
Appendix A. Assumptions

The following is a list of assumptions made in developing the specification of the routines in the
SDP Toolkit described in section 6.

6.2 SDP Toolkit Tools—Mandatory

6.2.1 File I/O Tools

6.2.1.1 Level 0 Science Data Access Tools

PGS_IO_L0_Open()

PGS_IO_L0_GetHeader()

PGS_IO_L0_GetPacket()

a. Level 0 raw data will be in the form of CCSDS–formatted packets.

b.	 Level 0 packets will be time–ordered and duplicate packets will have been removed by
EDOS or Pacor/DDF.

c.	 Level 0 access routines are designed to operate on physical files, which may not be
identical to data granules.

d.	 Level 0 data files, with associated file attribute metadata, will come through the Science
Data Processing Segment (SDPS) ingest data server and will be pre–staged to a given
PGE.

e.	 ECS Data Ingest will stage and make available file attribute metadata for each physical
Level 0 data file staged to a PGE.

f.	 Without changing any physical file data, ECS Data Ingest will perform any
granularization of Level 0 data to a form other than as is received from SDPF or EDOS
(if this does not correspond to the form required by EOS investigators) prior to the
staging of Level 0 data to the PGE.

g.	 ECS Data Ingest will perform any EOS investigator required subsetting or combination
of Level 0 header and quality information that is necessary as a result of granularizing
Level 0 data files prior to the staging of the data to the PGE.

h.	 ECS Data Ingest will make information on the orbit number corresponding to each
physical Level 0 data file available to the SDP Toolkit through associated metadata.

i.	 For each SDPF–generated Data Set File staged to a PGE by ECS Data Ingest, the
corresponding SFDU header file will also be staged.

A-1 333–CD-003-005

j. Level 0 data files will be staged to a PGE in the machine native format.

k.	 For each staged Level 0 data file, the following file attribute metadata parameters, at a
minimum, will be staged and available to a PGE for use in science processing:

1. time tag of 1st packet of staged Level 0

2. time tag of last packet of staged Level 0

3. number of physical Level 0 data files staged

4.	 start time of Level 0 data as requested by investigators through the planner/scheduler
system

5.	 end time of Level 0 data as requested by investigators through the planner/scheduler
system

6. APID of each Level 0 data file, if the Level 0 data files are APID–unique

7. orbit number(s) of the staged Level 0 data

l.	 Exact format of Level 0 file structures must be fixed by December '94 in order for the
Level 0 access tools to be delivered on schedule.

6.2.1.2 HDF File Access Tools

a.	 It is assumed that users will obtain and compile the HDF NCSA libraries on their own
and link with the PGS. (HDF distribution is available via anonymous ftp from
ftp.ncsa.uiuc.edu, 141.142.20.50.)

6.2.1.4 Metadata

PGS_MET_Init()

a.	 A Metadata Configuration File (MCF) will be built around the 'parameter = value' form
to provide maximum flexibility. Each metadata element will be fully described in the
MCF. This information will be held in memory in a set of linked structures or similar
constructs.

b. The core metadata descriptions will be supplied by ECS.

c. It is assumed that only one header will be initiated at any one time during processing.

PGS_MET_Write()

a.	 It is assumed that the output of the metadata tools will be to an HDF formatted product.
In each case the product/file may be existing or new. It is assumed that these
products/files will be opened and closed using the appropriate tools (e.g., open/close
generic file); i.e., the _MET_ tools do not perform these functions.

b.	 It is assumed that further interaction with the inventory is done using other software that
interacts with the metadata file produced by this tool.

A-2 333–CD-003-005

PGS_MET_GetPCAttr()

a. It is assumed that input products are accessed through the PCF and associated tools

b.	 It is assumed that the metadata in input files is available either 1. in the same form as that
written by PGS_MET_Write or 2. in a simple separate ASCII text file. In both cases, the
metadata file is referenced in the field prescribed by the PCF rules.

PGS_MET_GetConfig ()

a. It is assumed that configuration data is held as prescribed by the PCF rules.

b. It is assumed that configuration data will be accessed using the label field.

6.2.2 Error/Status Reporting Tools

a.	 It is assumed that only three log files will need to be created by the Toolkit: Status
Message Log, User Status Log and Status Report Log.

b.	 Every call to a PGS_SMF_Set* routine results in a status message being appended to the
Status Log file.

c. Status Report entries are directed to the Status Report Log file.

d. User Status entries are directed to the User Status Log file.

PGS_SMF_SetHDFMsg()

a.	 It is assumed that calls to HDF–EOS library routines will set or return an error code and
message that can be retrieved by this function for later recall by other error reporting
tools, or that the HDF–EOS library will incorporate the existing SMF library calls
thereby circumventing the need for this tool.

PGS_SMF_GetActionByCode()

a.	 It is assumed that the user only requires the specification and retrieval of an action
s trin g, for use in reporting, and not the specification and execution of action methods.

PGS_SMF_CreateMsgTag()

a.	 Assumption is that this tool will have access to production run id and science software
program id during runtime; thus enabling th is rou tin e to generate a unique string based
on product id.

PGS_SMF_GenerateStatusReport()

a.	 It is assumed that the Toolkit development team has the license to determine the format
of the individual status report entries. The format that we have adopted calls for a
system–defined message tag to precede a user–provided message string; separators will
be inserted between individual report entries for the sake of clarity.

A-3 333–CD-003-005

b.	 It is assumed that the generation of a status report results in the report being entered into
a Status Rep ort Log file created by the Toolkit.

PGS_SMF_SendRuntimeData()

a.	 It is assumed that this toolkit will interface to some other toolkit, or Communications and
Systems Management Segment (CSMS) f u nctionality , to effect the transfer of the
selected Runtime files to an intermediate holding location. The same mechanism will
perform the transmission of one or more e–mail notices to alert the interested parties as to
the disposition of the Runtime files.

b.	 It is also assumed that there will be a defined intermediate holding location for this
toolkit to send the Runtime files at the DAAC site and that there will be an interface to
alert the monitoring authority that these Runtime files have arrived.

6.2.3 Process Control Tools

a.	 a PGE process control database record will exist as a UNIX file or Database Management
System (DBMS) record for each PGE within the DAAC.

b.	 A template PGE process control database record will be "seeded" with user–defined
information during the integration and testing process.

c.	 An instance of the PGE process control database record will be populated with the
appropriate runtime data and if necessary, staged prior to PGE execution.

d.	 Runtime parameter values may be modified prior to runtime through some as yet
unidentified interface/mechanism.

e. A one–to–many logical–to–physical file relationship may exist for input products.

f.	 The Planning & Data Production System (PDPS) will provide for Toolkit initialization
allowing internal Toolkit structures to become populated.

g.	 The PDPS will provide for Toolkit termination, allowing the Toolkit to perform
necessary housekeeping and ensuring that important intermediate data gets saved for
future runs of the same PGE.

PGS_PC_GenUniqueID()

a.	 It is assumed that the Science Software Program ID and the Production Run ID are
system defined values that will be available from the execution environment, or from the
PGE process control database during Toolkit Initialization.

b.	 The logical Product ID value passed in by the user will be defined by the user, but will
have been mapped to a DAAC–based intermediate identifier during the Integration &
Test phase

A-4 333–CD-003-005

PGS_PC_GetConfigData()

PGS_PC_GetConfigDa ta Com

a.	 Each user–defined logical Runtime Parameter ID passed into this function will be
mapped to an actual runtime parameter during I&T. This will allow the Parameter ID to
be resolved into a default value, or an overriding value at ru ntime.

PGS_PC_GetReference()

a.	 It is assumed that users of HDF will utilize this tool to obtain a reference to pass to the
HDF open library call.

PGS_PC_GetNumberOfFiles()

PGS_PC_GetNumberOfFilesCo m

a.	 To satisfy the one–to–many logical–to–physical file relationship, the user, upon
retrieving the number of files per given identifier with this tool, will be able to index to
the desired instance of a file by providing the version number to the appropriate file I/O
toolkit function.

PGS_PC_GetFileAttr()

PGS_PC_GetFileByAttr()

PGS_PC_GetFileAttrCom

a. It is assumed that input product metadata and file attributes will be made directly
available to the Toolkit through the PGE Process Control Database.

b. If available, it is assumed that input support file metadata and file attributes will be made
directly available to the Toolkit through the PGE Process Control Database.

6.2.4 Memory Management Tools

Dynamic Memory Tools

a. It is assumed that all dynamic memory allocated within the user's program is obtained
through the use of these tools.

Shared Memory Tools

a.	 One basic assumption is that all the executables will be invoked within a shell script (i.e.,
PGE).

b.	 Additionally, that there will be a shell script that w raps arou nd the main PGE shell
script, allowing an initialization program to create a shared memory segment for the
Toolkit; this will enable the Toolkit to facilitate tracking of all the necessary resources
needed to support shared memory capabilities for the user. That same shell script will
allow a termination program to release all the shared–memory resources used by both the
Toolkit and the user.

A-5 333–CD-003-005

c.	 Modification to the existing shared memory API will be minimal if and when the POSIX
implementation is adopted.

d.	 Shared memory segments will be large enough to support the needs of both the user and
the Toolkit.

e.	 Two segments, one for the user and one for the Toolkit, can be attached concurrently
within the same process.

6.2.5 Bit Manipulation Tools

a.	 It is assumed that bit–manipulation functionality will be provided inherently by the
language for 'C' and Fortran90, and that users of Fortran77 will use compilers that
conform to MIL STD 1753 in order to obtain these capabilities.

6.2.6 Spacecraft Ephemeris and Attitude Data Access Tools

PGS_EPH_EphemAttit()

a.	 The specification for reliability of orbit and attitude data is assumed to be provided by
Goddard Space Flight Center (GSFC)/Flight dynamics Facility (FDF).

b. This tool does not compute instrument attitude.

c. Time is assumed to be input in ASCII time code A or B format.

6.2.7 Time and Date Conversion Tools

PGS_TD_UTCtoTAI()

a. The current leapseconds file must be available.

PGS_TD_TAItoUTC()

a. The current leapseconds file must be available.

PGS_TD_UTCtoGPS()

a. The current leapseconds file must be available.

PGS_TD_GPStoUTC()

a. The current leapseconds file must be available.

PGS_TD_SCtime_to_UTC()

a.	 The Spacecraft time difference file or coefficients for interpolation must be available.
The current leapseconds file must be available.

A-6 333–CD-003-005

PGS_TD_UTC_to_SCtime()

a.	 The Spacecraft time difference file or coefficients for interpolation must be available.
The current leapseconds file must be available. User responsibility to work with
difference from nearest tick (interpolate between ticks if desired). It is assumed that this
requirement is intended for cross checking of data and that the usual transformation is
from Spacecraft Clock time to other standards, such as UTC. If user wants to interpolate,
she/he will have to take answer back to UTC and find the difference from the original
UTC; then go to next tock on that side and interpolate between the two. It would be
possible to rework this tool to provide the two nearest ticks on either side of the UTC
time and interpolation weights.

PGS_TD_TimeInterval()

a.	 It is user responsibility to supply TAI times, although GPS times can be used instead. The
two must not be mixed. All the function does is to subtract double precision numbers.

6.3 SDP Toolkit Tools - Optional

6.3.1 Ancillary Data Access and Manipulation Tools

PGS_AA_dcw()

a.	 It is assumed that for access to areas or multiple points, that the user will provide the
lat/long coordinates to this tool; i.e., the tool does not include the functionality to
calculate other coordinates than those supplied by the user.

PGS_AA_dem()

a. It is assumed that DEMs will be in raster format.

b. All assumptions under PGS_AA_2DRead() and PGS_AA_2Dgeo() apply.

PGS_AA_PeVA()

a.	 It is assumed that a large number of static files holding data associated with various
algorithms will be in ASCII format. It is further assumed that some of these files will be
in the parameter = value format.

PGS_AA_2DRead() and PGS_AA_2Dgeo()

a.	 It is assumed that the ancillary data have been prepared into formats suitable for use with
this tool; i.e., they are in 2D grids containing data values organized in a raster format and
describable using a standard set of metadata.

b.	 It is assumed that the ancillary data files will exist as a series of time specific physical
files with a clear time–tag (e.g., in the file name); i.e., each physical file contains a full
set of the data in spatial terms (e.g., sea ice for one week for the region north of 60
degrees).

A-7 333–CD-003-005

c.	 It is assumed that for most purposes, a 2 dimensional array of sufficient size can be
created to service user requirements.

PGS_AA_3DRead() and PGS_AA_3Dgeo()

a.	 It is assumed that the ancillary data have been prepared into formats suitable for use with
this tool; i.e., they are in 3D grids containing data values organized in a raster format and
describable using a standard set of metadata.

b.	 It is assumed that the ancillary data files will exist as a series of time specific physical
files with a clear time–tag (e.g., in the file name); i.e., each physical file contains a full
set of the data in spatial terms.

c.	 It is assumed that for most purposes, a 3 dimensional array of sufficient size can be
created to service user requirements.

PGS_AA_INTERP()

This functionality is now part of PGS_AA_2Dgeo. See section D.3.2.3

6.3.2 Celestial Body Position

6.3.2.1 Celestial Body Access Tools

PGS_CBP_Earth_CB_Vector()

a. Sun, moon, and planetary ephemerides are assumed to exist in an external file.

b. Time is assumed to be input in CCSDS ASCII time code A or B format.

PGS_CBP_Sat_CB_Vector()

a. Sun, moon, and planetary ephemerides are assumed to exist in an external file.

b. Time is assumed to be input in CCSDS ASCII time code A or B format.

c. Spacecraft ephemeris is assumed to be available in an external file.

d.	 Earth to Celestial Body ECI vector is assumed to be computed using the tool of that
name.

PGS_CBP_SolarTimeCoords()

a. Time is assumed to be input in ASCII time code A or B format.

PGS_CBP_body_inFOV()

a. Sun, moon, and planetary ephemerides are assumed to exist in an external file.

b.	 Star locations are assumed to be read from the mission star catalog file received from
FDF.

A-8 333–CD-003-005

c.	 A set of vectors defining the FOV in spacecraft coordinates is assumed to be provided by
the user. The vectors must be in sequential orderaround the FOV periphery.

d. Time is assumed to be input in ASCII time code A or B format.

e. Spacecraft ephemeris is assumed to be available in an external file.

PGS_CBP_BrightStar_positions()

a. Star locations are assumed to be read from the mission star catalog file.

b.	 The star catalog is assumed to be created based on a minimum star magnitude TBD by
the project.

c. Time is assumed to be input in ASCII time code A or B format.

6.3.3 Coordinate System Conversion

6.3.3.1 Coordinate System Conversion - Transformation Tools

6.3.3.2 Coordinate System Conversion - Other Tools

PGS_CSC_DayNight()

a.	 The position of the sun is assumed to be obtained from the sun, moon, and planetary
ephemerides external file.

b. Time is assumed to be input in CCSDS ASCII time code A or B format.

PGS_CSC_GreenwichHour()

a. A file of UT1–UTC times is assumed to be present.

b. Time is assumed to be input in CCSDS ASCII time code A or B format.

PGS_CSC_SubSatPoint()

a. Time is assumed to be input in CCSDS ASCII time code A or B format.

b. Spacecraft ephemeris is assumed to be available in an external file.

c.	 Earth oblateness model is assumed to be the same as that used to compute the spacecraft
ephemeris originally.

d. A file of UT1–UTC times and Earth polar motion is assumed to be present.

PGS_CSC_Earthpt_FOV()

a.	 A set of vectors defining the FOV in spacecraft coordinates is assumed to be provided by
the user. The vectors must be in sequential order around the FOV periphery.

b. Time is assumed to be input in CCSDS ASCII time code A or B format.

A-9 333–CD-003-005

c. Spacecraft ephemeris is assumed to be available in an external file.

d. 	 Earth oblateness model is assumed to be the same as that used to compute the spacecraft
ephemeris originally.

e. User must supply one vector inside FOV—preferably near center

6.3.4 Geo–Coordinate Transformation Tools

a.	 It is assumed that the user has knowledge of the values of the necessary initialization
parameters or uses those from the CUC tools (where available).

6.3.6 Constants and Unit Conversions

a. It is assumed that the constants in this section are supplied by ESDIS.

A-10 333–CD-003-005

Appendix B. Status Message File (SMF) Creation and

Usage Guidelines

B.1 Note

For a much more simplified explanation about SMF Creation and Usage Guidelines, refer to the
SDP Toolkit Primer. The Primer is available on the World Wide Web (WWW). The Universal
Research Locator (URL) for the ECS Data Handling System (EDHS) home page is:

http//edhs1.gsfc.nasa.gov/

This appendix provides a more detailed description of how Status Message Files (SMFs) are
created along with some guidelines on their usage within the science software. Additionally,
some examples are provided at the end of this appendix to better illustrate how the software may
be used.

B.2 Description

In EOS, messages to the user should be developed using the Status Message File tool set.
Together, these tools provide the means to store messages in files that are accessed at runtime to
retrieve context–specific message text. Since text messages are stored in runtime files, messages
may be modified without recompiling the program that uses the messages. The basic procedure
for using these tools follows:

•	 Create a Status Message File (SMF) that maps status message text to a status label.
Additionally, the user may create action message text which maps to the same status
label, though this is optional.

•	 Compile the SMF using the 'smfcompile' program to generate the runtime message
file and language–specific "include" file. The runtime message file is used to hold the
message/action text. The language–specific "include" file maps the status labels to
numeric status numbers via language–specific constructs.

• Use PGS_SMF_Set* tools to preserve a specific status condition.

•	 Use PGS_SMF_Get* tools to retrieve messages/actions based on the status labels
returned by previously called functions.

SMFs require a seed number that is used to generate message/action numbers for
message/action labels. This seed number is the key to determining the proper runtime
message file and must be unique for each message file. Users cannot simply use any seed
number they wish to; they have to be requested and/or assigned by the PGS Toolkit
development team. Currently we can support seed numbers up to (2^19)-1 (i.e., 524287).
To help identify the proper runtime message file, all message files will be located in a

B-1 333–CD–003-005

common message directory, located by the environment variable PGSMSG. This
directory will be created by the Toolkit install facility and updated during an smf make
procedure.

New updates to this directory may be performed by compiling an SMF text file in the
message directory. A more advisable approach would be to maintain each SMF text file
in the same directory as the code that relies on the messages contained in the SMF text
file. Then compilation of the SMF text file(s) could be setup to precede compilation of
the source code (e.g., make smf; make code).

Status Message text file names can be of any valid UNIX filename characters; they must
however include a '.t' extension. The generated runtime ASCII message file will be
named as PGS_<seed#>, (e.g., PGS_255). The resulting "include" file follows the
convention PGS_<tool–group>_<seed#>.[haf] (e.g., PGS_IO_1.h & PGS_IO_1.f). The
token <tool–group> is extracted from the 'LABEL' field contained in the SMF text file.
For this reason, it would be advisable to name SMF text files with some portion of this
field in order to maintain some relationship between the original text file and the smf
generated files. To provide a consistent method of status returns, the following
procedures should be followed for all software developed for EOS:

•	 All functions should return one of the following return codes as defined in
PGS_SMF.h (FORTRAN users refer to PGS_SMF.f) to indicate the status of the
Toolkit operation, unless the function returns a user–defined status as defined in an
SMF, or unless a return is unwarranted altogether as in a simple mathematical
function (e.g., y = sine(x)):

PGS_S_SUCCESS Successful operation

PGS_E_ECS A general ECS error occurred

PGS_E_TOOLKIT A general TOOLKIT error occurred

PGS_E_UNIX A UNIX error occurred

PGS_E_HDF An HDF–EOS error occurred

PGS_E_DCE A DCE error occurred

PGS_E_ENV A Toolkit environment error was detected

Note that additional defined return codes will be added for various COTS/modules in
the future should the need arise.

•	 Before returning a status code, the unit (i.e., routine, function, procedure, etc.,) should
load the specific status information into the static buffer. This is accomplished by
calling one of the PGS_SMF_Set* tools.

•	 The calling function should check the return status of the called unit. If an error
condition occurred, the specific error data can be retrieved using the PGS_SMF_Get*
tools.

The tools that set or retrieve status data to/from the static buffer area are listed under PGS
Error/Status Reporting Tools in the Toolkit User's Guide.

B-2 333–CD–003-005

SMF syntax: Syntax for SMF definition is specified in the variant Bachus–Nauer Form (BNF)
notation that follows:

BNF notes : [optional item]; { range bounded}; + concatenation [] and space symbols
indicate blank or space character

allowed_ascii_char ::= { 	 [! " # & ' () % * + , - . /]
[DIGIT]
[: ; < = > ? @]
[UPPER_CASE_LETTER]
[LOWER_CASE_LETTER]
[[\] ^ _ ` { | } ~] }

spacing ::= {[\n] [\t] []}

comment_str ::= #

instrument ::= 3{[UPPER_CASE_LETTER]}10

label ::= 3{[UPPER_CASE_LETTER]}10

level ::= S | M | U | N | W | E | F

mnemonic ::=1{[DIGIT][_][UPPER_CASE_LETTER]}31

mnemonic_label ::= label + _ + level + _ + mnemonic

action_label ::= label + _ + A + _ + mnemonic

message_str ::= 1{[] [allowed_ascii_char]}240

action_str ::= message_str

status_definition ::= mnemonic_label + spacing +

message_str
[+ :: + action_label]

action_definition ::= action_label + spacing + action_str

Note on levels:

S stands for success

A stands for action (action_label definition only)

M stands for message

U stands for user information

N stands for notice

W stands for warning

E stands for error

F stands for fatal

It is up to the user to use the appropriate level in their definition of mnemonics that
represent message/action strings. So if an action string is required, use the _A_ sequence
in the action_label; if it is an informational–message string use the _M_ sequence in the
mnemonic_label; if it is a fatal message string use _F_ in the mnemonic_label. Only
action_labels use an action level character; the rest of your mnemonic_label definitions
should use other level characters.

B-3 333–CD–003-005

This page intentionally left blank.

B-4 333–CD–003-005

Appendix C. Process Control Files

NOTE:

The Master Template PCF as delivered with the Toolkit and described in section C.1.4,
MUST be used in its entirety as a template for user PCFs. Please add to it, but do not alter
any entries now in it. This file has been populated with dependency information required
for proper operation of the Toolkit.

For a much more simplified explanation about Process Control Files and usage, refer to the SDP
Toolkit Primer. The Primer is available on the World Wide Web (WWW). The Universal
Reference Locator (URL) for the ECS Data Handling System (EDHS) home page is:

http//edhs1.gsfc.nasa.gov

This appendix provides a detailed description of how to define and validate Process Control
Files.

C.1 Defining Process Control Files

This section of the appendix discusses the various components of a Process Control File (PCF).
A sample PCF format is provided as well as an example, which contains the actual entries
required to support the Toolkit release 5.1.1.

C.1.1 PCF Components

•	 Subject Fields A process control file MUST contain the following subject fields
in the order shown:

System Runtime Parameters

Product Input Files

Product Output Files

Support Input Files

Support Output Files

User Defined Runtime

- unique identifiers used to track instances of
a PGE run, versions of science software, etc.

- list of ECS standard product data files
required as input to the PGE

- list of ECS standard product data files
generated by the PGE

- list of ECS, or Instrument ancillary/support
data files required as input to the PGE

- list of ECS, or Instrument ancillary/support
data files generated by the PGE

- list of user–defined configuration parameters;
Parameters to be accessed by the PGE at runtime

C-1 333–CD–003-005

Intermediate Input

Intermediate Output

Temporary I/O

End

- list of non–volatile temporary files required
as input to the PGE

- list of non–volatile temporary files generated
by the PGE

- list of volatile temporary files generated and
accessed by the PGE at runtime only

- PCF terminus

•	 Record Fields Each dependency record MUST contain, in the proper order, all of
the fields required for the particular type of Subject.

Identifier -

Reference -

Path -

Reserved -

Universal -

Attribute -

Sequence -

Description -

Value -

C.1.2 Format Rules

Numeric representation of logical identifier
(range 10,000–10,999 reserved for Toolkit use
only)

UNIX file/directory name

UNIX directory path; start paths with '~' to
specify relative paths from $PGSHOME

Placeholder for future use

Universal Reference identifier - may be any string
and may contain spaces

Full UNIX path to Product Attribute file

Number of associated Product Input files to follow
(inclusive); typically = 1

Annotation for parameter; not used in
processing

Assignment to be used during processing;
string representation returned by tools

• All Subject fields are placed in the order shown above

• Each subject field must begin with the question mark token '?'

•	 The default location entry, for a subject field, must begin with the bang token '!';
there may be only one such entry per subject field and it must immediately follow the
subject field declaration.

• All comments must begin with the pound sign token '#'

• Subject and comment tokens must be placed in column one

C-2 333–CD–003-005

• There can be no blank lines in the file

• All Record entries must begin in column one

• All Record fields must be delimited with a pipe token '|'

• The last line of the file must begin with a subject field token '?'

C.1.3 Format Example

Process Control Information File

#

The Environment variable PGS_PC_INFO_FILE must point to this file.

Required inputs appear in bold; all delimiters required.

'Path' obtained

from the default location entry unless explicitly defined for the

individual record.

#

? SYSTEM RUNTIME PARAMETERS

---­

Production Run ID - unique production instance identifier (SCF=1)

--

Value

---­

Software ID - unique software configuration identifier (SCF=1)

--

Value

#

? PRODUCT INPUT FILES

! ~/runtime

#

---­

Sequence number must be ordered in a descending fashion

Ex.

100|Instr_Product1A_1.dat|/usr/data||Product1A 1|/usr/data/prod_1A_1.att|3

100|Instr_Product1A_2.dat|/usr/data||Product1A 2|/usr/data/prod_1A_2.att|2

100|Instr_Product1A_3.dat|/usr/data||Product1A 3|/usr/data/prod_1A_3.att|1

#

Attribute file MUST reside in same directory as Reference file

--

Identifier|Reference|Path|Reserved|Universal|Attribute|Sequence

#

? PRODUCT OUTPUT FILES

! ~/runtime

#

C-3 333–CD–003-005

---­

Sequence number must be ordered in a descending fashion

Attribute file MUST reside in same directory as Reference file

--

Identifier|Reference|Path|Reserved|Universal|Attribute|Sequence

#

? SUPPORT INPUT FILES

! ~/runtime

#

---­

Sequence number = 1;

Attribute file MUST reside in same directory as Reference file

--

Identifier|Reference|Path|Reserved|Universal|Attribute|Sequence

#

? SUPPORT OUTPUT FILES

! ~/runtime

#

---­

Sequence number = 1;

Attribute file MUST reside in same directory as Reference file

--

Identifier|Reference|Path|Reserved|Universal|Attribute|Sequence

#

? USER DEFINED RUNTIME PARAMETERS

#

---­

Value may contain white-space but must be limited to current line;

Value returned by Toolkit in string representation

--

Identifier|Description|Value

#

? INTERMEDIATE INPUT

! ~/runtime

#

---­

Sequence number = 1;

Records obtained from INTERMEDIATE OUTPUT field of previous runs

--

Identifier|Reference|Path|Reserved|Universal|Reserved|Sequence

#

? INTERMEDIATE OUTPUT

! ~/runtime

#

C-4 333–CD–003-005

---­

Sequence number = 1;

Records generated by Toolkit ONLY!

--

Identifier|Reference|Path|Reserved|Universal|Reserved|Sequence

#

? TEMPORARY I/O

! ~/runtime

#

---­

Sequence number = 1;

Records generated by Toolkit ONLY!

--

Identifier|Reference|Path|Reserved|Reserved|Reserved|Sequence

#

? END

C.1.4 Master Template:

The following file was delivered along with the Toolkit Installation. To access this file, set the
environment variable PGS_PC_INFO_FILE to '$PGSHOME/runtime/PCF.relA'.

Initially, this file has been populated with dependency information required for proper operation
of the Toolkit. As such, this file should be considered as a MASTER PCF file from which
user PCF files are derived. To safeguard against the possibility of corrupting essential Toolkit
entries, users should use copies of this file as the basis for creating their own. Once a new PCF
file has been created, reset the environment variable PGS_PC_INFO_FILE to point to the new
file. The new file should now contain all the essential User and Toolkit dependency information.
Before using the new PCF, please validate it using the 'pccheck.sh' utility that is located in
$PGSHOME/bin. The effort spent doing so will more than offset the time spent trying to debug
the PCF from the errors received while running your program(s). Refer to Part II of this
Appendix to see an example on the usage of the 'pccheck.sh' PCF validation tool.

#

filename:

PCF.relA

#

description:

Process Control File (PCF)

#

notes:

C-5 333–CD–003-005

#

This file supports the Rel A version of the toolkit.

#

Please treat this file as a master template and make copies of it

for your own testing. Note that the Toolkit installation script sets

PGS_PC_INFO_FILE to point to this master file by default. Remember

to reset the environment variable PGS_PC_INFO_FILE to point to the

instance of your PCF.

#

--­

? SYSTEM RUNTIME PARAMETERS

--­

Production Run ID - unique production instance identifier

--­

1

--­

Software ID - unique software configuration identifier

--­

1

#

? PRODUCT INPUT FILES

Next non-comment line is the default location for PRODUCT INPUT FILES

WARNING! DO NOT MODIFY THIS LINE unless you have relocated these

data set files to the location specified by the new setting.

! ~/runtime

#

--­

These are actual ancillary data set files - supplied by ECS or the user

the following are supplied for purposes of tests and as a useful set of

C-6 333–CD–003-005

ancillary data.

--­

10780|usatile12||||10751|12

10780|usatile11||||10750|11

10780|usatile10||||10749|10

10780|usatile9||||10748|9

10780|usatile8||||10747|8

10780|usatile7||||10746|7

10780|usatile6||||10745|6

10780|usatile5||||10744|5

10780|usatile4||||10743|4

10780|usatile3||||10742|3

10780|usatile2||||10741|2

10780|usatile1||||10740|1

10951|mowe13a.img|||||1

10952|owe13a.img|||||1

10953|owe14d.img|||||1

10954|owe14dr.img|||||1

10955|etop05.dat|||||1

10956|fnocazm.img|||||1

10957|fnococm.img|||||1

10958|fnocpt.img|||||1

10959|fnocrdg.img|||||1

10960|fnocst.img|||||1

10961|fnocurb.img|||||1

10962|fnocwat.img|||||1

10963|fnocmax.imgs|||||1

10964|fnocmin.imgs|||||1

10965|fnocmod.imgs|||||1

C-7 333–CD–003-005

10966|srzarea.img|||||1

10967|srzcode.img|||||1

10968|srzphas.img|||||1

10969|srzslop.img|||||1

10970|srzsoil.img|||||1

10971|srztext.img|||||1

10972|nmcRucPotPres.datrepack|||||1

10973|tbase.bin||||10915|1

10974|tbase.br||||10919|4

10974|tbase.bl||||10918|3

10974|tbase.tr||||10917|2

10974|tbase.tl||||10916|1

10975|geoid.dat|||||1

#

--­

The following are for the PGS_GCT tool only.

The IDs are #defined in the PGS_GCT.h file

--­

10200|nad27sp|~/runtime||||1

10201|nad83sp|~/runtime||||1

--­

The following are for the PGS_AA_DCW tool only.

The IDs are #defined in the PGS_AA_DCW.h file

--­

10990|eurnasia/|||||1

10991|noamer/|||||1

10992|soamafr/|||||1

10993|sasaus/|||||1

#

C-8 333–CD–003-005

--­

file for Constant & Unit Conversion (CUC) tools

IMPORTANT NOTE: THIS FILE WILL BE SUPPLIED AFTER TK4 DELIVERY!

--­

10999|PGS_CUC_maths_parameters|~/runtime||||1

#

#

#---­

Metadata Configuration File (MCF) is a template to be filled in by the

Instrument

teams. The data dictionary is a set of the core metadata attributes and

their

descriptions. Product specific metadata attribute values need to be added

by the Instrument

Teams.

#---­

10250|MCF|~/runtime||||1

10251|data_dictionary|~/runtime||||1

#

#

? PRODUCT OUTPUT FILES

Next line is the default location for PRODUCT OUTPUT FILES

! ~/runtime

#

#

? SUPPORT INPUT FILES

Next line is the default location for SUPPORT INPUT FILES

! ~/runtime

#

#

C-9 333–CD–003-005

--­

This ID is #defined in PGS_AA_Tools.h

This file contains the IDs for all support and format files shown above

--­

10900|indexFile|~/runtime||||1

#

--­

These are support files for the data set files - to be created by user

(not necessar

The IDs must correspond to the logical IDs in the index file

--­

10901|mowe13aSupport|~/runtime||||1

10902|owe13aSupport|~/runtime||||1

10903|owe14Support|~/runtime||||1

10904|etop05Support|~/runtime||||1

10905|fnoc1Support|~/runtime||||1

10906|fnoc2Support|~/runtime||||1

10907|zobler1Support|~/runtime||||1

10908|zobler2Support|~/runtime||||1

10909|nmcRucSupport|~/runtime||||1

10915|tbaseSupport|~/runtime||||1

10916|tbase1Support|~/runtime||||1

10917|tbase2Support|~/runtime||||1

10918|tbase3Support|~/runtime||||1

10919|tbase4Support|~/runtime||||1

10740|usatile1Support|~/runtime||||1

10741|usatile2Support|~/runtime||||1

10742|usatile3Support|~/runtime||||1

10743|usatile4Support|~/runtime||||1

C-10 333–CD–003-005

10744|usatile5Support|~/runtime||||1

10745|usatile6Support|~/runtime||||1

10746|usatile7Support|~/runtime||||1

10747|usatile8Support|~/runtime||||1

10748|usatile9Support|~/runtime||||1

10749|usatile10Support|~/runtime||||1

10750|usatile11Support|~/runtime||||1

10751|usatile12Support|~/runtime||||1

10948|geoidSupport|~/runtime||||1

#

--­

The following are format files for each data set file

(not necessarily a one-to-one relationship)

The IDs must correspond to the logical IDs in the index file

--­

10920|mowe13a.bfm|~/runtime||||1

10921|owe13a.bfm|~/runtime||||1

10922|owe14d.bfm|~/runtime||||1

10923|owe14dr.bfm|~/runtime||||1

10924|etop05.bfm|~/runtime||||1

10925|fnocAzm.bfm|~/runtime||||1

10926|fnocOcm.bfm|~/runtime||||1

10927|fnocPt.bfm|~/runtime||||1

10928|fnocRdg.bfm|~/runtime||||1

10929|fnocSt.bfm|~/runtime||||1

10930|fnocUrb.bfm|~/runtime||||1

10931|fnocWat.bfm|~/runtime||||1

10932|fnocMax.bfm|~/runtime||||1

10933|fnocMin.bfm|~/runtime||||1

C-11 333–CD–003-005

10934|fnocMod.bfm|~/runtime||||1

10935|srzArea.bfm|~/runtime||||1

10936|srzCode.bfm|~/runtime||||1

10937|srzPhas.bfm|~/runtime||||1

10938|srzSlop.bfm|~/runtime||||1

10939|srzSoil.bfm|~/runtime||||1

10940|srzText.bfm|~/runtime||||1

10941|nmcRucSigPotPres.bfm|~/runtime||||1

10942|tbase.bfm|~/runtime||||1

10943|tbase1.bfm|~/runtime||||1

10944|tbase2.bfm|~/runtime||||1

10945|tbase3.bfm|~/runtime||||1

10946|tbase4.bfm|~/runtime||||1

10700|usatile1.bfm|~/runtime||||1

10701|usatile2.bfm|~/runtime||||1

10702|usatile3.bfm|~/runtime||||1

10703|usatile4.bfm|~/runtime||||1

10704|usatile5.bfm|~/runtime||||1

10705|usatile6.bfm|~/runtime||||1

10706|usatile7.bfm|~/runtime||||1

10707|usatile8.bfm|~/runtime||||1

10708|usatile9.bfm|~/runtime||||1

10709|usatile10.bfm|~/runtime||||1

10710|usatile11.bfm|~/runtime||||1

10711|usatile12.bfm|~/runtime||||1

10947|geoidbfm|~/runtime||||1

#

#

C-12 333–CD–003-005

leap seconds (TAI-UTC) file

--­

10301|leapsec.dat|~/database/sun5/TD||||1

#

--­

polar motion and UTC-UT1 file

--­

10401|utcpole.dat|~/database/sun5/CSC||||1

#

--­

earth model tags file

--­

10402|earthfigure.dat|~/database/sun5/CSC||||1

#

--­

directory where spacecraft ephemeris files are located

NOTE: This line is used to specify a directory only!

The "file" field should not be altered.

--­

10501|.|~/database/sun5/EPH||||1

#

--­

JPL planetary ephemeris file (binary form)

--­

10601|de200.eos|~/database/sun5/CBP||||1

#

#

? SUPPORT OUTPUT FILES

Next line is default location for SUPPORT OUTPUT FILES

C-13 333–CD–003-005

! ~/runtime

#

#

--­

These files support the SMF log functionality. Each run will cause

status information to be written to 1 or more of the Log files. To

simulate DAAC operations, remove the 3 Logfiles between test runs.

Remember: all executables within a PGE will contribute status data to

the same batch of log files.

--­

10100|LogStatus|||||1

10101|LogReport|||||1

10102|LogUser|||||1

10103|TmpStatus|||||1

10104|TmpReport|||||1

10105|TmpUser|||||1

10110|MailFile|||||1

#

--­

This paramater controls the Event Logger connection from the Toolkit.

--­

10113|eventLogger.log|||||1

#

--­

ASCII file which stores pointers to runtime SMF files in lieu of

loading them to shared memory, which is a TK5 enhancement.

--­

10111|ShmMem|||||1

#

C-14 333–CD–003-005

#

? USER DEFINED RUNTIME PARAMETERS

#

#

--­

These parameters are required to support the PGS_SMF_Send...() tools.

If the first parameter (TransmitFlag) is disabled, then none of the

other parameters need to be set. By default, this functionality has been

disabled. To enable, set TransmitFlag to 1 and supply the other 3

parameters with local information.

--­

10109|TransmitFlag; 1=transmit,0=disable|0

10106|RemoteHost|sandcrab

10107|RemotePath|/usr/kwan/test/PC/data

10108|EmailAddresses|kwan@eos.hitc.com

#

--­

This paramater controls the Event Logger connection from the Toolkit.

--­

10112|Event Logging Flag; 1=connect,0=disconnect|1

#

--­

This entry defines the IP address of the processing host and is used

by the Toolkit when generating unique Intermediate and Temporary file

names. The Toolkit no longer relies on the PGS_HOST_PATH environment

variable to otain this information.

--­

10099|Local IP Address of 'ether'|155.157.31.87

#

C-15 333–CD–003-005

? INTERMEDIATE INPUT

Next line is default location for INTERMEDIATE INPUT FILES

! ~/runtime

#

#

? INTERMEDIATE OUTPUT

Next line is default location for INTERMEDIATE OUTPUT FILES

! ~/runtime

#

#

? TEMPORARY I/O

Next line is default location for TEMPORARY FILES

! ~/runtime

#

#

? END

C.2 Validating Process Control Files

C.2.1 DESCRIPTION:

The Process Control Information File Check Program is a program that checks the file containing
the Process Control Status Information. This program is an aid to determine if the input file
necessary for the Process Control Tools is in the proper format and contains the minimum
amount of information for a valid run. The program is run by entering the program name
followed by the file name to be checked. For example, "pccheck.sh -i userpcf.dat" will run the
check program and check the file userpcf.dat located in the current directory. The -i flag needs
to be followed by the name of the input file. Upon checking the file, a list of errors and warnings
will be displayed to the user. Each error or warning will have a brief description, the line
number, and the line itself. When the checking process has completed, a message appears stating
that the check process is finished and the number of warnings and errors found are displayed.
With this program, errors are defined as something in the file that, during execution of the
Process Control Tools, the return will not be PGS_S_SUCCESS. A warning is defined as
something that, although the Process Control Tools will return a PGS_S_SUCCESS, a problem
could arise later. An example of this is the file name "file one.dat" is stored in the Process
Control Information file. Upon execution, the Process Control Tools will return the name of this
file and PGS_S_SUCCESS as the function type return value. When the program tries to open
this file however, a file access error will occur.

C-16 333–CD–003-005

C.2.2 INPUT

•	 Program name, -i flag, and file to be checked. An example of this would be:

pccheck.sh -i userpcf.dat

This will initiate the check program and check the file userpcf.dat in the current directory.

•	 Program name, -i flag, file to be checked, -o flag, and an output file name.

pccheck.sh -i userpcf.dat -o userpcf.out

This will initiate the check program and check the file userpcf.dat in the current directory and
create an output file "outpct.fil" that will be an exact copy of userpcf.dat except the output file
will contain line numbers.

•	 Program name, -h flag.

pccheck.sh -h

This will display a usage help message.

•	 Program name, -i flag, file to be checked, -c flag, and a template file name.

pccheck.sh -i userpcf.dat -c $PGSHOME/runtime/PCF.v3

This will list all errors and warnings in the file userpcf.dat and perform a comparison. The -c flag
will initiate a comparison with a template file and determine if any of the Product ID's reserved
by the PGS Toolkit (range 10,000 .. 10,999) differ in userpcf.dat and
$PGSHOME/runtime/PCF.v3. This will only list the differences and will not perform any
corrections.

•	 Program name, -i flag, file to be checked, -c flag, and a template file name, -s flag, to
suppress output.

pccheck.sh -i userpcf.dat -c $PGSHOME/runtime/PCF.v3 -s

The -s flag will suppress all output except that output received when using the -c flag. The -s flag
is designed to be used only when the -c flag is used.

C.2.3 OUTPUT

List of errors and warnings followed by a summary of the number of errors and warnings. See
the EXAMPLES section for detailed listings of program output. Using the -o flag will also allow
the user to output a file that is an exact copy of the input file with line numbers in the file. This
output option is provided as a convenience to the user; the output file is not intended to be used
as the input Process Control Information File. Using the -c flag followed by a template file will
allow the user to determine what reserved Logical Identifiers have been edited from the template
file.

C-17 333–CD–003-005

C.2.4 ERRORS:

The following is a list of possible errors followed by a brief description.

•	 "Unable to open input file: <file name>"—unable to open input file name passed in as a
command line argument

•	 "Incorrect number of command line arguments"—the number of command line
arguments did not match the number expected

•	 "Unexpectedly reached EOF"—the end of file was encountered before the correct number
of dividers (?) were reached

•	 "Invalid number of system configuration parameters"—the number of system
configuration parameters encountered did not match the number expected

•	 "Invalid index value in user defined configuration parameters"—an invalid index value
was found

•	 "Problem with user defined configuration parameter"—user defined configuration
parameter contains a problem (i.e., incorrect number of delimiters (|), or a value of all
blanks)

•	 "Configuration value length too long"—user defined configuration value exceeds
PGSd_PC_VALUE_LENGTH_MAX characters

•	 "Invalid index value involving file information"—an invalid index value was found in
one of the sections that contains file information

•	 "Invalid number of delimiters involving file information"—line containing file
information contains incorrect number of delimiters (|)

•	 "No validity flag present in input file information"—validity flag is mandatory for input
file information

•	 "File name length too long"—file name exceeds PGSd_PC_FILE_NAME_MAX
characters

• "Path length too long"—path exceeds PGSd_PC_PATH_LENGTH_MAX characters

•	 "problem with version number in Standard input file information"—missing or
unexpected sequence number

• "Default file location marker contains no data."

• "Default file location length too long."

• "Default file location not found."

•	 "Universal Reference length too long." - universal reference identifier exceeds
PGSd_PC_UREF_LENGTH_MAX characters

• “File name does not exist.” - File name data field is empty.

C-18 333–CD–003-005

C.2.5 WARNINGS:

The following is a list of all possible warnings followed by a brief description.

•	 "Warning—Possible problem with system configuration value"—configuration parameter
contains all blank characters

•	 "Warning—Repeat index number in user defined configuration parameters"—index value
used twice in user defined configuration parameters

•	 "Warning—extra delimiters in user defined configuration parameters"—remaining
delimiters will be returned as part of the value in user defined configuration parameters.

•	 "Warning—Repeat index number in file information"—index value illegally used
multiple times in file information

•	 "Warning—possible problem in path or file name"—path or file name contains blank
characters

•	 "Warning—information beyond final divider will be ignored"—anything after the last
counted divider (?) will be ignored

• "Warning—possible problem in default file location."

• "Warning—Default file location not after divider."

C.2.6 EXAMPLES:

Three examples are provided below. Each example contains the input file used, the command
entered and the corresponding output. The first example contains no errors or warnings. The
second example contains several warnings and errors. The third example is an example of using
the -c flag.

C.2.6.1 EXAMPLE 1

INPUT FILE: userpcf.dat

Process Control File

? SYSTEM RUNTIME PARAMETERS

---­

Production Run ID - unique production instance identifier

--

C-19 333–CD–003-005

1

---­

Software ID - unique software configuration identifier

---­

1

#

? PRODUCT INPUT FILES

[Default file location indicated by '!']

! ~/runtime

#

1000|temp.dat|/usr/atm/data||Optional Universal Reference|temp.att|1

1001|humid.dat|/usr/atm/data||Humidity Data|humid.att|1

600|wind_1.dat||||wind_1.att|2

600|wind_2.dat||||wind_2.att|1

---­

polar motion and UTC-UT1 file

---­

10401|utcpole.dat|~/lib/database/CSC||||1

---­

earth model tags file

---­

10402|earthfigure.dat|~/lib/database/CSC||||1

---­

JPL planetary ephemeris file (binary form)

---­

10601|de200.eos|/usr/lib/database/CBP||||1

10964|fnocmin.imgswitched|||||1

10965|fnocmod.imgswitched|||||1

10966|srzarea.img|||||1

C-20 333–CD–003-005

10967|srzcode.img|||||1

10968|srzphas.img|||||1

10969|srzslop.img|||||1

10970|srzsoil.img|||||1

10971|srztext.img|||||1

#

---­

The following are for the PGS_AA_dcw tool only.

The IDs are #defined in the PGS_AA_dcw.h file

---­

10990|eurnasia/|||||1

10991|noamer/|||||1

10992|soamafr/|||||1

10993|sasaus/|||||1

#

#

? PRODUCT OUTPUT FILES

[Default file location indicated by '!']

! ~/runtime

#

1002|temp_lev3.hdf|||||1

1003|humid_lev3.hdf|||||1

601|wind_lev3.hdf|||||1

#

#

? SUPPORT INPUT FILES

[Default file location indicated by '!']

! ~/runtime

#

C-21 333–CD–003-005

31|Wind_insitu.dat|/usr/wind/data||||1

#

#

---­

This ID is #defined in PGS_AA_Tools.h

This file contains the IDs for all support and format files shown

above

---­

10900|indexFile|~/runtime||||1

#

---­

These are support files for the data set files - to be created by user

(not necessarily a one-to-one relationship)

The IDs must correspond to the logical IDs in the index file

---­

10901|mowe13aSupport|~/runtime||||1

10902|owe13aSupport|~/runtime||||1

10903|owe14Support|~/runtime||||1

10904|etop05Support|~/runtime||||1

10905|fnoc1Support|~/runtime||||1

10906|fnoc2Support|~/runtime||||1

10907|zobler1Support|~/runtime||||1

10908|zobler2Support|~/runtime||||1

#

---­

The following are format files for each data set file

(not necessarily a one-to-one relationship)

The IDs must correspond to the logical IDs in the index file

--

C-22 333–CD–003-005

10920|mowe13a.bfm|~/runtime||||1

10921|owe13a.bfm|~/runtime||||1

10922|owe14d.bfm|~/runtime||||1

10923|owe14dr.bfm|~/runtime||||1

10924|etop05.bfm|~/runtime||||1

10925|fnocAzm.bfm|~/runtime||||1

10926|fnocOcm.bfm|~/runtime||||1

10927|fnocPt.bfm|~/runtime||||1

10928|fnocRdg.bfm|~/runtime||||1

10929|fnocSt.bfm|~/runtime||||1

10930|fnocUrb.bfm|~/runtime||||1

10931|fnocWat.bfm|~/runtime||||1

10932|fnocMax.bfm|~/runtime||||1

10933|fnocMin.bfm|~/runtime||||1

10934|fnocMod.bfm|~/runtime||||1

10935|srzArea.bfm|~/runtime||||1

10936|srzCode.bfm|~/runtime||||1

10937|srzPhas.bfm|~/runtime||||1

10938|srzSlop.bfm|~/runtime||||1

10939|srzSoil.bfm|~/runtime||||1

10940|srzText.bfm|~/runtime||||1

#

#

? SUPPORT OUTPUT FILES

[Default file location indicated by '!']

! ~/runtime

#

#

51|Wind_qlook.dat|/usr/wind/data||||1

C-23 333–CD–003-005

#

---­

These files support the SMF log functionality. Each run will cause

status information to be written to 1 or more of the Log files. To

simulate DAAC operations, remove the 3 Logfiles between test runs.

Remember: all executables within a PGE will contribute status data to

the same batch of log files.

---­

10100|LogStatus|~/runtime||||1

10101|LogReport|~/runtime||||1

10102|LogUser|~/runtime||||1

10103|TmpStatus|~/runtime||||1

10104|TmpReport|~/runtime||||1

10105|TmpUser|~/runtime||||1

10110|MailFile|~/runtime||||1

#

#

? USER DEFINED RUNTIME PARAMETERS

3000|Humidity Instrument Calibration|0.34423772

3001|Temperature Instrument Calibration|1.87864

3002|Wind Instrument Calibration|0.992

3003|Atmospheric Algorithm|NIGHT

3004|Status Report Title|INSTRUMENT STATUS REPORT FOR LEVEL 2

#

#

---­

These parameters are required to support the PGS_SMF_Send...() tools.

If the first parameter (TransmitFlag) is disabled, then none of the

other parameters need to be set. By default, this functionality has

C-24 333–CD–003-005

been disabled. To enable, set TransmitFlag to 1 and supply the other 3

parameters with local information.

---­

10109|TransmitFlag; 1=transmit,0=disable|0

10106|RemoteHost|anyhost

10107|RemotePath|/usr/anyuser/anypath/data

10108|EmailAddresses|anyuser@anysystem.anyaddress.gov

#

#

? INTERMEDIATE INPUT

[Default file location indicated by '!']

! ~/runtime

#

#

? INTERMEDIATE OUTPUT

[Default file location indicated by '!']

! ~/runtime

#

#

? TEMPORARY IO

[Default file location indicated by '!']

! ~/runtime

#

#

? END

C-25 333–CD–003-005

UNIX COMMAND LINE:

pccheck.sh -i userpcf.dat

Check of userpcf.dat completed

Errors found: 0

Warnings found: 0

C.2.6.2 EXAMPLE 2

INPUT FILE: userpcf.dat
#

Process Control File

#

#

? SYSTEM RUNTIME PARAMETERS

---­

Production Run ID - unique production instance identifier

---­

#****ONLY ONE SYSTEM CONFIGURATION PARAMETER****

#

? PRODUCT INPUT FILES

[Default file location marked by '!']

! ~/runtime

#

1000|temp.dat|/usr/atm/data|||temp.att|

^ No version number****

1)01|humid.dat|/usr/atm/data|||humid.att|1

#^Illegal character in index number****

600|wind_1.dat||||wind_1.att|2

600|wind_2.dat|||wind_2.att|1

Line only contains five delimiters****

C-26 333–CD–003-005

1

#

---­

polar motion and UTC-UT1 file

---­

10401|utcpole.dat|~/lib/database/CSC||||1

---­

earth model tags file

---­

10402|earthfigure.dat|~/lib/database/CSC||||1

---­

JPL planetary ephemeris file (binary form)

---­

10601|de200.eos|/usr/lib/database/CBP||||1

10964|fnocmin.imgswitched|||||1

10965|fnocmod.imgswitched|||||1

10966|srzarea.img|||||1

10967|srzcode.img|||||1

10968|srzphas.img|||||1

10969|srzslop.img|||||1

10970|srzsoil.img|||||1

10971|srztext.img|||||1

#

---­

The following are for the PGS_AA_dcw tool only.

The IDs are #defined in the PGS_AA_dcw.h file

---­

10990|eurnasia/|||||1

10991|noamer/|||||1

10992|soamafr/|||||1

C-27 333–CD–003-005

10993|sasaus/|||||1

#

#

? PRODUCT OUTPUT FILES

#

^^^^ No default file location listed before first file name****

1002|temp_lev3.hdf|||||1

1003|humid_lev3.hdf|||||1

601|wind_lev3.hdf|||||1

#

#

? SUPPORT INPUT FILES

[Default file location marked by '!']

! ~/runtime

#

31|Wind_insitu .dat|/usr/wind/data||||1

^ Blank character in file name****

#

#

---­

This ID is #defined in PGS_AA_Tools.h

This file contains the IDs for all support and format files shown

above

---­

10900|indexFile|~/runtime||||1

#

---­

These are support files for the data set files - to be created by user

(not necessarily a one-to-one relationship)

C-28 333–CD–003-005

The IDs must correspond to the logical IDs in the index file

---­

10901|mowe13aSupport|~/runtime||||1

10902|owe13aSupport|~/runtime||||1

10903|owe14Support|~/runtime||||1

10904|etop05Support|~/runtime||||1

10905|fnoc1Support|~/runtime||||1

10906|fnoc2Support|~/runtime||||1

10907|zobler1Support|~/runtime||||1

10908|zobler2Support|~/runtime||||1

#

---­

The following are format files for each data set file

(not necessarily a one-to-one relationship)

The IDs must correspond to the logical IDs in the index file

---­

10920|mowe13a.bfm|~/runtime||||1

10921|owe13a.bfm|~/runtime||||1

10922|owe14d.bfm|~/runtime||||1

10923|owe14dr.bfm|~/runtime||||1

10924|etop05.bfm|~/runtime||||1

10925|fnocAzm.bfm|~/runtime||||1

10926|fnocOcm.bfm|~/runtime||||1

10927|fnocPt.bfm|~/runtime||||1

10928|fnocRdg.bfm|~/runtime||||1

10929|fnocSt.bfm|~/runtime||||1

10930|fnocUrb.bfm|~/runtime||||1

10931|fnocWat.bfm|~/runtime||||1

10932|fnocMax.bfm|~/runtime||||1

C-29 333–CD–003-005

10933|fnocMin.bfm|~/runtime||||1

10934|fnocMod.bfm|~/runtime||||1

10935|srzArea.bfm|~/runtime||||1

10936|srzCode.bfm|~/runtime||||1

10937|srzPhas.bfm|~/runtime||||1

10938|srzSlop.bfm|~/runtime||||1

10939|srzSoil.bfm|~/runtime||||1

10940|srzText.bfm|~/runtime||||1

#

#

? SUPPORT OUTPUT FILES

[Default file location marked by '!']

! ~/runtime

#

#

#

51|Wind_qlook.dat|/usr/wind/data||||1

#

---­

These files support the SMF log functionality. Each run will cause

status information to be written to 1 or more of the Log files. To

simulate DAAC operations, remove the 3 Logfiles between test runs.

Remember: all executables within a PGE will contribute status data to

the same batch of log files.

---­

10100|LogStatus|~/runtime||||1

10101|LogReport|~/runtime||||1

10102|LogUser|~/runtime||||1

10103|TmpStatus|~/runtime||||1

C-30 333–CD–003-005

10104|TmpReport|~/runtime||||1

10105|TmpUser|~/runtime||||1

10110|MailFile|~/runtime||||1

#

#

? USER DEFINED RUNTIME PARAMETERS

3000|Humidity Instrument Calibration|0.34423772

3001|

^ Incomplete line****

3002|Wind Instrument Calibration|0.992|

^ Extra delimiter****

3003|Atmospheric Algorithm|NIGHT

3001|Status Report Title|INSTRUMENT STATUS REPORT FOR LEVEL 2

Index number used six lines above****

#

#

---­

These parameters are required to support the PGS_SMF_Send...() tools.

If the first parameter (TransmitFlag) is disabled, then none of the

other parameters need to be set. By default, this functionality has

been disabled. To enable, set TransmitFlag to 1 and supply the other 3

parameters with local information.

---­

10109|TransmitFlag; 1=transmit,0=disable|0

10106|RemoteHost|anyhost

10107|RemotePath|/usr/anyuser/anypath/data

10108|EmailAddresses|anyuser@anysystem.anyaddress.gov

#

#

C-31 333–CD–003-005

? INTERMEDIATE INPUT

[Default file location

! ~/runtime

#

#

#

? INTERMEDIATE OUTPUT

[Default file location

! ~/runtime

#

#

? TEMPORARY IO

[Default file location

! ~/runtime

#

#

? END

marked by '!']

marked by '!']

marked by '!']

We just passed the last divider****

UNIX COMMAND LINE:­

pccheck.sh -i userpcf.dat -o userpcf.out

Error - Invalid number of system configuration parameters.

Found: 1

Expected: 2

Error - problem with version number in Standard input or output file

information.

Line number: 16

Line: 1000|temp.dat|/usr/atm/data|||temp.att|

C-32 333–CD–003-005

Error - Invalid identifier number involving file information.

Line number: 18

Line: 1)01|humid.dat|/usr/atm/data|||humid.att|1

Error - Invalid number of delimiters involving file information.

Line number: 21

Line: 600|wind_2.dat|||wind_2.att|1

Error - Default file location not found.

Line number: 58

Line: 1002|temp_lev3.hdf|||||1

Warning - possible problem in path or file name.

Line number: 67

Line: 31|Wind_insitu .dat|/usr/wind/data||||1

Error - Problem with user defined configuration parameter.

Line number: 146

Line: 3001|

Warning - extra delimiters in user defined configuration parameters.

Line number: 148

Line: 3002|Wind Instrument Calibration|0.992|

Warning - Repeat index number in user defined configuration parameters.

Line number: 151

Line: 3001|Status Report Title|INSTRUMENT STATUS REPORT FOR LEVEL 2

C-33 333–CD–003-005

Warning - information beyond final divider will be ignored.

line number: 185

Number of dividers read: 10

Number of dividers expected: 10

Check of usrpcf.dat completed

Errors found: 6

Warnings found: 4

OUTPUT FILE: userpcf.out

1:#

2:# Process Control File

3:#

4:#

5:? SYSTEM RUNTIME PARAMETERS

6:# ---------------------------- ---
�

7 :# Production Run ID - unique production instance identifier

8:# ---­

9:1

10:#****ONLY ONE SYSTEM CONFIGURATION PARAMETER****

11:#

12:? PRODUCT INPUT FILES

13:# [Default file location marked by '!']

14:! ~/runtime

15:#

16:1000|temp.dat|/usr/atm/data|||temp.att|

17:# ^ No version number****

18:1)01|humid.dat|/usr/atm/data|||humid.att|1

C-34 333–CD–003-005

 19:#^Illegal character in index number****

20:600|wind_1.dat||||wind_1.att|2

21:600|wind_2.dat|||wind_2.att|1

22:# Line only contains five delimiters****

23:#

24:# ---­

25:# polar motion and UTC-UT1 file

26:# ---­

27:10401|utcpole.dat|~/lib/database/CSC||||1

28:# ---­

29:# earth model tags file

30:# ---­

31:10402|earthfigure.dat|~/lib/database/CSC||||1

32:# ---­

33:# JPL planetary ephemeris file (binary form)

34:# ---­

35:10601|de200.eos|/usr/lib/database/CBP||||1

36:10964|fnocmin.imgswitched|||||1

37:10965|fnocmod.imgswitched|||||1

38:10966|srzarea.img|||||1

39:10967|srzcode.img|||||1

40:10968|srzphas.img|||||1

41:10969|srzslop.img|||||1

42:10970|srzsoil.img|||||1

43:10971|srztext.img|||||1

44:#

45:# ---­

46:# The following are for the PGS_AA_dcw tool only.

47:# The IDs are #defined in the PGS_AA_dcw.h file

C-35 333–CD–003-005

 48:# ---­

49:10990|eurnasia/|||||1

50:10991|noamer/|||||1

51:10992|soamafr/|||||1

52:10993|sasaus/|||||1

53:#

54:#

55:? PRODUCT OUTPUT FILES

56:#

57:# ^^^^ No default file location listed before first file name****

58:1002|temp_lev3.hdf|||||1

59:1003|humid_lev3.hdf|||||1

60:601|wind_lev3.hdf|||||1

61:#

62:#

63:? SUPPORT INPUT FILES

64:# [Default file location marked by '!']

65:! ~/runtime

66:#

67:31|Wind_insitu .dat|/usr/wind/data||||1

68:# ^ Blank character in file name****

69:#

70:#

71:# ---­

72:# This ID is #defined in PGS_AA_Tools.h

73:# This file contains the IDs for all support and format files shown

74:# above

75:# ---­

76:10900|indexFile|~/runtime||||1

C-36 333–CD–003-005

 77:#

78:# ---­

79:# These are support files for the data set files - to be created by user

80:# (not necessarily a one-to-one relationship)

81:# The IDs must correspond to the logical IDs in the index file

82:# ---­

83:10901|mowe13aSupport|~/runtime||||1

84:10902|owe13aSupport|~/runtime||||1

85:10903|owe14Support|~/runtime||||1

86:10904|etop05Support|~/runtime||||1

87:10905|fnoc1Support|~/runtime||||1

88:10906|fnoc2Support|~/runtime||||1

89:10907|zobler1Support|~/runtime||||1

90:10908|zobler2Support|~/runtime||||1

91:#

92:# ---­

93:# The following are format files for each data set file

94:# (not necessarily a one-to-one relationship)

95:# The IDs must correspond to the logical IDs in the index file

96:# ---­

97:10920|mowe13a.bfm|~/runtime||||1

98:10921|owe13a.bfm|~/runtime||||1

99:10922|owe14d.bfm|~/runtime||||1

100:10923|owe14dr.bfm|~/runtime||||1

101:10924|etop05.bfm|~/runtime||||1

102:10925|fnocAzm.bfm|~/runtime||||1

103:10926|fnocOcm.bfm|~/runtime||||1

104:10927|fnocPt.bfm|~/runtime||||1

105:10928|fnocRdg.bfm|~/runtime||||1

C-37 333–CD–003-005

106:10929|fnocSt.bfm|~/runtime||||1

107:10930|fnocUrb.bfm|~/runtime||||1

108:10931|fnocWat.bfm|~/runtime||||1

109:10932|fnocMax.bfm|~/runtime||||1

110:10933|fnocMin.bfm|~/runtime||||1

111:10934|fnocMod.bfm|~/runtime||||1

112:10935|srzArea.bfm|~/runtime||||1

113:10936|srzCode.bfm|~/runtime||||1

114:10937|srzPhas.bfm|~/runtime||||1

115:10938|srzSlop.bfm|~/runtime||||1

116:10939|srzSoil.bfm|~/runtime||||1

117:10940|srzText.bfm|~/runtime||||1

118:#

119:#

120:? SUPPORT OUTPUT FILES

121:# [Default file location marked by '!']

122:! ~/runtime

123:#

124:#

125:#

126:51|Wind_qlook.dat|/usr/wind/data||||1

127:#

128:# ---­

129:# These files support the SMF log functionality. Each run will cause

130:# status information to be written to 1 or more of the Log files. To

131:# simulate DAAC operations, remove the 3 Logfiles between test runs.

132:# Remember: all executables within a PGE will contribute status data to

133:# the same batch of log files.

134:# --

C-38 333–CD–003-005

135:10100|LogStatus|~/runtime||||1

136:10101|LogReport|~/runtime||||1

137:10102|LogUser|~/runtime||||1

138:10103|TmpStatus|~/runtime||||1

139:10104|TmpReport|~/runtime||||1

140:10105|TmpUser|~/runtime||||1

141:10110|MailFile|~/runtime||||1

142:#

143:#

144:? USER DEFINED RUNTIME PARAMETERS

145:3000|Humidity Instrument Calibration|0.34423772

146:3001|

147:# ^ Incomplete line****

148:3002|Wind Instrument Calibration|0.992|

149:# ^ Extra delimiter****

150:3003|Atmospheric Algorithm|NIGHT

151:3001|Status Report Title|INSTRUMENT STATUS REPORT FOR LEVEL 2

152:# Index number used six lines above****

153:#

154:#

155:# ---­

156:# These parameters are required to support the PGS_SMF_Send...() tools.

157:# If the first parameter (TransmitFlag) is disabled, then none of the

158:# other parameters need to be set. By default, this functionality has

159:# been disabled. To enable, set TransmitFlag to 1 and supply the other 3

160:# parameters with local information.

161:# ---­

162:10109|TransmitFlag; 1=transmit,0=disable|0

163:10106|RemoteHost|anyhost

C-39 333–CD–003-005

164:10107|RemotePath|/usr/anyuser/anypath/data

165:10108|EmailAddresses|anyuser@anysystem.anyaddress.gov

166:#

167:#

168:? INTERMEDIATE INPUT

169:# [Default file location

170:! ~/runtime

171:#

172:#

173:#

174:? INTERMEDIATE OUTPUT

175:# [Default file location

176:! ~/runtime

177:#

178:#

179:? TEMPORARY IO

180:# [Default file location

181:! ~/runtime

182:#

183:#

184:? END

marked by '!']

marked by '!']

marked by '!']

185:# We just passed the last divider****

C.2.6.3 EXAMPLE 3

INPUT FILE: userpcf.dat

#

Process Control File

#

#

C-40 333–CD–003-005

? SYSTEM RUNTIME PARAMETERS

---­

Production Run ID - unique production instance identifier

---­

1

---­

Software ID - unique software configuration identifier

---­

1

#

? PRODUCT INPUT FILES

[Default file location marked by '!']

! ~/runtime

--­

These are actual ancillary data set files - supplied by ECS or the user

the following are supplied for purposes of tests and as a useful set of

ancillary data.

--­

10780|usatile12||||10751|12

10780|usatile11||||10750|11

10780|usatile10||||10749|10

10780|usatile9||||10748|9

10780|usatile8||||10747|8

10780|usatile7||||10746|7

10780|usatile6||||10745|6

10780|usatile5||||10744|5

10780|usatile4||||10743|4

10780|usatile3||||10742|3

10780|usatile2||||10741|2

C-41 333–CD–003-005

10780|usatile1||||10740|1

10951|mowe13a.img|||||1

10952|owe13a.img|||||1

10953|owe14d.img|||||1

10954|owe14dr.img|||||1

10955|etop05.dat|||||1

10956|fnocazm.img|||||1

10957|fnococm.img|||||1

10958|fnocpt.img|||||1

10959|fnocrdg.img|||||1

10960|fnocst.img|||||1

10961|fnocurb.img|||||1

10962|fnocwat.img|||||1

10963|fnocmax.imgs|||||1

10964|fnocmin.imgs|||||1

10965|fnocmod.imgs|||||1

10966|srzarea.img|||||1

10967|srzcode.img|||||1

10968|srzphas.img|||||1

10969|srzslop.img|||||1

10970|srzsoil.img|||||1

10971|srztext.img|||||1

10972|nmcRucPotPres.datrepack|||||1

10973|tbase.bin||||10915|1

10974|tbase.br||||10919|4

10974|tbase.bl||||10918|3

10974|tbase.tr||||10917|2

10974|tbase.tl||||10916|1

10975|geoid.dat|||||1

C-42 333–CD–003-005

#

--­

The following are for the PGS_GCT tool only.

The IDs are #defined in the PGS_GCT.h file

--­

10200|nad27sp|~/runtime||||1

10201|nad83sp|~/runtime||||1

--­

The following are for the PGS_AA_DCW tool only.

The IDs are #defined in the PGS_AA_DCW.h file

--­

10990|eurnasia/|||||1

10991|noamer/|||||1

10992|soamafr/|||||1

10993|sasaus/|||||1

#

1000|temp.dat|/usr/atm/data|||temp.att|1

1001|humid.dat|/usr/atm/data|||humid.att|1

600|wind_1.dat||||wind_1.att|2

600|wind_2.dat||||wind_2.att|1

---­

polar motion and UTC-UT1 file

---­

10401|utcpole.dat|~/lib/database/CSC||||1

---­

earth model tags file

---­

10402|earthfigure.dat|~/lib/database/CSC||||1

--

C-43 333–CD–003-005

JPL planetary ephemeris file (binary form)

---­

10601|de200.eos|/usr/lib/database/CBP||||1

#

#

? PRODUCT OUTPUT FILES

[Default file location marked by '!']

! ~/runtime

#

1002|temp_lev3.hdf|||||1

1003|humid_lev3.hdf|||||1

601|wind_lev3.hdf|||||1

#

#

? SUPPORT INPUT FILES

[Default file location marked by '!']

! ~/runtime

#

31|Wind_insitu.dat|/usr/wind/data||||1

#

#

---­

This ID is #defined in PGS_AA_Tools.h

This file contains the IDs for all support and format files shown

above

---­

10900|indexFile|~/runtime||||1

#

--

C-44 333–CD–003-005

These are support files for the data set files - to be created by user

(not necessarily a one-to-one relationship)

The IDs must correspond to the logical IDs in the index file

---­

10901|mowe13aSupport|~/runtime||||1

10902|owe13aSupport|~/runtime||||1

10903|owe14Support|~/runtime||||1

10904|etop05Support|~/runtime||||1

10905|fnoc1Support|~/runtime||||1

10906|fnoc2Support|~/runtime||||1

10907|zobler1Support|~/runtime||||1

10908|zobler2Support|~/runtime||||1

10909|nmcRucSupport|~/runtime||||1

10915|tbaseSupport|~/runtime||||1

10916|tbase1Support|~/runtime||||1

10917|tbase2Support|~/runtime||||1

10918|tbase3Support|~/runtime||||1

10919|tbase4Support|~/runtime||||1

10740|usatile1Support|~/runtime||||1

10741|usatile2Support|~/runtime||||1

10742|usatile3Support|~/runtime||||1

10743|usatile4Support|~/runtime||||1

10744|usatile5Support|~/runtime||||1

10745|usatile6Support|~/runtime||||1

10746|usatile7Support|~/runtime||||1

10747|usatile8Support|~/runtime||||1

10748|usatile9Support|~/runtime||||1

10749|usatile10Support|~/runtime||||1

10750|usatile11Support|~/runtime||||1

C-45 333–CD–003-005

10751|usatile12Support|~/runtime||||1

10948|geoidSupport|~/runtime||||1

#

---­

The following are format files for each data set file

(not necessarily a one-to-one relationship)

The IDs must correspond to the logical IDs in the index file

---­

10920|mowe13a.bfm|~/runtime||||1

10921|owe13a.bfm|~/runtime||||1

10922|owe14d.bfm|~/runtime||||1

10923|owe14dr.bfm|~/runtime||||1

10924|etop05.bfm|~/runtime||||1

10925|fnocAzm.bfm|~/runtime||||1

10926|fnocOcm.bfm|~/runtime||||1

10927|fnocPt.bfm|~/runtime||||1

10928|fnocRdg.bfm|~/runtime||||1

10929|fnocSt.bfm|~/runtime||||1

10930|fnocUrb.bfm|~/runtime||||1

10931|fnocWat.bfm|~/runtime||||1

10932|fnocMax.bfm|~/runtime||||1

10933|fnocMin.bfm|~/runtime||||1

10934|fnocMod.bfm|~/runtime||||1

10935|srzArea.bfm|~/runtime||||1

10936|srzCode.bfm|~/runtime||||1

10937|srzPhas.bfm|~/runtime||||1

10938|srzSlop.bfm|~/runtime||||1

10939|srzSoil.bfm|~/runtime||||1

10940|srzText.bfm|~/runtime||||1

C-46 333–CD–003-005

#

#

? SUPPORT OUTPUT FILES

[Default file location marked by '!']

! ~/runtime

#

#

51|Wind_qlook.dat|/usr/wind/data||||1

#

---­

These files support the SMF log functionality. Each run will cause

status information to be written to 1 or more of the Log files. To

simulate DAAC operations, remove the 3 Logfiles between test runs.

Remember: all executables within a PGE will contribute status data to

the same batch of log files.

---­

10100|LogStatus|~/runtime||||1

10101|LogReport|~/runtime||||1

10102|LogUser|~/runtime||||1

10103|TmpStatus|~/runtime||||1

10104|TmpReport|~/runtime||||1

10105|TmpUser|~/runtime||||1

10110|MailFile|~/runtime||||1

#

#

? USER DEFINED RUNTIME PARAMETERS

3000|Humidity Instrument Calibration|0.34423772

3001|Temperature Instrument Calibration|1.87864

3002|Wind Instrument Calibration|0.992

C-47 333–CD–003-005

3003|Atmospheric Algorithm|NIGHT

3004|Status Report Title|INSTRUMENT STATUS REPORT FOR LEVEL 2

#

#

---­

These parameters are required to support the PGS_SMF_Send...() tools.

If the first parameter (TransmitFlag) is disabled, then none of the

other parameters need to be set. By default, this functionality has

been disabled. To enable, set TransmitFlag to 1 and supply the other 3

parameters with local information.

---­

10109|TransmitFlag; 1=transmit,0=disable|0

10106|RemoteHost|anyhost

10107|RemotePath|/usr/anyuser/anypath/data

10108|EmailAddresses|anyuser@anysystem.anyaddress.gov

#

#

? INTERMEDIATE INPUT

[Default file location marked by '!']

! ~/runtime

#

#

? INTERMEDIATE OUTPUT

[Default file location marked by '!']

! ~/runtime

#

#

? TEMPORARY IO

[Default file location marked by '!']

C-48 333–CD–003-005

! ~/runtime

#

#

? END

COMPARISON FILE: PCF.testmaster

#

filename:

PCF.testmaster

#

description:

Process Control File (PCF)

#

notes:

#

This file supports the IR-1 version of the toolkit.

#

Please treat this file as a master template and make copies of it

for your own testing. Note that the Toolkit installation script sets

PGS_PC_INFO_FILE to point to this master file by default. Remember

to reset the environment variable PGS_PC_INFO_FILE to point to the

instance of your PCF.

#

--­

? SYSTEM RUNTIME PARAMETERS

--­

Production Run ID - unique production instance identifier

--­

1

C-49 333–CD–003-005

--­

Software ID - unique software configuration identifier

--­

1

#

? PRODUCT INPUT FILES

Next non-comment line is the default location for PRODUCT INPUT FILES

WARNING! DO NOT MODIFY THIS LINE unless you have relocated these

data set files to the location specified by the new setting.

! ~/runtime

#

--­

These are actual ancillary data set files - supplied by ECS or the user

the following are supplied for purposes of tests and as a useful set of

ancillary data.

--­

10780|usatile12||||10751|12

10780|usatile11||||10750|11

10780|usatile10||||10749|10

10780|usatile9||||10748|9

10780|usatile8||||10747|8

10780|usatile7||||10746|7

10780|usatile6||||10745|6

10780|usatile5||||10744|5

10780|usatile4||||10743|4

10780|usatile3||||10742|3

10780|usatile2||||10741|2

10780|usatile1||||10740|1

10951|mowe13a.img|||||1

C-50 333–CD–003-005

10952|owe13a.img|||||1

10953|owe14d.img|||||1

10954|owe14dr.img|||||1

10955|etop05.dat|||||1

10956|fnocazm.img|||||1

10957|fnococm.img|||||1

10958|fnocpt.img|||||1

10959|fnocrdg.img|||||1

10960|fnocst.img|||||1

10961|fnocurb.img|||||1

10962|fnocwat.img|||||1

10963|fnocmax.imgs|||||1

10964|fnocmin.imgs|||||1

10965|fnocmod.imgs|||||1

10966|srzarea.img|||||1

10967|srzcode.img|||||1

10968|srzphas.img|||||1

10969|srzslop.img|||||1

10970|srzsoil.img|||||1

10971|srztext.img|||||1

10972|nmcRucPotPres.datrepack|||||1

10973|tbase.bin||||10915|1

10974|tbase.br||||10919|4

10974|tbase.bl||||10918|3

10974|tbase.tr||||10917|2

10974|tbase.tl||||10916|1

10975|geoid.dat|||||1

#

C-51 333–CD–003-005

The following are for the PGS_GCT tool only.

The IDs are #defined in the PGS_GCT.h file

--­

10200|nad27sp|~/runtime||||1

10201|nad83sp|~/runtime||||1

--­

The following are for the PGS_AA_DCW tool only.

The IDs are #defined in the PGS_AA_DCW.h file

--­

10990|eurnasia/|||||1

10991|noamer/|||||1

10992|soamafr/|||||1

10993|sasaus/|||||1

#

#

? PRODUCT OUTPUT FILES

Next line is the default location for PRODUCT OUTPUT FILES

! ~/runtime

#

#

? SUPPORT INPUT FILES

Next line is the default location for SUPPORT INPUT FILES

! ~/runtime

#

#

--­

This ID is #defined in PGS_AA_Tools.h

This file contains the IDs for all support and format files shown above

C-52 333–CD–003-005

10900|indexFile|~/runtime||||1

#

--­

These are support files for the data set files - to be created by user

(not necessar

The IDs must correspond to the logical IDs in the index file

--­

10901|mowe13aSupport|~/runtime||||1

10902|owe13aSupport|~/runtime||||1

10903|owe14Support|~/runtime||||1

10904|etop05Support|~/runtime||||1

10905|fnoc1Support|~/runtime||||1

10906|fnoc2Support|~/runtime||||1

10907|zobler1Support|~/runtime||||1

10908|zobler2Support|~/runtime||||1

10909|nmcRucSupport|~/runtime||||1

10915|tbaseSupport|~/runtime||||1

10916|tbase1Support|~/runtime||||1

10917|tbase2Support|~/runtime||||1

10918|tbase3Support|~/runtime||||1

10919|tbase4Support|~/runtime||||1

10740|usatile1Support|~/runtime||||1

10741|usatile2Support|~/runtime||||1

10742|usatile3Support|~/runtime||||1

10743|usatile4Support|~/runtime||||1

10744|usatile5Support|~/runtime||||1

10745|usatile6Support|~/runtime||||1

10746|usatile7Support|~/runtime||||1

10747|usatile8Support|~/runtime||||1

C-53 333–CD–003-005

10748|usatile9Support|~/runtime||||1

10749|usatile10Support|~/runtime||||1

10750|usatile11Support|~/runtime||||1

10751|usatile12Support|~/runtime||||1

10948|geoidSupport|~/runtime||||1

#

--­

The following are format files for each data set file

(not necessarily a one-to-one relationship)

The IDs must correspond to the logical IDs in the index file

--­

10920|mowe13a.bfm|~/runtime||||1

10921|owe13a.bfm|~/runtime||||1

10922|owe14d.bfm|~/runtime||||1

10923|owe14dr.bfm|~/runtime||||1

10924|etop05.bfm|~/runtime||||1

10925|fnocAzm.bfm|~/runtime||||1

10926|fnocOcm.bfm|~/runtime||||1

10927|fnocPt.bfm|~/runtime||||1

10928|fnocRdg.bfm|~/runtime||||1

10929|fnocSt.bfm|~/runtime||||1

10930|fnocUrb.bfm|~/runtime||||1

10931|fnocWat.bfm|~/runtime||||1

10932|fnocMax.bfm|~/runtime||||1

10933|fnocMin.bfm|~/runtime||||1

10934|fnocMod.bfm|~/runtime||||1

10935|srzArea.bfm|~/runtime||||1

10936|srzCode.bfm|~/runtime||||1

10937|srzPhas.bfm|~/runtime||||1

C-54 333–CD–003-005

10938|srzSlop.bfm|~/runtime||||1

10939|srzSoil.bfm|~/runtime||||1

10940|srzText.bfm|~/runtime||||1

10704|usatile5.bfm|~/runtime||||1

10705|usatile6.bfm|~/runtime||||1

10706|usatile7.bfm|~/runtime||||1

10707|usatile8.bfm|~/runtime||||1

10708|usatile9.bfm|~/runtime||||1

10709|usatile10.bfm|~/runtime||||1

10710|usatile11.bfm|~/runtime||||1

10711|usatile12.bfm|~/runtime||||1

10947|geoidbfm|~/runtime||||1

#

#

--­

leap seconds (TAI-UTC) file

--­

10301|leapsec.dat|~/database/sun5/TD||||1

#

--­

polar motion and UTC-UT1 file

--­

10401|utcpole.dat|~/database/sun5/CSC||||1

#

--­

earth model tags file

--­

10402|earthfigure.dat|~/database/sun5/CSC||||1

#

C-55 333–CD–003-005

--­

directory where spacecraft ephemeris files are located

NOTE: This line is used to specify a directory only!

The "file" field should not be altered.

--­

10501|.|~/database/sun5/EPH||||1

#

--­

JPL planetary ephemeris file (binary form)

--­

10601|de200.eos|~/database/sun5/CBP||||1

#

#

? SUPPORT OUTPUT FILES

Next line is default location for SUPPORT OUTPUT FILES

! ~/runtime

#

#

--­

These files support the SMF log functionality. Each run will cause

status information to be written to 1 or more of the Log files. To

simulate DAAC operations, remove the 3 Logfiles between test runs.

Remember: all executables within a PGE will contribute status data to

the same batch of log files.

--­

10100|LogStatus|||||1

10101|LogReport|||||1

10102|LogUser|||||1

10103|TmpStatus|||||1

C-56 333–CD–003-005

10104|TmpReport|||||1

10105|TmpUser|||||1

10110|MailFile|||||1

#

--­

This paramater controls the Event Logger connection from the Toolkit.

--­

10113|eventLogger.log|||||1

#

--­

ASCII file which stores pointers to runtime SMF files in lieu of

loading them to shared memory, which is a TK5 enhancement.

--­

10111|ShmMem|||||1

#

#

? USER DEFINED RUNTIME PARAMETERS

#

#

--­

These parameters are required to support the PGS_SMF_Send...() tools.

If the first parameter (TransmitFlag) is disabled, then none of the

other parameters need to be set. By default, this functionality has been

disabled. To enable, set TransmitFlag to 1 and supply the other 3

parameters with local information.

--­

10109|TransmitFlag; 1=transmit,0=disable|0

10106|RemoteHost|sandcrab

10107|RemotePath|/usr/kwan/test/PC/data

C-57 333–CD–003-005

10108|EmailAddresses|kwan@eos.hitc.com

#

--­

This paramater controls the Event Logger connection from the Toolkit.

--­

10112|Event Logging Flag; 1=connect,0=disconnect|1

#

--­

This entry defines the IP address of the processing host and is used

by the Toolkit when generating unique Intermediate and Temporary file

names. The Toolkit no longer relies on the PGS_HOST_PATH environment

variable to otain this information.

--­

10099|Local IP Address of 'ether'|155.157.31.87

#

? INTERMEDIATE INPUT

Next line is default location for INTERMEDIATE INPUT FILES

! ~/runtime

#

#

? INTERMEDIATE OUTPUT

Next line is default location for INTERMEDIATE OUTPUT FILES

! ~/runtime

#

#

? TEMPORARY I/O

Next line is default location for TEMPORARY FILES

! ~/runtime

#

C-58 333–CD–003-005

? END

UNIX COMMAND LINE:

pccheck.sh -i userpcf.dat -c PCF.testmaster -s

The following lines were listed in the template file: PCF.testmaster

and have been altered or deleted from the input file.

> 10704|usatile5.bfm|~/runtime||||1

> 10705|usatile6.bfm|~/runtime||||1

> 10706|usatile7.bfm|~/runtime||||1

> 10707|usatile8.bfm|~/runtime||||1

> 10708|usatile9.bfm|~/runtime||||1

> 10709|usatile10.bfm|~/runtime||||1

> 10710|usatile11.bfm|~/runtime||||1

> 10711|usatile12.bfm|~/runtime||||1

> 10947|geoidbfm|~/runtime||||1

> 10301|leapsec.dat|~/database/sun5/TD||||1

> 10401|utcpole.dat|~/database/sun5/CSC||||1

> 10402|earthfigure.dat|~/database/sun5/CSC||||1

> 10501|.|~/database/sun5/EPH||||1

> 10601|de200.eos|~/database/sun5/CBP||||1

> 10100|LogStatus|||||1

> 10101|LogReport|||||1

> 10102|LogUser|||||1

> 10103|TmpStatus|||||1

> 10104|TmpReport|||||1

> 10105|TmpUser|||||1

> 10110|MailFile|||||1

C-59 333–CD–003-005

> 10113|eventLogger.log|||||1

> 10111|ShmMem|||||1

> 10106|RemoteHost|sandcrab

> 10107|RemotePath|/usr/kwan/test/PC/data

> 10108|EmailAddresses|kwan@eos.hitc.com

> 10112|Event Logging Flag; 1=connect,0=disconnect|1

> 10099|Local IP Address of 'ether'|155.157.31.87

These are the lines in the input file: usrpcf.dat

that differ from the template file.

< 10401|utcpole.dat|~/lib/database/CSC||||1

< 10402|earthfigure.dat|~/lib/database/CSC||||1

< 10601|de200.eos|/usr/lib/database/CBP||||1

< 10100|LogStatus|~/runtime||||1

< 10101|LogReport|~/runtime||||1

< 10102|LogUser|~/runtime||||1

< 10103|TmpStatus|~/runtime||||1

< 10104|TmpReport|~/runtime||||1

< 10105|TmpUser|~/runtime||||1

< 10110|MailFile|~/runtime||||1

< 10106|RemoteHost|anyhost

< 10107|RemotePath|/usr/anyuser/anypath/data

< 10108|EmailAddresses|anyuser@anysystem.anyaddress.gov

C.2.7 BENEFITS:

Due to the fact that the Process Control Information file must currently be entered by hand,
errors can easily be introduced. Many errors are not obvious and may not be detected by the
Process Control Tools. By adopting the practice of using this utility to check your PCF after each
modification, the number of runtime errors can be greatly reduced.

C-60 333–CD–003-005

 Appendix D. Ancillary Data Access Tools

This appendix deals with the use of the ancillary data access tools:

PGS_AA_dcw

PGS_AA_dem

PGS_AA_2DRead

PGS_AA_2Dgeo

PGS_AA_3DRead

PGS_AA_3Dgeo

PGS_AA_PeVA

The first section below describes how the tools are conceived. Each tool is then described in
terms of

• the data set(s) to which it is designed to give access including its accuracy and precision

•	 an outline of the means by which the tool achieves access and any options available
through the calling sequence.

• how the user can call the tool to optimize resource efficiency

• upgrade possibilities

The DCW tool is described in the second section; while the DEM, 2 and 3 D tools, being closely
allied in functional terms are described together in the third section. The fourth section describes
the Parameter = Value tool that is a support tool for the other tools but can also be used directly
by science users in algorithms.

This information is additional to that in the main User Guide pages and calling sequence details
are not repeated here.

D.1 Introduction

The ancillary data tools are optional for use in science algorithms. There is a wide range of
ancillary data sets and these tools have been designed to provide useful access functionality only
for those data sets for which generic functionality can be provided centrally.

Users could utilize language standard input/output functions or the HDF tools to access the
ancillary data. However, a suite of higher level tools is required for four reasons:

a	 to enable data from locations specified by the user to be returned to the user thus avoiding
having to know the internal structure of the file.

D-1 333–CD–003-005

b	 to shield the user from having to know details of parameter source or source format or to
track changes in either, although sources changes will be agreed with the user.

c to provide for certain additional manipulations of extracted data.

For this final point (c), only those data sets that have been specifically identified as requiring
particular manipulations will be serviced; i.e., the ancillary tools do not intend to provide a
general manipulation service for all types of data. However, the tools which 'extract from
location' (a) will be sufficiently generic to allow additional data sets of a similar type to be used.

Access to the information will be in response to an algorithm request in the form of pointers to
parameters and locations in a data file. These pointers take the form of a latitude and longitude or
a similar two dimensional or three dimensional pointer.

It has been assumed that users require to access single or multiple point locations for one or more
parameters and that these values will be returned in arrays to the user. This is in sharp contrast to
the other major use of various ancillary data that are used for display purposes on screens. It is
further assumed that the user requires multiple extractions made in user defined loops; very often
driven by the systematic examination of time ordered source packets along or orthogonal to the
sub–satellite track.

D.2 PGS_AA_dcw

D.2.1 Data Sets Accessed

PGS_AA_dcw is an ancillary data tool to be used to access the Digital Chart of the World
database (DCW). The tool can only be used for accessing DCW.

A subset of the DCW database subset is delivered with the tool. For descriptions of data sets and
file structure see Digital Chart of the World—Final DCW Product Specification MIL–D–
89009 December 7, 1991.

DCW is a general purpose digital global database designed for Geographical Information
Systems (GIS) applications. It utilizes a vector based, thematically layered data set available on
four CD–ROM's at a comprehensive scale of 1:1,000,000. It consists of geographic, attribute,
and textual data, stored in Vector Product Format or VPF. VPF is described in Vector Product
Format (MIL–STD–600006).

The data provided with the tool is exactly as found in the product, therefore any errors are a
result of the database and not the tool. The DCW content is based primarily on the feature
content of the 1:1,000,000–scale DMA Operational Navigational Chart (ONC) series. The 270
ONC sheets are supplemented with six 1:2,000,000–scale Jet Navigation Charts (JNC's) in the
Antarctic region where ONC coverage is not available.

The absolute horizontal accuracy of the DCW for all features derived from ONC's is < 2040
meters (<6700 feet) rounded to the nearest 5 meters at 90% Circular Error (CE), World Geodetic
System (PGSD_WGS84). The absolute horizontal accuracy for all features derived from JNC's is
<4270 meters (<14000 feet) at 90% CE.

D-2 333–CD–003-005

DCW is provided normally on four CDROM'S comprising of more than 1500MB of data.
Requirements from PGS_AA_dcw were to provide land/sea/ice flags for the world, so the
relevant coverage from the data base was extracted; namely Political/Oceans. This coverage
contains all the vector information pertaining to political boundaries and those which exist
between certain cover types i.e., land/sea/ice. (DCW states that the representation of
international boundaries is not authoritative)

The structure of the DCW database is represented in Fig 1. The DCW database implements three
types of VPF files: directories, tables and indices. The data base files are contained within a
hierarchy of directories. Contained within these directories are the tables and indices that provide
information. Each table within the database consists of two parts the header and the data records.
By examining the header, it is possible to locate the information wanted.

DCW DATABASE
DIRECTORY

4 DCW library Directories

17 Coverage Directories
per library

Multiple primitive Directories
per coverage based on
tile scheme

1 Browse Library Directory

8 Coverage Directories

No Tiles - Primitives stored
in coverage directory

tables indices

Figure D–1. DCW Database Directory

D-3 333–CD–003-005

D.2.2 Outline Functionality

D.2.2.1 Outline

As the tool design is at present, the inputs needed to extract land/sea cover flags are as follows.

a. The parameter name - at present only PO (Political / Oceans)

b. The number of parameters - at present only 1

c. The longitude of the point(s) - in the form +/- 180.0000; e.g. 134.2234

d. The latitude of the point(s) - in the form +/- 90.0000 e.g. 87.8945

e. The number of points - 1 or more

f. A results array already specified by the user. (This will be filled up by the tool)

E.G.

PGS_AA_dcw ('po', 1, 34.222, 87.8923, 1, [100][10]);

The tool looks at each long/lat pair in turn, and searches the database. The first hurdle the tool
encounters is the set up of the DCW database. The world has been divided into four areas:

• Europe and northern Asia

• South America, Africa and Antarctica

• North America

• Southern Asia and Australia

To find the relevant location; and extract the data base value; the tool works in the following
way.

a. Locate within which continent the search point lies

b. Locate the table containing the search point.

NOTE: There may be cases within the Database where the point lies on the junction of
two edges; and because of machine accuracy and scale issues, the database will
provide no return to the search. If this happens the search is performed again with the
addition of a value that will not alter the search due to scalar issues, but will move the
point away from the junction so a value can be extracted.

c. Open the relevant table.

d. Locate the search point within the table.

e. Extract the value pertaining to that search point.

f. Close the table.

D-4 333–CD–003-005

g. Return the result of the search.

h. Perform another search using the next input coordinate pair.

D.2.3 Optimal Operation

Optimal operation for extraction of data from the data base is accomplished at present by running
the tool as stated above. The tool can be run in two modes. The first is calling the tool with one
point at a time, the second being calling the tool once with all the points needed as inputs. Of the
two the latter is the fastest.

D.2.4 Upgrades

D.2.4.1 Access Speed

At present the tool goes through the above process for every location, provided by the user, as
can be expected this will slow down the search process and tool performance. There is a
mechanism by which the tool can be speeded up - which may be implemented at a later date, and
involves using the file headers in a more constructive fashion. Within the header, there is
information about the adjoining tiles. Since most users will be using this tool in a swath based
format, the tool will become more time efficient by staying down at the table level, and utilizing
code to extract adjoining tile identifiers - rather than performing the search criterion for every
single search location.

D.2.4.2 Additional Coverages

The tool has been developed in such a way, that if requirements for other coverages i.e.,
vegetation, drainage, hypsography are needed - all that is needed is for the data to be supplied,
and an additional small code change made to facilitate the new parameters. The results array will
then be filled up with integer values representing the vegetation, drainage, etc., type to found at
the location provided by the user.

D.3 PGS_AA_dem, PGS_AA_2DRead, PGS_AA_2Dgeo,
PGS_AA_3DRead, PGS_AA_3Dgeo

D.3.1 Data Sets Accessed.

D.3.1.1 Introduction

These tools are designed to give access to a wide range of data sets all having all of the following
characteristics

•	 gridded (i.e. raster or cell structured), with parameter value or values associated with each
cell constituting the substance of the data set.

• rectangular, having 2 or 3 dimensions

D-5 333–CD–003-005

•	 formatted in simple binary or ASCII with (in C terms) char, float or double, short or long
integers aligned to byte boundaries.

• the physical data set is sufficiently small to be loaded into machine memory.

The latter two of these points are involved with pre–processing and implementation issues
respectively and are dealt with later (3.3.3.).

Several data sets have been delivered with the toolset. These data sets were considered useful for
testing purposes and may also satisfy some science team requirements. They were obtained from
NOAA's National Geophysical Data Center in Boulder, Colorado. They are described in outline
below. Further details are found in the delivered format and support files (described below). Full
details are found in the National Geophysical Data Center (NGDC) publications:

Global Ecosystems Database Version 1.0 (on CD–ROM) User's Guide EPA/600/R–92/194a

Global Ecosystems Database Version 1.0 (on CD–ROM) Documentation Manual (Disc–A)
EPA/600/R–92/194b

Global View 4 CD–ROM set. United States Department of Commerce (USDC), National
Oceanographic and Atmospheric Administration (NOAA), National Environmental
Satellite Data and Information Service (NESDIS), National Geophysical Data Center
(NGDC), Boulder Colorado.

Table D–1. Data Included in ToolkiK3/4/5 (1 of 2)
Data Set Units Cell size File

Olson World Ecosystems v1.3a 30 cats 30 arc min owe13a.img

Olson World Ecosystems v1.4d 74 cats 10 arc min owe14d.img

Olson World Ecosystems v1.4dr 3 cats 10 arc min owe14dr.img

Olson (Madagascar) Ecosystems v1.3a 29 cats 30 arc min mowe13a.img

Federal Naval Operations Center (FNOC) modal
elevation

meters 10 arc min fnocmod.imgs

FNOC maximum elevation meters 10 arc min fnocmax.imgs

FNOC minimum elevation meters 10 arc min fnocmin.imgs

FNOC modal elevation meters 10 arc min fnocmod.img_dec

FNOC maximum elevation meters 10 arc min fnocmax.img_dec

FNOC minimum elevation meters 10 arc min fnocmin.img_dec

FNOC primary & 2ndary surface types 10 cats 10 arc min fnocpt.img

FNOC ocean/land mask 2 cats 10 arc min fnococm.img

FNOC number of ridges count 10 arc min fnocrdg.img

FNOC direction of ridges degrees 10 arc min fnocazm.img

FNOC water & urban cover percent 10 arc min fnocwat.img

Zobler Soil types 108 cats 60 arc min srzsoil.img

Zobler associated and included soil units 279 cats 60 arc min srzsubs.img

D-6 333–CD–003-005

Table D–1. Data Included in ToolkiK3/4/5 (2 of 2)
Data Set Units Cell size File

Zobler associated and included soil units 279 cats 60 arc min srzsubs.img_dec

Zobler near surface soil texture 10 cats 60 arc min srztex.img

Zobler surface slope 10 cats 60 arc min srzslop.img

Zobler soil phase 87 cats 60 arc mins srzphas.img

Zobler special codes 12 cats 60 arc mins srzcode.img

Zobler world areas 9 cats 60 arc mins srzarea.img

Etop05 surface elevation meters 5 arc mins etop05.dat

Etop05 surface elevation meters 5 arc mins etop05.dat_dec

DMA conterminous USA meters 30 arc secs usatile.bin tiles (3)

Terrainbase global DEM (etop05 based) meters 5 arc mins tbase.bin

Terrainbase global DEM (etop05 based) meters 5 arc mins tbase .bin tiles (3)

Geoid cm 15 arc mins geoid.dat

Note 1.	 The _dec files are byte swapped to allow operation on DEC machines.
PGS_AA_dem has a byte swapping utility built in which comes into operation
on DEC machines.

Note 2.	 The table in section 3.2.2. specifies the parameters names recognized by the
tools.

Note 3. The tiled files are subdivided in order to reduce physical file size.

There is no loss of data. Access to the tiles will yield the same result as to the
original whole data set.

These data sets are samples only. Other data sets may be delivered with later versions of the tool
kit or the user may use his/her own data sets from other sources.

D.3.1.2 Support and format files

Support and format files are required for each data set. There is one format file per data set but
there is not necessarily a one–to–one mapping between data sets and support files since the same
support file can be used for similar data sets. The association between these files is specified
operationally in the indexFile see section 3.2.2.

The support files for the delivered data sets have been created by the tool developers although in
the longer term it is anticipated that users will create their own data sets and support data. These
files are simple label = value ASCII files containing a set of values required by the tools.

Format files use the Freeform data description language to describe data file formats. A subset of
possible descriptions is accepted by the tool. Full details of Freeform, including format
specifications can be found in the Freeform Tutorial accessible on the ftp server

D-7 333–CD–003-005

ftp.ngdc.noaa.gov under /pub. Freeform is also a component of the software of the tools. An
outline of Freeform data description applicable to the ancillary tools is found below.

D.3.1.2.1 Support File

The support file is constructed using a label = value format and read using the PGS_AA_PeV
tool described elsewhere. It contains various values which define the format of the output buffer
containing parameter values returned to the user. For 2 and 3 dimensional data sets, there are
mandatory fields that must exist in the support file. These are described below with an
explanation of how each is derived.

cacheFormat1	 the data type of the output to be produced by the tool (short, long, double
or float). On machines (e.g. sgi IRIX64, dec_alpha) 'long' datatype is eight
bytes long. In such cases instaed of using 'long', 'int64' must be used.

cacheFormat2	 the number of decimal places in the output to be produced by the tool
(applicable to double and float only)

cacheFormatBytes the number of bytes represented by the data type of the output

parmMemoryCache	 the size in bytes of the parameter requested once changed to the output
type. The volume of the parameter from the whole data set.

dataType	 the data type of the output to be produced by the tool (short, long, double
or float).

autoOperation	 a composite integer value made up of operations that must be applied to
the data during access (see section 3.2.3)

fileMemoryCache	 the size in bytes of the data set file in its input format (see format file
below)

maxLat maximum latitude of data set

minLat minimum latitude of data set

maxLong maximum longitude of data set

minLong minimum longitude of data set

xCells the number of data set cells in the X (fastest changing) dimension

yCells the number of data set cells in the Y (slower changing) dimension

zCells the number of data set cells in the Z (slowest changing) dimension

(set 0 for 2d data sets)

funcIndex	 index for the interpolation routine to be used. Currently only linear
interpolation is supported for which the index is 0.

swapBytes	 'yes' to indicate byte swapping is required on the result buffer else 'no'.
Used only by the PGS_AA_dem tool on dec machines for cases where the
the data files have originated on foreign machines.

D-8 333–CD–003-005

note 1.	 parmMemoryCache and fileMemoryCache must be => the appropriate
size in bytes

note 2.	 the dimensions (Cells) must be matched with the storage form of the data
set in terms of dimension ordering.

For some data sets, additional support information may be required. The tools will currently deal
with the National Meteorological Center (NMC) Rapid Update Cycle (RUC) model products that
are in a polar stereographic projection. Thus the following must be present in the support file.

lowerLeftLat of the grid origin

lowerLeftLong of the grid origin (in E coordinates)

meshLength length in meters of the cell

gridOrientation in E coordinates

D.3.1.2.2 Freeform data description

Freeform is able to deal with a number of format types. The data sets delivered with the tool kit
are all have relatively simple binary formats described in the '.bfm' files.

e.g. fnocMod 1 2 short 0

• the first item is the parameter name as requested by the user

• the second and third values are the start and stop byte positions of the parameter

•	 the data type. On machines (e.g. sgi IRIX64, dec_alpha) 'long' datatype is eight bytes
long. In such cases instaed of using 'long', 'int64' must be used.

• the number of values after the decimal point for float/doubles

These files describe the input format of the data set; i.e., the format of the data set; c.f. the
output format described in the support file that is the format of the buffer delivered to the user
through the tool.

The parameter is described once and Freeform assumes the same byte pattern throughout the data
file, whatever its size. A data set file may contain multiple parameters with different data types.
However, Freeform does not allow multiple parameters to be band interleaved; i.e., multiple
parameters must have values individually interleaved, e.g. the format file:

fnocMod 1 2 short 0

another_parm 3 6 float 1

will allow Freeform to ingest a data set having binary data (when viewed)

34 45.3 33 46.1 45 712.3etc.

The extension .bfm tells Freeform that the file is in binary format. Other extensions are contents
are available in Freeform although the ancillary tools will not deal with them at this release.

D-9 333–CD–003-005

D.3.2 Functionality and Operation

D.3.2.1 Outline Functionality

The tools are designed to be called by the user using a parameter name; a file i.d.; an operation; a
version number; and either geographic coordinates or file structure coordinates.

The tool takes the parameter name and matches it to a list in the indexFile. If found, the file
i.d.s of the support and format files are ingested from the indexFile. The format and support files
are then interrogated by the tool for relevant information. The file i.d. and version number
provide the full identification for the data set file containing the parameter and must be known by
the user from the process control environment (see 3.2.4.).

The operation is an integer comprising the sum of operations required by the user to be applied
to the data during extraction through the tool. Section 3.2.3 specifies the available operations.

The geographic coordinates (input to PGS_AA_2Dgeo, PGS_AA_3Dgeo) are simple latitude/
longitude as double values in the range +/- 180.000 (longitude) and +/-90.000 (latitude). The file
structure coordinates (x,y and z) (input to PGS_AA_2DRead, PGS_AA_3DRead) are defined
in respect to the ordering of the data in the data set file. The calling sequence expects the 'x'
dimension to be the fastest changing dimension followed by 'y' and (for 3 D data sets) 'z'. This
means that the user must understand the nature of the ordering of dimensions in the data set file
and this should also be reflected in the support file.

Example:

The Olson World Ecosystem Data sets supplied with the tool are ordered with lines of
latitude first (i.e., the cells in the binary file start at +90.00, -180.00 and proceed to
+90.00, +180.00 before starting the next line of latitude). Thus the value of longitude of
each cell changes fastest and so longitude is the x dimension and latitude the y
dimension.

Both GEO tools assume that longitude is associated with the fastest changing (x) dimension and
perform calculations on this basis. This means the support file xCells value represents the
longitude range of the data set. If a data set is oriented with latitude changing fastest then xCells
must be set to the number of cells in latitude, and the latitude and longitude input arguments to
the calling sequence must be used reversed in meaning; i.e., input user latitude into the longitude
argument etc.

PGS_AA_dem operates in a very similar way to PGS_AA_2Dgeo that it utilizes. The value
added in the DEM tool is that it selects parameter values from the same logical data set where the
data are physically separated into tiles. The DEM tool makes the selection on the basis of the
maxLat, maxLong, minLat, and minLong attributes found in the Support files.

D-10 333–CD–003-005

D.3.2.2 Parameters and the indexFile

The AA tools have been delivered with a sample set of data files. These files contain one
parameter only per data file, although the tools will operate with files having multiple parameters
(with a limit currently set to 4). The indexFile currently contains parameters found in the sample
data sets. The parameter names in the indexFile are those which must be used in the calling
sequences. When the user wishes to add new data sets, the indexFile must be updated with
suitable names for the parameter(s) contained in the data sets plus the i.d.s of the support and
format files (i.d.s should cross reference with process control table).

The current indexFile appears as follows:

Table D–2. Current Index File
Parameter

21 (Number Of Records)
Support File I.D. Format File I.D.

OlsonMadegascarEcosystems1.3a 10901 10920
OlsonWorldEcosystems1.3a 10902 10921
OlsonWorldEcosystems1.4d 10903 10922
OlsonWorldEcosystems1.4dr 10903 10923
etop05SeaLevelElevM 10904 10924
fnocAzm 10905 10925
fnocOcm 10905 10926
fnocPt 10905 10927
fnocRdg 10905 10928
fnocSt 10905 10929
fnocUrb 10905 10930
fnocWat 10905 10931
fnocMax 10906 10932
fnocMin 10906 10933
fnocMod 10906 10934
srzArea 10907 10935
srzCode 10907 10936
srzPhas 10907 10937
srzSlop 10907 10938
srzSoil 10907 10939
srzText 10907 10940
nmcRucSigPres 10909 10941
nmcRucSigPot 10909 10941
usadmaelevation 10740 - 10751 10700 - 10711 (2)
tbaseElevationWorld 10915 10942
tbaseElevation 10916 - 10919 10943- 10946(2)
geoid data 10948 10947

Note 1:	 The nmc file contains 2 parameters of many from a model run for a test period.
The are included for test purposes only and are not generally applicable.

D-11 333–CD–003-005

Note 2:	 These elevation parameters cover multiple physical files that are accessed
automatically by the DEM tool.

D.3.2.3 Use of User Specified and Auto–Operations

To account for the variability of data sets, two types of 'operation' have been enabled within the
tools; user and auto–operations. The user operation, the last argument in the calling sequence,
specifies which additional functions the user wishes to apply to the data. The currently available
operations are:

Operation: PGS_AA_NEARESTCELL

Argument value: 1

Applicable to: PGS_AA_2Dgeo, PGS_AA_3Dgeo

Function:

The geographic coordinates are translated to a column and row coordinate pair.
The translation provides a floating point number. Obviously the cell coordinate
is an integer. This operation allows the user to specify the nearest cell by
rounding the floating point numbers up (using the C 'ceil' function).

Operation: PGS_AA_OP_NINTCELL

Argument value: 2

Applicable to: PGS_AA_3Dgeo

Function:

This operation is specific to the polar stereographic auto–operation the output
from which is unclear at the boundary. This user operation is used to round
geocoordinate values in a very similar way to PGS_AA_NEARESTCELL but
with allowance for uncertain boundary calculations.

Operation: PGS_AA_INTERP2BY2

Argument value: 4

Applicable to: PGS_AA_2Dgeo

Function:

This operation conducts interpolation on a 2x2 grid(i.e. nearest 4 points) and
returns the interpolated value. The type of interpolation is controlled by
funcIndex defined in the support file. Currently only bilinear interpolation is
supported with funcIndex = 0. The interpolation routine was taken from
Numerical Recipes in C by William H. Press et al., pages 90 and 106.

Operation: PGS_AA_INTERP3BY3

D-12 333–CD–003-005

Argument value: 8

Applicable to: PGS_AA_2Dgeo

Function:

This operation conducts interpolation on a 3x3 grid(i.e. nearest 9 points) and
returns the interpolated value. The type of interpolation is controlled by
funcIndex defined in the support file. Currently only bilinear interpolation is
supported with funcIndex = 0. The interpolation routine was taken from
Numerical Recipes in C by William H. Press et al., pages 90 and 106.

Other more complex operations can be conceived although none have been implemented at this
time.

Auto–operations are those functions that must be applied in order to extract the correct values.
The auto–operation is specified in the support file and applied automatically on each run. The
currently available auto–operations are:

Operation: PGS_AA_AOP_PLATTECARRE

Support file value: 1

Applicable to: PGS_AA_2Dgeo, PGS_AA_3Dgeo, PGS_AA_dem

Function:

This auto–operation calculates the column row cell coordinates from geographic
coordinates assuming a Platte Carre projection

Operation: PGS_AA_AOP_POLARSTEREO

Support file value: 2

Applicable to: PGS_AA_3Dgeo

Function:

This auto–operation calculates the column row cell coordinates from geographic
coordinates assuming an NMC RUC model polar stereographic projection.

Operation: PGS_AA_AOP_GREENWICHSTART

Support file value: 4

Applicable to: PGS_AA_2DRead, PGS_AA_3DRead, PGS_AA_2Dgeo,

PGS_AA_3Dgeo, PGS_AA_dem
Function:

This auto–operation recalculates the geographic coordinates assuming a longitude 0
value at Greenwich.

Operation: PGS_AA_AOP_IDLSTART

Support file value: 8

Applicable to: PGS_AA_2DRead, PGS_AA_3DRead, PGS_AA_2Dgeo,

PGS_AA_3Dgeo, PGS_AA_dem
Function:

D-13 333–CD–003-005

This auto–operation recalculates the geographic coordinates assuming a longitude 0
value at the Interactive Data Language (IDL).

Auto–operations are generally applied before user operations.

Both types of operation are additive; e.g., an auto–operation of value 9 will results in the
functions PGS_AA_AOP_IDLSTART and PGS_AA_AOP_PLATTECARRE being applied to
input geo–coordinates in that order.

D.3.2.4 Operational Environment

The file set i.d. and version number must be provided by the user to the ancillary tool. For a
static data set, only the i.d. is relevant, the version number should be set to 1. The i.d. is set up in
the process control table during Algorithm Integration and Test (AI&T) of the algorithm and
should be known to the user.

For dynamically changing data sets, a version number is required which specifies the exact data
file out of a number staged for the processing run (e.g., for a set of times). These are obtained
from the process control tools PGS_PC_GetNumberOfFiles and PGS_PC_GetAttributes
(described elsewhere in this document). The sequence from calling these tools to obtain a version
number is:

PGS_PC_GetNumberOfFiles gets number of versions for a particular i.d.

LOOP FOR number of version with same file i.d.

PGS_PC_GetAttributes of each file version

test of attributes using user criterion

ENDLOOP

PGS_AA_tool call using i.d. and selected version number

This series of calls is the basis of the PGS_AA_dem tool that selects the correct tiles using
geographic coverage attributes. DEMs or other 2 dimensional data sets that are physically too
large to be ingested into RAM in one go, can be 'tiled' into smaller coverages. These are then
entered into the PCF having the same fileId but different version numbers. The PGS_AA_dem
tool makes the selection and fills the results buffer for the user.

D.3.3 Optimal Operation

D.3.3.1 Buffering

The tools ingest the whole data file into a buffer and then extracts the parameter required into a
further parameter buffer. The area requested is then extracted and returned in the output/results
buffer. The parameter buffer is "free'd" before exiting the tool. This leaves the file buffer in
memory. Subsequent calls requesting parameter values from the same file are serviced from this
buffer while parameters from other files obviously cause the new file to be buffered. There is a
user configurable number of file buffers which can be held by each tool. It should be set by the
user according to the memory limitation of the host machine and the need for rapid access.

D-14 333–CD–003-005

Obviously, the greater the number of files held, the quicker different parameter calls will be
serviced, but at the expense of tying up memory. The #define is currently set to 4 in PGS_AA.h
(FORTRAN version is PGS_AA.f):

#define PGSd_AA_MAXNOCACHES 4

D.3.3.2 Multiple calls

The GEO tools can be used with single coordinate pairs repeatedly; e.g., calling the tool in a loop
with changing lat/longs. The tools can also accept arrays of coordinate pairs. Using the tools in
this way will illicit a much faster response from the tool since the setup functions called during
each tool call are used only once.

D.3.3.3 Pre–processing, formats and file sizes

The static data files delivered with release 1 are in the format provided by the vendor. This
format is compatible with Freeform since data set and Freeform development were associated at
NGDC. Most of the files are of relatively small size and can readily be loaded into memory.
Etop05 is somewhat larger (18 Mbytes) and especially when used with the FORTRAN interface,
may demand memory that is not available (or only with virtual swapping).

The FORTRAN problem arises from the fact that only integers of type PGSt_integer which is
equivalent to an Integer*4 are permitted. Thus PGS_AA_2DRead is forced to allocate, e.g., 36
Mbytes memory to extract the elevation data during a tool call. This is the principal reason
behind tiling larger data sets such as the DEMs.

The ability of Freeform to deal with a range of formats means that pre–processing of many data
sets should be minimal. However, data sets that are have a complex internal structure may
require more extensive pre–processing. In particular, NMC data sets are multi–dimensional. It is
not yet clear whether further tools will need to be developed to deal with these.

D.3.4 Setting up new/user data sets

Users can and are expected to use their own data sets. Below is a check list of the actions that
need to be taken when introducing new data sets.

• Check that the data file conforms to the constraints outlined in 3.1.1.

•	 Construct a Freeform format file and a support file (3.1.2). Check that suitable operations
are available and set the auto–operation.

•	 Edit a suitable file i.d. into the process control table for the data set, the format file and
the support file. The latter 2 files must be in the support file section while the data set file
i.d. must be in the product input section.

•	 Edit the indexFile to include a suitable parameter name for parameters in the data set
(3.2.2). Include the file i.d.s of the format and support files related to the data set file and
as inserted into the process control table.

D-15 333–CD–003-005

•	 Place the data set file in the product input directory and the format and support files in the
~/runtime directory (or equivalent)

D.3.5 Upgrades

D.3.5.1 Interaction with HDF files

Where ancillary inputs are other EOS products, then the format from which the requested data
must be extracted may be HDF. Further ancillary tools using HDF libraries may be developed to
deal with this scenario.

D.3.5.2 Other format types for user files

Data sets that cannot be dealt with by the current tools may be due to having non–raster (e.g.,
vector) formats which may necessitate new tools; although possibly continuing to use Freeform.
HDF libraries and formats may also be a means of accessing these formats.

D.3.5.3 New Operations

New data sets provided by ECS or the user may require new operations (user and/or auto).
Where these are clearly defined and common to several processing chains, then the current tools
may be upgraded to include new operations.

D.4 PGS_AA_PeVA

D.4.1 Data Sets accessed

PGS_AA_PeVA is an ancillary tool to be used for performing a parameter equals value
extraction. There are three types of extraction that the tool can perform: a string, integer and a
real from a parameter input.

The tool will only do this extraction from an ASCII file which the user constructs. An example
of a file, is as follows:

CACHEFORMAT1 = long

CACHEFORMAT2 = 0

CACHEFORMATBYTES = 4

PARMMEMORYCACHE = 1036800

DATATYPE = long

DATARATE = static

ANEXAMPLEARRAY = (9,5,3,7)

D-16 333–CD–003-005

D.4.2 Outline Functionality

The tool is designed to be called by the user, using a logical input, a parameter input and
returning a value. The logical is an integer whose value is supplied through the PC environment,
which gives the i.d. of the file to be acted upon by the PGS_AA_PeVA tool. The parameter is a
data set dependent character string produced by the user, and the value returned by the tool is the
result of the mapping from the character string to its value.

Example of calling sequence to extract a string called MY_STRING from the logical file 10992,
and return the resulting string in MY_STRING_VALUE.

PGS_AA_PeVA_string (10992, "MY_STRING", MY_STRING_VALUE);

The PGS_AA_PeVA tool operates in exactly the same way but allows for arrays to be extracted
(see Main User Guide section)

D.4.3 Optimal Operation

There are some restrictions on the format of the data file. All parameter names must be in upper
cases. Arrays must be formatted as shown in the example.

The PeV tool is based on Freeform, while the PeVA tool is based on ODL and will therefore
produce different types of error conditions.

D.4.4 Upgrades

None anticipated.

D-17 333–CD–003-005

This page intentionally left blank.

D-18 333–CD–003-005

Appendix E. Example of Level 0 Access Tool Usage

This Appendix gives an end–to–end example of how Level 0 access tools might be used in
science software.

As an example, we use CERES processing, insofar as it is understood by ECS at this time.
(CERES is chosen for this example because only the TRMM platform has reasonable definition
of file formats at this time; LIS L0 processing is similar.) The source document for TRMM
formats is "Interface Control Document between the Sensor Data Processing Facility (SDPF) and
the Tropical Rainfall Measuring Mission (TRMM) Customers,” NASA Mission Operations and
Data Systems Directorate, Draft, Nov. 1994. We assume that the TRMM mission specific
parameters given in section 10 of that document apply to CERES.

A single normal CERES production run consists of 24 hours of data. For Level 0 processing,
there is a single main instrument–specific science dataset, namely science telemetry (Application
ID 54). There is also a "housekeeping" file, consisting of various APIDs, which is common to all
TRMM instruments. All science data for one 24 hour period is contained in a single file; all other
data, including calibration, diagnostic and housekeeping data are contained in a second file. In
addition each of these datasets has an associated Detached SFDU (Standard Formatted Data
Unit) Header file, which consists of TRMM file metadata.

E.1 Preparing Simulated CERES L0 Files

At the SCF, you must first prepare the input Level 0 data files. You may decide to customize
your files by using function PGS_IO_L0_File_Sim in a C or FORTRAN program that you code
yourself; alternatively you may choose to use the supplied interactive executable driver L0sim.
The latter method is shown here. The sample given is for creating a science APID file. The
housekeeping file generation inputs are slightly different

In the example,

data that you type is given like this;

data generated by program L0sim is given like this,

comments and explanations are given like this.

The line

-->

means that you typed a carriage return, so using the default value.

unix% is the UNIX system prompt.

E-1 333–CD–003-005

E.1.1 Sample Session

unix% $PGSRUN/L0sim

* ------O--------- *

* ___/__/_______ *

* __/ \/ ______ *

* / ________ *

* / *

* ^^^^^^^^^^^^^^^^ *

* ^^^^^^^^^^^^^^^^ *

* ^^^^^^^^^^^^^^^^ *

* =EOS= *

ECS L0 FILE SIMULATOR

Enter <return> at a prompt to select the default
option (indicated by []). Enter '?' at any prompt
for additional information. Enter 'q' at any prompt
to quit.

enter spacecraft ID (TRMM, EOS_AM, EOS_PM) [TRMM]:
-->

enter start date in CCSDS ASCII (format A or B)
A) YYYY–MM–DDThh:mm:ss
B) YYYY–DDDThh:mm:ss

enter start date:

-->1997–12–01

enter stop date:

-->1997–12–02T00:00:00

You may leave out the entire time, minutes and seconds, or seconds if desired.

enter time interval in seconds [6.600000 sec]:
-->

enter the desired number of files [1]:
-->

E-2 333–CD–003-005

TRMM always has only one file per APID (or housekeeping): EOS AM and PM may have

more. Note that you must rerun program L0sim for each virtual data set you want, i.e.,

each "science" APID (or housekeeping); this prompt is asking how many files you want for

a given virtual data set.

is this Housekeeping data (y/[n]):

-->

Housekeeping files are special in that they may have many APIDs. If you enter y here, you

are prompted for the number of APIDs, then APID no. and data length for each APID. In

this prototype, APIDs are written APID 1, APID 2, ..., APID n, APID 1, APID 2, ... until the

stop time you requested is reached.

is this Quicklook data (y/[n]):
-->
For TRMM, the only effect of this input is to set a byte in the file header. For EOS AM and
PM, there is no Quicklook data.

enter the Application ID [0]:
-->54

The APID is stamped on each packet. It is also written to the TRMM file header.

enter the Application Data Length [0]:

-->7118

This is the actual length of the packet application data in bytes. It does not include the

packet header. All packets for a given APID have the same length.

read in Application Data from file [<none>]:
-->
If you type in the name of a file here, the simulator reads data from this file and writes it
into the packet as application data. Here bytes 1–7118 of this file would be written to
packet #1, bytes 7119–14238 to packet #2, etc.

specify processing options (y/[n]):

-->

This is for simulating some miscellaneous data in the TRMM file header. It is meant to
indicate options applied during SDPF processing, before it gets to ECS.

start date: 1997–12–01T00:00:00

stop date: 1997–12–02T00:00:00

time interval: 6.6000 seconds

This will create approximately 94.65 MB of data.

accept ([y]/n)?

-->

E-3 333–CD–003-005

Writing packets out to 1 file:
– start time of next file: 1997–12–01T00:00:00.000000Z
– number of packets in next file: 13091

– writing file: TRMM_G001_1997–12–01T00:00:00Z_V01.DATASET_01 ...
– writing files:TRMM_G001_1997–12–01T00:00:00Z_V01.DATASET_01 ...

TRMM_G001_1997–12–01T00:00:00Z_V01.SFDU_01

The SFDU file is only created for TRMM.

unix%

E.2 CERES Level 0 processing code using the SDP Toolkit

In this section is given an abbreviated example of what CERES L0 processing code might look
like. It is assumed here that the datasets will be opened and processed one–at–a–time; this may
not be the case in the actual CERES processing. No processing of packet, header or footer data
returned is done in this example.

E.2.1 Notes:

The examples show one way of retrieving simulated ephemeris and attitude data corresponding
to packet times. For the science file (APID 54), the time of each packet is saved, then later used
as input to the Toolkit ephemeris/attitude retrieval tool. To do this, a simulated ephemeris file
must have been prepared beforehand. See the Toolkit Primer (Section 7) or Users Guide (Section
6.2.6) for details. (In the production system, this file is assumed to have been created in
preprocessing from either Flight Dynamics Facility (FDF) files or from S/C ephemeris packets.)

In the interests of brevity, Detached SFDU Header file processing is completely omitted from the
examples, as it is not clear what the information would be used for. Reading and accessing these
files would involve use of the tools PGS_PC_GetFileAttr and PGS_PC_GetFileByAttr; see the
Toolkit Primer (Section 4) for explanations of these.

Also, to keep things short, no error processing is shown.

The example code is given for illustrative purposes only, and is adapted from an unofficial unit
test driver. The code given here has not actually been compiled and tested.

Because there is exactly one physical file per APID (or housekeeping) per day in TRMM L0
data, a virtual data set in Toolkit L0 functions corresponds to a single physical TRMM L0 file.
For EOS AM and PM, there may be more than one physical file per given APID; in that case,
this code would change, in that one must loop around the GetHeader and GetPacket calls until all
physical files are read. There is an example of this in the tool descriptions for these two tools in
section 6.2.1.1.

The examples assume the following exists in the PRODUCT INPUT FILES section of the
Process Control File (PCF) at the SCF:

E-4 333–CD–003-005

1|TRMM_G0001_1997-12-01T00:00:00Z_V01.dataset_01||||

TRMM_G0001_1997-12-01T00:00:00Z_V01.sfdu_01|1

54|TRMM_G0088_1997-12-01T00:00:00Z_V01.dataset_01||||

TRMM_G0088_1997-12-01T00:00:00Z_V01.sfdu_01|1

(Note: each entry must appear on one line in the actual PCF, and not be broken into two lines as
shown here.)

C code example

#include <PGS_IO.h>

#include <PGS_TD.h>

/* File logicals corresponding to PCF entries

Arbitrarily use APID as file logical, or 1 for housekeeping */

#define HOUSEKEEPING 1

#define SCIENCE 54

/* PACKET_BUFFER_MAX is the maximum possible size of a telemetry packet,

including packet header. Note that the input to L0sim corresponding to

this is "Application Data Length"; however, the latter does *not* include

packet header. Since the packet header is 14 bytes for TRMM, we used the

value 7118 for the "Application Data Length" field in constructing the

simulated files above. */

#define PACKET_BUFFER_MAX 7132

/* HEADER_BUFFER_MAX is the maximum possible size of the TRMM file header.

This number is 26 for EOS AM and PM, since those file headers have no

variable length part. */

#define HEADER_BUFFER_MAX 556

/* FOOTER_BUFFER_MAX is the maximum possible size of the TRMM file "footer,”

which consists of Quality and Accounting Capsule (QAC) and optionally

Missing Data Unit List (MDUL). This number is a wild guess. */

#define FOOTER_BUFFER_MAX 100000

/* NUM_DATASETS is the number of virtual datasets to process.

This includes the housekeeping file and the science file. */

#define NUM_DATASETS 2

/* MAX_PKTS is the maximum number of packets.

Used for saving packet times and for ephemeris and attitude retrieval */

#define MAX_PKTS 14000

main()

{

PGSt_PC_Logical file_logical[NUM_DATASETS];

/* Logical file ID for PCF */

E-5 333–CD–003-005

PGSt_SMF_status returnStatus;
 /* Toolkit function return value */

PGSt_integeri;
 /* Virtual data set loop index */

PGSt_IO_L0_VirtualDataSet

virtual_file; /* Virtual file handle */

PGSt_double start_time; /* Virtual data set start time */

PGSt_double stop_time; /* Virtual data set stop time */

char asciiUTC_A[28]; /* time in UTC CCSDS ASCII A format */

PGSt_IO_L0_Header header_buffer[HEADER_BUFFER_MAX];

/* Buffer for receiving header data */

PGSt_IO_L0_Header footer_buffer[FOOTER_BUFFER_MAX];

/* Buffer for receiving footer data */

PGSt_integerj; /* Index */

PGSt_integeroffset; /* Offset byte of packet time */

PGSt_scTime file_time[2][8]; /* File time in PB5 format */

PGSt_double jdUTC[2]; /* Time in UTC -- Julian date format */

PGSt_booleanonLeap; /* Leap second flag */

PGSt_integerpacket_count; /* No. packets in this file */

PGSt_integerqac_size; /* Size of QAC data in bytes */

PGSt_integermdul_size; /* Size of MDUL data in bytes */

PGSt_integerp; /* Packets read counter */

PGSt_integerpacket_loop_flag;

/* Flag for controlling packet read loop */

PGSt_IO_L0_Packet packet_buf[PACKET_BUFFER_MAX];

/* Buffer for receiving packet data */

PGSt_integerappID; /* Application ID of this packet */

PGSt_integerpkt_seq_count; /* Sequence number of this packet */

PGSt_integerpkt_len; /* Length in bytes of this packet */

PGSt_scTime pkt_time[MAX_PKTS][8];

/* Packet time stamps */

PGSt_double UTC_offset[MAX_PKTS];

/* packet UTC offset in seconds */

char asciiUTC_A_eph_start[28];

/* start time of ephemeris data in UTC CCSDS ASCII A format */

PGSt_double positionECI[MAX_PKTS][3];

/* ECI position vectors (m) */

PGSt_double velocityECI[MAX_PKTS][3];

/* ECI velocity vectors (m/s) */

E-6 333–CD–003-005

PGSt_double ypr[MAX_PKTS][3]; /* Euler angles (yaw/pitch/roll) (rad) */

PGSt_double yprRate[MAX_PKTS][3];

/* Euler angle rates (rad/sec) */

PGSt_double attitQuat[MAX_PKTS][4];

/* Attitude quaternions */

/**/

/* For each data set (housekeeping or "science" APID)

/**/

file_logical[0] = HOUSEKEEPING;

file_logical[1] = SCIENCE;

for(i=0; i<NUM_DATASETS; i++)

{

/**/

/* Call PGS_IO_L0_Open to get a virtual file handle,

/* start and stop times of the available data

/**/

returnStatus = PGS_IO_L0_Open(file_logical[i], TRMM,

&virtual_file, &start_time, &stop_time);

/**/

/* Translate times to ASCII in case you want to print them out or do

/* something similar

/**/

returnStatus = PGS_TD_TAItoUTC(start_time,asciiUTC_A);

returnStatus = PGS_TD_TAItoUTC(stop_time,asciiUTC_A);

/**/

/* Call PGS_IO_L0_SetStart to position the file pointer at 20 minutes after

/* data start

/**/

returnStatus = PGS_IO_L0_SetStart(virtual_file, start_time+1200.);

/**/

/* Call PGS_IO_L0_GetHeader to retrieve header and footer

/* information from the physical file

/**/

returnStatus = PGS_IO_L0_GetHeader(virtual_file,

HEADER_BUFFER_MAX, header_buffer,

FOOTER_BUFFER_MAX, footer_buffer);

E-7 333–CD–003-005

/**/

/* Unpack and/or save or process header data here

/**/

/*

Header buffer contents:

Bytes 1- 2 : 6 bits spare, 10 bits S/C ID

Bytes 3-11 : S/C clock start time (PB5 format)

Byte 12 : spare

Bytes 13-21 : S/C clock stop time (PB5 format)

Byte 22 : spare

Bytes 23-26 : No. packets in file

*/

/*

Convert S/C time to ASCII, in case you want to print it

*/

for(j=0;j<8;j++)

{

file_time[0][j] = header_buffer[2+j]; /* start */

file_time[1][j] = header_buffer[12+j]; /* stop */

}

for(j=0;j<2;j++)

{

returnStatus = PGS_TD_PB5toUTCjd(file_time[j], jdUTC);

if(returnStatus == PGSTD_N_LEAP_SEC_IGNORED)

{

onLeap = PGS_TRUE;

}

else

{

onLeap = PGS_FALSE;

}

PGS_TD_UTCjdtoUTC(jdUTC, onLeap, asciiUTC_A);

}

/* Special notes for EOS AM and PM:

(1) 9th byte of file header time is not used in EOS AM or PM time

conversions in this prototype

(2) EOS AM and PM file header time format is unknown; we assume they are

the same as packet time formats. This means that function

PGS_TD_SCtime_to_UTC must be used to convert EOS AM and PM times to

ASCII. */

E-8 333–CD–003-005

/*

Convert no. packets in file to integer

*/

packet_count =

header_buffer[25] + 256 * (

header_buffer[24] + 256 * (

header_buffer[23] + 256 * (

header_buffer[22])));

/**/

/* Convert footer sizes to integer: quality (QAC) and missing (MDUL) data

/* (TRMM only)

/**/

qac_size =

footer_buffer[3] + 256 * (

footer_buffer[2] + 256 * (

footer_buffer[1] + 256 * (

footer_buffer[0])));

mdul_size =

footer_buffer[4+qac_size+3] + 256 * (

footer_buffer[4+qac_size+2] + 256 * (

footer_buffer[4+qac_size+1] + 256 * (

footer_buffer[4+qac_size])));

/**/

/* Note: the simulator does *not* simulate the internal structure of the QAC

/* and MDUL data

/**/

/**/

/* While still packets to process in this file

/**/

p = 0;

packet_loop_flag = 1;

while(packet_loop_flag)

{

/**/

/* Call PGS_IO_L0_GetPacket to read a single L0 packet

/* If reached end of file, set flag to exit loop

/**/

returnStatus = PGS_IO_L0_GetPacket(

virtual_file, PACKET_BUFFER_MAX, packet_buf);

if ((returnStatus == PGSIO_M_L0_HEADER_CHANGED)

E-9 333–CD–003-005

 || (returnStatus == PGSIO_W_L0_END_OF_VIRTUAL_DS))

{

packet_loop_flag = 0;

}

/**/

/* Unpack and/or save or process packet data

/**/

/*

Packet buffer contents -- "unused" means not written by simulator

Bytes 1- 2 : packetID 	 bits 0-2:

bit 3:

bit 4:

bits 5-15:

Bytes 3- 4 : pktSeqCntl bits 0-1:

bits 2-15:

Bytes 5 -6 : pktLength

Bytes 7-14 : timeStamp

*/

Version Number -- unused

Type -- unused

Secondary Header Flag -- unused

Application Process ID

Sequence Flags -- unused

Packet Sequence Count

Packet Length

packet S/C time stamp

appID = packet_buf[1] + 256 * packet_buf[0];

pkt_seq_count = packet_buf[3] + 256 * packet_buf[2];

pkt_len = packet_buf[5] + 256 * packet_buf[4];

/* If currently processing the science file (APID 54),

Store time stamps for later retrieval of spacecraft ephemeris

NOTE: Packet time format is spacecraft platform dependent */

offset = 6; /* 6 for EOS_AM, 7 for EOS_PM */

if(i == 1)

{

for(j=0;j<8;j++)

{

pkt_time[p][j] = packet_buf[offset+j];

}

}

p++;

} /* End while (packet_Loop_flag) */

/**/

/* Call PGS_IO_L0_Close to close the virtual data set

/**/

returnStatus = PGS_IO_L0_Close(virtual_file);

E-10 333–CD–003-005

/**/

/* If currently processing the science file (APID 54),

/* Retrieve simulated S/C ephemeris and attitude at packet times

/* from previously prepared ephemeris file

/**/

if(i == 1)

{

returnStatus = PGS_TD_SCtime_to_UTC(TRMM, pkt_time, p, asciiUTC_A,

UTC_offset);

returnStatus = PGS_EPH_EphemAttit(TRMM, asciiUTC_A, UTC_offset,

PGS_TRUE, PGS_TRUE, asciiUTC_A_eph_start,

positionECI, velocityECI, ypr, yprRate, attitQuat);

}

/**/

/* End for (each data set)

/**/

}

}

FORTRAN code example

implicit none

INCLUDE 'PGS_SMF.f'

INCLUDE 'PGS_PC.f'

INCLUDE 'PGS_PC_9.f'

INCLUDE 'PGS_TD.f'

INCLUDE 'PGS_IO.f'

INCLUDE 'PGS_IO_1.f'

integer NUM_DATASETS

parameter (NUM_DATASETS=2)

integer pgs_mem_calloc

integer pgs_io_l0_open

integer pgs_td_taitoutc

integer pgs_io_l0_setstart

integer pgs_io_l0_getheader

integer pgs_td_pb5toutcjd

integer pgs_td_utcjdtoutc

integer pgs_io_l0_getpacket

integer pgs_io_l0_close

integer pgs_td_sctime_to_utc

integer pgs_eph_ephemattit

E-11 333–CD–003-005

integer file_logical(2)

integer i

integer returnstatus

integer virtual_file

double precision start_time

double precision stop_time

character*27asciiutc_a

character*556 header_buffer

character*100000 footer_buffer

integer j

character*8 file_time(2)

double precision jdutc(2)

integer onleap

integer packet_count

integer qac_size

integer mdul_size

integer packet_loop_flag

character*7132 packet_buf

integer appid

integer pkt_seq_count

integer pkt_len

integer offset

character*8 pkt_time(14000)

double precision utc_offset(14000)

character*27asciiutc_a_eph_start

double precision eciposition(3,14000)

double precision ecivelocity(3,14000)

double precision ypr(3,14000)

double precision yprrate(3,14000)

double precision attitquat(4,14000)

C ***/

C For each data set (housekeeping or science APID)

C ***/

file_logical(1) = 1

file_logical(2) = 54

do 10 i=1,NUM_DATASETS

E-12 333–CD–003-005

C ***/

C Call pgs_io_l0_open to get a virtual file handle,

C start and stop times of the available data

C ***/

returnstatus = pgs_io_l0_open(file_logical(i), TRMM, virtual_file,

start_time,

stop_time)

C ***/

C Translate times to ASCII in case you want to print them out or do something

C similar

C ***/

returnstatus = pgs_td_taitoutc(start_time,asciiutc_a)

returnstatus = pgs_td_taitoutc(stop_time,asciiutc_a)

C ***/

C Call pgs_io_l0_setstart to position the file pointer at 20 minutes after

C data start

C ***/

returnstatus = pgs_io_l0_setstart(virtual_file, start_time+1200.)

C ***/

C Call pgs_io_l0_getheader to retrieve header and footer

C information from the physical file

C ***/

returnstatus = pgs_io_l0_getheader(virtual_file, 556, header_buffer,

100000, footer_buffer)

C ***/

C Unpack and/or save or process header data here

C ***/

C

C Header buffer contents:

C Bytes 1- 2 : 6 bits spare, 10 bits S/C ID

C Bytes 3-11 : S/C clock start time (PB5 format)

C Byte 12 : spare

C Bytes 13-21 : S/C clock stop time (PB5 format)

C Byte 22 : spare

C Bytes 23-26 : No. packets in file

C

E-13 333–CD–003-005

C Convert S/C start and stop time to ASCII, in case you want to print it

do 20 j=1,8

file_time[1] = header_buffer(3:11)

file_time[2] = header_buffer(13:21)

20 continue

do 30 j=1,2

returnstatus = pgs_td_pb5toutcjd(file_time(j), jdutc)

if(returnstatus .eq. PGSTD_N_LEAP_SEC_IGNORED) then

onLeap = PGS_TRUE

else

onLeap = PGS_FALSE

end if

pgs_td_utcjdtoutc(jdutc, onleap, asciiutc_a)

30 continue

C Special notes for EOS AM and PM:

C (1) 9th byte of file header time is not used in EOS AM or PM time

C conversions in this prototype

C (2) EOS AM and PM file header time format is unknown we assume they are

C the same as packet time formats. This means that function

C pgs_td_sctime_to_utc must be used to convert EOS AM and PM times to

C ASCII.

C

C Convert no. packets in file to integer

C

packet_count =

. header_buffer(26) + 256 * (

. header_buffer(25) + 256 * (

. header_buffer(24) + 256 * (

. header_buffer(23))))

C ***/

C Unpack footer sizes: quality (QAC) and missing (MDUL) data (TRMM only)

C ***/

qac_size =

. footer_buffer(4) + 256 * (

. footer_buffer(3) + 256 * (

. footer_buffer(2) + 256 * (

. footer_buffer(1))))

mdul_size =

. footer_buffer(4+qac_size+4) + 256 * (

. footer_buffer(4+qac_size+3) + 256 * (

E-14 333–CD–003-005

 .
 footer_buffer(4+qac_size+2) + 256 * (

. footer_buffer(4+qac_size+1))))

C ***/

C Note: the simulator does *not* simulate the internal structure of the QAC

C and MDUL data

C ***/

C ***/

C While still packets to process in this file

C ***/

p = 1

packet_loop_flag = 1

do while(packet_loop_flag .eq. 1)

C ***/

C Call PGS_IO_L0_GetPacket to read a single L0 packet

C If reached end of file, set flag to exit loop

C ***/

returnStatus = pgs_io_l0_getpacket(virtual_file, 7132, packet_buf

)

if ((returnStatus .eq. PGSIO_M_L0_HEADER_CHANGED)

. .or. (returnStatus .eq. PGSIO_W_L0_END_OF_VIRTUAL_DS))

then

packet_loop_flag = 0

end if

C ***/

C Unpack and/or save or process packet data

C ***/

C

C Packet buffer contents -- "unused" means not written by simulator

C Bytes 1- 2 : packetID bits 0-2: Version Number -- unused

C bit 3: Type -- unused

C bit 4: Secondary Header Flag -- unused

C bits 5-15: Application Process ID

C Bytes 3- 4 : pktSeqCntl bits 0-1: Sequence Flags -- unused

C bits 2-15: Packet Sequence Count

C Bytes 5 -6 : pktLength Packet Length

C Bytes 7-14 : timeStamp packet S/C time stamp

C

E-15 333–CD–003-005

 appID = packet_buf(2) + 256 * packet_buf(1)

pkt_seq_count = packet_buf(4) + 256 * packet_buf(3)

pkt_len = packet_buf(6) + 256 * packet_buf(5)

C If currently processing the science file (APID 54),

C Store time stamps for later retrieval of spacecraft ephemeris

C NOTE: Packet time format is spacecraft platform dependent

if(i .eq. 2) then

offset = 7

pkt_time(p) = packet_buf(offset:14)

40 offset

end if

p = p + 1

C End while (packet_loop_flag)

end do

C ***/

C Call PGS_IO_L0_Close to close the virtual data set

C ***/

returnstatus = pgs_io_l0_close(virtual_file)

C ***/

C If currently processing the science file (APID 54),

C Retrieve simulated S/C ephemeris and attitude at packet times

C from previously prepared ephemeris file

C ***/

if(i .eq. 2) then

returnstatus = pgs_td_sctime_to_utc(TRMM, pkt_time, p,

asciiutc_a, utc_offset)

returnstatus = pgs_eph_ephemattit(TRMM, asciiutc_a, utc_offset,

. PGS_TRUE, PGS_TRUE, asciiutc_a_eph_start,

. positioneci, velocityeci, ypr, yprrate, attitquat)

end if

C ***/

C End for (each data set)

C ***/

10 continue

E-16 333–CD–003-005

Appendix F. Level 0 File Formats

This Appendix gives the definition of file formats assumed in construction of the Level 0 access
tools, PGS_IO_L0_*, and the file simulator L0sim. See section 6.2.1.1.

Notes on table entries:

-- "Y" in the SIM? column means that this value is simulated by the L0sim software; no entry
means that the value is either 0 or garbage in the simulated file.

-- No entry in the BIT column means bits 1_8.

F.1 Tropical Rainfall Measuring Mission (TRMM) File Formats

The source document for the TRMM file format is "Interface Control Document between the
Sensor Data Processing Facility (SDPF) and the Tropical Rainfall Measuring Mission (TRMM)
Customers,” NASA Mission Operations and Data Systems Directorate, Draft, Nov. 1994. We
assume that the TRMM mission specific parameters given in section 10 of that document apply
to CERES and LIS.

TRMM has 2 files associated with each "science" APID or housekeeping file; a detached SFDU
header file, an ASCII text file consisting of file metadata, and the main data file.

F.1.1 TRMM Files Schematic

DETACHED SFDU FILE

FILE HEADER

PACKETS

FILE FOOTER (QAC and/or MDUL)

Figure F–1. TRMM Files Schematic

F-1 333–CD–003-005

There is one pair of these files for each "science" APID, plus one pair for housekeeping. CERES
has 3 "science" APIDs, thus will have 4 pairs of these files per day; LIS has one "science" APID,
so will have 2 pairs per day.

F.1.2 Detached SFDU File

This is an ASCII text file containing file metadata. The format of this file is defined in the source
document "Interface Control Document between the Sensor Data Processing Facility (SDPF) and
the Tropical Rainfall Measuring Mission (TRMM) Customers,” NASA Mission Operations and
Data Systems Directorate, Draft, Nov. 1994, section 3.2.2.

Note: The Spacecraft Clock time format used in the file header is different from the format used
for the packet Time Stamp.

F.1.3 TRMM File Header

Table F–1. TRMM File Header
BYTE BIT PARAMETER SIM?

1 1–6 (reserved)

7–8 Spacecraft ID

2 Spacecraft ID Y

3–11 Spacecraft Clock - first packet (PB5, microsec accuracy) Y

12 (spare)

13–21 Spacecraft Clock - last packet (PB5, microsec accuracy) Y

22 (spare)

23–26 Number of packets in file Y

27 Processing Options Y

28 Data Type Flag Y

29–35 Time of Receipt at Originating Node (PB5, msec accuracy) Y

36–38 (spare)

39 Select Options Y

40 Number of APIDs Y

41–42 APID Y

43 (spare)

44 Number of QAC lists in File Y

45–48 Offset to QAC list Y

Byte numbers are shown for a "science" file.
Byte 2, Spacecraft ID, is always 6b (hex).
Byte 27, Processing Options:

F-2 333–CD–003-005

bit 3 on, Redundant Data Deleted

bit 6 on, Data Merging

bit 7 in, RS Decoding

Byte 28, Data Type Flag:

=1, Routine Production Data
=2, Quicklook Data

Note: Routine production and quicklook files have the same format.

Bytes 29–35, Time of Receipt at Originating Node, is arbitrarily set to be equal to

Spacecraft Clock - last packet (without microseconds).

Byte 39, Select Options, is always 2, to indicate data organized by APID
Byte 40, Number of APIDs

=1, "Science" file
>1, Housekeeping file

Bytes 41–42 are repeated for each APID in a housekeeping file.

Byte 44, Number of QAC lists in File, is always 1.

Bytes 45–48, Offset to QAC list, is measured in bytes from the last byte of this

field to the QAC footer start. Equal to the total number of bytes
in the packet data.

F.1.4 TRMM Packet Data

The source document for the TRMM packet data format is "Tropical Rainfall Measuring Mission
(TRMM) Telemetry and Command Handbook,Ó TRMM_490_137, February 21, 1994.

Bytes 1–6 are known as the Primary Packet Header; bytes 7–14 are called the Secondary Packet
Header.

Table F–2. TRMM Packet Data
Byte Bit Parameter Sim?

1 1–3 Version Number Y
4 Type Y
5 Secondary Header Flag Y
6–8 Application Process ID (APID) Y

2 Application Process ID (APID) Y
3 1–2 Sequence Flags

3–8 Packet Sequence Count Y
4 Packet Sequence Count Y
5–6 Packet Length in bytes (=p) Y
7–14 Time Stamp Y
15-p+14 Application Data Y

F-3 333–CD–003-005

Byte 1, bits 1–3, Version Number, is always 000.

Byte 1, bit 4, Type, is always 0.

Byte 1, bit 5, Secondary Header Flag, is always 1.

Bytes 5–6, Packet Length, is defined as "the length of the entire packet, in bytes,

less the length of the primary packet header [6 bytes],

less one byte.” This is equivalent to the length of the secondary packet

header (8 for TRMM) + the length of the application data - 1,

F.1.5 TRMM File Footer

Table F–3. TRMM File Footer Table
Byte Bit Parameter Sim?

1–4 QAC List Length in bytes (=q) Y

5-q+4 QAC entries

q+5-q+8 Missing Data Unit List Length in bytes (=m) Y

q+9-q+m+8 Missing Data Unit (MDU) entries

QAC and MDU entries are neither simulated nor read in this prototype.

There is no Missing Data Unit List (MDUL) in housekeeping files.

F.2 EOS AM File Formats

F.2.1 EOS AM File Schematic

HEADER FILE

PACKETS FILE

.

.

.

PACKETS FILE

Figure F-2. EOS AM File Schematic

F-4 333–CD–003-005

F.2.2 EOS AM File Header

EOS AM L0 data is contained in two or more files: a single header file (Construction Record)
and one or more files containing packet data. The actual packet data files have no file header.

For a full desciption of the EOS AM file header see ÒInterface Control Document Between The
Earth Observing System (EOS) Data and Operations System (EDOS) ant the EOS Ground
System (EGS) Elements (510-ICD-EDOS/EGS, CDRL B301)Ó, Mission Operations and Data
Systems Directorate, Goddard Space Flight Center, January 19, 1996.

F.2.3 EOS AM Packet Data

The source document for the EOS AM packet data format is "Interface Control Document (ICD)
Data Format Control Book for EOS–AM Spacecraft (ICD–106)", Martin Marietta IS20008658A,
April 19, 1994.

Bytes 1–6 are known as the Primary Packet Header; bytes 7–15 are called the Secondary Packet
Header.

Table F–4. EOS AM Packet Data
Byte Bit Parameter Sim?

1 1–3 Version Number Y

4 Type Y

5 Secondary Header Flag Y

6–8 Application Process ID (APID) Y

2 Application Process ID (APID) Y

3 1–2 Sequence Flags

3–8 Packet Sequence Count Y

4 Packet Sequence Count Y

5–6 Packet Length in bytes (=p) Y

7 1 Secondary Header ID Flag Y

7 2–8 Time Stamp Y

8–14 Time Stamp Y

15 1 Quicklook Flag

15 2–8 User Flags

16-p+15 Application Data Y

Byte 1, bits 1–3, Version Number, is always 000.

Byte 1, bit 4, Type, is always 0.

Byte 1, bit 5, Secondary Header Flag, is always 1.

Bytes 5–6, Packet Length, is defined as "the length of the entire packet, in bytes,

F-5 333–CD–003-005

less the length of the primary packet header [6 bytes],

less one byte". This is equivalent to the length of the secondary packet

header (9 for EOS AM) + the length of the application data - 1,

Byte 7, bit 1, Secondary header ID Flag, is always 0.

Byte 15, bit 1, Quicklook flag: EOS AM quicklook data has been eliminated by NASA.

There is no footer in EOS AM files.

F.3 EOS PM File Formats

F.3.1 EOS PM File Schematic

FILE HEADER

PACKETS

Figure F–3. EOS PM File Schematic

F.3.2 EOS PM File Header

Header format for EOS PM L0 files is unknown at this writing (Feb. 1995).

Arbitrarily we have taken the first 26 bytes of the TRMM file header as the EOS PM file header.
Also, since the format of the Spacecraft Clock time in the file header is undefined, we arbitrarily
take it as identical to the packet time stamp format.

Table F–5. EOS PM File Header
Byte Bit Parameter Sim?

1 1–6 (reserved)

7–8 Spacecraft ID

2 Spacecraft ID

3–11 Spacecraft Clock - first packet Y

12 (spare)

13–21 Spacecraft Clock - last packet Y

22 (spare)

23–26 Number of packets in file Y

F-6 333–CD–003-005

F.3.3 EOS PM Packet Data

The source document for the EOS PM packet data format is "General Interface Requirements
Document (GIRD) for EOS Common Spacecraft/ Instruments", EOS PM Project, Revision A,
GSFC 422_11_12_01, January 1994.

Bytes 1–6 are known as the Primary Packet Header; bytes 7–15 are called the Secondary Packet
Header.

Table F–6. EOS PM Packet Data
Byte Bit Parameter Sim?

1 1–3 Version Number Y

4 Type Y

5 Secondary Header Flag Y

6–8 Application Process ID (APID) Y

2 Application Process ID (APID) Y

3 1–2 Sequence Flags

3–8 Packet Sequence Count Y

4 Packet Sequence Count Y

5–6 Packet Length in bytes (=p) Y

7 1 Secondary Header ID Flag

7 2 Quicklook Flag

7 3–8 User Flags

8–15 Time Stamp Y

16-p+15 Application Data Y

Byte 1, bits 1–3, Version Number, is always 000.

Byte 1, bit 4, Type, is always 0.

Byte 1, bit 5, Secondary Header Flag, is always 1.

Bytes 5–6, Packet Length, is defined as "the length of the entire packet, in bytes,

less the length of the primary packet header [6 bytes],

less one byte". This is equivalent to the length of the secondary packet

header (9 for EOS PM) + the length of the application data - 1,

Byte 7, bit 1, Secondary header ID Flag, is always 0.

Byte 15, bit 1, Quicklook flag: EOS PM quicklook data has been eliminated by NASA.

There is no footer in EOS PM files.

F-7 333–CD–003-005

F.4 ADEOS-II File Formats

F.4.1 ADEOS-II File Schematic

FILE HEADER

PACKETS

Figure F–4. ADEOS-II File Schematic

F.4.2 ADEOS-II File Header

Header format for ADEOS-II L0 files is unknown at this writing (Feb. 1995).

Arbitrarily we have taken the first 26 bytes of the TRMM file header as the EOS PM file header.
Also, since the format of the Spacecraft Clock time in the file header is undefined, we arbitrarily
take it as identical to the packet time stamp format.

Table F–7. ADEOS-II File Header
Byte Bit Parameter Sim?

1 1–6 (reserved)

7–8 Spacecraft ID

2 Spacecraft ID

3–11 Spacecraft Clock - first packet Y

12 (spare)

13–21 Spacecraft Clock - last packet Y

22 (spare)

23–26 Number of packets in file Y

F.4.3 ADEOS-II Packet Data

The ADEOS-II Packet Data format is preliminary and subject to change (as of 5/15/96).

Bytes 1–6 are known as the Primary Packet Header; bytes 7–15 are called the Secondary Packet
Header.

F-8 333–CD–003-005

Table F–8. ADEOS-II Packet Data
Byte Bit Parameter Sim?

1 1–3 Version Number Y

4 Type Y

5 Secondary Header Flag Y

6–8 Application Process ID (APID) Y

2 Application Process ID (APID) Y

3 1–2 Sequence Flags

3–8 Packet Sequence Count Y

4 Packet Sequence Count Y

5–6 Packet Length in bytes (=p) Y

7-10 Instrument Time Y

11 Pulse Time Y

12-15 Orbit Time Y

16-p+15 Application Data Y

There is no footer in ADEOS-II files.

F-9 333–CD–003-005

This page intentionally left blank.

F-10 333–CD–003-005

Appendix G. PGS_GCT Information Relating To

Interface Specification

G.1 Projection Id's

PGSd_UTM (Universal Transverse Mercator)

PGSd_ALBERS (Albers Conical Equal Area)

PGSd_LAMCC (Lambert Conformal Conic)

PGSd_MERCAT (Mercator)

PGSd_PS (Polar Stereographic)

PGSd_POLYC (Polyconic)

PGSd_EQUIDC (Equidistant Conic)

PGSd_TM (Transverse Mercator)

PGSd_STEREO (Stereographic)

PGSd_LAMAZ (Lambert Azimuthal Equal Area)

PGSd_AZMEQD (Azimuthal Equidistant)

PGSd_GNOMON (Gnomonic)

PGSd_ORTHO (Orthographic)

PGSd_GVNSP (General Vertical Near–Side Perspective)

PGSd_SNSOID (Sinusoidal)

PGSd_EQRECT (Equirectangular)

PGSd_MILLER (Miller Cylindrical)

PGSd_VGRINT (Van der Grinten)

PGSd_HOM (Hotine Oblique Mercator--HOM)

PGSd_ROBIN (Robinson)

PGSd_SOM (Space Oblique Mercator--SOM)

PGSd_ALASKA (Modified Stereographic Conformal-- Alaska)

PGSd_GOOD (Interrupted Goode Homolosine)

PGSd_MOLL (Mollweide)

PGSd_IMOLL (Interrupted Mollweide)

PGSd_HAMMER (Hammer)

PGSd_WAGIV (Wagner IV)

PGSd_WAGVII (Wagner VII)

PGSd_OBLEQA (Oblated Equal Area)

G.1.1 NOTES

There have been some discrepancies in the output for SOM projection when used for satellites
other than LANDSAT. Further investigations led us to the conclusion that the discrepancies were
due to a parameter called LANDSAT_RATIO used by the routines. It seemed that the gctpc
routines were specifically designed to work for the Landsat satellites.

G-1 333–CD–003-005

The documentation of GCTP software says that Landsat Ratio can be an input from the user
through projection parameter. But, in fact in the GCTP source code this ratio has been hard
coded for Landsat satellite which is 0.5201613.

This ratio causes the grid values to start near the north pole instead of starting at equator at the
ascending node. The explanation for this is as follows:

Landsat ratio 0.5201613 comes from the landsat Scene calculations. It seems, in Landsat they
divide each orbit into 248 Scenes. They want the starting point to be somewhere at the North
Pole and they want it to start at Scene number 64.5 from the ascending node. This number when
divided by the number of scenes for half of the globe which is 124 gives you 0.52016129. So by
changing this ratio you are changing the start scene for the grid. Setting it to zero makes the grid
values to start lets on the equator at the ascending node.

The LANDSAT_RATIO has been renames as satellite_ratio and the gctpc source code have been
modified so that a user can now input the satellite ratio value through the projection parameters.
For SOM option B, the satellite ratio is automatically set to 0.5201613.

G.2 GCTP Error Messages

If there is an error in the GCTP freeware library, the tools simply return
PGSGCT_E_GCTP_ERROR. However, the actual errors are reported to the LogStatus file using
the SMF interface. The list of possible GCTP errors are as follows:

Table G–1. GCTP Error Messages
Return Description

PGSGCT_E_STD_PARALLEL Equal latitudes for St. Parallels on opposite sides of equator

PGSGCT_E_ITER_EXCEEDED Too many iterations in inverse

PGSGCT_E_POINT_PROJECT Point projects into a circle of radius 2 * PI * radius_major

PGSGCT_E_INPUT_DATA_ERROR Input data error

PGSGCT_E_STD_PARALLEL_OPP Standard Parallels on opposite sides of equator

PGSGCT_E_INFINITE Point projects into infinity

PGSGCT_E_ITER_FAILED Iteration failed to converge

PGSGCT_E_PROJECT_FAILED Point cannot be projected

PGSGCT_E_POINTS_ON_POLES Transformation cannot be computed at the poles

PGSGCT_E_ITER_SOM 50 iterations without conv

PGSGCT_E_SPCS_ZONE Illegal zone for the given spheroid

PGSGCT_E_SPCS_FILE Error opening State Plane parameter file

PGSGCT_E_CONV_ERROR Convergence Error

PGSGCT_E_LAT_15 Latitude failed to converge after 15 iterations

PGSGCT_E_LAT_CONVERGE Latitude failed to converge

G-2 333–CD–003-005

G-3 333–CD–003-005

Table G–2.
Array Element

Code & Projection Id 1 2 3 4 5 6 7 8

1 SMajor SMinor

2 Spheroid Zone

3 SMajor SMinor STDPR1 STDPR2 CentMer OriginLat FE FN

4 SMajor SMinor STDPR1 STDPR2 CentMer OriginLat FE FN

5 SMajor SMinor CentMer LTrueScale FE FN

6 SMajor SMinor LongPol LTrueScale FE FN

7 SMajor SMinor CentMer OriginLat FE FN

8 SMajor SMinor STDPAR CentMer OriginLat FE FN

 PGSd_EQUIDC (B) SMajor SMinor STDPR1 STDPR2 CentMer OriginLat FE FN

9 SMajor SMinor Factor CentMer OriginLat FE FN

10 PGSd_STEREO Sphere CentLon CenterLat FE FN

11 PGSd_LAMAZ Sphere CentLon CenterLat FE FN

12 PGSd_AZMEQD Sphere CentLon CenterLat FE FN

13 PGSd_GNOMON Sphere entLon CenterLat FE FN

14 PGSd_ORTHO Sphere CentLon CenterLat FE FN

15 PGSd_GVNSP Sphere Height CentLon CenterLat FE FN

16 PGSd_SNSOID Sphere CentMer FE FN

17 PGSd_EQRECT Sphere CentMer LTrueScale FE FN

18 PGSd_MILLER Sphere CentMer FE FN

19 PGSd_VGRINT Sphere CentMer OriginLat FE FN

20 PGSd_HOM (a) SMajor SMinor Factor OriginLat FE FN

 PGSd_HOM (b) SMajor SMinor Factor AziAng AzmthPt OriginLat FE FN

21 PGSd_ROBIN Sphere CentMer FE FN

22 PGSd_SOM (a) SMajor SMinor IncAng AscLong FE FN

 PGSd_SOM (b) SMajor SMinor Satnum Path FE FN

23 PGSd_ALASKA SMajor SMinor FE FN

24 PGSd_GOOD Sphere

25 PGSd_MOLL Sphere CentMer FE FN

26 PGSd_IMOLL Sphere

27 PGSd_HAMMER Sphere CentMer FE FN

28 PGSd_WAGlV Sphere CentMer FE FN

29 PGSd_WAGVII Sphere CentMer FE FN

30 PGSd_OBLEQA Sphere Shapem Shapen CentLon CenterLat FE FN

Projection Transformation Package Projection Parameters (1 of 2)

PGSd_UTM

PGSd_SPCS

PGSd_ALBERS

PGSd_LAMCC

PGSd_MERCAT

PGSd_PS

PGSd_POLYC

PGSd_EQUIDC (A)

PGSd_TM

1

2

3

4

5

6

7

8

Table G–2. Projection Transformation Package Projection Parameters (2 of 2)
Array Element

Code & Projection Id 9 10 11 12 13

PGSd_UTM

PGSd_SPCS

PGSd_ALBERS

PGSd_LAMCC

PGSd_MERCAT

PGSd_PS

PGSd_POLYC

PGSd_EQUIDC (A) zero

PGSd_EQUIDC (B) one

9 PGSd_TM

10 PGSd_STEREO

11 PGSd_LAMAZ

12 PGSd_AZMEQD

13 PGSd_GNOMON

14 PGSd_ORTHO

15 PGSd_GVNSP

16 PGSd_SNSOID

17 PGSd_EQRECT

18 PGSd_MILLER

19 PGSd_VGRINT

20 PGSd_HOM (a) Long1 Lat1 Long2 Lat2 zero

PGSd_HOM (b) one

21 PGSd_ROBIN

22 PGSd_SOM (a) PSRev LRat PFlag zero

PGSd_SOM (b) one

23 PGSd_ALASKA

24 PGSd_GOOD

25 PGSd_MOLL

26 PGSd_IMOLL

27 PGSd_HAMMER

28 PGSd_WAGlV

29 PGSd_WAGVII

30 PGSd_OBLEQA Angle

G-4 333–CD–003-005

where

SMajorSemi–major axis of ellipsoid

SMinor Semi–minor axis of the ellipsoid

Spheroid Used only for state plane projection. Use PGSd_CLARK66 (0) for 1927 datum or

GRS80_WGS84(8) for 1983 datum
Sphere Radius of reference sphere.
STDPAR Latitude of the standard parallel
STDPR1 Latitude of the first standard parallel
STDPR2 Latitude of the second standard parallel
CentMer Longitude of the central meridian
OriginLat Latitude of the projection origin
FE False easting in the same units as the semi–major axis
FN False northing in the same units as the semi–major axis
LTrueScale Latitude of true scale
LongPol Longitude down below pole of map
Factor Scale factor at central meridian (Transverse Mercator) or center of projection

(Hotine Oblique Mercator)
CentLon Longitude of center of projection
CenterLat Latitude of center of projection
Height Height of perspective point
Long1 Longitude of first point on center line (Hotine Oblique Mercator, format A)
Long2 Longitude of second point on center line (Hotine Oblique Mercator, format A)
Lat1 Latitude of first point on center line (Hotine Oblique Mercator, format A)
Lat2 Latitude of second point on center line (Hotine Oblique Mercator, format A)
AziAng Azimuth angle east of north of center line (Hotine Oblique Mercator, format B)
AzmthPt Longitude of point on central meridian where azimuth occurs (Hotine Oblique

Mercator, format B)
IncAngInclination of orbit at ascending node, counter–clockwise from equator (SOM,

format A)
AscLong Longitude of ascending orbit at equator (SOM, format A)
PSRev Period of satellite revolution in minutes (SOM, format A)
LRat Landsat ratio to compensate for confusion at northern end of orbit (SOM, format

A -- For LANDSAT, use 0.5201613—See NOTES)
PFlag End of path flag for Landsat: 0 = start of path, 1=end of path (SOM, format A)
Satnum Landsat Satellite Number (1, 2, 3, 4 or 5, SOM format B)
Path Landsat Path Number (Use WRS–1 (World Reference System) for Landsat 1, 2

and 3 and WRS–2 for Landsat4, 5 and 6.) (SOM, format B.) WRS–1 and
WRS–2 can be found in Landsat User's Guide.

Shapem Oblated Equal Area oval shape parameter m
ShapenOblated Equal Area oval shape parameter n
angle Oblated Equal Area oval rotation angle
zero 0
one 1

G-5 333–CD–003-005

G.2.1 NOTES

Array elements 14 and 15 are set to zero

All array elements with blank fields are set to zero

All angles (latitudes, longitudes, azimuths, etc.) are in radians

Longitude is negative west of Greenwich

Latitude is negative south of equator

The following notes apply to the Space Oblique Mercator A projection.

A portion of Landsat rows 1 and 2 may also be seen as parts of rows 246 or 247. To place these

locations at rows 246 or 247, set the end of path flag (parameter 11) to 1--end of path. This flag

defaults to zero.

When Landsat - 1,2,3 orbits are being used, use the following values for specified
parameters:

Parameter 4 99o 5" 31.2' * PI/180 radians

Parameter 5 128.87 degrees - (360/251 * path number) * PI/180 radians

Parameter 9 103.2669323

Parameter 10 0.5201613

When Landsat–4,5 orbits are being used, use the following values for the specified
parameters:

Parameter 4 99o 12" 0' * PI/180 radians

Parameter 5 129.30 degrees - (360/233 * path number) * PI/180 radians

Parameter 9 98.884119

Parameter 10 0.5201613

*State plane projection is not included in this release. It will be included in the next release.

G-6 333–CD–003-005

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

G.3 UTM Zone Codes

The Universal Transverse Mercator (UTM) Coordinate system uses zone codes instead of
specific projection parameters. The table that follows lists UTM zone codes as used by GCTPc
Projection Transformation Package. If southern zone is intended then use negative values.

Table G–3. Universal Transverse Mercator (UTM) Zone Codes
Zone C.M. Range Zone C.M. Range

177W 180W–174W 31 003E 000E–006E

171W 174W–168W 32 009E 006E–012E

165W 168W–162W 33 015E 012E–018E

159W 162W–156W 34 021E 018E–024E

153W 156W–150W 35 027E 024E–030E

147W 150W–144W 36 033E 030E–036E

141W 144W–138W 37 039E 036E–042E

135W 138W–132W 38 045E 042E–048E

129W 132W–126W 39 051E 048E–054E

123W 126W–120W 40 057E 054E–060E

117W 120W–114W 41 063E 060E–066E

111W 114W–108W 42 069E 066E–072E

105W 108W–102W 43 075E 072E–078E

099W 102W–096W 44 081E 078E–084E

093w 096W–090W 45 087E 084E–090E

087W 090W–084W 46 093E 090E–096E

081W 084W–078W 47 099E 096E–102E

075W 078W–072W 48 105E 102E–108E

069W 072W–066W 49 111E 108E–114E

063W 066W–060W 50 117E 114E–120E

057W 060W–054W 51 123E 120E–126E

051W 054W–048W 52 129E 126E–132E

045W 048W–042W 53 135E 132E–138E

039W 042W–036W 54 141E 138E–144E

033W 036W–030W 55 147E 144E–150E

027W 030W–024W 56 153E 150E–156E

021W 024W–018W 57 159E 156E–162E

015W 018W–012W 58 165E 162E–168E

009W 012W–006W 59 171E 168E–174E

003W 006W–000E 60 177E 174E–180W

G-7 333–CD–003-005

Obtained from Software Documentation for GCTP general Cartographic Transformation
Package: National Mapping Program Technical Instructions, U.S. Geological Survey, National
Mapping Division, Oct. 1990,

Note: The following source contains UTM zones plotted on a world map:

Snyder, John P. Map Projections--A Working Manual; U.S. Geological Survey Professional
Paper 1395

(Supersedes USGS Bulletin 1532), United States Government Printing Office, Washington
D.C. 1987. p. 42.

State Plane Coordinate System uses zone codes instead of specific projection parameters. The
table that follows lists State Plane Zone Codes as used by the GCTPc Projection Transformation
Package.

Table G–4. State Plane Zone Codes (1 of 5)
Jurisdiction

Zone name or number

NAD27

Zone Code

NAD83

Zone Code

Alabama
East
West

0101
0102

0101
0102

Alaska
01 through 10

thru
5001
5010

5001
5010

Arizona
East
Central
West

0201
0202
0203

0201
0202
0203

Arkansas
North
South

0301
0302

0301
0302

California
01 through 07

thru
0401
0407

0401
0406

Colorado
North
Central
South

0501
0502
0503

0501
0502
0503

Connecticut 0600 0600

Delaware 0700 0700

District of Columbia 1900 1900

Florida
East
West
North

0901
0902
0903

0901
0902
0903

G-8 333–CD–003-005

Table G–4. State Plane Zone Codes (2 of 5)
Jurisdiction

Zone name or number

NAD27

Zone Code

NAD83

Zone Code

Georgia
East
West

1001
1002

1001
1002

Hawaii
01 through 05

thru
5101
5105

5101
5105

Idaho
East
Central
West

1101
1102
1103

1101
1102
1103

Illinois
East
West

1201
1202

1201
1202

Indiana
East
West

1301
1302

1301
1302

Iowa
North
South

1401
1402

1401
1402

Kansas
North
South

1501
1502

1501
1502

Kentucky
North
South

1601
1602

1601
1602

Louisiana
North
South
Offshore

1701
1702
1703

1701
1702
1703

Maine
East
West

1801
1802

1801
1802

Maryland 1900 1900

Massachusetts
Mainland
Island

2001
2002

2001
2002

Michigan
East (TM)
Central (TM)
West (TM)
North (Lam)
Central (Lam)
South (Lam)

2101
2102
2103
2111
2112
2113

2111
2112
2113

G-9 333–CD–003-005

Table G–4. State Plane Zone Codes (3 of 5)
Jurisdiction

Zone name or number

NAD27

Zone Code

NAD83

Zone Code

Minnesota
North
Central
South

2201
2202
2203

2201
2202
2203

Mississippi
East
West

2301
2302

2301
2302

Missouri
East
Central
West

2401
2402
2403

2401
2402
2403

Montana
North
Central
South

2501
2502
2503

2500

Nebraska
North
South

2601
2602

2600

Nevada
East
Central
West

2701
2702
2703

2701
2702
2703

New Hampshire 2800 2800

New Jersey 2900 2900

New Mexico
East
Central
West

3001
3002
3003

3001
3002
3003

New York
East
Central
West
Long Island

3101
3102
3103
3104

3101
3102
3103
3104

North Carolina 3200 3200

North Dakota
North
South

3301
3302

3301
3302

Ohio
North
South

3401
3402

3401
3402

Oklahoma
North
South

3501
3502

3501
3502

G-10 333–CD–003-005

Table G–4. State Plane Zone Codes (4 of 5)
Jurisdiction

Zone name or number

NAD27

Zone Code

NAD83

Zone Code

Oregon
North
South

3601
3602

3601
3602

Pennsylvania
North
South

3701
3702

3701
3702

Rhode Island 3800 3800

South Carolina
North
South

3901
3902

3900

South Dakota
North
South

4001
4002

4001
4002

Tennessee 4100 4100

Texas
North
North Central
Central
South Central
South

4201
4202
4203
4204
4205

4201
4202
4203
4204
4205

Utah
North
Central
South

4301
4302
4303

4301
4302
4303

Vermont 4400 4400

Virginia
North
South

4501
4502

4501
4502

Washington
North
South

4601
4602

4601
4602

West Virginia
North
South

4701
4702

4701
4702

Wisconsin
North
Central
South

4801
4802
4803

4801
4802
4803

Wyoming
East
East Central
West Central
West

4901
4902
4903
4904

4901
4902
4903
4904

G-11 333–CD–003-005

Table G–4. State Plane Zone Codes (5 of 5)
Jurisdiction

Zone name or number

NAD27

Zone Code

NAD83

Zone Code

Puerto Rico 5201 5200

Virgin Islands
St. John, St.

Thomas
St. Croix

5201
5202

5200

American Samoa 5300

Guam 5400

xxxfor converts input longitude and latitude to the corresponding x,y cartesian coordinates for
the xxx projection. The following subroutines follow this general format:

utmfor (lon, lat, x, y) -- Universal Transverse Mercator (UTM)

stplnfor (lon, lat, x, y) -- State Plane

alberfor (lon, lat, x, y) -- Albers

lamccfor (lon, lat, x, y) -- Lambert Conformal Conic

merfor (lon, lat, x, y) -- Mercator

psfor (lon, lat, x, y) --Polar Stereographic

polyfor (lon, lat, x, y) --Polyconic

eqconfor (lon, lat, x, y) -- Equidistant Conic

tmfor (lon, lat, x, y) -- Transverse Mercator (TM)

sterfor (lon, lat, x, y) -- Stereographic

lamazfor (lon, lat, x, y) -- Lambert Azimuthal

azimfor (lon, lat, x, y) -- Azimuthal Equidistant

gnomfor (lon, lat, x, y) -- Gnomonic

orthfor (lon, lat, x, y) -- Orthographic

gvnspfor (lon, lat, x, y) -- General Near Side Perspective

sinfor (lon, lat, x, y) -- Sinusoidal

equifor (lon, lat, x, y) -- Equirectangular

millfor (lon, lat, x, y) -- Miller

vandgfor (lon, lat, x, y) -- Van Der Grinten

omerfor (lon, lat, x, y) -- Hotine Oblique Mercator (HOM)

robfor (lon, lat, x, y) -- Robinson

somfor (lon, lat, x, y) -- Space Oblique Mercator (SOM)

alconfor (lon, lat, x, y) -- Alaska Conformal

goodfor (lon, lat, x, y) -- Goode

molwfor (lon, lat, x, y) -- Mollweide

imolwfor (lon, lat, x, y) -- Interrupted Mollweide

hamfor (lon, lat, x, y) -- Hammer

wivfor (lon, lat, x, y) -- Wagner IV

wviifor (lon, lat, x, y) -- Wagner VII

obleqfor (lon, lat, x, y) -- Oblated Equal Area

G-12 333–CD–003-005

xxxinv converts input x,y cartesian coordinates to the corresponding longitude and latitude for
the xxx projection. The following subroutines follow this general format:

utminv(x, y, lon, lat) -- Universal Transverse Mercator (UTM)

stplninv(x, y, lon, lat) -- State Plane

alberinv(x, y, lon, lat) -- Albers

lamccinv(x, y, lon, lat) -- Lambert Conformal Conic

merinv(x, y, lon, lat) -- Mercator

psinv(x, y, lon, lat) -- Polar Stereographic

polyinv(x, y, lon, lat) -- Polyconic

eqconinv(x, y, lon, lat) -- Equidistant Conic

tminv(x, y, lon, lat) -- Transverse Mercator (TM)

sterinv(x, y, lon, lat) -- Stereographic

lamazinv(x, y, lon, lat) -- Lambert Azimuthal

aziminv(x, y, lon, lat) -- Azimuthal Equidistant

gnominv(x, y, lon, lat) -- Gnomonic

orthinv(x, y, lon, lat) -- Orthographic

gvnspinv(x, y, lon, lat) -- General Near Side Perspective

sininv(x, y, lon, lat) -- Sinusoidal

equiinv(x, y, lon, lat) -- Equirectangular

millinv(x, y, lon, lat) -- Miller

vandginv(x, y, lon, lat) -- Van Der Grinten

omerinv(x, y, lon, lat) -- Hotine Oblique Mercator (HOM)

robinv(x, y, lon, lat) -- Robinson

sominv(x, y, lon, lat) -- Space Oblique Mercator (SOM)

alconinv(x, y, lon, lat) -- Alaska Conformal

goodinv(x, y, lon, lat) -- Goode

molwinv(x, y, lon, lat) -- Mollweide

imolwinv(x, y, lon, lat) -- Interrupted Mollweide

haminv(x, y, lon, lat) -- Hammer

wivinv(x, y, lon, lat) -- Wagner IV

wviiinv(x, y, lon, lat) -- Wagner VII

obleqinv(x, y, lon, lat) -- Oblated Equal Area

G-13 333–CD–003-005

This page intentionally left blank.

G-14 333–CD–003-005

Appendix H. PGS_CUC_Cons - Example Standard

Constants File

Current content of an Example standard constants file

Official file will be supplied by ESDIS Science Office

PI = 3.1415927

ATOMIC_SECOND = 9192631770

MOLECULAR_WEIGHT = 28.970

SOLAR_MOTION_VELOCITY = 19.7

PLANCKS_CONSTANT = 5.6697

H-1 333–CD–003-004

This page intentionally left blank.

H-2 333–CD–003-004

Appendix I. PGS_CUC_Conv—Input File Provided

With the UdUnits Software

This tool uses the UdUnits package to provide unit conversions.

The following information taken from the input file provided with the UdUnits software

describes the conversions currently available with the toolkit.

$Id: udunits.dat,v 1.7 1994/02/03 17:20:02 steve Exp $

#

The first column is the unit name. The second column indicates whether or

not the unit name has a plural form (i.e., with an 's' appended).

A 'P' indicates that the unit has a plural form, whereas, a 'S' indicates

that the unit has a singular form only. The remainder of the line is the

definition for the unit.

#

'#' is the to–end–of–line comment–character.

#

NB: When adding to this table, be *very* careful to distinguish between

the letter 'O' and the numeral zero '0'. For example, the following two

entries don't do what one might otherwise expect:

#

mercury_0C mercury_32F

millimeter_Hg_0C mm mercury_OC

#

BASE UNITS. These must be first and are identified by a nil definition.

#

ampere P

bit P

candela P

kelvin P

kilogram P

meter P

mole P

second P

radian P

#

CONSTANTS

#

percent S 0.01

electric current

unit of information

luminous intensity

thermodynamic temperature

mass

length

amount of substance

time

plane angle

I-1 333–CD–003-005

PI S 3.14159265358979323846

bakersdozen S 13

% S percent

pi S PI

#

NB: All subsequent definitions must be given in terms of

earlier definitions. Forward referencing is not permitted.

#

#

The following are non–base units of the fundamental quantities

#

#

UNITS OF ELECTRIC CURRENT

#

A

amp

abampere

gilbert

statampere

biot

#

S ampere

P ampere

P 10 ampere # exact

P 7.957747e-1 ampere

P 3.335640e-10 ampere

P 10 ampere

UNITS OF LUMINOUS INTENSITY

#

cd S candela

candle P candela

#

UNITS OF THERMODYNAMIC TEMPERATURE

#

degree_Kelvin P kelvin

degree_Celsius S kelvin @ 273.15

degree_Rankine P kelvin/1.8

degree_Fahrenheit P degree_Rankine @ 459.67

#C S degree_Celsius # `C' means `coulomb'

Celsius S degree_Celsius

celsius S degree_Celsius

centigrade S degree_Celsius

degC S degree_Celsius

degreeC S degree_Celsius

degree_C S degree_Celsius

degree_c S degree_Celsius

deg_C S degree_Celsius

I-2 333–CD–003-005

deg_c S degree_Celsius

degK S kelvin

degreeK S kelvin

degree_K S kelvin

degree_k S kelvin

deg_K S kelvin

deg_k S kelvin

K S kelvin

Kelvin P kelvin

degF S degree_Fahrenheit

degreeF S degree_Fahrenheit

degree_F S degree_Fahrenheit

degree_f S degree_Fahrenheit

deg_F S degree_Fahrenheit

deg_f S degree_Fahrenheit

F S degree_Fahrenheit

Fahrenheit P degree_Fahrenheit

fahrenheit P degree_Fahrenheit

degR S degree_Rankine

degreeR S degree_Rankine

degree_R S degree_Rankine

degree_r S degree_Rankine

deg_R S degree_Rankine

deg_r S degree_Rankine

#R S degree_Rankine

Rankine P degree_Rankine

rankine P degree_Rankine

#

UNITS OF MASS

#

assay_ton

avoirdupois_ounce

avoirdupois_pound

carat

grain

gram

kg

long_hundredweight

metric_ton

pennyweight

P 2.916667e2 kilogram

P 2.834952e–2 kilogram

P 4.5359237e–1 kilogram

P 2e–4 kilogram

P 6.479891e–5 kilogram

P 1e–3 kilogram

S kilogram

P 5.080235e1 kilogram

P 1e3 kilogram

P 1.555174e–3 kilogram

`R' means `roentgen'

exact

exact
exact

exact

short_hundredweight P 4.535924e1 kilogram
slug P 14.59390 kilogram
troy_ounce P 3.110348e–2 kilogram

I-3 333–CD–003-005

troy_pound P 3.732417e–1 kilogram
atomic_mass_unit P 1.66044e–27 kilogram

tonne P metric_ton

apothecary_ounce P troy_ounce

apothecary_pound P avoirdupois_pound

pound P avoirdupois_pound

metricton P metric_ton

gr S grain

scruple P 20 grain

apdram P 60 grain

apounce P 480 grain

appound P 5760 grain

atomicmassunit P atomic_mass_unit

amu P atomic_mass_unit

t S tonne

lb P pound

bag P 94 pound

short_ton P 2000 pound

long_ton P 2240 pound

ton P short_ton

shortton P short_ton

longton P long_ton

#

UNITS OF LENGTH

#

angstrom

astronomical_unit

fathom

fermi

m

metre

light_year

micron

mil

nautical_mile

parsec

printers_pica

printers_point

US_statute_mile

US_survey_foot

chain

inch

P decinanometer

P 1.495979e11 meter

P 1.828804 meter

P 1e–15 meter

S meter

P meter

P 9.46055e15 meter

P 1e–6 meter

P 2.54e–5 meter

P 1.852000e3 meter

P 3.085678e16 meter

P 4.217518e–3 meter

P 3.514598e–4 meter

P 1.609347e3 meter

P 3.048006e–1 meter

P 2.011684e1 meter

S 2.54 cm

exact

exact

exact

exact

exact

= intn'l mile + .000003 meter

exact

I-4 333–CD–003-005

astronomicalunit

au

nmile

nmi

inches

foot

in

barleycorn

ft

feet

yard

furlong

international_mile

arpentlin

yd

rod

mile

arpentcan

#

P astronomical_unit

S astronomical_unit

P nautical_mile

S nautical_mile

S inch

S 12 inch

S inch

P inch/3

S foot

S foot

P 3 foot

P 660 foot

P 5280 foot

P 191.835 foot

S yard

P 5.5 yard

P international_mile

P 27.52 mile

UNITS OF AMOUNT OF SUBSTANCE

#

mol

#

UNITS OF TIME

#

day

hour

minute

s

sec

shake

sidereal_day

sidereal_minute

sidereal_second

sidereal_year

tropical_year

year

eon

d

min

hr

h

fortnight

S mole

P 8.64e4 second

P 3.6e3 second

P 60 second

S second

P second

P 1e–8 second

P 8.616409e4 second

P 5.983617e1 second

P 0.9972696 second

P 3.155815e7 second

P 3.155693e7 second

P 3.153600e7 second

P 1e9 year

S day

P minute

P hour

S hour

P 14 day

exact

exact

exact
exact
exact

exact

exact

I-5 333–CD–003-005

yr P year
a S year

UNITS OF PLANE ANGLE

#rad P radian
circle P 2 pi radian
angular_degree P (pi/180) radian
turn P circle
degree P angular_degree
degree_north S angular_degree
degree_east S angular_degree
degree_true S angular_degree
arcdeg P angular_degree
angular_minute P angular_degree/60
angular_second P angular_minute/60
grade P 0.9 angular_degree
degrees_north S degree_north
degreeN S degree_north
degree_N S degree_north
degreesN S degree_north
degrees_N S degree_north
degrees_east S degree_east
degreeE S degree_east
degree_E S degree_east
degreesE S degree_east
degrees_E S degree_east
degree_west S –1 degree_east
degrees_west S degree_west
degreeW S degree_west
degree_W S degree_west
degreesW S degree_west
degrees_W S degree_west
degrees_true S degree_true
degreeT S degree_true
degree_T S degree_true
degreesT S degree_true
degrees_T S degree_true
arcminute P angular_minute
arcsecond P angular_second
arcmin P arcminute
arcsec P arcsecond

"anno"

`rad' means `grey'

exact

I-6 333–CD–003-005

#

The following are derived units with special names. They are useful for

defining other derived units.
#

steradian

hertz

newton

coulomb

lumen

becquerel

#

standard_free_fall

pascal

joule

hz

sr

force

gravity

free_fall

lux

sphere

luxes

watt

gray

sievert

mercury_32F

mercury_60F

water_39F

water_60F

g

volt

mercury_0C

mercury

water

farad

ohm

siemens

weber

Hg

hg

H2O

h2o

tesla

henry

P radian2

S 1/second

P kilogram.meter/second2

P ampere.second

P candela steradian

P 1/second

S 9.806650 meter/second2

P newton/meter2

P newton.meter

S hertz

S steradian

S standard_free_fall

S standard_free_fall

S standard_free_fall

S lumen/meter2

P 4 pi steradian

S lux

P joule/second

P joule/kilogram

P joule/kilogram

S gravity 13595.065 kg/m3

S gravity 13556.806 kg/m3

S gravity 999.97226 kg/m3

S gravity 999.00072 kg/m3

S gravity

P watt/ampere

S mercury_32F

S mercury_32F

S water_39F

P coulomb/volt

P volt/ampere

S ampere/volt

P volt.second

S mercury

S mercury

S water

S water

P weber/meter2

P weber/ampere

SI unit of activity of a

radionuclide

exact

absorbed dose. derived unit

dose equivalent. derived unit

actually 39.2 F

I-7 333–CD–003-005

#

The following are compound units: units whose definitions consist

of two or more base units. They may now be defined in terms of the

preceding units.

#

#

ACCELERATION

#

gal

#

Area

#

are

barn

circular_mil

darcy

hectare

acre

#

P 1e–2 meter/second2 # exact

P 1e2 m2

P 1e–28 m2

P 5.067075e–10 m2

P 9.869233e–13 m2

P 1e4 m2

P 4840 yard2

exact
exact

permeability of porous solids
exact

exact
exact

ELECTRICITY AND MAGNETISM

#

abfarad

abhenry

abmho

abohm

abvolt

e

chemical_faraday

physical_faraday

C12_faraday

gamma

gauss

H

maxwell

oersted

S

statcoulomb

statfarad

stathenry

statmho

statohm

statvolt

P 1e9 farad
P 1e–9 henry
P 1e9 siemens # exact
P 1e–9 ohm

P 1e–8 volt

S coulomb

S 1.6021917e–19 coulomb

P 9.64957e4 coulomb

P 9.65219e4 coulomb

P 9.64870e4 coulomb

P 1e–9 tesla

S 1e–4 tesla

S henry

P 1e–8 weber

P 7.957747e1 ampere/meter

S siemens

P 3.335640e–10 coulomb

P 1.112650e–12 farad

P 8.987554e11 henry

P 1.112650e–12 siemens

P 8.987554e11 ohm

P 2.997925e2 volt

exact
exact

charge of electron

exact
exact

exact

I-8 333–CD–003-005

C

T S tesla

unit_pole P 1.256637e–7 weber

V S volt

Wb S weber

mho P siemens

Oe S oersted

faraday P C12_faraday # charge of 1 mole of

#

#

ENERGY (INCLUDES WORK)

#

electronvolt P 1.60219e–19 joule

erg P 1e–7 joule

IT_Btu P 1.055056 joule

EC_therm P 1.05506e8 joule

thermochemical_calorie P 4.184000 joule

IT_calorie

J

ton_TNT

US_therm

watthour

therm

Wh

Btu

calorie

electron_volt

thm

cal

eV

bev

#

FORCE

#

dyne

pond

force_kilogram

force_ounce

force_pound

poundal

N

gf

force_gram

force_ton

P 4.1868 joule # exact

S joule

S 4.184e9 joule

P 1.054804e8 joule

P watt hour

P US_therm

S watthour

P IT_Btu

P IT_calorie

P electronvolt

S therm

S calorie

S electronvolt

S gigaelectron_volt

P 1e–5 newton # exact

P 1.806650e–3 newton

S 9.806650 newton

S 2.780139e–1 newton

S 4.4482216152605 newton

P 1.382550e–1 newton

S newton

S gram force

P 1e–3 force_kilogram

P 2000 force_pound

electrons

exact
exact

exact

exact

exact
exact

exact

exact

I-9 333–CD–003-005

lbf
ounce_force
kilogram_force
pound_force
ozf

kgf

kip

ton_force

gram_force

#

HEAT

#

clo

#

LIGHT

#

lm

footcandle

footlambert

lambert

stilb

phot

nit

langley

blondel

apostilb

nt

ph

sb

#

S force_pound

S force_ounce

S force_kilogram

S force_pound

S force_ounce

S force_kilogram

P 1000 lbf

S force_ton

S force_gram

P 1.55e–1 kelvin.meter2/watt

S lumen

S lux

P 1.076391e–1 lux

P 3.426259 candela/meter2

P (1e4/PI) candela/meter2

P 1e4 candela/meter2

P 1e4 lumen/meter2

P 1 candela/meter2

P 4.184000e4 joule/meter2

exact
exact
exact
exact
exact

P candela/(pi meter2)

P blondel

S nit

S phot

S stilb

MASS PER UNIT LENGTH

denier P 1.111111e–7 kilogram/meter

tex P 1e–6 kilogram/meter # exact

#

MASS PER UNIT TIME (INCLUDES FLOW)

#

perm_0C S 5.72135e–11 kg/(Pa.s.m2)

perm_23C S 5.74525e–11 kg/(Pa.s.m2)

I-10 333–CD–003-005

lx

#

POWER

#

voltampere

VA

boiler_horsepower

shaft_horsepower

metric_horsepower

electric_horsepower

W

water_horsepower

UK_horsepower

refrigeration_ton

horsepower

ton_of_refrigeration

hp

#

P volt ampere

S volt ampere

P 9.80950e3 watt

P 7.456999e2 watt

P 7.35499 watt

P 7.460000e2 watt

S watt

P 7.46043e2 watt

P 7.4570e2 watt

P 12000 Btu/hour

P shaft_horsepower

P refrigeration_ton

S horsepower

PRESSURE OR STRESS

#

bar P 1e5 pascal

standard_atmosphere P 1.01325e5 pascal

technical_atmosphere P 1 kg gravity/cm2

exact

exact
exact
exact

inch_H2O_39F

inch_H2O_60F

inch_Hg_32F

inch_Hg_60F

millimeter_Hg_0C

footH2O

cmHg

cmH2O

Pa

inch_Hg

inch_hg

inHg

in_Hg

in_hg

millimeter_Hg

mmHg

mm_Hg

mm_hg

torr

foot_H2O

ftH2O

S inch water_39F

S inch water_60F

S inch mercury_32F

S inch mercury_60F

S mm mercury_0C

S foot water

S cm Hg

S cm water

S pascal

S inch Hg

S inch Hg

S inch Hg

S inch Hg

S inch Hg

S mm Hg

S mm Hg

S mm Hg

S mm Hg

P mm Hg

S foot water

S foot water

I-11 333–CD–003-005

psi S 1 pound gravity/in2

ksi S kip/in2

barie P 0.1 newton/meter2

at S technical_atmosphere

atmosphere P standard_atmosphere

atm P standard_atmosphere

barye P barie

#

RADIATION UNITS

#

Bq

curie

rem

rad

roentgen

Sv

Gy

Ci

R

rd

#

S becquerel

P 3.7e10 becquerel

P 1e–2 sievert

P 1e–2 gray

P 2.58e–4 coulomb/kg

S sievert

S gray

S curie

S roentgen

S rad

VELOCITY (INCLUDES SPEED)

S 2.997925e+8 meter/sec
knot P nautical_mile/hour

knot_international S knot

international_knot S knot

kt P knot

#

VISCOSITY

#

poise S 1e–1 pascal second

#

stokes S 1e–4 meter2/second # exact

rhe S 10/(pascal second)

St S stokes

#

VOLUME (INCLUDES CAPACITY)

#

acre_foot S 1.233489e3 m3

board_foot S 2.359737e–3 m3

bushel P 3.523907e–2 m3

exact
dose equivalent. exact
absorbed dose. exact
exact

absolute viscosity.
exact

exact

I-12 333–CD–003-005

c

UK_liquid_gallon P 4.546092e–3 m3

Canadian_liquid_gallon P 4.546090e–3 m3

US_dry_gallon P 4.404884e–3 m3

US_liquid_gallon P 3.785412e–3 m3

cc S cm3

liter P 1e–3 m3 # exact. However, from 1901 to

1964, 1 liter = 1.000028 dm3

stere P 1 m3 # exact

register_ton P 3.831685 m3

US_dry_quart P US_dry_gallon/4

US_dry_pint P US_dry_gallon/8

US_liquid_quart P US_liquid_gallon/4

US_liquid_pint P US_liquid_gallon/8

US_liquid_cup P US_liquid_gallon/16

US_liquid_gill P US_liquid_gallon/32

US_fluid_ounce P US_liquid_gallon/128

US_liquid_ounce P US_fluid_ounce

UK_liquid_quart P UK_liquid_gallon/4

UK_liquid_pint P UK_liquid_gallon/8

UK_liquid_cup P UK_liquid_gallon/16

UK_liquid_gill P UK_liquid_gallon/32

UK_fluid_ounce P UK_liquid_gallon/160

UK_liquid_ounce P UK_fluid_ounce

liquid_gallon P US_liquid_gallon

fluid_ounce P US_fluid_ounce

#liquid_gallon P UK_liquid_gallon

#fluid_ounce P UK_fluid_ounce

dry_quart P US_dry_quart

dry_pint P US_dry_pint

liquid_quart P liquid_gallon/4

liquid_pint P liquid_gallon/8

gallon P liquid_gallon

barrel P 42 US_liquid_gallon # petroleum industry definition

quart P liquid_quart

pint P liquid_pint

cup P liquid_gallon/16

gill P liquid_gallon/32

tablespoon P US_fluid_ounce/2

teaspoon P tablespoon/3

peck P bushel/4

oz P fluid_ounce

floz S fluid_ounce

acre_feet S acre_foot

board_feet S board_foot

Tbl P tablespoon

I-13 333–CD–003-005

Tbsp

tbsp

Tblsp

tblsp

litre

l

tsp

pk

bu

fldr

dram

bbl

pt

dr

#

S tablespoon

S tablespoon

S tablespoon

S tablespoon

P liter

S liter

S teaspoon

S peck

S bushel

S floz/8

P floz/16

S barrel

S pint

S dram

COMPUTERS AND COMMUNICATION

#

baud

b

bps

cps

Bd

#

MISC

#

kayser

rps

rpm

geopotential

work_year

work_month

gp

dynamic

S 1/second # exact

S bit

S bit/second

S hertz

S baud

P 1e2/meter # exact

S hertz

S hertz/60

S gravity

P 2056 hours

P work_year/12

S geopotential

S geopotential

I-14 333–CD–003-005

Appendix J. Population of Granule Level

Metadata Using the SDP metadata tools

6.2 SDP Toolkit Tools—Mandatory..1

6.2.1 File I/O Tools..1

6.2.1.1 Level 0 Science Data Access Tools1

6.2.1.2 HDF File Access Tools..2

6.2.1.4 Metadata...2

6.2.2 Error/Status Reporting Tools ..3

6.2.3 Process Control Tools ...4

6.2.4 Memory Management Tools...5

6.2.5 Bit Manipulation Tools ...6

6.2.6 Spacecraft Ephemeris and Attitude Data Access Tools..6

6.2.7 Time and Date Conversion Tools ...6

6.3 SDP Toolkit Tools - Optional ..7

6.3.1 Ancillary Data Access and Manipulation Tools ...7

6.3.2 Celestial Body Position...8

6.3.2.1 Celestial Body Access Tools..8

6.3.3 Coordinate System Conversion...9

6.3.3.1 Coordinate System Conversion - Transformation

Tools...9

6.3.3.2 Coordinate System Conversion - Other Tools9

6.3.4 Geo–Coordinate Transformation Tools ...10

6.3.6 Constants and Unit Conversions..10

B.1 Note ...1

B.2 Description ..1

C.1 Defining Process Control Files..1

C.1.1 PCF Components..1

C.1.2 Format Rules ..2

C.1.3 Format Example ...3

C.1.4 Master Template:..5

J-1 333–CD–003-005

C.2 Validating Process Control Files..16

C.2.1 DESCRIPTION:..16

C.2.2 INPUT ...17

C.2.3 OUTPUT ...17

C.2.4 ERRORS: ..18

C.2.5 WARNINGS: ..20

C.2.6 EXAMPLES:...20

C.2.6.1 EXAMPLE 1 ...20

C.2.6.2 EXAMPLE 2 ...27

C.2.6.3 EXAMPLE 3 ...41

C.2.7 BENEFITS: ...62

D.1 Introduction...1

D.2 PGS_AA_dcw...2

D.2.1 Data Sets Accessed ..2

D.2.2 Outline Functionality ...4

D.2.2.1 Outline...4

D.2.3 Optimal Operation..5

D.2.4 Upgrades ..5

D.2.4.1 Access Speed...5

D.2.4.2 Additional Coverages..5

D.3 PGS_AA_dem, PGS_AA_2DRead, PGS_AA_2Dgeo, PGS_AA_3DRead,

PGS_AA_3Dgeo..5

D.3.1 Data Sets Accessed. ...5

D.3.1.1 Introduction...5

D.3.1.2 Support and format files..7

D.3.1.2.1 Support File..8

D.3.1.2.2 Freeform data description ..9

D.3.2 Functionality and Operation..10

D.3.2.1 Outline Functionality ..10

D.3.2.2 Parameters and the indexFile ...10

D.3.2.3 Use of User Specified and Auto–Operations12

D.3.2.4 Operational Environment...14

J-2 333–CD–003-005

D.3.3 Optimal Operation...14

D.3.3.1 Buffering ...14

D.3.3.2 Multiple calls...15

D.3.3.3 Pre–processing, formats and file sizes15

D.3.4 Setting up new/user data sets ..15

D.3.5 Upgrades ...16

D.3.5.1 Interaction with HDF files ..16

D.3.5.2 Other format types for user files16

D.3.5.3 New Operations...16

D.4 PGS_AA_PeVA...16

D.4.1 Data Sets accessed...16

D.4.2 Outline Functionality ..16

D.4.3 Optimal Operation...17

D.4.4 Upgrades ...17

E.1 Preparing Simulated CERES L0 Files...1

E.1.1 Sample Session...2

E.2 CERES Level 0 processing code using the SDP Toolkit ..4

E.2.1 Notes:..4

F.1 Tropical Rainfall Measuring Mission (TRMM) File Formats...1

F.1.1 TRMM Files Schematic..1

F.1.2 Detached SFDU File...2

F.1.3 TRMM File Header ..2

F.1.4 TRMM Packet Data..3

F.1.5 TRMM File Footer..4

F.2 EOS AM File Formats ..4

F.2.1 EOS AM File Schematic...4

F.2.2 EOS AM File Header..5

F.2.3 EOS AM Packet Data ...5

F.3 EOS PM File Formats..6

F.3.1 EOS PM File Schematic ...6

F.3.2 EOS PM File Header ..6

F.3.3 EOS PM Packet Data..7

J-3 333–CD–003-005

F.4 ADEOS-II File Formats...8

F.4.1 ADEOS-II File Schematic ..8

F.4.2 ADEOS-II File Header ...8

F.4.3 ADEOS-II Packet Data...8

G.1 Projection Id's..1

G.1.1 NOTES...1

G.2 GCTP Error Messages...2

G.2.1 NOTES...6

G.3 UTM Zone Codes..7

J.1 Introduction ..1

J.2 Development of the Core Metadata Model ..2

J.3 ECS Granule Level Metadata..3

J.4 Satisfying Mandatory Requirement and Determining Specific Attributes.............................4

J.5 Metadata Toolkit Usage ..5

J.6 Metadata Control File (MCF)..7

J.6.1 Purpose of the MCF...7

J.6.2 Structure of the MCF...7

J.6.2.1 GROUPS ..7

J.6.2.2 OBJECTS ...8

J.6.2.3 PARAMETERS..10

J.6.3 Internal Syntax..13

J.6.4 Constructing the MCF..14

J.6.4.1 Self Describing Attributes ..15

J.6.4.2 Example header ..17

J.6.5 Management of the MCF..20

J.6.5.1 Management of Master Groups..20

J.6.5.2 Management of Objects..21

J.6.5.3 Management of Parameters ..21

J.6.6 Example of Output Header...22

J.6.7 Inclusion of Multiple Attribute Values...24

J-4 333–CD–003-005

J.7 Toolkit Utilization of the MCF..28

J.7.1 Overview ..28

J.7.2 Scenario ..30

J.8 MCF Specification...32

L.1 Spacecraft Ephemeris File Format ..1

L.2 Spacecraft Attitude File Format ..3

L.3 Quality Flags..5

J-5 333–CD–003-005

J.1 Introduction

The purpose of this appendix is to provide detailed guidance to algorithm and PGE developers
on the subject of granule level metadata population (i.e., metadata having different values in each
product granule). Introductory comments put this class of metadata in context.

Within ECS, the term "metadata" relates to all information of a descriptive nature which is
associated with the product or dataset . This includes such information as:

• data elements usually found in the product or file header

• documentation that accompanies the production algorithm software

• data origin information

• software used to create the data

• information used in the advertisement of the data

These types of information have been analyzed and developed into a core metadata model.
Reference Document: DID311 ("Science Data Processing Segment Database Design and
Database Schema Specification for the ECS Project, Volume 1: Central Design Artifacts. 311-
CD-002-004 12/95").

J.2 Development of the Core Metadata Model

In relation to granule level metadata, the modules deemed most important within the metadata
model are the Granule, Spatial and Temporal modules since they relate most closely to the
inventory.

To avoid misunderstandings concerning the terms 'data set' and 'product', the concept of a
collection of granules is used throughout ECS metadata related documentation. A collection is a
logically organized set of related or grouped granules, chosen by the data provider. The granule
is the lowest denominator in the equation may be assigned to more than one collection. It is
generally construed as being the smallest aggregation of data that is independently managed i.e.
an inventory record.

J.3 ECS Granule Level Metadata

The content of metadata, or the actual parameters which make up the core metadata and the
product specific metadata are not at issue for this Users Guide. What is specified is

• the granule level metadata,

• how these metadata are provided to the granule header,

• how the Metadata tools assist this process,

• what the PGE has to do,

J-6 333–CD–003-005

• what is the outcome of running the tools

i.e. the granule level metadata population process.

To establish the data required, the core metadata has been subsetted to derive granule metadata.
The subset is a small part of the core. The exact list will vary with the product level but will
include at a minimum a spatial and temporal measure plus other attributes specified in DID 311
Appendix B as mandatory. The spatial and temporal measures are themselves groups of
attributes having options.

Product specific metadata is additional information added for the unique characteristics which
can be product, collection or site specific. These are described as non-core or product specific
attributes.

In section J.8 the syntax for attributes is specified.

J.4 Satisfying Mandatory Requirement and Determining Specific
Attributes

Appendix B of DID 311 (311-CD-002-004 12/95), gives detailed information as to the level of
granule Metadata needed to describe a product, as well as the multiplicity for certain attributes.
This is laid out in BNF.

Appendix B specifies the metadata attributes which are mandatory for different categories of
product managed by ECS. For detailed descriptions of these attributes refer to the data
dictionary, section 6.4 of DID 311. The categories of data product in relation to the level of
metadata support required are as follows:

Full level of metadata - required for products generated with EOSDIS

Intermediate level of metadata - required for products generated outside EOSDIS,
but ingested and used within EOSDIS

Limited level of metadata - applies to all other data sets. We expect very few
collections to fall into this category.

For a more detailed description of the above levels of metadata refer to Appendix B DID311.
Each level of metadata is expanded to show the production rules related to that level, in BNF
format.

J.5 Metadata Toolkit Usage

The metadata tools are designed to manage the granule metadata which are to be generated for
each EOS product.

The reasoning behind the tools is:

• to standardize the granule metadata produced against minimum standards

• to assist the science software to produce metadata in the correct formats and syntax

J-7 333–CD–003-005

•	 to collate metadata required by products but not necessarily (directly or efficiently)
accessible to science algorithms

•	 the need to handle parsable metadata fields which may be added to or altered at other
points in the system

• the need to interface with ECS products using HDF libraries

• the need to provide ingest capability for PGE's as well as output

A detailed working example of the metadata tools can be found in the metadata tool prologs in
the User Guide. This example highlights the toolkit calling sequence usage, and reiterates the
importance of using the tools in the proper sequence. Examples are given in both C and
FORTRAN.

The metadata tools are a mandatory suite, to be used for the purposes of managing designated
metadata attributes. By providing a suite of tools and a template, a standard set of metadata can
be provided with each granule and this will allow a minimum search functionality to be carried
out.

The Metadata Control File (MCF) assists the Instrument teams in supplying metadata attributes
to products being generated. It is a template designed to contain metadata attributes and assist in
the management of all and the acquisition of certain of these attributes.

The PGE derives and generates most of the attribute values which will populate the MCF, the
metadata tools assist in this process. The figure below shows all the tools which may be utilized
and their purpose.

J-8 333–CD–003-005

Data processing

PGE

PGE

MCF

PGS_MET
_Set

PGS_MET
_Get

PGS_MET
_Write

L0 data

EOS-HDF
API

Processing Subsystem

Data Server Subsystem

Product

Memory

PC table
PGS_PC

tools

PGS_MET
_Init

request

Other subsystems

metadata for each
input

ODL 'list' of required
metadata

other subsystem metadata
via PGS_PC_GetConfig or
DpPrDpr GetAttributes
Operation

structural
metadata

inventory & archive
metadata

Figure J–1. Processing Subsystem

J-9 333–CD–003-005

J.6 Metadata Control File (MCF)

The MCF assists the Instrument teams in supplying metadata attributes to product granules being
generated. It is a template designed to contain metadata attributes "and assist in the management
of all and the acquisition of certain of these attributes". The metadata to be attached to each
product comes under two categories, Core and Product Specific. Core metadata will be included
with every collection. Product specific will vary with each collection.

J.6.1 Purpose of the MCF

The MCF will be provided to every Instrument Team as a template—to be filled out and
provided as part of the AI&T package so that the MCF can be staged alongside the product for
access by the toolkit. It is the Instrument Teams role to perform the following:

•	 To liaise with the metadata development personnel in verifying the content of the granule
specific inputs. To be familiar with Appendix B of DID 311. To specify the inputs which
may be product specific and added to the MCF

•	 To use the MCF file from the latest Toolkit delivery and populate this template with
product specific inputs

•	 To provide updates to the MCF when the need arises, or change the information when it
resides on the data server (this capability will in future be handled by the Data Server,
which will then create a new MCF.

Information which describes the setup of the actual files, SDS's, swaths etc. in the granule i.e.
startrow, startcolumn are written and attached to the granule by the PGE using HDF-EOS calling
sequences. This "structural" metadata is not used to populate the inventory, rather it is used to
support the services which may be performed upon the granule. There is no direct association
between the metadata groups set up in the MCF and the structural metadata. The MCF is not
used to populate the structural metadata.

J.6.2 Structure of the MCF

The MCF is constructed of a number of major GROUPS, OBJECTS and PARAMETERS which
describe the objects or metadata attributes. For an in depth description of the actual attributes
which may be held within the MCF consult the data dictionary section of DID311.

J.6.2.1 GROUPS

A group contains a set of objects which all have a similar theme or tie. A group is also the
means of attaching a set of attributes to a specific location.

The MCF consists of two or more "master groups", which split the data into that which will be
copied and extracted into the inventory (one master group only) as well as being archived with
the product, and that which will only be archived (one or more master groups). Only
MASTERGROUP groups will ever be attached to an HDF attribute, using PGS_MET_Write.

J-10 333–CD–003-005

Within these master groups, there are a number of subgroups. These have been included to
contain sets of attributes which potentially may be repeated, or have multiple instances. These
groups have names based on DID311 model class names, e.g. BoundingRectangle. When the
user supplies their own product specific metadata to the MCF template, the attributes must be
placed in one of the self describing groups; either 'AdditionalAttribute' or 'Parameter' (note only
the latter is supported for release A). Values relating to these attributes are placed in the group
'InformationContent'.

Groups may be nested to allow for greater flexibility. In order to distinguish between a master
group i.e. one that will be written to an HDF attribute, and a group within a master group, used to
amalgamate similar objects, an attribute called GROUPTYPE is assigned the value
MASTERGROUP. This allows the metadata tools a means of distinguishing between the two
levels of group.

The MCF must start:

GROUP = INVENTORYMETADATA

GROUPTYPE = MASTERGROUP

and end that master group:

END_GROUP = INVENTORYMETADATA

any nested groups within this master group must look like this:

GROUP = EXAMPLENAME

END_GROUP = EXAMPLENAME

J.6.2.2 OBJECTS

An object name relates directly to the attribute name in DID311 i.e. NorthBoundingCoordinate.
The template consists of a number of mandatory core objects, non mandatory core objects and
product specific objects. An object must always follow the correct syntax:

OBJECT = EXAMPLENAME

END_OBJECT = EXAMPLENAME

Within this sequence are contained the parameters which describe this object .

Objects can also be nested, although only one level of nesting is possible within the metadata
tools. Nesting is used, for a number of objects which may have two dimensional arrays as values
i.e. GringPolygons. There may be a number of polygons, each having an exclusion flag and
each polygon may be made up of many latitude and longitude measurements. In this scenario
the container object is the representation of polygons. A new instance of the container object is
created by the tools on output to the header whenever a new polygon is being described. The
class attribute is used to define this new instance using PGS_MET_SetAttr. The objects class
container within this container object would increment every time a new instance of the
container object occurred.

J-11 333–CD–003-005

e.g.

GROUP = GRing

OBJECT = GRingContainer

Data_Location= "NONE" /* necessary to i.d. a non-functional */

/* container object */

CLASS = "M"

Mandatory = "TRUE"

OBJECT = ExclusionGRingFlag

Data_Location= "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = ExclusionGRingFlag

/* for each of the following objects there are at least 3 elements */

/* in each array */

OBJECT = GRingPointLatitude

Data_Location = "PGE"

CLASS = "M"

TYPE = "DOUBLE"

NUM_VAL = n /* an array of max size n */

/* where n is at least 3*/

Mandatory = "TRUE"

END_OBJECT = GRingPointLatitude

OBJECT = GRingPointLongitude

Data_Location = "PGE"

CLASS = "M"

TYPE = "DOUBLE"

NUM_VAL = n

J-12 333–CD–003-005

Mandatory = "TRUE"

END_OBJECT = GRingPointLongitude

OBJECT = GRingPointSequenceNo

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = n

Mandatory = "TRUE"

END_OBJECT = GRingPointSequenceNo

END_OBJECT = GRingContainer

END_GROUP = GRing

J.6.2.3 PARAMETERS

The metadata tools help to set metadata values for a product granule from three input sources—
the Metadata Control File itself (MCF, pre-assigned values, entered during customization of the
template by the instrument team), the Process Control File (PCF, which contains all file input
and output specifications) and the PGE.

See example in J.6.2.2.

An object is described by a number of parameters, the parameters implemented within the MCF
are: Data_Location, Mandatory, NUM_VAL, TYPE, CLASS and when Data_Location = MCF,
an object has a Value assigned to it in the template. All objects must have Mandatory, TYPE,
Data_Location, Num_Val present at all times. These fields are case insensitive in the current
release of the Toolkit.

Data_Location - The value associated with an object in the template may be set via a
number of different mechanisms. Data_Location indicates the source of population.
Data_Location must be set for every object.

The attribute Data_Location may have the following values:

MCF - in this case, the object e.g. ShortName will have the value set whilst
the template is being customized by the user/DAAC. ONLY when the
Data_Location is equal to MCF does an object have a value assigned to it, not

using any of the metadata toolkit routines. At present the template shows this
example as value = xxxxx.

Values to be located in the MCF may be mandatory or non mandatory.

"MCF" MUST be in quotes as the value for Data_Location.

J-13 333–CD–003-005

PGE - in this case, the object e.g. PointLatitude is set by the science
software using PGS_MET_Set_Attr metadata tool. The majority of objects
will be set this way.

Values to be supplied by the PGE may be mandatory or non mandatory.

"PGE" MUST be in quotes as the value for Data_Location.

PCF - in this case, the object will automatically be assigned a value during
initialization of the MCF when using PGS_MET_Init. The value is derived
from the runtime environment within the PCF. Metadata Toolkit code will
locate the object name within the actual PCF delimiters. The name to be
searched on must be written between the second and third delimiters in the
PCF, and its corresponding value between the third and fourth
delimiters . The object name and its value MUST exist in the PCF for this
operation to succeed.

e.g. 12100| SATELLITE NAMES|("TRMM", "MODIS")

The string representing the parameter must be a unique Runtime parameter
to search on. Any attribute names which are referenced in the PCF should
be in UPPER case but MUST be unique, so that the metadata tools can match

against the attribute name.

Values to be located in the PCF may be mandatory or non mandatory.

Quotes are only necessary when the datatype of the value is STRING and brackets
are only required if NUM_VAL is greater than one.

e.g. 12101|MIN MAX DATA VALUES |(7, 99)

"PCF" MUST be in quotes as the value for Data_Location.

NONE - only necessary with nested objects, when the container object does
not going to have a value associated with it. An example can be found in J.8 for
GringPolygonContainer.

"NONE" MUST be in quotes as the value for Data_Location.

Mandatory - A mandatory statement must be set for every attribute. The mandatory
attribute can have the values "TRUE" or "FALSE". Attributes in DID311 which have been
specified as a mandatory metadata attribute for each granule, are flagged as "TRUE", as
are any product specific attribute which will be inventoried. Where DID-311 specifies an
attribute as Mandatory If Applicable, the mandatoriness should be decided on a case by case
basis. This set of metadata should only have the value "FALSE" if it can not be applied to the
data set, otherwise the value of mandatory should be set to "TRUE".

PGS_MET_Write returns an error if no value for a Mandatory attribute has been set, or
the value not the correct Type. If the value is "FALSE" a warning will be returned for the same
criterion. In both cases PGS_MET_Write completes its function setting the value to a

J-14 333–CD–003-005

default, which can be found in the metadata tool prologs, for missing mandatory attributes
and omitting the attribute where non-mandatory attributes have not been assigned a value. The
Toolkit reports these errors and warnings in the log file.

For any metadata attribute whose value will be moved to the inventory for search
purposes, the mandatory attribute must be set to "TRUE", and for any attributes to
be archived with the granule, the value may be "TRUE" or "FALSE", depending on
the importance of the attribute as determined by the Instrument Teams.

"TRUE" and "FALSE" must be enclosed in quotes in the MCF.

Type - The type attribute is attached to all objects in the MCF. The attribute allows
the metadata tools to cast the data provided by the PGE to the correct data type. The

values which may be utilized for this attribute are: "DATETIME", "INTEGER", "DOUBLE",
"STRING" and "UNSIGNEDINT". Type must be present for every object. Note that since
ODL does not support unsigned integers, the value written by the PGS_MET_Write tool may
appear negative, but the Toolkit handles any conversion between signed and unsigned
values based on the TYPE.

All values for Type must be enclosed in quotes.

CLASS - The attribute class is a mechanism for allowing attributes to occur
multiple times, with the same name i.e. GRingPointLatitude. The permitted
multiplicity for each attribute is described in DID 311, appendix B using BNF
notation. Multiple values can occur in two forms, by a single dimensional array - SEE

NUM_VAL, or an attribute can have two dimensions e.g. GRingPointLatitude, which has
many points describing the latitude, and may have many Rings describing the GRing. Class is
used to allow the repetition of the same attribute name, by assigning a different string value
for each instance of class with the same attribute name. With each instance of the same
attribute name, the PGS_MET_Set tool must be called with a CLASS suffix to the attribute
name - giving the attribute a unique representation - known as multiplicity. The actual suffix
used is of little consequence but integer increments are advised.

The CLASS system is set up in the MCF just once, using the CLASS = "M "
statement, where M means multiple. By using this mechanism the MCF allows the

user to specify how many attributes of the same name will have multiple instances, and the
metadata tools, on encountering the CLASS = "M" statement will be able to handle this.

When using multiple objects and the CLASS attribute, the MCF must always follow
these rules. Any object which is multiply defined is usually bounded by a general object e.g.
GRingContainer, (introduced to describe complex metadata) and MUST then be bounded by a
group name e.g. GRing. The CLASS for the general object must be set to "M".

The value which the user sets each instance of CLASS to, must be a unique string.
CLASS is only present for objects and groups which have multiple instances.

If the value of CLASS is a character string it must be enclosed in quotes.

J-15 333–CD–003-005

NUM_VAL - This attribute is used to describe a single dimensional array of values
for an attribute. This value must be set to the maximum number of values held within the array.
Any number of attributes up to this limit may be set. NUM_VAL must be present within
every object.

Value - This attribute is only present in the MCF template when the Data_Location
attribute is set to MCF. e.g. ShortName. Value is only set in the template for
attributes which are seen as being 'static' in nature. Value is, however, set for all
attributes when PGS_MET_Write tool creates the ODL header to be attached to the
HDF-EOS attribute. As noted previously, if a value has not been filled by either the
PGE, PCF or MCF then either a default value will be set or the attribute will not be
written, and an error or warning will be returned from PGS_MET_Write.

J.6.3 Internal Syntax

ODL

The MCF template is closely based on Object Description Language (ODL) libraries. ODL
accesses data which is kept in a hierarchical format using a GROUP, OBJECT and
PARAMETER hierarchy. A group being an agglomeration of objects which are similar in some
form, and which are described by a number of attributes.

ODL allows the nesting of both Objects and Groups. Both of these are nested in the MCF, and
described in section J.6.2.

Any information pertinent to PGE developers about ODL, and its functionality is contained
within this document, however should any additional information be sought, the URL's are

•WWW address http://stardust.jpl.nasa.gov/stdref/chap12.htm

A description of the ODL processing libraries.

• WWW address http://joy.gsfc.nasa.gov/CCSDS-DocLib.html

ODL uses a parameter = keyword statement to navigate attributes. Additional
information on this notation can be found at the URL above.

When navigating through the MCF template, the ODL is translated internally into an ODL tree
structure, enabling searches to be performed on Groups, Objects and Keywords. It is this means
of identifying attributes, which enables the metadata tools to manage the metadata and assign
values to attributes.

• ODL handles parameters and values in Upper case. 	The metadata toolkit converts
all character strings to upper case, as an added protection and fail-safe device.

• ODL only recognizes a character string value when it is in quotation marks.

• ODL only accepts Time/Date in CCSDS A (UTC) Format.

J-16 333–CD–003-005

• ODL only will accept INTEGER, UNSIGNEDINT, 	DOUBLE , DATETIME or
STRING as a value for type

J.6.4 Constructing the MCF

Constructing the MCF is largely a matter of taking the template provided and editing it for the
specific product or products for which it is being used. Editing must be in line with the rules for
mandatory and non-mandatory metadata attributes laid down in Appendix B of DID311.
However, instrument teams have a large amount of latitude and decision making power in setting
many of the attributes.

Section J.6.4.1. below describes one of the more complex aspects of the MCF while J.6.4.2
provides an example output header for these types.

J.6.4.1 Self Describing Attributes

A number of the objects in the MCF are termed self describing. This term derived from DID311
data model is used to house attributes, which may not fit into a any class and therefore are
described using name, type, description and sometimes value. The attributes are those relating to
Parameter, AdditionalAttribute, SensorCharacteristics and PlatformCharacteristics and to a lesser
extent VerticalSpatialDomain, Locality, and RegularPeriodic time.

Self describing values are described in the MCF using the following style - ParameterName,
which has a corresponding ParameterValue for non-core, possibly product specific, attributes
changing dynamically with each granule. The TYPE is Parameter DataType (i.e. user defined).
Several of the self describing groups can be multiple; i.e. the group/object construct is 2­
dimensional values sets; the first dimension is 'used' to contains single dimensional arrays (using
NUM_VAL) while the second dimension contains the self describing attributes (CLASS = "M").

Some sensor characteristics change relatively rapidly and sometimes need to be stored in a
database. The values vary according to data in the telemetry stream and are processed
automatically by Science Software. They are set up in the same way as Parameter values.
SensorCharacteristicValue has a datatype defined by SensorCharacteristictype.

e.g.

GROUP = InformationContent

OBJECT = InformationContentContainer

CLASS = "M" /* counter for each parameter */

Mandatory = "TRUE"

Data_Location = "NONE"

OBJECT = ParameterName

Data_Location = "PGE"

TYPE = "STRING"

J-17 333–CD–003-005

CLASS = "M"

NUM_VAL = 1

Mandatory = FALSE

END_OBJECT = ParameterName

OBJECT = ParameterValue

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 5

Mandatory = FALSE

END_OBJECT = ParameterValue

END_OBJECT = InformationContentContainer

END_GROUP = InformationContent

GROUP = SensorCharacteristic

OBJECT = SensorCharacteristicContainer

CLASS = "M"

Mandatory = "TRUE"

Data_Location = "NONE"

OBJECT = SensorCharacteristicName

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = SensorCharacteristicName

OBJECT = SensorCharacteristicValue

Data_Location = "PGE"

CLASS = "M"

NUM_VAL = 1

J-18 333–CD–003-005

Mandatory = "FALSE"

TYPE = "STRING"

END_OBJECT = SensorCharacteristicValue

OBJECT = SensorShortName /* The sensor and Instrument names are */

Data_Location = "PGE" /* provided to enable the inventory */

CLASS = "M" /* database to locate the correct */

TYPE = "STRING" /* characteristic name */

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = SensorShortName

OBJECT = InstrumentShortName

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = InstrumentShortName

OBJECT = PlatformShortName

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = PlatformShortName

END_OBJECT = SensorCharacteristicContainer

END_GROUP = SensorCharacteristic

J.6.4.2 Example header

An example of how self describing attributes would look in an actual product header:

J-19 333–CD–003-005

GROUP = SensorCharacteristic

OBJECT = SensorCharacteristicContainer

CLASS = "1"

OBJECT = SensorCharacteristicName

CLASS = "1"

NUM_VAL = 1

value = "tilt"

END_OBJECT = SensorCharacteristicName

OBJECT = SensorCharacteristicValue

CLASS = "1"

NUM_VAL = 1

value = 37.3

END_OBJECT = SensorCharacteristicValue

OBJECT = SensorShortName

CLASS = "1"

NUM_VAL = 1

value = "scr"

END_OBJECT = SensorShortName

OBJECT = InstrumentShortName

CLASS = "1"

NUM_VAL = 1

value = "MODIS"

END_OBJECT = InstrumentShortName

OBJECT = PlatformShortName

CLASS = "1"

NUM_VAL = 1

value = "AM-1"

END_OBJECT = PlatformShortName

END_OBJECT = SensorCharacteristicContainer

J-20 333–CD–003-005

OBJECT = SensorCharacteristicContainer

CLASS = "2"

OBJECT = SensorCharacteristicName

CLASS = "2"

NUM_VAL = 1

value = "roll"

END_OBJECT = SensorCharacteristicName

OBJECT = SensorCharacteristicValue

CLASS = "2"

NUM_VAL = 1

value = 123.9

END_OBJECT = SensorCharacteristicValue

OBJECT = SensorShortName

CLASS = "2"

NUM_VAL = 1

value = "scanning radiometer"

END_OBJECT = SensorShortName

OBJECT = InstrumentShortName

CLASS = "2"

NUM_VAL = 1

value = "MODIS"

END_OBJECT = InstrumentShortName

OBJECT = PlatformShortName

CLASS = "1"

NUM_VAL = 1

value = "AM-1"

END_OBJECT = PlatformShortName

END_OBJECT = SensorCharacteristicContainer

END_GROUP = SensorCharacteristic

J-21 333–CD–003-005

J.6.5 Management of the MCF

The MCF will allow the user to distinguish between metadata which will be used to populate the
inventory in the data server and used for inventory searches for that particular granule, as well as
writing metadata which is important to the description of the granule, and needs to be kept with
the granule as it is archived.

Within the MCF—the separate parts, e.g. Inventory and Archive metadata each become a
mastergroup. The actual inputs within these groups are then assigned to Objects, with keywords
representing the attribute of the object, i.e. value, type, data_location - each keyword will have a
value. Translated into ODL nomenclature these three categories become nodes within the ODL
tree, Groups become aggregation nodes—one per Group, or Object, Keywords become
Parameter nodes, and the values assigned to them are attached to Value nodes.

The configuration of the MCF is such that any information which needs to be added at a later
date e.g. QA data, can be slotted into the MCF without any change to the way the Toolkit
routines function. This is an important aspect which prevents the need to alter and recompile
code with each change to the MCF.

A full example MCF can be found in J.8. A file such as this is expected to be returned by all
instrument teams, with the relevant granule specific metadata information completed, and any
relevant product specific metadata added, which may be of use to other science, instrument
teams or other users.

The granule metadata is structured in such a way that the instrument team may choose which
attributes best describe the products they are providing for the objects relating to size, spatial and
temporal measurements. As long as one method of description is chosen, the MCF will be
complete, if however the instrument team believes more than one attribute is appropriate, then
the MCF will accept this also.

Note:

The users of the metadata Toolkit routines must remember that any type casting they require will
be set in the tool using ODL specific types. This does not interfere with the users own type
casting of values returned from the Toolkit call.

J.6.5.1 Management of Master Groups

The master groups (INVENTORYMETADATA and ARCHIVEDMETADATA) are directed
into different HDF attributes using the PGS_MET_Write tool. Inventory metadata is written to
the HDF file attribute coremetadata, and archived metadata is written to archivemetadata. Note
that there is no need to define structural metadata within an MCF. The structural metadata is
automatically generated by the HDF-EOS APIs and has the attribute name "structmetadata.N"
(N=0...9). Also note that internally, the PGS_MET_Write tools will create HDF attributes
"coremetadata.N" (N=0...n) and archivemetadata.N, a new attribute being created whenever the
attribute size exceeds HDF limitations. Thus there is no need for the MCF developer to worry
about the predicted size of there MASTERGROUPS; it will be handled internally by the Toolkit.

J-22 333–CD–003-005

INVENTORYMETADATA attributes apply to the whole granule and are parsed into the
inventory for search and retrieve purposes (and must be written to an HDF attribute named
"coremetadata"). This group is also archived with the product granule, and must include
mandatory core metadata attributes and may include product specific attributes.

The group ARCHIVEDMETADATA includes the following ...

1. product specific attributes.

2. attributes specific to elements of the granule (e.g. grids, swaths or points).

3. core attributes not required by the inventory

This grouping is done for ease of management and viewing by later users. The
ARCHIVEDMETADATA group must be written to an HDF attribute called "archivemetadata".

J.6.5.2 Management of Objects

All objects contained within a master group will be attached to the specified HDF attribute. It is
not possible to attach only a nested group, held within the mastergroup, or the objects it contains.

J.6.5.3 Management of Parameters

Not all parameters held within the MCF are written to the product. The parameters which are
written to describe the object are - Num_Val, Class and the value associated with the object. For
an example of the metadata attached to the HDF product see section J.6.6.

J-23 333–CD–003-005

n t e
product
.b = 7
n = xxn =
xxb =
7archiv
edmeta
data,
structu
ral
metada
ta
and
locally
attache
d
product
specifi
c
metada
ta

MCFi
h

Product

Inventory

Data Serv er Subsy tem
PDPS subsy tem

INVENTORYMETADATA

ARCHIVE

ARCHIVEDMETADATA
structural Metadata

INSERT

a = 6

z = 23

z= 23

a = 6

a b

76

p roduct

PGE + Metadata Tools

icoremetadata.0

archivemetadata.0

inventory master group

archived master group

product contains all inventorymetadata,

Figure J-2 Group Structure Parsing

J.6.6 Example of Output Header

An example of a small part of the Metadata which could be included within each HDF file as
coremetadata is shown below. This shows the structure of the metadata written to the product,
and what parameters are kept to describe the objects.

GROUP = INVENTORYMETADATA

OBJECT = SHORTNAME

NUM_VAL = 1

VALUE = "MODIS"

END_OBJECT = SHORTNAME

GROUP = GRING

OBJECT = GRINGCONTAINER

CLASS = 1

J-24 333–CD–003-005

OBJECT = EXCLUSIONGRINGFLAG

CLASS = 1

NUM_VAL = 1

VALUE = "N"

END_OBJECT = EXCLUSIONGRINGFLAG

OBJECT = GRINGPOINTLATITUDE

CLASS = 1

NUM_VAL = 3

VALUE = (32.12, 41.1, 54.4)

END_OBJECT = GRINGPOINTLATITUDE

OBJECT = GRINGPOINTLONGITUDE

CLASS = 1

NUM_VAL = 3

VALUE = (123.4, 156.8, 176.90)

END_OBJECT = GRINGPOINTLONGITUDE

OBJECT = GRINGPOINTSEQUENCENUMBER

CLASS = 1

NUM_VAL = 3

VALUE = (1, 3, 2)

END_OBJECT = GRINGPOINTSEQUENCENUMBER

END_OBJECT = GRINGGONCONTAINER

OBJECT = GRINGGONCONTAINER

CLASS = 2

OBJECT = EXCLUSIONGRINGFLAG

CLASS = 2

NUM_VAL = 1

VALUE = "Y"

END_OBJECT = EXCLUSIONGRINGFLAG

OBJECT = GRINGPOINTLATITUDE

J-25 333–CD–003-005

CLASS = 2

NUM_VAL = 3

VALUE = (22.12, 31.1, 44.4)

END_OBJECT = GRINGPOINTLATITUDE

OBJECT = GRINGPOINTLONGITUDE

CLASS = 2

NUM_VAL = 3

VALUE = (23.4, 256.8, 276.90)

END_OBJECT = GRINGPOINTLONGITUDE

OBJECT = GRINGPOINTSEQUENCENUMBER

CLASS = 2

NUM_VAL = 3

VALUE = (1, 2, 3)

END_OBJECT = GRINGPOINTSEQUENCENUMBER

END_OBJECT = GRINGGONCONTAINER

END_GROUP = GRING

END_GROUP = INVENTORYMETADATA

J.6.7 Inclusion of Multiple Attribute Values

Attributes may have a single value associated with them, or an array of values. Denoting a
single value is relatively simple in ODL. The values are enclosed within parenthesis e.g. if a
single dimensional array of values were being set within the MCF - with Data_Location = MCF,
the value would look like this (12, 34, 45, 88) or ("first", "second", "third").

To set a single dimensional array values using the metadata tools i.e. Data_Location = PGE, one
call containing all the values in the array is performed using PGS_MET_SetAttr.

Two dimensional arrays, i.e. GringPolygons, where a polygon can not only have a number of
values, but there may be a number of different polygons, utilize the array capability of ODL and
CLASS (see section J.6.2.3). Each Gring would be denoted with an unique CLASS identifier,
and any objects and attributes relating to that Gring would have the same unique CLASS
identifier. Once the Gring was fully described, the unique CLASS identifier would be changed
and the next Gring would be described. To keep track of the number of Grings within a granule
container groups and objects are used.

J-26 333–CD–003-005

To show the use of CLASS:- an example of the ODL tree structure derived from the MCF as it is
being filled out memory. This is neither the MCF template nor the final header form.

GROUP = GRing

Object = GRingContainer

CLASS = 1

Mandatory = "TRUE"

OBJECT = ExclusionGRingFlag /* RELATES TO GRING 1 */

Data_Location= "PGE"

CLASS = 1

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = ExclusionGRingFlag

OBJECT = GRingPointLatitude /* ARRAY DESCRIBING GRING 1 */

Data_Location = "PGE"

CLASS = 1

TYPE = "DOUBLE"

NUM_VAL = 6

Mandatory = "TRUE"

END_OBJECT = GRingPointLatitude

OBJECT = GRingPointLongitude /* ARRAY DESCRIBING GRING 1 */

Data_Location = "PGE"

CLASS = 1

TYPE = "DOUBLE"

NUM_VAL = 6

Mandatory = "TRUE"

END_OBJECT = GRingPointLongitude

OBJECT = GRingPointSequenceNo

Data_Location = "PGE"

J-27 333–CD–003-005

CLASS = 1

TYPE = "STRING"

NUM_VAL = 6

Mandatory = "TRUE"

END_OBJECT = GRingPointSequenceNo

END_OBJECT = GRingContainer

OBJECT = GRingContainer

CLASS = 2

Mandatory = "TRUE"

OBJECT = ExclusionGRingFlag /* RELATES TO GRING 2*/

Data_Location= "PGE"

CLASS = 2

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = ExclusionGRingFlag

OBJECT = GRingPointLatitude /* ARRAY DESCRIBING GRING 2 */

Data_Location = "PGE"

CLASS = 2

TYPE = "DOUBLE"

NUM_VAL = 6

Mandatory = "TRUE"

END_OBJECT = GRingPointLatitude

OBJECT = GRingPointLongitude /* ARRAY DESCRIBING GRING 2 */

Data_Location = "PGE"

CLASS = 2

TYPE = "DOUBLE"

NUM_VAL = 6

Mandatory = "TRUE"

J-28 333–CD–003-005

END_OBJECT = GRingPointLongitude

OBJECT = GRingPointSequenceNo

Data_Location = "PGE"

CLASS = 2

TYPE = "STRING"

NUM_VAL = 6

Mandatory = "TRUE"

END_OBJECT = GRingPointSequenceNo

END_OBJECT = GRingContainer

END_GROUP = GRing

J.7 Toolkit Utilization of the MCF

J.7.1 Overview

The prologs from the metadata tools code and are found in this Users guide along with relevant
examples in both ANSI C and FORTRAN. Examples of the functions provided in both C and
FORTRAN are present, as are notes which are specific to the functions. Actual calling sequence
examples are provided in this Users Guide as well as a condensed version within the primer—
accessible via a URL on the World Wide Web (WWW).

The calling sequences for the PGSTK metadata tools can be found in the prologs, which are
found in the Toolkit Users guide above. In order to utilize the tools to their optimum capacity,
they must be called in the specified sequence within algorithm code; i.e., PGS_MET_Init() (once
for each physical MCF), then PGS_MET_SetAttr() (0-n times), then PGS_MET_Write (once for
each HDF attribute). Note that with this release of the Toolkit, up to twenty MCF files may be
opened and operated on at one time, with each call to PGE_MET_Init() must be given a unique
handle. PGS_MET_GetSetAttr() and PGS_MET_GetPCAttr and PGS_MET_GetConfig can be
called any number of times at any point after Init and before PGS_MET_Write.

IMPORTANT:

It is absolutely imperative that PGS_MET_Write be called to generate an ASCII version of the
metadata in ODL format. In the current Toolkit release, this ASCII file will be generated
automatically when the INVENTORYMETADATA section is written providing an HDF or
HDF-EOS product is being generated. If an ASCII or simple binary product is being generated
(e.g. an interim file) which requires archiving, it is necessary use PGS_MET_Write to generate
this ASCII file.

The reason behind this is the method of populating the inventory during Insert of the product into
the Data Server Subsystem. The insert service handles a number of different file formats

J-29 333–CD–003-005

including HDF, and would require a number of different file opening mechanisms, by having the
metadata in a flat ASCII file, one file opening mechanism is employed.

The insert service expects to insert the product and the ASCII file duplicating the metadata into
the data server. The inventory will then be populated by opening up the ASCII file and copying
the relevant attributes values into the inventory data base.

• 	 The first step in reading from or writing to the MCF is with initialization. The
contents of the MCF are read into memory, and any values which are to be set
automatically from the PCF (i.e., where location = PCF) are located and inserted.
The initialization process also checks to see if the MCF is in the correct ODL
syntactical format.

• 	 Once the MCF has been loaded into memory, values can be set against the
relevant attributes names. The algorithm calling the tools has several methods
available. The PGE can use PGS_MET_SetAttr to set values already known to the
algorithm, or to set those values which are available from the Process Control File
(PCF). If the algorithm needs to pick out an object value or a class of a named
object from the MCF after it has been initialized, then PGS_MET_GetSetAttr is
used.

There are two toolkit calls which enable the algorithm to extract metadata
Information from the PCF.

•	 PGS_MET_GetPCAttr, which retrieves parameters which are either located as an
HDF attribute in product files, or can be found in a separate ASCII file (the first
occurrence of the attribute is returned from the file). These ASCII files MUST be
in flat ODL format. The HDF attributes are guaranteed to be in this format if they
have been written out to the file using the PGS_MET_Write function.

•	 PGS_MET_GetConfigData enables the user to obtain the configuration data
parameters held within the process control table using an agreed label.

PGS_MET_GetConfigData will locate the value bar, for the parameter FOO in
this PCF entry.

10255|FOO|"BAR"|/location/file|version

•	 Once the algorithm has finished retrieving and setting values in the memory, the
final stage is to write the inventory and archive metadata values to the product.
PGS_MET_Write writes the values out to an HDF file as an HDF 'attribute'.
Note that a separate call to PGS_MET_Write is required for each master group.

• 	 If the user needs to output the metadata to an ASCII (for non-HDF or non-HDF-
EOS products), this is also possible, by calling PGS_MET_Write again with a
variation in the calling sequence - see example in J.7.2. mdHandles[0] must be

J-30 333–CD–003-005

supplied to PGS_MET_Write to output an ASCII file. The name and path of that
ASCII file must be given in the PCF file. The file id used in this example is
10255.

Error messages, and an error return table and detailed descriptions of what they mean, can be
found in the Users Guide prologs.

This sequence must be repeated for each MCF used by the PGE.

The format of the resulting metadata values written into the product (i.e., an HDF attribute)
using HDF library calls is detailed in section J.6.6.

In order to further explain the utilization of the metadata toolkit routines, the following scenario
shows examples and which tools would be utilized to perform them.

J.7.2 Scenario

Retrieval of Data from an HDF file used as input to current processing specified in the PCF, and
setting that attribute in a new product.

STEP 1—Initialize MCF

PGS_MET_Init(filelogical, metadata handles)

STEP 2—Extract Value from file in PCF

PGS_MET_GetPCAttr(product file id, product version number, name of hdf attribute
containing metadata, metadata parameter, returned metadata
parameter value)

The output will be the value of the metadata attribute from the HDF metadata attribute or header.
e.g., Obtain the QA_Percentage_of_MissingData from an input product.

STEP 3—Write the value extracted to the MCF in memory

PGS_MET_SetAttr(metadata group name, name.class of parameter, value to be
inserted)

This will locate the group in the MCF, then the object name, and class if this is specified,
and attach a new attribute to the object, which will hold the value to be associated with
that attribute.

STEP 4—A value already held in the MCF in memory is needed to calculate a new value for a
product specific object.

PGS_MET_GetSetAttr(metadata group name, name.class of parameter, value to be
passed back)

STEP 5—In order to calculate this new value, information is also needed from the Configuration
parameters set up in the Process Control File.

PGS_MET_GetConfigData(name of parameter, value to be passed back)

J-31 333–CD–003-005

This will search the Process control file, and return the value back to the algorithm.

STEP 6—The PGE has used the two inputs to calculate a new value for one of the MCF objects,
and wants to write it to the MCF held in memory.

PGS_MET_SetAttr(metadata group name, name.class of parameter, value to be
inserted)

STEP 7—The PGE has finished setting all the values which are mandatory in the MCF, here is
still some relevant granule information which the PGE wants to add to the MCF. The PGE
accomplishes this by adding this information to the PRODUCT_SPECIFIC_METADATA
group. Located within this group lies the object names the instrument team has already specified
as being product specific.

PGS_MET_SetAttr(product specific metadata group name, name.class of parameter,
value to be inserted)

STEP 8—After multiple calls to PGS_MET_SetAttr the MCF in memory is now complete, all
the granule specific metadata has been set, the relevant product specific metadata has been set,
the PGE now writes the metadata out as an HDF attribute attached to the product.

PGS_MET_Write(metadata group to be written out, HDF file attribute name ,HDF file
ID)

STEP 9 —If the user wants to write out the MCF in memory as an ASCII file as well as
attaching it to the HDF file, this is possible using PGS_MET_Write with a number of different
inputs.

PGS_MET_Write(metadata group to be written out, HDF file attribute name
[MUST BE SET TO NULL (char *)NULL],HDF file ID [MUST BE SET TO NULL

(PGSt_Integer)NULL])

The user must give the mdHandle[0], reserved to point to the whole MCF and the rest of the
arguments as NULL. The name of the ASCII file must be defined in the Product Output Files
section of the PCF with the logical Id 10255, in accordance with the defined rules for the PCF.

J-32 333–CD–003-005

J.8 MCF Specification

This template can be used to develop individual MCF's

GROUP = INVENTORYMETADATA

GROUPTYPE = MASTERGROUP

/* *********Associate granule with collection *************** *****/

/* ******IMPORTANT - wherever xxxx or XXX or n or TBC is used */

/* within this MCF, these are values which the USER will */

/* ultimately fill in themselves - the MCF will not function with */

/* these original values!!!!! *********************************** */

/* IMPORTANT - any text comment in the MCF MUST be enclosed */

/* per line with /* and */. Unlike C where a block of text may */

/* be enclosed */

/* All attributes EXCEPT those at the highest level associated */

/* with ECSDataGranule (DID 31ll) must be grouped together */

/* The groups MUST relate to the CLASS names within DID 311 */

/* Container Objects, within a group, must duplicate the group */

/* name and append Container */

/* IMPORTANT The following Groups are Self Describing */

/* Parameter, SensorCharacteristic, VerticalSpatialDomain */

/* PlatformCharacteristic, Locality, RegularPeriodic and */

/* AdditionalAttribute */

/* They all have values which are self typed - these values */

/* will be set up in the descriptor, prior to MCF generation */

/* For MCF purposes, the values of all of these attributes */

/* will be of type STRING. The database will retain the correct */

/* types. The PGE/user MUST convert the value they are */

/* assinging to type string, before calling PGS_MET_SET */

/* and setting the value of the attribute. */

J-33 333–CD–003-005

/* The following metadata attributes are required for ALL classes of product */

OBJECT = ShortName

Data_Location = "MCF"

Value = "xxxx"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = ShortName

OBJECT = VersionID

Data_Location = "MCF"

Value = "xxxx"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = VersionID

/* Name of attribute */

/* Set in MCF */

/* The value replaces xxxx */

/* The size of the granule may be set once in the collection for */

/* all granule OR calculated routinely per granule (in which case */

/* the Data_location = PGE); which ever is most useful */

OBJECT = SizeMBECSDataGranule

Data_Location = "PGE"

TYPE = "INTEGER"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = SizeMBECSDataGranule

OBJECT = ReprocessingActual

Data_Location = "MCF"

Value = "xxxx"

TYPE = "STRING"

NUM_VAL = 1

/* Optional for limited class */

J-34 333–CD–003-005

Mandatory = "TRUE"

END_OBJECT = ReprocessingActual

OBJECT = ReprocessingPlanned

Data_Location = "MCF"

Value = "xxxx"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

/* Optional for limited and intermediate classes */

/* Optional for limited and intermediate classes */

END_OBJECT = ReprocessingPlanned

/* There are various ways of expressing spatial coverage. */

/* ECS requires that the following be supplied. */

/* BoundingRectangle (mandatory if applicable) */

/* plus none or more of... */

/* Point */

/* GPolygonContainer */

/* Circle */

/* OrbitCalculatedSpatialDomain */

/* Each of these is a compound of several attributes as specified */

/* below */

/* BoundingRectangle set; these must occur only once for each */

/* granule */

GROUP = BoundingRectangle

OBJECT = EastBoundingCoordinate

Data_Location = "PGE"

TYPE = "DOUBLE"

NUM_VAL = 1

Mandatory = "TRUE" /* Mandatory if applicable for all classes*/

END_OBJECT = EastBoundingCoordinate

OBJECT = WestBoundingCoordinate

J-35 333–CD–003-005

Data_Location= "PGE"

TYPE = "DOUBLE"

NUM_VAL = 1

Mandatory = "TRUE" /* Mandatory if applicable for all classes*/

END_OBJECT = WestBoundingCoordinate

OBJECT = NorthBoundingCoordinate

Data_Location = "PGE"

TYPE = "DOUBLE"

NUM_VAL = 1

Mandatory = "TRUE" /* Mandatory if applicable for all classes*/

END_OBJECT = NorthBoundingCoordinate

OBJECT = SouthBoundingCoordinate

Data_Location = "PGE"

TYPE = "DOUBLE"

NUM_VAL = 1

Mandatory = "TRUE" /* Mandatory if applicable for all classes*/

END_OBJECT = SouthBoundingCoordinate

END_GROUP = BoundingRectangle

/* there may be many GRingContainer object sets per */

/* GRing group i.e. many grings in each granule */

/* GRings must be sequenced i.e. sequence number in a clockwise */

/* manner, the area to the right of the direction of travel being the */

/* enclosed area */

GROUP = GPolygon

OBJECT = GRingContainer

Data_Location= "NONE" /* necessary to i.d. a non-functional */

/* container object */

CLASS = "M"

Mandatory = "TRUE"

J-36 333–CD–003-005

OBJECT = ExclusionGRingFlag

Data_Location= "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE" /* Mandatory if Grings are specified */

END_OBJECT = ExclusionGRingFlag

/* for each of the following objects there must be at least 3 elements */

/* in each array */

OBJECT = GRingPointLatitude

Data_Location = "PGE"

CLASS = "M"

TYPE = "DOUBLE"

NUM_VAL = 3 /* an array of min size 3 */

/* can be any integer >= 3 */

Mandatory = "FALSE" /* Mandatory if Grings are specified */

END_OBJECT = GRingPointLatitude

OBJECT = GRingPointLongitude

Data_Location = "PGE"

CLASS = "M"

TYPE = "DOUBLE"

NUM_VAL = 3 /* Same number as GRingPointLatitude */

Mandatory = "FALSE" /* Mandatory if Grings are specified */

END_OBJECT = GRingPointLongitude

OBJECT = GRingPointSequenceNo

Data_Location = "PGE"

CLASS = "M"

TYPE = "INTEGER"

NUM_VAL = 3 /* Same number as GRingPointLatitude */

J-37 333–CD–003-005

Mandatory = "FALSE" /* Mandatory if Grings are specified */

END_OBJECT = GRingPointSequenceNo

END_OBJECT = GRingContainer

END_GROUP = GPolygon

/* granule may be described using one circle. */

/* If circle is used then all attributes within the group are mandatory */

GROUP = Circle

OBJECT = CenterLatitude

Data_Location = "PGE"

TYPE = "DOUBLE"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = CenterLatitude

OBJECT = CenterLongitude

Data_Location = "PGE"

TYPE = "DOUBLE"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = CenterLongitude

OBJECT = RadiusValue /* assumed to have the type */

/* of RadiusUnits */

Data_Location = "PGE"

TYPE = "DOUBLE"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = RadiusValue

OBJECT = RadiusUnits

Data_Location = "PGE"

TYPE = "STRING"

J-38 333–CD–003-005

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = RadiusUnits

END_GROUP = Circle

/* granule may be described using single point.*/

/* If point is used then all attributes within point are mandatory */

GROUP = Point

OBJECT = PointLatitude

Data_Location = "PGE"

TYPE = "DOUBLE"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = PointLatitude

OBJECT = PointLongitude

Data_Location = "PGE"

TYPE = "DOUBLE"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = PointLongitude

END_GROUP = Point

/* when using Grid coordinate systems, ZoneIdentifier may, optionally, be specified */

GROUP = ZoneIdentifierClass

OBJECT = ZoneIdentifier

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = ZoneIdentifier

END_GROUP = ZoneIdentifierClass

J-39 333–CD–003-005

/* when using locality text labels */

GROUP = GranuleLocality

OBJECT = LocalityValue

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE" /* Optional for all classes */

END_OBJECT = LocalityValue

END_GROUP = GranuleLocality

/* Location information for vertical product data, at release A*/

/* only one vertical value per granule is expected. The TYPE is */

/* variable dependent on the VerticalSpatialDomainType, which should*/

/* be explicitly stated */

/* This group is optional for limited class, and mandatory if applicable for full and */

/* intermediate, but both attributes must be specified if used. */

GROUP = VerticalSpatialDomain

OBJECT = VerticalSpatialDomainValue

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = VerticalSpatialDomainValue

OBJECT = VerticalSpatialDomainType

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = VerticalSpatialDomainType

END_GROUP = VerticalSpatialDomain

J-40 333–CD–003-005

/* The following group is optional for the limited class, and mandatory if */

/* applicable for intermediate and full classes*/

GROUP = OrbitCalculatedSpatialDomain

OBJECT = OrbitNumber

Data_Location = "PGE"

TYPE = "INTEGER"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = OrbitNumber

OBJECT = StartOrbitNumber

Data_Location = "PGE"

TYPE = "INTEGER"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = StartOrbitNumber

OBJECT = StopOrbitNumber

Data_Location = "PGE"

TYPE = "INTEGER"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = StopOrbitNumber

/* Mandatory if data is from a single orbit */

/* Otherwise should be deleted */

/* Mandatory if data is from >1 orbit */

/* Otherwise should be deleted */

/* Mandatory if data is from >1 orbit */

/* Otherwise should be deleted */

OBJECT = LongitudeOfEquatorCrossing

Data_Location = "PGE"

TYPE = "DOUBLE"

NUM_VAL = 1

Mandatory = "FALSE" /* Mandatory if this GROUP exists */

J-41 333–CD–003-005

END_OBJECT = LongitudeOfEquatorCrossing

OBJECT = DateTimeOfEquatorCrossing

Data_Location = "PGE"

TYPE = "DATETIME"

NUM_VAL = 1

Mandatory = "FALSE" /* Mandatory if this GROUP exists */

END_OBJECT = DateTimeOfEquatorCrossing

END_GROUP = OrbitCalculatedSpatialDomain

/* There are two ways to express temporal extent at the */

/* granule level. These are RangeDateTime or SingleDateTime */

/* each of which is a compound. It is MANDATORY to supply ONE of these */

/* for intermediate and full products, and optional to supply ONE for limited class */

/* products. Whichever is used, the other should be deleted from this template */

/* Repeating sets of time measures can be placed in the ARCHIVEDMETADATA */

/* master group*/

/* range time */

GROUP = RangeDateTime

OBJECT = RangeBeginningDateTime

/* Format is YYYY-MM-DDTHH:MM:SS.SSSS....Z or */

/* YYYY-DDDTHH:MM:SS.SSSS....Z */

Data_Location = "PGE"

TYPE = "DATETIME"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = RangeBeginningDateTime

OBJECT = RangeEndingDateTime

/* Format is YYYY-MM-DDTHH:MM:SS.SSSS....Z or */

/* YYYY-DDDTHH:MM:SS.SSSS....Z */

Data_Location = "PGE"

J-42 333–CD–003-005

TYPE = "DATETIME"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = RangeEndingDateTime

END_GROUP = RangeDateTime

/* SingleDateTime */

GROUP = SingleDateTime

OBJECT = CalendarDateTime

/* Format is YYYY-MM-DDTHH:MM:SS.SSSS....Z or */

/* YYYY-DDDTHH:MM:SS.SSSS....Z */

Data_Location = "PGE"

TYPE = "DATETIME"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = CalendarDateTime

END_GROUP = SingleDateTime

/* Information for data quality rating. */

/* each of the following QA - quality flags or values may be set */

/* for the whole granule and-or for science parameters within */

/* each granule. Only whole granule measures for inventory */

/* purposes are included in this master group, repeating sets */

/* can be placed into the ARCHIVEDMETADATA group using */

/* arrays and if necessary nested group and object and CLASS = "M" */

/* statements where 2 dimensional sets of values per attribute */

/* are required */

/* This group is optional for limited and intermediate class products */

/* and mandatory for full class products. If used, then the percentage of */

/* out of bounds data MUST be supplied, the others being optional */

GROUP = QAStats

J-43 333–CD–003-005

OBJECT = QAPercentInterpolatedData

Data_Location = "PGE"

TYPE = "INTEGER"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = QAPercentInterpolatedData

OBJECT = QAPercentOutofBoundsData

Data_Location = "PGE"

TYPE = "INTEGER"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = QAPercentOutofBoundsData

OBJECT = QAPercentMissingData

Data_Location = "PGE"

TYPE = "INTEGER"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = QAPercentMissingData

END_GROUP = QAStats

/* The following group is optional for limited and intermediate class products */

/* but mandatory for full. Only one of the flags sould be set, normally the Automatic */

/* If used, both the flag and explanation must be assigned a value */

GROUP = QACollectionStats

OBJECT = AutomaticQualityFlag

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = AutomaticQualityFlag

J-44 333–CD–003-005

OBJECT = OperationalQualityFlag

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = OperationalQualityFlag

OBJECT = ScienceQualityFlag

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = ScienceQualityFlag

OBJECT = QualityFlagExplanation

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = QualityFlagExplanation

END_GROUP = QACollectionStats

/* these are URs made available to the PGE from the PCF */

/* which must be extracted by the PGE individually */

/* This group is optional for limited and intermediate products */

/* and mandatory for full class products*/

GROUP = InputGranule

OBJECT = InputPointer

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1 /* Alter as appropriate depending on */

/* number of inputs to product */

J-45 333–CD–003-005

Mandatory = "FALSE"

END_OBJECT = InputPointer

END_GROUP = InputGranule

/* The following group is optional for limited and intermediate products */

/* and mandatory if applicable for full class products */

GROUP = AncillaryInputGranule

OBJECT = AncillaryInputPointer

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = AncillaryInputPointer

END_GROUP = AncillaryInputGranule

/* The following group is optional for limited products */

/* and mandatory if applicable for full and intermediate products */

GROUP = OrbitParametersGranule

OBJECT = OrbitParametersPointer

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = OrbitParametersPointer

END_GROUP = OrbitParametersGranule

/* The following group is optional for all classes of product */

GROUP = InformationContent

OBJECT = InformationContentContainer

CLASS = "M" /* counter for each additional */

/* attribute */

Mandatory = "TRUE"

J-46 333–CD–003-005

Data_Location = "NONE"

/* EITHER AdditionalAttributeName or ParameterName is used */

/* to describe a ParameterValue if a value is appropriate. Note for release A */

/* ONLY ParameterName is supported, AdditionalAtrribute is not. */

/* For situations where geophysical parameter */

/* content varies with the granule. The TYPE is ParameterDataType */

/* (i.e. user defined). This group object construct */

/* allows for 2-dimensional values sets; i.e. where each */

/* parameter has many values per granule. */

OBJECT = ParameterName

Data_Location = "PGE"

TYPE = "STRING"

CLASS = "M"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = ParameterName

/* for non-core attributes which are not geophysical parameter */

/* content. The TYPE is */

/* AdditionalAttribute DataType (i.e. user defined). */

/* This group object construct */

/* allows for 2-dimensional values sets; i.e. where each */

/* additional attribute has many values per granule. */

/* This will not be supported at Release-A but is left here for */

/* later use. */

/* The value of additional attribute is ParameterValue */

OBJECT = AdditionalAttributeName

Data_Location = "PGE"

TYPE = "STRING"

CLASS = "M"

J-47 333–CD–003-005

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = AdditionalAttributeName

/* value may or may not be appropriate to describe the */

/* AdditionalAttributeName or ParameterName */

OBJECT = ParameterValue

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1 /* Or greater depending on individual needs */

Mandatory = "FALSE"

END_OBJECT = ParameterValue

END_OBJECT = InformationContentContainer

END_GROUP = InformationContent

/* this next group used to track changes in parameter content */

/* (not parameter values); i.e. if science content varies per granule. */

/* Such variation presumes that a multitype collection has been */

/* established allowing for inventory level changes of this type. */

/* This is not supported at Release A */

GROUP = Parameter

OBJECT = ParameterName

Data_Location = "PGE"

TYPE = "STRING"

CLASS = "M"

NUM_VAL = 1 /* Or greater depending on individual needs */

Mandatory = FALSE

END_OBJECT = ParameterName

END_GROUP = Parameter

/* these sensor characteristics change relatively rapidly and */

J-48 333–CD–003-005

/* need to be store in a database. The values vary according */

/* to data in the telemetry stream and are processed */

/* automatically. They are set up in the same way as */

/* Parameter values. SensorCharacteristicValue has */

/* type SensorCharacteristictype. This group/object construct */

/* allows for 2-dimensional values sets; i.e. where each */

/* SensorCharacteristicValue has many values per granule. */

/* This group is optional for all classes of data. */

GROUP = SensorCharacteristic

OBJECT = SensorCharacteristicContainer

CLASS = "M"/* allows for many sensorcharacteristics */

/* per granule */

Mandatory = "TRUE"

Data_Location = "NONE"

OBJECT = SensorCharacteristicName

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = SensorCharacteristicName

OBJECT = SensorCharacteristicValue

Data_Location = "PGE"

CLASS = "M"

NUM_VAL = 1

Mandatory = "FALSE"

TYPE = "STRING"

END_OBJECT = SensorCharacteristicValue

OBJECT = SensorCharacteristicUnits

J-49 333–CD–003-005

Data_Location = "PGE"

CLASS = "M"

NUM_VAL = 1

Mandatory = "FALSE"

TYPE = "STRING"

END_OBJECT = SensorCharacteristicUnits

OBJECT = SensorCharacteristicType

Data_Location = "PGE"

CLASS = "M"

NUM_VAL = 1

Mandatory = "FALSE"

TYPE = "STRING"

END_OBJECT = SensorCharacteristicType

OBJECT = SensorShortName

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = SensorShortName

OBJECT = InstrumentShortName

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = InstrumentShortName

OBJECT = PlatformShortName

Data_Location = "PGE"

J-50 333–CD–003-005

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "TRUE"

END_OBJECT = PlatformShortName

/* Platform, Instrument and Sensor names needed to allow the */

/* database to locate the correct charactreristic name */

END_OBJECT = SensorCharacteristicContainer

END_GROUP = SensorCharacteristic

/* this used to monitor instument mode changes needed */

/* at granule level */

/* This is optional for all classes of data */

GROUP = OperationModeClass

OBJECT = OperationMode

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = OperationMode

END_GROUP = OperationModeClass

/* The following group is optional for all classes */

GROUP = Review

OBJECT = ScienceReviewDate

Data_Location = "MCF"

TYPE = "DATETIME"

NUM_VAL = 5 /* Any number can be assigned here */

Mandatory = "FALSE"

END_OBJECT = ScienceReviewDate

OBJECT = ScienceReviewStatus

J-51 333–CD–003-005

Data_Location = "MCF"

TYPE = "INTEGER"

NUM_VAL = 5 /* Any number can be assigned here */

Mandatory = "FALSE"

END_OBJECT = ScienceReviewStatus

OBJECT = FutureReviewDate

Data_Location = "MCF"

TYPE = "DATETIME"

NUM_VAL = 5 /* Any number can be assigned here */

Mandatory = "FALSE"

END_OBJECT = FutureReviewDate

END_GROUP = Review

/* end of master group */

END_GROUP = INVENTORYMETADATA

GROUP = ARCHIVEDMETADATA

GROUPTYPE = MASTERGROUP

/* this master group may contain any core attributes group */

/* plus product specific attributes. Both may be single */

/* attributes or repeating. In the latter case, arrays plus the */

/* Group, Object and CLASS = "M" construct shown above should*/

/* be used. */

/* This group should be written using MET_WRITE. */

/* These attributes are NOT parsed into the inventory and */

/* are therefore NOT SEARCHABLE */

/* the following are core attributes not required to be searched */

/* but which may be mandatory or just useful - according to */

/* choices made in appendix B. */

/* these attribute needed in browse granules */

J-52 333–CD–003-005

/* Shortname + same as in granule * /
/ * B r o w s e D e s c r i p t i o n + * /
/ * B r o w s e S i z e + * /
/* SpatialDomainContainer +

/* [RangeDateTime | SingleDateTime] +

GROUP = Browse

OBJECT = BrowseSize

Data_Location = "PGE"

TYPE = "DOUBLE"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = BrowseSize

OBJECT = BrowseDescription

Data_Location = "PGE"

NUM_VAL = 1

TYPE = "STRING"

Mandatory = "FALSE"

same as in granule */

same as in granule */

/* may also be MCF (static) provided */

/* if not prone to change */

END_OBJECT = BrowseDescription

END_GROUP = Browse

/* the following are core attributes found in the */

/* INVENTORYMETADATA master group but duplicated in this */

/* master group in order to contain additional attribute values */

/* required to be in the product granule but not searchable; for */

/* example, quality measures related to individual geophysical */

/* parameters. The 2-dimensional formulation using arrays */

/* (NUM_VALS) and CLASS = "M" is used to accomodate many */

/* values in a self describing situation */

J-53 333–CD–003-005

GROUP = SensorCharacteristic

OBJECT = SensorCharacteristicContainer

CLASS = "M"

Data_Location = "NONE"

Mandatory = "FALSE"

OBJECT = SensorCharacteristicName

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = SensorCharacteristicName

OBJECT = SensorCharacteristicValue

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = SensorCharacteristicValue

OBJECT = SensorShortName

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = SensorShortName

OBJECT = InstrumentShortName

Data_Location = "PGE"

CLASS = "M"

J-54 333–CD–003-005

TYPE = "STRING"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = InstrumentShortName

END_OBJECT = SensorCharacteristicContainer

END_GROUP = SensorCharacteristic

GROUP = InformationContent

OBJECT = InformationContentContainer

CLASS = "M" /* counter for each additional */

/* attribute */

Mandatory = "TRUE"

Data_Location = "NONE"

/* EITHER AdditionalAttributeName or ParameterName is used */

/* to describe a ParameterValue if a value is appropriate */

/* for situations where geophysical parameter */

/* content varies with the granule. The TYPE is Parameter */

/* DataType (i.e. user defined). This group object construct */

/* allows for 2-dimensional values sets; i.e. where each */

/* parameter has many values per granule. */

OBJECT = ParameterName

Data_Location = "PGE"

TYPE = "STRING"

CLASS = "M"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = ParameterName

/* for non-core attributes which are not geophysical parameter */

/* content. The TYPE is */

/* AdditionalAttribute DataType (i.e. user defined). */

J-55 333–CD–003-005

/* This group object construct */

/* allows for 2-dimensional values sets; i.e. where each */

/* additional attribute has many values per granule. */

/* The value of additional attribute is ParameterValue */

OBJECT = AdditionalAttributeName

Data_Location = "PGE"

TYPE = "STRING"

CLASS = "M"

NUM_VAL = 1

Mandatory = "FALSE"

END_OBJECT = AdditionalAttributeName

/* value may or may not be appropriate to describe the */

/* AdditionalAttributeName or ParameterName */

OBJECT = ParameterValue

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 3 /* Any integer number, depending on */

/* individual application */

Mandatory = "FALSE"

END_OBJECT = ParameterValue

END_OBJECT = InformationContentContainer

END_GROUP = InformationContent

/* Information for data quality rating. */

/* each of the following QA - quality flags or values may be set */

/* for the whole granule and-or for science parameters within */

/* each granule. */

GROUP = QAStats

OBJECT = QAStatsContainer

J-56 333–CD–003-005

CLASS = "M" /* counter for each parameter */

Data_Location = "NONE"

Mandatory = "FALSE"

OBJECT = QAPercentInterpolatedData

Data_Location = "PGE"

CLASS = "M"

TYPE = "INTEGER"

NUM_VAL = 1 /* Any integer number, depending on */

/* individual application */

Mandatory = "FALSE"

END_OBJECT = QAPercentInterpolatedData

OBJECT = QAPercentOutofBoundsData

Data_Location = "PGE"

CLASS = "M"

TYPE = "INTEGER"

NUM_VAL = 1 /* Any integer number, depending on */

/* individual application */

Mandatory = "FALSE"

END_OBJECT = QAPercentOutofBoundsData

OBJECT = QAPercentMissingData

Data_Location = "PGE"

CLASS = "M"

TYPE = "INTEGER"

NUM_VAL = 1 /* Any integer number, depending on */

/* individual application */

Mandatory = "FALSE"

END_OBJECT = QAPercentMissingData

/* parameter name may be required to link the QA measures to */

/* a particular parameter in the granule */

J-57 333–CD–003-005

OBJECT = ParameterName

Data_Location = "PGE"

CLASS = "M"

TYPE = "STRING"

NUM_VAL = 1 /* Any integer number, depending on */

/* individual application */

Mandatory = "FALSE"

END_OBJECT = ParameterName

END_OBJECT = QAStatsContainer

END_GROUP = QAStats

/* use NUM_VAL here to set multiple values of quality flag for */

/* components of the granule */

GROUP = QACollectionStats

OBJECT = AutomaticQualityFlag

Data_Location = "PGE"

TYPE = "STRING"

NUM_VAL = 1 /* Any integer number, depending on */

/* individual application */

Mandatory = TBC

END_OBJECT = AutomaticQualityFlag

END_GROUP = QACollectionStats

END_GROUP = ARCHIVEDMETADATA

END

J-58 333–CD–003-005

Appendix K. POSIX Systems Calls Usage Policy

This appendix outlines the usage policy for the set of POSIX system API calls as outlined in:

IEEE Std 1003.1: POSIX Part 1: System Application Program Interface (API) [C Language]

IEEE Std 1003.9: POSIX FORTRAN77 Language Interfaces, Part 1: Binding for System
Application Program Interface [API]

In general, the policy attempts to guard access to routines that may impact the SDPS where
system resource management is an issue. This will be accomplished by restricting access to the
standard POSIX system calls, as described below. The complete set of routines is listed in the
"Identifier Index" of IEEE Std 1003.1, and in the body of IEEE Std 1003.9.

Table C–1 provides general policy "guidelines" for various classes of system routines. These
guidelines are then used in determining the appropriate disposition for each of the POSIX system
call functions on an individual basis. The general policy guidelines include:

•	 Toolkit—The described functionality is either accessible to the user via a "shadowing"
routine in the PGS Toolkit, or it is used internally by the Toolkit itself. The Toolkit
routine may be a simple subroutine call (or macro) wrapper around the "shadowed"
function, or it may provide additional functionality that may be useful to the SDPS in
accomplishing its resource management objectives. Direct calls to the respective POSIX
API calls are prohibited within science algorithm code.

•	 Prohibited—Access to the described functionality is prohibited. Direct calls to the
respective POSIX API calls are prohibited within science algorithm code.

•	 Allowed—Access to the described functionality is allowed through the standard POSIX
API calls. The Toolkit itself makes calls to these routines in addition to those listed in the
Toolkit category.

The algorithm integration and test facility will include "code checkers" to screen science
algorithms for adherence. These code checkers will be provided as part of the PGS Toolkit to
support the development of policy compliant algorithms. This should greatly facilitate the
algorithm integration and test procedure.

K-1 333–CD–003–005

Table K–1. POSIX Call Guidelines By Class
Class Description Policy Guideline

Process control

Memory

File I/O

Stream I/O

Error / environment

Ownership

Miscellaneous

Terminal I/O

Status

Process creation and termination; interprocess
signaling and synchronization

Memory allocation, deallocation, and mapping

File I/O routines; directory manipulation routines

Stream I/O routines

Error recording and reporting; environment access

Process ownership and groups; file ownership,
permissions, and creation/access times

Math, "is...", "str...", and time functions

Terminal I/O and characteristics

System and resource status (read only)

Toolkit

Toolkit

Toolkit

Toolkit

Toolkit

Prohibited

Allowed

Prohibited

Allowed

Tables K–2 through K–10 constitute a listing of the entire set of POSIX C API calls, organized
by class and policy as described above. Table K–11 provides a listing of the FORTRAN77
specific language library calls that do not have C API counterparts. Entries in bold indicate that a
Toolkit "shadow" function has been created to perform this functionality.

Table K–2. POSIX Calls: Process Control
Toolkit Routines Prohibited Routines Allowed Routines

exec...()

_exit()
fork()

sig...()
sleep()
wait()
waitpid()

abort()
alarm(), PXFALARM()
PXFEXEC...()
PXFEXIT()
PXFFASTEXIT()
PXFFORK()
kill(), PXFKILL()
pause(), PXFPAUSE()
PXFSIG...()
PXFSLEEP()
PXFWAIT()
PXFWAITPID()

exit()

Table K–3. POSIX Calls: Memory
Toolkit Routines Prohibited Routines Allowed Routines

calloc()
free()
malloc()
realloc()

calloc()
free()
malloc()
realloc()

K-2 333–CD–003–005

Table K–4. POSIX Calls: File I/O
Toolkit Routines Prohibited Routines Allowed Routines

access()
close()
creat()
dup()
dup2()
lseek()
open()
pipe()
read()
remove()
rename()
tmpfile()
tmpnam()
write()

PXFACCESS()
PXFCLOSE()
PXFCREAT()
PXFDUP()
PXFDUP2()
PXFLSEEK()
PXFOPEN()
PXFPIPE()
PXFREAD()
chdir(), PXFCHDIR()
PXFRENAME()
closedir(), PXFCLOSEDIR()
fpathconf(), PXFFPATHCONF()
getcwd(), PXFGETCWD()
PXFWRITE()
link(), PXFLINK()
mkdir(), PXFMKDIR()
mkfifo(), PXFMKFIFO()
opendir(), PXFOPENDIR()
pathconf(), PXFPATHCONF()
readdir(), PXFREADDIR()
rewinddir(), PXFREWINDDIR()
rmdir(), PXFRMDIR()
unlink(), PXFUNLINK()
utime()

Table K–5. POSIX Calls: Stream I/O
Toolkit Routines Prohibited Routines Allowed Routines

fclose()
fcntl(),
fdopen()
fileno()
fopen()
freopen()

setbuf()
PXFFCNTL()
PXFFDOPEN()
PXFFILENO()
clearerr()
PXFPOSIXIO()

feof()
ferror()
fflush(), PXFFLUSH()
fgetc(), PXFFGETC()
fgets()
fprintf()
fputc(), PXFFPUTC()
fputs()
fread()
fscanf()
fseek(), PXFFSEEK()
ftell(), PXFFTELL()
fwrite()
getc(), PXFGETC()
putc(), PXFPUTC()
sprintf()
sscanf()
ungetc()

K-3 333–CD–003–005

Table K–6. POSIX Calls: Error/environment
Toolkit Routines Prohibited Routines Allowed Routines

assert()
getenv(), PXFGETENV()
perror()
IPXFARGC()
PXCLEARENV()
PXFGETARG()
PXFSETENV()

Table K–7. POSIX Calls: Ownership
Toolkit Routines Prohibited Routines Allowed Routines

getpid()
getppid()

PXFGETPID()
PXFGETPPID()
chmod(), PXFCHMOD()
chown(), PXFCHOWN()
getegid(), PXFGETEGID()
geteuid(), PXFGETEUID()
getgid(), PXFGETGID()
getgrgid(), PXFGETGRGID()
getgrnam(), PXFGETGRNAM()
getgroups(), PXFGETGROUPS()
getlogin(), PXFGETLOGIN()
getpgrp(), PXFGETPGRP()
getpwnam(), PXFGETPWNAM()
getpwuid(), PXFGETPWUID()
getuid(), PXFGETUID()
setgid(), PXFSETGID()
setpgid(), PXFSETPGID()
setsid(), PXFSETSID()
setuid(), PXFSETUID()
umask(), PXFUMASK()
utime(), PXFUTIME()

Table K–8. POSIX Calls: Miscellaneous
Toolkit Routines Prohibited Routines Allowed Routines

l localeconv()
setlocale()

localeconv()
setlocale()

K-4 333–CD–003–005

Table K–9. POSIX Calls: Terminal I/O
Toolkit Routines Prohibited Routines Allowed Routines

cfgetispeed(), PXF...()
cfgetospeed(), PXF...()
cfsetispeed(), PXF...()
cfsetospeed(), PXF...()
ctermid(), PXFCTERMID()
getchar()
gets()
isatty(), PXFISATTY()
printf()
putchar()
puts()
scanf()
tc...(), PXFTC...()
ttyname(), PXFTTYNAME()

Table K–10. POSIX Calls: Status
Toolkit Routines Prohibited Routines Allowed Routines

fstat(), PXFFSTAT()
stat(), PXFSTAT()
uname(), PXFUNAME()
PXFIS...()

sysconf(), PXFSYSCONF()
times(), PXFTIMES()

Table K–11. POSIX Calls: FORTRAN77 Language Library
Toolkit Routines Prohibited Routines Allowed Routines

open()
close()
read(5,…)
read(*,…)
write(6,…)
write(*,…)

PXFCALLSUBHANDLE()
IPXFCONST()
PXFCONST()
PXFGETSUBHANDLE()
PXFISCONST()
PXFSTRUCTCOPY()
PXFSTRUCTCREATE()
PXFSTRUCTFREE()
PXFSUBHANDLE()PXF<TYPE>
GET()
PXF<TYPE>SET()
PXFA<TYPE>GET()
PXFA<TYPE>SET()
PXFE<TYPE>GET()
PXFE<TYPE>SET()

K-5 333–CD–003–005

This page intentionally left blank.

K-6 333–CD–003–005

Appendix L. Ephemeris And Attitude File Formats

WARNING: These are internal ECS file formats, these formats are NOT determined or defined
by the Toolkit and are subject to change (the user interface to these files as defined by Toolkit
APIs are not, however, subject to change). The following information is provided solely for
those users interested in generating their own spacecraft ephemeris and attitude files for
simulation purposes (the Toolkit otherwise provides a utility, orbsim, for this purpose—see
section 6.2.6.1 Orbit and Attitude Simulator).

L.1 Spacecraft Ephemeris File Format

The ephemeris file is organized into 4 sections:

1) Fixed length header

2) Variable length header

3) Ephemeris records

4) Orbit metatdata

FIXED LENGTH FILE HEADER

VARIABLE LENGTH FILE HEADER
(nURs UR Records)

EPHEMERIS DATA
(nRecords Ephemeris Records)

ORBIT METADATA
(nOrbits Orbit Metadata Records)

Figure L–1. Ephemeris File Schematic

L-1 333–CD–003–005

Table L-1. Ephemeris File Fixed Length Header
Type Name Meaning

char spacecraftID[24]* Spacecraft Name (must be one of: “TRMM”, “EOSAM1”,
“EOSPM1”)

char asciiTimeRange[48] Start stop times to nearest hour or better, in ASCII

char source[32] Source of the data

char version[8] Version number (default = “1”)

PGSt_double startTime* Ephemeris dataset start time, secTAI93

PGSt_double endTime* Ephemeris dataset end time, secTAI93

PGSt_real interval Expected interval between records, SI seconds

PGSt_uinteger nURs* Number of input dataset universal references

PGSt_uinteger nRecords* Number of ephemeris records

PGSt_uinteger nOrbits** Number of orbits spanned, including fragments

PGSt_uinteger orbitNumberStart** Number of first orbit or part orbit in file

PGSt_uinteger orbitNumberEnd** Number of last orbit or part orbit in file

char keplerRefFrame[8] Reference Frame (e.g. “TOD”, “TOR” or “J2000”) of the Keplerian
Elements

PGSt_double keplerElements[6] Osculating Keplerian elements at epoch

PGSt_double keplerEpochTAI TAI 93 Epoch of the Reference Frame

PGSt_real qaParameters[16] Ephemeris data quality processing parameters

PGSt_real qaStatistics[4] Quality assurance statistics

char spares[216] Spares

Notes
Fields marked with an asterisk (*) are critical and MUST be properly populated to ensure correct
functioning of ALL Toolkit routines that rely on ephemeris data. Fields marked with a double
asterisk (**) are critical to the operation of the Toolkit function PGS_EPH_GetEphMet() and
must be properly populated for that tools to function correctly. None of the other fields is
actually examined by the Toolkit (the fields MUST be included in the header but the values are
not significant to the Toolkit).

Table L-2. Ephemeris File Universal Reference Record
Type Name Meaning

char parentURs[256] Universal references of input datasets

Notes
The number of these records (following the fixed length header) in the file MUST be equal to the
value of nURs specified in the fixed length header (see Table L-1, Ephemeris File Fixed Length
Header, above). The value of this record is not significant to the Toolkit.

L-2 333–CD–003–005

Table L-3. Ephemeris Data Record
Type Name Meaning

PGSt_double time Date and time as seconds from 1-1-93, secTAI93

PGSt_double xPos X component of position vector, meters

PGSt_double yPos Y component of position vector, meters

PGSt_double zPos Z component of position vector, meters

PGSt_double xVel X component of velocity vector, meters/second

PGSt_double yVel Y component of velocity vector, meters/second

PGSt_double zVel Z component of velocity vector, meters/second

PGSt_uinteger qFlagEph Ephemeris data quality flag

char spares[4] Spares

Notes
The number of these records (following the variable length header) in the file MUST be equal to
the value of nRecords specified in the fixed length header (see Table L-1, Ephemeris File Fixed
Length Header, above). The value of the variable “spares” is not significant to the Toolkit. See
notes on data quality flags below (L.3 Quality Flags).

Table L-4. Ephemeris Orbit Metadata Record
Type Name Meaning

PGSt_uinteger orbitNumber Orbit number, from beginning of mission

char spares[4] Spare

PGSt_double orbitAscendTime; Time of upward TOD equator crossing, secTAI93

PGSt_double orbitDescendTime Time of downward TOD equator crossing, secTAI93

PGSt_double orbitDescendLongitude Orbit down-crossing terrestrial longitude, radians

Notes
The number of these records (following the ephemeris data records) in the file MUST be equal to
the value of nOrbits specified in the fixed length header (see Table L-1, Ephemeris File Fixed
Length Header, above). The value of the variable “spares” is not significant to the Toolkit.

L.2 Spacecraft Attitude File Format

The attitude file is organized into 3 sections:

1) Fixed length header

2) Variable length header

3) Attitude records

L-3 333–CD–003–005

FIXED LENGTH FILE HEADER

VARIABLE LENGTH FILE HEADER
(nURs UR Records)

ATTITUDE DATA
(nRecords Attitude Records)

Figure L–2. Attitude File Schematic

Table L-5. Attitude File Fixed Length Header
Type Name Meaning

char spacecraftID[24]* Spacecraft Name (must be one of: “TRMM”, “EOSAM1”,
“EOSPM1”)

char asciiTimeRange[48] Start stop times to nearest hour or better, in ASCII

char source[32] Source of the data

char version[8] Version number (default = “1”)

PGSt_double startTime* Ephemeris dataset start time, secTAI93

PGSt_double endTime* Ephemeris dataset end time, secTAI93

PGSt_real interval Expected interval between records, SI seconds

PGSt_uinteger nURs* Number of input dataset universal references

PGSt_uinteger nRecords* Number of ephemeris records

PGSt_uinteger eulerAngleOrder[3] Order of rotations as a permutation of 1=x, 2=y, 3=z

PGSt_real qaParameters[16] Attitude data quality processing parameters

PGSt_real qaStatistics[4] Quality assurance statistics

char spares[280] Spares

Notes
Fields marked with an asterisk (*) are critical and MUST be properly populated to ensure correct
functioning of ALL Toolkit routines that rely on attitude data. None of the other fields are
actually examined by the Toolkit (the fields MUST be included in the header but the values are
not significant to the Toolkit).

L-4 333–CD–003–005

Table L-6. Attitude File Universal Reference Record
Type Name Meaning

char parentURs[256] Universal references of input datasets

Notes
The number of these records (following the fixed length header) in the file MUST be equal to the
value of nURs specified in the fixed length header (see Table L-5, Attitude File Fixed Length
Header, above). The value of this record is not significant to the Toolkit.

Table L-7. Attitude Data Record
Type Name Meaning

PGSt_double time Date and time as seconds from 1-1-93, secTAI93

PGSt_double firstEulerAngle First Euler angle, radians.

PGSt_double secondEulerAngle Second Euler angle, radians.

PGSt_double thirdEulerAngle Third Euler angle, radians.

PGSt_double xRate Angular rate about body X axis, radians/s

PGSt_double yRate Angular rate about body Y axis, radians/s

PGSt_double zRate Angular rate about body Z axis, radians/s

PGSt_uinteger qFlagAtt Attitude data quality flag

char spares[4] Spares

Notes
The number of these records (following the variable length header) in the file MUST be equal to
the value of nRecords specified in the fixed length header (see Table L-5, Attitude File Fixed
Length Header, above). The value of the variable “spares” is not significant to the Toolkit. See
notes on data quality flags below (L.3 Quality Flags).

L.3 Quality Flags

Quality flags definitions for ephemeris and attitude are suggested here. In actual cases, the flags
bits may be set according to spacecraft-criteria which should be explained and supported with
references to original documents. Tables L-8 and L-9 show suggested usage for platform generic
and platform specific quality flags. In a specific case, not all fields may be populated. For table
2B the usage could be quite different, for different spacecraft, but we have requested that bit 16
be reserved for a platform-specific "fatal" flag, if the data provider intends to send data packets
considered to be quite unreliable (the alternative is to send no data in such cases). The SDP
Toolkit tool for ephemeris and attitude access are user-callable, but are also used by higher level
tools. The user interface differs somewhat in the two cases. When the access tool is called
directly, it passes the flags on to the user. In the other case, for example if the user is accessing
geolocation services, the interface has to be different, because the user has not requested the flags.
In recent Toolkit releases, an error is returned only when large data gaps exist; the flags were
ignored. Work in progress will implement fuller recognition of quality flags by higher level tools

L-5 333–CD–003–005

that call the ephemeris tool. Thus, both missing data and bad quality data will result in warning
or error messages. The current plan is to implement, as default behavior, data rejection when bit
16 is set. We also intend to enable the user to set a quality flag mask, if desired, in the Process
Control File, enabling rejection based on other bits of her or his own choice. For this reason, data
providers are encouraged to establish practical definitions of flag bits suitable for users to check
questionable points. In particular, bits 2, 5, 6 and 9, if set, might in the future be used by users to
reject points. These represent the large gap and red variation limits. It is generally supposed that
some range or continuity checks have been imposed on the data, and will be reflected in some of
the flags ("yellow" and "red" limits exceeded). Since the checks could be range or continuity
checks, accompanying documentation should explain the procedure, i.e. the meaning of these
limits. So that the parameters used in checking will be available in the data sets themselves. We
are recommending that the Red limit bit be set so as to statistically reject not more than 0.01% of
the data when the variation is normal statistics, and the Yellow limit be set so as to reject not
more than 0.1%.

In reading Tables L8 and L9, please bear in mind that more detail has been included in the
quality data for attitude in the examples than for ephemeris, because our first program
spacecraft, TRMM, will be providing us smoothed, fitted ephemeris data and less refined attitude
data. For other platforms, it might prove advisable to include more detail in the ephemeris
quality flags.

Table L-8. Quality Flags - Platform Generic
Bit Bit Assignment Description

0 Overall Quality Summary Set if any quality check is failed; unset for ideal data. Data point
can still be useful even if this bit is set; scrutiny of the other bits
would be required however. Bits 1 and 16 are unset in this
instance of ideal data.

1 Data State Summary Set if any generic data quality bit is set (bits 2 - 11)

2 Red Limit Low Exceeded Low red limit has been exceeded.

3 Yellow Limit Low Exceeded Low yellow limit has been exceeded.

4 Yellow Limit High Exceeded High yellow limit has been exceeded.

5 Red Limit High Exceeded High red limit has been exceeded.

6 Long Data Gap Follows A significant data gap originally followed this data point.

7 Short Data Gap Follows A minor data gap originally followed this data point.

8 Short Data Gap Precedes A minor data gap originally preceded this data point.

9 Long Data Gap Precedes A significant data gap originally preceded this data point.

10 Point is a repaired data
point

Used for points inserted by software prior to Toolkit
(interpolated).

11 Quality flag problem quality data not available (bits 0-5 not meaningful)

12-15 Unassigned Reserved for SDP Toolkit use.

Notes
Bits 1-15 are Platform Generic Flags are for general data quality flagging, and are intended to
apply to all platforms and both attitude and ephemeris data. Bit 0 is least significant.

L-6 333–CD–003–005

Table L-9. Example of Attitude Quality Flags - TRMM Platform Specific
Bit Bit Assignment Description

16 Platform Specific Fatal Flag Set if any fatal platform specific quality bit is set

17 QAC Flag Data transmission flagged in QAC list.

18 ACS State Flag ACS state incompatible with attitude acquisition.

19 Yaw Maneuver Set if ACS yaw maneuver in progress.

20 Yaw Update Flag Set if the ACS is awaiting a yaw update. The ACS is in transition
between a delta-v, delta-h or inertial hold maneuver and nominal
mode. The attitude is likely good but not guaranteed.

21 Contingency Mode Flag Set if the ACS is operating in a degraded state due to an Earth
sensor failure.

22 Inertial Hold Flag Spacecraft is flying in inertial space locked mode.

23-31 Unassigned Available for other platform specific data—quality or other.

Notes
Bits 17 through 31 are Platform Specific Flags reserved for data flagging except that bit 16 is
common to all platforms. Bit 31 is most significant. The definitions outlined here are for the
TRMM platform.

L-7 333–CD–003–005

This page intentionally left blank.

L-8 333–CD–003–005

Appendix M. Problem Identification List

The list of known problems as of 11/15/96 for Toolkit 5.1.1 delivery of the SDP Toolkit can be
found in section 5 of the SDP Toolkit 5.1.1 Version Description Document (VDD) for the ECS
Project

M-1 333–CD–003–005

This page intentionally left blank.

M-2 333–CD–003–005

Abbreviations and Acronyms

A.A. Astronomical Almanac

AA ancillary data access

AI&T algorithm integration & test

AIRS Atmospheric Infrared Sounder

API application program interface

APID application process identifier

ASTER	 Advanced Spaceborne Thermal Emission and Reflection Radiometer (formerly
ITIR)

BNF Bachus–Nauer Form

CBP celestial body position

CCR configuration change request

CCSDS Consultative Committee on Space Data Systems

CDRL Contract Data Requirements List

CDS CCSDS day segmented time code

CERES Clouds and Earth Radiant Energy System

CM configuration management

COTS commercial off–the–shelf software

CRC cyclic redundancy code

CSC coordinate system conversion

CSMS Communications and Systems Management Segment (ECS)

CUC constant and unit conversions

CUC CCSDS unsegmented time code

DAAC distributed active archive center

DBMS database management system

DCE distributed computing environment

DCW Digital Chart of the World

AB-1 333–CD–003–005

DDF data distribution facility (Pacor)

DEM digital elevation model

DPFT Data Processing Focus Team

DTM digital terrain model

ECI Earth centered inertial

ECR Earth centered rotating

ECS EOSDIS Core System

EDC Earth Resources Observation Systems (EROS) Data Center

EDHS ECS Data Handling System

EDOS EOSDIS Data and Operations System

EOS Earth Observing System

EOSAM EOS AM Project (morning spacecraft series)

EOSDIS Earth Observing System Data and Information System

EOSPM EOS PM Project (afternoon spacecraft series)

EPH ephemeris data access

ESDIS Earth Science Data and Information System (GSFC Code 505)

ET ephemeris tool

FDF flight dynamics facility

FNOC Federal Naval Operations Center

FOV field of view

ftp file transfer protocol

GAST Greenwich apparent sidereal time

GCT geo–coordinate transformation

GCTP general cartographic transformation package

GIS geographic information systems

GMST Greenwich mean sidereal time

GPS Global Positioning System

GSFC Goddard Space Flight Center

HDF hierarchical data format

AB-2 333–CD–003–005

HITC Hughes Information Technology Corporation

HOM Hotine Oblique Mercator

http hypertext transport protocol

I&T integration & test

I/O input/output

IAU International Astronomical Union

ICD interface control document

IDL interactive data language

IEEE Institute of Electrical and Electronic Engineers

IERS International Earth Rotation Service

IMS information management system

IP Internet protocol

IWG Investigator Working Group

JNC jet navigational charts

JPL Jet Propulsion Laboratory

LaRC Langley Research Center

LIS Lightening Imaging Sensor

M&O maintaince and operations

MCF metadata configuration file

MDU missing data unit

MDUE Missing Data Unit Entry

MDUL missing data unit list

MEM memory management

MET metadata

MODIS Moderate–Resolution Imaging Spectroradiometer

MSFC Marshall Space Flight Center

NASA National Aeronautics and Space Administration

NCSA National Center for Supercomputer Applications

netCDF network common data format

AB-3 333–CD–003–005

NGDC National Geophysical Data Center

NMC National Meteorological Center (NOAA)

ODL object description language

PACOR packet processor

PC process control

PCF process control file

PDPS planning & data production system

PDR Preliminary Design Review

PDS production data set

PGE product generation executive (formerly product generation executable)

PGS Product Generation System

PGSTK Product Generation System Toolkit

POSIX Portable Operating System Interface for Computer Environments

QA quality assurance

QAC quality and accounting capsule

RDBMS relation data base management system

RPC remote procedure call

RRDB recommended requirements database

SCF Science Computing Facility

SDP science data production

SDPF science data processing facility

SDPS Science Data Processing Segment (ECS)

SES scheduling and execution subsystem

SFDU standard formatted data unit

SGI Silicon Graphics Incorporated

SI systeme international

SMF status message file

SMP Symmetric Multi–Processor

SOM Space Oblique Mercator

AB-4 333–CD–003–005

SPCS State Plane Coordinates Spheroid

SPSO Science Processing Support Office

SSM/I Special Sensor for Microwave/Imaging

TAI International Atomic Time

TBD to be determined

TD time date conversion

TDB Barycentric Dynamical Time

TDRSS Tracking and Data Relay Satellite System

TDT Terrestrial Dynamical Time

TLCF team leader computing facility

TRMM Tropical Rainfall Measuring Mission (joint US – Japan)

TSS (TDRSS) Service Session

UARS Upper Atmosphere Research Satellite

UCAR University Corporation for Atmospheric Research

URL universal reference locator

USDC United States Department of Commerce

USNO United States Naval Observatory

UT universal time

UTC Coordinated Universal Time

UTCF universal time correlation factor

UTM universal transverse mercator

VCDU virtual channel data unit

VPF vector product format

WWW World Wide Web

AB-5 333–CD–003–005

