
333-EMD-001

EOSDIS Maintenance & Development (EMD) Project

Release 7 SDP Toolkit Users Guide
for the EMD Project

Revision 05

March 2008

Raytheon Company
Riverdale, Maryland

This page intentionally left blank.

 333-EMD-001, Rev. 05

Preface

This document is a formal contract deliverable. It requires Government review and approval
within 20 business days. Changes to this document will be made by document change notice
(DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office
The EMD Project Office
Raytheon Company
5700 Rivertech Court
Riverdale, MD 20737

This SDP Toolkit version 5.2.15 is directed at EOS instrument data providers who will deliver
code to the ECS Release 7 DAACs. It is an engineering upgrade to Toolkit 5.2.14, delivered in
March 2006. The user calling interface of the current version is the same as that of Toolkit
5.2.14.

The purpose of this document is to provide Earth Observing System (EOS) instrument data
processing software developers and scientists with knowledge of Toolkit functionality: to
provide a listing of routine calling sequences; and to provide detailed descriptions and examples
of usage. The Toolkit will be used by developers at their Science Computing Facilities (SCFs) to
develop EOS data production software and to prepare that software for integration into
distributed active archive centers (DAACs). Subsequent usage of the Toolkit will be in
conjunction with the services provided by the DAACs to produce, archive and distribute
standard products. This document accompanies a software delivery that contains
implementations of the tools described in the document. We note that this SCF version of the
Toolkit contains provisions for error/status message, process control and file name handling by
science software in lieu of an operational scheduling system. This handling will be via manual
manipulation of UNIX files. This version also contains tools for creation and access of standard
product metadata parameters as well as several added ancillary data files (e.g., a geoid model).

The hierarchical data format (HDF) has been selected by the Earth Observing System Data and
Information System (EOSDIS) Project as the format of choice for standard product distribution.
ECS has created the HDF-EOS extensions to HDF, which provide EOS specific HDF structures.
For more information about HDF-EOS, see the HDF-EOS Library Users Guide. HDF is a disk
format and subroutine library for storage of most kinds of scientific data. As a disk format, HDF
files consist of a directory and an unordered set of binary data objects. Each directory entry
describes the location, the type, and the size of these binary objects.

The HDF subroutine library is designed to be easy for C and FORTRAN programmers to use.
The HDF library consists of callable routines, each of which belongs to a particular interface.
Each interface within these layers address a particular HDF function or a particular HDF data

 iii 333-EMD-001, Rev. 05

structure, such as arrays, tables, and annotations. Both HDF4 and HDF5 - based files are
supported.

This Users Guide is accompanied by a Toolkit Primer. The Primer is intended to provide a
concise explanation of individual tool usage, functionality and coding examples. The Primer will
not contain details, appendices, requirements trace, and so on; that are contained in this Users
Guide. The Primer is available at http://newsroom.gsfc.nasa.gov/sdptoolkit/primer/tkprimer.html

Other Toolkit related documents and links can be found at Toolkit web site:
http://newsroom.gsfc.nasa.gov/sdptoolkit/toolkit.html

The URL for the SDP Toolkit Frequently Asked Questions (FAQ) page is
http://newsroom.gsfc.nasa.gov/sdptoolkit/faq.html

You can also get there from the EDHS Home Page http://edhs1.gsfc.nasa.gov. Click on “ECS
Development”, then Click on “Toolkit”. The "Toolkit Frequently Asked Questions (FAQ)" link
is on the SDP Toolkit Page.

The technical point of contact within the EOS Data and Information System (EOSDIS) core
System (ECS) project is:

Abe Taaheri: Abe_Taaheri@raytheon.com

An e–mail drop for user questions and comments is: landover_PGSTLKIT@raytheon.com

Revision History

Document Number Status/Issue Publication Date CCR Number

333-CD-605-001 Submitted as Final May 2002 02-0419
333-CD-605-002 Submitted as Final December 2002 02-1050
333-CD-605-003 Submitted as Final April 2003 03-0234

333-EMD-001 Revision - October 2003 03-0715
333-EMD-001 Revision 01 May 2004 04-0215
333-EMD-001 Revision 02 August 2004 04-0350
333-EMD-001 Revision 03 April 2005 05-0150
333-EMD-001 Revision 04 March 2006 06-0127
333-EMD-001 Revision 05 February 2008 07-0560

 iv 333-EMD-001, Rev. 05

http://newsroom.gsfc.nasa.gov/sdptoolkit/primer/tkprimer.html

Abstract

The SDP Toolkit Users Guide describes Toolkit routine usage for science software developers,
who will produce code to process instrument data. This document describes the overall design of
the Toolkit, provides a general explanation of usage, and installation procedures on computer
platforms for which software development and certification have been done. Detailed listings of
routines, calling sequences, inputs and outputs and examples of usage are also provided. This
current Users Guide is updated to match the Release 7 SDP Toolkit delivery.

Keywords: toolkit, metadata, HDF, HDF5, HDF-EOS, data, format, production, error, handling,
process, control, geolocation, input, output, memory, management

 v 333-EMD-001, Rev. 05

This page intentionally left blank.

 vi 333-EMD-001, Rev. 05

Contents

Preface

Abstract

1. Introduction

1.1 Identification..1-1

1.2 Scope..1-1

1.3 Purpose and Objectives..1-1

1.4 Status and Schedule ...1-2

1.5 Document Organization ..1-11

2. Related Documentation

2.1 Parent Documents ..2-1

2.2 Applicable Documents...2-1

2.3 Information Documents ...2-2

3. Toolkit Design Goals

3.1 Foundations..3-1

3.2 Nomenclature...3-1

3.3 Consistency..3-1

3.4 Hierarchical Design ...3-2

3.5 Units...3-2

3.6 Ranges and Limits of Validity; unit vectors ..3-2

3.7 Aging and Maturation Effects..3-3

 vii 333-EMD-001, Rev. 05

4. Toolkit Usage, Functionality, and Future Direction

4.1 Introduction..4-1

4.2 SCF Development Environment ..4-2

4.2.1 Introduction..4-2
4.2.2 File Management ...4-2
4.2.3 Runtime Configuration ..4-3
4.2.4 PGE Script Development...4-4
4.2.5 Scheduling and Execution of PGEs ...4-4
4.2.6 Error/Status Message Creation and Use ..4-5
4.2.7 Error/Status Log Monitoring ...4-5
4.2.8 Parallel Processing Issues ..4-6
4.2.9 Configuration Management ...4-6
4.2.10 Distributed Computing Environment (DCE) Issues ..4-6

4.3 Test and Simulation Data Access ..4-7

4.4 Language Bindings and Advanced FORTRAN Considerations..4-7

4.5 Thread-Safe Issues ...4-8

5. Toolkit Installation and Maintenance

5.1 Installation Procedures...5-1

5.1.1 Release 6A SDP Toolkit Release Notes ..5-1
5.1.2 To Install the SDP Toolkit from a Disk–Based Tar File5-3
5.1.3 Compiling User Code with the Toolkit...5-28
5.1.4 Installation of AA Tools ...5-31

5.2 Instructions on Making Changes to Installation Procedures ..5-32

5.3 Link Instructions ...5-34

5.4 Test Drivers...5-35

5.5 User Feedback Mechanism...5-35

6. SDP Toolkit Specification

6.1 Introduction..6-1

6.2 SDP Toolkit Tools-Mandatory ..6-2

 viii 333-EMD-001, Rev. 05

6.2.1 File I/O Tools...6-2
6.2.2 Error/Status Reporting (SMF Tools) ..6-97
6.2.3 Process Control Tools ..6-143
6.2.4 Shared Memory Management Tools..6-194
6.2.5 Bit Manipulation Tools..6-205
6.2.6 Spacecraft Ephemeris and Attitude Data Access Tools.....................................6-205
6.2.7 Time and Date Conversion Tools ..6-232

6.3 SDP Toolkit Tools—Optional ...6-291

6.3.1 Digital Elevation Model Tools ..6-291
6.3.2 Ancillary Data Tools..6-337
6.3.3 Celestial Body Position Tools..6-374
6.3.4 Coordinate System Conversion Tools ...6-397
6.3.5 Geo–Coordinate Transformation Tools ...6-517
6.3.6 Math and Statistical Support Tools..6-527
6.3.7 Constants and Unit Conversions..6-527
6.3.8 Dynamic Memory Management Tools ..6-533
6.3.9 Graphics Support Tools ...6-542

List of Figures

6-1. Earth-Centered Rotating (ERC) Coordinates ...6-403

6-2. Earth Centered Inertial (ECI) Coordinates ...6-404

6-3. Relationship Between Earth-Centered Inertial (ECI) Coordinates and
Orbital Coordinates..6-405

6-4. Geometry of the Viewing and Sun Vectors..6-506

List of Tables

1-1. Toolkit Routine Key ...1-3

1-2. Toolkit Routine Listing ..1-4

1-3. Tool Changes for Release 7 Toolkit Delivery...1-11

5-1. SDP Toolkit Development Configuration ...5-26

5-2. Required Directory Environment Variables..5-27

5-3. Required Compiler and Library Environment Variables ..5-28

 ix 333-EMD-001, Rev. 05

5-4. Values of OSTYPE..5-33

5-5. Environment Variables ..5-33

6-1. PGS_IO_L0_Open Returns ..6-7

6-2. PGS_IO_L0_SetStart Returns ...6-11

6-3. PGS_IO_L0_SetStart Returns ...6-15

6-4. PGS_IO_L0_GetHeader Returns ..6-18

6-5. PGS_IO_L0_GetPacket Returns ...6-24

6-6. PGS_IO_L0_Close Returns...6-28

6-7. PGS_IO_L0_File_Sim Returns ...6-32

6-8. File Access Type ...6-40

6-9. PGS_IO_Gen_Open Returns...6-41

6-10. File Access Type ...6-43

6-11. PGS_IO_Gen_OpenF Returns...6-44

6-12. PGS_IO_Gen_Close Returns ..6-47

6-13. PGS_IO_Gen_CloseF..6-49

6-14. PGS_MET_Init Inputs...6-53

6-15. PGS_MET_Init Outputs ..6-53

6-16. PGS_MET_Init Returns ..6-54

6-17. PGS_MET_SetAttr Inputs...6-57

6-18. PGS_MET_SetAttr Returns ..6-58

6-19. PGS_MET_SetMultiAttr Inputs ..6-62

6-20. PGS_MET_SetMultiAttr Returns ...6-63

6-21. PGS_MET_GetSetAttr Inputs ...6-65

6-22. PGS_MET_GetSetAttr Outputs ..6-65

6-23. PGS_MET_GetSetAttr Returns...6-66

6-24. PGS_MET_GetPCAttr Inputs ...6-68

6-25. PGS_MET_GetPCAttr Outputs...6-69

6-26. PGS_MET_GetPCAttr Returns...6-69

 x 333-EMD-001, Rev. 05

6-27. PGS_MET_GetConfigData Inputs ..6-73

6-28. PGS_MET_GetConfigData Outputs ...6-73

6-29. PGS_MET_GetConfigData Returns..6-74

6-30. PGS_MET_Write Inputs ...6-76

6-31. PGS_MET_WriteReturns..6-77

6-32. PGS_MET_SDstart Inputs ..6-81

6-33. PGS_MET_SDstart Outputs..6-81

6-34. PGS_MET_SDstart Returns ..6-82

6-35. PGS_MET_SDend Outputs...6-83

6-36. PGS_MET_SDend Returns ...6-83

6-37. File Access Type ...6-86

6-38. PGS_IO_Gen_Temp_Open Returns..6-87

6-39. Proper Use of Persistence Values..6-88

6-40. Temporary File Name Definition ..6-89

6-41. File Duration..6-91

6-42. File Access Type ...6-92

6-43. PGS_IO_Gen_Temp_OpenF Returns ...6-92

6-44. PGS_SMF_SetUNIXMsg Returns ...6-104

6-45. PGS_SMF_SetStaticMsg Returns ..6-107

6-46. PGS_SMF_SetDynamicMsg Returns...6-109

6-47. PGS_SMF_GetMsgByCode Returns ...6-112

6-48. PGS_SMF_GetActionByCode Returns..6-114

6-49. PGS_SMF_CreateMsgTag Returns..6-116

6-50. PGS_SMF_GetInstrName Returns...6-118

6-51. PGS_SMF_GenerateStatusReport Returns ..6-120

6-52. Environment Variables ...6-121

6-53. PGS_SMF_SendRuntimeData Returns ..6-122

6-54. PGS_SMF_TestStatusLevel Returns..6-134

 xi 333-EMD-001, Rev. 05

6-55. PGS_SMF_Begin Returns..6-137

6-56. PGS_SMF_End Returns ...6-138

6-57. PGS_SMF_SetArithmeticTrap Returns ...6-139

6-58. PGS_PC_GetReference Returns...6-166

6-59. PGS_PC_GetReferenceType Returns ..6-169

6-60. PGS_PC_GenUniqueID Returns..6-173

6-61. PGS_PC_GetConfigData Returns ..6-175

6-62. PGS_PC_GetNumberOfFiles Returns..6-178

6-63. PGS_PC_GetFileAttr Returns ..6-182

6-64. PGS_PC_GetFileByAttr Returns ...6-185

6-65. PGS_PC_GetReference Returns...6-189

6-66. PGS_PC_GetFileSize Returns..6-192

6-67. PGS_MEM_ShmCreate Returns ..6-195

6-68. PGS_MEM_ShmAttach Returns..6-197

6-69. PGS_MEM_ShmDetach Returns ...6-199

6-70. PGS_MEM_ShmRead Inputs...6-201

6-71. PGS_MEM_ShmRead Outputs ..6-201

6-72. PGS_MEM_ShmRead Returns ..6-201

6-73. PGS_MEM_ShmWrite Inputs..6-203

6-74. PGS_MEM_ShmWrite Returns ...6-203

6-75. PGS_EPH_EphemAttit Inputs..6-212

6-76. PGS_EPH_EphemAttit Outputs ...6-212

6-77. PGS_EPH_EphemAttit Returns ...6-212

6-78. PGS_EPH_EphAtt_unInterpolate/PGS_EPH_UnInterpEphAtt Inputs6-219

6-79. PGS_EPH_EphAtt_unInterpolate/PGS_EPH_UnInterpEphAtt Outputs...........................6-219

6-80. PGS_EPH_EphAtt_unInterpolate/PGS_EPH_UnInterpEphAtt Returns...........................6-220

6-81. PGS_EPH_GetEphMet Inputs..6-224

6-82. PGS_EPH_GetEphMet Outputs ...6-224

 xii 333-EMD-001, Rev. 05

6-83. PGS_EPH_GetEphMet Returns ...6-224

6-84. PGS_EPH_ManageMasks Inputs ...6-228

6-85. PGS_EPH_ManageMasks Outputs ..6-229

6-86. PGS_EPH_ManageMasks Returns ..6-229

6-87. Estimated Errors in UT1 Predictions (Milliseconds of Time and Equivalent
Meters of Geolocation Error)...6-238

6-88. PGS_TD_UTCtoTAI Inputs...6-240

6-89. PGS_TD_UTCtoTAI Outputs ..6-240

6-90. PGS_TD_UTCtoTAI Returns ..6-241

6-91. PGS_TD_TAItoUTC Inputs...6-243

6-92. PGS_TD_TAItoUTC Outputs ..6-243

6-93. PGS_TD_TAItoUTC Returns ..6-243

6-94. PGS_TD_TAItoTAIjd.c Inputs ..6-245

6-95. PGS_TD_TAItoTAIjd Outputs ..6-245

6-96. PGS_TD_TAIjdtoTAI Inputs ...6-247

6-97. PGS_TD_TAItoGAST Inputs ..6-249

6-98. PGS_TD_TAItoGAST Outputs..6-249

6-99. PGS_TD_TAItoGAST Returns..6-249

6-100. PGS_TD_UTCtoSCtime Returns ...6-252

6-101. PGS_TD_SCtime_to_UTC Outputs...6-255

6-102. PGS_TD_SCtime_to_UTC Returns ...6-255

6-103. PGS_TD_ASCIItime_AtoB Inputs ..6-257

6-104. PGS_TD_ASCIItime_AtoB Outputs..6-257

6-105. PGS_TD_ASCIItime_AtoB Returns..6-257

6-106. PGS_TD_ASCIItime_BtoA Inputs ..6-259

6-107. PGS_TD_ASCIItime_BtoA Outputs..6-259

6-108. PGS_TD_ASCIItime_BtoA Returns..6-259

6-109. PGS_TD_UTCtoGPS Inputs ..6-261

6-110. PGS_TD_UTCtoGPS Outputs ...6-261

 xiii 333-EMD-001, Rev. 05

6-111. PGS_TD_UTCtoGPS Returns..6-261

6-112. PGS_TD_GPStoUTC Inputs ..6-263

6-113. PGS_TD_GPStoUTC Outputs ...6-263

6-114. PGS_TD_GPStoUTC Returns..6-263

6-115. PGS_TD_UTCtoTDTjed Inputs...6-265

6-116. PGS_TD_UTCtoTDTjed Outputs ..6-265

6-117. PGS_TD_UTCtoTDTjed Returns ..6-265

6-118. PGS_TD_UTCtoTDBjed Inputs...6-268

6-119. PGS_TD_UTCtoTDBjed Outputs..6-268

6-120. PGS_TD_UTCtoTDBjed Returns ..6-268

6-121. PGS_TD_TimeInterval Inputs..6-271

6-122. PGS_TD_TimeInterval Outputs ...6-271

6-123. PGS_TD_TimeInterval Returns ...6-271

6-124. PGS_TD_UTCtoUTCjd Inputs ..6-273

6-125. PGS_TD_UTCtoUTCjd Outputs..6-273

6-126. PGS_TD_UTCtoUTCjd Returns...6-273

6-127. PGS_TD_UTCjdtoUTC Inputs ..6-275

6-128. PGS_TD_UTCjdtoUTC Outputs..6-275

6-129. PGS_TD_UTCjdtoUTC Returns..6-275

6-130. PGS_TD_UTCtoUT1 Inputs ..6-277

6-131. PGS_TD_UTCtoUT1 Outputs ...6-277

6-132. PGS_TD_UTCtoUT1jd Inputs ...6-280

6-133. PGS_TD_UTCtoUT1jd Outputs ..6-280

6-134. PGS_TD_UTCtoUT1jd Returns...6-280

6-135. Get Leap Second Inputs..6-282

6-136. Get Leap Second Outputs ...6-282

6-137. Get Leap Seconds Returns..6-283

6-138. PGS_AA_dcw Inputs ...6-339

 xiv 333-EMD-001, Rev. 05

6-139. PGS_AA_dcw Outputs...6-339

6-140. PGS_AA_dcw Returns ...6-339

6-141. PGS_AA_dem Inputs ...6-342

6-142. PGS_AA_dem Outputs...6-342

6-143. PGS_AA_dem Returns...6-342

6-144. PGS_AA_PeVA_string Inputs ...6-346

6-145. PGS_AA_PeVA_string Outputs...6-346

6-146. PGS_AA_PeVA_string Returns...6-347

6-147. PGS_AA_PeVA_real Inputs ..6-349

6-148. PGS_AA_PeVA_real Outputs..6-349

6-149. PGS_AA_PeVA_real Returns..6-350

6-150. PGS_AA_PeVA_integer Inputs ...6-352

6-151. PGS_AA_PeVA_integer Outputs...6-352

6-152. PGS_AA_PeVA_integer Returns...6-352

6-153. PGS_AA_2Dgeo Inputs ...6-355

6-154. PGS_AA_2Dgeo Outputs...6-355

6-155. PGS_AA_2Dgeo Returns ...6-356

6-156. PGS_AA_3Dgeo Inputs ...6-360

6-157. PGS_AA_3Dgeo Outputs...6-360

6-158. PGS_AA_3Dgeo Returns ...6-360

6-159. PGS_AA_2DRead Input...6-365

6-160. PGS_AA_2DRead Output..6-365

6-161. PGS_AA_2DRead Returns...6-366

6-162. PGS_AA_3DRead Inputs ...6-370

6-163. PGS_AA_3DRead Outputs ..6-370

6-164. PGS_AA_3DRead Returns...6-371

6-165. PGS_CBP_Earth_CB_Vector Inputs ...6-377

6-166. PGS_CBP_Earth_CB_Vector Outputs...6-378

 xv 333-EMD-001, Rev. 05

6-167. PGS_CBP_Earth_CB_Vector Returns ...6-378

6-168. PGS_CBP_Sat_CB_Vector Inputs ...6-382

6-169. PGS_CBP_Sat_CB_Vector Inputs ...6-382

6-170. PGS_CBP_Sat_CB_Vector Returns...6-382

6-171. PGS_CBP_SolarTimeCoords Inputs..6-386

6-172. PGS_CBP_SolarTimeCoords Outputs ...6-386

6-173. PGS_CBP_SolarTimeCoords Returns ...6-386

6-174. PGS_CBP_body_inFOV Inputs ...6-390

6-175. PGS_CBP_body_inFOV Outputs...6-391

6-176. PGS_CBP_body_inFOV Returns...6-391

6-177. Physical Radii for CB in FOV Tool ...6-395

6-178. PGS_CSC_ECItoECR Inputs ...6-407

6-179. PGS_CSC_ECItoECR Outputs ..6-407

6-180. PGS_CSC_ECItoECR Returns...6-407

6-181. PGS_CSC_ECRtoECI Inputs ...6-411

6-182. PGS_CSC_ECRtoECI Outputs ..6-411

6-183. PGS_CSC_ECRtoECI Returns...6-411

6-184. PGS_CSC_ECRtoGEO Inputs ...6-414

6-185. PGS_CSC_ECRtoGEO Outputs...6-414

6-186. PGS_CSC_ECRtoGEO Returns...6-415

6-187. PGS_CSC_GEOtoECR Inputs ...6-417

6-188. PGS_CSC_GEOtoECR Outputs...6-418

6-189. PGS_CSC_GEOtoECR Returns...6-418

6-190. PGS_CSC_ECItoSC Inputs..6-421

6-191. PGS_CSC_ECItoSC Outputs ...6-421

6-192. PGS_CSC_ECItoSC Returns ...6-421

6-193. PGS_CSC_SCtoECI Inputs..6-425

6-194. PGS_CSC_SCtoECI Outputs ...6-425

 xvi 333-EMD-001, Rev. 05

6-195. PGS_CSC_SCtoECI Returns ...6-425

6-196. PGS_CSC_SCtoORB Inputs ..6-429

6-197. PGS_CSC_SCtoORB Outputs ...6-429

6-198. PGS_CSC_SCtoORB Returns..6-429

6-199. PGS_CSC_ORBtoSC Inputs ..6-433

6-200. PGS_CSC_ORBtoSC Outputs ...6-433

6-201. PGS_CSC_ORBtoSC Returns..6-433

6-202. PGS_CSC_ECItoORB Inputs...6-437

6-203. PGS_CSC_ECItoORB Outputs..6-437

6-204. PGS_CSC_ECItoORB Returns ..6-437

6-205. PGS_CSC_ORBtoECI Inputs...6-441

6-206. PGS_CSC_ORBtoECI Outputs..6-441

6-207. PGS_CSC_ORBtoECI Returns ..6-441

6-208. PGS_CSC_SubSatPoint Inputs ..6-445

6-209. PGS_CSC_SubSatPoint Outputs..6-445

6-210. PGS_CSC_SubSatPoint Returns ..6-446

6-211. PGS_CSC_Earthpt_FixedFOV Inputs ...6-451

6-212. PGS_CSC_Earthpt_FixedFOV Outputs...6-452

6-213. PGS_CSC_Earthpt_FixedFOV Returns ...6-452

6-214. PGS_CSC_Earthpt_FOV Inputs...6-457

6-215. PGS_CSC_Earthpt_FOV Outputs..6-458

6-216. PGS_CSC_Earthpt_FOV Returns ..6-458

6-217. PGS_CSC_SpaceRefract Inputs ...6-464

6-218. PGS_CSC_SpaceRefract Outputs ..6-464

6-219. PGS_CSC_SpaceRefract Returns...6-464

6-220. Altitude – Sea Level ...6-466

6-221. PGS_CSC_GetFOV_Pixel Inputs ..6-469

6-222. PGS_CSC_GetFOV_Pixel Outputs..6-469

 xvii 333-EMD-001, Rev. 05

6-223. PGS_CSC_GetFOV_Pixel Returns..6-470

6-224. Error due to Earth Motion in Time of Flight of Light ..6-474

6-225. PGS_CSC_precs2000 Inputs..6-476

6-226. PGS_CSC_precs2000 Outputs ...6-477

6-227. PGS_CSC_precs2000 Returns ...6-477

6-228. PGS_CSC_nutate2000 Inputs ..6-480

6-229. PGS_CSC_nutate2000 Outputs..6-481

6-230. PGS_CSC_nutate2000 Returns ..6-481

6-231. PGS_CSC_J2000toTOD.c Inputs...6-484

6-232. PGS_CSC_J2000to.TOD.c Outputs ...6-485

6-233. PGS_CSC_J2000toTOD Returns ...6-485

6-234. PGS_CSC_TODtoJ2000.c Inputs...6-487

6-235. PGS_CSC_TODtoJ2000.c Outputs ..6-488

6-236. PGS_CSC_TODtoJ2000c Returns ...6-488

6-237. PGS_CSC_DayNight Inputs...6-491

6-238. PGS_CSC_DayNight Outputs..6-491

6-239. PGS_CSC_DayNight Returns ..6-492

6-240. PGS_CSC_wahr2 Inputs ..6-495

6-241. PGS_CSC_wahr2 Outputs..6-495

6-242. PGS_CSC_wahr2 Returns..6-495

6-243. PGS_CSC_GreenwichHour Inputs...6-498

6-244. PGS_CSC_GreenwichHour Outputs..6-499

6-245. PGS_CSC_GreenwichHour Returns ..6-499

6-246. PGS_CSC_ZenithAzimuth Inputs..6-503

6-247. PGS_CSC_ZenithAzimuth Outputs ...6-503

6-248. PGS_CSC_ZenithAzimuth Returns ...6-503

6-249. PGS_CSC_GrazingRay Inputs ...6-510

6-250. PGS_CSC_GrazingRay Outputs ..6-510

 xviii 333-EMD-001, Rev. 05

6-251. PGS_CSC_GrazingRay Returns...6-511

6-252. PGS_GCT_Init Inputs ..6-519

6-253. PGS_GCT_Init Returns..6-520

6-254. PGS_GCT_Proj Inputs ...6-523

6-255. PGS_GCT_Proj Returns...6-523

6-256. PGS_CUC_Cons Input ...6-528

6-257. PGS_CUC_Cons Output ..6-528

6-258. PGS_CUC_Cons Returns ...6-529

6-259. PGS_CUC_Conv Inputs ...6-530

6-260. PGS_CUC_Conv Outputs ..6-531

6-261. PGS_CUC_Conv Returns...6-531

6-262. PGS_MEM_Malloc Returns ..6-533

6-263. PGS_MEM_Calloc Returns ...6-535

6-264. PGS_MEM_Realloc Returns..6-537

Appendix A. Assumptions

Appendix B. Status Message File (SMF) Creation and Usage
Guidelines

Appendix C. Process Control Files

Appendix D. Ancillary Data Access Tools

Appendix E. Example of Level 0 Access Tool Usage

Appendix F. Level 0 File Formats

 xix 333-EMD-001, Rev. 05

Appendix G. PGS_GCT Information Relating To Interface
Specification

Appendix H. PGS_CUC_Cons - Example Standard Constants File

Appendix I. PGS_CUC_Conv—Input File Provided With the UdUnits
Software

Appendix J. Population of Granule Level Metadata Using the SDP
metadata tools

Appendix K. POSIX Systems Calls Usage Policy

Appendix L. Ephemeris And Attitude File Formats

Appendix M. Problem Identification List

Appendix N. Structure of the File "utcpole.dat”

Abbreviations and Acronyms

 xx 333-EMD-001, Rev. 05

1. Introduction

1.1 Identification
The SCF Toolkit Users Guide for the ECS Project (Contract Data Requirements List (CDRL)
Item 023, Data Item Description (DID) EMD-EDP23) is a part of the Science Data Production
(SDP) Toolkit delivery made under the Earth Observing System Data and Information System
(EOSDIS) Core System (ECS) Maintenance and Development Project (EMD), Contract
(NAS5-03098). It was first delivered in January 1994. The current Users Guide matches the
Release 7 Toolkit delivery being made in March 2008. SCF Toolkit Users Guide for the ECS
Project will be updated for each major release of the SDP Toolkit.

1.2 Scope
This Science Computing Facility (SCF) Toolkit version 5.2.15 is directed at EOS instrument
data providers who will deliver code to the ECS Release 7 DAACs. It is an engineering update to
Toolkit 5.2.14, delivered in March 2006. The user calling interface of the current version is the
same as that of Toolkit 5.2.14. The SCF Toolkit Users Guide describes Toolkit routine usage for
science software developers, who will produce code to process instrument data. The current
version of the Users Guide is for the Release 7 Toolkit delivered code, however, the Toolkit will
be updated as requirements are updated, certified and requirements for later platform instruments
are determined. This document describes the overall design of the Toolkit, provides a general
explanation of usage, and installation procedures on computer platforms for which software
development and certification have been done. Detailed listings of routines, calling sequences,
inputs and outputs and examples of usage are also provided.

1.3 Purpose and Objectives
This document is aimed at the EOS data production software developers and scientists who will
use the SDP Toolkit to encapsulate their code in the distributed active archive center (DAAC)
computing facilities. The purpose of the Toolkit is to provide an interface between instrument
processing software and the production system environment. It sets up the context and
environment to facilitate portability of code for the execution of production processes and the
transfer of data sets and information to those processes. This interface will be implemented in the
SCF development environment, along with additional utilities that will be used to emulate
production environment services.

An important goal of the Toolkit is to facilitate the smooth transition and integration of code into
the DAAC by abstracting out science process dependencies on external system architecture.
Another goal is the provision of an interface into which application modules can be incorporated.
This may include, for example, math packages; other specialized routines that can be
commercial–off–the–shelf software (COTS); freeware; or user supplied modules. An effort will
be made during development to incorporate and reuse existing application software modules.

 1-1 333-EMD-001, Rev. 05

This Users Guide will layout the high level design of Toolkit and provide sufficient description
of routines to show how EOS science software should incorporate the Toolkit interface.

In the description of the Toolkit routines, descriptive information is presented in the following
format:

TOOL TITLE

NAME: Procedure or routine name
SYNOPSIS:
C: C language call
FORTRAN: FORTRAN77 or FORTRAN90 language call
DESCRIPTION: Cursory description of routine usage
INPUTS: List and description of data files and parameters input to the routine
OUTPUTS: List and description of data files and parameters output from the routine
RETURNS: List of returned parameters indicating success, failure, etc.
EXAMPLES: Example usage of routine
NOTES: Detailed information about usage and assumptions
REQUIREMENTS: Requirements from PGS Toolkit Specification, Oct. 93 which the routine

satisfies

1.4 Status and Schedule
This Users Guide accompanies a set of toolkit routines, delivered in February 2008. Table 1–2
below gives a complete listing; brief description; and delivery dates of Toolkit software available
to users. We note also several important related schedule items:

• April 1995—IDL was selected as the Toolkit graphics package of choice.

• July 1995—Release Toolkit A delivery, including prototype HDF-EOS swath structure
software

• July 1995—Delivery (to the EOS community) of a draft HDF-EOS standard and users
guide.

• January 1996—ECS Interim Release 1 (Ir1)
• May 1996— Release A SCF Toolkit delivery.
• July 1996 HDF-EOS version 1.0 delivery
• November 1996 updated HDF-EOS and SCF Toolkit delivery
• April 1997 Release B.0 SCF Toolkit and HDF-EOS 2.0 delivery
• October 1997 Version 2.0 SDP Toolkit and HDF-EOS 2.1 delivery
• March 1998 Version 2.0 SDP Toolkit and HDF-EOS 2.2 delivery
• October 1998 Version 2.0 SDP Toolkit and HDF-EOS 2.3 delivery

 1-2 333-EMD-001, Rev. 05

• January 1999 Version 2.0 SDP Toolkit and HDF-EOS 2.4 delivery
• June 1999 Version 2.0 SDP Toolkit and HDF-EOS 2.5 delivery
• February 2000 Release 5B SDP Toolkit and HDF-EOS 2.6 delivery
• November 2000 Release 5B SDP Toolkit and HDF-EOS 2.7 delivery
• November 2002 Release 6A SDP Toolkit and HDF-EOS 2.8 and HDF-EOS5.1.3 delivery
• April 2003 Release 6A SDP Toolkit and HDF-EOS 2.9 and HDF-EOS5.1.5 delivery
• October 2003 Release 6A SDP Toolkit, HDF-EOS 2.10 and HDF-EOS5.1.6 delivery
• May 2004 Release 7 SDP Toolkit, HDF-EOS 2.11 and HDF-EOS5.1.7 delivery
• August 2004 Release 7 SDP Toolkit, HDF-EOS 2.12 and HDF-EOS5.1.8 delivery
• April 2005 Release 7 SDP Toolkit, HDF-EOS 2.13 and HDF-EOS5.1.9 delivery
• March 2006 Release 7 SDP Toolkit, HDF-EOS 2.14 and HDF-EOS5.1.10 delivery
• February 2008 Release 7 SDP Toolkit, HDF-EOS 2.15 and HDF-EOS5.1.11 delivery

Table 1–1 provides a key to the tool names and the section where the specific tools can be
located.

Table 1-1. Toolkit Routine Key
Key Class Section

AA Ancillary Data Access 6.3.2
CBP Celestial Body Position 6.3.3
CSC Coordinate System Conversion 6.3.4
CUC Constant and Unit Conversions 6.3.7
DEM Digital Elevation Model access 6.3.1
EPH Ephemeris Data Access 6.2.6
GCT Geo Coordinate Transformation 6.3.5
IO Input Output (File I/O) 6.2.1
MEM Memory Management 6.2.4
MET Metadata Access 6.2.1
PC Process Control 6.2.3
SMF Status Message File (Error/Status) 6.2.2
TD Time Date Conversion 6.2.7

In Table 1–2 a list of Toolkit routines is given, with delivery data and page number references in
this Users Guide.

Table 1–2 lists Toolkit routines alphabetically by class as defined in the key below. The class
keyword follows the Product Generation System (PGS) keyword (i.e., PGS_AA).

 1-3 333-EMD-001, Rev. 05

Table 1-2. Toolkit Routine Listing (1 of 7)
Tool Name Description Date Page

Pccheck Use to verify that a process control file (PCF) is syntactically correct 10-94
7-95

6-187

PGS_AA_2Dgeo Allows access to 2 dimensional data sets, e.g., sea–ice 10-94,
2-95,
7-95,
4-96

6-354

PGS_AA_2Dread Allows access to 2 dimensional data sets, e.g., sea–ice 10-94,
2-95,
4-96

6-364

PGS_AA_3Dgeo Allows access to 3 dimensional data sets,e.g., atmospheric humidity 10-94
2-95
4-96

6-359

PGS_AA_3Dread Allows access to 3 dimensional data sets,e.g., atmospheric model 10-94
2-95
4-96

6-369

PGS_AA_dcw Returns the surface types (land, sea, coast), and nation–state to be
determined (TBD) for a user defined set of locations

10-94
4-96

6-338

PGS_AA_dem Locates heights from specified digital elevation model (DEM)
corresponding to each of the locations specified

2-95,
7-95
4-96

6-341

PGS_AA_PeVA_integer Searches in a specified file for the parameter and returns the value of
that parameter which is an integer

10-94
2-95,
7-95
4-96

6-352

PGS_AA_PeVA_real Searches in a specified file for the parameter and returns the value of
that parameter which is a real(float)

10-94
2-95,
7-95
4-96

6-349

PGS_AA_PeVA_string Searches in a specified file for the parameter and returns the value of
that parameter which is a text string

10-94
2-95,
7-95
4-96

6-346

PGS_CBP_body_inFOV Given instrument parameters, returns a flag to indicate whether any of
the user–selected major celestial bodies (sun, moon, etc.) are in the
instrument field–of–view.

2-95,
7-95

6-389

PGS_CBP_Earth_CB_Vector Computes the Earth centered inertial (ECI) frame vector from the Earth
to the sun, moon, or planets at a given time, or range of time(s)

4-94,
10-94
7-95

6-377

PGS_CBP_Sat_CB_Vector Computes the ECI vector from the spacecraft to the sun, moon, or
planets at a given time or range of time(s)

4-94,
10-94
7-95

6-381

PGS_CBP_SolarTimeCoords Computes local solar time, and right ascension and declination of the
sun, for a given standard time and position on the surface of the Earth

4-94,
10-94
7-95

6-385

PGS_CSC_DayNight Determines whether a given point on the Earth is in day, night or twilight,
at a given time

10-94
7-95

6-490

PGS_CSC_Earthpt_FixedFOV For a fixed field of view obtains the Coordinated Universal Time (UTC)
time interval and the starting time that an Earth point is within the field–
of–view, within a specified time window

4-96 6-450

PGS_CSC_Earthpt_FOV For a field of view defined by a table of coordinates (accessed
externally), and a known motion of the boresight vector as a function of
time, obtains the Coordinated Universal Time (UTC) time interval and
the starting time that an Earth point is within the field–of–view, within a
specified time window

2-95,
7-95

6-456

 1-4 333-EMD-001, Rev. 05

Table 1-2. Toolkit Routine Listing (2 of 7)
Tool Name Description Date Page

PGS_CSC_ECItoECR Transforms a vector from the ECI frame to the ECR frame. 10-94
7-95

6-406

PGS_CSC_ECItoORB Transforms a vector in the ECI Coordinate system to a vector in the
Orbital Coordinate System

7-95 6-436

PGS_CSC_ECItoSC Transforms a vector in the ECI coordinate system to the Spacecraft
Coordinate System.

10-94 6-420

PGS_CSC_ECRtoECI Transforms a vector from the ECR system to the ECI system. 10-94
7-95

6-410

PGS_CSC_ECRtoGEO Transforms a vector from rectangular ECR coordinates to geodetic
coordinates.

10-94
7-95

6-414

PGS_CSC_GEOtoECR Transforms a vector from geodetic coordinates to ECR coordinates. 10-94
7-95

6-417

PGS_CSC_GetFOV_Pixel Computes the projection of (geolocates) a pixel. 4-94,
10-94
2-95,
7-95

6-468

PGS_CSC_GrazingRay For rays that miss Earth limb, this function finds the nearest miss point
on the ray and corresponding surface point. For rays that strike the
Earth, it outputs instead the coordinates of the midpoint of the chord of
the ray within the ellipsoid and surface coordinates of the intersection
nearest the observer

4-97 6-509

PGS_CSC_GreenwichHour Returns the Greenwich Hour Angle of the vernal equinox, which is equal
to Greenwich sidereal time, in the ECI frame, at a given time.

10-94 6-498

PGS_CSC_J2000toTOD Transform from ECI J2000 to ECI True of Date 4-96 6-484

PGS_CSC_nutate2000 Transforms a vector under nutation from Celestial Coordinates of date in
Barycentric Dynamical Time (TDB) to J2000 coordinates or from J2000
coordinates to Celestial Coordinates of date

7-95
4-96

6-480

PGS_CSC_ORBtoECI Transforms vector in orbital coordinate system to vector in ECI
coordinate system

7-95 6-440

PGS_CSC_ORBtoSC Transforms a vector from orbital to spacecraft coordinates. 10-94
7-95

6-432

PGS_CSC_precs2000 Precesses a vector from Celestial Coordinates of date in Barycentric
Dynamical Time (TDB) to J2000 coordinates or from J2000 coordinates
to Celestial Coordinates of date in Barycentric Dynamical Time (TDB)

7-95 6-476

PGS_CSC_SCtoECI Transforms a vector from spacecraft to ECI coordinates. 10-94 6-424

PGS_CSC_SCtoORB Transforms a vector from spacecraft to orbital coordinates. 10-94
7-95

6-428

PGS_CSC_SpaceRefract Estimate the refraction for a ray incident from space or a line of sight
from space to the Earth's surface, based on the unrefracted zenith angle

7-95
4-96

6-463

PGS_CSC_SubSatPoint Returns the position and velocity vector of the sub–satellite point or
nadir of the satellite on the Earth's surface. Also returns the rate of
change of altitude off the ellipsoid.

4-94,
10-94

6-444

PGS_CSC_TODtoJ2000 Transform from ECI True of Date to ECI J2000 Coordinates 4-96 6-487
PGS_CSC_wahr2 Calculates nutation angles 7-95 6-495
PGS_CSC_ZenithAzimuth Returns zenith and azimuth angles of viewing vector or a celestial body 10-94

2-95
6-502

PGS_CUC_Cons Accesses constant values from a predetermined input file 2-95 6-528
PGS_CUC_Conv Accesses conversion slope and intercept values, needed to convert

between units
2-95 6-530

PGS_DEM_Close Close a DEM dataset 4-97 6-296
PGS_DEM_DataPresent Check for Valid DEM Data Point 4-97 6-299

 1-5 333-EMD-001, Rev. 05

Table 1-2. Toolkit Routine Listing (3 of 7)
Tool Name Description Date Page

PGS_DEM_GetMetadata Extract Metadata from the DEM 4-97 6-322
PGS_DEM_GetPoint Return Data at Specified DEM Point 4-97 6-308
PGS_DEM_GetQualityData ACCESS DEM Quality Data 4-97 6-327
PGS_DEM_GetRegion Return Data from a Specified Region of the DEM 4-97 6-315
PGS_DEM_GetSize Return Size of Specified DEM Region 4-97 6-333
PGS_DEM_Open Open a DEM dataset 4-97 6-293
PGS_DEM_SortModels Check for Data in a Specified Region of the DEM 4-97 6-303
PGS_EPH_EphemAttit Provides access to spacecraft ephemeris and attitude data for a given

time range, interpolates the state vectors and spacecraft attitude to a
specified time. Retains quality flags

4-94,
10-94
2-95,
7-95
4-96

6-211

PGS_EPH_GetEphMet gets metadata associated with toolkit spacecraft ephemeris files 11-96 6-223

PGS_EPH_ManageMasks get and/or set the values of the ephemeris and attitude quality flags
masks

 6-228

PGS_EPH_Eph_Att_unInterpolate Gets actual (without interpolation) ephemeris and/or attitude records for
the specified spacecraft if the number of records for ephemeris is the
same as that of the attitude for the requested time period

9-02 6-217

PGS_EPH_UnInterpEphAtt Gets actual (without interpolation) ephemeris and/or attitude records for
the specified spacecraft even if the number of records for ephemeris is
not the same as that of attitude for the requested time period

10-03 6-217

PGS_GCT_Init Performs Geo–coordinate transformation initialization for the given
projection with the given parameters

2-95,
7-95

6-519

PGS_GCT_Proj Performs Geo–coordinate transformations for the given projection in the
forward and inverse directions

2-95,
7-95

6-522

PGS_IO_Gen_Close Close non–HDF file 4-94,
10-94

6-47

PGS_IO_Gen_CloseF Close non–HDF file FORTRAN 10-94
7-95

6-49

PGS_IO_Gen_Open Open non–HDF file 4-94,
10-94
7-95

6-40

PGS_IO_Gen_OpenF Open non–HDF file FORTRAN 77 10-94
2-95,
7-95

6-43

PGS_IO_Gen_Temp_Delete Permanently delete a temporary file 4-94,
10-94
2-95,
7-95

6-95

PGS_IO_Gen_Temp_Open Open temporary file 4-94,
10-94
2-95

6-86

PGS_IO_Gen_Temp_OpenF Open temporary file FORTRAN 77 & 90 10-94
2-95

6-91

PGS_IO_L0_Close Closes a virtual data set that was opened with a call to
PGS_IO_L0_Open.

2-95
4-96
2-00

6-28

PGS_IO_L0_File_Sim Creates a file of simulated Level 0 data 2-95
4-96
2-00

6-30

PGS_IO_L0_GetHeader Gets the header and footer data for the currently open physical file 2-95
4-96
2-00

6-17

 1-6 333-EMD-001, Rev. 05

Table 1-2. Toolkit Routine Listing (4 of 7)
Tool Name Description Date Page

PGS_IO_L0_GetPacket Gets a single packet from the specified Level 0 Virtual Data Set 2-95
4-96
2-00

6-23

PGS_IO_L0_Open Open a Virtual Level 0 Data Set 2-95
4-96
2-00

6-6

PGS_IO_L0_SetStart Sets the specified open virtual data set so that the next call to
PGS_IO_L0_GetPacket will read the first packet at or after the specified
time

2-95
4-96
2-00

6-11

PGS_IO_L0_SetStartCntPkts Sets the specified open virtual data set so that the next call to
PGS_IO_L0_GetPacket will read the first packet at or after the specified
time and tracks the number of packets skipped in the current file.

4-97
2-00

6-14

PGS_MEM_Calloc Allocates an array of arbitrarily sized elements, initializing them to zero,
in memory

10-94
7-95
2-00

6-535

PGS_MEM_Free Deallocates memory that was previously allocated 10-94
7-95

6-540

PGS_MEM_FreeAll Deallocates all memory that was previously allocated within a process 10-94
7-95

6-541

PGS_MEM_Malloc Allocates an arbitrary number of bytes in memory 10-94
7-95

6-533

PGS_MEM_Realloc Reallocates the number of bytes requested 10-94
7-95

6-537

PGS_MEM_ShmAttach Used by an executable to attach to an existing shared memory segment 10-94 6-197
PGS_MEM_ShmCreate Used to create a shared memory segment 10-94 6-195
PGS_MEM_ShmDetach Used to detach a shared memory segment from a process that attached

it
10-94 6-199

PGS_MEM_ShmRead FORTRAN Read from Shared Memory 4-96 6-201
PGS_MEM_ShmWrite FORTRAN Write to Shared Memory 4-96 6-203
PGS_MEM_Zero Initializes a memory block or structure to zero 10-94

7-95
6-539

PGS_MET_GetConfigData Enables the user to get the values of Config data parameters held in the
PC table

7-95
4-96

6-73

PGS_MET_GetPCAttr Retrieves parameter values from the PC table which are either located
as HDF attributes on product files or in separate ASCII files

7-95
4-96

6-68

PGS_MET_GetSetAttr Enables the user to get the values of metadata parameters which are
already set by the initialization procedure

7-95
4-96

6-65

PGS_MET_Init Initializes a metadata configuration file (MCF) 7-95
4-96

6-53

PGS_MET_Remove Contains PGS_MET_Remove() which frees the memory held by the
metadata configuration file (MCF) and data dictionary object description
language (ODL) representations

7-95
4-96

6-80

PGS_MET_SetAttr Enables the user to set the value of metadata parameters 7-95
4-96

6-57

PGS_MET_SetMultiAttr Enables the user to set the value of multi value metadata parameters
and modify NUM_VAL value to correct value

3-02 6-62

PGS_MET_SDstart Enables opening and obtaining SD ID for HDF files of HDF4 and HDF5
type

3-02 6-81

 1-7 333-EMD-001, Rev. 05

Table 1-2. Toolkit Routine Listing (5 of 7)
Tool Name Description Date Page

PGS_MET_SDend Enables closing HDF files of HDF4 and HDF5 type that were opened by
a call to PGS_MET_Sdstart

3-02 6-83

PGS_MET_Write Enables the user to write different groups of metadata to separate HDF
attributes

7-95
4-96

6-76

PGS_PC_GenUniqueID Used to generate a unique product identifier. May be attached to file
metadata to facilitate tracking of production output

10-94
4-96

6-173

PGS_PC_GetConfigData May be used to access run–time parameters in the PGE 10-94
4-96

6-175

PGS_PC_GetConfigDataCom May be used to access run–time parameters at the shell level 2-95
4-96

6-152

PGS_PC_GetFileAttr Used to retrieve the attribute string that contains the metadata for a
Product file

10-94
4-96

6-181

PGS_PC_GetFileAttrCom Used at the shell level to retrieve an attribute "stream" that contains the
metadata for a Product file

2-95
4-96

6-154

PGS_PC_GetFileByAttr Used to retrieve the specific instance of a product file that satisfies the
search criteria, defined by a user–supplied method, applied to the
metadata of each product file instance

10-94
4-96

6-184

PGS_PC_GetFileSize Get the size of a file in the PCF. 4-97 6-192
PGS_PC_GetFileSizeCom Get the size of a file in the PCF at the shell level. 4-97 6-161
PGS_PC_GetNumberOfFiles May be used to query the number of file instances that are associated

with a particular product file
10-94
4-96

6-178

PGS_PC_GetNumberOfFilesCom May be used, at the shell level, to query the number of file instances that
are associated with a particular product file

2-95
4-96

6-153

PGS_PC_GetReference Used to obtain a physical file pathname from a logical identifier for a
particular product file

10-94
4-96

6-166

PGS_PC_GetReferenceCom Used at the shell level to obtain a physical file pathname from a logical
identifier for a particular product file

2-95
4-96

6-149

PGS_PC_GetReferenceType Tool may be used to ascertain the type of file reference which is
associated with a logical identifier within the science software

7-95
4-96

6-169

PGS_PC_GetTempReferenceCom Used at the shell level to obtain a physical file pathname from a logical
identifier for a particular temporary, or intermediate file

2-95,
7-95
4-96

6-157

PGS_PC_GetUniversalRef Used to obtain a universal reference from a logical identifier 4-96 6-189
PGS_PC_InitCom Used, prior to PGE execution, to establish a working environment for the

SDP Toolkit
2-95
7-95
4-96

6-148

PGS_PC_Shell.sh Provides an integrated environment for the SDP Toolkit and a PGE 2-95,
7-95
4-96,
11-96
10-97

6-145

PGS_PC_TempDeleteCom Used at the shell level to delete the temporary file currently associated
with a particular logical identifier

2-95
4-96

6-160

PGS_PC_TermCom Used, following PGE termination, to cleanup the resources used by the
SDP Toolkit

2-95
4-96

6-163

PGS_SMF_Begin Signal SMF that function has started 4-96 6-137
PGS_SMF_CreateMsgTag May be used to generate a unique message identifier 10-94

4-96
6-116

PGS_SMF_End Signal SMF that function has ended 4-96 6-138

 1-8 333-EMD-001, Rev. 05

Table 1-2. Toolkit Routine Listing (6 of 7)
Tool Name Description Date Page

PGS_SMF_GenerateStatusReport Used to add user–defined status reports to the Status Report Log file 10-94
4-96

6-120

PGS_SMF_GetActionByCode Provide the means to retrieve an action string associated with a specific
mnemonic code

10-94
4-96

6-114

PGS_SMF_GetInstrName Used to retrieve the instrument name from a given error/status code 4-94,
10-94
4-96

6-118

PGS_SMF_GetMsg Provide the means to retrieve a previously set message from the static
buffer PGS_SMF_Set....

4-94,
10-94
4-96

6-113

PGS_SMF_GetMsgByCode Provide the means to retrieve the message string corresponding to a
specific mnemonic code

10-94
4-96

6-112

PGS_SMF_GetToolkitVersion This function returns a string describing the current version of the
Toolkit.

4-97 6-103

PGS_SMF_SendRuntimeData Provide a means for the user to transmit a package of runtime data to
the SCF in the event of an unhandled system exception

10-94
2-95
4-96

6-122

PGS_SMF_SetArithmeticTrap Used to specify a signal handling function to perform in the event that an
error arithmetic operation has occurred.

TBD 6-139

PGS_SMF_SetDynamicMsg Provide the means to set a user–defined error/status message in
response to the outcome of some segment of processing.

10-94
4-96

6-109

PGS_SMF_SetStaticMsg Provide the means to set a predefined error/status message in response
to the outcome of some segment of processing.

4-94,
10-94
4-96

6-107

PGS_SMF_SetUNIXMsg Provides the means to retain UNIX error messages for later retrieval 4-94,
10-94
4-96

6-104

PGS_SMF_TestErrorLevel Will return a Boolean value indicating whether or not the returned code
has status level 'E'

10-94
4-96

6-126

PGS_SMF_TestFatalLevel Will return a Boolean value indicating whether or not the returned code
has status level 'F'

10-94
4-96

6-128

PGS_SMF_TestMessageLevel Will return a Boolean value indicating whether or not the returned code
has status level 'M'

10-94
4-96

6-129

PGS_SMF_TestNoticeLevel Will return a Boolean value indicating whether or not the returned code
has status level 'N'

10-94
4-96

6-133

PGS_SMF_TestStatusLevel Will return a defined status level constant 4–94,
10-94
4-96

6-134

PGS_SMF_TestSuccessLevel Will return a Boolean value indicating whether or not the returned code
has status level 'S'

10-94
4-96

6-132

PGS_SMF_TestUserInfoLevel Will return a Boolean value indicating whether or not the returned code
has status level 'U'

10-94
4-96

6-131

PGS_SMF_TestWarningLevel Will return a Boolean value indicating whether or not the returned code
has status level 'W'

10-94
4-96

6-130

PGS_TD_ASCIItime_AtoB Converts binary time values to ASCII Code B time values of the form
year_month_day_time_of_day in the Consultative Committee on space
Data Systems (CCSDS) format

10-94 6-257

PGS_TD_ASCIItime_BtoA Converts binary time values to ASCII Code A time values of the form
year_month_day_time_of_day in the CCSDS format

10-94 6-259

 1-9 333-EMD-001, Rev. 05

Table 1-2. Toolkit Routine Listing (7 of 7)
Tool Name Description Date Page

PGS_TD_GPStoUTC Converts to Coordinated Universal Time (UTC) time value from Global
Positioning System (GPS) time by converting to internal time, adding the
GPS_minus_UTC_leapseconds from the leapseconds file, and
converting to GPS format following CCSDS ASCII standard A

10-94
7-95

6-263

PGS_TD_LeapSec Find leap second value 4-96 6-282
PGS_TD_SCtime_to_UTC Converts spacecraft clock time to UTC for EOS platforms or for foreign

spacecraft
4-94,
10-94,
2-00

6-254

PGS_TD_TAItoGAST Converts International Atomic Time (TAI) (toolkit internal time) to
Greenwich apparent sidereal time (GAST) expressed as the hour angle
of the true vernal equinox of date at the Greenwich meridian (in radians)

7-95 6-249

PGS_TD_TAIjdtoTAI Converts TAI Julian date to time in TAI seconds since 12 AM UTC 1-1-
1993.

4-96 6-247

PGS_TD_TAItoTAIjd Converts time in TAI seconds since 12 AM UTC 1-1-1993 toTAI Julian
date.

4-96 6-245

PGS_TD_TAItoUTC Converts a toolkit TAI time value to UTC time 4–94,
10-94

6-243

PGS_TD_TimeInterval Computes the elapsed TAI time in seconds between any two epochs
after January 1, 1958

10-94 6-271

PGS_TD_UTCtoGPS Converts UTC time value to GPS time by converting to internal time,
adding the GPS_minus_UTC_leapseconds from the leapseconds file,
and converting to GPS format following CCSDS ASCII standard A

10-94
7-95

6-261

PGS_TD_UTCtoTAI Converts UTC time to TAI time by first converting UTC to internal time
and then adding the TAI_minus_UTC_leapseconds from the
leapseconds file

4-94,
10-94

6-240

PGS_TD_UTCtoTDBjed UTC to Barycentric Dynamical Time (TDB) time conversion 10-94 6-268
PGS_TD_UTCtoTDTjed UTC to Terrestrial Dynamical Time (TDT) time conversion 10-94 6-265
PGS_TD_UTCtoUT1 Converts UTC to UT1 time 10-94 6-277
PGS_TD_UTCtoUT1jd Converts UTC time in CCSDS ASCII Time Code to UT1 time as a Julian

date
7-95 6-280

PGS_TD_UTCjdtoUTC Converts UTC as a Julian date to UTC in CCSDS ASCII Time Code A
format.

4-96 6-275

PGS_TD_UTCtoUTCjd Converts UTC in CCSDS ASCII Time Code A format to UTC as a Julian
date.

4-96 6-273

PGS_TD_UTC_to_Sctime Converts UTC to Spacecraft clock time for EOS standard of Foreign
Spacecraft

10-94
2-00

6-251

Smfcompile Provides means to store messages in files that are accessed at run time
to get the message text.

4-94,
10-94
2-95

6-141

Note for Table 1-2: If more than one date is in the delivery column this indicates a re–delivery
of that tool.

 1-10 333-EMD-001, Rev. 05

Table 1-3. Tool Changes for Release 7 Toolkit Delivery
Tool Name Type of Change

INSTALL-Toolkit updated to reflect corrections from bugs
Toolkit updated for more current compilers
Toolkit Freeware packages updated to current versions
Toolkit all user support bugs fixed

1.5 Document Organization
The document is organized as follows:

Section 1 Introduction—Presents the scope and purpose of this document.

Section 2 Related Documentation—Provides a bibliography of reference documents for
the science data production (SDP) Toolkits organized by parent and
applicable documents.

Section 3 Toolkit Design Overview—Provides the philosophy and high level
description of the Toolkit

Section 4 Toolkit Usage and Functionality—Describes the functionality to be provided
in the SCF and follow–on SDP versions of the Toolkit.

Section 5 Toolkit Installation—Contains installation procedures for the machines for
which Version 1 of the Toolkit has been certified.

Section 6 SDP Toolkit Specification—Contains calling sequences, description and
usage examples for Toolkit routines.

Appendix A Assumptions

Appendix B Status Message File (SMF) Creation and Usage Guidelines

Appendix C Defining Process Control Files

Appendix D Ancillary Data Access Tools

Appendix E Example of Usage of Level 0 Access Tools

Appendix F Level 0 File Formats

Appendix G PGS_GCT Information Relating To Interface Specification

Appendix H PGS_CUC_Cons—Example Standard Constants File

Appendix I PGS_CUC_Conv—Input File Provided With the UdUnits Software

Appendix J Population of Granule Level Metadata using the SDP metadata tools

Appendix K POSIX Systems Calls Usage

Appendix L Ephemeris and Attitude File Formats

 1-11 333-EMD-001, Rev. 05

Appendix M Problem Identification List

Appendix N Structure of the File "utcpole.dat”

Acronyms and Abbreviations

 1-12 333-EMD-001, Rev. 05

2. Related Documentation

2.1 Parent Documents
The parent documents are the documents from which this SDP Toolkit Users Guide’s scope and
content are derived.

423-41-01 Goddard Space Flight Center, EOSDIS Core System (ECS) Statement
of Work

423-41-02 Goddard Space Flight Center, Functional and Performance
Requirements Specification for the Earth Observing System Data and
Information System (EOSDIS) Core System (ECS)

423-41-03 EOSDIS Core System Contract Data Requirements Document

423-46-01 Functional and Performance Requirements Specification for Earth
Observing System Data and Information System (EOSDIS) Core
System Science System

432-46-03 EMD Task 101 Statement of Work for ECS SDPS Maintenance

none Goddard Space Flight Center, The PGS Toolkit Study Report,
Version 1.9

2.2 Applicable Documents
The following documents are referenced within this SDP Toolkit Users Guide, or are directly
applicable, or contain policies or other directive matters that are binding upon the content of this
volume.

301-CD-002 System Implementation Plan for the ECS Project

170-EMD-001 Release 7 HDF-EOS Library User’s Guide for the ECS Project,
Volume 1: Overview and Examples

170-EMD-002 Release 7 HDF-EOS Library User’s Guide for the ECS Project,
Volume 2: Function Reference Guide

445-TP-002 Theoretical Basis of the SDP Toolkit Geolocation Package for the
ECS Project, Technical Paper

194-WP-924 Level 0 Data Issues for the ECS Project, White Paper

GSFC 50-003-04 Goddard Space Flight Center, EOSDIS Version 0 Data Product
Implementation Guidelines (V1.0), 3/1/94

 2-1 333-EMD-001, Rev. 05

CCSDS 301.0-B-2 Consultative Committee for Space Data Systems (CCSDS)
Recommendation for Space Data System Standards: Time Code
Formats, Issue 2, 4/90

IEEE Std 1003.1 Institute of Electrical and Electronics Engineers; POSIX Part 1:
System Application Program Interface (API)[C Language]

IEEE Std 1003.9 Institute of Electrical and Electronics Engineers; POSIX FORTRAN77
Language Interfaces, Part 1: Binding for System Application Program
Interface [API]

none Computer Science Corporation; Upper Atmosphere Research Satellite
(UARS) Lessons Learned for EOS: Report 1—Design and
Implementation (ending December 21, 1993); 5/92

none University of Illinois/National Center for Supercomputing
Applications; NCSA HDF Calling Interfaces and Utilities, Version
3.2; 3/93

none University of Illinois; Getting Started With HDF, 1993
This is also available via anonymous file transfer protocol (ftp) from
ftp.ncsa.uiuc.edu (141.142.20.50)

none Wertz, J.R., Spacecraft Attitude Determination and Control, Reidel
Publishing Co., 1984.

2.3 Information Documents
The following Internet link to a document/information, although not directly applicable,
amplifies or clarifies the information presented in this document. This reference is not binding
on this document.

Please note that Internet links cannot be guaranteed for accuracy or currency

194-815-SI4 SDP Toolkit Primer (current version available through
http://newsroom.gsfc.nasa.gov/sdptoolkit/primer/tkprimer.html)

 2-2 333-EMD-001, Rev. 05

3. Toolkit Design Goals

The PGS Toolkit Requirements Specification served to create a specification for a compendium
of tools that meet both ECS system requirements and the needs of the EOS science instrument
data producers. The SDP Toolkit User's Guide represents the culmination of efforts to design
tools that satisfy those criteria. In order to create that design, several broad features were devised
to give the Toolkit a sense of continuity such that it may be considered a single tool with
far-reaching capabilities.

3.1 Foundations
In order to ensure a high degree of portability and maintainability across a wide variety of
computer platforms, the SDP Toolkit has been designed to conform to the POSIX.1 standard.
With a few exceptions, this goal is met in the current implementation. Cases where a vendors,
operating system or compiler implementation prevents strict adherence to the Portable Operating
System Interface for Computer Environments (POSIX) standard will be minimized and worked
as the standard matures. Additionally, some components of the Toolkit have been designed to
incorporate proven COTS and other heritage software to provide functionality that is largely
accepted by the user community and can be easily integrated into the Toolkit.

3.2 Nomenclature
The naming of the tools has been standardized to include two prefixes: one to denote its
membership in the family of SDP tools and the other to indicate the general area of functionality
covered by the tool. For example, a Toolkit routine that performs a time conversion will be
prefixed with 'PGS_TD_'. The remaining portion of each name will be detailed enough to
indicate the explicit functionality performed by the tool (e.g., "PGS_TD_UTCtoTAI").

3.3 Consistency
This feature was achieved by the creation of a method for setting and retrieving status values and
status messages through the use of pre–defined error and status return codes and associated
Toolkit routines. Some of these return codes are defined by the SDP system, but most of them
will be defined by the users themselves to give them maximum control over their processing. All
the SDP Toolkit routines have been designed to adhere to this status return mechanism; likewise,
all the user developed software should incorporate this mechanism as well. The widespread use
of this feature will serve to create software that is consistent in its approach to error handling and
status reporting, is more readable, adheres to principles of modularity, and is easier to maintain.

 3-1 333-EMD-001, Rev. 05

3.4 Hierarchical Design
Finally, the SDP Toolkit was designed to provide different levels of service, depending on the
requirements of the developer. Primarily, the Toolkit was designed to provide for all the
necessary system–level interfaces. However, much of the Toolkit functionality incorporates
value–added features to provide a higher level of service for the developers creating higher–
order algorithms. In order to accomplish this, many of the Toolkit routines are designed to use
the services of lower–level Toolkit routines. Some of the tools, such as the memory management
routines are only required to have one or two levels of service; whereas others, like the ancillary
data I/O routines, may have several different levels of service. It is important to note that
whatever level of service is required, the Toolkit routine that provides that service will have been
designed to use the services of a lower level Toolkit routine. This means that the applications
programmer can use any of the Toolkit routines to develop their own level of service if there is
not an explicit Toolkit routine that provides it.

3.5 Units
Generally, in the CBP, CSC, TD, and EPH sections of the Toolkit all physical quantities are in
Standard International (SI) units, and all angles are in radians. The only exceptions to the use of
SI units are a few cases where a "time" such as a Greenwich "time" that is really a measure of
Earth rotation may be given in radians, or (for Julian Date) days, instead of seconds - please
consult the individual tool entries on this issue. In some of the AA and GCT tools specialized
units appropriate to the relevant data set may be used; please consult the individual entries.

The HDF subsetting functions use SI seconds.

Users who wish to work in units other than those in the Tools are urged to use great caution. For
example, the tools that transform between the spacecraft reference frame and Earth-centered
reference frames take into account the displacement of the spacecraft (in meters) from Earth
center, when the user supplies other than a unit vector. (For unit vector input. only the direction
is transformed). To use these transformations on vectors denominated, for example, in
kilometers would result in nonsense.

3.6 Ranges and Limits of Validity; unit vectors
The following material applies to the CBP, CSC, TD, and EPH tools; the AA and GCT tools may
follow different rules which are explained in the appropriate sections.

On output, all angles that represent a longitude or azimuth will be in the range (-π , π), but on
input the Toolkit is more forgiving: no limit is imposed, although most library trigonometric
functions tend to lose accuracy when the argument is very large. By keeping the input range
open this way we hope to simplify the task of the user who may, for example, want to transform
from geodetic coordinates to rectangular coordinates a patch of the Earth's surface that bridges
the longitude discontinuity at or near the international date line. There is no harm in entering
values larger than π or less than -π as derived, say, from offsets. Latitude is in the range
(-π/2 , π/2). Nadir and Zenith angles are in the range (0 , π). Altitude can be arbitrary, but some

 3-2 333-EMD-001, Rev. 05

tools return warnings or balk, with an error return, if a questionable altitude is detected; see the
individual descriptions. Referring to Section 3.5, here again is a case where the inadvertent input
of coordinates in kilometers (which the tools would take to be meters) could result in worthless
output and a warning message, only, that the spacecraft was "subterranean."

In many cases, CSC group tools require a unit vector input. The varying accuracies of different
platforms, and the danger of algorithmic error in case of inputting a non-unit vector where a unit
vector is called for, dictated that the Toolkit simply make a normalized copy of the vector for
internal use anyway. Thus, users need not, in practice, normalize "unit vectors" supplied to our
CSC functions. On output, when a unit vector is promised, however, a unit vector will be
produced.

Certain time streams have limited range by the nature of their definition, as explained in the TD
section. Generally, the broadest range of times is encompassed by the Julian Date time streams,
but Toolkit time, secTAI93, will yield microsecond precision from 1960 to 2135 AD on 32 bit
platforms.

The algorithms have been carefully chosen to preserve machine word precision where possible,
but a few transformations are subject to some limitations explained in the individual entries. For
example, as noted by Galileo and Copernicus, the apparent velocity of the Sun or a planet as
viewed in a reference frame rotating with the Earth is absurdly large; therefore we do not
calculate such velocities past the mean distance to the Moon.

3.7 Aging and Maturation Effects
Any tools, such as geolocation functions, that depend on a precise knowledge of Earth rotation,
yield answers that depend ultimately on measurement; Earth rotation cannot be predicted well
enough to allow ultra-precise real time geolocation! Therefore, along with leap seconds data, the
Toolkit imports, weekly, data files on Earth rotation from the U.S. Naval Observatory. Users
who want precise Earth position can get it within a few centimeters, but they have to wait a week
till the latest file is in! Users content with meter accuracy can process in real time, but if they
reprocess later, their geolocation answers may change by several centimeters, or even a meter.
For more details, see the SDP Toolkit FAQ at http://newsroom.gsfc.nasa.gov/sdptoolkit/faq.html.

 3-3 333-EMD-001, Rev. 05

This page intentionally left blank.

 3-4 333-EMD-001, Rev. 05

4. Toolkit Usage, Functionality, and Future Direction

4.1 Introduction
This User's Guide addresses the usage of the SCF version of the SDP Toolkit. The purpose of the
SCF development environment and Toolkit is (1) to provide development Toolkit functions that
emulate the production Toolkit functions, (2) to provide a development environment that
emulates the production environment to support development and test, (3) make both functions
and environment easy to use, and (4) most importantly, allow for a smooth transition of science
software from the SCF to the production environment, during the integration and test phase.

The ECS science software developer will use the Toolkit to access the production environment
and services, or their emulation. The Toolkit routines are divided into two classes:

a. Mandatory:

 In order to access production services such as scheduling and messaging services in a
consistent way, to avoid duplication of science software development effort, and to
assure portability across computing platforms, usage of a subset of the Toolkit functions
is required. These include functions that deal with file I/O, error message transactions,
process control, ancillary data access, spacecraft ephemeris and attitude, and time and
date transformations. The use of these tools will be enforced through automatic checks at
integration time at the DAACs.

b. Optional:

 Other useful functions required by developers, such as those involving celestial body
positions, coordinate transformations, math libraries, physical constants, and graphics
support, will be provided by the Toolkit. The use of these services is optional, but is
encouraged. Science software developers who use alternative solutions will be required
to deliver the source code (Portable Operating System Interface for Computer
Environments (POSIX) compliant) for the replacement services as part of the algorithm
delivery. Prohibited and allowed system calls are the subject of Appendix K on POSIX.

The Toolkit will serve to insulate science software from the Science Data Processing (SDP)
software, and to provide a development environment that emulates critical SDP functions. In
most cases, a complete simulation of the DAAC SDP System will not be required. The Toolkit
will help ensure code portability as the algorithm is ported from development hardware, through
the DAAC system, and through potential hardware changes as the ECS matures. To do so
effectively, the Toolkit will provide for limited access and control to system level resources,
including processes, shared memory, and I/O capabilities. Where control of such resources is
necessary (e.g., shared memory allocation), the Toolkit will provide a set of routines through
which the application must obtain those services. This partitioning and layering of operating
system services allows the Toolkit to work on behalf of the Data Processing subsystem in
allocating, de–allocating, and making use of system–wide shared resources. The Toolkit will

 4-1 333-EMD-001, Rev. 05

also serve to minimize code development by providing common functionality required across the
ECS community, such as geolocation.

It is essential to understand the concepts that distinguish the SCF development environment from
the production environment. While the science software and interface to the SDP Toolkit are
preserved in both environments, there are slightly different implementations and behavior in the
Toolkit functions and peripheral components (e.g., shell level development external to the
product generation executive (PGE) and testing tools). As far as the calling sequences
themselves go, these differences are transparent to the science software developer, i.e., the
calling sequences in the SCF and production environment versions are identical. Some setup of
the underlying environment will be necessary at the SCF, as explained in Section 4.2 below. This
setup should not affect the code itself.

4.2 SCF Development Environment

4.2.1 Introduction

This User's Guide describes tools that were designed to function in the production environment.
For this reason, certain assumptions were made during their design process which will affect the
operation of these tools in the SCF environment. It is the primary purpose of this section to
identify those areas where extra measures will need to be taken, on the part of the SCF
developers, to compensate for the differences in the two environments. To assist with this effort,
utilities that are being developed to support ECS internal testing will be made available to SCF
developers after they are developed and tested. These utilities are expected to prove useful to
Product Generation Executive (PGE) script development as well as to the integration and testing
processes. Aside from supplying the production environment emulation services necessary to
fully utilize the SDP Toolkit, these utilities will also provide an integrated environment to
facilitate the specification and execution of test scenarios. Production environment emulation
utilities will evolve over time as the architecture and system design of the ECS progress.

It is also the intent of this section to impart to the SCF developers our view of how science
software development should be undertaken at the SCFs where the Toolkit is concerned. The
intent here is merely to present our views and not to impose guidelines on the actual
development process. If a future implementation of ECS, for example, allows for standard
product production at the SCFs, usage of the Tools and utilities presented in this document
should not impede but aid algorithm development.

4.2.2 File Management

In the production environment, product files coming from the system archive are designated by
Earth Science Data Type (ESDT). In order for science software to access staged files, a scheme
for translating internal software identifiers into actual physical identifiers has been established
(Section 6.2.3). The same holds true for the SCF environment since the same I/O tools will be
used to access these files from within the science software. The main difference being that in the
production environment, these filename references are resolved when a PGE is queued for
execution. Since the production environment will not be part of the SCF environment, a

 4-2 333-EMD-001, Rev. 05

mechanism was devised to substitute for this functionality. This mechanism, known as a process
control file (PCF), involves the creation of an external mapping of logical identifiers to physical
file names according to the specifications for such a mapping. In this fashion, the software
interface is consistent in both the SCF and DAAC run environments.

Some other notes regarding files concern the support for a one-to-many, logical-to-physical
relationship among Product Input files. While this functionality is supported by the Toolkit, there
are several guidelines that must be observed wen defining these associations through the PCF
mechanism. The first of these requires that files can only have more than one instance if they are
entered into the section of the PCF labeled PRODUCT INPUT FILES. Since the logical
identifier is static for files of this type, an instance number is required by the Toolkit, when
references are made, to distinguish amongst several files in the group. In order to ascertain the
number of instances associated with a logical identifier, you must invoke the Toolkit function
that provides this information (Section 6.2.3.2). Second, the order in which associated Product
Input files is retrieved, using a sequentially increasing instance number, is the same order in
which they are presented in the PCF, e.g., an instance number of 3 indicates the third associated
Product Input file defined in the PCF. Third, associated Product Input Files are those which
possess the same logical identifier and appear in succession in the PCF. Lastly, the instance
number is NOT directly related to the sequence number that appears at the end of the Record
Field in the PCF for each Product Input file (Appendix C) -- that sequence is the inverse of the
actual presentation in the PCF, such that the last entry in an association has Record Field = 1, the
second to last has Record Field = 2, while the first entry has its Record Field equal to the number
of entries in the association.

Until more is known about the ability to request that Product Input files be staged (loaded to disk
and updated in the PCF) in a specific order, we recommend that you NOT anticipate that any
specific ordering will exist in the production environment. Rather, always examine the file
attributes (metadata) to ascertain the specifics about the Product Input file before referencing it.

At the SCF, users must populate entries in the PCFs they intend to use during testing of PGEs.
At the DAAC, the PCF used in production is populated by the production system at runtime,
based on data dependencies and scheduling rules communicated to the DAAC Science Software
Integration and Test (SSI&T) team.

4.2.3 Runtime Configuration

To support a wide range of testing scenarios, some runtime parameters may be required to
modify the behavior of the PGE under certain conditions. The SDP Toolkit contains the routines
necessary to access the values of these parameters during runtime, provided that an external
mapping of logical identifiers to actual values has been performed according to the specifications
for this type of mapping.

In the production environment, dynamic control of these parameters occurs through a client
interface that constructs production requests; the parameter changes resulting from such
activation of this mechanism override the default mappings maintained in the production
environment. There are also certain such runtime parameters that are dynamically determined
immediately prior to PCF creation within the production system.

 4-3 333-EMD-001, Rev. 05

4.2.4 PGE Script Development

PGE scripts build the logical framework around the executables that produce the science
products. It is our view that these scripts should be created by SCF science software developers,
perhaps with guidance from the DAAC. It is also our understanding that the same Product
Generation Executive (PGE) script will be delivered to the DAAC SSI&T team with little or no
modifications required. In order to achieve this, the actual script should ideally be developed
using a POSIX.2 conforming shell language. If at the time of development such a shell is not
supported for all the approved platforms, development may proceed by using the standard
Bourne shell (or other shell language approved by the ECS Project) on those platforms lacking a
POSIX.2 implementation.

The actual PGE script as initiated in the production environment will not take arguments from
the command line. Instead, script calls to command versions of some 'Process Control' tools (see
Section 6.2.3) will provide for the retrieval of pertinent runtime information. Likewise, the
routine versions of the same tools should be used to obtain runtime information from within the
executables, rather than passing this information through the shell interface. This allows for
easier configuration of executables within the PGE script should modifications be required at
some point in the future. This scheme is possible since the executable interfaces, files and
runtime parameters, are defined and maintained external to the PGE script in the production
environment. It is to the SCF developer's benefit to adhere to this convention wherever possible,
to ensure portability of software into the production environment.

To support the startup and housekeeping needs of the SDP Toolkit; a Toolkit shell command has
been developed which performs the necessary initialization and termination procedures. This
shell command accepts a PGE script as input, assuring that execution of the PGE occurs between
the initialization and termination phases of the Toolkit. This shell command is similar to that
which will be run in the production environment to guarantee the proper activation and
deactivation of the Toolkit. It is recommended that SCF developers utilize this tool when
conducting their testing.

When testing for the exit status of an executable within the PGE, only two values should exist :
(0) for success and (1) for failure. This will require the executable developers to invoke the
library exit call with the appropriate value as the final statement in their software. The same
holds true for the exit status of the PGE with the exception that the shell command 'exit' is
invoked instead.

The Toolkit will support the following script languages: Bourne shell, C shell, Korn shell,
POSIX and the Perl language. However, certain system calls within these languages are
prohibited (as are such calls from the PGE executables), most notably, any file system activity
other that read/write.

4.2.5 Scheduling and Execution of PGEs

As was previously stated, scheduling or queuing of PGEs via the data production processing
subsystem will not be part of the SCF. However, developers should be able to generate scenario
scripts for different PGEs that will emulate the execution of PGEs within the DAAC

 4-4 333-EMD-001, Rev. 05

environment. With each scenario script tailored to execute a single PGE for specific set of
conditions, a superscript that activates several scenario scripts could be used to perform the
execution of multiple PGEs, further enhancing the emulation.

4.2.6 Error/Status Message Creation and Use

The 'smfcompile' utility provided in the SDP Toolkit (see Section 6.2.2) contains all the required
functionality for defining and maintaining error and status codes, user messages and associated
action messages. This tool, while only used in the SCF development environment, will fully
support the suite of 'Error and Status Reporting' tools at both the SCF and the production
environment.

Designed to support modular program development, this utility allows for separating the task of
defining status codes and messages from the actual software development task. In fact, the
process of defining these codes and messages may even be performed in the design stage, only
later to be referenced during software development. This is an especially useful arrangement if
action messages are to be incorporated into the status codes. This way, someone other than the
programmer can decide the action that needs to be taken when a certain error, or status condition
occurs.

While we do not endorse the creation of a separate Status Message File (SMF) for each
routine/function, etc., we do recommend that SMF file creation follow the logical partitioning of
software modules. So for a related set of routines, or even a small program, there might only be
one SMF that defines the status codes and messages returned by those routines.

The format for defining a status code mnemonic is intentionally free–form to allow the developer
to create and reference status codes that convey some meaning when writing and visually
inspecting the code.

4.2.7 Error/Status Log Monitoring

In the production environment, an error/status log file will be opened just before execution of the
PGE. This will be accomplished through an 'Initialization' command invoked by the production
environment. This tool and its associated 'Termination' command, were delivered with the
Toolkit 4 release of the SDP Toolkit. Developers can insert these tools at the beginning and end
respectively of a superscript that encapsulates their PGE script. However, it would be preferable
to use the Toolkit Shell command, since it already calls these commands and provides for the
encapsulation of a PGE script. If the emulation utility is used, the scenario scripts that it
generates will automatically incorporate these tools.

The actual log file name will most likely be influenced by system parameters in the production
environment. The easiest mechanism for accomplishing this in the SCF environment will be
through the assignment of some file name to the appropriate Record Field, in the process control
file (PCF), for each status log. The emulation utility may allow for the log file to be defined
through the file management services.

 4-5 333-EMD-001, Rev. 05

Through the emulation utility, the actual name of the log file could be conveyed to the user on
the host platform's console, or through some other convenient means. The user will most likely
initiate a scrolling output of the log file to a terminal window, to monitor the progress of PGE
execution.

The 'Termination' command mentioned earlier will be responsible for closing the log file and
dispatching it to some pre–defined location as specified by a Runtime Parameter in the PCF.

4.2.8 Parallel Processing Issues

While the majority of the software to be designed at the various SCF locations will be sequential
in nature, due to its direct dependency on data, some portion of that software lends itself to being
processed in a parallel fashion. This is especially true of those processes that share a common set
of input data, but which have no interdependencies themselves.

Unfortunately, the system architecture that would define the ability to execute portions of a PGE
on non–host platforms (i.e., a massively parallel machine) in the production environment has not
yet been determined. Until such an architecture is defined, if at all, developers will only be able
to test concurrent execution of executables on a single host. If a requirement for this type of
processing is derived, the Toolkit will be configured to work in that environment.

4.2.9 Configuration Management

The importance of having a robust configuration management (CM) tool for a project of this size
cannot be overstated. From SDP Toolkit development to science software development and
integration, the use of this tool will control the version of software to support the continuous
development and execution of production software.

After careful evaluation of several CM products, the ClearCase tool from Atria Software was
chosen to support the internal software development, during site CM and maintenance and
operations (M&O) CM requirements analysis. It is recommended that compatibility and
interoperability benefits be explored.

4.2.10 Distributed Computing Environment (DCE) Issues

With the advent of distributed computing, an ever increasing amount of single process execution
will be performed across multiple machines instead of the more typical scenario of many
processes running on one machine. While this technology may someday help to improve the
efficiency of your process, and at the same time take advantage of underutilized processors, the
constraints that it places on the ECS system architecture preclude the use of certain Distributed
Computing Environment (DCE) features. Among them is the use of remote procedure calls
(RPC's). The creation of RPC's to perform some segment of processing for a science algorithm is
such a customized task that its interface cannot be generalized into some extended SDP Toolkit
functionality. Since it is the Toolkit's charter to isolate the science software from the system
architecture, the SDP Toolkit's inability to mask this feature prohibits its direct usage in the
actual production software. For this reason, the direct use of RPC’s will not be allowed in the
algorithm software developed by the instrument teams.

 4-6 333-EMD-001, Rev. 05

We note that an interface that makes RPC’s indirectly available to science users through a client
interface is being considered in revisions of the ECS architecture. This interface may become an
extension of the Toolkit and will allow the algorithmic access of data through parameter–based
searches. The details and limitations of this interface are not available at the time of this
document.

4.3 Test and Simulation Data Access
The Toolkit provides tools to access all external data files required for science processing
development and execution. There are tools to provide the read functions to all data types: L0,
ancillary data, calibration coefficient files, standard products, etc.

Clearly test data must be accessed through the tool with the same Toolkit interface as in the
production environment. In general the Toolkit will aim to provide low level “write” functions to
match the “read” functions so that the users may develop their own test data sets to the format
required. Although there are currently no requirements that the Toolkit supply these new "write"
tools, it is expected that they will be required for adequate testing within the production
environment. In certain cases, such as platform orbit and attitude simulation, the Toolkit may
provide specially prepared test data sets.

For example, the L0 data write tool will provide a function to write data into a file formatted as
the packet based structure expected from EOSDIS Data and Operations System (EDOS). In this
example the “write” routine would require that the science data is provided by the user so that
the test data set may be tailored to the user needs.

For the case of dynamic external auxiliary data (e.g., Special Sensor for Microwave Imaging
(SSM/I) water vapor data) software may be provided to preprocess external data into any internal
format used in the production environment, so that consistent data sets for testing may be
developed by the user as required.

In the current implementation, EOS AM, EOS PM, EOS AURA and Tropical Rainfall
Measuring Mission (TRMM) orbit and attitude simulation are supplied with the Toolkit. A
packetizing tool Level 0 instrument science data simulation (which can be used in conjunction
with the orbit simulator) is under development. A digital chart of the world (DCW) data base and
a celestial body ephemerides are also provided with the current delivery.

4.4 Language Bindings and Advanced FORTRAN Considerations
The calling sequences in this document are provided in the C language with FORTRAN calling
sequences provided in addition for most tools. The toolkit may now be built with the C++
compiler. The C++ library contains FORTRAN bindings (this means that the C++ Toolkit
libraries can be called from FORTRAN).

a. The SDP Toolkit is designed in C, with most of the FORTRAN interface provided via
inter–language bindings. In cases where there is no obvious relationship between
FORTRAN and C calls, i.e., C pointers and structures, bindings will have to be done

 4-7 333-EMD-001, Rev. 05

carefully so as not to cause processing impairment. Note that there are no such tools in
the current implementation.

b. The question of computing speed has a strong effect on the design of FORTRAN tools.
Some tools, such as Level 0 I/O tools, need to be as fast as possible—the extra layer of
binding from C to FORTRAN may slow the processing to the point that the tool is
unusable. Therefore a subset of the SDP Toolkit is designed as FORTRAN—only; i.e.,
not bound to C, for this reason. The user interface will not change, however.

c. FORTRAN77 is currently the highest level of FORTRAN that has a POSIX standard.
However, many features of FORTRAN90 that are not present in FORTRAN77 are
desired for inclusion in the Toolkit. These FORTRAN90 features include pointers and
structures. This may mean that there will be two sets of FORTRAN calling sequences,
one for 77 and one for 90. There are no FORTRAN90 only constructs in the current
implementation.
The tools compile in both FORTRAN77 and FORTRAN90

e. The only Ada support offered by the Toolkit is in the generation of Status Message Files
by the 'smfcompile' utility.

4.5 Thread-Safe Issues
The PGS Toolkit may now be built in either Threadsafe or non-Threadsafe mode. The user may
NOT use the Threadsafe library (libPGSTK_r.a) for a non-threaded PGE applications and
likewise the user may NOT use the non-Threadsafe library (libPGSTK.a) for a threaded PGE
application. Intermixing libraries and executables will cause undefined results.

The user API remains the same for both the Threadsafe and non-Threadsafe Toolkit. All Toolkit
Threadsafe code is internal and hidden from the user. The Toolkit adheres to POSIX.1c
compliancy. Therefore, the pthread library (libpthread.a) is used. Using another thread library
while using the Threadsafe version of the Toolkit is strongly discouraged as undefined and
untested results may occur.

The COTS packages that Toolkit uses (ODL, etc.) are not Threadsafe. Therefore, it is highly
recommended that functions in Toolkit groups that call a COTS package should be called from
the same thread. The groups that would not be considered Threadsafe are CBP, CSC, CUC, AA,
GCT, DEM, and MET, and HDF (HDF-EOS). Calling any of these groups from multiple
threads will lead to undefined results (i.e. core dumps).

It was also discovered during testing that great care must be taken while writing multi-threaded
programs. Since more system resources are taken when using multiple threads, hidden coding
oversights can become serious errors. For example, failing to close a file: in a multi-threaded
program, a file may be opened many different places, and high numbers of open files could will
eventually lead to the maximum number of files being opened; and an error will result.

Great care must also be taken to ensure that all data variables are local. For example, global
variables can be used and modified by any active thread. Since each thread has a distinct and
different purpose the globals, will be set to the necessary value for that specific thread. The next

 4-8 333-EMD-001, Rev. 05

thread accessing a global will probably error out due to erroneous data values. This is the exact
problem with the COTS packages.

Limiting the number of threads that make Toolkit calls will aid in receiving the expected results.
Running any threads, in general, can be a resource drain on a computer; and running a
Threadsafe Toolkit can multiply the resource drain on a machine. Testing for the Threadsafe
Toolkit, which had multiple threads only calling Toolkit functions, revealed that performance
was better with a limited number of threads.

Below is an example of the use of Toolkit functions in a multi-thread program.

/*

 * thread.c

 *

 * Demonstrate how only one thread is allowed to call

* ALL functions in the Toolkit and the remaining threads

 * are restricted as to which groups they can call.

 */

#include <pthread.h>

#include <stdio.h>

void *ThreadA (void *arg)

{

/**

Thread A calls any and all functions in the Toolkit

**/

 return NULL;

}

void *ThreadB (void *arg)

{

/**

Thread B makes Toolkit calls but does NOT call

CBP, CSC, CUC, AA, GCT, DEM, or MET.

**/

 4-9 333-EMD-001, Rev. 05

 return NULL;

}

void *ThreadC (void *arg)

{

/**

Thread C makes Toolkit calls but does NOT call

CBP, CSC, CUC, AA, GCT, DEM, or MET.

**/

 return NULL;

}

void *ThreadD (void *arg)

{

/**

Thread D makes Toolkit calls but does NOT call

CBP, CSC, CUC, AA, GCT, DEM, or MET.

**/

 return NULL;

}

int main (int argc, char *argv[])

{

 pthread_t threadA;

 pthread_t threadB;

 pthread_t threadC;

 pthread_t threadD;

 pthread_create (&threadA, NULL, ThreadA, NULL);

 4-10 333-EMD-001, Rev. 05

 pthread_create (&threadB, NULL, ThreadB, NULL);

 pthread_create (&threadC, NULL, ThreadC, NULL);

 pthread_create (&threadD, NULL, ThreadD, NULL);

 pthread_exit (NULL);

 return 0;

}

Again, any calls of SDP Toolkit groups that call COTS packages should be called in the same
thread.

Although all COTS libraries that are called from the Toolkit are assumed to be non-Threadsafe
and will be locked with a mutual exclusion (mutex) lock this does not make the packages
themselves Threadsafe.

The Threadsafe PGS Toolkit library may be called from any thread of a multi-threaded
application, but it does not manage scheduling of threads by a calling program, nor does it do
anything to insure thread safety in routines that it calls. These programs and libraries must
themselves assure the correctness of the sharing between threads.

An application program is responsible for managing its own shared memory buffers. If multiple
threads are writing and/or reading to and/or from shared areas of memory, the Threadsafe
Toolkit library cannot guarantee that the results will be correct. For example, if an application
program stores results from one Threadsafe PGS Toolkit call in shared memory in one thread
and another thread expects to read those results the Threadsafe Toolkit can not manage this type
of synchronization. It is the responsibility of the application program to manage shared
memory/file access.

The Threadsafe PGS Toolkit library accesses disk storage through the operating system, so for
multi-threaded programs the Threadsafe Toolkit library provides whatever semantics the
operation system provides. Hence, when multiple threads read and write to the same area on
disk the Threadsafe Toolkit does not guarantee consistent results beyond that provided by the
operating system. The Threadsafe Toolkit can guarantee that each read and write will be
completed correctly, but the order of completion is unspecified, and might vary from run to run
or from platform to platform.

C library functions that are called by the Toolkit that are not Threadsafe will be replaced with the
_r counterpart. It is an application’s responsibility to make sure that other libraries are called in
an appropriate manner. For instance, if the MPIO and/or MPI libraries are not MT-Safe then the
application should not use the MPIO file access driver. It is beyond the scope of the Threadsafe
Toolkit configuration to determine when supporting libraries are Threadsafe.

 4-11 333-EMD-001, Rev. 05

The Threadsafe PGS Toolkit is not interprocess-safe. Two processes cannot simultaneously
access a PGS Toolkit file, so no attempt is made to prevent deadlocks in the Threadsafe Toolkit
by resetting state information with pthread_atfork(). Do not call Threadsafe Toolkit functions
from a child process.

The Threadsafe PGS Toolkit serializes accesses to the library, each API call is atomic. If an
application needs a sequence of operations to be atomic (e.g. Read, Modify, Write), the
application code must provide the appropriate concurrency protocols.

The Threadsafe PGS Toolkit uses the same PCF for all threads in the PGE. All current rules for
the PCF apply.

The Threadsafe PGS Toolkit will produce one set of SMF Error/Status files for the threads in the
PGE. Each entry in the LogStatus file will be followed by a Thread ID (TID) number which will
allow the user to trace a threads progress.

There is only one difference in return values in the Threadsafe API and the non-Threadsafe API.
The Threadsafe Toolkit API may return PGSTSF_E_GENERAL_FAILURE. This states that
there was a severe problem initializing, locking, or accessing keys. It is recommended that the
application program exits upon receiving this return value.

 4-12 333-EMD-001, Rev. 05

5. Toolkit Installation and Maintenance

5.1 Installation Procedures

5.1.1 Release 7 SDP Toolkit Release Notes

5.1.1.1 Multiple Architecture Support

The Toolkit has the option of being installed with simultaneous support for multiple
architectures. This means that it is no longer necessary to install a separate copy of the Toolkit
for each host architecture to be supported. Instead, a single copy of the Toolkit, installed on a file
server in a networked environment, may serve multiple hosts of different architecture types.

Running concurrent tasks on the Toolkit is possible, but it requires that each process be
configured so that all output files, including Toolkit log files, are written to a separate area to
avoid collisions. This is done by using a private customized Process Control File (PCF) for each
concurrent task. Please refer to Appendix C for more information. Note that any such PCF
MUST contain all of the entries in the master template PCF for proper Toolkit functioning.

The directory structure of the Toolkit was revised to allow multiple architecture support.
Subdirectories of the Toolkit home directory are now as follows:

 bin binary and script executables Note 1
database data resource files used by the Toolkit Note 1
doc documentation
include header files
lib the Toolkit library Note 1
message message files used by the error/status tools
obj object files used to build the Toolkit library Note 1
runtime runtime files Note 2
src source code
test test area

Note 1:

The directories bin, database, lib, obj and objcpp all contain architecture-specific files residing in
subdirectories named for the architecture. One such subdirectory will be created for each run of
the installation script on a given architecture. Toolkit environment variables are set by the
environment scripts to automatically map to the appropriate directories.

The database directory additionally contains a subdirectory named common for data files shared
by all architectures.

 5-1 333-EMD-001, Rev. 05

Note 2:

The directory runtime contains data files shared by all architectures. In addition, it contains one
subdirectory for the each of the supported architectures. These subdirectories are for
architecture-specific runtime files. Currently the only file distributed in these subdirectories the
default Process Control File (PCF) PCF.relB0, which contains architecture-specific pathnames.
Several files generated at runtime by a PGE (e.g. log files) are set by default (in the PCF) to be
created in this directory as well.

5.1.1.2 DAAC Toolkit Support

The Toolkit supports DAAC as well as SCF sites. A single distribution file supports all sites.
The type of Toolkit built is determined by command line options to the installation script.

5.1.1.3 Support for the IRIX 6.5 Operating System

The Toolkit now fully supports the SGI IRIX64 Operating System. Under IRIX64 there are three
Application Binary Interfaces (ABI). The Toolkit treats each of these ABIs as a separate
architecture. The table below gives the formats:

 ABI compiler flag Toolkit name
 old-style 32 bit -32 sgi
 new-style 32 bit -n32 sgi32
 64 bit -64 sgi64

The old-style 32 bit format is backwards-compatible with 32-bit SGI platforms. The other
formats run only under IRIX 6.x.. Please note that SGI plans to drop support for old-style 32 bit
format, it is therefore strongly recommended that all users migrate to new-style 32 bit or 64 bit
mode. Also, ECS DAAC facilities no longer support old 32 processing on the SGI.

5.1.1.4 HDF Integration

The Toolkit installation procedures include a section that covers the installation of the National
Center for Supercomputer Applications (NCSA) HDF file access packages, HDF4 and HDF5.
HDF has been adopted as the standard data format for EOSDIS Core System product generation,
archival, ingest, and distribution capabilities.

Currently, HDF4 is only needed in order to build and use the Digital Elevation Model (DEM),
Metadata (MET), Ancillary Access (AA) tools, and EPH/ATT tools. In addition MET tools
require HDF5. If you do not plan to use these tools, the HDF4 and/or HDF5 installation section
may be skipped. In future releases, we expect greater integration of the Toolkit with HDF.

An installation script for HDF4 and HDF5 is included as part of the main SDP Toolkit
distribution. It is provided to simplify the installation of HDF as much as possible, greatly
reducing the number of steps in NCSA's own installation procedure. As of Release 7, the toolkit
uses HDF4.2r3 and hdf5-1.6.7. The HDF distributions themselves are located in compressed tar
files, called HDF4.2r3.tar.gz and hdf5-1.6.7.tar.gz which must be downloaded separately along

 5-2 333-EMD-001, Rev. 05

with the ZLIB tar file zlib-1.2.1.tar.gz , JPEG tar file jpegsrc.v6b.tar.Z, and SZIP tar file
szip2.1.tar.gz.

With a full installation, HDF requires approximately 60 Mb of disk space. After the installation
files are cleaned up. They may be installed in any location; i.e., they do not have to be stored
under the SDP Toolkit home directory. The disk partition where HDF4 and HDF5 are installed
should have about 120 Mb of free space.

5.1.1.5 HDF-EOS Integration

The toolkit installation procedures now include a section which covers the installation of HDF-
EOS and HDF-EOS5, standalone packages that may be used in conjunction with the toolkit.
They implement the EOS standard methods for accessing HDF format files. Three interfaces are
provided: Point, Swath and Grid. Please refer to the HDF-EOS and HDF-EOS5 User's Guide for
more information. The distribution file for HDF-EOS and HDF-EOS5 are available from the
same ftp server where the toolkit distribution files are located.

The toolkit HDF-EOS and HDF-EOS5 installations are only available if the toolkit is built with
HDF support. It handles the details of unpacking the distribution file, setting HDF dependencies,
and running the HDF-EOS installation script.

Currently, HDF-EOS (HDF4 based) is only needed in order to build and use the Digital
Elevation Model (DEM) tools. If you do not plan to use these tools, the HDF-EOS installation
section may be skipped.

HDF-EOS (or HDF-EOS5) may also be installed manually, either before or after the toolkit is
installed. HDF4 (or HDF5) must be installed before installing HDF-EOS (or HDF-EOS5).

5.1.2 To Install the SDP Toolkit from a Disk–Based Tar File

5.1.2.1 Preliminary

If HDF4 and HDF5 are to be installed at this time (recommended), you must first download the
HDF4 distribution file HDF4.2r3.tar.gz, zlib-1.2.1.tar.gz, jpegsrc.v6b.tar.Z, szip2.1.tar.gz, and
hdf5-1.6.7.tar.gz before proceeding. They may be loaded into any directory on your system, i.e.
they need not reside in the SDP Toolkit home directory. The same applies to the HDF-EOS and
HDF-EOS5 distribution files HDF-EOS2.15.v1.00.tar.Z and HDF-EOS5.1.11.tar.gz, if you plan
to install HDF-EOS (recommended) while installing the toolkit.

Important HDF Note:

The toolkit-supplied HDF installation scripts contain various platform-specific patches and bug
fixes that allow HDF4 and HDF5 to be successfully installed on all platforms supported by the
toolkit. In most cases, both the libraries and utilities are built. Also the script automatically sets
up the installed HDF directories so that the Toolkit can find them.

 5-3 333-EMD-001, Rev. 05

Because of these factors, we strongly recommend that even if you already have HDF4.2r3, zlib-
1.2.1, jpegsrc.v6b , szip2.1, and hdf5-1.6.7 installed, you RE-INSTALL HDF AT THIS TIME,
using the toolkit-supplied HDF installation scripts.

Historical Note:

Please note the acronym PGS (Product Generation System) is used throughout the toolkit
software in place of SDP. This is for historical reasons: the name was changed as of Release 3 of
the toolkit. We regret any confusion this may cause.

5.1.2.2 Unpacking the Distribution File

1. Select a location for the SDP Toolkit directory tree. It should be on a disk partition with
at least 80 Mb of free space. If you plan to install HDF in the same partition, you will
need at least 140 Mb of free space. If you plan to install support for multiple
architectures, you will need about 20 Mb Toolkit space + 60 Mb HDF space for each
additional architecture supported.

 Multiple Architecture Support Note

As previously mentioned, it is now possible to build the toolkit with support for multiple
architectures. The distribution file need only be unpacked once, to support all
architectures. If the toolkit is to be built with multiple architecture support, the area
chosen to unpack the distribution should be on a network file system accessible from all
hosts to be supported. (Please note that the SGI supports three different architectures. So,
if building a multiple architecture installation to support the SGI only, the file system
need not be accessible across the network.)

2. Copy the file SDPTK5.2.15v1.00.tar.Z to the target directory by typing the command:

 cp SDPTK5.2.15v1.00.tar.Z <target-dir>

 where <target-dir> is the full pathname of your target directory.

3. Set your default directory to the target directory by typing the command:

 cd <target-dir>

4. Uncompress this file and extract the contents by typing the command:

 zcat SDPTK5.2.15v1.00.tar.Z | tar xvf -

 This will create a subdirectory of the current directory called TOOLKIT. This is the top-
level toolkit directory, which contains the full toolkit directory structure.

5.1.2.3 Starting the Installation Procedure

1. Set your default directory to the top-level toolkit directory by typing the command:

 cd TOOLKIT

 5-4 333-EMD-001, Rev. 05

 Multiple Architecture Support Note:

The toolkit installation script must be run once for each of the architectures to be
supported. To do this, simply login to the desired host and set your directory to the top-
level toolkit directory: <target-dir>/TOOLKIT. Then, proceed to run the installation
script, starting at Step 2, below. The installation runs MUST be done ONE AT A TIME.
Attempting to run concurrent installation procedures may cause errors.

2. Determine options for the toolkit installation script.

 Before running the toolkit installation script, you must determine the command line
options appropriate for your site. These options are referred to in this section as <install-
options>.

 These options tell the installation script such things as whether to build for SCF or
DAAC, and whether to build for FORTRAN-90 compatibility, (FORTRAN-77 is the
default). The table below gives the basic site options. Other options follow.

Site FORTRAN <install-options>
SCF FORTRAN-77 (none)
SCF FORTRAN-90 -f90
DAAC FORTRAN-77 -daac
DAAC FORTRAN-90 -daac -f90

 Please refer to part 1 of the Notes section, below, for information about platforms that
currently support FORTRAN-90. When doing a FORTRAN-90 installation, the use of -
fc_path option, (see below), is highly recommended.

It is RECOMMENDED that you specify the name of the installation directory. When
installing the Toolkit in a directory which is being automounted or which is a link, the
Toolkit may not be able to correctly determine the name of the directory where you are
installing it. You can specify the name of the installation explicitly by adding the
following to <install-options>:

 -pgshome <installation directory>

where <installation directory> is the top level Toolkit directory name (e.g.:
/usr/local/TOOLKIT). Note that this option can NOT be used to specify an installation
directory other than where the Toolkit has already been created in the steps prior to
running the INSTALL script.

If you wish to save the output of the installation run in a log file (RECOMMENDED),
add the following to <install-options>:

 -log <log-file>

 Where <log-file> is the name of the log file.

 If you wish to compile the Toolkit in debug mode add the following to <install-options>:

 -dbug

 5-5 333-EMD-001, Rev. 05

 This will replace the optimization flag "-O" with "-g" for all files compiled into the
Toolkit library. This allows Toolkit routines to be viewed from within a source code
debugger.

 To install the C++ version of the library, libPGSTKcpp.a, you may use the -cpp option to
specify that you want the C++ version. To do this, add the following to <install-options>:

 -cpp

To ensure that the proper C++ compiler is found by the script, you may use the -cpp_path
option to specify its location. To do this, add the following to <install-options>:

 -cpp_path <C++-compiler-path>

 Where <C++-compiler-path> is the full C++ compiler path for the desired C++ compiler
(e.g. /user/loca/CC). This option should not be needed at most sites.

 To ensure that the proper C compiler is found by the script, you may use the -
cc_path option to specify its location. To do this, add the following to <install-options>:

 -cc_path <C-compiler-path>

 Where <C-compiler-path> is the full C compiler path for the desired C compiler (e.g.
/user/loca/cc). This option should not be needed at most sites.

To ensure that the proper FORTRAN compiler is found by the script, you may use the -
fc_path option to specify its location. To do this, add the following to <install-options>:

 -fc_path <FORTRAN-compiler-path>

 Where <FORTRAN-compiler-path> is the full FORTRAN compiler path for the desired
FORTRAN compiler (e.g. /usr/local/pgf77). This is particularly advisable when using
FORTRAN-90 (e.g. for f90 installation in a linux platform using Portland pgf compiler:
–f90 –fc_path /usr/local/pgf90).

NAG FORTRAN-90 Note:

 If using a NAG FORTRAN-90 compiler to build the toolkit library, add the -nag option
to <install-options>, after the -f90 and-fc_path options. This will allow the toolkit to
generate the proper C to FORTRAN bindings. This option should not be used when
building the toolkit on an SGI. See the note, below.

 SGI Multiple Architectures Note:

 On the SGI (as of IRIX64 6.5), the default is to build the toolkit in 64-bit mode. The
following table gives the option to specify the appropriate architecture to be built:

binary format architecture <install-options>
old-style 32 bit sgi (none)**
new-style 32 bit sgi32 -sgi32
64 bit sgi64 -sgi64

 5-6 333-EMD-001, Rev. 05

 (**) The Toolkit may be installed in old-style 32 bit mode, but this is no longer the
default and may not be supported in future releases as SGI will be dropping support for
this format. To install the Toolkit in this mode, run the Toolkit without any special sgi
flags and then when prompted for the sgi mode enter "sgi" (without the quotes) at the
appropriate prompt.

SGI FORTRAN-90 Note:

 On SGI and SGI Challenge platforms running IRIX 6.5 and earlier, the type of
FORTRAN-90 compiler is automatically determined by the script. On the old style 32-bit
SGI platform, the NAG compiler is used. On the 64-bit SGI Challenge platform, the
compiler chosen depends on the binary architecture type selected.

 The script will override the setting of the -NAG flag, if specified, because only the
combination listed below will build properly. The following table shows which compiler
is used for each architecture:

binary format architecture f90
old-style 32 bit sgi NAG
new-style 32 bit sgi32 SGI
64 bit sgi64 SGI

 When the -NAG option is specified, it is a good idea to specify the f90 compiler location
via the -fc_path option, ("Setting the FORTRAN compiler path", above), to ensure that
the script uses the right compiler.

 By default the Toolkit supports the C language and one of FORTRAN77 or
FORTRAN90. The installation procedure, therefore, normally requires a FORTRAN
compiler. If no FORTRAN compiler available the Toolkit may be installed without a
FORTRAN compiler by specifying -no_ftn on the command line of the bin/INSTALL
script.

 Note that HDF still requires a FORTRAN compiler. In order the Toolkit to successfully
install without a FORTRAN HDF must be installed independently (i.e. NOT from the
Toolkit INSTALL script) (see HDF Installation Section, below).

 If you have already installed NCSA's HDF4 package, you can specify the installation
location explicitly. If you do so, the Toolkit installation procedure will not attempt to
install HDF4, using the installation you have specified instead. To do this, add the
following to <install-options>:

 -hdfhome <HDF4 installation directory>

 where <HDF4 installation directory> is the HDF4 directory which contains the bin/ lib/
and include/ sub-directories of the installed HDF4 package.

 If you have already installed NCSA's HDF5 package, you can specify the installation
location explicitly. If you do so, the Toolkit installation procedure will not attempt to
install HDF5, using the installation you have specified instead. To do this, add the
following to <install-options>:

 5-7 333-EMD-001, Rev. 05

 -hdf5home <HDF5 installation directory>

 where <HDF5 installation directory> is the HDF5 directory which contains the bin/ lib/
and include/ sub-directories of the installed HDF5 package.

 If you have already installed ECS's HDF-EOS (HDF4 based) package, you can specify
the installation location explicitly. If you do so the Toolkit installation procedure will not
attempt to install HDF-EOS, using the installation you have specified instead. To do this,
add the following to <install options> :

 -hdfeos_home <HDF-EOS installation directory>

 where <HDF-EOS installation directory> is the HDF-EOS (HDF4 based) directory which
contains the bin/ lib/ and include/ sub-directories of the installed HDF-EOS package.

 If you have already installed ECS's HDF-EOS5 (HDF5 based) package, you can specify
the installation location explicitly. If you do so the Toolkit installation procedure will not
attempt to install HDF-EOS5, using the installation you have specified instead. To do
this, add the following to <install options> :

 -hdfeos5_home <HDF-EOS5 installation directory>

 where <HDF-EOS5 installation directory> is the HDF-EOS5 (HDF5 based) directory
which contains the bin/ lib/ and include/ sub-directories of the installed HDF-EOS5
package.

 WARNING: the installation procedure will not make any checks of the versions of any
pre-installed packages you specify in this way. It is your responsibility to ensure that any
such packages you specify in this manner are at the approriate version level for the
version of the Toolkit being installed.

 By default the Toolkit installation is an interactive procedure. If you would like to run
the installation in "batch" mode add the following to <install-options>:

 -batch

 Note that the installation procedure is not as flexible when run in this mode. Namely,
when using the script to install HDF4, HDF5, HDF-EOS and/or HDF-EOS5, these
packages will be installed under the TOOLKIT directory (i.e. the default locations for
these packages). This behavior cannot be changed, although you MAY still specify the
locations of pre-installed versions of these packages using the appropriate <install-
options> (see above). Also if you specify the -dbug switch the Toolkit, HDF and HDF-
EOS will all be installed in debug mode. Finally if you attempt to install HDF (HDF4 or
HDF5) and an installed HDF is found in the default location it will be deleted and the
whole HDF (HDF4 or HDF5) package will be reinstalled. If you attempt to install HDF-
EOS (or HDF-EOS5) and an hdfeos (or hdfeos5) directory is found to exist in the default
location it will be "re-used".

 5-8 333-EMD-001, Rev. 05

5.1.2.4 Run the Toolkit Installation Script

Please note that the installation script for this release of the toolkit requires user interaction.
Because of this, it should NOT be run as a background task. The new installation script,
bin/INSTALL, is actually a front end for eight other scripts: bin/INSTALL-HDF4,
bin/INSTALL-HDF5, bin/INSTALL-HDFEOS-Wrap, bin/INSTALL-HDFEOS5-Wrap,
bin/INSTALL-JPEG, bin/INSTALL-ZLIB, bin/INSTALL-SZIP and bin/INSTALL-Toolkit.
Each of these scripts may be run with the -h option to display a usage message. In most cases, it
will not be necessary to run any of these scripts directly from the command line.

 To run the script, type the command:

 bin/INSTALL <install-options>
where <install-options> is the list of options determined in the previous step.

 The installation script will then run. It will output various startup messages, beginning
with:

 Toolkit Installation starting at <date/time>

If the platform is a 64-bit linux platform you will be asked to enter “lnx64” or “lnx32” for
64-bit or 32-bit installation respectively. Press return for deault 64-bit installation or enter
lnx32 then press return for 32-bit installation.

 The script will then output a message discussing the HDF requirement, after which it
issues a prompt which gives you an opportunity to quit.

 Continue installation [yes] ?

 To continue the installation, press return.

ZLIB Installation Section

1. The script prompts with:

 Is zlib-1.2.1 installed at your site [no] ?

 If ZLIB is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of ZLIB installed, you may type 'y' and hit
return. In this case, the script will ask where ZLIB is installed:

 Pathname where directory zlib-1.2.1 is located [<default>] ?

 Type in the full pathname and hit return. The script will check to make sure that ZLIB
is really installed there. Please proceed to the toolkit Installation Section, below.

3. The script prompts with:

 Do you wish to install zlib-1.2.1 now [yes] ?

 Hit return to continue.

4. The script responds with:

 Running the ZLIB Installation Script ...

 5-9 333-EMD-001, Rev. 05

 It may also output a few informational messages, depending on the installation
options selected.

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where zlib-1.2.1.tar.gz is located ?

 Please enter the correct location and hit return.

6. The script then asks where the ZLIB directory will be created. The default is <toolkit-
home-directory>/zlib/$BRAND, where $BRAND is the toolkit architecture being
built, given by the table in Note 2 of the NOTES section, below.

 Pathname where directory `zlib-1.2.1' will be created [<default>] ?

 If you want ZLIB installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the ZLIB installation must be built for each of the architectures to be supported
by this toolkit installation. We therefore recommend using the default ZLIB directory,
suggested by the installation procedure, as it helps keep track of which architecture was
used to build ZLIB.

7. The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

8. This completes the interactive portion of the ZLIB installation. When the ZLIB
section is complete, it outputs the message:

 ZLIB installation ending at: <date/time>

JPEG Installation Section

1. The script prompts with:

 Is jpeg-6b installed at your site [no] ?

 If JPEG is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of JPEG installed, you may type 'y' and hit
return. In this case, the script will ask where JPEG is installed:

 Pathname where directory jpeg-6b is located [<default>] ?

 Type in the full pathname and hit return. The script will check to make sure that
JPEG is really installed there. Please proceed to the toolkit Installation Section,
below.

 5-10 333-EMD-001, Rev. 05

3. The script prompts with:

 Do you wish to install jpeg-6b now [yes] ?

 Hit return to continue.

4. The script responds with:

 Running the JPEG Installation Script ...

 It may also output a few informational messages, depending on the installation
options selected.

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where jpegsrc.v6b.tar.Z is located ?

 Please enter the correct location and hit return.

6. The script then asks where the JPEG directory will be created. The default is <toolkit-
home-directory>/jpeg/$BRAND, where $BRAND is the toolkit architecture being
built, given by the table in Note 2 of the NOTES section, below.

 Pathname where directory 'jpeg-6b' will be created [<default>] ?

 If you want JPEG installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the JPEG installation must be built for each of the architectures to be
supported by this toolkit installation. We therefore recommend using the default JPEG
directory, suggested by the installation procedure, as it helps keep track of which
architecture was used to build JPEG.

7. The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

8. This completes the interactive portion of the JPEG installation. When the JPEG
section is complete, it outputs the message:

 JPEG installation ending at: <date/time>

SZIP Installation Section

1. The script prompts with:

 Is szip2.1 installed at your site [no] ?

 If SZIP is not installed, hit return and proceed to step 3, below.

 5-11 333-EMD-001, Rev. 05

2. If you already have the correct version of SZIP installed, you may type 'y' and hit
return. In this case, the script will ask where SZIP is installed:

 Pathname where directory szip2.1 is located [<default>] ?

 Type in the full pathname and hit return. The script will check to make sure that SZIP
is really installed there. Please proceed to the toolkit Installation Section, below.

3. The script outputs:
 WARNING: Commercial users should obtain szip license

 if they intend to ditribute their products with szip

 encoder. The szip decoder does not require license.

 and then prompts with:

 Do you wish to install full szip2.1 (encoder + decoder) [yes] ?

 Hit return to continue, or type ‘n’ and hit return. If you enter ‘n’ by default only the
szip decoder will be installed.

4. The script responds with:

 Running the SZIP (with/without encoding) Installation Script ...

 It may also output a few informational messages, depending on the installation
options selected.

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where szip2.1.tar.gz is located ?

 Please enter the correct location and hit return.

6. The script then asks where the SZIP directory will be created. The default is <toolkit-
home-directory>/szip/$BRAND, where $BRAND is the toolkit architecture being
built, given by the table in Note 2 of the NOTES section, below.

 Pathname where directory 'szip2.1' will be created [<default>] ?

 If you want SZIP installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the SZIP installation must be built for each of the architectures to be supported
by this toolkit installation. We therefore recommend using the default SZIP directory,
suggested by the installation procedure, as it helps keep track of which architecture was
used to build SZIP.

7. The script asks you to verify the information entered, prompting with:

 5-12 333-EMD-001, Rev. 05

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

8. This completes the interactive portion of the SZIP installation. When the SZIP
section is complete, it outputs the message:

 SZIP installation ending at: <date/time>

 HDF4 Installation Section

1. The script prompts with:

 Is HDF4.2r3 installed at your site [no] ?

 If HDF4 is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of HDF4 installed, you may type 'y' and hit
return. In this case, the script will ask where HDF4 is installed:

 Pathname where directory HDF4.2r3 is located [<default>] ?

 Type in the full pathname and hit return. The script will check to make sure that
HDF4 is really installed there. Please proceed to the toolkit Installation Section,
below.

3. The script prompts with:

 Do you wish to install HDF4.2r3 now [yes] ?

 Hit return to continue.

 Then the script prompts with:

 Are you going to use external netCDF with your HDF4 applications[no]?

 If you intend to use external netCDF library with your hdf4 then enter ‘y’ otherwise
hit return. If you answer ‘y’ then HDF4 will be installed with --disable-netcdf so that
netCDF function in HDF4 are renamed (with prefix sd_), avoiding clash between
name symbols of the internal and external netCDF packages.

 Then the script prompts with:

 Do you wish to configure HDF4 with SZIP[y] ?

 Hit return if you wish the installed HDF4 have szip decoding (and/or encoding)
capability.

4. The script responds with:

 Running the HDF Installation Script ...

 It may also output a few informational messages, depending on the installation
options selected.

 5-13 333-EMD-001, Rev. 05

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where HDF4.2r3.tar.gz is located ?

 Please enter the correct location and hit return.

6. The script then asks where the HDF4 directory will be created. The default is
<toolkit-home-directory>/hdf/$BRAND, where $BRAND is the toolkit architecture
being built, given by the table in Note 2 of the NOTES section, below.

 Pathname where directory 'HDF4.2r3' will be created [<default>] ?

 If you want HDF4 installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the HDF4 installation must be built for each of the architectures to be
supported by this toolkit installation. We therefore recommend using the default HDF4
directory, suggested by the installation procedure, as it helps keep track of which
architecture was used to build HDF4.

7. The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

8. This completes the interactive portion of the HDF4 installation. When the HDF4
section is complete, it outputs the message:

 HDF installation ending at: <date/time>

HDF5 Installation Section

1. The script prompts with:

 Is hdf5-1.6.7 installed at your site [no] ?

 If HDF5 is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of HDF5 installed, you may type 'y' and hit
return. In this case, the script will ask where HDF5 is installed:

 Pathname where directory hdf5-1.6.7 is located [<default>] ?

 Type in the full pathname and hit return. The script will check to make sure that
HDF5 is really installed there. Please proceed to the toolkit Installation Section,
below.

3. The script prompts with:

 Do you wish to install hdf5-1.6.7 now [yes] ?

 5-14 333-EMD-001, Rev. 05

 Hit return to continue.

4. The script responds with:

 Running the HDF5 Installation Script ...

 It may also output a few informational messages, depending on the installation
options selected.

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where hdf5-1.6.7.tar.gz is located ?

 Please enter the correct location and hit return.

6. The script then asks where the HDF5 directory will be created. The default is
<toolkit-home-directory>/hdf5/$BRAND, where $BRAND is the toolkit architecture
being built, given by the table in Note 2 of the NOTES section, below.

 Pathname where directory 'hdf5-1.6.7' will be created [<default>] ?

 If you want HDF5 installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the HDF5 installation must be built for each of the architectures to be
supported by this toolkit installation. We therefore recommend using the default HDF5
directory, suggested by the installation procedure, as it helps keep track of which
architecture was used to build HDF5.

7. The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

8. This completes the interactive portion of the HDF5 installation. When the HDF5
section is complete, it outputs the message:

 HDF5 installation ending at: <date/time>

 HDF-EOS Installation Section

1. The script prompts with:

 Is HDF-EOS2.15v1.00 installed at your site [no]? [yes] ?

 If HDF-EOS is not installed, hit return and proceed to step 3, below

2. If you already have the correct version of HDF-EOS installed, you may type ‘y’
 and hit return. In this case, the script will ask where HDF-EOS is installed

 Pathname where HDF-EOS2.15v1.00 is installed [<default-path>]

 5-15 333-EMD-001, Rev. 05

3. The script prompts with:

 Do you wish to install HDF-EOS2.15v1.00 now [yes] ?

 Hit return to continue

4. The script responds with:

 Installing HDF-EOS ...

 It may also output a few informational messages, depending on the installation
options selected.

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where HDF-EOS2.15v1.00.tar.Z is located ?

 Please enter the correct location and hit return.

6. The script then asks where the HDF-EOS directory will be created. The default is
<toolkit-home-directory>.

 Pathname where directory 'hdfeos' will be created [<default>] ?

 If you want HDF-EOS installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue. If installing for an additional architecture,
(refer to the Multiple Architecture Support Note in Step 1 of "Starting the installation
procedure"), use the same directory as for the first instance of HDF-EOS - a single
copy will support multiple architectures.

7A. Single-Architecture Installation

 If this is a single-architecture installation, or the first platform of a multiple-
architecture installation, do this step. Otherwise proceed to step 7B.

 The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

 Proceed to step 8

7B. Multiple-Architecture Installation

 If this is an additional platform in a multiple-architecture installation, i.e. the
INSTALL script is being run again to add support for an additional architecture,
(refer to the Multiple Architecture Support Note in Step 1 of "Starting the installation
procedure"), proceed as follows:

 The script asks you to verify the information entered, prompting with:
 Continue [yes] ?

 5-16 333-EMD-001, Rev. 05

 Hit return to continue. The script should respond with;

 The directory hdfeos already exists.

 [O]verwrite, [R]e-use or [Q]uit (default) ?

 Type 'R' and hit return. The script will build HDF-EOS for the new architecture
using the existing copy of the directory structure. Libraries and executables will be
added to the architecture-specific subdirectories of the HDF-EOS 'bin' and 'lib'
directories, respectively. Do NOT use the Overwrite option - it will clobber the
previous architecture-specific installation(s).

8. This completes the interactive portion of the HDF-EOS installation. When the HDF-
EOS section is complete, it outputs the message:

 HDFEOS installation ending at: <date/time>

 For information about user setup, as well as instructions for compiling and linking
with HDF-EOS, Refer to the file README in the HDF-EOS 'doc' directory.

HDF-EOS5 Installation Section

1. The script prompts with:

 Is HDF-EOS5.1.10 installed at your site [no]? [yes] ?

 If HDF-EOS5 is not installed, hit return and proceed to step 3, below

2. If you already have the correct version of HDF-EOS5 installed, you may type ‘y’
 and hit return. In this case, the script will ask where HDF-EOS5 is installed

 Pathname where HDF-EOS5.1.10 is installed [<default-path>]

3. The script prompts with:

 Do you wish to install HDF-EOS5.1.10 now [yes] ?

 Hit return to continue

4. The script responds with:

 Installing HDF-EOS5 ...

 It may also output a few informational messages, depending on the installation
options selected.

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where HDF-EOS5.1.10.tar.gz is located ?

 Please enter the correct location and hit return.

6. The script then asks where the HDF-EOS5 directory will be created. The default is
<toolkit-home-directory>.

 5-17 333-EMD-001, Rev. 05

 Pathname where directory 'hdfeos5' will be created [<default>] ?

 If you want HDF-EOS5 installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue. If installing for an additional architecture,
(refer to the Multiple Architecture Support Note in Step 1 of "Starting the installation
procedure"), use the same directory as for the first instance of HDF-EOS5 - a single
copy will support multiple architectures.

7A. Single-Architecture Installation

 If this is a single-architecture installation, or the first platform of a multiple-
architecture installation, do this step. Otherwise proceed to step 7B.

 The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

 Proceed to step 8

7B. Multiple-Architecture Installation

 If this is an additional platform in a multiple-architecture installation, i.e. the
INSTALL script is being run again to add support for an additional architecture,
(refer to the Multiple Architecture Support Note in Step 1 of "Starting the installation
procedure"), proceed as follows:

 The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The script should respond with;

 The directory hdfeos5 already exists.

 [O]verwrite, [R]e-use or [Q]uit (default) ?

 Type 'R' and hit return. The script will build HDF-EOS5 for the new architecture
using the existing copy of the directory structure. Libraries and executables will be
added to the architecture-specific subdirectories of the HDF-EOS5 'bin' and 'lib'
directories, respectively. Do NOT use the Overwrite option - it will clobber the
previous architecture-specific installation(s).

8. This completes the interactive portion of the HDF-EOS5 installation. When the HDF-
EOS5 section is complete, it outputs the message:

 HDFEOS5 installation ending at: <date/time>

 For information about user setup, as well as instructions for compiling and linking
with HDF-EOS, Refer to the file README in the HDF-EOS5 'doc' directory.

 Toolkit Installation Section

1A. SCF Installation

 5-18 333-EMD-001, Rev. 05

 If the SCF version of the toolkit is being built (the default), the script outputs the
messages:

 Running the Toolkit Installation Script ...

The script prompts with:

 Do you wish to install AA Tool [No]?

If you want AA tool installed, response with ‘y’.

If you do not have the correct version of HDF

The script prompts with:

 No HDF Support…

 If you need install AA Tool, Please install HDF package…

 SDP Toolkit installation cancelled….

If you have the correct version of HDF

The scrip responds with:

 Running the Toolkit Installation Script with AA Tool

If you do not want AA Tool installed, hit return

 The script responds with:

 Running the Toolkit Installation Script without AA Tool

 Toolkit installation script: INSTALL-Toolkit

 Starting at: <date/time>

 The SCF version of the toolkit library libPGSTK.a will be built

1B. DAAC Installation

 If the DAAC version of the toolkit is being built (-daac option), the script outputs the
messages:

Running the Toolkit Installation Script ...

Toolkit installation script: INSTALL-Toolkit

Starting at: <date/time>

The DAAC version of the toolkit library libPGSTK.a will be built.

1C. C++ Installation

 If the C++ version of the Toolkit is being built (-cpp option), the script outputs the
messages The message seen for C++ library being built is

 5-19 333-EMD-001, Rev. 05

The C++ version of the toolkit library libPGSTKcpp.a will be built

If the C++ install was successful, you should see the following messages:

INSTALL-Toolkit completed successfully at <date/time>

SDP Toolkit installation completed at <date/time>

 NOTE: Currently the script is set up so that the C/FORTRAN version of the library
will be built first with the C++ of the library libPGSTKcpp.a, afterwards.

2. The toolkit installation script outputs status messages as it goes, ending with:

 INSTALL-Toolkit completed successfully at <date/time>

 If an error occurred during the installation process, the last message will appear as:

 INSTALL-Toolkit completed with errors at <date/time>

 NOTE: If the installation was run with the -log option, the above messages will
appear only in the log file, not on the screen.

3. Wait for completion messages. If no errors were encountered during either HDF or
toolkit installation, the final script message is:

 SDP Toolkit installation completed at <date/time>

 Otherwise messages of the following form will appear:

 INSTALL: Error: <error message>

 SDP Toolkit installation canceled

4. Review the installation log.

 Every attempt has been made to trap all possible installation errors and report them at
the end of the installation process. Nonetheless, it is a good idea to review the
installation log to verify that it completed without errors. If errors were noted, the log
can help to identify precisely what went wrong. Please note that some warning
messages, (NOT fatal errors), may occur in the course of a normal successful
installation run.

 Note regarding the installation of AA tools:

 Starting with SDPTK5.2.7 the user has opportunity not to install AA tools if they do
not need them. The INSTALL script will prompt for User’s response in installing (or
ignoring) AA tools. The default is “N”.

5.1.2.5 User Account Setup

Once the toolkit has been installed, the accounts of SDP toolkit users must be set up to define
environment variables needed to compile and run code with the toolkit (see parts 2 and 3 of the
Notes section 5.1.2.8, below).The type of setup depends on the user's login shell.

1A. C shell (csh) users:

 5-20 333-EMD-001, Rev. 05

 Edit the SDP Toolkit user's .cshrc file to include ONLY ONE of the following two lines:

 (EITHER:)

 source <SDP-home-dir>/bin/$BRAND/pgs-env.csh

 (OR:)

 source <SDP-home-dir>/bin/$BRAND/pgs-dev-env.csh

 where <SDP-home-dir> is the full path of the toolkit home directory, and $BRAND is an
architecture-specific value for your host. Please refer to part 2 of the Notes section,
below, to determine the correct value.

 The script pgs-env.csh sets up all the variables discussed in part 3 of the Notes section,
below, and it adds the toolkit bin directory to the user path.

 The script pgs-dev-env.csh sets up all of the variables set by pgs-env.csh.cpp and adds
the toolkit bin directory to the user path. In addition, it automatically sets up the compiler
flag variables discussed in part 4 of the Notes section below, to work on any of the
system environments listed in part 1 of the Notes section, below.

 The environment variables will become available during all subsequent login sessions.
To activate them for the current session, simply type one of the two lines listed above, at
the Unix prompt.

 C++ version of the scripts:

 Edit the SDP Toolkit user's .cshrc file to include ONLY ONE of the following two lines:

 (EITHER:)

 source <SDP-home-dir>/bin/$BRAND/pgs-env.csh.cpp

 (OR:)

 source <SDP-home-dir>/bin/$BRAND/pgs-dev-env.csh.cpp

 where <SDP-home-dir> is the full path of the toolkit home directory, and $BRAND is an
architecture-specific value for your host. Please refer to part 2 of the Notes section,
below, to determine the correct value.

 The script pgs-env.csh.cpp sets up all the variables discussed in part 3 of the Notes
section, below, and it adds the toolkit bin directory to the user path.

 The script pgs-dev-env.csh.cpp sets up all of the variables set by pgs-env.csh.cpp and
adds the toolkit bin directory to the user path. In addition, it automatically sets up the
compiler flag variables discussed in part 4 of the Notes section below, to work on any of
the system environments listed in part 1 of the Notes section, below.

 The environment variables will become available during all subsequent login sessions.
To activate them for the current session, simply type one of the two lines listed above, at
the Unix prompt.

 5-21 333-EMD-001, Rev. 05

Note: setting of users PGS_PC_INFO_FILE shell environment variable:

 The scripts pgs-env.csh and pgs-dev-env.csh will by default define the environment
variable PGS_PC_INFO_FILE to have the value $PGSRUN/$BRAND/PCF.relB0 (see
Note 3, below). Individual users should make local copies of this file and then set the
environment variable PGS_PC_INFO_FILE to point to this local copy, which should be
modified to suit the purposes of the user. This can be done by adding the following line
to the users .cshrc file (e.g.):

 setenv PGS_PC_INFO_FILE $HOME/PCF.relB0

 This should be done in the .cshrc file AFTER the file pgs-env.csh (or pgs-dev-env.csh)
has been used to establish the users Toolkit environment.

 Note regarding path setup with pgs-dev-env.csh and pgs-dev-env.csh.cpp:

 The scripts pgs-dev-env.csh and pgs-dev-env.csh.cpp also make available a variable
called pgs_path. This can be added to the user's path to ensure that it accesses the
directories necessary for the compilers and other utilities used to generate executable
programs. It is not added to the user path by default, because in many cases it adds
unnecessary complexity to the user path. To add pgs_path to the user path, modify the
SDP Toolkit user's .cshrc file to include the following:

 set my_path = ($path) # save path
source <SDP-HOME-DIR>/bin/$BRAND/pgs-dev-env.csh # PGS setup
set path = ($my_path $pgs_path) # add pgs_path

 INSTEAD OF either of the two options listed at the beginning of this step. Note that it is
the user's responsibility to set up his or her own path so that it doesn't duplicate the
directories set up in pgs_path. Please also note that the pgs_path is added AFTER the
user's path. This way, the user's directories will be searched first when running Unix
commands.

1B. Korn shell (ksh) users:

 Edit the SDP Toolkit user's .profile file to include ONLY ONE of the following two
lines:

 (EITHER:)

 <SDP-home-dir>/bin/$BRAND/pgs-env.ksh

 (OR:)

 <SDP-home-dir>/bin/$BRAND/pgs-dev-env.ksh

 where <SDP-home-dir> is the full path of the toolkit home directory, and $BRAND is an
architecture-specific value for your host. Please refer to part 2 of the Notes section,
below, to determine the correct value.

 The script pgs-env.ksh sets up all the variables discussed in part 3 of the Notes section,
below, and it adds the toolkit bin directory to the user path.

 5-22 333-EMD-001, Rev. 05

 The script pgs-dev-env.ksh sets up all of the variables set by pgs-env.ksh and adds the
toolkit bin directory to the user path. In addition, it automatically sets up the compiler
flag variables discussed in part 4 of the Notes section below, to work on any of the
system environments listed in part 1 of the Notes section, below.

 The environment variables will become available during all subsequent login sessions.
To activate them for the current session, simply type one of the two lines listed above, at
the Unix prompt.

 Note: setting of users PGS_PC_INFO_FILE shell environment variable:

 The scripts pgs-env.ksh and pgs-dev-env.ksh will by default define the environment
variable PGS_PC_INFO_FILE to have the value $PGSRUN/$BRAND/PCF.relB0 (see
Note 3, below). Individual users should make local copies of this file and then set the
environment variable PGS_PC_INFO_FILE to point to this local copy, which should me
modified to suit the purposes of the user. This can be done by adding the following line
to the users .profile file (e.g.):

 set PGS_PC_INFO_FILE=$HOME/PCF.relB0
export PGS_PC_INFO_FILE

 This should be done in the .profile file AFTER the file pgs-env.ksh (or pgs-dev-env.ksh)
has been used to establish the users Toolkit environment.

 Note regarding path setup with pgs-dev-env.ksh and pgs-dev-env.ksh.cpp:

 The script pgs-dev-env.ksh.cpp and pgs-dev-env.ksh.cpp also make available a variable
called pgs_path. This can be added to the user's path to ensure that it accesses the
directories necessary for the compilers and other utilities used to generate executable
programs. It is not added to the user path by default, because in many cases it adds
unnecessary complexity to the user path. To add pgs_path to the user path, modify the
SDP Toolkit user's .profile file to include the following:

 my_path="$PATH" # save path

 <SDP-HOME-DIR>/bin/$BRAND/pgs-dev-env.ksh # PGS setup

 PATH="$my_path:$pgs_path" ; export PATH # add pgs_path

 INSTEAD OF either of the two options listed at the beginning of this step. Note that it is
the user's responsibility to set up his or her own path so that it doesn't duplicate the
directories set up in pgs_path. Please also note that the pgs_path is added AFTER the
user's path. This way, the user's directories will be searched first when running Unix
commands.

 C++ version of the scripts:

 Edit the SDP Toolkit user's .profile file to include ONLY ONE of the following two
lines:

 (EITHER:)

 5-23 333-EMD-001, Rev. 05

 <SDP-home-dir>/bin/$BRAND/pgs-env.ksh.cpp

 (OR:)

 <SDP-home-dir>/bin/$BRAND/pgs-dev-env.ksh.cpp

 where <SDP-home-dir> is the full path of the toolkit home directory, and $BRAND is an
architecture-specific value for your host. Please refer to part 2 of the Notes section,
below, to determine the correct value.

 The script pgs-env.ksh.cpp sets up all the variables discussed in part 3 of the Notes
section, below, and it adds the toolkit bin directory to the user path.

 The script pgs-dev-env.ksh.cpp sets up all of the variables set by pgs-env.ksh.cpp and
adds the toolkit bin directory to the user path. In addition, it automatically sets up the
compiler flag variables discussed in part 4 of the Notes section below, to work on any of
the system environments listed in part 1 of the Notes section, below.

 The environment variables will become available during all subsequent login sessions.
To activate them for the current session, simply type one of the two lines listed above, at
the Unix prompt.

1C. Bourne shell (sh) users:

 Set up the required toolkit environment variables by appending the contents of the file

 <SDP-home-dir>/bin/$BRAND/pgs-env.ksh

 or the file

 <SDP-home-dir>/bin/$BRAND/pgs-dev-env.ksh

 to the end of the SDP Toolkit user's .profile, where <SDP-home-dir> is the full path of
the toolkit home directory, and $BRAND is an architecture-specific value for your host.
Please refer to part 2 of the Notes section, below, to determine the correct value.

 The environment variables will become available during all subsequent login sessions.
To activate them, log out and then log back in.

 Bourne shell (sh) users:

 Set up the required toolkit environment variables by appending the contents of the file

 <SDP-home-dir>/bin/$BRAND/pgs-env.ksh

 or the file

 <SDP-home-dir>/bin/$BRAND/pgs-dev-env.ksh

 to the end of the SDP Toolkit user's .profile, where <SDP-home-dir> is the full path of
the toolkit home directory, and $BRAND is an architecture-specific value for your host.
Please refer to part 2 of the Notes section, below, to determine the correct value.

 The environment variables will become available during all subsequent login sessions.
To activate them, log out and then log back in.

 5-24 333-EMD-001, Rev. 05

Note: setting of users PGS_PC_INFO_FILE shell environment variable:

 The scripts pgs-env.ksh and pgs-dev-env.ksh will by default define the environment
variable PGS_PC_INFO_FILE to have the value $PGSRUN/$BRAND/PCF.relB0 (see
Note 3, below). Individual users should make local copies of this file and then set the
environment variable PGS_PC_INFO_FILE to point to this local copy, which should be
modified to suit the purposes of the user. This can be done by adding the following line
to the users .profile file (e.g.):

 set PGS_PC_INFO_FILE=$HOME/PCF.relB0
export PGS_PC_INFO_FILE

 This should be done in the .profile file AFTER the file pgs-env.csh (or pgs-dev-env.csh)
has been included.

5.1.2.6 File Cleanup

Once the toolkit has been built and tested, you can delete certain temporary files and directories
to save some disk space. Note that once these files have been removed, you will need to unpack
the original distribution file in order to re-do the installation. To remove these files:

 cd <SDP-home-dir>/bin/$BRAND

 /bin/rm -r tmp # delete temp files used in bin

 cd <SDP-home-dir>/database

 /bin/rm de200.dat # delete ephemeris ASCII file

If you plan to use the Ancillary (AA) data access tools, you must now install the AA tools data
files, located in an additional compressed tar file, which must be downloaded separately. The
installation instructions are located in Section 5.1.4, Installation of AA Tools.

5.1.2.7 Rebuilding the toolkit library

The toolkit installation procedure now makes it easy to rebuild the toolkit library without having
to re-install the entire toolkit. This may be useful in the event that any problems are encountered
during the installation process.

SCF Installation
To rebuild the toolkit library at an SCF site do the following:
Set directory.

 cd <SDP-home-dir>
Type:

 bin/INSTALL-Toolkit <install-options> -lib_only
where <install-options> are the installation options set in step 2 of Starting the Installation
Procedure, above.
SCF Installation

 5-25 333-EMD-001, Rev. 05

To rebuild the C++ version toolkit library at an SCF site do the following:
Set directory.

 cd <SDP-home-dir>
Type:

 bin/INSTALL-Toolkit <install-options> -cpp_lib_only
where <install-options> are the installation options set in step 2 of Starting the Installation
Procedure, above.

5.1.2.8 NOTES:

1. The SDP Toolkit was built and tested* in a multi–platform environment using the
following platforms, operating systems, and compilers:

Table 5-1. SDP Toolkit Development Configuration
Platform OS Version C Compiler C++

Compiler
FORTRAN

DEC Digital UNIX 4.0 DEC C 4.10 DEC FORTRAN 4.10
HP HP–UX 11.0 HP C 11.02.02 HP FORTRAN 11.01.27

IBM AIX 4.2 IBM C 3.1.4 IBM FORTRAN 3.2.5
SGI IRIX 6.5 SGI C 7.4.2m SGI C++ SGI FORTRAN 7.4.2m
Sun Solaris 5.9, 5.10 Sun C 5.3 Sun C++ 5.3 Sun FORTRAN 6.2 (f95)
Linux Red Hat Linux 2.4.21-4 gcc 3.2.3-53 g++ g77 3.2.3-53

Linux 64-bit
(Opteron)

Red Hat Linux 2.4.21-37
ELsmp

gcc 3.2.3-53 g++ g77 3.2.3-53,

pgf90 7.0-4

Linux 64-bit
(Opteron)

Red Hat Linux 2.6.16.20-
SMP

gcc 3.4.6-8

g++ 3.4.6-8 g77 3.4.6-8

Linux 64-bit
(Itanium) ia64

SUSE Linux 2.6.16.46-0.14 gcc 4.1.2 g++ 4.1.2 Intel ifort 10.0

MAC Power PC Darwin 8.10.0 gcc 4.0.1 gfortran 4.3.0, g95 4.0.3
MAC Intel Darwin 8.10.1 gcc 4.0.1 gfortran 4.3.0, g95 4.0.3

* Officially DEC, IBM, HP, Sun5.8, and old 32 mode in SGI are not supported any more and they were not tested for this release

Notes:

a. SGI is also running SGI FORTRAN 90 version 7.0 and NAG FORTRAN-90 2.2.

b. Compilers are provided by platform vendors unless specified.

2. Toolkit architecture type names

 To track architecture dependencies, the toolkit defines the environment variable
$BRAND. Following is a list of valid values for this variable, which is referred to
throughout this document:

 5-26 333-EMD-001, Rev. 05

$BRAND Architecture
dec DEC Alpha
ibm IBM AIX
hp HP 9000, HP-UX11 9000/785
sgi SGI Power Challenge (old-style 32-bit mode)
sgi32 SGI Power Challenge (new-style 32-bit mode)
sgi64 SGI Power Challenge (64-bit mode)
sun5.8, sun5.9,sun5.10 Sun:SunOS 5.8, OS5.9, OS5.10
linux LINUX 32-bit Platforms
linux32 64-bit LINUX Platforms for 32-bit mode
linux64 64-bit LINUX Platforms for 64-bit mode
macintel Macintosh platforms with Intel chip
macintosh Macintosh Power PC (MAC OS X)

3. In order to use the SDP Toolkit libraries and utilities, a number of environment variables
MUST be set up to point to SDP directories and files. These variables are automatically
set up in User Account Setup section of the installation instructions. They are listed here
for reference:

Table 5-2. Required Directory Environment Variables
Name Value Description

PGSHOME <install–path>/TOOLKIT (where <install–
path> is the absolute directory path above
TOOLKIT)

top level directory

PGSBIN ${PGSHOME}/bin/($BRAND) executable files
PGSDAT ${PGSHOME}/database/

($BRAND)
toolkit database files

PGSINC ${PGSHOME}/include include (header) files
PGSMSG ${PGSHOME}/message SMF message files
PGSLIB ${PGSHOME}/lib/($BRAND) library files
PGSOBJ ${PGSHOME}/obj/$BRAND) toolkit object files
PGSCPPO ${PGSHOME}/objcpp/($BRAND) toolkit C++ version object files
PGSRUN ${PGSHOME}/runtime runtime work files
PGSSRC ${PGSHOME}/src toolkit source files
PGSTST ${PGSHOME}/test test area
PGS_PC_INFO_FILE ${PGSRUN}/PCF.relB Process Control File

4. Other toolkit environment variables

 In addition, the makefiles, which are used to build the libraries, require certain
machine–specific environment variables. These set compilers, compilation flags and
libraries, allowing a single set of makefiles to serve on multiple platforms. The User
Account Setup section of the installation instructions explains how to set them up
They are listed here for reference:

 5-27 333-EMD-001, Rev. 05

Table 5-3. Required Compiler and Library Environment Variables
Name Description

CC C compiler
CFLAGS Default C flags (optimize, ANSI)
C_CFH C w/ cfortran.h callable from FORTRAN
CFHFLAGS CFLAGS + C_CFH
CPP C++ compiler
CPPFHFLAGS Default C++ flags
CPPFHFLAGS CPPFLAGS
C_F77_CFH C w/ cfortran.h calling FORTRAN
C_F77_LIB FORTRAN lib called by C main
F77 FORTRAN compiler
F77FLAGS Common FORTRAN flags
F77_CFH FORTRAN callable from C w/ cfortran.h
F77_C_CFH FORTRAN calling C w/ cfortran.h
CFH_F77 Same as F77_C_CFH
F77_C_LIB C lib called by FORTRAN main

5. For a complete list of the tools provided with this release of the SDP Toolkit, please refer
to Section 1, Table 1–2

6. The majority of the SDP Toolkit functions are written in C. These C–based tools include
the file cfortran.h, using it to generate machine–independent FORTRAN bindings.

5.1.3 Compiling User Code with the Toolkit

In order to compile your programs in conjunction with the toolkit, certain flags MUST be set on
the compiler command lines. These flags vary, depending on the platform type and operating
system.

The toolkit includes command files that set up environment variables to simplify the task of
compiling with toolkit code. The user is responsible for ensuring that his or her code complies
with the ANSI standards. The following subset is relevant for this discussion:

 CC the name of the C compiler (usually cc)
CFHFLAGS required C compilation flags (ANSI C mode, optimized)
CPP the name of the C++ compiler (usually CC)
CFHFLAGS required C++ compilation flags
F77 the name of the FORTRAN compiler (usually f77)
F77_CFH required FORTRAN compilation flags
HDFSYS a flag used to tell the code what platform is being used

 PGSINC the location of the toolkit include files
PGSLIB the location of the toolkit library libPGSTK.a
HDFINC HDF4 include files
HDFLIB HDF4 Library files

 5-28 333-EMD-001, Rev. 05

 HDF5INC HDF5 include files
HDF5LIB HDF5 Library files

To automatically set up these variables for your platform do the following:

 for csh users, type:
 source <TOOLKIT-HOME-DIRECTORY>/bin/${BRAND}/pgs-dev-env.csh

 for ksh users, type:
 . <TOOLKIT-HOME-DIRECTORY>/bin/${BRAND}/pgs-dev-env.ksh

 where <TOOLKIT-HOME-DIRECTORY> is the location where the toolkit is installed
(e.g. /usr/local/PGSTK)

 for C++ version, csh users, type:
 source <TOOLKIT-HOME-DIRECTORY>/bin/${BRAND}/pgs-dev-env.csh.cpp

 for C++ version, ksh users, type:
 . <TOOLKIT-HOME-DIRECTORY>/bin/${BRAND}/pgs-dev-env.ksh.cpp

 where <TOOLKIT-HOME-DIRECTORY> is the location where the toolkit is installed
(e.g. /usr/local/PGSTK)

 You may then view the settings of these variables with the command:

 $PGSBIN/pgs-flags

 NOTE: On some platforms, some of these variables are blank. This is normal—the
compile lines given below should work anyway.

You may then view the settings of these variables with the command for the C++ version:

 $PGSBIN/pgs-flags-cpp

 NOTE: On some platforms, some of these variables are blank. This is normal—the
compile lines given below should work anyway.

Once the variables have been set as indicated above, the following command lines may be used
as a guide to compiling your programs with the toolkit.

C to object:
 $CC -c $CFHFLAGS -D$HDFSYS -I$PGSINC myfile.c

C++ to object:
 $CPP -c $CPPFHFLAGS -D$HDFSYS -I$PGSINC myfile.c

C to executable:
 $CC $CFHFLAGS -D$HDFSYS -I$PGSINC -L$PGSLIB \
 myfile.c -lPGSTK (-l...) -o myfile

C++ to executable:
 $CPP $CPPFHFLAGS -D$HDFSYS -I$PGSINC -L$PGSLIB \
 myfile.c -lPGSTK (-l...) -o myfile

 5-29 333-EMD-001, Rev. 05

FORTRAN to object:
 $F77 -c $F77_CFH myfile.f

 FORTRAN to executable:
 $F77 -c $F77_CFH myfile.f $PGSLIB/libPGSTK.a (other libraries ...) \
 -o myfile

If the toolkit was built with HDF support included, and your code uses tools that require HDF
support, you may use the lines listed below:

C to object:

 $CC -c $CFHFLAGS -D$HDFSYS -I$PGSINC -I$HDFINC –I$HDF5INC myfile.c

C++ to object:
 $CPP -c $CPPFHFLAGS -D$HDFSYS -I$PGSINC -I$HDFINC –I$HDF5INC \

 myfile.c

C to executable:
 $CC $CFHFLAGS -D$HDFSYS -I$PGSINC -I$HDFINC –I$HDF5INC

-L$PGSLIB -L$HDFLIB –L$HDF5LIB \
 myfile.c -lPGSTK -ldf –lhdf5 (-l ...) -o myfile

 C++ to executable:
 $CPP $CPPFHFLAGS -D$HDFSYS -I$PGSINC -I$HDFINC –IHDF5INC

-L$PGSLIB -L$HDFLIB –L$HDF5LIB \
 myfile.c -lPGSTK -ldf -lhdf5 (-l ...) -o myfile

FORTRAN to object:
 $F77 -c $F77_CFH myfile.f

FORTRAN to executable:
 $F77 -c $F77_CFH myfile.f $PGSLIB/libPGSTK.a $HDFLIB/libdf.a
$HDF5LIB/libhdf5.a \
 (other libraries ...) -o myfile

The important thing in this case is that your code gets linked with the HDF4 and HDF5 libraries.
You do not need -I$HDFINC or –I$HDF5INC unless your C or C++ code makes direct calls to
HDF4 and/or HDF5.

5.1.4 Installation of AA Tools

This section covers installation of the data files needed to use the Ancillary/auxiliary (AA) data
access tools. These files include the Digital Chart of the World and other earth sciences data sets.
If you do not plan to use these tools or data sets, it is not necessary to install the files.

These files will require approximately 260 Mb of disk space. They may be installed in any
location; i.e., they do not have to be stored under the SDP Toolkit home directory.

 5-30 333-EMD-001, Rev. 05

The tool PGS_AA_dcw MUST have access to the files contained in the four directories named
/soamafr, /sasaus, /noamer, /eurnasia in order to work. These files comprise about 80 Mbytes.
The other tools (PGS_AA_2/3DRead PGS_AA_2/3Dgeo, PGS_AA_dem) are designed to work
with a large range of gridded data sets. Those in the tar file are samples of data from National
Geophysical Data Center (NGDC) which need not be maintained by the user; i.e., the user
should delete which ever are not pertinent. These files comprise about 180 Mbytes.

The installation script for the AA tools data files is included as part of the main SDP Toolkit
distribution. Due to space constraints, the data files themselves are located in a separate
compressed tar file, called SDPTK5.1v1.00-AAdata.tar.Z, which must be downloaded
separately.

You must first install the SDP Toolkit BEFORE installing the AA tools data files. The AA tools
data files installation requires a disk partition with about 400 Mb of free space.

To install the AA tools data files from the tar file:

a. Run the INSTALL-AAdata script

1. If you have already modified your login files, as in the toolkit installation
instructions, simply type:

 INSTALL-AAdata

 from any directory.

2. If you haven't yet done this, then proceed by typing the following:

 cd <SDP-home-dir>
bin/INSTALL-AAdata

 where <SDP-home-dir> is the full path of the toolkit home directory.

b. The script contains a default name for the distribution file containing the AA tools data
files. That name should be correct for the current release of the toolkit. The script will
display the default distribution file name and prompt the user for an override. If the name
is correct, press return to continue. If installing from a different distribution file for any
reason, please enter the name and press return.

c. By default, the script looks for the tar file in your current directory and also in <SDP-
home-dir>. If the file is found in one of the default locations, the script will continue to
the next step. Otherwise, please enter the correct location when the script prompts for it.

d. The script then asks where the AAdata directory will be created. The default is <SDP-
home-dir>. If you want it installed elsewhere, please enter the pathname when the script
prompts for the location. Otherwise, simply hit return to continue.

e. The script asks you to verify the information entered. Type 'y' and hit return to continue.
The contents of the distribution file are then extracted into the specified location. Please
note that this is a lengthy process that will probably take somewhere between 0.5 and 1.5
hours, depending on your host.

 5-31 333-EMD-001, Rev. 05

f. The script then asks if the Process Control files, should be patched so that the PRODUCT
INPUT FILES directory is set to point to the AA data directory. The default is yes. If you
answer no, you must you must edit the Process Control File yourself, in order for the AA
tools to work.

g. The script then asks if the distribution file should be removed. The default is no. Once
you are satisfied that the files have successfully been installed, you will probably want to
get rid of this file, as it takes up a lot of disk space.

 If you wish to get a listing of the files contained in the distribution file, for verification
purposes, follow the steps below. Please be aware that this is no small task, as there are
literally thousands of data files contained in the distribution file. To see the listing, go to
the directory where the distribution file is located and type.

 zcat SDPTK5.1v1.00-AAdata.tar.Z | tar xvf -

 You may wish to pipe the output to the UNIX 'more' command, to allow you to see a
screen at a time.

 zcat SDPTK5.1v1.00-AAdata.tar.Z | tar xvf - | more

This completes the installation of the AA tools data files.

5.2 Instructions on Making Changes to Installation Procedures
The installation procedures given in the previous subsection should work seamlessly for a
platform in Table 5–1. This subsection gives instructions on making changes to the installation
procedure of subsection 5.1, which may be necessary if one uses a different configuration. Here
we give a step–by–step procedure for making these modifications.

In the following procedure, <SDP-home-dir> refers to the SDP Toolkit home directory.

a. After unpacking the tar file, but before running bin/INSTALL, (steps a–e in Section 5.1,
corresponding to steps 1–7 in <SDP-home-dir>/README), edit the file INSTALL in
<SDP-home-dir>/bin.

 The section starting with the comment at line #266 and ending at line 442 must be
modified for your platform. This section consists of a switch block that checks the value
of the environment variable BRAND and sets the flags for each platform accordingly.
Modify ONLY the block associated with your platform.

 The proper block can be determined from the following table:

 5-32 333-EMD-001, Rev. 05

Table 5-4. Values of OSTYPE
value of $BRAND Platform type

sun5.X Sun Sparc (SunOS 5.X)
hp HP 9000
dec DEC Alpha
sgi SGI Indigo
sgi32 SGI new 32-bit
sgi64 SGI 64-bit
ibm IBM RS–6000
cray Cray
linux, linux32, linux64 Linux
macintel MAC with Intel chip (MAC OS X)
macintosh MAC Power PC (MAC OS X)

Within each block the following variables are set:

Table 5-5. Environment Variables
Name Description

CC C compiler
CFLAGS Default C flags (optimize, ANSI)
C_CFH C w/ cfortran.h callable from FORTRAN
CFHFLAGS CFLAGS + C_CFH
CPP C++ compiler
CPPFLAGS Default C++ flags
CPPFHFLAGS CPPFLAGS + CPP_CFH
C_F77_CFH C w/ cfortran.h calling FORTRAN
C_F77_LIB FORTRAN lib called by C main
F77 FORTRAN compiler
F77FLAGS Common FORTRAN flags
F77_CFH FORTRAN callable from C w/ cfortran.h
F77_C_CFH FORTRAN calling C w/ cfortran.h
CFH_F77 Same as F77_C_CFH
F77_C_LIB C lib called by FORTRAN main
HDFSYS System type as defined by HDF

 Modify the code to set these variables to the appropriate values for your compilers.
Variables CFHFLAGS, CFH_F77, and HDFSYS should never require modifications. The
most important ones are:

CC the C compiler

 5-33 333-EMD-001, Rev. 05

CPP the C++ compiler

F77 the FORTRAN compiler

CFLAGS MUST set the C compiler for ANSI C code

CPPFLAGS MUST set the C++ compiler for ANSI C++

F77_CFH needed when compiling FORTRAN to object code callable from C using
cfortran.h

F77_C_CFH needed when compiling FORTRAN drivers that call C subroutines with
FORTRAN bindings written in C using cfortran.h

 These flags MUST be properly set in order to build the SDP toolkit.

b. edit the file pgs-dev-env.csh.tmp in <SDP-home-dir>/bin/tmp

 The section starting with comment at line #124 and ending at line #445 is identical to the
previously mentioned section in the file bin/INSTALL, and must be modified in the
same way.

c. continue with the SDP Toolkit installation by running bin/INSTALL (step f in Section
5.1, corresponding to step 6 in <SDP-home-dir>/README).

5.3 Link Instructions
This subsection gives instructions on how to link SDP Toolkit libraries with your code.

The delivery consists of a single SDP Toolkit library called libPGSTK.a.

Here we give generic command lines for linking with this library We use $C_COMPILER,
$CPP_COMPILER, and $F77_COMPILER to indicate both the compiler name and any
machine–specific compiler flags used by the science software developer. The relevant
environment variables must have been previously set up; see the "Installation Procedures"
subsection of this section.

To link C code in file "main.c" with the toolkit, on all machines:

 $C_COMPILER -I$PGSINC -L$PGSLIB main.c -lPGSTK -lm

To link C++ code in file "main.c" with the toolkit, on all machines:

 $CPP_COMPILER -I$PGSINC -L$PGSLIB main.c -lPGSTK -lm

To link FORTRAN 77 code in file "main.f" with the toolkit, on all machines:

 $F77_COMPILER main.f $PGSLIB/libPGSTK.a

 5-34 333-EMD-001, Rev. 05

NOTES:

Specific examples on how to link particular Toolkit functions on the Toolkit development
platforms are given with the separately supplied tool test drivers. See the "Test Drivers" in
Section 5.4.

If you are using a different development configuration than one of those given in table 5–1
("SDP Toolkit Development Configuration") of Section 5.1, see Section 5.2 ("Instructions on
Making Changes to Installation Procedures") above.

To ensure compatibility of code at the DAACs, science teams are strongly encouraged to use the
same compiler switches used by the SDP Toolkit where possible. These switches enforce
ANSI/POSIX standards, necessary for compiling the toolkit with the same functionality on all
tested platforms; using the same switches in your code makes it more likely that your code will
quickly pass integration and test at the DAAC. The compilers and their respective switches are
represented by the environment variables $CC, $CFLAGS, $CPP, $CPP_FLAGS, $F77,
$F77FLAGS, and are defined in the file $PGSHOME/bin/pgs_dev_env.csh and
$PGSHOME/bin/pgs_dev_env.csh.cpp respectively. $CC, $CPP, and $F77 contain the names
of the C and FORTRAN compilers respectively. $CFLAGS, CPPFLAGS, and $F77 flags
contain the compiler switches (options) used by the SDP Toolkit with the C and FORTRAN
compilers respectively.

5.4 Test Drivers
Also included with this toolkit delivery is a tar file containing test driver programs.

These test programs are provided to aid the user in the development of software using the toolkit.
The user may run the same test cases as included in this file to verify that the toolkit is
functioning correctly. These programs were written to support the internal test of the toolkit and
are not an official part of the Toolkit delivery; users make use of them at their own risk. No
support will be provided to the user of these programs. The tar file contains source code for a
driver in C and FORTRAN for each tool; readme files explaining how to use each driver; sample
output files; and input files and/or shell scripts, where applicable.

The UNIX command

 zcat SDPTK5.2.15v1.00_TestDrivers.tar.Z | tar xvf -

will create a directory called test_drivers beneath the current directory containing all these test
files.

5.5 User Feedback Mechanism
The mechanism for handling user feedback, documentation and software discrepancies, and bug
reports follows:

 5-35 333-EMD-001, Rev. 05

a. An account at the ECS Riverdale facility has been set up for user response:

 landover_PGSTLKIT@raytheon.com

b. Users will e–mail problem reports and comments to the above account. A receipt will be
returned to the sender. A workoff plan for the discrepancy will be developed and status
report issued once a month. Responses will be prioritized based on the severity of the
problem and the available resources. Simple bug fixes will be turned around sooner,
while requested functional enhancements to the Toolkit will be placed in a recommended
requirements database (RRDB) and handled more formally.

c. The following format will be used for email response. It can be found in the tar file in the
SDP Release 7 Toolkit 5.2.15 delivery package.

 Name:

 Date:

 EOS Affiliation (DAAC, Instrument, Earth Science Data and Information System
(ESDIS), etc.):

 Phone No.:

 Development Environment:

 Computing Platform:

 Operating System:

 Compiler and Compiler Flags:

 Tool Name:

 Problem Description:

 (Please include exact inputs to and outputs from the toolkit call, including error code
returned by the function, plus exact error message returned where applicable.)

 Suggested Resolution (include code fixes or workarounds if applicable):

d. A list of Frequently Asked Questions (FAQ) for Toolkits is also available.

 The URL for the SDP Toolkit Frequently Asked Questions (FAQ) page is
http://newsroom.gsfc.nasa.gov/sdptoolkit/faq.html

 You can also get there from the EDHS Home Page http://edhs1.gsfc.nasa.gov/. Click
on “ECS Development”, then “Toolkit”. The "Toolkit Frequently Asked Questions
(FAQ)" link is on the SDP Toolkit webpage.

 5-36 333-EMD-001, Rev. 05

	Preface
	 Abstract
	Contents
	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Purpose and Objectives
	1.4 Status and Schedule
	1.5 Document Organization

	2. Related Documentation
	2.1 Parent Documents
	2.2 Applicable Documents
	2.3 Information Documents

	3. Toolkit Design Goals
	3.1 Foundations
	3.2 Nomenclature
	3.3 Consistency
	 3.4 Hierarchical Design
	3.5 Units
	3.6 Ranges and Limits of Validity; unit vectors
	3.7 Aging and Maturation Effects

	4. Toolkit Usage, Functionality, and Future Direction
	4.1 Introduction
	4.2 SCF Development Environment
	4.2.1 Introduction
	4.2.2 File Management
	4.2.3 Runtime Configuration
	4.2.4 PGE Script Development
	4.2.5 Scheduling and Execution of PGEs
	4.2.6 Error/Status Message Creation and Use
	4.2.7 Error/Status Log Monitoring
	4.2.8 Parallel Processing Issues
	4.2.9 Configuration Management
	4.2.10 Distributed Computing Environment (DCE) Issues

	4.3 Test and Simulation Data Access
	4.4 Language Bindings and Advanced FORTRAN Considerations
	4.5 Thread-Safe Issues

	5. Toolkit Installation and Maintenance
	5.1 Installation Procedures
	5.1.1 Release 7 SDP Toolkit Release Notes
	5.1.1.1 Multiple Architecture Support
	5.1.1.2 DAAC Toolkit Support
	5.1.1.3 Support for the IRIX 6.5 Operating System
	5.1.1.4 HDF Integration
	5.1.1.5 HDF-EOS Integration

	5.1.2 To Install the SDP Toolkit from a Disk–Based Tar File
	5.1.2.1 Preliminary
	5.1.2.2 Unpacking the Distribution File
	5.1.2.3 Starting the Installation Procedure
	5.1.2.4 Run the Toolkit Installation Script
	5.1.2.5 User Account Setup
	5.1.2.6 File Cleanup
	5.1.2.7 Rebuilding the toolkit library
	5.1.2.8 NOTES:

	5.1.3 Compiling User Code with the Toolkit
	5.1.4 Installation of AA Tools

	5.2 Instructions on Making Changes to Installation Procedures
	5.3 Link Instructions
	5.4 Test Drivers
	5.5 User Feedback Mechanism

