS-02530	 The ISS shall provide services based on the Routing Information Protocol
(RIP) referenced in RFC 1058 to route network traffic between the source
and destination nodes.

7-9 304-CD-003-002

This page intentionally left blank.

7-10 304-CD-003-002

Abbreviations and Acronyms

ACL Access Control List

ADC Affiliated Data Center

AM-1	 EOS AM Project spacecraft 1, morning spacecraft series -- ASTER, CERES,
MISR, MODIS and MOPITT instruments

ANSI American National Standards Institute

Ao Operational Availability

API application program (or programming) interface

ARP Address Resolution Protocols

ARPA Advance Research Project Agency

ASCII American Standard Code for Information Exchange

AUI 802.3 10 Base 5 (Thick Ethernet) Interface

BBS bulletin board system

BPS Bits per seconds

Bps/bps bytes per second

CCB Change Control Board

CCR Commitment, Concurrency, and Recovery Protocol:

CCR configuration change request

CD-ROM compact disk -- read only memory

CDRD contract data requirement document

CDRL Contract Data Requirements List

CDS cell directory service

CEI contract end item

CERES Clouds and Earth's Radiant Energy System Configuration

CI configuration item

CM configuration management

CMAS Configuration Management Application Service

CMS Common Management Services

CORBA common object request broker architecture

COTS Commercial off-the-shelf (hardware or software)

AB-1 304-CD-003-002

COTS commercial off-the-shelf (hardware or software)

CR change request

CRC cyclic redundancy code

CSMS Communications and System Management Segment

CSS Communications Subsystem

DAAC Distributed Active Archive Center

DAT digital audio tape

DB database

DBA Database Administrator

DBMS Database Management System

DCCI Distributed Computing Configuration Item

DCE Distributed Computing Environment (OSF)

DCHCI Distributed Computing Hardware Configuration Item

DCN document change notice

DFRD data format requirements document

DFS distributed file system

DID data item description

DIM distributed information manager (SDPS)

DNS Domain Name Services

DOF Distributed Object Framework

DSU/CSU Data Service Unit/Channel Service Unit

E-mail electronic mail

ECN engineering change notice

ECOM EOS Communications

ECS EOSDIS Core System

EDC EROS Data Center

EDF ECS Development Facility

EDOS EOS Data and Operations System

EIA Electronic Industries Association

EMC Enterprise Monitoring and Coordination

EOC Earth Observation Center; EOS Operations Center

AB-2 304-CD-003-002

EOS Earth Observing System

EOSDIS Earth Observing System Data and Information System

ESN EOSDIS Science Network

F&PR Functional and Performance Requirements

F&PRS Functional and Performance Requirements Specification

FDDI Fiber Distributed Data Interface

FIPS Federal Information Processing Standard

FOS Flight Operations Segment

FTP File Transfer Protocol

Gbyte gigabyte

GDS ground data system

GFE Government furnished equipment

GMT Greenwich mean time

GSFC Goddard Space Flight Center

GUI graphic user interface

HiPPI High Performance Parallel Interface

I/O input/output

ICC Instrument Control Center

ICD interface control document

ICMP Internet Control Management Protocol

IDL Interactive Data Language

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

INHCI Internetworking Hardware Configuration Item

IP International Partner; Internet Protocol

IR interim release

IR-1 interim release-1

IRD Interface Requirements Document

ISO International Standards Organization

ISS Internetworking Subsystem

IST Instrument Support Terminal

AB-3 304-CD-003-002

IST Instrument Support Terminal

IV&V independent verification and validation

JPL Jet Propulsion Laboratory

KB/SEC kilobyte per second

LAN local area network

Landsat Land Remote-Sensing Satellite

LaRC Langley Research Center

LIS Lightning Imaging Sensor

LSM Local System Management

LTIP long-term science plan

LTSP long-term science plan

M&O Maintenance and Operations

MACI Management Agent Configuration Item

MAGIC Multidimensional Applications and Gigabit Internetwork Consortium

MAN Metropolitan Area Network

MB megabyte (106)

MBPS/Mbps million bits per second

Mbyte megabyte

MCI Management Software Configuration Item

MDT Mean Downtime

MHCI Management Hardware Configuration Item

MIB Management Information Base

MIME Multi-purpose Internet Mail Extensions

MISR Multi-Angle Imaging SpectroRadiometer

MITI Ministry of International Trade and Industry (Japan)

MLCI Management Logistic Configuration Item

mm millimeter

MO&DSD Mission Operations and Data Systems Directorate (GSFC Code 500)

MODIS Moderate-Resolution Imaging Spectrometer

msec millisecond

MSFC Marshall Space Flight Center

AB-4 304-CD-003-002

MSS Mass Storage System; Multispectral Scanner (Landsat)

MUI Management User Interface

NASA National Aeronautics and Space Administration

Nascom NASA Communications

NCC Network Control Center (GSFC)

NFS network file system

NISS NASA Institutional Support Systems

NMCI Network Management Configuration Item

NMF Network Management Facility

NNTP Network News Transfer Protocol

NOAA National Oceanic and Atmospheric Administration

NOLAN Nascom Operational Local Area Network

NSI NASA Science Internet

NWCI Networking Configuration Item

ODC Other Data Center

OO Object Oriented

OS operating system

OSF Open Systems Foundation

OSI Open System Interconnect

OSI-RM OSI Reference Model

OSPF Open Shortest Path First (routing protocol)

P&S planning and scheduling

PDB Project Database

PDR Preliminary Design Review

POCC Payload Operations Control Center

POSIX Portable Operating System Interface for Computer Environments

PSCN Program Support Communications

RARP Reverse Address Resolution Protocol

RBG red, blue, green

RFA Remote File Access

RFC Request for Comment

AB-5 304-CD-003-002

RIP Routing Information Protocol

RMA Reliability, Maintainability, Availability

RPC remote procedure call

SCF Science Computing Facility

SDP Science Data Processing

SDPF Sensor Data Processing Facility

SDPS Science Data Processing Segment

SMC System Management Center

SMCI System Management Configuration Item

SMDS Switched Multi-megabit Data Service

SMTP Simple Mail Transfer Protocol

SN Space Network

SNMP Simple Network Management Protocol

SQL Structured Query Language

SRS Software Requirements Specification

TBD to be determined

TBS to be specified

TCP/IP Transmission Control Protocol/Internet Protocol

TOOs target of opportunity

TRMM Tropical Rainfall Measuring Mission

TSDIS TRMM Science Data and Information System

UDP user datagram protocol

UTC universal time code

VAC volts AC

VO Version O

VOM volt ohm meter

WAN Wide Area Network

X.400 OSI standard for mail services

X.500 OSI standard for directory services (207)

AB-6 304-CD-003-002

	6. CSS Functional Requirements
	6.1General Requirements
	6.1.1 CSS Interface Requirements
	6.1.2 CSS Performance Requirements
	6.1.3 CSS RMA Requirements
	6.1.4 CSS General Requirements

	6.2 Common Facility Services
	6.2.1 Electronic Mail Service
	6.2.2 File Access Service
	6.2.3 Bulletin Board Service
	6.2.4 Virtual Terminal Service
	6.2.5 Event Logger Service

	6.3 Object Services
	6.3.1 Event Service
	6.3.2 Directory/Naming Service
	6.3.3 Security Service
	6.3.4 Message Passing Service
	6.3.5 Time Service
	6.3.6 Lifecycle Service
	6.3.7 Thread Service

	6.4 Distributed Object Framework
	6.4.1 Overview Distributed Object Framework (DOF)
	6.4.2 Distributed Object Framework Functional Requirements

	7. ISS Functional Requirements
	7.1 General Requirements
	7.1.1 ISS Interface Requirements
	7.1.2 ISS Performance Requirements
	7.1.3 RMA Requirements
	7.1.4 Evolvability Requirements

	7.2 Networking Configuration Item

	Figure 6.1-1 CSS Interface Diagram
	Figure 6.2-1 Electronic Mail Context Diagram
	Figure 6.2-2 File Access Context Diagram
	Figure 6.2-3 Bulletin Board Context Diagram
	Figure 6.2-4 Virtual Terminal Context Diagram
	Figure 6.2-5 Event Logger Context Diagram

