
170-TP-001-001

PreProcessing of NMC GRIB Formatted

Products

Technical Paper

May 96

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

Shaun de Witt /s/ 5/13/96

Shaun de Witt, Senior Engineer 5/13/96
EOSDIS Core System Project

SUBMITTED BY

Karin Loya /s/ 5/13/96

Karin Loya, PDPS Manager 5/13/96
EOSDIS Core System Project

Hughes Information Technology Corporation
Landover, Maryland

This page intentionally left blank.

Abstract

This document shows the detailed design for Ancillary Data Pre-Processing of Gridded Binary
(GRIB) format data from the National Meteorological Center (NMC). It demonstrates the object
model, functional model, and data design for this task.

This document also covers the assumptions made during the design process. The purpose is to
familiarize the reader with the design and implementation, and to give an understanding of how
the output HDF-EOS file relates to the input GRIB format file. It expands on the previous white
paper 240-WP-002-001, and clarifies the design as implemented.

Keywords: NMC, GRIB, Preprocessing, Ingest, Design, Model

i 170-TP-001-001

This page intentionally left blank.

ii 170-TP-001-001

Contents

Abstract i

Contents iii

1. Introduction 1

1.1 Purpose..1

1.2 Organization..1

1.3 Review and Approval..2

1.4 References...2

2. Assumptions and Issues 4

2.1 Assumptions...4

2.2 Risks 5

3. Object Model6

3.1 Object Model...6

Description:...7

3.2 Code Reuse ..10

3.3 Lines Of Code Estimates..11

4 : Functional Model 12

5 : Data Model 17

5.1 GRIB Format..17

5.1.1GRIB Packing Methods ...18

iii 170-TP-001-001

5.2 Output Product Format...19

Abbreviations and Acronyms 26

Appendix A : Metadata Configuration File 27

FIGURES

Figure 3.1 Object Model for the GRIB Preprocessor ..7

Figure 4.1 : Key to the Structure Diagrams ...12

Figure 4.2 Level 0 Data Flow Diagram ...13

Figure 4.3 Breakdown of PreProcess Function...14

Figure 4.4 Breakdown of Read File Function..15

Figure 4.5 Breakdown of Unpack Record Function ...16

Figure 5.1 Mapping of GRIB Formatted Records to HDF Science Data Set21

Figure 5.2 Graphic Depiction of the Format of the Output HDF-EOS Data File.........................23

TABLES

Table 1-1. White Paper to CDRL Migration...2

Table 3-1 Mapping of Heritage code to Object Model Operations ...10

Table 3-2: Lines of Code on a Per-Class Basis..11

iv 170-TP-001-001

1. Introduction

1.1 Purpose

The purpose of this paper is to provide a baseline for the design of the GRIB format
preprocessing component of the INGEST subsystem. This is a part of the Ingest subsystem
being developed as a part of the ECS project. It additionally documents the assumptions made
during the design and highlights issues related to the work. Much of this document will
incorporated into the Ingest Subsystem Detailed Design contained in DID-305, Sept 1996.

The actual requirements which are satisfied by this work are as follows.

(a) S-INS-00400

The INGEST CI shall convert ingested data into a form accepted by the SDSRV
CI/DDSRV CI, for the following data types, as needed.

(b) S-INS-00404

The INGEST CI shall extract metadata from ingested data into a form accepted by
the SDSRV/DSSRV as needed, for the following categories of data:...(d) data set
specific metadata formats.

The basic requirement in the preprocessing work discussed in this paper is to reformat data in
native GRIB format into a form suitable for use by a number of science groups. The proposed
format for storing data within ECS is the HDF-EOS format, and it is proposed that this be
maintained as the standard for this work. It should be noted that similar work has been
undertaken by the SeaDAS group at GSFC, this current effort extending the functionality of this
previous code within the confines of HDF-EOS and other relevant ECS documentation [for more
details of the SeaDAS project, see the WWW home page (http://shark.gsfc.nasa.gov)].
Additionally, code to unpack NMC GRIB formatted data into binary files is provided at the
NMC. This code is available by anonymous ftp from the server nic.fb4.noaa.gov. For the most
part, this code is written in FORTRAN. It is used extensively in the SeaDAS work, and its reuse
is proposed for this code in this work. Which pieces of code are used is dealt with in Section 3
of this paper, detailing the object model. The NMC unpacking code is freely available, and it has
been found that the subroutines can be used directly with no changes to the source code.

1.2 Organization

This paper is organized to reflect the detailed design under which the ADPP work is currently
progressing. The second section details the assumptions made during the design and issues
which have arisen during the design and prototyping activities already performed, and which are
still outstanding at the time of publication. In the third section of this paper the object model

1 170-TP-001-001

which will be used in this work is described, together with details of the heritage code which will
be used in the preprocessing and how it fits into the object model. Section 4 provides a Data
Flow Diagram to enhance the object model, and provide more detail for the reader. Finally, a
data model is presented to show how the information in the original format maps to the final
format within ECS.

1.3 Review and Approval

This White Paper is an informal document approved at the Office Manager level. It does not
require formal Government review or approval; however, it is submitted with the intent that
review and comments will be forthcoming. Since this document has already undergone technical
and formal review processes by Karin Loya (Release A PDPS Manager), Graham Bland(EOSL),
Carey Gire(Loral), Jo Pulkinnen (Loral), and Vince Grella(Loral), any comments received
should not be expected to impact the design, unless there are reasons otherwise.

The ideas expressed in this White Paper are valid for the duration of the project; the concepts
presented here are expected to migrate into the following formal CDRL deliveries:

Table 1-1. White Paper to CDRL Migration
White Paper Section CDRL DID/Document

Number

2 & 3 DID-305

5.2 DID-311-CD-002-004

Questions regarding technical information contained within this Paper should be addressed to the
following ECS contact:

• ECS Contacts

– Shaun de Witt, Senior Engineer, (301) 925 1047, sdewitt@eos.hitc.com

Questions concerning distribution or control of this document should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Corporation

1616 McCormick Drive

Landover, MD 20785

1.4 References

The following documents have been used during the preprocessing of NMC GRIB formatted
data.

SDP Toolkit 5 Users Guide for the ECS Project, 333-CD-003-002, 8/95

2 170-TP-001-001

Release-A SDPS Ingest Subsystem Design Specification for the ECS Project, 305-CD-009-001,
7/95

HDF-EOS Primer for Version-1 EOSDIS, 175-WP-001-001, 4/95

GRIB Format Pre-Processing Design and Issues, 12/95, 240-WP-002-001

The WMO Format for the Storage of Weather Product Information and the Exchange of Weather
Product Messages in Gridded Binary Form (Edition 1), NOAA Office Note 388, 7/94

3 170-TP-001-001

2. Assumptions and Issues

In the design presented here, a number of assumptions are inherent in the model, and a number
of issues have arisen during the design process. These will be discussed in this section, with
justification given for the assumptions and details of the methods of overcoming the issues.

2.1 Assumptions

The following assumptions have been made during the design process. Some of these are based
on the GRIB format specification (see below), others based on previous work by the SeaWIFS
project, and some based on discussions with other groups within the ECS project.

•	 Only minimal quality checking will be performed. Only QC information already given in
the input file will be used for reporting data quality. More detailed checking is performed
by the SeaDAS code used for the SeaWIFS project (see Issues Section), but this level of
detail is assumed unnecessary for preprocessing.

•	 The inventory level metadata in the reformatted file represents information covering the
whole file. Any data which is specific for a record will be placed into archived metadata.
For example, for the bounding coordinates, the data given in the inventory level metadata
will cover all of the areas in the original file (normally this will be the whole globe),
while the archive level metadata will contain the bounding coordinates for an individual
record/SDS.

•	 It is assumed that the SDP subsystem Toolkit is re-usable within the Ingest subsystem for
reading and writing metadata configuration files, and that these configuration files are the
means by which the metadata required is identified..

•	 Only GRIB data conforming to the specification provided in NMC Office Note 388 (ON­
388, July 1 1994) will be pre-processed. If an error in format is found, preprocessing of
that file will be aborted. If an unrecognized grid type is encountered, the preprocessing
will be aborted. For other unrecognized identifiers, appropriate information will be
inserted into the metadata (for example a string may assume a value of "not known", an
integer may assume a value of -1, etc., as appropriate), unless an error is reported from
the heritage NMC code.

•	 The code for unpacking of GRIB data provided by the NMC is stable and can deal with
all of the grid types defined in the format specification ON-388 .

• NMC will provide updates in conjunction with any changes in format.

4 170-TP-001-001

2.2 Risks

One significant risk area has been identified during the design stage of the ancillary data
preprocessing.

•	 The HDF-EOS software libraries are still undergoing beta testing, as of the time of May
1996. Upon full release, the relevant API’s or functionality incorporated into these
libraries may change, which may necessitate code changes and regression testing.

5 170-TP-001-001

3. Object Model

The object model presented in figure 3.1 represents the GRIB preprocessing software
component. The model shown is for the pre-processor alone, and is an expansion of the object
model in the Release A Ingest Subsystem Design Specification (305-CD-009-001). The top
level object (InGRIBData) is already included in this document. The remaining classes will be
added for the next release of this document.

3.1 Object Model

The paragraphs following the diagram contain descriptions of each class, together with their
essential attributes and operations and their purpose. To provide a brief overview, the
preprocessing has been basically split into two branches as seen in the object model. These
specifically perform the reformatting of the science and the metadata. Each of these branches
will be discussed in more detail below. Before this splitting, the GRIB format file is itself split
up so that each record within a file may be dealt with separately. After the reformatting is
complete, the necessary information is gathered by a single class which then performs the actual
writing of the reformatted file and associated metadata file.

The reformatting of the metadata involves extracting the Product Description Section, which
contains the record specific metadata, from the original GRIB format record. Each parameter
contained in the SDP must then be decoded and, where necessary, the appropriate metadata must
be constructed from the decoded value (for example, the grid on which the data is presented is
described in terms of an identifier, which may be used to determine bounding coordinates and
projection). Using the MET tools provided in the PGS toolkit and the metadata configuration
file, it s then possible to construct PVL describing the metadata for each record and calculate,
where applicable, the global metadata.

The reformatting of the science data is slightly more complex. To unpack the information
requires all of the sections with the exception of the Initial and Final Section. This branch of the
model not only unpacks the original science data values, but also reformats them onto an
appropriate grid for inclusion in an SDS and, where applicable, performs minimal QA on the
science data. In this case, minimal QA will be performed only where the information is already
contained within the GRIB record, such as the percentage of missing data.

6 170-TP-001-001

GRIBHDF

GRIBScienceDat GRIBMetaData

InGRIBData

Figure 3.1 Object Model for the GRIB Preprocessor

InGRIBData

Description:
This is the top level call defined already by the ingest subsystem. It represents the
top level of the preprocessing tool. The attributes and operations described here
are an extension of those already in 305-CD-009-001.

Attributes:
myInputFile : EcTChar*
myOutputFile : EcTChar*

7 170-TP-001-001

mySourceMCF : EcTChar*
myTargetMCF : EcTChar*
myRecordArray : EcTChar**
myPDSArray : EcTChar**
myNumberOfRecords : EcTInt

Operations:
Preprocess() : EcTInt- public class which starts preprocessing
ExtractPDS() - Extract the still encoded Product Description Section of the

record.
ReadRecord() - Read a single record from the input GRIB file
SearchPDSArray() - Allows searching of PDS arrays. The purpose of this

is to allow retrieval of a specific record using a PDS.
This function will only be called if data in
North/South hemisphere pairs is combined into a
single SDS

GetNextRecord() - Gets the next unused record from the array of records
and updates the record to indicate that it has been

processed.
GRIBScienceData

Description:
Performs the unpacking of the science data. It assumes the entire file conforms to
ON-388 GRIB format. Any deviations from the format will cause preprocessing
to stop and an error condition will be returned.

Attributes:
myCurrentRecord : EcTChar*

myCurrentPDS : EcTChar*

myCurrentBDS : EcTChar*

myCurrentRecordType : EcTChar*

myCurrentRecordLevel

myCurrentGrid

myQCArray

Operations:
ConstructGrid() - Construct the 2-d grid to contain the data values based on

either the GDS or PDS of the current record
PopulateGrid() - Fill the grid with the data values
QCRecord() - Perform QC on the data
UnpackPDS() - Unpack the Product Description Section of the record.
UnpackGDS() - If the Grid Description Section exists, unpack the data for

use in ConstructGrid

8 170-TP-001-001

UnpackBMS() - Unpack the Bit Map Section of the current record, if it
exists, for use in PopulateGrid.

UnpackBDS() - Unpack the Binary Data Section into correct type (floating
point or integer) and store as a linear array of values

before populating the grid

GRIBMetaData
Description:

This function will extract metadata from the GRIB records and format it into an
annotation group ready for insertion into the final HDF File. In addition, it will
produce a separate metadata file to aid in the insertion of the data into the data
server by the rest of the ingest subsystem.

Attributes:
myGlobalMetadata
myStructuralMetadata
myPDSValues

Operations:
ExtractGlobalMetadata() - Extract and store metadata which is global to the

whole file
ExtractMetadata - Extract the metadata from the current PDS by decoding

and use of look up tables or structures to convert to
human readable form

StoreMetadata() - Store the record specific metadata from the current record
ReadPDSArray() - Reads the next PDS in the array

GRIBHDF
Description:

Performs the actual writing and formatting of the final HDF file. It will associate
SDS's with corresponding record specific metadata.

Attributes:
Those inherited from parent classes
myAveragePercntOfMissingData
mySeachableMetdata
myNonSearchableMetadata

Operations:
WriteSDS() - For each input record (or reconstituted pair), write the data to

an SDS
FormatMetaData() - Create the attribute fields for the metadata (core, record

specific and structural)
FillAttributeData() - Write the values of the attributes to the appropriate

section of the HDF
Process() - Peform preprocessing functions

9 170-TP-001-001

3.2 Code Reuse

As stated in the Introduction to this document, it is intended to use heritage code provided by the
NMC to unpack the native GRIB format data. This code is written in FORTRAN.

The unpacking code is maintained by NMC, and may occasionally be updated. It is outside the
scope of this work to track these changes, nor is any mechanism provided by NMC for
announcing changes. The NMC code reused within ECS is that provided at the start of
December 1995 on their anonymous ftp server (ftp:nic.fb4.noaa.gov). Additions are likely to be
along the lines of support for new grid types. It is not proposed that updates to the ECS code
should be made routinely whenever the NMC issues a new version of the software.

For all of the heritage code, existing comments will be maintained. No changes are necessary to
the heritage code for inclusion into ECS software.

There are a number of separate FORTRAN subroutines which will be incorporated into this
work. These are listed in table 3.1, together with the object model attribute into which they will
be added. A description of the purpose of the subroutine is also given.

Table 3-1 Mapping of Heritage code to Object Model Operations

FI631 InGRIBData Finds the start of a record and
obtains the length in bytes of each
section.
the record ends with the defined
values in the End Section.

159 NMC

FI632 GRIBScienceData Extracts information from the PDS. 270 NMC

FI633 GRIBScienceData Extracts information from the GDS,
if available.

469 NMC

FI634 GRIBScienceData If a BMS is present, extract it for
use with filling grid.
bit map is provided by a center, but
not included in the record, then the
appropriate bit map is generated.

669 NMC

FI635 GRIBScienceData Unpack the grid data in the BDS, and
fill the output array correctly.

626 NMC

FI636 GRIBScienceData Process second order packing from
the BDS for each data item.

268 NMC

FI637 GRIBScienceData Checks for a size mismatch between
GDS (if present) and standard grids

188 NMC

Name of
Heritage

Code

Object Description of Purpose Lines of
Code

Source

Also checks to ensure that

If a standard

10 170-TP-001-001

W3FI63 GRIBScienceData Unpack a GRIB record to extract the
specified grid, isolate the bit map
and make the values contained in the
PDS and GDS available in the return
array.

712 NMC

W3FI01 GRIBScienceData Determines the number of bytes in a
full word for a particular machine

51 NMC

W3FI83 GRIBScienceData Unpack delta packed values. 107 NMC

Custom
Toolkit 5
Code

GRIBHDF Reads MCF and writes metadata in
PVL

30336 ECS

ODL GRIBHDF Low level routines used by Toolkit 5 10034 CUC

HDF-EOS GRIBHDF Used to write the final output
format.

n/k ECS/NCSA

Note that in the above table the lines of code for the Toolkit library is the total lines of code in
the source directory. In practice, not all of these functions will be used. As an estimate,
probably only twenty percent of the code in this library will be called upon. The ODL library is
already contained within the Toolkit and will not be used directly in this work.

3.3 Lines Of Code Estimates

The following table presents the lines of code estimates for each class described above. It shows
both the estimated number of custom lines and the lines in the re-used code. The estimate of the
custom lines of code is based on decomposition of the functionality and on previous experience.
The custom SLOC is approximated using table 3.1 of this document..

Table 3-2: Lines of Code on a Per-Class Basis
Class Name Estimated Custom LOC

InGRIBData 750

GRIBScienceData 500

GRIBMetaData 750

GRIBHDF 500

Reused LOC

0

3300

0

3000+

Actual Custom LOC

700

790

910

1380

170-TP-001-00111

4 : Functional Model

The functional model is presented in this section. Where necessary, suitable leveling has been
performed to clarify the processing. This functional modeling exists to support the Object Model
and serves to demonstrate how the HDF-EOS file is generated from the input GRIB format. For
a full functional model, the leaf processes in the functional model are the operations in the object
model.

The model presented here does not go into the same level of detail as the object model in areas
where uncertainty exists regarding functionality. In particular, the formatting into HDF-EOS has
been encapsulated at this stage, both in the object and the functional model, until more
information is received from the ECS team developing HDF-EOS. In practice, it will only be the
name of the calls which are likely to vary, the actual functionality should not change as HDF-
EOS becomes better defined.

The functional model is presented in a number of diagrams. A number of symbols are used in
these, as shown below. A number is also referenced on the left hand side of each symbol. This
is an internal reference number and has no significance for this document. It should be ignored.

Data Store

External Entity

Process

Figure 4.1 : Key to the Structure Diagrams

12 170-TP-001-001

The first diagram is a simple top level functional model of the system, which is then broken
down into its component functions. This top level shows all of the external data stores for the
system, namely the input GRIB format file, the output HDF-EOS format file and the filled
metadata configuration file. As the model is broken down, internal data stores are introduced.
Diagrammatically, there is no distinction between the external and internal data stores, the reader
must refer back to this top level description to see if a store is external or internal. The data
flows are also labeled, but the contents of the data flow are outside the scope of this document,
since they are not necessary to support the object model.

Since this model is only used to support the object model, no detailed description of the
processes shown are given. The remainder of this section consists purely of the functional model
diagrams themselves.

Figure 4.2 Level 0 Data Flow Diagram

Input GRIB
File

1

Output HDF
File

2 Metadata
HDF File

3

PreProcess

4

Input

Output Data Output
Metadata

13 170-TP-001-001

Figure 4.3 Breakdown of PreProcess Function

Record Array
26

PDS Array24

Metadata32

Write
Metadata File

10

Read PDS
Array

33

Extract
Metadata

9

Store
Metadata

35

Read File

8

Unpack
Record

29

QC Record
14

Write HDF File

15

Get Next
Record

13 Current
Record

Process first
record

Current
Record

Process next
record

Metadata

Analysed
Record

Output HDF
File

2

Output Data

QC Metadata

Unpacked
record

Grid
Metadata

PDS
GRIB Record

Input GRIB
File1

Input

Process first
PDS

Global
Metadata

Unpacked
PDS

Metadata

Process next
PDS

Formatted
Metadata

Current PDS

Write
Metadata File

Current PDS

Metadata

Metadata
HDF File

3

Output
Metadata

14 170-TP-001-001

Figure 4.4 Breakdown of Read File Function

Read Record

22

Extract PDS

41

Initiate
Metadata

44

Initiate
Processing

43

Extract Global
Metadata

73

File Metadata

Control Flow

Get Next
Record

13

Process first
record

Record Array
26

GRIB Record

Metadata
32

Global
Metadata

Current
Record

Control Flow

PDS Array24 PDS

Input GRIB
File

1

Input

Read PDS
Array

33

Process first
PDS

15 170-TP-001-001

Figure 4.5 Breakdown of Unpack Record Function

Unpack PDS
54

Unpack BMS

56

Unpack GDS

55

Populate Grid

64

Construct Grid

61

Format Data

68

Unpack BDS
57

Filled Grid

Record
Structure

Record
Structure

Unpacked
Data

Record
Structure

Record
Structure

QC Record

14
Unpacked

record

Grid Type

Metadata
32

Grid
Metadata Grid Data

Grid

Fill points

Get Next
Record

13

Current
Record

16 170-TP-001-001

5 : Data Model

This section deals in more detail with the format of the input GRIB product and the output HDF
product, and how the two are related. Additionally, the metadata configuration file for the
inventory and archived metadata are included.

5.1 GRIB Format

The agreement on the format of the GRIB ancillary data is described in the document 209-CD­
008-002 (Interface Control Document between ECS and GSFC for the ECS Project). This states
that the format shall be as documented in NOAA Office Note-388 Edition 1.

To summarize, a single GRIB format file from the NMC contains a number of GRIB records.
Each GRIB record contains encoded data for one parameter, at one atmospheric level or layer at
a specific location on a specific projection. There may be a variety of projections and
geolocations contained in a single file.

Each GRIB record is made up of six sections.

• Initial Section (IS)

Used to identify the start of a record. Contains the characters "G R I B" and the total
length of the record

• Product Description Section (PDS)

Contains most of the metadata for the record, such as the parameter information,
atmospheric level and spatial and temporal information.

• Grid Description Section (GDS) - optional

Contains detailed information on the grid to be used. If a standard grid is used, this
section is often omitted, and the details need to be obtained from the GRIB
format document. Where the GDS is present it should be used for constructing
the grid.

• Bit Map Section (BMS) - optional

17 170-TP-001-001

If a particular grid is sparsely populated, then rather than store zero values in the BDS
(see below), a bit map is provided showing which cells are to be populated is
included in the record. This is particularly relevant for observational data,
rather than forecast data, since data may have only been gathered from a few
points on the grid. A bit value of 1 indicates a cell is to be filled, a zero value
implies no data is available at that cell.

• Binary Data Section (BDS)

This section contains all of the data needed to unpack the original encoded values,
and the encoded values themselves. More information concerning the encoding
is given in the next section.

• End Section (ES)

This marks the end of a record. The last values are always the character values

"7 7 7 7".

Each GRIB record in a file will vary in length, and there is no guarantee that the contents of the
files delivered from NMC will be consistent from day to day.

The NMC produces GRIB bulletins at varying frequencies. The datasets required for the ECS
project are produced four times a day and are freely available by anonymous FTP at
nic.fb4.noaa.gov in the directories /pub/data.00z and /pub/data.12z. Also at this site are the
documents describing the GRIB format, which may be found in the directory
/pub/nws/nmc/docs/gribguide. Sample code for unpacking the data into binary files and
geolocation code is also provided at this site (mostly in FORTRAN).

5.1.1GRIB Packing Methods

The packed data are coded as binary integers, using the minimum number of bits required for the
desired precision. To pack the bits, the original data may first be scaled by a power of ten to
obtain the correct precision. A reference value is then subtracted from them to eliminate
redundancy and to eliminate negative values. After this, the data may the be scaled by a power
of two to pack the data into pre-selected word lengths. Thus a single value is represented by

Y * 10D = R + (X * 2E)

where

18 170-TP-001-001

Y = original unpacked value in required units,

D = decimal scale factor (2 byte signed integer),

R = Reference value (4 byte floating point value),

X = internal value,

E = binary scale factor (2 byte signed integer).

The reference value is the minimum value of the decimally scaled data that is being encoded.

The actual value is stored in four bytes as a single precision floating point number:

sAAAAAAA BBBBBBBB BBBBBBBB BBBBBBBB

where

s = signed bit (0 means positive),

A..A = 7 bit binary integer (characteristic)

B..B = 24 bit binary integer (mantissa).

Thus the reference value can be recovered using the formula

R = (-1)s * 2(-24) * B * 16(A-64).

The remaining packing of the data may be performed in one of two ways, simple (fixed bit
length) or second order (variable bit length) packing. Details of this can be found in ON-388, the
details are beyond the scope of this document. The above information is sufficient to allow the
unpacking to take place.

5.2 Output Product Format

After preprocessing, the GRIB record will be put into HDF-EOS format. HDF-EOS builds upon
the standard HDF libraries. Particularly, it allows data to be inserted in three new forms; swath,
point and grid. For the preprocessing of GRIB, only the latter of these needs to be considered.
In addition to the data, metadata must be included to allow for additional functionality within
ECS, such as subsetting and subsampling. Where possible, all of the metadata will be written in

19 170-TP-001-001

PVL as an attribute (or group of attributes), while the data will be stored in Science Data Sets
(SDS's). However, if the archived metadata group is larger than 32000 bytes (the maximum size
of an HDF attribute), then this information will be written to an SDS.

In designing the actual format of the data, a number of factors have been considered. These are:

•	 There is a need to minimize the number of SDS's in a single file since a large number of
these will dramatically increase file access time. This is achieved by grouping data sets
by parameter and grid. Thus all of the data in an SDS will be the same parameter on the
same grid, but will represent different atmospheric levels.

•	 The metadata needs to be written as attributes in distinct groups; inventory metadata
(covering collection and granule level information to allow insertion into the data server),
archived metadata (containing information which is related to a particular product and is
not general across products) and structural metadata (containing information on the
layout of the file and defined by the HDF-EOS library).

•	 The requirements of the INGEST Sub-System to produce a single output file and
associated metadata file. While ingest can deal with one file in, many out, the design
only allows for a single output metadata file.

Much of the problem in designing the output format lies in the relating of record-specific
information to a particular SDS. Much of the metadata which is considered inventory level, such
as the geolocation information and level information are specific for each record and are not
inherent to the whole file. Since, however, these attributes MUST appear in the inventory
metadata, it is very difficult to relate this information back to the SDS's once the data is
reformatted. The logical place to put this data for GRIB is in the structural metadata, which
describes each SDS. However, some geolocation information needs to be placed at the inventory
level. It is proposed to put in the maximum extent of coverage in the inventory metadata and the
actual coverage for a particular SDS in the structural metadata and the archived metadata.

In order to minimize the number of SDS's it is proposed that they all be three dimensional. An
SDS will then contain all of the information for a specific parameter on a specific grid, but
covering various atmospheric levels (see figure 5.1). This should give between a 50% to 75%
reduction in the number of SDS's compared with the number of GRIB records in the original file.
Greater reduction could be achieved by placing all of the information for a particular grid in a
single three dimensional SDS (achieving between 80% and 95% reduction), but it is felt that this
would put too much information into the structural metadata. In HDF-EOS terminology, each
grid will be made up of one or more fields.

20 170-TP-001-001

Figure 5.1 Mapping of GRIB Formatted Records to HDF Science Data Set

GRIB Format Input HDF-EOS Format

File Output File

Temperature on grid type 1

Meridional wind on grid type 1

Temperature on grid type 2

Zonal wind on grid type 1

Key

21 170-TP-001-001

Thus a single HDF file would be composed of the following:

• Inventory metadata as an HDF attribute (named coremetadata.0..9)

• Archived metadata as an HDF attribute or SDS (named archivedmetadata.0..9)

• Structural metadata as an HDF-EOS attribute

• A number of SDS's

All of the metadata will be in PVL. In the case of archived and inventory metadata, it will be
described by the use of configuration files. These configuration files will be written in ODL
(Object Description Language). The configuration file is presented in appendix A of this
document. The inventory metadata fields will be defined in DID311, but the examples given are
based on a document provided for Internal Review. For more information on ODL, refer to the
SDP Toolkit 5 Users Guide for the ECS Project (333-CD-003-002). The final format is shown
diagrammatically in figure 5.2. This shows the format of an HDF-EOS file with 8 SDS's with
varying Z levels. In the structural metadata group, there would be 8 groups of structural
metadata, one per SDS.

22 170-TP-001-001

Figure 5.2 Graphic Depiction of the Format of the Output HDF-EOS Data File

Core Metadata

Product Specific Metadata

Structural Metadata

SDS_1 SDS_2 SDS_3

SDS_4 SDS_5 SDS_6

SDS_7 SDS_8

23 170-TP-001-001

An important point which should be clarified for the archived metadata is how record specific
data is related to a particular SDS. A unique identifier must exist for each SDS. It is intended
that a label associated with a particular SDS will be made up of the standard abbreviation derived
from ON-388, suffixed with _N, where N is the grid identifier. This suffix is to allow for the
case where one parameter is represented on two different grids. Thus if we have two SDS's
containing temperature data on two different grids, then these SDS's could have the labels
TMP_27 and TMP_28. This gives easy information regarding the datatype presented in an SDS.
The remaining metadata associated with an SDS is then associated with the SDS using the ODL
GROUP and OBJECT structures. Each SDS in the output file is an object, and one of the objects
within that group is the label. The remaining objects describe the metadata associated with an
SDS, such as the projection, bounding co-ordinates (and other geolocation information) and axis
labels. The only real point of note is the labels associated with the z-dimension. If the original
GRIB format file contains 3 records containing geopotential height on the same grid but at
different atmospheric levels, these records would be put into a single SDS as described above.

Within the metadata associated with the group, a number of labels associated with the z
dimension have been specified as an array, named “VERTICALEXTENTS”. This array id used
to reference a specific SDS level. Each vertical extent is referenced as follows:

•	 if the vertical extent covers a named level (e.g. mean sea level or tropopause), the field is
labelled with the name,

•	 if the vertical extent covers a named layer (e.g. entire atmosphere, troposphere), the field
is labelled with the name of the layer,

•	 if the vertical extent is for a specific type of level (e.g isobaric, isothermal) at a particlar
value, the field will be labelled type at value units. For example, for the case of an
isothermal level at 0oC, the associated field would be labelled “ISOTHERMAL LEVEL
AT 0 CELCIUS”,

•	 if the vertical extent is a specified later, then the field will be labelled type layer between
val1 units and val2 units . For example if data exists for an isobaric layer between 50 and
100 hPa, then the associated field would be labelled ISOBARIC LAYER BETWEEN 50
hPa AND 100hPa.

Thus we now have archived metadata which identifies the number of SDS's in the output file,
and associates metadata for the SDS. A user can then identify a particular SDS they are
interested in by specifying the parameter name, projection, co-ordinates and an atmospheric
level. As an example, consider a GRIB file containing 3 records of relative humidity at 750hPa,
500hPa and at the tropopause. A subset of the filled structural metadata written in ODL might
look like the following.

OBJECT = SDS

OBJECT = SDS_NAME

VALUE = R H_30

END_OBJECT = GROUP

24 170-TP-001-001

OBJECT = VERTICALEXTENT

VALUE = (“750 hPa atmospheric level”, “500 hPa

atmospheric level”, "Tropopause")

END_OBJECT = VERTICALEXTENT

OBJECT = PROJECTION

VALUE = "Polar Stereographic"

END_OBJECT = PROJECTION

OBJECT = NORTHMOSTLATITUDE

VALUE = 90000

END_OBJECT = NORTHMOSTLATITUDE

OBJECT = SOUTHMOSTLATITUDE

VALUE = 90000

END_OBJECT = NORTHMOSTLATITUDE

OBJECT = SOUTHMOSTLATITUDE

VALUE = 90000

END_OBJECT = NORTHMOSTLATITUDE

OBJECT = EASTMOSTLONGITUDE

VALUE = 180000

END_OBJECT = EASTMOSTLONGITUDE

OBJECT = WESTMOSTLONGITUDE

VALUE = -180000

END_OBJECT = WESTMOSTLONGITUDE

END_OBJECT = SDS;

25 170-TP-001-001

Abbreviations and Acronyms

API Application Program Interface

BDS Binary Data Section of GRIB record

BMS Bit Map Section of GRIB record

ECS EOSDIS Core System

HDF-EOS Earth Observing System extended version of HDF

GDS Grid Description Section of GRIB record

GRIB Gridded Binary

HDF Hierarchical Data Format

IS Initial Section of GRIB record

MCF Metadata Configuration File

NMC National Meteorological Center

ODL Object Design Language

PVL Parameter Value Language

SDS Science Data Set

SLOC Source Lines Of Code

26 170-TP-001-001

Appendix A : Metadata Configuration File

GROUP = INVENTORYMETADATA

GROUPTYPE = MASTERGROUP

OBJECT = ShortName

Data_Location = "MCF"

TYPE = "STRING"

NUM_VAL = 1

Value = "NMC GRIB"

Mandatory = "TRUE"

END_OBJECT = ShortName

OBJECT = SizeMBECSDataGranule

Data_Location = "PGE"

TYPE = "INTEGER"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = SizeMBECSDataGranule

/* Spatial Domain */

/* Note that the values contained in this section gives*/

/* the global coverage for the whole file. Coverage for*/

/* individual records in the GRIB file is found in the*/

/* structural metadata.*/

GROUP = BoundingRectangle

OBJECT = EastBoundingCoordinate

Data_Location = "PGE"

NUM_VAL = 1

TYPE = "INTEGER"

Mandatory = "TRUE"

END_OBJECT = EastBoundingCoordinate

OBJECT = WestBoundingCoordinate

Data_Location = "PGE"

NUM_VAL = 1

TYPE = "INTEGER"

Mandatory = "TRUE"

END_OBJECT = WestBoundingCoordinate

OBJECT = NorthBoundingCoordinate

27 170-TP-001-001

Data_Location = "PGE"

NUM_VAL = 1

TYPE = "INTEGER"

Mandatory = "TRUE"

END_OBJECT = NorthBoundingCoordinate

OBJECT = SouthBoundingCoordinate

Data_Location = "PGE"

NUM_VAL = 1

TYPE = "INTEGER"

Mandatory = "TRUE"

END_OBJECT = SouthBoundingCoordinate

END_GROUP = BoundingRectangle

/* Temporal metadata */

/* Note that this is only the time validity of the file. Each */

/* record has its own specific time information and this appears */

/* in the product specific metadata.*/

GROUP = RangeDateTime

OBJECT = RangeBeginningDateTime

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = RangeBeginningDateTime

OBJECT = RangeEndingDateTime

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = RangeEndingDateTime

END_GROUP = RangeDateTime

GROUP = QAStats

/* Set to zero since this is model data and no out of bounds */

/* limit is defined in the format document. */

OBJECT = QAPercentOutofBoundsData

Data_Location = "MCF"

TYPE = "INTEGER"

NUM_VAL = 1

Value = 0

28 170-TP-001-001

Mandatory = "TRUE"

END_OBJECT = QAPercentOutofBoundsData

OBJECT = QAPercentMissingData

Data_Location = "MCF"

TYPE = "INTEGER"

NUM_VAL = 1

Value = 0

Mandatory = "TRUE"

END_OBJECT = QAPercentMissingData

END_GROUP = QAStats

GROUP = QACollectionStats

OBJECT = AutomaticQAFlag

Data_Location = "MCF"

NUM_VAL = 1

TYPE = "STRING"

Value = "passed"

Mandatory = "TRUE"

END_OBJECT = AutomaticQAFlag

END_GROUP = QACollectionStats

END_GROUP = INVENTORYMETADATA

GROUP = ARCHIVEDMETADATA

GROUPTYPE = MASTERGROUP

GROUP = SDS_DATA

OBJECT = SDS

Data_Location = "NONE"

Mandatory = "TRUE"

CLASS = "M"

/* PARAMETER INFORMATION */

OBJECT = NameOfSDS

Data_Location = "PGE"

Mandatory = "TRUE"

NUM_VAL = 1

TYPE = "STRING"

Class = "M"

END_OBJECT = NameOfSDS

29 170-TP-001-001

OBJECT = ParameterName

Data_Location = "PGE"

Mandatory = "TRUE"

TYPE = "STRING"

NUM_VAL = 1

Class = "M"

END_OBJECT = ParameterName

/* PRODUCTION INFORMATION */

OBJECT = DataProductionCenter

Data_Location = "PGE"

Mandatory = "TRUE"

NUM_VAL = 900

TYPE = "STRING"

Class = "M"

END_OBJECT = DataProductionCenter

OBJECT = DataProductionSubCenter

Data_Location = "PGE"

Mandatory = "FALSE"

NUM_VAL = 900

TYPE = "STRING"

Class = "M"

END_OBJECT = DataProductionSubCenter

OBJECT = ModelName

Data_Location = "PGE"

Mandatory = "FALSE"

TYPE = "STRING"

NUM_VAL = 900

Class = "M"

END_OBJECT = ModelName

/* GEOSPATIAL INFORMATION */

OBJECT = GridID

Data_Location = "PGE"

Mandatory = "TRUE"

TYPE = "INTEGER"

NUM_VAL = 1

Class = "M"

END_OBJECT = GridID

OBJECT = ProjectionName

30 170-TP-001-001

Data_Location = "PGE"

Mandatory = "TRUE"

NUM_VAL = 1

TYPE = "STRING"

Class = "M"

END_OBJECT = ProjectionName

OBJECT = NorthmostLatitude

Data_Location = "PGE"

Mandatory = "TRUE"

TYPE = "INTEGER"

NUM_VAL = 1

Class = "M"

END_OBJECT = NorthmostLatitude

OBJECT = SouthmostLatitude

Data_Location = "PGE"

Mandatory = "TRUE"

NUM_VAL = 1

TYPE = "INTEGER"

Class = "M"

END_OBJECT = SouthmostLatitude

OBJECT = EastmostLongitude

Data_Location = "PGE"

Mandatory = "TRUE"

NUM_VAL = 1

TYPE = "INTEGER"

Class = "M"

END_OBJECT = EastmostLongitude

OBJECT = WestmostLongitude

Data_Location = "PGE"

Mandatory = "TRUE"

NUM_VAL = 1

TYPE = "INTEGER"

Class = "M"

END_OBJECT = WestmostLongitude

OBJECT = VerticalExtent

Data_Location = "PGE"

Mandatory = "TRUE"

TYPE = "STRING"

NUM_VAL = 900

Class = "M"

31 170-TP-001-001

END_OBJECT = VerticalExtent

/* TEMPORAL INFORMATION */

OBJECT = ForecastTimeUnit

Data_Location = "PGE"

Mandatory = "TRUE"

TYPE = "STRING"

NUM_VAL = 900

Class = "M"

END_OBJECT = ForecastTimeUnit

OBJECT = InitialTimePeriodP1

Data_Location = "PGE"

Mandatory = "TRUE"

TYPE = "INTEGER"

NUM_VAL = 900

Class = "M"

END_OBJECT = InitialTimePeriodP1

OBJECT = FinalTimePeriodP2

Data_Location = "PGE"

Mandatory = "TRUE"

TYPE = "INTEGER"

NUM_VAL = 900

Class = "M"

END_OBJECT = FinalTimePeriodP2

OBJECT = TimeRangeIndicator

Data_Location = "PGE"

Mandatory = "TRUE"

TYPE = "INTEGER"

NUM_VAL = 900

Class = "M"

END_OBJECT = TimeRangeIndicator

/* QUALITY INFORMATION */

OBJECT = NumberInAverage

Data_Location = "PGE"

Mandatory = "FALSE"

NUM_VAL = 900

TYPE = "INTEGER"

Class = "M"

END_OBJECT = NumberInAverage

32 170-TP-001-001

OBJECT = NumberMissingFromAverage

Data_Location = "PGE"

Mandatory = "FALSE"

TYPE = "INTEGER"

NUM_VAL = 900

Class = "M"

END_OBJECT = NumberMissingFromAverage

END_OBJECT = SDS

END_GROUP = SDS_DATA

END_GROUP = ARCHIVEDMETADATA

END

33 170-TP-001-001

	1. Introduction
	1.1 Purpose
	1.2 Organization
	1.3 Review and Approval
	1.4 References

	2. Assumptions and Issues
	2.1 Assumptions
	2.2 Risks

	3. Object Model
	3.1 Object Model
	Figure 3.1 Object Model for the GRIB Preprocessor

	3.2 Code Reuse
	3.3 Lines Of Code Estimates

	4 : Functional Model
	Figure 4.1 : Key to the Structure Diagrams
	Figure 4.2 Level 0 Data Flow Diagram
	Figure 4.3 Breakdown of PreProcess Function
	Figure 4.4 Breakdown of Read File Function
	Figure 4.5 Breakdown of Unpack Record Function

	5 : Data Model
	5.1 GRIB Format
	5.1.1GRIB Packing Methods

	5.2 Output Product Format
	Figure 5.1 Mapping of GRIB Formatted Records to HDF Science Data Set
	Figure 5.2 Graphic Depiction of the Format of the Output HDF-EOS Data File

