
170-TP-008-001

Writing HDF-EOS Point Products for

Optimum Subsetting Services

Technical Paper

Technical Paper--Not intended for formal review or
government approval.

December 1996

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

Shaun de Witt /s/ 12/13/96

Shaun de Witt, Senior Software Engineer Date
EOSDIS Core System Project

SUBMITTED BY

Steve Marley /s/ 12/13/96

Steve Marley, Senior Software Architect, Date
EOSDIS Core System Project

Hughes Information Technology Systems
Upper Marlboro, Maryland

This page intentionally left blank.

Abstract

This document provides a guideline for writing point data into HDF-EOS files to allow for
optimum subsetting performance. HDF-EOS builds on the standard HDF libraries produced by
NCSA for storing data, and extends it to support commonly used data structures used for earth
science data. It allows for the construction of grids (in standard projections), swaths and point
data sets. HDF and HDF-EOS are self-describing data formats and allow a great deal of
flexibility in the internal organization of the data. Requirements exist within ECS to allow for
subsetting and subsampling services to performed on these data sets; specifically subsetting by
geographic co-ordinate, altitude and time. Since there are a large number of methods for
organizing the data, much specific code would need to be written for each product to allow these
services to take place and this variability can lead to difficulty in users interpreting data from
different providers. This document is intended as a guide to writing point data in a form suitable
to allow subsetting as described above, minimizing the amount of specialist code which would
be needed for these services to take place, and provide a loose standard to allow other users to
interpret the data readily.

Keywords: Point, HDF, HDF-EOS, format, subsetting, services.

iii 170-TP-008-001

This page intentionally left blank.

iv 170-TP-008-001

Contents

Abstract

1. Introduction

1.1 Purpose...1-1

1.2 Organization...1-1

1.3 Reference Documents ..1-1

1.4 Applicable Documents...1-1

2. Services Provided on Point Data by ECS

2.1 Choosing an HDF-EOS Structure..2-1

2.2 Understanding the HDF-EOS Point Structure ...2-2

2.3 Subsetting Service..2-4

2.3.1 Subsetting by Region ..2-4

2.3.2 Subsetting by Altitude...2-5

2.3.3 Subsetting by Time ...2-5

2.3.4 Subsetting by Parameter..2-5

2.4 Output File Organization ...2-5

3. Writing a File Containing Simple Point Data

3.1 Restrictions to Units...3-1

3.2 Sample Code for Writing a Simple Point Product ...3-2

3.2.1 Snapshot at Different Locations..3-2

3.2.2 Snapshot at Different Times ...3-6

4. Writing Point Structures Containing Multiple Levels

4.1 Creating Point Structures with more than One Level ..4-2

4.2 Sample Code for Writing Multi-Level Point Structures ..4-3

v 170-TP-008-001

Figures

2-1. Decision Tree for Choosing an Appropriate HDF-EOS Structure ...2-2

2-2. Table Representation of Point Data Structure ..2-3

2-3. Example of Using Arrays For Data Storage...2-4

4-1. An Example of a Three Level Point Structure..4-1

Abbreviations and Acronyms

vi 170-TP-008-001

1. Introduction

1.1 Purpose

Given the self-describing nature of HDF-EOS, there are a vast number of ways in which data
could be organized within a file. Having many different data organization approaches across the
EOS data sets will lead to inefficiencies in developing common data type services, like
subsetting, that are sensitive to data organization. In order to facilitate the development of
subsetting services, this document provides a set of guidelines for writing HDF-EOS formatted
grid files which will require these services.

The author wishes to thanks the HDF-EOS development team, especially Doug Ilg and Joel
Gales, for their input to this document.

1.2 Organization

This paper is organized as follows:

Section 2 gives a brief overview of the subsetting which will be performed by ECS on request.
Later sections deal specifically with the data organization for a number of cases. These take the
user step by step through creating a point file, together with simple code examples.

1.3 Reference Documents

The following documents were used in the preparation of this paper.

HDF-EOS User's Guide, 170-TP-005-001, 6/96

Science Data Processing Segment (SDPS) Database Design and Database Schema
Specifications for the ECS Project, 311-CD-002-004, 12/95

Release-B SDPS Database Design and Database Schema Specifications, 311-CD-008-001,
5/96

1.4 Applicable Documents

The following material is related to this document and may be useful further reading.

Release A SCF Toolkit Users Guide, 333-CD-003-004

SDP Toolkit Primer for the ECS Project, 194-815-SI4-001, 4/95

HDF User's Guide, Version 4.0r2, NCSA, University of Illinois at Urbana-Champaign, 7/96

Writing HDF-EOS Grid Products for Optimum Subsetting Services, 170-TP-007-001, 12/95

1-1 170-TP-008-001

Writing HDF-EOS Swath Products for Optimum Subsetting Services, 170-TP-009-001,
12/95

Questions regarding technical information contained within this Paper should be addressed to the
following ECS contacts:

• ECS Contacts

–	 Doug Ilg, Senior Software Engineer, (301) 925 0780, dilg@eos.hitc.com (HDF-EOS
related questions)

–	 Joel Gales, Senior Software Engineer, (301) 925 0782, jgales@eos.hitc.com (HDF-
EOS related questions)

–	 Kate Senehi, Senior Designer, (301) 925 4035, ksenehi@eos.hitc.com (Service
related questions)

–	 Alward Siyyid, Senior Software Engineer, (301) 925 0579, asiyyid@eos.hitc.com
(General questions)

Questions concerning distribution or control of this document should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Systems

1616 McCormick Drive

Upper Marlboro, Maryland 20774-5372

1-2 170-TP-008-001

2. Services Provided on Point Data by ECS

In the Release B timeframe ECS will provide services for specific data sets as requested by
Instrument Teams in agreements between themselves and ECS. All products requiring some
archiving, either permanently or with a limited lifetime, will have the standard set of services,
insert, update, and acquire. In addition, higher level services will be available for specific
ESDT's. (one data set equates to one ESDT). Amongst these services are subset and subsample.

It should be noted that subsetting and subsampling will only be performed on HDF-EOS format
files during the release B timeframe, since it is intended to utilize functionality within HDF-EOS
to perform most of the services. These high level services will only be provided if Instrument
Teams have indicated a need to perform them on particular ESDT's. For point data ECS does not
intend to support any default subsampling of data and will only provide default subsetting
services by latitude, longitude, altitude/depth, time and parameter. ECS will not by default
support these higher level services on other dimensioned data.

The information contained in this and subsequent chapters is only relevant for data in HDF-EOS
Point format. Swath and Grid data structures are dealt with separately in the technical papers
170-TP-009-001 and 170-TP-007-001. While this document does only provide guidelines to
writing Point files requiring subsetting, it is strongly recommended that data providers follow the
instructions contained for all files. This would allow users unfamiliar with a product to quickly
and easily understand the contents. In addition, if a product requiring subsetting does not
conform to these guidelines, the Data Provider must provide ECS with very detailed format
information regarding the file organization, grid, field and dimension naming conventions, etc.

2.1 Choosing an HDF-EOS Structure

HDF-EOS has been developed as a part of the EOSDIS Core System, with the intent that it
provide data producers with a standard format for earth science data archived within ECS. It is
built on the widely used HDF libraries produced by NCSA, and is fully compatible with HDF.
What it does provide is support for commonly used structures in earth science and remote
sensing applications, namely a point, swath and grid structure. It is important for a data provider
to decide which, if any, of these structures should be used for a particular implementation. The
decision tree in Figure 2.1 may help in this choice, but is intended for guidance only.

Note for the box reading "Use either HDF-EOS point or grid structure" the choice is up to the
user. Using a grid will make the file larger, and many fill values may exist but the code is
simpler. In addition HDF compression utilities may help reduce the file size. Use of the point
structure may require more in terms of coding, but will result in a smaller file.

2-1 170-TP-008-001

The first decision box requires the reader to understand what is meant by spatially related. This
could be interpreted in a number of ways, but it is meant to indicate that the data is spatially
contiguous. As an example, an image of an area would be spatially related (all of the "pixels"
are connected directly to others), while a set of meteorological reporting stations in different
cities would not be related.

Is the data related
spatially?

No

Yes

Use HDF-EOS
Point Structure

Does the data map
to a standard geographic

projection?

Yes

Use HDF-EOS
Grid Structure

No

Are there many data
points in the region?

Yes

No

Use either HDF-EOS
Grid or Point

Structure

Does the data follow
a subsatellite point?

Yes

Use HDF-EOS
Point Structure

No

Is the data
geolocated?

YesUse HDF-EOS
Swath Structure

BEGIN

Use HDF-EOS

Point Structure
No

Figure 2-1. Decision Tree for Choosing an Appropriate HDF-EOS Structure

The remainder of this document only deals with the point structure.

2.2 Understanding the HDF-EOS Point Structure

Before continuing it is worthwhile to give some background on the point structure since it differs
significantly from grid and swath structures. This section should be read in conjunction with the
Point Structure Information in the HDF-EOS Users Guide.

2-2 170-TP-008-001

Point data is the most general structure available in HDF-EOS. In essence the data are stored in a
similar manner to a relational database. A point object can consist of one or more "levels".
Each "child" level is linked to its "parent" via a common field (the key as an example, consider
the case of data from five fixed buoys at different times, each measuring significant wave height.
This could be implemented as the following two linked tables.

Table1

Lat Long Buoy ID

25.2645 -91.2564 0126

22.3549 -93.4657 3564

23.2564 -89.2546 1256

Table2

Buoy ID Time Wave Height Temp(C)

0126 01:26 2.54 18.4

0126 05:56 3.58 18.2

3564 06:28 12.64 16.4

1256 08:12 7.58 17.1

1256 09:58 7.76 17.2

0126 09:59 4.23 20.1

3564 10:16 10.23 17.5

Figure 2-2. Table Representation of Point Data Structure

In this diagram, there are two tables; one containing fixed information regarding the buoys and
one containing time ordered data values. These two tables are related via the buoy identifier
code. In terms of the HDF-EOS point structure this would be a single point structure with two
levels, the lowest (zeroth) level would contain the static information while the next (level = 1)
would contain the more dynamic information, including the buoy ID. Note that this could
equally well be represented as three separate point structures, one for each row in table 1, and the
first level would only contain the data relevant to that buoy.

2-3 170-TP-008-001

Even a single level point structure can get quite complex. Take the case of a single location that
collects temperature data every 15 minutes for a day starting at midnight, in addition to hourly
mean temperatures and accumulated rainfall. This could be implemented as a single level point
which would notionally look like that below (Figure 2-4). The only difference would be that
there would only be one row, and the values for the geophysical parameters would be stored as
arrays within the cell.

Lat Long StartTime Temp MeanTemp Accum.
Rainfall

x y 00:00 12.0 12.0 1

12.2 12.2 3

11.7 12.2 4

12.1 12.5 6

12.5 12.4 6

12.4 12.6 7

: : :

Figure 2-3. Example of Using Arrays For Data Storage

This sort of point structure can be placed into a single level by virtue of the fact that users can
specify the "order", i.e. the number of array elements, for a column in the point table.

Further examples of single level and multi-level point structures are discussed in the HDF-EOS
Users Guide.

2.3 Subsetting Service

Subsetting of a file is a means of extracting a portion of a data set relevant to a user's application.
It is more sophisticated than subsampling. Subsetting can be used if a user is only interested in a
particular region, parameter or altitude for example. There are several types of subsetting which
are available for HDF-EOS point files, and these are dealt with in the following subsections.

2.3.1 Subsetting by Region

Subsetting by region allows you to specify a geographic region of interest. For example if the
data set contains information over the whole world, but the user is only interested in data from
the amazonian basin, then the user could select only that geographic region by passing in
information regarding the bounding coordinates. These will represent two opposite corners of
the region to be subsetted in decimal degrees. Note that only a bounding rectangle of data may
be subsetted; more complex shapes are not supported by HDF-EOS.

2-4 170-TP-008-001

2.3.2 Subsetting by Altitude

Subsetting by altitude can allow a user to specify the range of altitudes in which they are
interested. For example, if a data set contained a vertical profile of wind speed between 0 and
3000 m above sea level, but a user is only interested in windspeed between 500 and 1000m,
these may be passed in as arguments to the vertical subsetting routines. Note that the units is
important here, since the vertical profile may be given in one of a number of units (for example,
meters, hPa, isentropic levels, etc.). Since often there is no simple means of providing
conversion between units this will not be performed by the subsetting routines. It is the
responsibility of the user to ensure that the correct units are supplied when requesting subsetting.

2.3.3 Subsetting by Time

Along the same lines as subsetting by altitude, subsetting by time can allow a user to select only
data from the temporal range. The method of subsetting is similar to that for altitude, where the
user must supply a start and stop time to extract the required data. For temporal subsetting some
unit conversion is possible between the time format requested and the time format in which the
data is archived.

2.3.4 Subsetting by Parameter

In addition to the above, it will also be possible to subset by parameter. This parameter may be
either geophysical (e.g. temperature) or product specific (e.g. rotation speed). Subsetting on
more than one parameter will be permitted by allowing users to specify an array of parameters.
The only restriction is that the parameter names requested must match those given in either of the
collection level metadata attributes ParameterName or ECSVariableKeyword.

2.4 Output File Organization

Whenever a request for subsetting or subsampling has been successfully completed, a new HDF-
EOS file will be generated. Whenever possible, the organization of the data will be similar to
that in the original file, with the same object names and field names. The inventory and archive
metadata will be copied from the original file to the subsetted/subsampled file, and the core
attributes relating to bounding coordinates and time will be updated if necessary. HDF-EOS will
generate new structural metadata. However, product specific and other core attributes will not be
altered. Where an object (grid, point or swath) contains no relevant data, that object will be
completely omitted from the subsetted/subsampled file. Similarly, if a field contains no relevant
data, it will be completely omitted. No "place holders" will be left showing where original data
was located.

2-5 170-TP-008-001

This page intentionally left blank.

2-6 170-TP-008-001

3. Writing a File Containing Simple Point Data

This section discusses the use of simple point data with only a single level to each point. This is
by far the simplest form of point structure. While most point data will be more complex than
this, this section does provide a useful starting point for developing more complex structures.

This scenario could be used when the data consists of a snapshot in time from a number of
points. The preferred method of writing this form of data is shown below. In this case, the point
structure(s) within the file must be all at a single level.

Step 0: Open the file using PTopen.

Step 1: Create a point structure using PTcreate.

Step 2: Define a level for the point structure using PTdeflevel. The field list for this level
should include the values "Latitude" or "Colatitude" and "Longitude" if regional
subsetting is required. If altitude subsetting is required then one of the fields in the field
list must be "altitude_units", where units is defined below. If temporal subsetting is
required then the field list must include the name "Time". Note that the names in quotes
are case sensitive and must be given exactly as specified, although the order is not
important.

Step 3: Detach from the point object using PTdetach. This is needed to fix the point
structure.

Step 4: Reattach to the point object using PTattach.

Step 5: Write data to the level just defined using PTwritelevel.

Step 6: Detach from the point structure using PTdetach.

Step 7: Repeat steps 1 to 6 for each point structure required.

Step 8: Close the file using PTclose.

3.1 Restrictions to Units

There are some restrictions to the units which altitude information must be supplied (Note that
altitude and depth are used synonymously throughout this report). These restrictions are needed
to limit the ways in which altitude values may be presented. One of the restrictions is that the
field containing dimension values must contain either integer or real values; no string values are
allowed. This is a limitation imposed by HDF-EOS.

In the case of subsetting by altitude (or depth; the two terms are used synonymously), the units
may be one of the following:

Pa, hPa, kPa, atm, meters, km, fathoms, millibars, theta, sigma, Kelvin, Celsius.

3-1 170-TP-008-001

Some unit conversion will be performed during a subsetting request. Conversion will be
performed between the following units:

meters and km

Pa, hPa, kPa, millibars and atm

Kelvin and Celsius

No other conversions will be performed within Science Data Server due to the often complex
relationship between them (for instance Pa will not be converted to meters). It may be that
sophisticated Clients can perform additional conversions prior to subsetting.

If a time field exists, and it is required to subset the data by time, then it is strongly
recommended that the time be given in TAI93 (the number of continuous seconds since 12:00:00
on 1. Jan. 93). However, any time units could be used. If a different time format is to be used,
then the data provider must supply ECS with the information about the chosen format to allow
temporal subsetting to take place generically.

3.2 Sample Code for Writing a Simple Point Product

Since the simple point structure can be used to store a number of types of data, two examples
will be looked at in this section. One is a snapshot of data from a number of different locations,
while one is data from a single location at different times.

3.2.1 Snapshot at Different Locations

In this example, it is assumed that the product contains data from 10 different receiving stations
(Atlanta, Washington, Los Angeles, Phoenix, Chicago, New York, Seattle, Denver, Dallas and
Miami). It is assumed that the data are measurements of windspeed, temperature and dew point
taken at a single time. In this case, the data may be considered to look like the table below.
Since the time is inherently known (from the metadata within the HDF-EOS file) there is no need
to include a time field within the point structure.

3-2 170-TP-008-001

Table 3-1. Input to Sample Code
Latitude Longitude WindSpeed Temperature DewPoint

33.75 -84.38 15.5 29.6 20.1

38.92 -77.00 5.0 26.8 20.5

34.07 -118.25 12.6 19.5 5.0

33.3 -112.03 0.0 32.1 6.2

41.83 -87.75 12.2 16.5 10.0

40.72 -74.00 8.9 17.2 12.2

47.35 -122.20 13.6 14.3 14.3

39.44 -104.98 5.1 21.6 6.5

32.78 -96.82 3.9 26.8 9.8

25.77 -80.20 7.4 28.2 25.0

In the code below, it is assumed that the data are read from an ancillary ASCII file which
contains above rows(without the column headings). It is also assumed that the user wishes to
store all of the data in a single point. The data could equally well be stored as 10 points; one for
each location. The former method is preferred since this lends itself to subsetting by area much
more conveniently and reduces the file size. This example would allow subsetting by area and
parameter only since there is no altitude or time component. The code sample below is written
in C and omits error checking for clarity.

#include <stdio.h>

#include <hdf.h>

#include <mfhdf.h>

#include <HdfEosDef.h>

#define STATIONS 10

int main()

{

int32 ptID;

int32 fileID;

int32 fieldType[5];

int32 fieldOrder[5];

intn hdfRtn;

int rtn, n;

3-3 170-TP-008-001

char fieldList[255];

char dataBuf[10000];

char *dataBufpntr;

double lat, lng;

float wind, temp, hum;

FILE* fp;

/* Open the point file. It is assumed that the file does not already exist */

fileID = PTopen("PointExample.dat", DFACC_CREATE);

/* Create a point object within the file */

ptID = PTcreate(fileID, "Met Reports");

/* Define the field list. This will be used as input to PTdeflevel */

sprintf(fieldList, "Latitude, Longitude, WindSpeed, Temperature,

RelHumidity");

/* Define the types for each of the fields listed above */

fieldType[0] = DFNT_FLOAT64; /* Latitude field */

fieldType[1] = DFNT_FLOAT64; /* Longitude field */

fieldType[2] = DFNT_FLOAT32; /* WindSpeed field */

fieldType[3] = DFNT_FLOAT32; /* Temperature field */

fieldType[4] = DFNT_FLOAT32; /* Humidity field */

/*

Define the order for each field. This order is actually the array size for

the field list variables, zero based. Since in this instance, all are single

valued, the order for each is zero.

*/

fieldOrder[0] = 0;

fieldOrder[1] = 0;

fieldOrder[2] = 0;

fieldOrder[3] = 0;

fieldOrder[4] = 0;

/* Now we can define the level for this structure */

3-4 170-TP-008-001

hdfRtn = PTdeflevel(ptID, "Station Values", fieldList, fieldType, fieldOrder);

/*

Now to fix the point structure it is necessary to detach and reattach to the

point object.

*/

hdfRtn = PTdetach(ptID);

ptID = PTattach(fileID, "Met Reports");

/* Open the ASCII file containing the values to be inserted */

fp = fopen("RawValues.dat", "r");

n = 0

dataBufpntr = dataBuf

while (fscanf(fp, "%lf %lf %f %f %f", &lat, &lng, &wind, &temp, &hum) != -1)

{

n++;

memcpy(dataBufpntr, &lat, sizeof(double));

dataBufPntr += sizeof(double);

memcpy(dataBufpntr, &lng, sizeof(double));

dataBufPntr += sizeof(double);

memcpy(dataBufpntr, &wind, sizeof(float));

dataBufPntr += sizeof(float);

memcpy(dataBufpntr, &temp, sizeof(float));

dataBufPntr += sizeof(float);

memcpy(dataBufpntr, &hum, sizeof(float));

dataBufPntr += sizeof(float);

}

fclose (fp);

/* We can now write this data to the point object */

hdfRtn = PTwritelevel(ptID, 0, n, dataBuf);

/* Finally detach and close the file */

hdfRtn = PTdetach(ptID);

hdfRtn = PTclose(fileID);

3-5 170-TP-008-001

}

3.2.2 Snapshot at Different Times

This example assumes that all of the data in the point structure comes from a single known
location and represents a series of temporal values. It is assumed that the measurements
represent temperature, wind speed and accumulated rainfall taken four times an hour covering
one day. The time units are assumed to be in TAI93. No geolocation information is included
because it is assumed the data is taken from a known location which will be contained within the
metadata. If geolocation information were added, then it would be more appropriate to use a two
level point structure. Again, it is assumed that initially the data are contained in a simple ASCII
file, with one line for each hour's worth of data, and four columns separated by spaces. This type
of example lends itself to subsetting by time and parameter only since there are no geolocation or
altitude data associated.

#include <stdio.h>

#include <hdf.h>

#include <mfhdf.h>

#include <HdfEosDef.h>

int main()

{

int32 ptID;

int32 fileID;

int32 fieldType[4];

int32 fieldOrder[4];

intn hdfRtn;

int rtn, n;

char fieldList[255];

char dataBuf[10000];

char *dataBufpntr;

double time;

float wind, temp, rain[4];

FILE* fp;

/* Open the point file. It is assumed that the file does not already exist */

fileID = PTopen("PointExample.dat", DFACC_CREATE);

3-6 170-TP-008-001

/* Create a point object within the file */

ptID = PTcreate(fileID, "Chicago");

/* Define the field list. This will be used as input to PTdeflevel */

sprintf(fieldList, "Time, WindSpeed, Temperature, AccumulatedRainfall");

/* Define the types for each of the fields listed above */

fieldType[0] = DFNT_FLOAT64; /* Time field */

fieldType[1] = DFNT_FLOAT32; /* WindSpeed field */

fieldType[2] = DFNT_FLOAT32; /* Temperature field */

fieldType[3] = DFNT_INT32; /* Rainfall field */

/*

Define the order for each field. This order is actually the array size for

the field list variables, zero based. Since in this instance the first three

fields are single values, there order is zero, but the last has 4 values, its

order is 3

*/

fieldOrder[0] = 0;

fieldOrder[1] = 0;

fieldOrder[2] = 0;

fieldOrder[3] = 3;

/* Now we can define the level for this structure */

hdfRtn = PTdeflevel(ptID, "DailyData", fieldList, fieldType, fieldOrder);

/*

Now to fix the point structure it is necessary to detach and reattach to the

point object.

*/

hdfRtn = PTdetach(ptID);

ptID = PTattach(fileID, "Chicago");

/* Open the ASCII file containing the values to be inserted */

fp = fopen("RawValues.dat", "r");

n = 0

dataBufpntr = dataBuf

3-7 170-TP-008-001

while (fscanf(fp, "%lf %f %f %d %d %d %d", &time, &wind, &temp, &rain[0],

&rain[1], &rain[2], &rain[3]) != -1)

{

n++;

memcpy(dataBufpntr, &time, sizeof(double));

dataBufPntr += sizeof(double);

memcpy(dataBufpntr, &wind, sizeof(float));

dataBufPntr += sizeof(float);

memcpy(dataBufpntr, &temp, sizeof(float));

dataBufPntr += sizeof(float);

memcpy(dataBufpntr, &rain, 4*sizeof(float));

dataBufPntr += 4*sizeof(float);

}

fclose (fp);

/* We can now write this data to the point object */

hdfRtn = PTwritelevel(ptID, 0, n, dataBuf);

/* Finally detach and close the file */

hdfRtn = PTdetach(ptID);

hdfRtn = PTclose(fileID);

}

3-8 170-TP-008-001

. .

. .

. .

4. Writing Point Structures Containing Multiple Levels

Most point products will not map easily or sensibly to the simple point structure defined in
section 3. Additional levels may be needed for example if the data consists of a time series from
different locations or from non-fixed points (e.g. shipboard measurements). There can be any
number of levels defining a point structure, but for ease of use and understanding, it is
recommended that only three levels be used. An example of a three level point structure could
be balloon data from a number of experiments launched at the same time but with different data
retrieval rates (Figure 4-1).

Balloon ID Launch DateTime

Balloon ID Measurement Time Altitude(hPa)

Altitude (hPa) Latitude Longitude Temperature CO2 conc. O3 conc.

Figure 4-1. An Example of a Three Level Point Structure

The decision on how many layers to implement is made by the data provider. There will clearly
be some trade off between complexity in creating the data and understanding what users want
from the data. For example, in the above figure, it has been assumed that users will be interested
in obtaining the data and comparing positions from the same altitudinal layer, but that the actual
time is relatively unimportant. If, however, the time information is important, then this structure
could be leveled to only two layers; the zeroth level being as shown and combining the
information in the second third levels.

4-1 170-TP-008-001

4.1 Creating Point Structures with more than One Level

As implied above, there is a certain amount of effort needed to organize a point file to make the
data both easily understood and easily produced. However, once the number of levels is decided
upon, then there is a common approach recommended for creating point structures. This is
shown below.

Step 0 : Open the grid file using PTopen.

Step 1 : Create a point structure using PTcreate. The structure has no special significance.

Step 2 : For each level required in the structure, define the field list, order and types. This
process must be done without HDF-EOS calls, but is used as input to later calls. Note:
When defining the field lists for each level, there must be a repeated field name between
parent and child levels. Having defined this information, use PTdeflevel to define each
level. Note: Depending on the forms of subsetting required, the following fields must be
defined:

Regional Subsetting: Field names of "Latitude" (or "Colatitude") and "Longitude" must
be defined.

Temporal Subsetting : The field name "Time" must be defined. Note: This should
preferably be given in TAI93 (see Section 3.1.1)

Altitude Subsetting : A field name of the form "altitude_units" must be defined (see
Section 3.1.1 for list of valid units).

Parameter Subsetting : It is strongly recommended that data field names within the point
structure are given the same name as one of the collection level metadata attributes
ParameterName or ECSVariable (although this is not mandatory, if this is not
followed the data provider must provide ECS with the mapping of field name to
parameter).

Step 3 : Define the linkage between parent and child levels using PTdeflinkage.

Step 4 : Detach from the point structure using PTdetach. This is to allow the linkages and
fields to be set within the structure.

Step 5 : Reattach to the point structure using PTattach.

Step 6 : Write the appropriate data to each level using PTwritelevel.

Step 7 : Detach from the grid using PTdetach.

Step 8: Repeat steps 1 through 7 for each required point structure.

Step 10 : Close the file using PTclose.

4-2 170-TP-008-001

4.2 Sample Code for Writing Multi-Level Point Structures

The following code sample assumes that the user is trying to write data into the point structure
shown in Figure 4-1. This ample is written in C and error checking has been omitted. Also the
input of the data values has been omitted, although comments indicate where data is assumed to
already be available.

#include <stdio.h>

#include <hdf.h>

#include <mfhdf.h>

#include <HdfEosDef.h>

int main()

{

int32 ptID;

int32 fileID;

int32 launchtime;

int32 fieldOrder0[2], fieldType0[2];

int32 fieldOrder1[3], fieldType1[3];

int32 fieldOrder2[6], fieldType2[6];

char string0[255];

char string1[255];

char string2[255];

char databuf[10000];

char ballonID[8]; /* Each balloon has 8 character identifier */

char *pntr;

/* Open the point file */

fileID = PTopen("mypointfile.hdf", DFACC_CREATE);

/* Create the point object */

ptID = PTcreate(fileID, "Balloon Data");

/* Define the field list for each level. In this case we have 3 levels */

sprintf(string0, "BalloonID, LaunchDateTime");

4-3 170-TP-008-001

fieldType0[0] = DFNT_CHAR8;

fieldType0[1] = DFNT_INT32;

fieldOrder0[0] = 0;

fieldOrder0[1] = 0;

hdfRtn = PTdeflevel(ptID, "Launch Info", string0, fieldType0, fieldOrder0);

sprintf(string1, "BalloonID, Time, altitude_hPa");

fieldType1[0] = DFNT_CHAR8;

fieldType1[1] = DFNT_INT32;

fieldType1[2] = DFNT_INT16;

fieldOrder1[0] = 0;

fieldOrder1[1] = 0;

fieldOrder1[2] = 0;

hdfRtn = PTdeflevel(ptID, "Observation Info", string1, fieldType1,

fieldOrder1);

hdfRtn = PTdeflinkage(ptID, "Launch Info", "Observation Info", "BalloonID");

sprintf(string2, "altitude_hPa, Latitude, Longitude, Temperature, CO2, O3");

fieldType2[0] = DFNT_CHAR8;

fieldType2[1] = DFNT_FLOAT64;

fieldType2[2] = DFNT_FLOAT64;

fieldType2[3] = DFNT_FLOAT32;

fieldType2[4] = DFNT_FLOAT32;

fieldType2[5] = DFNT_FLOAT32;

fieldOrder2[0] = 0;

fieldOrder2[1] = 0;

fieldOrder2[2] = 0;

fieldOrder2[3] = 0;

fieldOrder2[4] = 0;

fieldOrder2[5] = 0;

hdfRtn = PTdeflevel(ptID, "Data", string2, fieldType2, fieldOrder2);

hdfRtn = PTdeflinkage(ptID, "Observation Info", "Data", " altitude_hPa ");

/* Now detach and reattach to fix the overall structure and linkage */

hdfRtn = PTdetach(ptID);

4-4 170-TP-008-001

ptID = PTattach("Balloon Data");

/*

From this point onwards it is assumed that databuf has been filled with

values for the appropriate level. For an example of how to achieve this, see

the code examples in section 3. For clarity it is assumed that the zeroth

level contains 6 rows (one for each mission), the first level contains 50

levels (a total of 50 observations from all of the missions) and the last

level also contains 50 elements. Clearly there is a case for combining the

first and second levels in this instance.

*/

hdfRtn = PTwritelevel(ptID, 0, 6, databuf);

hdfRtn = PTwritelevel(ptID, 1, 50, databuf);

hdfRtn = PTwritelevel(ptID, 2, 50, databuf);

/* Finally detach from the point structure and close the file */

hdfRtn = PTdetach(ptID);

hdfRtn = PTclose (fileID);

exit(0);

}

4-5 170-TP-008-001

This page intentionally left blank.

4-6 170-TP-008-001

Abbreviations and Acronyms

atm atmospheres (unit of pressure measurement)

ECS EOSDIS Core System

ESDT Earth Science Data Type

HDF Hierachical Data Format

hPa hectoPascal (unit of pressure measurement)

JD Julian Date

kPa kiloPascal (unit of pressure measurement)

MJD Modified Julian Date

Pa Pascal (unit of pressure measurement)

sbt satellite binary time

UTC Universal Time Coordinates

AB-1 170-TP-008-001

	1. Introduction
	1.1 Purpose
	1.2 Organization
	1.3 Reference Documents
	1.4 Applicable Documents

	2. Services Provided on Point Data by ECS
	2.1 Choosing an HDF-EOS Structure
	Figure 2-1. Decision Tree for Choosing an Appropriate HDF-EOS Structure

	2.2 Understanding the HDF-EOS Point Structure
	Figure 2-2. Table Representation of Point Data Structure
	Figure 2-3. Example of Using Arrays For Data Storage

	2.3 Subsetting Service
	2.3.1 Subsetting by Region
	2.3.2 Subsetting by Altitude
	2.3.3 Subsetting by Time
	2.3.4 Subsetting by Parameter

	2.4 Output File Organization

	3. Writing a File Containing Simple Point Data
	3.1 Restrictions to Units
	3.2 Sample Code for Writing a Simple Point Product
	3.2.1 Snapshot at Different Locations
	Table 3-1. Input to Sample Code

	3.2.2 Snapshot at Different Times

	4. Writing Point Structures Containing Multiple Levels
	Figure 4-1. An Example of a Three Level Point Structure
	4.1 Creating Point Structures with more than One Level
	4.2 Sample Code for Writing Multi-Level Point Structures

