
Pre-Release B Testbed

Design Specification

for the ECS Project

Technical Paper

July 1997

Prepared Under Contract NAS5-60000

PREPARED BY

D. Patel, J. Watson, and Testbed Team Members Date
EOSDIS Core System Project

APPROVED BY

Karl Leatham, Deputy Program Manager Date
EOSDIS Core System Project

Hughes Information Technology Systems

Upper Marlboro, Maryland

This page intentionally left blank.

456-TP-014-001

Abstract

This "as-built" design documentation paper is prepared in response to the white paper
“Implementation Plan for the Pre-Release B Testbed for the ECS Project”, S416-WP-001-001. The
document contains "as-built" information, at the “sell off”, for the hardware and software for the
delivered testbed at four DAAC sites, GSFC, LaRC, EDC, and NSIDC.

Keywords: as-built, Testbed, hardware, software, network, Planning, Processing, OMT, Pre-
Release B

iii 456-TP-014-001

This page intentionally left blank.

iv 456-TP-014-001

Contents

Abstract

1. Introduction

1.1 Purpose... 1-1	
1.2 Scope.. 1-1	
1.3 Document Organization ... 1-1	

2. Related Documents

2.1 Parent Documents .. 2-1	
2.2 Applicable Documents... 2-1	
2.3 Information Documents Referenced .. 2-3	

3. Testbed Design Overview

3.1° Background .. 3-1	
3.1.1 Testbed Functional Overview.. 3-1	

3.2° Testbed Architecture.. 3-2	
3.2.1 Subsystems and Functions .. 3-2	
3.2.2 Subsystems Components and Functionality ... 3-8	

4. Communications Subsystem (CSS) CSCI

4.1 DCI CSCI Overview.. 4-1	
4.2 DCI CSCI Service Descriptions and Object Models ... 4-2	

5. Systems Management Subsystem (MSS) CSCIs

5.1 Introduction and Context ... 5-1	
5.2 MSS Services and CSCIs... 5-1	

6. Planning Subsystem (PLN) CSCIs

6.1 Overview.. 6-1	
6.2 Subsystem Context... 6-2	
6.3 Subsystem Object Model ... 6-3	

v 456-TP-014-001

7. Data Processing Subsystem (DPS) CSCIs

7.1 PRONG CSCI Overview ... 7-1	
7.2 Subsystem Context.. 7-13	
7.3 PRONG Object Model.. 7-14	
7.4 AITTL CSCI ...7-143	

8. Integrated Metastorage Factory (IMF)

8.1 Introduction.. 8-1	
8.2 Overview.. 8-1	
8.3 IMF Context... 8-2	
8.4 IMF File Structure and Description ... 8-2	
8.5 IMF/PDPS Interfaces ... 8-4	
8.6 IMF Components .. 8-29	
8.7 IMF Services, Configuration File, and Key Parameters ... 8-32	

9. Testbed Databases

9.1 Overview.. 9-1	
9.2 Database Organization ... 9-2	
9.3 Scripts ... 9-14	
9.4 Stored Products ... 9-15	

10. Network Architecture and Configuration

10.1 ° Common Elements and Connectivity .. 10-1	
10.1.1 Network Protocols ... 10-1	
10.1.2 Network Security ... 10-2	

10.2 ° Testbed Network at GSFC ... 10-2	
10.2.1 IP Address Assignment and Network Connectivity at GSFC 10-3	
10.2.2 Testbed Routing at GSFC .. 10-6	
10.2.3 Network Hardware at GSFC .. 10-6	
10.2.4 Points of Contact for GSFC Testbed Network .. 10-7	

10.3 ° Testbed Network at LaRC ... 10-7	
10.3.1 IP Address Assignment and Network Connectivity at LaRC 10-8	
10.3.2 Testbed Routing at LaRC ...10-10	
10.3.3 Network Hardware at LaRC ..10-10	
10.2.4 Points of Contact for the LaRC Testbed Network ...10-11	

vi 456-TP-014-001

10.4 ° Testbed Network at EDC ...10-11	
10.4.1 IP Address Assignment and Network Connectivity at EDC10-12	
10.4.2 Testbed Routing at EDC ..10-16	
10.4.3 Network Hardware at EDC ..10-16	
10.4.4 Points of Contact for the EDC Network ..10-17	

10.5 ° Testbed Network at NSIDC ...10-17	
10.5.1 IP Address Assignment and Network Connectivity at NSIDC 10-18	
10.5.2 Testbed Routing at NSIDC ..10-22	
10.5.3 Network Hardware at NSIDC ..10-22	
10.5.4 Points of Contact for the NSIDC Network ..10-23	

11. Hardware Design and Configuration

11.1 ° Subsystems, Hardware Identification, and Functions... 11-1	
11.1.1 Severs, Work Stations, Peripherals, and Communication Equipments 11-3	
11.1.2 RAID Disks .. 11-4	
11.1.3 Network File System (NFS- Infrastructure) .. 11-4	
11.1.4 DNS Servers ... 11-4	
11.1.5 SMC hardware ... 11-5	
11.1.6 Software COTS Category .. 11-5	
11.1.4 CSCI to Executables .. 11-7	

11.2 ° Hardware Design and Configuration at GSFC .. 11-8	
11.2.1 Hardware Configuration at GSFC ... 11-8	
11.2.2 Software Mapping onto Hardware at GSFC ..11-10	

11.3 ° Hardware Design and Configuration at LaRC ...11-11	
11.3.1 Hardware Configuration at LaRC ..11-11	
11.3.2 Software Mapping onto Hardware at LaRC ..11-13	

11.4 ° Hardware Design and Configuration at EDC ..11-15	
11.4.1 Hardware Configuration at EDC ...11-16	
11.4.2 Software Mapping onto Hardware at EDC ..11-17	

11.5 ° Hardware Design and Configuration at NSIDC ..11-19	
11.5.1 Hardware Configuration at NSIDC ...11-19	
11.5.2 Software Mapping onto Hardware at NSIDC ..11-20	

Figures

3.2.1.1-2 Testbed Infrastructure Services and Support .. 3-8	
1 CMIService .. 4-5	
2 TimeService ... 4-9	
3 ConfigurationFile.. 4-16	

vii 456-TP-014-001

4.2.4.2-1 ECS Process Classification ... 4-22	
4.2.4.3.1 DCEPthreadMutex Class .. 4-24	
4.2.4.4.1.2-1 Example of General Object Model for Client Applications 4-34	
6.2-1 CSCI Event Flow Context Diagram .. 6-3	
5 Core_Library_Part_1 ... 6-5	
6 Core_Library_Part_2 ... 6-6	
7 Core_Library_Part_3 ... 6-7	
8 Planning_Workbench_Ac...6-104	
7.1.4.2-1 Scheduling Jobs Using AutoSys ... 7-11	
7.1.4.2-2 Initiating Processing Components Using AutoSys ... 7-12	
7.2-1 Processing CSCI Context Diagram... 7-14	
33 Database_Interface.. 7-15	
34 Data_Management .. 7-36	
35 Exception .. 7-48	
36 Execution_Management ... 7-50	
37 Job_Management .. 7-80	
38 QA_Monitor.. 7-90	
39 Main .. 7-97	
40 Resource_Management...7-109	
7.4.2-1 Algorithm Integration and Test Tools Context Diagram......................................7-147	
7.4.4.1-1 View Documentation ..7-148	
7.4.4.2-1 Check Standard ...7-149	
7.4.4.3-1 Analyze Code..7-150	
7.4.4.4-1 Examine Data..7-151	
7.4.4.5-1 Compare Files ...7-152	
7.4.4.6-1 Measure Resource Requirements..7-153	
7.4.4.7-1 Update IMF Data Server...7-154	
7.4.4.8-1 Update PDPS Database...7-155	
7.4.4.9-1 Manage Reports ..7-156	
41 Data_Server...7-157	
42 Metadata_GUI...7-162	
43 Metadata..7-182	
44 IR1_Heritage_Common_Library..7-189	
45 IR1_Heritage_File_Differencing_Tools ...7-197	
46 IR1_Heritage_Process_Control_File_Checker...7-211	
47 IR1_Heritage_Prohibited_Function_Checker...7-218	
48 IR1_Heritage_Prolog_Extractor ...7-230	
49 IR1_Heritage_Top_Level_GUI_Manager..7-235	
8.3-1 IMS Context Diagram.. 8-2	

viii 456-TP-014-001

8.4-1 Structure of IMF Architecture ... 8-3	
8.5-1 IMF/PDPS Interface Diagram.. 8-5	
9.1-1 Testbed Database ... 9-1	
9.2.1-1 Execution and Data Management .. 9-3	
9.2.1-2 Execution and Data Management .. 9-4	
9.2.1-3 Production Plan.. 9-5	
9.2.1-4 Production Request Edit .. 9-6	
9.2.1-5 Resource Management... 9-7	
10.2-1 Network Topology at GSFC .. 10-3	
10.2.1-1 Network Connectivity and Addressing for the Testbed at GSFC 10-4	
10.2.1-2 Network Connectivity for the Testbed SMC at GSFC .. 10-5	
10.2.2-1 GSFC Testbed Route Advisement ... 10-6	
10.3-1 Network Topology at LaRC ... 10-8	
10.3.1-1 Network Connectivity and Addressing for the Testbed at LaRC 10-9	
10.3.2-1 LaRC Testbed Route Advisement ...10-10	
10.4-1 Network Topology at EDC ..10-12	
10.4.1-1 Network Connectivity at EDC ...10-13	
10.4.2-1 EDC Testbed Route Advisement ...10-16	
10.5-1 Network Topology at NSIDC ..10-18	
10.5.1-1 Network Connectivity at NSIDC ...10-19	
10.5.2-1 NSIDC Testbed Route Advisement ...10-22	

Tables

3.2.1-1 Testbed Functions to Subsystem Mapping ..3-3	
10.2.1-1 GSFC Testbed Network Address Space Information ...10-3	
10.2.3-1 GSFC LAN Hardware ...10-7	
10.2.4-1 Points of Contact for GSFC Network ...10-7	
10.3.1-1 LaRC Testbed Network Address Space Information ..10-8	
10.3.3-1 LaRC LAN Hardware ..10-11	
10.3.4-1 Points of Contact for LaRC Network ...10-11	
10.4.1-1 EDC Testbed Network Address Space Information ..10-14	
10.4.1-2 Network Address for the Host at EDC ..10-14	
10.4.1-3 Network Address for the Network Products at EDC ...10-15	
10.4.3-1 EDC LAN Hardware ..10-17	
10.4.4-1 Points of Contact for EDC Network ..10-17	
10.5.1-1 NSIDC Testbed Network Address Space Information ..10-18	
10.5.1-2 Network Address for the Host at NSIDC ..10-20	
10.5.1-3 Network Address for the Network Products at NSIDC10-21	
10.5.3-1 NSIDC LAN Hardware ..10-23	

ix 456-TP-014-001

10.2.4-1 Points of Contact for NSIDC Network ..10-23	
11-1 Hardware Subsystems and Functions ..11-1	
11.1.6 -1 COTS Categories ..11-6	
11.2.1-1 Testbed Hardware at GSFC ..11-8	
11.2.2-1 Hardware Software Mapping to Hardware Platforms at GSFC11-10	
11.3-1 Testbed Hardware at LaRC ..11-12	
11.4-1 Testbed Hardware at EDC ...11-16	
11.4.2-1 Hardware Software Mapping to Hardware Platforms at EDC11-17	
11.5.1-1 Testbed Hardware at NSIDC ...11-19	
11.5.2-1 Hardware Software Mapping to Hardware Platforms at NSIDC11-21	

Abbreviations and Acronyms

x 456-TP-014-001

1. Introduction

1.1 Purpose
The purpose of this document is to capture the design of the Pre-Release B Testbed (hereafter
referred to as the "Testbed") that meets all the functional capabilities as described in the Testbed
implementation plan, S416-WP-001-001. This document describes the design of the Testbed
hardware and software items in sufficient details for:

•	 the ECS M & O organization to perform the required corrective maintenance (design problem
resolution), post Testbed deployment, that is consistent with the established maintenance
concept. The maintenance concept for the Testbed is defined in the Section 9 of the Testbed
implementation plan, S416-WP-001-001.

•	 the ECS M & O organization to perform the required operational functions at the four DAAC
sites, post Testbed deployment, that are consistent with the established operational procedures.
The operational concept for the Testbed is defined in the Section 7 of the Testbed
implementation plan, S416-WP-001-001.

•	 DAAC personnel to become familiar with the design of the Testbed, it's inherent capabilities,
and the limitations thereof.

1.2 Scope
This document describes the "as-built" architecture and design of the computer software and
hardware, databases, and network items for each of the four Testbed systems - once each Testbed
is hosted at the DAAC sites (GSFC, LaRC, EDC, and NSIDC). The design information contained
herein is applicable to each DAAC site unless it has been otherwise stated. This design document
assumes that the reader has access to a supplementary set of information for the performance
his/her specific maintenance task(s), as mentioned in the relevant sections of this document. For
example, M & O personnel would have access to the source code listing for the custom code and
be able to obtain detailed information about the as-built custom software components of the
Testbed.

1.3 Document Organization
This document is organized to describe the Testbed design as follows:

Section 1 provides information regarding the identification, purpose, scope, and organization of
this document.

Section 2 provides a listing of the related documents, which were used as source information for
this document, and lists the reference material.

Section 3 provides a functional overview of the Testbed system and its interfaces (function and
data) with the external entities. This section primarily focuses on the structural overview of the
Testbed and identifies constituent subsystems including their configurable items (both hardware
and software) for each DAAC.

1-1 456-TP-014-001

Section 4 describes the design of the Communication Subsystem's services. It also documents the
applicable external interfaces and COTS/OTS dependencies.

Section 5 describes the design of the System Management Subsystem's services. It also documents
the applicable external interfaces and COTS/OTS dependencies.

Section 6 describes the design of Planning Subsystem's "PLANG" CSCI. It also documents the
applicable external interfaces and COTS/OTS dependencies. Note: The design of the Client
Subsystem CSCI's component, EOSView, is documented separately. Thus, it is only referenced in
this specification. Refer to Section 2 for the applicable document number(s).

Section 7 describes the design of Data Processing Subsystem's "PRONG" and "AITTL" CSCIs. It
also documents the applicable external interfaces and COTS/OTS dependencies. Note: The design
of the PRONG CSCI's components, the HDF-EOS and the SDP Toolkit, are documented
separately. Therefore, they are only referenced in this specification. Refer to Section 2 for the
applicable document number(s).

Section 8 describes the design of Integrated Metastorage Factory (IMF) CSCI.

Section 9 describes the design of the Testbed databases.

Section 10 provides a brief description of the network configuration and LAN architecture at each
DAAC site.

Section 11 provides the hardware configuration for the processing nodes, including the storage,
and the peripheral devices for each DAAC site. It also provides the hardware to software mapping
for COTS, and the custom software (executables) mapping to each hardware platform.

Acronyms and Abbreviation section contains an alphabetical listing of the acronyms and
abbreviations used in this document.

The design of the Client Subsystem (CLS) component, EOSView, is documented separately and
therefore is only referenced in this specification. Refer to Section 2 for the applicable document
number(s).

1-2 456-TP-014-001

2. Related Documents

2.1 Parent Documents
The parent document is the document from which the scope and content of this "as-built" Testbed
design specification is derived.

S416-WP-001-001 Implementation plan for the Pre-Release B Testbed for the ECS Project

2.2 Applicable Documents
The following documents are ECS controlled documents and they are directly applicable to this
"as-built" Testbed design specification.

456-TP-013-001 HDF-EOS Design for the ECS Project

456-TP-012-001 EOSView Design for the ECS Project

445-TP-001-001 SDP Toolkit Design Specification

162-TD-001-002 Science Software I & T Operational Procedure

205-CD-002-003	 Software Developer's Guide to Preparation, Debug, Integration, and
Test with ECS

420-TD-010-003 GSFC Pre-Release B Testbed HW/Network

420-TD-002-004 Pre-Release B Testbed HW diagram for GSFC

420-TD- 006-009 GSFC Pre-Release B Testbed Hardware-Software mapping baseline

420-TD-037-002 Pre-Release B Testbed baseline for Science Processing RAID at GSFC

420-TD-054-001 Pre-Release B IMF RAID Configuration baseline for GSFC

420-TD-051-001 Pre-Release B IMF RAID Configuration baseline for GSFC

420-TD-066-001 Pre-Release B Testbed Staging RAID configuration baseline for GSFC

420-TD-004-004 Pre-Release B Testbed HW diagram for SMC

420-TD-025-005	 Pre-Release B Testbed MSS/CSS (Primary) RAID partitions for SMC,
GSFC, and LaRC

420-TD-024-004	 Pre-Release B Testbed MSS/CSS (Secondary) RAID partitions for
SMC, GSFC and LaRC

420-TD-011-004 Pre-Release B Testbed Network Diagram for LaRC

420-TD-003-002 Pre-Release B Testbed HW diagram for LaRC

420-TD-007-005 Pre-Release B Testbed HW/SW mapping baseline for LaRC

420-TD-038-002 Pre-Release B Testbed baseline for Science Processing RAID at LaRC

420-TD-055-001 Pre-Release B Testbed IMF RAID Configuration baseline for LaRC

420-TD-043-002 Pre-Release B Testbed Planning Server Disk partitions for LaRC

420-TD-067-001 Pre-Release B Testbed Staging RAID configuration baseline for LaRC

2-1 456-TP-014-001

420-TD- 048-001 Pre-Release B Testbed Network Diagram for EDC

420-TD-050-001 Pre-Release B Testbed Hardware Diagram for EDC

420-TD-046-002 Pre-Release B Testbed HW/SW mapping baseline for EDC

420-TD-056-001	 Pre-Release B Testbed Science Processing RAID Configuration for
EDC

420-TD-060-001 Pre-Release B Testbed NFS RAID configuration baseline for EDC

420-TD-058-001 Pre-Release B Testbed Staging RAID configuration baseline for EDC

420-TD-064-001	 Pre-Release B Testbed MSS/CSS RAID Configuration baseline for
EDC

420-TD-062-001 Pre-Release B Testbed Planning/Queuing Server RAID for EDC

420-TD-052-001 Pre-Release B Testbed IMF RAID Configuration baseline for EDC

420-TD-049-001 Pre-Release B Testbed Network Diagram for NSIDC

420-TD-051-001 Pre-Release B Testbed HW Diagram for NSIDC

420-TD-047-002 Pre-Release B Hardware-Software mapping baseline for NSIDC

420-TD-061-001 Pre-Release B Testbed NFS RAID configuration baseline for NSIDC

420-TD-059-001 Pre-Release B Testbed Staging RAID configuration baseline for NSIDC

420-TD-053-001 Pre-Release B IMF RAID Configuration baseline for NSIDC

420-TD-063-001 Pre-Release B Testbed Planning/Queuing Server RAID for NSIDC

420-TD-065-001	 Pre-Release B Testbed MSS/CSS RAID Configuration baseline for
NSIDC

420-TD-019-006 Pre-Release B Testbed portmaps baseline

420-TD-014-002 Pre-Release B Testbed SGI IRIX 5.3 Operating system Patch baseline

420-TD-031-002 Pre-Release B Testbed SGI IRIX 6.2 Operating system Patch baseline

420-TD- 014-002 Pre-Release B Testbed HP Operating system Patch Baseline

420-TD-012-002 Pre-Release B Testbed Sun Solaris Operating system Patch baseline

420-TD-068-001 Pre-Release B Testbed CSCI-Software executable mapping baseline

420- TD-029-003 Pre-Release B Filenames and guidelines and standards baseline

456-TR-001-001 GSFC Pre-Release B Testbed Version Description Document(VDD)

456-TR-002-001 LaRC Pre-Release B Testbed Version Description Document(VDD)

456-TR-003-001 EDC Pre-Release B Testbed Version Description Document(VDD)

456-TR-004-001 NSIDC Pre-Release B Testbed Version Description Document(VDD)

2-2 456-TP-014-001

2.3 Information Documents Referenced
List of software COTS/OTS documents:

2.3.1 Autosys

AutoSys User Manual Version 3.2

2.3.2 HPOV

Using Network Node Manager

Network Node Manager Reference

A Guide to Scalability and Distribution for NNM

Using Relational Databases with Network Node Manager for

Integration Utilities for HPOV

Network Node Manager Products Installation Guide

2.3.3 Tivoli

Tivoli Management Platform Reference Manual

Tivoli Management Platform Planning and Installation Guide

Tivoli Management Platform User’s Guide

Tivoli User and Group Reference Manual

Tivoli User and Group Installation Guide

Tivoli User and Group Management Guide

Tivoli Host Management Guide

Tivoli/Sentry User’s Guide

Tivoli/Sentry Monitoring Collection Reference

Tivoli/Courier User’s Guide

Tivoli/Courier Reference Manual

Tivoli NIS Management Guide

2.3.4 Remedy (Action Request System)

Programmer’s Guide

Administrator’s Guide for OSF/Motif

User’s Guide for OSF/Motif

Troubleshooting and Error Message Guide

2.3.5 PNM

Network/Communications Management Volume 1

2-3 456-TP-014-001

2.3.6 ESSM

Enterprise SQL Server Manager User’s Guide

2.3.7 Networker

Legato Networker Administrator’s Guide

Legato Networker User’s Guide

Legato Networker Installation and Maintenance Guide

2.3.8 IQ

Intelligent Query and IQ Access User’s Guide

IQ System Manager’s Guide

2.3.9 XRP-II

XRP-II Datalook - Datarite Reference Manual

XRP-II Inventory Management Reference Manual

XRP-II Material Requirements Reference Manual

XRP-II Product Information Reference Manual

XRP-II Purchasing Management Reference Manual

XRP-II Shop Floor Control Reference Manual

XRP-II System Reference Manual

XRP-II Tools, Techniques, and Conventions Manual

XRP-II Work Order Processing Reference Manual

XRP-II Tools, Techniques, and Conventions Manual

XRP-II Work Order Processing Reference Manual

UNIFY Developer’s Tutorial

UNIFY Direct HLI Programmer’s Manual

UNIFY Developer’s Reference Product Enhancements Manual

2.3.10 DDTS

PureDDTS Administrator’s Manual

PureDDTS User’s Manual

PureDDTS Manual Pages Reference Guide

2.3.11 ClearCase

ClearCase Administrator’s Manual

ClearCase User’s Manual

ClearCase Reference Manual

2-4 456-TP-014-001

2.3.12 Network COTS

Cabletron Ethernet Hub

Cabletron Ethernet Hub

Cabletron Systems

Cabletron Systems

SynOptics (Bay Networks)

Fore Systems PowerHub

Fore Systems PowerHub

Hayes Modem

Hayes Modem

Cisco Remote Access Server

Cisco

Cisco

Cisco

User’s Guide for MicroMAAC-24E, MicroMMAC-32E,
MicroMAAC-34E, 10Base-T Intelligent Stackable Hub

On-line documentation from Cabletron’s Web Site at

http://www.cabletron.com

MicroMMAC-22E User’s Guide, dated April 1994

BRIM-F6 User’s Guide, dated October 1994

Using the 291x FDDI Workgroup Concentrator, dated May
1994 FDDI Concentrator)

PowerHub 7000 Installation and Configuration Manual

PowerHub Software Manual

Manual of floppy disk for Windows 3.1 or 95 platform

On-line documentation from Hayes’ Web Site at

http://www.hayes.com

CISCO 2500 Series Access Server User Guide

Internetworking Operating System (IOS) software and hard­
ware manuals on CD for Windows 3.1 or 95, Mac, or Unix
platform for CISCO 2500

On-line documentation from Cisco’s Web Site at ht­
tp://www.cisco.com for Cisco 7507 Router

Cisco 7507 Installation and Maintenance manual

2-5 456-TP-014-001

This page intentionally left blank.

2-6 456-TP-014-001

3. Testbed Design Overview

3.1 Background
The primary goal for the Testbed is to support AM-1 and SAGE III Science Software Integration
and Test (SSIT) activity. The SSI&T will be supported at the GSFC, LaRC, EDC, and NSIDC
DAACs for science software delivered by the ASTER, CERES, MISR, MODIS, MOPITT, and
SAGE III instrument teams.

SSI&T is defined as the process by which the science software developed by the instrument teams
(ITs) at local SCFs is tested and integrated into the ECS at the DAACs. The activities associated
with SSI&T can be logically separated into two categories: pre-SSI&T and formal SSI&T. Pre-
SSI&T activities are those that do not require Pre-Release B Testbed unique capabilities.
Inspection, standards checking, and building the science software with the SCF Toolkit are pre-
SSI&T activities. Formal SSI&T activities are those that require Pre-Release B Testbed
capabilities. These activities include populating the ECS Testbed databases, building the science
software with the DAAC Toolkit, integration of each science software PGE into the ECS Pre-
Release B Testbed, and successful execution using the Testbed software.

The primary focus of the Testbed is SSI&T. The instrument teams, with the support of the ECS
and DAAC SSI&T personnel, will perform a sequence of activities for each delivered PGE. The
goals of the SSI&T process are:

1. To ensure that the delivered PGEs conform to ESDIS project standards

2. To port the PGEs to computer platforms at the DAACs

3.	 To integrate the PGEs with the DAAC version of the SDP Toolkit and execute them using
the ECS Testbed software

4. To verify that the data products and results are the same as those produced at the SCFs

Refer to the "Implementation Plan for the Pre-Release B Testbed" (S416-WP-001-001) for the
details on SSI&T activities, and remote access and data distribution for allowing the instrument
team to participate from their remote location (such as their local SCFs).

3.1.1 Testbed Functional Overview

The Testbed provides the following major functions;

• provides comprehensive SSI&T support including

•	 acquire input data files (HDF-EOS and non-HDF-EOS) from the science archive and
stage them in PDPS

• register PGEs

• set up subscriptions for planning

• enter production requests

• develop and activate a production plan

• schedule and monitor jobs with the AutoSys COTS

3-1 456-TP-014-001

•	 manage PGE execution and insertion into to the science archive (the data store) output
data files (HDF-EOS and non-HDF-EOS)

• Q/A monitoring of products including use of EOSView for visualization

•	 acquire multiple data granules (HDF-EOS and non-HDF-EOS) having the same ESDT
and different temporal coverage

• provides data store components that will

• interface with the Planning and Data Processing components

• support metadata validation

• support subscription registration and notification,

• allow ESDT additions via a GUI interface

• monitors Testbed failures (e.g., hardware and network failures)

3.2 Testbed Architecture
The Testbed is installed and configured at four DAAC sites, GSFC, LaRC, EDC, and NSIDC. The
Testbed is configured using single cell DCE (OSF 1.0.3) architecture which encompasses all four
Testbed resources and cross site boundaries. The single cell for the Testbed represents an optimum
infrastructure and associated security. The Testbed provides checking the privilege of a principle
(i.e., user authorization). The Sybase RDBMS and the UNIX operating system provide the
integrity of data and are responsible for data access privileges in storage. The master cell for the
Testbed is the SMC Testbed at GSFC, while each Testbed site contains the replica. However, for
performing normal routine functions, each site is autonomous.

The Testbed is composed of seven (7) subsystems as defined in Section 3.2.1. The design of each
Testbed employs FDDI based LAN networks, OODCE, and client/server architecture. It consists
of heterogeneous platforms from HP, SUN, and SGI. The Testbed architecture contains the
universal reference (UR) mechanism, which provides a means for identifying and referencing the
data and service objects throughout the Testbed in a standardized manner. The functionality of the
Testbed is distributed among the various subsystems, and they are described in Section 3.2.2 of this
document.

In order to provide the reliable production and archiving of science data, the Testbed utilizes field­
proven, robust COTS hardware. It employs reliable technology such as RAID storage for staging
data, FDDI fault tolerant LAN and interface devices for intra-DAAC communications, and
workstation and server hardware from OEM manufacturers such as SUN, SGI, and HP.

The following sections provide an overview, functional allocation, and design information for the
Testbed architecture and its major constituent design elements.

3.2.1 Subsystems and Functions

The Testbed consists of seven (7) subsystems based on its physical and logical structure. They
provide hardware and software resources needed to implement the Testbed functionality. Each
subsystem consists of one or more computer software configuration items (CSCIs) and/or
hardware configuration items (HWCIs). These CIs are a combination of custom software and/or a

3-2 456-TP-014-001

custom (“as is”) configuration of COTS/OTS hardware and software items. Detailed design
information of the custom software items is provided in Sections 4 through 9.

List of the Testbed subsystems:

• Communication Subsystem (CSS); custom and COTS

• System Management Subsystem (MSS); custom and COTS

• Data Processing Subsystem (DPS); custom and COTS

• Planning Subsystem (PLS); custom and COTS

• Integrated Metastorage Factory (IMF); custom software only

• Infrastructure-Network File System (NFS); all COTS

• Internetworking Subsystem (ISS); all COTS

A detailed list of functional capabilities for the Testbed subsystems is provided in Table 3.2.1-1.

Table 3.2.1-1. Testbed Functions to Subsystem Mapping (1 of 4)
Activity
Number

SSI&T Activity Testbed Entity and Functions Testbed
Subsystem

Pre-SSI&T:

1 Accessing the delivered algorithm
package (DAP)

Network File System (NFS) Infrastructure

2 Inspection of DAP contents UNIX text editors,
SSIT Manager,
Printer

DPS

3 Review of delivered documentation Sun,
SSIT Manager GUI,
Document viewers (WABI,
ghostview, Acrobat Reader, UNIX
text editors),
Printer

DPS

4 Placing of DAPs under configuration
management

Sun,
ClearCase and scripts (from M&O)

N/A

5 Checking of science software for
standards compliance

Sun,
SGI,
SSIT Manager GUI,
SSIT Tools (Prohibited Function
Checker, Prolog Extractor, File
comparison tools),
FORCHECK,
C, Fortran 90, and Ada SGI
compilers

DPS

6 Building of the science software into
PGEs with the SCF Toolkit

SGI,
Release A SCF Toolkit,
C, FORTRAN 77, Fortran 90, and
Ada SGI compilers

Toolkit
Compilers

3-3 456-TP-014-001

Table 3.2.1-1. Testbed Functions to Subsystem Mapping (2 of 4)
Activity
Number

SSI&T Activity Testbed Entity and Functions Testbed
Subsystem

7 Running of the PGEs from the
command line

SGI N/A

8 Collection of performance statistics
for the PGEs

SGI,
Rusage profiling (command line)

N/A

9 Examination of output log files from
PGE runs

SGI,
UNIX text editors,
Printer

N/A

10 Viewing of output products and
comparison to delivered test data

EOSView SSIT Manager,
hdiff (HDF command-line tool),
HDF GUI File Comparison Tool,
ASCII File Comparison Tool,
Binary File Assistant Comparison
Tool,
IDL

DPS
(Note:
EOSView is
hosted on
PLS and DPS
hardware)

11 Reporting of science software
problems

DDTS (Distributed Defect Tracking
System) (COTS)

DDTS
(hosted on
MSS)

12 Reporting of ECS problems DDTS N/A

Formal SSI&T:

13 Registration of ESDTs Add new or /new version ESDTs,
ESDT generation scripts

DPS/IMF

14A Registration of the PGEs in the PDPS
database

Sun,
SSIT Manager GUI,
PGE registration tools,
Update PDPS/SSIT DB GUI

DPS

14B Registration subscriptions for
dynamic inputs and/or outputs that
are input to downstream PGEs

Subscription Editor (command line
interface)

PLS

15 Inserting test data into the data store Insert PGE .exe tar file,
Insert static and dynamic test data
granules

DPS

16 Building of the science software into
PGEs with the DAAC Toolkit

SGI,
Testbed DAAC Toolkit consistent
with the SDP toolkit,
C, FORTRAN 77, Fortran 90, and
Ada SGI compilers per Release A
baseline

Toolkit and
Compilers

17A Set up resource reservations for SSIT
resources

PLANG (PLANNING) CI
Resource Planning Workbench

PLS

17B Submit individual production requests
(PRs) to run single PGEs within
PDPS

PLANG (Planning) CI
Production Request Editor

PLS

3-4 456-TP-014-001

Table 3.2.1-1. Testbed Functions to Subsystem Mapping (3 of 4)
Activity
Number

SSI&T Activity Testbed Entity and Functions Testbed
Subsystem

17C Create candidate plan to run PGE PLANG (Planning)CI
Planning workbench

PLS

17D Activate plan PLANG (Planning)CI
Planning workbench

PLS

17E Run PGE PLANG (Planning) CI
Subscription Manager
Manage subscription notatification.

PRONG (Processing) CI: All
functions except alternate
processing depending on PGE exit
codes.

Job Management, Add/Modify/
Cancel Jobs, Release Jobs.

AutoSys Scheduling COTS.

Resource Management Allocate/
Deallocate resources.

PGE Execution Management, Stage
PGE, Execute PGE, Manage PGE
execution, Generate Production

PLS

DPS

DPS

DPS

DPS

DPS

18 Examination of output log files and
production history from PGE runs

SGI,
UNIX text editors,
Printer,
QA Monitor

DPS

19 Viewing of output products and
comparison to delivered test data

QA Monitor,
SSIT Manager GUI Selections

DPS

20A Using the Planning subsystem to plan
PGE chains and activate plan

PLANG (Planning) CI: Production
Request (PR) Editor, Enter PR,
Review/Modify PR, Generate DPRs
for future and past data, Review/
Modify DPR, Schedule PR and DPR,
Generate Plans and Reports.

Production Planning Workbench,
Allocate DAAC Resources to DPRs,
Develop candidate plans, Activate
Plan, Update Active Plan, Production
Planning Timeline

PLS

PLS

20B Run PGE chains Same as 17E Same as17E

20C Examination of output log files and
production history from PGE runs

SGI,
UNIX text editors,
Printer
QA Monitor

DPS

3-5 456-TP-014-001

Table 3.2.1-1. Testbed Functions to Subsystem Mapping (4 of 4)
Activity
Number

SSI&T Activity Testbed Entity and Functions Testbed
Subsystem

20D Viewing of output products and
comparison to delivered test data

QA Monitor,
SSIT Manager GUI Selections

DPS

21 Ensuring consistency and
correctness of output products

ECS databases,
Tools/scripts for examining
databases

N/A

22 Distributing data products to
instrument teams

FTP N/A

23 Reporting and tracking of science
software and other Testbed
problems, i.e., Non-Conformance
Reports (NCRs)

DDTS N/A

Other:

24 Configuration Management Clearcase MSS

25 Remote access to authorized users DDTS N/A

3.2.1.1 Testbed Data Flow and Context

Figure 3.2.1.1-1 depicts the Testbed system level data flow and the interactions of the as-built
application CIs for the Testbed. Figure 3.2.1.1-2 is included to show the Testbed infrastructure
services and support functions.

3-6 456-TP-014-001

3-7
456-T

P-014-001

UR

Query &�
Inspect�
Info

Query &�
Inspect�
Info

PGE &�
DPR�
Info

PGE�
Registration�

Info

PGE�
Registration�

Info

PR, DPR�
Plan Info

DPR Info�
PGE Info�
ESDT Info�
Plan Info

DPR Info,�
PGE Info,�
ESDT Info,�
Plan Info,

Sybase�
Triggers

RAID

RAID

DPR Info�
Plan Info�
Job Info

DPR Info,�
Plan Info,�
Job Info,

Figure 3.2.1.1-1 Testbed System Data Flow

P
Sybase Login/�

Sec.

Configuration Request
A

CSS

ass

 4

uthentication Request,�

word

*Software�
Request�

CM (DDTS)
Directory�

Info

and File Inf
Remote Director

Sec.

Infrastructure

o
y�

 11

Configuration�
Parameter

Request
Operational Status�

(HPO
Operational Status�

Maintenance/Har

Sec.

MSS

V)

d

 5

ware�

*Monitor/Coordinate� * Operator Involvement �
Maintenance (DDTS, ClearCase) Required

Figure 3.2.1.1-2. Testbed Infrastructure Services and Support

3.2.2 Subsystem Components and Functionality

Following subsections describe the static structure of the Testbed subsystems and their
functionalities. More detailed discussions of their design breakdowns are provided in Sections 4
through 10 of this document.

3.2.2.1 Communication Subsystem (CSS) Structure and Functionality

The Communication Subsystem consists of two CIs: the Distributed Computing Software (DCI)
CSCI, and the DCHI Hardware HWCI. The DCI CSCI is comprised of custom software and DCE
OSF 1.0.3 COTS software. It provides following functionality:

Software (DCI) Function

OSF DCE 1.0.3 Commensurable with OSF DCE 1.0.3 (except note 1)

COTS E-Mail, FTP, virtual terminal

Custom Software - DCE login, SYBASE login (in conjunction with CMI services)

- Time Service (obtain time and format translation)
- Configuration file (CMI mechanism)
- Process Framework

3-8 456-TP-014-001

Note 1:	 The DCE security features (with the use of Kerberos and the POSIX 1003.6 Access
Control List (ACL) service) are stubbed in.

Note 2:	 FTP is used for the manual data distribution "push" for the delivered algorithm package
(DAP) and for the "pull" for the test output and related products.

3.2.2.2 System Management Subsystem (MSS) Structure and Functionality

The System Management Subsystem consists of three CIs: Management Software CI (MCI) CSCI,
Management Logistic Software (MLCI) CSCI, and Management Hardware CI (MHCI) HWCI.
The MCI and MLCI consist of the COTS software components needed to meet the allocated
subsystem functionality listed below.

COTS Software Function

HP OpenView/MCI Hardware/Network operational status monitoring without custom software

DDTS/MLCI NCR tracking

Clearcase/MLCI Configuration Management

3.2.2.3 Data Processing Subsystem (DPS) Structure and Functionality

The Data Processing Subsystem consists of four CIs: the Data Processing (PRONG) CSCI, the
Algorithm Integration and Test Tools (AIITL) CSCI, the Science Processing Hardware (SPRHW)
HWCI, and the Algorithm Integration and Test Hardware (AITHW) HWCI. These CSCIs consist
of the software components needed to meet the allocated subsystem functionality as listed below.

Software Function

PRONG Job Management
- Add jobs
- Modify jobs
- Cancel jobs
- Implement job dependencies
- Release jobs

AutoSys - COTS/PRONG Scheduling
- Manual startup
- Manual shutdown
- Full COTS functionality

AutoSys - COTS/PRONG Resource Management
- Allocate resources
- Deallocate resources

AutoSys - COTS/PRONG PGE Execution Management
- Stage PGE
- Execute PGE
- Manage PGE execution
- Generate production history (PH)

PRONG Data Management
- Manage data on local disks
- Retain data on local disk
- Stage science data products
- Destage science data products

3-9 456-TP-014-001

Software Function

PRONG/AITTL QA Monitor
- Access product data
- Update DAAC QA metadata
- Visualize Product Data

HDF-EOS/PRONG	 Provide extensions of HDF for EOS data products, which
standardize the conventions for writing HDF files

SDP Toolkit/PRONG Build the science software into PGEs with the DAAC Toolkit

AIITL SSIT Manager
- Enter Subscriptions
- Register PGE
- Archive PGE .exe tar file
- Update PDPS/SSIT DB GUI

AIITL SSIT Tools
- Prohibited function checker
- Binary file differencing tool
- HDF comparison tool
- Profiling tool
- SSIT GUI support tools
- IDL IMSL

Note:	 The EOS-View software tool is hosted on AITHW, which provides the viewing and
verification functions for HDF-EOS and the HDF data files.

3.2.2.4 Planning Subsystem (PLS) Structure and Functionality

The Planning Subsystem consists of two CIs: the Production Planning Software (PLANG) CSCI,
and the Production Planning Hardware (PLNHW) HWCI. The Production Planning CSCI consists
of the software components to meet the allocated subsystem functionality as listed below.

Software Function

PLANG Production Request Editor
- Enter production request
- Review/modify PR
- Generate DPRs for future and past data
- Review/modify DPR
- Schedule PR, DPR
- Production request editor GUI
- Generate plans and reports

PLANG Production Planning Workbench
- Allocate DAAC resources to production processing (DPRs)
- Develop candidate plan(s) according to Release A production rules
- Activate plan
- Update active plan
- Production planning timeline

3-10 456-TP-014-001

Software Function

PLANG Resource Planning Workbench
- Resource editor GUI

PLANG Subscription Editor
- Enter/withdraw subscriptions based on advertised events and services for the static
database only (IOS Stubbed Version integrated)

PLANG Subscription Manager
- Manage subscription notification (monitor for data availability before submitting
DPR)

Note: The EOS-View software tool is hosted on PLNHW, which provides the viewing and
verification function for HDF-EOS and the HDF data files.

3.2.2.5 Integrated Metastorage Factory (IMF) Structure and Functionality
The Integrated Metastorage Factory (IMF) software consists of the Release A Data Server software
“as-is”, along with additional hooks to the UNIX file system which have been implemented by
overriding the original Data Server class methods. The IMF software library is linked with the
Planning and Data Processing Subsystems and provides following functionality:

Software Function

IMF Insert Science Product
- Browse
- QA
- Production history

IMF Acquire products (Production History)

IMF Query

IMF Insert metadata (into metadata inventory)
- Validate metadata
- Acquire metadata

IMF Update metadata
- Update QA metadata

IMF Add new ESDTs via GUI

IMF Update, status, delete, add subscriptions via GUI

IMF Trigger subscriptions based on events

3.2.2.6 Infrastructure Structure and Functionality

The Network File System (NFS) (i.e., the infrastructure) server automatically mounts and allows
its clients to access remote directories across the Testbed platforms. It also provides DNS master
mail functionality.

3.2.2.7 Internetworking Subsystem (ISS) Structure and Functionality

The Internetworking Subsystem (ISS) consists of COTS hardware and software items. It provides
the networking services based on protocols and standards corresponding to the lower four layers
of the OSI reference model. Section 10 of this document contains detailed description of the ISS.

3-11 456-TP-014-001

This page intentionally left blank.

3-12 456-TP-014-001

4. Communications Subsystem (CSS) CSCI

4.1 DCI CSCI Overview
The software for the Communications Subsystem (CSS) consists of the Distributed Computing
Software CI (DCI). The following table lists the services provided by the DCI CSCI:

Table 4.1-1 DCI Services
Service Remarks

Object Services
Directory Naming (DNS); includes
both Cell Directory Service and Glo­
bal Directory Service

OSF DCE 1.0.3

Security OSF DCE 1.0.3
Message Passing and RPC Calls OSF DCE 1.0.3
Thread OSF DCE 1.0.3
Time OSF DCE 1.0.3
Common Facility Services
Electronic Mail (E-Mail) Standard component of internet
File Access (ftp) Internet standard application for file transfer
Virtual Terminal Remote logon to a machine
CMI For logging into system
Configuration File
Process Framework

The Distributed Computing Environment (DCE) from the Open Software Foundation (OSF),
version 1.0.3, is a CSS baseline COTS product for the Testbed. DCE supports client/server
applications development, is a heterogeneous platform environment (including SUN, HP, and
Silicon Graphics (SGI) for the Testbed, and is available from multiple vendors (including HP,
Transarc, SUN, and SGI). The Testbed design is a single cell DCE architecture. Multicell security
authorization and cross-cell authentication including Access Control List (ACL) facilities are not
used. The Testbed makes use of the UNIX provided password authorization facilities.

Another COTS product, OODCE from HP, was selected as the object oriented encapsulation
method. OODCE provides an object-oriented layer on top of DCE by providing a set of class
libraries and an Interface Definition Language compiler, IDL++, to generate stub code in the C++
language. With OODCE comes the ability for the applications developer to use object oriented
methodology in their client/server development. This encapsulation method also entails CSS
development of custom APIs as application developer interfaces used to access OODCE and DCE
functionality. Note that each CSS service provides its service specific DCE encapsulating API.

A number of CSS services are used only to establish a client/server session (i.e., find and bind from
the directory service, authentication and authorization from the security service). After the
client/server session has been established, the client and the server can agree to other interfaces
(e.g., the DBMS client to DBMS server native protocol).

4-1 456-TP-014-001

The following lists the COTS products that are configured for the Testbed platforms:

• DCE Client DCE Application version 1.0.3.a; Transarc/TAR

• DCE Application Development Kit version 1.0.3.a/1.1; Transarc/TAR

• OODCE Libraries Version 1.0.3.a; HP

• TCPWrapper Version 7.3; HP

• Tripwire Version 1.2; HP

• DCE Replica Library HP

• DCE Timeserver

• DNS Master

• DNS Slave

• OODCE Libraries (HP DCE/9000) Rev 1.2.1; for binding custom C++ code with non-OO DCE

• Kerberos Client Version CNS9691; MIT

Detailed configuration information is provided in Section 11 of this document as well as in the
version description documents (VDDs) for each Testbed site.

4.2 DCI CSCI Service Descriptions and Object Models

4-2 456-TP-014-001

This page intentionally left. blank.

4-3

This page intentionally left blank.

4-4

4.2.1 CMIService Class Category

4.2.1.1 Overview

The EcSeCmi class was designed to be used for logging into a system (i.e. DCE login, sybase
login) without hard coding a user ID and password. The user of this class may obtain a user ID and
password using a seed and a random data file. Prior to using this class in application software, the
user should obtain a user ID and password using the GUI program, EcSeAuthnProg that utilizes
the same data file and seed. The EcSeAuthnProg uses the same library that applications may use
to obtain the user ID and password. Once a user ID and password are obtained, an account needs
to be established by the system administrator. The application may then use the same seed and data
file in the software to obtain entry into the system. Applications using the process framework may
place the seed and data file name in the process framework configuration file.

4.2.1.2 Object Model

public

EcSeCmi
myDataFile : RWFile*
myLocalIP : RWCString
myDatafileSize : EcTLongInt
seed : EcTULongInt

ConnectAuth()
srand()
rand()
ReadChar()

4.2.1.2.1 EcSeCmi Class

Overview:
This class will deliver an application its user ID and password based on an application key. NOTE:
The application key must be a configuration parameter provided by an application configuration
file.

Export Control: Public

Inheritance Relationships:

Attributes:

myDatafileSize: EcTLongInt

myDatafileSize is the read file size in bytes.

myDataFile: RWFile*

myDataFile is the file to read data from to obtain the random user IDs/passwords.

myLocalIP: RWCString

myLocalIP is the IP address of local host. IPaddress has one of the following forms. a, a.b, a.b.c
a.b.c.d (e.g. 155.157.114.56).

seed: EcTULongInt

seed is used for random generator and defaults to 1.

Constructors and Destructor:

EcSeCmi(const EcTChar* datafile);

The constructor EcSeCmi opens the datafile argument for binary read using Rogue Wave. If the
file is not exist, or the file is empty the constructor will set the error status and throw an
exception. The constructor finds the size of the file by position and stores the file size in the
private member myDatafileSize.

~EcSeCmi();

~EcSeCmi is the destructor.

Operations:

• ConnectAuth

4-6 456-TP-014-001

EcUtStatus ConnectAuth(const EcTLongInt applicationKey,

RWCString& name, RWCString& password, const RWCString

IPaddress);

ConnectAuth is the only public interface to the class to be called by application to obtain for the
application its user ID and password based on an application key, which is a configuration
parameter provided by an application configuration file.

Input - applicationKey is the seed to be used for determining the user ID and password. Output
- name is the login name to be used. Output - password is the password to be used. Input -
IPaddress is the Internet Address of the host from which connection will be made. This argument
is optional and has a default of NULL.

• GetIPaddress

EcTChar* GetIPaddress();

The GetIPaddress method get the default IP of the connecting host.

• GetNumber

EcTLongInt GetNumber(const EcTChar* IPaddress);

The GetNumber method generates a random offset of the file pointed to by myDataFile in the
range of the file size. The offset generated relates to the IP address of the connecting host. It has
one of the forms a, a.b, a.b.c, or a.b.c.d

• GetString

EcTInt GetString(RWCString& string, const RWCString& IPaddress);

The GetString method reads 8 bytes alpha-numeric characters from the file starting from the
specified offset.

• rand

EcTULongInt rand(void);

The rand method is the random number generator.

• ReadChar

EcTInt ReadChar(EcTLongInt rnum, EcTChar& ch);

The ReadChar method searches for an alpha-numeric character from datafile at a specified
offset.

• srand

void srand(EcTULongInt initial_seed);

The srand method sets the seed, the random number generator.

4-7 456-TP-014-001

4.2.2 Time Service

4.2.2.1 Overview

The Time Service Object Model provides a more detailed view of the interaction possible using
the Time Service. Time Service provides operations to obtain timestamps based on Coordinated
Universal Time (UTC). The Time Service also translates different timestamp formats and performs
calculations on timestamps.

4.2.2.2 Context

All are expected to use the Time Service for the Testbed. The CSS Time Service will provide
distributed time with millisecond resolution. Applications utilize the Time Service when they need
to obtain the time in various formats. The Time Service provides APIs to perform these categories
of functionality.

The CSS time service will not provide a method to set time but will provide methods to obtain the
time in various formats.

Some applications may need to simulate the current time by applying a delta to the current time.
The time class allows application developers to obtain the current time in various formats and
optionally lets them apply a predetermined delta to those values.

4-8 456-TP-014-001

4.2.2.3 Object Model

public

EcTiTimeService
_delta_value : utc_t
_delta_indicator : EcTInt

EcTiTimeService()
EcTiTimeService()
~EcTiTimeService()
GetAscGmtTime()
GetAscGmtTime()
GetSecNanoTime()
GetTimeValues()
GetRWTime()
GetTime()
GmTime()
BinToAscGmt()
MkBinTime()
MkBinRelTime()
AddTime()
SubTime()
GetLocalZone()
MkGMTTime()
CmpMidTime()
CmpIntTime()
GetLocalTime()
CvtStrToBin()
ApplyDelta()
CalculateDelta()
CvtDeltaToBinary()

4.2.2.3.1 EcTiTimeService

Overview:
This class is used to obtain the current time in various formats, and manipulate the time. There will
be no capability for the programmer to set the time.

In order to provide for simulated time when an object of this class is instantiated the parameters
passed to the constructor will be a string which is a name in the namespace, a string containing an
absolute time or delta time, or a null string, and a flag indicating whether the string is a namespace

4-9 456-TP-014-001

containing an absolute time value or a delta value, or the string is an absolute time or delta time
itself.

When a NULL string is passed as a parameter in the constructor the current time will be obtained.

When a string passed as a parameter in the constructor is not NULL it is assumed to be a name in
the namespace, when the delta value is equal to 1 or is equal to 2. The namespace should contain
either a delta value or an absolute time value.

When the delta value in the constructor is equal to a 3, the string is assumed to be the absolute time
and when the delta value is equal to 4 the string is assumed to be a delta value.

When the flag passed in the constructor indicates the time in the namespace or in the constructor
is an absolute time a delta value will be calculated by subtracting the current time with the absolute
time in the namespace. The delta value will be applied to the current time whenever a call is made
to obtain the current time.

The absolute time in the namespace or in the constructor should be a NULL-terminated character
string in the following format:

1995-11-04-12:10:30.000

where 1995 is the year - separator between year and month 11 is the month - separator between
month and day 04 is the day of month - separator between day and hours 12 is the hour : separator
between hours and minutes 10 is the minutes : separator between minutes and seconds 30 is the
seconds . separator between seconds and thousandths of seconds 000 is the thousandths of seconds

When the flag passed in the constructor indicates the time in the namespace is a delta value the delta
value will be applied to the current time whenever a call is made to obtain the current time.

The delta time in the namespace or in the constructor should be a NULL-terminated character
string in the following format:

[+|-]dd:hh:mm:ss where [+|-] indicates plus or minus dd indicates number of days - separator
between day and time hh indicates hours mm indicates minutes ss indicates seconds

The only time a delta will be applied is when obtaining the time (GetAscGmtTime,
GetSecNanoTime, GetTimeValues, GetTime). The other methods in this class will not apply the
delta.

Export Control: Public

Inheritance Relationships:

Attributes:

_delta_indicator: EcTInt

The _delta_indicator indicates what to do with the delta value. 0 = Obtain current time and 1 =
Add delta to current time.

_delta_value: utc_t

4-10 456-TP-014-001

The _delta_value attribute is a delta value maintained as binary timestamp.

Constructors and Destructor:

EcTiTimeService();

Default constructor.

EcTiTimeService(EcUtStatus* status, const EcTChar* a_Time,

EcTInt a_DeltaType);

Constructor.

Output - status (EcUtStatus) Input - a_Time is a string in the name space, if null delta value of
zero will be used or can be the absolute/delta time string. Input - a_DeltaType is a type of delta
where 1 = a_Time is absolute time (default), 2 = a_Time is delta time, 3 = a_Time is absolute
time, and 4 = a_Time is delta time.

virtual ~EcTiTimeService();

Destructor.

Operations:

• AddTime

EcUtStatus AddTime(const utc_t& a_utc1, const utc_t& a_utc2,

utc_t& ao_result);

AddTime computes the sum of two binary timestamps.

The AddTime routine adds two binary timestamps, producing a third binary timestamp whose
inaccuracy is the sum of the two input inaccuracies. One or both of the input timestamps
typically represents a relative (delta) time. The TDF in the first input timestamp is copied to the
output. The timestamps can be two relative times or a relative time and an absolute time.

Although no error is returned, the combination absolute time + absolute time should not be used.

Input - a_utc1 is a binary timestamp. Input - a_utc2 is a binary timestamp. Output - ao_result is
a binary timestamp. Return value is EcUtStatus.

• ApplyDelta

EcUtStatus ApplyDelta(const utc_t& a_utc, utc_t& ao_utc);

ApplyDelta applies the delta if necessary to the current time.

Input - a_utc is a binary timestamp. Output - ao_utc is a binary timestamp. Return value is
EcUtStatus.

• BinToAscGmt

EcUtStatus BinToAscGmt(const utc_t& a_utc, EcTChar*

ao_TimeString);

4-11 456-TP-014-001

BinToAscGmt converts a binary timestamp to an ASCII GMT String.

Input - a_utc is a binary timestamp. Output - ao_TimeString[] is an ASCII GMT time string.
Return value is EcUtStatus.

• CalculateDelta

EcUtStatus CalculateDelta(const utc_t& a_testtime);

CalculateDelta will calculate a delta value using the current time and an absolute time from the
namespace.

Input - a_testtime is a binary timestamp. Return value is EcUtStatus.

• CmpIntTime

EcUtStatus CmpIntTime(const utc_t& a_utc1, const utc_t& a_utc2,

utc_cmptype& ao_relation);

CmpIntTime compares two binary timestamps or two relative binary timestamps, not ignoring
inaccuracies.

The method will returns a flag indicating that the first timestamp is greater than, less than, or
equal to the second timestamp.

Input - a_utc1 is a binary timestamp. Input - a_utc2 is a binary timestamp. Output - ao_relation
is the relationship. Return value is EcUtStatus.

• CmpMidTime

EcUtStatus CmpMidTime(const utc_t& a_utc1, const utc_t& a_utc2,

utc_cmptype& ao_relation);

CmpMidTime compares two binary timestamps or two relative binary timestamps, ignoring
inaccuracies.

The method will returns a flag indicating that the first timestamp is greater than, less than, or
equal to the second timestamp.

Input - a_utc1 is a binary timestamp. Input - a_utc2 is a binary timestamp. Output - ao_relation
is the relationship. Return value is EcUtStatus.

• CvtDeltaToBinary

EcUtStatus CvtDeltaToBinary(const EcTChar* a_deltastring);

CvtDeltaToBinary will convert the delta time given as an ASCII string from the namespace into
a binary timestamp.

Input - a_deltastring is the delta string. Return value is EcUtStatus.

• CvtStrToBin

EcUtStatus CvtStrToBin(const EcTChar* a_TimeString, utc_t&

ao_utc);

4-12 456-TP-014-001

CvtStrToBin converts a NULL-terminated character string that represents an absolute
timestamp to a binary timestamp.

Input - a_TimeString is a character time string. Output - ao_utc is a binary timestamp. Return
value is EcUtStatus.

• GetAscGmtTime

EcUtStatus GetAscGmtTime(RWCString& ao_TimeString);

GetAscGmtTime obtains current GMT Time as a RWCString.

Output - ao_TimeString is a string containing the ASCII time. Return value is EcUtStatus.

• GetAscGmtTime

EcUtStatus GetAscGmtTime(EcTChar* ao_TimeString);

GetAscGmtTime will return an ASCII string containing the current GMT/UTC time. The ASCII
string will appear as follows:

1995-09-21-19:01:10.253I-----

Output - ao_TimeString[] is a string containing the ASCII time. Return value is EcUtStatus.

• GetLocalTime

EcUtStatus GetLocalTime(const utc_t& a_utc, tm& ao_timetm,

EcTLongInt& ao_tns, tm& ao_inacctm, EcTLongInt& ao_ins);

GetLocalTime converts a binary timestamp to a "tm" structure that expresses local time.

The user's environment determines the time zone rule (details are system dependent).

If the user's environment does not specify a time zone rule, the system's rules are used (details
of the rule are system dependent).

Additional returns include nanoseconds since the last second of Time and nanoseconds of
inaccuracy.

Input - a_utc is a binary timestamp. Output - ao_timetm is a local time. Output - ao_tns is
nanoseconds since local time. Output - ao_inacctm is the seconds of the inaccuracy. Output ­
ao_ins is the nanoseconds of the inaccuracy. Return value is EcUtStatus.

• GetLocalZone

EcUtStatus GetLocalZone(const utc_t& a_utc, EcTInt& a_tzlen,

EcTChar* ao_tzname, EcTLongInt& ao_tdf, EcTInt& ao_isdst);

GetLocalZone obtains the local time zone label and offset from GMT, given the UTC.

The user's environment determines the time zone rule (details are system dependent).

If the user's environment does not specify a time zone rule, the system's rules are used (details
of the rule are system dependent).

Input - a_utc is a binary timestamp. Input - a_tzlen is the length of the tzname. Output ­
ao_tzname[] is a character string long enough to hold the time zone label. Output - ao_tdf is a

4-13 456-TP-014-001

longword with differential in seconds east of GMT. Output - ao_isdst is the value of 0 (zero) if
standard time is in effect or a value of 1 if daylight savings time is in effect. Return value is
EcUtStatus.

• GetRWTime

RWTime GetRWTime(EcUtStatus* retvalue);

GetRWTime will return the current system time as a RW Time object.

Output - retvalue is an EcUtStatus object. Return value is RWTime object.

• GetSecNanoTime

EcUtStatus GetSecNanoTime(timespec_t& ao_timesp, timespec_t&

ao_inaccsp, EcTLongInt& ao_tdf);

GetSecNanoTime will obtain the current time in the format of timespec_t structure. The first
timespec_t structure contains the time component in form of seconds and nanoseconds since the
base time. The second timespec_t structure contains the inaccuracy component in the form of
seconds and nanoseconds. The TDF (Time Differential Factor) returned is in the form of signed
number of seconds east of GMT.

The timespec_t structure is as follows:

struct timespec { unsigned long tv_sec; Seconds since 00:00:00 GMT, January 1, 1970 long
tv_nsec; Additional nanoseconds since tv_sec } timespec_t;

Output - ao_timesp is the time component in form of seconds and nanoseconds. Output ­
ao_inaccsp is the Inaccuracy component in the form of seconds and nanoseconds. Output ­
ao_tdf is the TDF component in the form of signed number of seconds east of GMT. Return
value is EcUtStatus.

• GetTimeValues

EcUtStatus GetTimeValues(tm& ao_tm);

GetTimeValues will obtain the current local time in the form of a tm structure.

The tm structure has the following format:

struct tm { int tm_sec; Seconds (0-59) int tm_min; Minutes (0-59) int tm_hour; Hours (0-23) int
tm_mday; Day of month (1-31) int tm_mon; Month of year (0-11) int tm_year; Year - 1900 int
tm_wday; Day of Week (Sunday = 0) int tm_yday; Day of Year (0 - 364) int tm_isdst; Nonzero
if daylight savings is in effect

Output - ao_tm is a tm structure. Return value is EcUtStatus.

• GetTime

EcUtStatus GetTime(utc_t& ao_utc);

GetTime obtains current binary timestamp.

Output - ao_utc is a binary timestamp. Return value is EcUtStatus.

• GmTime

4-14 456-TP-014-001

EcUtStatus GmTime(const utc_t& a_utc, tm& ao_tm);

GmTime converts a binary timestamp to time values.

Input - a_utc is a binary timestamp. Output - ao_tm is a tm structure. Return value is EcUtStatus.

• MkBinRelTime

EcUtStatus MkBinRelTime(const reltimespec_t& a_timesp, const

timespec_t& a_iaccsp, utc_t& ao_utc);

MkBinRelTime makes a binary relative time from timespec_t structure.

Input - a_timesp is a reltimespec_t structure. Input - a_iaccsp is a timespec_t structure. Output ­
ao_utc is a binary timestamp. Return value is EcUtStatus.

• MkBinTime

EcUtStatus MkBinTime(const timespec_t& a_timesp, const

timespec_t& a_iaccsp, EcTLongInt& a_tdf, utc_t& ao_utc);

MkBinTime makes Binary Time from timespec_t structure.

Input - a_timesp is a timespec_t structure containing the time. Input - a_iaccsp is a timespec_t
structure containing the inaccuracy. Input - a_tdf is time differential factor (TDF). Output ­
ao_utc is a binary timestamp. Return value is EcUtStatus.

• MkGMTTime

EcUtStatus MkGMTTime(const tm& a_timetm, EcTLongInt& a_tns,

utc_t& ao_utc);

MkGMTTime converts a "tm" structure that expresses GMT or UTC to a binary timestamp.

Additional inputs include nanoseconds since the last second of Time and nanoseconds of
inaccuracy.

Input - a_timetm is a tm structure. Input - a_tns is the nanoseconds since the time component.
Output - ao_utc is a binary timestamp. Return value is EcUtStatus.

• SubTime

EcUtStatus SubTime(const utc_t& a_utc1, const utc_t& a_utc2,

utc_t& ao_result);

SubTime computes the difference between two binary timestamps.

The two binary timestamps express either an absolute time and a relative time, two relative
times, or two absolute times. The resulting timestamp is utc1 minus utc2. The inaccuracies of
the two input timestamps are combined and included in the output timestamp. The TDF in the
first timestamp is copied to the output.

Although no error is returned, the combination relative time - absolute time should not be used.

Input - a_utc1 is a binary timestamp. Input - a_utc2 is a binary timestamp. Output - ao_result is
a binary timestamp. Return value is EcUtStatus.

4-15 456-TP-014-001

4.2.3 Configuration File

4.2.3.1 Overview

The configuration file service provided by CSS consists of two classes, EcPfConfigFile and
ListAndNameCollect. This service will read attributes and their values from a configuration file
and creates a linked list of attributes and a linked list of the attributes values. An application may
obtain the values for a particular attribute using this service. This service is used by the process
framework and can be used on any configuration file for an application.

4.2.3.2 Object Model

public
EcPfConfigFile

myglobalRWSlist : RWSlistCollectables
myglobalRWSlistPtr : RWSlistCollectables*

CreateLineList()
CreateListOfLineLists()

public-

ListAndNameCollect
−attribName : RWCString
−listP : RWSlistCollectables*

−RWDECLARE_COLLECTABLE()
+ListAndNameCollect()
+ListAndNameCollect()
+~ListAndNameCollect()
+ConvertListToString()
+isEqual()

4.2.3.3 EcPfConfigFile Class

Overview:
This class is used to read the Configuration file that holds the values of attributes needed for the
process Framework. For this it creates a linked list each node of which stores an attribute name and
a linked list of values for this attribute given in the Configuration file.

Export Control: Public

Inheritance Relationships:

Attributes:

myglobalRWSlistPtr: RWSlistCollectables*

Pointer to the pointer of the global RWSlist.

myglobalRWSlist: RWSlistCollectables

Pointer to the global RWSlist.

Constructors and Destructor:

EcPfConfigFile(RWCString rsNewFileName, EcUtStatus* ao_status);

Constructor.

Input - rsNewFileName is the name of the Configuration File to be read. Output - ao_status is
the status indicating whether the constructor failed or succeeded.

~EcPfConfigFile();

Destructor.

Operations:

• CreateLineList

ListAndNameCollect* CreateLineList(RWCString line_string,

EcUtStatus* ao_status);

CreateLineList creates the list of values in the right side of the assignment in a line. It goes
through checking whether the line is a comment line and hence needs to be ignored, or otherwise
checks for the correct structure of the line (name = value1 value2 ..). In this case creates a
collectable with the name of the attribute and the linked list of attribute values and inserts it in
the main list.

Input - line_string is a RWCString. Output - ao_status is the status. Returns
ListAndNameCollect* a list of values.

4-17 456-TP-014-001

•	 CreateListOfLineLists

EcUtStatus CreateListOfLineLists(RWCString rsNewFileName);

CreateListOfLineLists creates the stream from the file name provided. Goes through the lines of
that file and for each line creates a node to be inserted into the list. The node stores the name of
the attribute and the list of values.

Input - rsNewFileName is the name of the configuration files to be read. Returns EcUtStatus
indicating the status of the method.

• GetAttributesList

ListAndNameCollect* GetAttributesList(RWCString attribute,

EcUtStatus* ao_status);

GetAttributesList gets all the attribute values linked list for a given attribute name.

Input - attribute is the attribute for which the values are requested. Output - ao_status is the
status. Returns the linked list holding the values for an attribute name.

•	 GetGlobalPointer

RWSlistCollectables* GetGlobalPointer();

GetGlobalPointer obtains a global pointer to the RWSlist. Returns value of type
RWSlistCollectables.

4.2.3.3.1 ListAndNameCollect Class

Overview:
This class is used to create collectable nodes whose fields are the attribute name and the linked list
of the values for the respective attribute.

Export Control: Public

Inheritance Relationships:

Attributes:

attribName: RWCString

The Attribute Name that is found in the configuration file.

listP: RWSlistCollectables*

Pointer to the list of attributes in the configuration file.

4-18 456-TP-014-001

Constructors and Destructor:

ListAndNameCollect();

Constructor.

ListAndNameCollect(RWCString rsNewName, RWSlistCollectables*

pList, EcUtStatus* ao_status);

Constructor.

Input - rsNewName is the name to be added. Input - *pList is the list to be added to node. Output

- ao_status is the status indicating whether the constructor failed.

~ListAndNameCollect();

Destructor.

Operations:

• ConvertListToString

RWCString ConvertListToString(EcUtStatus* ao_status);

The ConvertListToString method converts the list of values to a string.

Output - ao_status is the status indicating whether the constructor failed. Returns RWCString
containing the list of values.

• GetList

RWSlistCollectables* GetList(EcUtStatus* ao_status);

The GetList method gets the list of the values for the attribute.

Output - ao_status is the status indicating whether the method failed. Returns a
RWSlistCollectables pointer.

• GetName

RWCString& GetName(EcUtStatus* ao_status);

The GetName method gets the name of the attribute.

Output - ao_status is the status indicating whether the method failed. Returns the name os the
attribute as a RWCString.

• isEqual

RWBoolean isEqual(const RWCollectable*) const;

The isEqual method checks to see if the attribute is equal to one in the list.

• RWDECLARE_COLLECTABLE

int RWDECLARE_COLLECTABLE(ListAndNameCollect);

Declaration for the ListAndNameCollect RWCollectable.

4-19 456-TP-014-001

• SetList

EcTVoid SetList(RWSlistCollectables* pList, EcUtStatus*

ao_status);

The SetList method sets the list of the values for the attribute.

Input - *pList is the list to be added to node. Output - ao_status is the status indicating whether
the method failed.

• SetName

EcTVoid SetName(RWCString rsNewName, EcUtStatus* ao_status);

The SetName method sets the name of the attribute.

Input - rsNewName is the name to be added. Output - ao_status is the status indicating whether
the method failed.

4-20 456-TP-014-001

4.2.4 Process Framework

4.2.4.1 Overview

The ECS contains several infrastructure features which facilitate the implementation of
client-server applications. The framework provides an extensible mechanism for ECS Client and
Server applications to transparently include these infrastructure features. Therefore, their
importance grows with future releases of ECS. Furthermore, the framework is used solely by
ECS custom developed applications and as such is not meant for COTS applications.

The objective of the process framework is to ensure design and implementation consistency for
all ECS Client and Server applications. It encapsulates implementation details of ECS
infrastructure services and removes the need for programmers to rewrite common initialization
code. It should be noted that the testbed only is using the client side of the process framework
and the discussion in the document is limited to the client side.

This section presents the design of the framework. It can be noted that the design is capable of
providing a different kind of framework for each type of ECS process presented in the
classification in the object model section. As said in that section, a framework for the client will
be provided only for DCE clients.

4.2.4.2 Context

A two step approach is used to develop the process framework. First, a process classification for
the ECS project is developed from the client/server perspective. Then, the required capabilities
are allocated at different levels of abstraction for each process type. The details of the above
steps are presented below.

Figure 4.2.4.2-1 presents a first glance of the process classification for ECS application
processes. A generic process can be specialized in client process and in server process. The
former can be specialized in gateway client (client external to the ECS system and connected to
it through a gateway) and DCE client (client in the ECS system which uses DCE as
communication mechanism). A server process can be specialized in managed server process and
managed server process.

4-21 456-TP-014-001

Process

Client Server

Unmanged Server Managed ServerGateway Client DCE Client

Figure 4.2.4.2-1. ECS Process Classification

In this context, the Managed Server Process is a process controlled by MSS (by the operator
through HP Openview). An unmanaged server process is a process created by another process for
its specific use and is out of MSS's direct control. The name must not confuse the reader. An
unmanaged process is managed as well, but it is managed by its parent process instead of MSS. In
the testbed release, the only types of processes that are being used are clients.

4.2.4.3 Object Model

The following figure presents the object model for the framework. The class names, in
accordance with ECS policy, start with the code "Ec" and are followed by a component code, in
this case we choose "Pf" for Process framework.

Although different type of processes need different framework functionality, the object model
closely maps the process classification so that the reuse of common functionality is maximized.

Since the testbed only utilizes the client side of the process framework, the discussion here is
limited to only the client features of the process framework.

The class EcPfGenProcess represents the process framework for a generic process. It has all the
common functionality for all the processes. It is a class which provides a common interface to
access the common methods. Moreover, every process needs to have available some basic

4-22 456-TP-014-001

information about itself. This functionality can work in the same way for every process and
therefore is defined in this class. On the other hand, every process needs to have Event-Error
Handling capability, but its implementation must be different for client and server processes,
although its interface could be the same. The method PfProcessEvent is therefore declared as
virtual forcing the subclasses to implement this capability.

The class EcPfClient defines the framework for client processes. This class has essentially only
two methods, the PfProcessEvent method and the PfCheckAcl method. At the moment, it doesn't
seems that there are other differences with a generic process. This class is defined to satisfy a future
need for specific functionality needed by client processes. In the testbed version of the EcPfClient,
the capability to process events and to check acls does not exits. The testbed is not utilizing DCE.

4-23 456-TP-014-001

−$myPointer

EcPfClient
$myPointer : EcPfClient*
$EcAclServObjPtr : EcAclServ_1_0*
$LogCliErrObjPtr : LogCliErr_1_0*
AclServerPathName : RWCString
$PfAclServerBoundFlag : EcTInt
pfAclServBind : DCEPthread*

PfProcessEvent()
PfCheckAcl()
$PfCkAclServBind()

−$myPointer

EcPfGenProcess
myMode : RWCString
mySite : RWCString
myExecName : RWCString
myConfigFileName : RWCString
_Release : RWCString
mySiteandModePath : RWCString
myAppName : RWCString
myDeltaTime : RWCString
myPID : EcTInt
myAppID : EcTInt
myProgramID : EcTInt
myMajorVersion : EcTInt
myMinorVersion : EcTInt
_appkey : RWCString
appkey : EcTLongInt
_dceappkey : RWCString
dceappkey : EcTLongInt
_datafilename : RWCString
CmiObj : EcSeCmi*
myConfigFileP : EcPfConfigFile*
$myPointer : EcPfGenProcess*
PfGetApAuthInfoMutex : DCEPthreadMutex

PfProcessEvent()
PfProcessErrorMsg()
PfCheckStrOfInt()

public

public

4.2.4.3.1 DCEPthreadMutex Class

Overview:

4-24 456-TP-014-001

Export Control: Public

Inheritance Relationships:

Attributes:

Constructors and Destructor:

Operations:

4.2.4.3.2 EcPfClient Class

Overview:
This class inherits from the EcPfGenProcess class and should be inherited from by the application.
This class will provide the following: 1) create the client object to log events(errors) to the
EcAclServer, 2) the client may be logged into DCE via software if the application client provides
a seed in their configuration file, and 3) when the client is logged into DCE, a client object will be
created for clients who which to call the method PfCheckAcl(method provided to check
permissions for an acl).

Export Control: Public

Inheritance Relationships:
Inherits from EcPfGenProcess

Attributes:

AclServerPathName: RWCString

AclServerPathName is the EcAclServer path name in the CDS.

EcAclServObjPtr: EcAclServ_1_0*

EcAclServObjPtr is a pointer to the client EcAclServ object.

LogCliErrObjPtr: LogCliErr_1_0*

LogCliErrObjPtr is a pointer to the client EcAclServ object.

myPointer: EcPfClient*

4-25 456-TP-014-001

myPointer is a pointer to this object.

pfAclServBind: DCEPthread*

pfAclServBind is a pointer to the PfCkAclServBind thread.

PfAclServerBoundFlag: EcTInt

PfAclServerBoundFlag indicates whether binding has occurred for the EcAclServObjPtr object.

Constructors and Destructor:

EcPfClient(EcTInt a_argc, EcTChar** a_argv, EcUtStatus*

ao_status);

Constructor initializes inherited classes and private state.

Input - a_argc is the number of arguments on the execution line. Input - a_argv is the array of
the arguments on the execution line. Output - ao_status is the status indicating whether the
constructor failed.

virtual ~EcPfClient();

Destructor.

Operations:

• PfCheckAcl

EcUtStatus PfCheckAcl(const RWCString& a_dbname, const

RWCString& a_aclname, const RWCString& a_permissions,

EcTBoolean* ao_flag);

The PfCheckAcl checks for permissions on an acl. This method makes an RPC to the
EcAclServer. The client needs to be logged into DCE to make this call, otherwise an error will
occur.

Input - a_dbname is the acldbname. Input - a_aclname is the name of the acl. Input ­
a_permissions is the permissions to be checked. Output - ao_flag indicates if permission is
granted or not granted. Returns an EcUtStatus indicating the status of the method.

• PfCkAclServBind

static DCEPthreadProc PfCkAclServBind(DCEPthreadParam a_param);

PfCkAclServBind is a thread method that checks to see if the bounding can be obtained for the
EcAclServer object to interface to the server.

Input - a_param is a parameter to the thread. Returns DCEPthreadProc.

• PfGetAclServerPathName

RWCString PfGetAclServerPathName(EcUtStatus* ErrStatus);

The PfGetAclServerPathName obtains the EcAclServer path name in the CDS.

4-26 456-TP-014-001

Output - ErrStatus indicates the status of the method. Returns the CDS path name to find the
EcAclServer.

• PfGetAclServObjPtr

EcAclServ_1_0* PfGetAclServObjPtr(EcUtStatus* ErrStatus);

The PfGetAclServObjPtr obtains a pointer to the EcAclServObj.

Output - ErrStatus indicates the status of the method. Returns an EcAclServ_1_0 pointer.

• PfGetGlobalPtr

static EcPfClient* PfGetGlobalPtr();

The PfGetGlobalPtr method obtains the global pointer to this object.

Returns a pointer to the EcPfClient object.

• PfProcessEvent

virtual EcUtStatus PfProcessEvent(EcAgEvent* a_event,

EcTAgLogType a_logtype);

The PfProcessEvent method is flattens the EcAgEvent and make a call to the EcAclServer to log
the event. If the client cannot bind to the EcAclServer the event will be written to the system log.
The client does not have to be logged into DCE to make this call.

Input - a_event which is an EcAgEvent object. Input - a_logtype which indicates the log,
application level or MSS level. Returns a EcUtStatus indicating the status of the method.

4.2.4.3.3 EcPfGenProcess Class

Overview:
EcPfGenProcess is a class which represents the process framework for a generic process. It has all
the common functionality for all the process frameworks. It is mainly a container of attributes
needed by every process. It obtains attribute values from the command line parameters or from a
configuration file.

The command line argument list is passed to the constructor. It is required that the configuration
file and the mode are provided from the command line. The constructor will set all attribute values
and return the status.

Export Control: Public

Inheritance Relationships:

Attributes:

appkey: EcTLongInt

4-27 456-TP-014-001

Application Start Number (Seed) as an integer. AppStrtNum converted to long integer.

CmiObj: EcSeCmi*

Pointer to the EcSeCmi object used for created userID and Password.

dceappkey: EcTLongInt

DCE Application Start Number (Seed) as an integer. DCEAppStrtNum converted to long
integer.

myAppID: EcTInt

Application ID.

myAppName: RWCString

Name of your application.

myConfigFileName: RWCString

Name of the process framework configuration file.

myConfigFileP: EcPfConfigFile*

Pointer to the EcPfConfigFile Object used for reading from the Configuration file.

myDeltaTime: RWCString

Delta time used for simulation of time.

myExecName: RWCString

Executable name of your process.

myMajorVersion: EcTInt

Major Version number.

myMinorVersion: EcTInt

Minor Version number.

myMode: RWCString

Mode in which your process is running (ops, ts1, tr1, etc.).

myPID: EcTInt

Process identifier.

myPointer: EcPfGenProcess*

Pointer to this EcPfGenProcess object.

myProgramID: EcTInt

Program ID.

4-28 456-TP-014-001

mySiteandModePath: RWCString

The site and mode path for the CDS entry.

mySite: RWCString

Site where your process is running (gsfc, larc, etc.).

PfGetApAuthInfoMutex: DCEPthreadMutex

Mutex that is locked before calling CmiObj->ConnectAuth and unlocked after the call to
CmiObj->ConnectAuth. Done to prevent problems during the method if call from multiple
threads at the same time.

_appkey: RWCString

Optional attribute, AppStrtNum, used for call PfGetApAuthInfo Application Start Number
(Seed) as a RWCstring.

_datafilename: RWCString

Datafilename needed to instantiate EcSeCmi object.

_dceappkey: RWCString

Optional attribute, DCEAppStrtNum, used for call PfGetApAuthInfo DCE Application Start
Number (Seed) as a RWCstring.

_Release: RWCString

Release of your process (A or B).

Constructors and Destructor:

EcPfGenProcess(EcTInt a_argc, EcTChar** a_argv, EcUtStatus*

ao_status);

Constructor.

Input - a_argc is the number of arguments on the execution line. Input - a_argv is the array of
the arguments on the execution line. Output - ao_status is the status indicating whether the
constructor failed.

virtual ~EcPfGenProcess();

Destructor.

Operations:

• PfCheckStrOfInt

EcUtStatus PfCheckStrOfInt(RWCString a_IntStra);

The PfCheckStrOfInt method checks a string to see if the string consists only of integers.

4-29 456-TP-014-001

Input - a_IntStra is the string that is to be checked. Returns a EcUtStatus indicating if the string
consisted only of integers.

• PfGetApAuthInfo

EcUtStatus PfGetApAuthInfo(RWCString& user_name, RWCString&

user_password, EcTLongInt ap_auth_info_seed);

PfGetApAuthInfo obtains a username and password using a seed If the default is used for the
seed argument, the seed from the configuration file is used.

Input - ap_auth_info_seed is the Application authorization information seed. Output ­
user_name is a RWCString containing the user name. Output - user_password is a RWCString
containing the user password. Returns a EcUtStatus indicating the status of the method.

• PfGetAppID

EcTInt PfGetAppID(EcUtStatus* status);

The PfGetAppID method obtains the Application ID class attribute.

Output - status is the status indicating whether the method failed. Returns a EcTInt containing
the application ID.

• PfGetAppName

RWCString PfGetAppName(EcUtStatus* status);

The PfGetAppName obtains the application name class attribute.

Output - status is the status indicating whether the method failed. Returns a RWCString
containing the application name.

• PfGetConfigFileName

RWCString PfGetConfigFileName(EcUtStatus* status);

The PfGetConfigFileName method obtains the configuration file name class attribute which was
set by reading the command line.

Output - status is the status indicating whether the method failed. Returns a RWCString
containing the configuration file name.

• PfGetConfigFileP

EcPfConfigFile* PfGetConfigFileP(EcUtStatus* status);

The PfGetConfigFileP obtains the pointer to the EcPfConfigFile object used in the constructor.

Output - status is the status indicating whether the method failed. Returns pointer to the
EcPfConfigFile object.

• PfGetDeltaTime

RWCString PfGetDeltaTime(EcUtStatus* status);

The PfGetDeltaTime method obtains the delta time class attribute.

4-30 456-TP-014-001

Output - status is the status indicating whether the method failed. Returns a RWCString
containing the delta time.

• PfGetExecName

RWCString PfGetExecName(EcUtStatus* status);

The PfGetExecName method obtains the executable name class attribute.

Output - status is the status indicating whether the method failed. Returns a RWCString
containing the executable name.

• PfGetGlobalPtr

static EcPfGenProcess* PfGetGlobalPtr();

The PfGetGlobalPtr obtains the global pointer to this EcPfGenProcess object.

Returns a pointer to the EcPfGenProcess object.

• PfGetMajorVersion

EcTInt PfGetMajorVersion(EcUtStatus* status);

The PfGetMajorVersion method obtains the major version class attribute.

Output - status is the status indicating whether the method failed. Returns a EcTInt containing
the major version number.

• PfGetMinorVersion

EcTInt PfGetMinorVersion(EcUtStatus* status);

The PfGetMinorVersion method obtains the minor version class attribute.

Output - status is the status indicating whether the method failed. Returns a EcTInt containing
the minor version number.

• PfGetMode

RWCString PfGetMode(EcUtStatus* status);

The PfGetMode method obtains the mode attribute.

Output - status is the status indicating whether the method failed. Returns a RWCString
containing the mode.

• PfGetPath

RWCString PfGetPath(EcUtStatus* status, const EcTChar*

a_ServerName, const EcTChar* a_Site, const EcTChar* a_Mode);

The PfGetPath method creates a CDS path name using servername, site, mode. If defaults are
taken for site and mode, values from the configuration file will be used.

Input - a_ServerName is the Server Name. Input - a_Site is the site. Input - a_Mode is the mode
(tr1, ts1, ops, etc.). Output - status is the status indicating whether the method failed. Returns a
RWCString containing a full CDS path.

4-31 456-TP-014-001

• PfGetPID

EcTInt PfGetPID(EcUtStatus* status);

The PfGetPID method obtains the process ID.

Output - status is the status indicating whether the method failed. Returns a EcTInt containing
the process ID.

• PfGetProgramID

EcTInt PfGetProgramID(EcUtStatus* status);

The PfGetProgramID method obtains the program ID class attribute.

Output - status is the status indicating whether the method failed. Returns a EcTInt containing
the program ID.

• PfGetSiteandModePath

RWCString PfGetSiteandModePath(EcUtStatus* status);

The PfGetSiteandModePath method constructs the value of the attribute mySiteandModePath
which has the format: /.:/ecs/mySite/myMode and returns it.

Output - status is the status indicating whether the method failed. Returns a RWCString
containing the site mode path.

• PfGetSitePath

RWCString PfGetSitePath(EcUtStatus* status);

The PfGetSitePath constructs a path of the format: /.:/ecs/mySite and returns it.

Output - status is the status indicating whether the method failed. Returns a RWCString
containing the site path.

• PfGetSite

RWCString PfGetSite(EcUtStatus* status);

The PfGetSite method obtains the site class attribute.

Output - status is the status indicating whether the method failed. Returns a RWCString
containing the site.

• Pfget_appkey

EcTLongInt Pfget_appkey(EcUtStatus* status);

The Pfget_appkey obtains the seed value class attribute which was read from the configuration
file/command line.

Output - status is the status indicating whether the method failed. Returns a EcTLongInt
containing the seed value.

• Pfget_DataFileName

4-32 456-TP-014-001

RWCString Pfget_DataFileName(EcUtStatus* ErrStatus);

The Pfget_DataFileName method obtains the DataFileName file name class attribute which was
set by reading the command line/configuration file. DataFileName is used when creating the
EcSeCmi object.

Output - status is the status indicating whether the method failed. Returns a RWCString
containing the DataFileName.

• Pfget_dceappkey

EcTLongInt Pfget_dceappkey(EcUtStatus* status);

The Pfget_dceappkey obtains the seed value class attribute which was read from the
configuration file/command line.

Output - status is the status indicating whether the method failed. Returns a EcTLongInt
containing the seed value.

• PfProcessErrorMsg

EcUtStatus PfProcessErrorMsg(const EcLgErrorMsg&);

The PfProcessErrorMsg method processes an error message using PfProcessEvent method.

Input - EcLgErrorMsg is a structure containing the error to be logged. Returns a EcUtStatus
indicating the status of the method.

• PfProcessEvent

virtual EcUtStatus PfProcessEvent(EcAgEvent* a_event,

EcTAgLogType a_logtype);

The PfProcessEvent method for logging of events is not defined at this time in this level.

Input - a_event which is an EcAgEvent object. Input - a_logtype which indicates the log,
application level or MSS level. Returns a EcUtStatus indicating the status of the method.

• PfSetAttrFromArgv

virtual EcUtStatus PfSetAttrFromArgv(EcTInt a_argc, EcTChar**

a_argv);

The PfSetAttrFromArgv method sets the attributes from the argument line for this class,
EcPfGenProcess.

Input - a_argc is the number of arguments on the execution line. Input - a_argv is the array of
the arguments on the execution line. Returns a EcUtStatus indicating the status of the method.

4.2.4.4 Implementation Description

This section presents an implementation description of the Process Framework with
implementation instruction and suggestion for ECS client developers since clients are the only
process framework processes in the testbed.

4-33 456-TP-014-001

4.2.4.4.1 Client Process

4.2.4.4.1.1 Description

Every client that wishes to be a process framework client should inherit from the EcPfClient class.
Process framework clients in the testbed will not have the ability to login to DCE, log events to the
EcAclServer, and check acls if needed. An example of the client using a DCE interface is shown
for completion even though no DCE interfaces are contained in the testbed.

4.2.4.4.1.2 Example of a Client

Figure 4.2.4.4.1.2-1 shows an example of the connection between all the class and modules
involved in a client application. The client application main program instantiates an object, in this
example MyClientProc. This object inherits its framework and is connected to the class generated
by the idl++ compiler. This class, in the example Widget_1_0, simulates a local call for a method
which really is implemented in a server. DCE takes care of all the actions to call the distributed
method in the server side.

MyClientMain

Widget_1_0

widget()
MyClientProc

uses

DCEInterface

MyClientMain is a module
containing the main
program for a client
application

Client Framework

Figure 4.2.4.4.1.2-1. Example of General Object Model for Client Applications

4-34 456-TP-014-001

All the DCE capability is provided in the class Widget_1_0 and its ancestor classes as
DCEInterface. The client application developer doesn't use this DCE capabilities directly but only
through this IDL++ generated class.

4.2.4.4.1.3 Configuration File for Process Framework Client

Set up a Process Framework configuration file. See example below:

The comment line should start with '# ' - a # sign followed by space.

Please surround with space the equal sign and attribute value(s).

Use of a semicolon (preceded by an empty space) at the end

of the line is optional.

Optional fields you are not using should be left blank.

You can give a string of different values as follows:

ProgramID = 12312

Program ID. Refer to Event Handling Standards

ApplicationID = 123

Application ID. Refer to Event Handling Standards.

Site = larc

Used in pathname for CDS to create a path for finding
any server. This is used when creating the client object
to find the EcAclServer for logging of event and checking
acks if desired.

DeltaTime = 3600

Is for simulated time.

MajorVersion = 1
MinorVersion = 0

Major and Minor Version numbers of the delivered code.

Release = A or B

If 'A' then /.:/ecs/Site/Mode, since it is a single cell.

If 'B' then /.../Site/ecs/Mode, since B is going to have a multicell architecture.

We need to specify in the config file.

4-35 456-TP-014-001

 A note: tried using B server stopped running. If we use A then
clients will look in the CDS for a path with release A.

DataFileName = NameOfRandomDataFile

Name of the data file that is to be used to generate
userids and passwords.

AppStrtNum = ApplicationSeedNumber

Seed that is to be used to generate user-ids and passwords.

DCEAppStrtNum = DCE login Seed Number

Seed that is to be used to generate user-id and password

for logging into DCE.

4-36 456-TP-014-001

5. Systems Management Subsystem (MSS) CSCIs

5.1 Introduction and Context
The MSS provides the ECS Maintenance and Operations (M&O) staff with the capability to
manage the Testbed, perform network and system management services for the Testbed hardware
and software resources. The software CSCIs of the MSS are composed of commercial off the shelf
(COTS) software. The software contains the Management Software CSCI (MCI) and the
Management Logistic Software CSCI (MLCI).

5.2 MSS Services and CSCIs
The following lists the MSS provided services and CSCI constituent elements:

Table 5.2-1 MSS Service to CSCI Mapping
Management Service Function CSCI

Fault Management Monitor, detect, isolate, diagnose, and recover
manually from faults within domain; largely
COTS capabilities (HP OpenView) and SNMP
agent software

MCI

Track non-conformance Reports
(NCRs) to locate and record resourc­
es. Detects changes to approved
configuration

Policy flowdown, system-wide monitoring and
analysis; COTS capability provided by Distrib­
uted Defect Tracking System (DDTS)

MLCI

Site inventory data maintenance and
management

Maintenance through the use of office automa­
tion tools

N/A

Site-level monitoring of spares and
consumables including replenish­
ment

Maintenance through the use of office automa­
tion tools

N/A

Site physical configuration Configuration Management (CM) process and
office automation tools

N/A

Establish and maintain PM sched­
ules, monitor and coordinate off-site
maintenance

Configuration Management (CM) process; site
VDD document; COTS software DDTS; Clear-
Case

MLCI

Software CM of the Science Data
Processing Testbed baseline

Clearcase selected for Software CM MLCI

Maintain system wide status of
change requests

COTS software DDTS MLCI

Since HP Openview, DDTS, and Clearcase are COTS products, their designs are not modeled and
documented in this “as-built” documentation. However, the operations and products’ architecture
are fully documented in their vendor provided documentation as listed in Section 2 of this
document.

5-1 456-TP-014-001

This page intentionally left blank.

5-2 456-TP-014-001

