
420-TP-013-001

Impact of

Multi-Threaded Processes

on the ECS Project

Technical paper - Not intended for formal review
or Government approval.

June 1996

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

Giuseppe Calavaro /s/ 6/26/96

Giuseppe Calavaro, Project Engineer Date
EOSDIS Core System Project

SUBMITTED BY

Arthur Palmer /s/ 6/26/96

Arthur Palmer, DE Manager Date
EOSDIS Core System Project

Hughes Information Technology Systems
Upper Marlboro, Maryland

This page intentionally left blank.

Abstract

This White Paper describes the potential impact that the use of multi-threaded processes may
have on the ECS project. It identifies the current COTS that are not thread safe and recommends
work around to allow their use. It also provides guidelines for consideration in future COTS
procurements to avoid acquisition of products that are not thread safe. Finally, it provides
guidelines to the ECS developers on how to write thread safe applications.

Keywords: Thread safe, multi-threaded processes, developer guidelines.

iii 420-TP-013-001

This page intentionally left blank.

iv 420-TP-013-001

Contents

1. Introduction

1.1 Purpose...1-1

1.2 Organization...1-1

2. Thread Safe Issues

2.1 Problem Explanation...2-1

2.2 General Resolution..2-2

3. COTS Software Risk Assessment

3.1 COTS Software Risk Assessment Summary ..3-1

3.1.1 COTS Software Libraries...3-1

3.1.2 COTS Development and Test Tools ..3-2

3.2 COTS Software Libraries Risk Assessment Detail...3-3

3.2.1 Sybase Client Library...3-4

3.2.2 BuilderXcessory, Epak and GraphPak Widget Set..3-6

3.2.3 IMSL..3-7

3.2.4 IDL ..3-8

3.2.5 PEER Optima...3-9

3.2.6 Illustra Client Library..3-9

3.2.7 Netscape Server CGI..3-10

3.2.8 Tools.h++...3-11

3.2.9 DBTools.h++ ...3-12

3.2.10 X R5/Motif...3-14

3.2.11 HP Openview...3-15

3.2.12 Spatial Query Server (SQS) ...3-16

3.3 COTS Development and Test Tools Risk Assessment Detail ...3-16

3.3.1 LoadRunner/XRunner...3-17

3.3.2 Purify and PureCoverage ...3-18

v 420-TP-013-001

3.3.3 Compilers...3-18

3.3.4 Debuggers ..3-19

3.4 Guidelines for Future COTS Software Procurements..3-20

4. Guidelines for Software Development

4.1 When To Use Threads...4-2

4.2 Starting And Ending Threads..4-2

4.3 Thread Safe Function Calls...4-3

4.4 Using Non-thread Safe Libraries ..4-4

4.5 Warnings About Non-thread Safe Function Calls ..4-4

4.6 Atomic Operations ..4-4

4.7 Mutexes...4-5

4.8 Exception Handling...4-7

4.9 Using Multi-thread Options In Makefiles...4-8

4.10 The Real World..4-8

4.11 Suggestions And Reminders ...4-9

4.12 Other Areas Of Interest..4-10

5. Conclusions

References

Abbreviations and Acronyms

vi 420-TP-013-001

1. Introduction

1.1 Purpose

The purpose of this White Paper is to provide an overview of the potential impact that the use of
multi-threaded processes may have on the development and/or maintenance of the ECS.

This document has been written to:

1) help management in risk assessment and mitigation

2) identify non-thread safe COTS software used by this project that pose risk

3) recommend solutions and/or work around in using non-thread safe COTS software

4) provide guidelines to application developers for writing thread safe applications.

Reviewers of this document are expected to be the release system architects, the POCs for each
COTS software product and the SEPG manager. Procurement Managers also have to be aware of
this document and its impact in future software purchase.

1.2 Organization

This paper is organized as follows:

•	 Section 1 provides information about the white paper purpose, contents and whom to
contact for more information.

•	 Section 2 provides an explanation of thread safe applications as related to multi-threaded
processes.

•	 Section 3 provides the results from the thread safe risk assessment conducted on each of
the COTS software products to be integrated in the ECS. It provides detailed discussions
of COTS software considered to present potential risk and recommends final solutions
and/or work around. This section also includes points of contact, vendors, and
developers associated with each of the COTS software products.

•	 Section 4 provides guidelines for application developers to produce thread safe
applications.

Questions regarding technical information contained within this Paper should be addressed to the
following ECS and/or GSFC contacts:

• ECS Contacts

– Giuseppe Calavaro, Project Engineer, (301) 925-1192, gcalavar@eos.hitc.com

– Arthur Palmer, D. E. Manager, (301) 883-4012, ppalmer@eos.hitc.com

1-1 420-TP-013-001

Questions concerning distribution or control of this document should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Systems

1616 McCormick Drive

Upper Marlboro, MD 20774-5372

1-2 420-TP-013-001

2. Thread Safe Issues

2.1 Problem Explanation

In modern operating systems, software processes can contain multiple threads of control, usually
just called threads, or sometimes lightweight processes. In many respects, threads are like little
mini-processes. Each thread runs strictly sequentially and has its own program counter and stack
to keep track of where it is. Threads can create child threads and can block waiting for systems
calls to complete, just like regular processes. Threads share the CPU just as processes do.

Different threads in a process are not quite as independent as different processes. All threads
have exactly the same address space, which means they also share the same global variables.
Since every thread can access every virtual address, one thread can read, write, or even
completely wipe out another thread's stack. There is no protection between threads because (1) it
is impossible, and (2) it should not be necessary. A process is always owned by a single user who
has presumably created multiple threads so they can cooperate, not fight.

In addition to sharing an address space, all the threads share the same set of open files, child
processes, timers and signals, etc. Given that there are these shared resources, a developer of an
application, which will be instantiated in multiple threaded processes, must pay attention to
insure that different threads are not competing for shared resources. That is, threads should not
attempt to use the same resources at the same time. When facilities are employed in the
development of applications to eliminate the risk of this competition between threads, the
application is said to be “thread safe”.

ECS applications are going to use multiple threads in their processes. Therefore, special attention
must be paid by the developers to insure that applications are thread safe.

ECS applications are going to use multiple threads in their processes. Therefore, special attention
must be paid by developers to insure that applications are thread safe. When an application
process spawns multiple threads and no actions have been undertaken to make sure that these
threads are competing in a safe manner for the same resources (for example shared variables
between threads), the application is very likely to crash. A crash may not occur under a
controlled scaled development environment creating a false impression that the program is
correct. However, considering the amount of time that an application will run, the number of
different customer using an application, and the increased competition for resources that
execution at the customer site presents, an application crash due to multi-threaded processes is
almost certain to occur. Therefore, it is mandatory that every application, which will have
multiple threaded processes, is tested in order to make sure that it is thread safe.

Additionally, most applications of this project are also integrated with COTS software. It is
important to understand the ramifications and mitigate the risk associated with integrating non
thread safe COTS software with ECS applications. For example, in order to access Sybase, ECS
applications use a library provided by Sybase itself. If this library is not thread safe, for instance

2-1 420-TP-013-001

it uses some global variables, and two different threads of the same process use a function
provided by this library there is the risk of an application crash.

2.2 General Resolution

Software applications can control access to shared data by defining critical regions which
prevent multiple threads from accessing the same data at the same time. Critical regions are
implemented using mutex or condition variables. The difference between mutexes and condition
variables is that mutexes are used for short-term locking, mostly for guarding the entry to critical
regions; condition variables are used for long-term waiting until the resources, contained in a
critical region, become available. In generating applications that use multi-threaded processes,
the developer must control the use of multiple threads so that they act in a safe way. Specific
guidelines for developing thread safe applications are provided in Section 4.

Many COTS software products, such as database-management and GUI products, do not support
concurrent or multi-threaded processes. They provide libraries, used by application developers,
that are not be thread safe. A simple approach to writing thread safe applications is to consider
the library a critical region. Therefore, a mutex could be locked before the call and unlocked
upon return to eliminate competition for shared resources.

Another technique is to separate processes that are not thread-safe from those that are. This can
be accomplished by having the server thread, for example, perform a fork and exec to create a
new address space to execute the non-reentrant program. Communications between the new
process and the server thread can be done using any inter-process-communications (IPC) facility
available to the application.

The implementation in the IPC example suffers from the disadvantage that a separate process is
created for each client request. This means additional use of system resources and degradation of
performance with respect to the use of threads, which are much lighter than processes (i.e., less
resource intensive). Section 3 provides specific problem resolutions for ECS COTS software
which poses risk.

2-2 420-TP-013-001

3. COTS Software Risk Assessment

3.1 COTS Software Risk Assessment Summary

In order to determine the risks associated with using COTS software products that do not support
multiple threaded processes, all COTS software used on the ECS project, as of the date of this
document, and that has an RFP1 were assessed. Additionally, some COTS software, which did
not undergo the RFP process, is also included for completeness. For example, RogueWave
libraries do not have an RFP number. The COTS software products were categorized as COTS
libraries, and development and test tools.

3.1.1 COTS Software Libraries

The thread safe problem with COTS software products generally arises when they provide
libraries which the application developers call in their programs. If these libraries are not thread
safe, risk is introduced to the application.

A relative indicator of overall risk was assigned to each product as follows: High identifies
products which have and/or will cause problems; Medium identifies products which could cause
problems; Low indicates that improper or incorrect use of a product could cause problems; and
None identifies products that should cause no problems. A summary of the results of this
assessment is presented in Table 3-1.

Table 3-1. Summary of COTS Software Libraries Risk Assessment (1 of 2)
RFP

RFC

Product Description COTS Name Multi-Threaded

Process Risk

Section
Reference

#3 RDBMS for IMS server to support
data query, location, and ordering of
EOS and non-EOS data

Sybase High - Sybase OpenClient 10 and DB-lib
Sybase client library currently are not DCE
thread safe. A new client library (XA-lib
OpenClient), which supposedly fixes the
problem is currently undergoing evaluation.
That library is available for the HP and Sun
platforms. Availability of a DCE thread safe
XA-lib library for SGI is being negotiated
(assuming that the current evaluations for the
other platforms are favorable). However,
because the RogueWave DBTools.h++
accesses the Sybase DB-lib, this XA-lib
solution will not help those applications which
use RogueWave DBTools.h++.

3.2.1

#5 Graphic User Interface development
tool for Release A and throughout
project development

BuilderXcessory
Epak Widget Set
GraphPak Widget

Low - BuilderXcessory: This tool generates
code and must be evaluated to determine if
this code is thread safe.
Medium - Epak and GraphPak Widgets:
These widgets are sub-classed and built from
Motif widgets which are not thread safe.

3.2.2

1 COTS software procurements are distinguished in the ECS project by Request For Procurements (RFP) numbers.

3-1 420-TP-013-001

Table 3-1. Summary of COTS Software Libraries Risk Assessment (2 of 2)
RFP

RFC

Product Description COTS Name Multi-Threaded

Process Risk

Section
Reference

#12 Math/Stat libraries to be installed at
EDF, each DAAC, and SCF.
Libraries. to support ANSI C,
FORTRAN 77, FORTRAN 90.

IMSL None 3.2.3

#14 Graphics and visualization SW to
support image processing, map
projections, correlation, filters, and
contrast enhancement.

IDL Low - Current version not thread safe. No
problems have been reported on its use in a
multi-threaded environment.

3.2.4

#17 Agent development kit for
monitoring and control of remote
management. applications;
communicates status and control
information between managed
objects and management.
applications.

Optima None 3.2.5

#22 Backup Data Server DBMS to
mitigate risk of scaling Sybase/SQS
from Rel A to Rel B

Illustra Client Library Low - Current version of Illustra is not thread
safe, however, the way it is accessed in the
system significantly reduces its risk. The next
version 3.3 (Rel. B) will be thread safe.

3.2.6

#24 Integrated HTTP server, document
search/indexing/ and document
repository management. for Rel A

Netscape Server
CGI

Low - Netscape: will be investigated in Rel.A,
phase 3.

3.2.7

No bid:
Sole
source

C++ libraries Tools.h++
DBTools.h++

None - Tools.h++
High - DBTools.h++: This product uses the
Sybase client library DB-lib, which is not
thread safe.

3.2.8
3.2.9

No bid:
Sole
source

General libraries for building X
windows

Motif X11 R5 Medium - X11R5 is not thread safe and
applications must insure single threads in use
of X. Some facilities have been developed
for the Server Request Framework (SRF) to
mitigate this problem. X11Release 6 is
expected to fix the problem.

3.2.10

RFI Highly-open Enterprise
Management Framework evolvable
with new technologies and emerging
standards.

OpenView None 3.2.11

Spatial Data Support for Sybase SQS None 3.2.12

3.1.2 COTS Development and Test Tools

Some COTS products are provided to support the development of application software. These
products are typically code analyzers, test tools, load analysis tools, memory trace tools, and
debuggers. While they are not a part of the final software product, they are instrumental in
assisting developers in capturing problems early. Specifically, these tools were assessed for
there support in detecting and mitigating potential thread safe problems with developer
applications. A determination was made for each of these tools as to whether or not it provided
support for evaluating thread safe code. A summary of the results of this assessment is presented
in Table 3-2.

3-2 420-TP-013-001

Table 3-2. Summary of COTS Development and Test Tools Risk Assessment
RFP

RFC

Product Description COTS name Problem Supporting Thread Safe
Code Development

Section
Reference

#13 Capture/Playback test tool SW to
conduct regression testing; identify
max. system loads; and measure
performance loads on developed
SW for all project platforms.

LoadRunner/
XRunner

No 3.3.1

#19 Change Request Manager.
Supports Nonconformance
Reporting and Corrective Action
(NCRA)

Purify
Pure Coverage

No 3.3.2

Compilers SUN:
SPARCompiler C++
4.0.1
HP: C++ SoftBench
License 3.50
DEC: DEC C++
1.47
SGI: KAI C++
Compiler
IBM: C Set ++

SUN: No
HP: No
DEC: Yes, C++ compiler does not have multi
thread process compile options
SGI : No
IBM: No

3.3.3

Debuggers SUN: iMPact 2.0
HP: xdb
DEC: ladebug
SGI: debugger
IBM: dbx

SUN: No - Currently in the EDF to undergo
trial use.
HP: Yes, it does not have specific features
to debug multiple threads.
DEC: Unknown; being investigated
SGI: Unknown; being investigated
IBM: Unknown; being investigated

3.3.4

3.2 COTS Software Libraries Risk Assessment Detail

The assessment approach was to first, identify the COTS software that could potentially pose
risk to the project. Secondly, evaluate and assess each of those COTS software products with
input from the appropriate product expert. The POC for each COTS software product was asked
to complete a form soliciting information about the potential risk that a particular COTS product
may have on multi-threaded processes. COTS software which did not constitute any risk in this
perspective did not undergo further investigation. Finally, a detailed analysis of the specific
problems and resolutions involved with using each of these COTS software products in the ECS
environment was performed. The information from the forms was synthesized with additional
information received from other sources such as ECS developers, other people that were tracking
such issues, product vendors, or external points of contact. The following sections address each
of the products assessed.

3-3 420-TP-013-001

3.2.1 Sybase Client Library

RFP number 3

Name of the product Sybase

Name of the Company producing it Sybase

Name of the Company that won the bid Sybase

Vendor POC Joe Shaffner (301) 896-1692 joseph.shaffner@sybase.com

Internal POC EDS; Rel A: Bob Hartranft, x0997 2072G

COTS type application and library

General description Relational Database Management System

Multi-Threaded Process Risk

High - Sybase OpenClient 10 and DB-lib Sybase client library currently are not DCE thread
safe. A new client library (XA-lib OpenClient), which supposedly fixes the problem is currently
undergoing evaluation. That library is available for the HP and Sun platforms. Availability of a
DCE thread safe XA-lib library for SGI is being negotiated (assuming that the current
evaluations for the other platforms are favorable). However, because the RogueWave
DBTools.h++ accesses the Sybase DB-lib, this XA-lib solution will not help those applications
which use RogueWave DBTools.h++.

Problem Resolution

A work-around would be expensive. It involves converting the current client applications from
multi-threading to multi-processing (at least for all database interface code). For Release A, it is
too late to undertake such an effort.

A final solution rests in the successful evaluation of the latest version of the Sybase XA-lib client
library and developing a retrofit and migration plan for its inclusion.

XA-lib testing status (April 1996): Sybase has published a new XA-lib OpenClient (EBF-5996).
The Data Server test suite works without failing. The next step is to integrate the product into a
Data Server ECS application; this will be accomplished during Release A phase III by DDS..

Product Dependencies

RogueWave Dbtools.h++ uses DB-lib only. Beta versions of DBTools that access Sybase using
OpenClient areavailable but are not being used in ECS due to the risk involved with using a Beta
release.

Technical Notes

Sybase support for ECS multi-threading applications is still under investigation. The most likely
outcome is that a thread safe Sybase library (XAlib) will be made available for future use, DSS
will verify that the library is indeed thread safe and compatible with DCE/OODC, which seems
very likely.

In addition, the Sybase Open Client Release 11 client library (estimated availability Q2/96 for
core platforms which will include Solaris), will also be thread safe and can be used with Sybase

3-4 420-TP-013-001

Open Server R10. Open Client R11 can be used by those ECS developed applications which
need multi-threading support without impact to the choice of server, other applications, or
COTS software. Switching Release A to this library or not will depend on various factors (e.g.,
timing).

Sybase will offer XAlib with a set of Engineering Bug Fixes (EBF) which bring the XAlib up to
the level of Sybase Open Client 10.0.3. The XAlib is available from Sybase and is supported by
Sybase. The XAlib is available on HP, AIX, Solaris, but not on SGI. Sybase has no plans to
port the library to SGI. DSS is determining the impact of this on the DSS operation. Currently,
the SDSRV server for Release A is allocated to the SGI Challenger. It would need to move to a
Sun workstation provided a suitable workstation is available, can take the load, and will not
adversely affect the environment.

There are no known restrictions on how the XAlib can be used in comparison to CTlib. The
library supports multi-threading through some serialization and through parallelised data
structures, as appropriate. The current understanding is that it does allow truly concurrent
interaction of multiple threads (using DCE threads) with Sybase.

There are no known conflicts between the XAlib and DCE. In particular, the library will not
interfere with the operation of a DCE server. There are no poling or signaling conflicts. Sybase
cautioned us against trying to use open server components with DCE (but we do not have a
corresponding requirements). Based on this information, it was concluded using XAlib now (for
development and testing) and switching to Open Client R11 later in the year would be the best
approach. DSS is finding out whether our contract covers XAlib and R11 client upgrades, costs,
and availability of a trial versions.

DSS is also developing a plan for verifying that XAlib indeed fixes the problem. It was decided
that tests should consist of putting up an OODCE server listening for requests, and firing up
multiple threads interacting with Sybase. This will test both potential conflict with
DCE/OODCE and multithreading. The plan should be based on the time frames for getting
XAlib, etc.

There exists an underlying concern even with a transition to XAlib and Open Client Release 11,
in that ECS applications use the RogueWave DBTools.h++ libraries which require linking with
DBlib. DBlib is not thread safe, and it currently cannot be assumed that a thread safe version is
forthcoming. CSS Release A is still investigating whether DBtools protects the database client
library from being multi-threaded by itself, or whether applications need to do that. Until this is
clear, applications cannot assume that DBtools' use of DBlib is thread safe.

Additionally, RogueWave cannot use XAlib, and programs which require multi-threaded access
to Sybase cannot use RogueWave to build their interface. This is because RogueWave uses
DBlib, whereas XAlib is an incarnation of a CTlib, which is incompatible with the DBlib
function calls. (There was some speculation as to the future availability of a CTlib compatible
version of RogueWave, but it was concluded that depending on a RogueWave upgrade for
Release A would not be a good idea).

3-5 420-TP-013-001

Design Rule

As a result, applications which require multi-threaded connections to Sybase must be linked with
the appropriate version of XAlib and may not make use of DBtools. Applications which can use
single-threaded Sybase connections may use DBtools, however, until further notice, developers
must ensure that the database client is used by only one thread at a time and locking is used.

Based on planning (e.g., time needed for verifying XAlib) and the results of the XAlib
evaluation, a decision must be made as to whether the need to pursue the multi-process option as
a fallback is feasible. For the moment, this will be put on hold. Finally, it must be determined
which ECS subsystem applications have a need for multi-threaded interaction with Sybase.

3.2.2 BuilderXcessory, Epak and GraphPak Widget Set

RFP number 5

Name of the product BuilderXcessory
Epak Widget Set
GraphPak Widget Set

Name of the Company producing it Integrated Computer Solutions, Inc.

Name of the Company that won the bid Integrated Computer Solutions, Inc./ McBride

Vendor POC Voice: (617) 621-0060, Fax: (617) 621-9555
E-mail: (general info) info@ics.com
(Tech support) support@ics.som
(License Keys) keys@ics.com

Internal POC ECS, Rel.A, Randy Wilke x0818 2113E

COTS type These are applications that produce code integrated to our
custom code.

General description BuilderXcessory is a GUI builder application that a
developer uses to graphically define a user interface. A
feature used by ECS developers is to generate C++ code.
Epak and GraphPak are Motif based widget sets that can
be used stand alone or in combination with
BuilderXcessory. Epak is general purpose widgets.
GraphPak is widgets for creating graphs of various kinds.

Multi-threaded process risk

Low - BuilderXcessory is simply a development tool and does not need to be thread safe.
However, it is being used to generate code for the ECS project. Whether all of the generated
code is thread-safe is to be determined.

Medium - Epak and GraphPak, the actual ICS-written libraries, which are independent from
Motif calls, must undergo further analysis to determine if they are thread safe, but they are not
thread-safe with X11R5.

3-6 420-TP-013-001

Problem Resolution

Source code licenses for these products are available (FOS group might have one). Presumably,
unsafe code could be made safe. Gauging the effort to accomplish this requires more
investigation.

Product Dependencies

BuilderXcessory makes calls to Motif libraries, which are known to not be thread safe. Also, the
Epak and GraphPak widgets, while written by ICS, are sub-classed off of Motif widgets and built
using the standard Motif APIs. There is potential for risk as a result of this.

3.2.3 IMSL

RFP number 12

Name of the product IMSL

Name of the Company producing it Visual Numerics

Name of the Company that won the bid Visual Numerics

Vendor POC Anthony Colyandro, anthony@houston.vni.com

Internal POC Larry Klein x0764 rm.2022

COTS type library

General description Math/Stat libraries to be installed at EDF, each DAAC, and
SCF. Librs. to support ANSI C, FORTRAN 77,
FORTRAN90.

Multi-Threaded Process Risk

None - IMSL has a multi-thread version.

Problem Resolution

N/A

Product Dependencies

None

3-7 420-TP-013-001

3.2.4 IDL

RFP number 14

Name of the product Interactive Data Language (IDL)

Name of the Company producing it Research System Inc.

Name of the Company that won the bid Research System Inc.

Vendor POC Kevin Jackson, (301)595-3790, kevinj@rsinc.com
David Uhlir, (303) 413-3904, uhlir@rsinc.com

Internal POC Brand Fortner x0779 rm.2079

COTS type application and a library

General description Interactive Data Language (IDL) is a set of tools for
graphics and visualization to support image processing,
map projections, correlation, filters, and contrast
enhancement. It is a programming language with a
complete graphic interface. It is also possible to call by
other applications.

Multi-Threaded Process Risk

Low - IDL is not multi-threaded, however, Research System Inc. says "In many ways, IDL's
single-threadedness makes it a less-problematic, lower-risk component of a multi-threaded
environment than the multi-threaded applications themselves."

Problem Resolution

N/A

Product Dependencies

None

Technical Notes

Research System Inc. says:

"We are unaware of any special work-around necessary to make IDL 'safe' in a multi-threaded
environment - assuming the multi-threaded applications (not IDL) in that environment have
sophisticated process management capabilities to keep from stepping on each other. When an
IDL session is going, its (single) process will be evident to the operating system and will be more
stable (in terms of memory areas) than any multi-threaded applications running at the time. In
other words, if other single-threaded applications are okay to run in the multi-threaded
environment, IDL will run fine, and will not interfere with the other processes. That multi
threaded processes do not interfere with IDL rests completely on the sophistication of the multi
threaded environment. If a multi-threaded application is crude enough to write into IDL's
memory space, over the objections of the operating system, then bad things are likely to happen.
This kind of behavior would make the multi-threaded application quite unstable all by itself
regardless of whether IDL is present or not."

3-8 420-TP-013-001

3.2.5 PEER Optima

RFP number 17

Name of the product Optima

Name of the Company producing it Peer

Name of the Company that won the bid Peer

Vendor POC Lisa Radding (408)-556-0720

Internal POC Chris Kingsbury x0544 rm.2109C

COTS type development kit consisting of source code.

General description SNMP development kit. Simplifies the integration of the
SNMP into C/C++ based applications. Agent for monitoring
and control of remote mgmt. applications; communicates
status and control info between managed objects and
mgmt. applications.

Multi-Threaded Process Risk

None

Problem Resolution

N/A

Product Dependencies

None

3.2.6 Illustra Client Library

RFP number 22

Name of the product Illustra

Name of the Company producing it Illustra Information Technologies

Name of the Company that won the bid Illustra Information Technologies

Vendor POC Jackie McAlexander (301) 214-9064

Internal POC Wayne Lewis x0737 rm.2081C

COTS type application

General description Backup Data Server DBMS.

Multi-Threaded Process Risk

Low - Connections to the database are made through the Elan License Manager which is not
thread safe. This library will be thread-safe in its next version 3.3 of the product (Rel.B).

Problem Resolution

There does not appear to be a work around for version 3.2, but may not be an issue because of
the way it will be used.

3-9 420-TP-013-001

Product Dependencies

None

<{To Be investigated:

Illustra Data Blade API.

Moreover, consider server back-end API data blade interface.

3.2.7 Netscape Server CGI

RFP number 24

Name of the product Netscape

Name of the Company producing it Netscape

Name of the Company that won the bid Illustra Information Technologies

Vendor POC Different for each product. Prime contractor is Illustra.
Contact: Therasa Aschenbrenner x0841 rm 1054A

Internal POC Graham Vowles x0586 rm.2038J

COTS type application and a library

General description These are three products that Illustra put together to win
the bid fir the RFP 24.
Netscape is the http server, Topic is the search and
indexing tool and Illustra is the ORDBMS document mgmt.

Multi-Threaded Process Risk	

Low - Netscape: Will be investigated in Release.A phase 3.

Problem Resolution

There does not appear to be a work around for version 3.2, but may not be an issue because of
the way it will be used.

Product Dependencies

None

3-10 420-TP-013-001

3.2.8 Tools.h++

RFP number No bid. RogueWave is the sole producer.

Name of the product Tools.h++

Name of the Company producing it RogueWave

Name of the Company that won the bid N/A

Vendor POC Dennis Kennedy, (503) 754-2311,
kennedy@roguewave.com

Internal POC EDS Rel A: Dmitri Schoeman x0852 rm.2111C

COTS type library

General description Provides a large number of utility classes for building C++
applications.

Multi-Threaded Process Risk

NoneMedium - The library is now thread safe to the extent that your operating system supports
thread-safe system calls. Where possible, it also makes only thread safe system calls.

Problem Resolution

N/A

do notProduct Dependencies

None

Technical Notes

Extract from the Release Notes for Tools.h++ Version 6.1:

We have added multi-thread support for environments that support POSIX threads. However,
we have not yet automated the detection of such environments. If you'd like to build a multi
thread safe version of the library, and your environment supports POSIX threads (via the header
file "pthread.h"), add the line:

#define RW_POSIX_THREADS

to the Rogue Wave header file "rw/compiler.h". Uncomment the appropriate lines in the
toolsrc/makefile as per the instructions there, and rebuild the library.

The only non-POSIX platform that Rogue Wave supports for threads is Sun Solaris. They did
say that the mapping of their threads calls to another non-POSIX environment wouldn't be too
difficult for someone, since they "do not do anything too exotic".

The Tools.h++ library will work in the presence of multiple threads as it does in a single thread
environment provided that you either do not share objects between threads, or lock between
accesses to objects that are shared between threads. Internally, the library has enough locking to
maintain its own integrity.

3-11 420-TP-013-001

The setlocale() operations are not thread safe anywhere, so creating RWLocaleSnapshot
instances is not either. However, instances created when no other thread is running may safely
be used by multiple threads.

Supposedly Rogue Wave is working on a version which will allow multiple threads to
concurrently reference an object, but we do not have enough information about it at this time.

Tools.h++ libraries were believed to be not thread safe on SGI. The problem was that the
libraries were not built using the Posix thread flag. CSS Release A rebuilt the libraries for SGI
and now Tools.h++ is thread safe on SGI too..

3.2.9 DBTools.h++

RFP number No bid. RogueWave is the sole producer.

Name of the product DBTools.h++

Name of the Company producing it RogueWave

Name of the Company that won the bid N/A

Vendor POC Hongyan Li (541) 754-2311, Li@roguewave.com
or support@roguewave.com

Internal POC EDS; Rel.A: Quan Luu x0386 rm.2073D

COTS type library

General description Provides a simple mechanism to interface C++ programs
with relational DBMS; Release A subsystems use it for
interfacing with Sybase.

Multi-Threaded Process Risk

High - The product currently does not support the multi-threaded version of the Sybase client.

Problem Resolution

One possible work around to mitigate risk with using this product is to apply mutexes whenever
an OODCE server accesses Sybase. Sybase's underlying proprietary API, "db-lib", is not thread
safe. RogueWave DBTools.h++ is built on top of this API. When building an OODCE Server,
you should ensure that all accesses to Sybase are guarded using a single DCEPthreadMutex
object. This is an obvious performance hit, but nothing can be done about this until Sybase
provides an underlying API that is thread-safe and it is also supported by DBTools.h++.

Another known problem is in the way that RogueWave DBTools.h++ manages its connections to
Sybase. You should ensure that for a given RWDBDatabase, you maintain one RWDBConnection.
If you do not, your server will hang when trying to access Sybase after just a few RPC's from an
OODCE Client.

A beta copy of RogueWave DBTools.h++ version 1.1.1 and the Beta access libraries for CT-LIB
is being evaluated for future use to resolve the multi-threaded process related problems
encountered with the Release A MSS (see Technical Notes below). This version can be
interfaced with the thread safe version of the Sybase client. If this works, then we will able to
use the XA library version of CT-LIB to build all of our servers on Sun, HP, and SGI (assuming

3-12 420-TP-013-001

a successful port to SGI by the vendor will happen). Additionally, verification must be made of
availability of this product for the DEC platform.

Product dependencies

Sybase

Technical Notes

Supporting details on the problems encountered with the Release A MSS are provided below:

MSS has written an OODCE server to manage user profile information in Sybase. A client may
request various operations on user profiles via this server (insert, update, delete, retrieve, etc.).
The server uses RogueWave DBTools.h++ to access Sybase. This server was running on the HP
platform (Cyclops).

We discovered that the first few times a client connects to the server, everything works fine.
However, after just a few calls, the OODCE server hangs indefinitely while trying to access
Sybase.

You need to ensure that your OODCE server maintain a single RWDBConnection to Sybase and
that it passes this object to all “RW” DBTools.h++ methods that accept an RWDBConnection
object as a parameter. Otherwise, you will get the strange hang-up behavior just described.

Our server creates a global profile Database Object that contains and initializes a RWDBDatabase
object when it first comes up. Call this data member db. When clients make requests and the
server needs to access Sybase, we always provide the RWDBConnection object to those RW
DBtools.h++ methods that accept one.

The following code fragments are simplifications of the MSS code. We actually maintain a
global Profile Database Object using the Singleton Design Pattern, which is a standard technique
for creating and accessing global C++ objects. See "Design Patterns", by Addison Wesley.

// In source file for OODCE server:

RWDBDatabase db;

DCEPthreadMutex sybaseLock;

int main()
{

db = RWDBManager::database("SYBASE",
"cyclops_srvr",
"username",
"userpassword",
"mss_db");

// rest of OODCE initializations
}

// In source file where OODCE object methods are kept:

void DistributedObject::GetProfile()
{

3-13 420-TP-013-001

sybaseLock.Lock();

RWDBTable mytable = db.table("MsAcUsrProfile");

RWDBSelector selector = db.selector();

selector << mytable["usrName"] << mytable["homeDAAC"];

RWDBReader reader = selector.reader(db.connection()); // HERE IT IS!!

// etc

sybaseLock.Unlock();

}

This is still a troublesome problem. One would have hoped that DBTools.h++ would have
detected a problem and thrown an exception. It's also unclear what to do if an applications needs
several connections open at once.

3.2.10 X R5/Motif

RFP number No bid

Name of the product X R5/Motif

Name of the Company producing it Hardware vendors

Name of the Company that won the bid N/A

Vendor POC N/A

Internal POC HTSC Help Desk, x0909

COTS type library

General description General library for building X windows/Motif GUI
interfaces.

Multi-Threaded Process Risk

Medium - As of X11, Release 5, X-based programs are not thread safe. Applications must use
single threads in their X use. This presents a problem for Rel A client applications which call
servers using OODCE, since asynchronous call backs may be involved. X does not present a
significant problem in its use to support GUI development.

Problem Resolution

Release 6 of X is expected to fix the multi-threaded problem.

Steps can be taken to let multiple control flows exist in a process that is not thread safe. You can
do this by making sure that only one thread, usually the main thread, performs all the X-related
processing and that the remaining threads, using IPC pipes mechanism, communicates to the X
event loop manager as if they were separate processes.

Therefore, all X-related operations are performed as part of the main thread and the RPC call is
issued from a separate thread. The RPC thread and the main thread are connected with a
unidirectional IPC pipe. The read end of the pipe is connected to the event loop manager using
the XtAddInput function call and the write end of the pipe is recognized by the RPC thread
because it is a global variable. When the RPC is issued, the thread sending the call will block and
the main thread can continue to accept user input. When the RPC completes, a string of
characters is written to the pipe. The writing of this data will cause the X-event loop manager to

3-14 420-TP-013-001

call the call-back routine specified during the XtAddInput function call. This call-back routine
performs the application operations on the main thread in a thread safe fashion.

A thread safe version of the Server Request Framework (SRF) has been designed and is slated
for implementation in Rel A, Phase 3. It will deal with asynchronous client/server requests and
subscription notifications such that they can be used safely by X applications. The technical
approach will be communicated to the SDSRV development team so that they can provide a
similar solution. Developers who believe that their X Applications have multi-threading
requirements beyond asynchronous requests/subscription notifications must identify these
requirements to the appropriate Release architect immediately.

Clients not using SRF must employ work around, which may involve use of multi-processing
(i.e., run the X application in one process, and the client API in another).

Product dependencies

None

3.2.11 HP Openview

RFP number No RFP found

Name of the product Openview

Name of the Company producing it HP

Name of the Company that won the bid N/A

Vendor POC HP Help Desk. 1-800-633-3600 id=ECS/EDF

Internal POC Scott Austin x1143 rm.2080F

COTS type application

General description Highly-open Enterprise Management Framework evolvable
with new technologies and emerging standards.

Multi-Threaded Process Risk

None

Problem Resolution

N/A

Product Dependencies

None

3-15 420-TP-013-001

3.2.12 Spatial Query Server (SQS)

RFP number No RFP found

Name of the product Spatial Query Server (SQS)

Name of the Company producing it Vision International

Name of the Company that won the bid N/A

Vendor POC David Wiseman, (703) 658-6123,
dwiseman@autometric.com

Internal POC Bob Hartranft x0997 rm.2072G

COTS type application

General description High performance open server application that allows the
user to include geographic constructs using Sybase SQL
server.

Multi-Threaded Process Risk

None - SQS does not create any multithreading problems for the DataServer. SQS is not a DCE
application and thus does not use DCE threads. It is a Sybase Open Server Application. The
DataServer will communicate with SQS using a DCE thread safe version of Open Client.

Problem Resolution

N/A

Product Dependencies

None

3.3 COTS Development and Test Tools Risk Assessment Detail

The development and test tools assessment approach followed the same as that described for the
COTS software libraries. The following sections address each of the products assessed.

3-16 420-TP-013-001

3.3.1 LoadRunner/XRunner

RFP number 13

Name of the product LoadRunner
XRunner

Name of the Company producing it Mercury

Name of the Company that won the bid Mercury

Vendor POC Mercury Customer Support (408) 523-4299

Internal POC Tom Collins x0441 rm.3113B

COTS type application and library

General description Capture/Playback test tool SW to conduct regression
testing; identify max. system loads; and measure
performance loads on developed SW for all project
platforms.

Problem Supporting Thread Safe Code Development

No - The customer support staff has not heard of or come across any problems using
XRunner/LoadRunner in a multi-threaded environment.

Problem Resolution

N/A

Product Dependencies

None

3-17 420-TP-013-001

3.3.2 Purify and PureCoverage

RFP number 19

Name of the product Purify
PureCoverage

Name of the Company producing it Pure Software

Name of the Company that won the bid Pure Software

Vendor POC

Internal POC Tom Suhrstedt x0401 rm.2108A
Jim Ruckstuhl x0394 rm.3109B

COTS type application

General description Purify: It is a run-time memory error detection tool. Purify
presents the code that caused memory leaks in an easy to
use interface.
PureCoverage: It is a code coverage improvement product
designed to be used by developers during daily unit tests.
Developers can use an annotated source view that
provides line-by-line analysis of either tested or untested
code

Problem Supporting Thread Safe Code Development

No - This product supports debugging of multiple threaded processes.

Problem Resolution

N/A

Product Dependencies

None

3.3.3 Compilers

RFP number No RFP found

Name of the product SUN: SPARCompiler C++ 4.0.1
HP: C++ SoftBench License 3.50
DEC: DEC C++ 1.47
SGI: KAI C++ Compiler
IBM: C Set ++

Name of the Company producing it

Name of the Company that won the bid N/A

Vendor POC

Internal POC HTSC Help Desk

COTS type application

General description C++ compilers that are in the software development
environment baseline for Release A as multi-threaded
debuggers.

Problem Supporting Thread Safe Code Development

3-18 420-TP-013-001

Yes - The DEC C++ compiler does not support its “-thread_safe” option, which allows the
creation of thread safe code.

Problem Resolution

A decision must be made to use another C++ compiler on the DEC platform or wait until DEC
will support its thread safe option. No one has been assigned to perform the task to evaluate this
yet.

Product Dependencies

N/A

Technical Notes

Compilers are provided by the platform vendors. Every compiler has some option that should be
used when compiling programs that have multiple threads in the same process. SUN, HP, SGI
and IBM have these options which work correctly. The DEC C++ compiler does not support its
“-thread_safe” option, which allows the creation of thread safe code. Therefore, at the moment,
it seems that it is not possible to compile multi-threaded applications on this platform.

3.3.4 Debuggers

RFP number No RFP found

Name of the product SUN: iMPact 2.0

HP: xdb

DEC: ladebug

SGI: debugger

IBM: dbx

Name of the Company producing it

Name of the Company that won the bid N/A

Vendor POC

Internal POC HTSC Help Desk

COTS type application

General description Debuggers that are in the software development
environment baseline for Release A as multi-threaded
debuggers.

Problem Supporting Thread Safe Code Development

Yes - Debuggers are generally provided by the platform vendors as part of the bundled compiler
software. These vendors assert that their single thread debuggers can handle multi-threaded
applications. This should be interpreted to mean that their debugger can execute against multi
threaded applications without problem, but it does not provide any special mechanisms to select,
monitor, or trace a specific thread during program execution. The only exception is the SUN
debugger iMPact, which provides mechanisms to detect and trap activities occurring on specific
threads. Without such a facility, it is difficult and sometimes a cumbersome task for developers
to determine with any certainty what thread of program execution is being viewed.

3-19 420-TP-013-001

Problem Resolution

There is no simplistic work around that will satisfy all of the various platform configurations.

Product Dependencies

N/A

Technical Notes

The SUN debugger, iMPact, is the only one that provides the ability to trace a single thread. All
the others, (i.e., HP, SGI, DEC, and IBM) although can execute against multi-threaded
applications without problem, do not provide capabilities for examining, activating, or breaking
on threads. Without such facilities, it is difficult and sometimes a cumbersome task for
developers to determine with any certainty what thread of program execution is being viewed.

3.4 Guidelines for Future COTS Software Procurements

Every COTS software purchase that includes client libraries, therefore, all software that will be
included in our ECS developed executables, must fulfill the requirement that it is thread safe.

This requirement should be written case by case in the RFP by an engineer aware of thread safe
problems and the use of the specific COTS.

3-20 420-TP-013-001

4. Guidelines for Software Development

Threads allow parallelism to be combined with sequential execution and blocking system calls.
Blocking system calls make programming easier and parallelism improves performance. They
are very useful both in the case of multi-processor or single-processor architectures allowing
easier application design, code writing and maintenance.

For example, one thread, the dispatcher, reads incoming requests for work from a system
mailbox. After examining the request, it chooses an idle (i.e. blocked) worker thread and hands it
the request, most likely by writing a pointer to the message into a special word associated with
each thread, the dispatcher then wakes up the sleeping worker (e.g., by signaling the semaphore
on which it is sleeping).

Threads are frequently also useful for clients. For example, if a client wants a file to be replicated
on multiple servers, it can have one thread talk to each server.

Since threads share a common memory, they can, and usually do, use it for holding data that are
shared among multiple threads. Access to shared data is usually programmed using critical
regions, to prevent multiple threads from trying to access the same data at the same time.

Threads are a part of DCE: the Pthreads package is included as part of DCE, and RPCs also use
threads. Since the ECS developers will be using multi-threaded processes, and will be providing
code for use in a multi-threaded environment, they need to understand and use threads correctly.

The following sections provide guidelines for programming with threads. This information is
intended to help ECS application developers get started using threads. For a more complete
understanding of this topic the reader should refer to Operating Systems [Tanenbaum92] or DCE
books such [Shirley92].

The information is organized as follows:

• When To Use Threads

• Starting And Ending Threads

• Thread safe Function Calls

• Using Non-thread Safe Libraries

• Warnings About Non-thread Safe Function Calls

• Atomic Operations

• Mutexes

• Exception Handling

• Using Multi-thread Options In Makefiles

• The Real World

• Suggestions And Reminders

4-1 420-TP-013-001

4.1 When To Use Threads

The reasons to use multiple threads in a process have been already presented. As a quick
reference and general guideline application developers should consider using threads for:

• parallel activity

− if two activities can occur concurrently

− if connected to other machines over a network and it is desired to have each
connection handled separately

• periodic activity

− if an activity occurs periodically that responsibility can be delegated to a single thread
and have that thread sleep until it is needed again

• conceptually distinct components

− if a specialized routine is required to be autonomous (for example, a garbage
collection routine).

4.2 Starting And Ending Threads

Creating Threads

Threads can be created with a single function call in C++:

DCEPthread my_thread(&attr, function, argument);

(Note: the pthread_create() function can be used in C).

Thread Arguments

A thread will only accept a single argument. If you wish to pass multiple variables to a new
thread you should place them in an object or structure and pass a pointer to the structure. No data
is copied. When you pass a pointer to a structure into a thread, it uses the same copy of the data
that the parent thread uses. It is important to remember this before you change or delete any of
that data. The starting function for a thread must be cast as type DCEPthreadProc and the
argument as DCEPthreadParam.

When joining a thread, the type returned will be of type DCEPthreadParam. You will probably
need to cast it to the appropriate function return type before being able to manipulate it.

Deleting Threads

The return status from a thread is determined by the return value of the function passed to the
thread start method. If you want the return value of the spawned thread, call the member
function join(). (Note: the pthread_join() function can be used in C)

If you do not want the return value, but want to wait until the thread is completed before exiting
the local scope, then set the “attr” variable used above to join_on_delete. This means that

4-2 420-TP-013-001

when the destructor for the DCEPthread object is called, before the call returns it will wait until
the thread has finished executing.

DCEPthreadAttr attr;
attr.Termination(Pthread_join_on_delete);

Multiple Threads Example

The following code segment multiplies two pairs of numbers, each pair being multiplied as a
separate threaded process, and then adds the products from these separate threads to produce a
result.

#include <oodce/Pthread.H> // Always place first
#include <iostream.h>

typedef struct _input_t
{
int val1;
int val2;

} input_t; // Create a single type that can hold 2 ints

int multiply(input_t *input)
{
return(input->val1*input->val2); // multiply

}

main()
{
input_t pair1, pair2; // create two pairs of ints
pair1.val1=1; pair1.val2=2; // initialize them
pair2.val1=3; pair2.val2=4;

DCEPthreadAttr attr; // define an attribute (unused)
// Now create and start the two multiplies
DCEPthread DCEPthread1(&attr, (DCEPthreadProc)

multiply,(DCEPthreadParam) &pair1);
DCEPthread DCEPthread2(&attr, (DCEPthreadProc)

multiply,(DCEPthreadParam) &pair2);

// Get the results of Join() (return values)
int result = (int) DCEPthread1.Join()

+ (int) DCEPthread2.Join();

cout << “result = “ << result << endl;
}

4.3 Thread Safe Function Calls

Unfortunately, many operating systems were not originally designed to be multi-threaded
(including early standard versions of UNIX). Some function calls maintain state between calls
and do not work in a multi-threaded environments. Thus, not all libraries supplied with an

4-3 420-TP-013-001

operating system version are thread safe. Often, non-thread safe functions have thread safe
replacements supplied. For example, if you look at the “man page” for each of the following
functions of the form <function>_r (e.g., ctime_r) you will see that a thread safe version for
each exist: ctime, localtime, asctime, gmtime, ctermid, rand, getlogin,
readdir, strtok, tmpnam.

4.4 Using Non-thread Safe Libraries

Unfortunately, you cannot always use thread safe libraries because many times they are simply
not supplied. If you must use a library that is known not to be thread safe you must take
precautions. One thing you must do is surround non-thread safe code with calls to
pthread_lock_global_np() and pthread_unlock_global_np(). This will prevent conflict
with thread safe system calls. It will also only allow a single thread at a time to be executing any
code between those function calls.

You also must be careful to consider what will happen if multiple threads take turns accessing
the non-thread safe libraries. For example, consider the possibility that the library may save state
information from one thread that may not be valid for another thread.

4.5 Warnings About Non-thread Safe Function Calls

Code may fail in unexpected places in unexpected ways as a result of use of non-thread safe
functions. For example, consider a scenario where you do not surround non-thread safe code
with pthread_lock_global_np() and pthread_unlock_global_np()as mentioned earlier.
One thread begins to use a thread safe malloc. It determines what memory address it will
allocate. Immediately after that a non-thread safe function calls a non-thread safe malloc and
allocates that same block of memory. Now the first thread continues executing using memory it
thought was free but it is actually in use by the second thread.

Non-thread safe function calls may cause other threads to act improperly. For example, on the
HP, if a non-thread safe library calls sleep() the entire process will be blocked for the duration
of the sleep period, not just the calling thread. Blocking system calls in general may block an
entire process. For example, network or disk reads or writes on the HP would block the entire
process, not just the calling thread.

4.6 Atomic Operations

An atomic operation is an operation that can not be interrupted. Once an atomic operation starts
it will execute without interference from any other operations. On some hardware platforms
there is an machine level instruction called ‘test and set’ which will test that a memory
location has a specific value, and if so set it to another value. This operation can not be
interrupted. On many platforms this instruction is the basis for multi-threaded interactions.

There are no atomic operators that C or C++ programmers can access. Even the simple task of
reading a variable is not atomic -- it may be interrupted. Therefore, any operations that are

4-4 420-TP-013-001

executed as multi-threads are at risk of being prematurely interrupted or interfered with if a
thread safe mechanism is not employed.

4.7 Mutexes

A mutex is a MUTual EXclusion lock. It is a tool, which when used correctly, allows
programmers to make code thread safe. It is a lock to allow threads serial access to a shared
resources, much like in C lockf() will allow serial access to a file.

Types of Mutexes

There are three basic types of mutexes fast, recursive and non-recursive:

With fast mutexes, the lock may only be locked once before being unlocked. If the same thread
tries to lock it a second time, while already holding the lock, the thread will wait forever (since it
can’t unlock it.) The fast mutex is the default mutex type.

The lock of recursive mutexes may be locked by the same thread any number of times.
However, it also must unlock the lock that number of times. This is often useful inside recursive
functions.

Finally, the lock of non-recursive mutexes may only be locked once before being unlocked, like
the fast mutex. However, if a thread attempts to lock the lock when it already holds the lock, it
will return an error.

Applying Mutexes

Application developers should consider using mutexs when:

• two threads share memory

• two threads share some exclusive device

• any static data shared between threads needs to be protected

•
 multiple threads are allowed to reference the same object and the member data must be
protected

•
 sending data to common files, or to cout, to prevent interleaving of data to each of those
output devices.

In using a mutex, a developer should lock a mutex before accessing a data member and unlock it
after accessing it. If you normally modify and read several variables together, it is common to
use a single mutex to lock all of them. When locking a mutex, if the mutex is already locked by
another thread, your thread will wait until the mutex is unlocked before it locks it and returns.
The following code segment illustrates the application of mutexes:

#include <oodce/Pthread.H>
#include <iostream.h>

class myclass
{

4-5 420-TP-013-001

private: // internal data members
static DCEPthreadMutex counter_lock;
static int counter; // protected by counter_lock

public:
myclass();
~myclass();
static int how_many_instances();

};

// The following are needed for the static variables
DCEPthreadMutex myclass::counter_lock;
int myclass::counter;
// Have the class keep track of how many class objects
// are around. Use counter_lock to protect the counter.

myclass::myclass()
{
counter_lock.Lock(); // Lock the lock
counter++; // Since I hold the lock, I can modify
counter_lock.Unlock(); // Unlock the lock

}

myclass::~myclass()
{
counter_lock.Lock(); // Don’t forget to lock
counter--;
counter_lock.Unlock(); // And unlock

}

int myclass::how_many_instances()
{
// ...
}

// Function to read how many instances of the class exist
// Remember to lock the mutex before reading and unlock
// after reading. Mutexes only protect data if you
// remember to lock them.

int myclass::how_many_instances()
{
counter_lock.Lock(); // Lock the mutex
int retval = counter; // copy the data
counter_lock.Unlock(); // unlock the mutex
return retval; // return the *copy*

}

(Note: by the time the calling function does anything with the value from
how_many_instances() it may have changed, however, it will be guaranteed to be a valid value
and correct at a point during the function call).

4-6 420-TP-013-001

Additional Programming Aids

Additional functions that can be used in constructing thread safe applications are listed below:

•↑ TryLock (or pthread_mutex_trylock - This function will attempt to lock the lock
However, if another thread already holds the lock, rather than waiting for that thread to
relinquish the lock, it returns failure.

•↑ pthread_lock_global_np() and pthread_unlock_global_np()- These function calls
lock and unlock a mutex shared by the entire application. These were mentioned before
for use with non-thread safe code.

•↑ pthread_once - This function will guarantee that only one call to the specified function
is ever used. This is useful for one time initialization.

Notes and Warnings

•↑ There are no C or C++ atomic operations. This includes reading a variable, and setting a
variable. You must use mutexes to protect any data that may be concurrently read from or
written to.

•↑ Mutexes are only conventions for restricting access to variables. If you do not use them
properly your code will not work properly.

•↑ When using mutexes, remember that they are shared resources. Try to keep them locked
for as short a time as possible.

• Remember that you need to lock a mutex before reading or writing shared resources.

•↑ When a thread must lock multiple mutexes it is important that the mutexes are always
locked in the same order to prevent deadlock.

•↑ Use set and get member functions where possible to access member variables. This will
help insure that mutexes are used properly whenever accessing the data.

•↑ Which ever way you chose to make your code thread safe, clearly document if it is okay
for multiple threads to access the same object.

4.8 Exception Handling

Although C++ exception handling was designed to work in conjunction with multi-threaded
applications, thrown exceptions might generate unexpected side effects in multi-threaded
applications. The basic problem with exception handling in multi-threaded applications is that
C++ exceptions are processed on the stack of the executing thread. Only objects that reside on
the stack of the current thread will be destroyed during stack unwinding, and only those
functions that are pending on the current stack will be considered for matching catch clauses.
Developers need to take all executing threads into consideration when an exception occurs.

A few suggested guidelines for using exceptions correctly in multi-threaded applications are
given below:

4-7 420-TP-013-001

•↑ All threads in a multithreaded process should not be arbitrarily terminated because of an
exception thrown in one thread. A single thread could have acquired a shared resource
and unpredictable results can occur if it will not be able to release this resource before the
program ends.

•↑ The default version of terminate() should be replaced. The replacement terminate()
should not try to return and continue executing. It is not sufficient to put a catch(...)
clause at the beginning of each thread. The terminate() function may be called for
other reasons than un-handled exceptions such as a corrupted stack, or an additional
exception being thrown from a destructor.

•↑ Make sure multithreaded applications can shut down all threads gracefully in the event of
a fatal exception, or if exception processing is unable to continue. The thread that first
detected the exception should be terminated but the other threads in the process should be
notified also. This allows them to make an appropriate response such as cleaning up and
shutting down gracefully.

4.9 Using Multi-thread Options In Makefiles

Whenever a developer has used multi-threaded processes within an application, that application
should use makefiles with multi-threaded process options enabled. Enabling these options can
reduce performance and increase memory usage, therefore, they should not be arbitrarily used
for all applications. The following instructions should be followed:

1) You must include the file:

/ecs/formal/COMMON/make/make.options

Make sure that the OODCE, DCE, and RWTOOL (RW_POSIX_THREADS)
options/sections are present.

2) In your makefile you must have:

CXXFLAGS += $(OODCECXXFLAGS)

LDLIBS += $(OODCECXXFLAGS)

4.10 The Real World

The behavior of multi-threaded processes is somewhat dependent on the platform on which they
are executed. For example, the number of threads permitted to execute concurrently on Solaris is
in excess of 10,000 threads, while under IRIX 3500 threads are all right, and under HP-UX 9.x
exceeding 600 threads can cause you to run out of memory. Additionally, the HP currently does
not seem to switch between threads as often as the SPARC. However, HP claims that with HP-
UX 10.x things will improve. As a result of this, the mechanisms employed to construct thread
safe applications are also somewhat dependent on the platform.

4-8 420-TP-013-001

In general, regardless of the platform, as soon as you start dealing with more than 2 mutexes that
will be locked to access a resource, it can become tedious verifying that you always use the
mutexes in the proper order.

Also, It is a good practice to always put the thread include files (Pthread.H or pthread.h) first
in your program. On the HP, this is absolutely necessary since they define non-thread safe calls
into the thread safe equivalents.

The following list presents many of the known problems on the HP platform:

•↑ rand_r() works differently on the HP than on the SPARC. It has different arguments
and a different return value.

• file operations can block the entire process instead of just the thread.

•↑ ofstreams are not thread safe. When you try to compile, it will complain that
cma_open() and cma_close() are not defined. If you force the compiler to use the old
open() and close() for ofstreams you must use mutexes to prevent multiple
concurrent calls to open(). And the process, not just the thread, may block on the
open().

•↑ rand_r() works differently on the HP than on the SPARC. It has different arguments
and a different return value.

•↑ Calls like system() may work strangely on these systems. The system()call seems to
block the entire process until the system call has returned.

•↑ fork() causes serious problems. fork() may cause threads to get EINTR on any I/O
activity. In addition, there is a serious conceptual problem involved. For example, a
process may have two threads. One thread is about to write a message to a file on the disk
while another thread calls fork(). Now, there are two copies of that program running,
and thus there are two threads, each in a separate process, neither of which called or are
aware of the fork(). Both processes are then about to write to disk.

•↑ lockf() will grant the same lock to multiple threads in the same process. So, while with
multiple processes, locks are exclusive, in a multi-threaded environment threads must be
careful to make sure that no other threads already have a lockf() on a given file.

•↑ While functions like cout << msg and cerr << msg are thread safe, and will not crash,
messages may become interleaved.

4.11 Suggestions And Reminders

You will make mistakes in using mutexes -- check your code carefully. Remember mutexes do
not protect data members unless you consistently use them correctly. It is extremely important to
test your code as well as you possibly can, and then test it some more. When testing your code,
try to run it in an environment with hundreds of concurrent threads. This will help to insure that
the code is well written and will behave well in a multi-threaded environment.

4-9 420-TP-013-001

Finally, all the bugs in DCE/OODCE have not be uncovered. You should always be aware that
you may stumble across more. It is important that your discoveries are brought forward and
made known to the rest of the team using ccMail bulletin boards and the release architect.

4.12 Other Areas Of Interest

This guide provides only brief discussions on the issues concerning programming with multi
threaded processes. Some additional suggested topics for further examination to enhance the
readers understanding and use of threads include:

• Thread priorities; specifying some threads to have higher priority than others

• Scheduling policy; changing how threads are scheduled on the available processors

Thread signaling; having threads wait for signals (not UNIX signals) and send signals to awaken
threads.

4-10 420-TP-013-001

5. Conclusions

This is a “living” document that will evolve as new COTS products are brought into the
environment, ongoing trials and investigations are concluded, and new information becomes
available. The information contained within this document is complete as far as the POC
information were complete. Whenever possible references are provided to other books, manuals,
and resources to obtain more in depth information. This document is intended to provide
supporting engineering analysis to form the basis from which risk mitigation plans can be built,
not as the definitive answer to problems presented.

The results of the COTS assessments reveal that the risk of these products causing applications
to crash due to multi-threaded processing is not widespread, and is isolated to only a few
products. For most of the products at risk, possible work around solutions are either being
evaluated or investigated.

The high risk COTS software libraries are the Sybase DB-library and the RogueWave
DbTools.h++ because of its use of the Sybase client library. Evaluations are currently being
conducted to determine if version upgrades to Sybase will mitigate these problems.

The high risk COTS development and test tools are in the areas of the platform compilers and
debuggers. The DEC C++ compiler has no multi-threaded process compile options, which
presents a significant problem for developers in building any applications needing multi-threaded
processes on that platform.

Currently, only the SUN platform provides a multi-threaded process debugger. This debugger is
installed in the environment and is undergoing evaluation. None of the other platforms provide a
true multi-threaded process debugger. This will impact integration and testing, since multi
threading processing problems that could not be detected and corrected in unit test may find their
way into integration and testing.

It is important that procurement personnel, integrators, and developers, at all levels of
experience, be cognizant of the ramifications of introducing non-thread safe software into the
environment. Applications and libraries are intended to be shared through out the environment
and as a result problems can and will be promulgated and escalated.

5-1 420-TP-013-001

This page intentionally left blank.

5-2 420-TP-013-001

References�

• Andrew S. Tanenbaum, “Modern Operating Systems”, Prentice Hall, New Jersey, 1992

• John Shirley, “Guide to Writing DCE Applications”, O’Reilly & Associates, Inc., 1992

Ref-1 420-TP-013-001

This page intentionally left blank.

Ref-2 420-TP-013-001

Abbreviations and Acronyms

API Application Programming Interface

COTS Commercial Off The Shelves

DCE Distributed Computing Environment

ECS EOSDIS Core System

FOS Flight Operations Segment

GUI Graphic User Interface

HP Hewlett-Packard

IPC Inter Process Communications

OODCE Object Oriented DCE

OS Operating System

POC Point Of Contact

RFC Request For Comments

RFP Request For Procurement

RPC Remote Procedure Call

SEPG Software Engineering Process Group

SDSRV Science Data Server

SGI Silicon Graphics Incorporated

AB-1 420-TP-013-001

This page intentionally left blank.

AB-2 420-TP-013-001

	1. Introduction
	2. Thread Safe Issues
	2.1 Problem Explanation
	2.2 General Resolution

	3. COTS Software Risk Assessment
	3.1 COTS Software Risk Assessment Summary
	3.2 COTS Software Libraries Risk Assessment Detail
	3.3 COTS Development and Test Tools Risk Assessment Detail
	3.4 Guidelines for Future COTS Software Procurements

	4. Guidelines for Software Development
	4.1 When To Use Threads
	4.2 Starting And Ending Threads
	4.3 Thread Safe Function Calls
	4.4 Using Non-thread Safe Libraries
	4.5 Warnings About Non-thread Safe Function Calls
	4.6 Atomic Operations
	4.7 Mutexes
	4.8 Exception Handling
	4.9 Using Multi-thread Options In Makefiles
	4.10 The Real World
	4.11 Suggestions And Reminders
	4.12 Other Areas Of Interest

	5. Conclusions
	References
	Abbreviations and Acronyms

