
305-EMD-220

EOSDIS Maintenance and Development Project

Release 7.22 Segment/Design
Specifications

for the EMD Project

March 2009

Raytheon Information Solutions
Riverdale, Maryland

This page intentionally left blank.

 305-EMD-220

This page intentionally left blank.

 305-EMD-220

Preface

This document is a formal contract deliverable. It requires Government review and approval
within 45 business days. Changes to this document will be made by document change notice
(DCN) or by complete revision.

Any questions or proposed changes can be addressed to:

Data Management Office
The EMD Project Office
Raytheon Information Solutions
5700 Rivertech Court
Riverdale, MD 20737

Revision History

Document Number Status/Issue Publication Date CCR Number

305-EMD-220 Original March 2009 09-0090

 iii 305-EMD-220

This page intentionally left blank.

 iv 305-EMD-220

Abstract

The Release 7.22 Segment/Design Specification is an overview description of the EMD Project.
The functionality of the ECS software is described at the Subsystem, Computer Software
Configuration Item (CSCI), Computer Software Component (CSC), and Process levels.
Architecture and context diagrams illustrate the process interconnections within the ECS CSCIs
and the external connections to other CSCIs, subsystems, and specified segment interfaces.
Interface event description tables describe the data, messages, notifications, or status information
that occurs at each level of functionality within the ECS. A basic description of the Commercial
Off The Shelf (COTS) software and hardware used in ECS is included.

The high-level design in this document is the level of information derived from requirement
sources, and used by the development team to complete the ECS design implementation for a
software system at a 7.22 state of maturity.

Keywords: Release 7.22, Overview, SDPS, CSMS, Design, Detailed Design, Subsystem,
Architecture, Software, Hardware, Object Oriented, Security, Gateway, Reports, User Interface
and GUI.

 v 305-EMD-220

This page intentionally left blank.

 vi 305-EMD-220

Contents

1. Introduction

1.1 Purpose and Scope ... 1-1

1.2 Document Organization ... 1-1

2. Related Documentation

2.1 Parent Documents .. 2-1

2.2 Applicable Documents... 2-1

2.2.1 Other Related Documents and Documentation.. 2-1

2.3 ECS Tool Descriptions .. 2-2

2.3.1 Rational Rose ... 2-2
2.3.2 ClearCase Baseline Manager Configuration Management Tool 2-3

3. System Description

3.1 Mission and Release 7.22 Objectives .. 3-1

3.1.1 Release 7.22 Capabilities ... 3-1

3.2 Release 7.22 Architecture Overview ... 3-10

3.2.1 Release 7.22 Context Description.. 3-14
3.2.2 Release 7.22 Architecture .. 3-16

4. Subsystem Description

4.1 Data Server Subsystem Overview ... 4-15

4.1.1 Science Data Server Software Description (REMOVED) 4-21
4.1.2 Archive Inventory Management Software Description 4-21
4.1.3 DSS Error Handling and Processing.. 4-49
4.1.4 DSS Data Stores... 4-50

4.2 DPL Ingest Subsystem Overview .. 4-52

 vii 305-EMD-220

4.2.1 DPL Ingest Computer Software Configuration Item Description 4-54

4.3 Client Subsystem Overview... 4-66

4.3.1 SSI&T Tools Description .. 4-66

4.4 Data Management Subsystem Overview... 4-67

4.4.1 ECHO WSDL Order Component Software Description 4-70
4.4.2 Data Management Subsystem Hardware ... 4-76

4.5 Order Manager Subsystem Overview.. 4-78

4.5.1 Order Manager Subsystem Software Description ... 4-81

4.6 Communications Subsystem Overview ... 4-95

4.6.1 The Distributed Computing Configuration Item Software Description 4-98
4.6.2 The Distributed Computing Configuration Item Context................................ 4-125
4.6.3 Distributed Computing Configuration Item Architecture................................ 4-127
4.6.4 Distributed Computing Configuration Item Process Descriptions 4-127
4.6.5 Distributed Computing Configuration Item Process Interface Descriptions ... 4-127
4.6.6 Distributed Computing Configuration Item Data Stores 4-127
4.6.7 Communications Subsystem Hardware CI Description 4-127

4.7 Internetworking Subsystem (ISS) Overview ... 4-128

4.7.1 Internetworking Subsystem Description.. 4-129
4.7.2 Network COTS Hardware.. 4-131

4.8 EMD General Process Failure Recovery Concepts ... 4-133

4.8.1 Client-Server Rebinding .. 4-133
4.8.2 Sybase Reconnecting ... 4-134
4.8.3 Request Identification .. 4-135
4.8.4 Senior Clients... 4-135
4.8.5 Request Responsibility .. 4-136
4.8.6 Queues.. 4-137
4.8.7 Request Responses... 4-137
4.8.8 Duplicate Request Detection ... 4-141
4.8.9 Server Crash and Restart.. 4-142
4.8.10 Client Crash and Restart .. 4-144

4.9 Spatial Subscription Server (SSS) Subsystem Overview .. 4-147

4.9.1 Spatial Subscription Server Architecture... 4-148

4.10 Data Pool Subsystem Overview... 4-155

 viii 305-EMD-220

4.10.1 Data Pool Subsystem Context.. 4-157
4.10.2 Data Pool Hardware Context ... 4-160
4.10.3 Data Pool Insert CSCI Functional Overview... 4-161
4.10.4 WebAccess CSCI Functional Overview.. 4-169
4.10.5 Data Stores ... 4-181

4.11 Bulk Metadata Generation Tool Subsystem Overview ... 4-182

4.11.1 BMGT Subsystem Context .. 4-182
4.11.2 BMGT/ECHO Interface... 4-185
4.11.3 ECS Events and BMGT products .. 4-185
4.11.4 BMGT Architecture ... 4-187
4.11.5 Use of COTS in the BMGT Subsystem... 4-191
4.11.6 BMGT Subsystem Software Description... 4-192

4.12 Migration Utilities Overview... 4-217

4.12.1 Migration Computer Software Configuration Item Description...................... 4-219

List of Figures

Figure 3.2-1. Example Hierarchical Software Diagram ... 3-13

Figure 3.2-2. Release 7.22 Context Diagram.. 3-15

Figure 3.2-3. Subsystem Architecture Diagram ... 3-17

Figure 4.1-1. Data Server Subsystem Context Diagram... 4-16

Figure 4.1-2. AIM CSCI Context Diagram (DPLIngest) ... 4-25

Figure 4.1-3. AIM Interfaces with DAAC Operators (ESDT Maintenance GUI and QA
Update utility).. 4-30

Figure 4.1-4. AIM Interfaces with DAAC Operators (XML Replacement Utility) 4-36

Figure 4.1-5. AIM Interfaces with DAAC Operators (Granule Deletion Utilities).................. 4-38

Figure 4.1-6. AIM Interfaces with DAAC Operators (Archive Check Utilities) 4-41

Figure 4.1-7. AIM Interfaces with BMGT ... 4-45

Figure 4.1-8. AIM Context Diagram (OMS and DPL)... 4-47

Figure 4.2-1. DPL Ingest Subsystem Context Diagram ... 4-52

Figure 4.2-2. DPL Ingest CSCI Context Diagram.. 4-55

Figure 4.2-3. DPL Ingest CSCI Architecture Diagram .. 4-58

 ix 305-EMD-220

Figure 4.4-1. Data Management Subsystem Context Diagram .. 4-68

Figure 4.4-2. ECHO WSDL Order Component CSCI Context Diagram 4-71

Figure 4.4-3. ECHO WSDL Order Component CSCI Architecture Diagram.......................... 4-73

Figure 4.5-1. Order Manager Subsystem Context Diagram ... 4-79

Figure 4.5-2. Order Manager Server CSCI Context Diagram .. 4-82

Figure 4.5-3. Order Manager Server CSCI Architecture Diagram... 4-84

Figure 4.5-4. Production Module CSCI Context Diagram ... 4-90

Figure 4.5-5. Production Module CSCI Architecture Diagram.. 4-92

Figure 4.6-1. Communications Subsystem (CSS) Context Diagram.. 4-95

Figure 4.6-2. Configuration Registry Server Context Diagram.. 4-102

Figure 4.6-3. Configuration Registry Server Architecture Diagram 4-103

Figure 4.6-4. CCS Middleware Context Diagram .. 4-108

Figure 4.6-5. CCS Middleware Architecture Diagram... 4-109

Figure 4.6-6. Virtual Terminal Context Diagram... 4-112

Figure 4.6-7. Virtual Terminal Architecture Diagram.. 4-113

Figure 4.6-8. Cryptographic Management Interface Context Diagram.................................. 4-115

Figure 4.6-9. Cryptographic Management Interface Architecture Diagram 4-116

Figure 4.6-10. Domains Hierarchy Diagram .. 4-118

Figure 4.6-11. DNS Domains of the EMD Project Diagram.. 4-118

Figure 4.6-12. ECS Topology Domains Diagram .. 4-119

Figure 4.6-13. Domain Name Server Context Diagram ... 4-119

Figure 4.6-14. Distributed Computing Configuration Item (DCCI) CSCI
Context Diagram.. 4-125

Figure 4.7-1. DAAC Networks: Generic Architecture Diagram.. 4-129

Figure 4.9-1. Spatial Subscription Server Context Diagram .. 4-147

Figure 4.9-2. Spatial Subscription Server Architecture Diagram... 4-149

Figure 4.10-1. Data Pool Subsystem Context Diagram.. 4-158

Figure 4.10-2. Data Pool Hardware Context .. 4-161

Figure 4.10-3. Data Pool Insert CSCI Architecture Diagram – Registration 4-162

 x 305-EMD-220

Figure 4.10-4. Data Pool Insert CSCI Architecture Diagram – Publication........................... 4-162

Figure 4.10-5. WebAccess CSCI Architecture Diagram.. 4-170

Figure 4.11-1. BMGT Subsystem High Level Context Diagram ... 4-183

Figure 4.11-2. BMGT Architecture Diagram .. 4-188

Figure 4.11-3. Automatic Preprocessor Database Sequence .. 4-195

Figure 4.11-4. Manual Export Process Database Sequence ... 4-197

Figure 4.12-1. Migration Utilities Context Diagram .. 4-217

Figure 4.12.1-1. Initialization Utility Context Diagram ... 4-220

Figure 4.12.1-2. Population Utility Context Diagram .. 4-221

Figure 4.12.1-3. Staging Utility Context Diagram ... 4-222

Figure 4.12.1-4. Checksum Utility Context Diagram... 4-223

Figure 4.12.1-5. Insert Utility Context Diagram .. 4-223

Figure 4.12.1-6. Mailer Utility Context Diagram... 4-224

Figure 4.12.1-7. Monitor Utility Context Diagram .. 4-225

List of Tables

Table 4-1. Memory Management Table .. 4-6

Table 4.1-1. Data Server Subsystem Interface Events.. 4-18

Table 4.1-2. AIM Software Components.. 4-22

Table 4.1-3. AIM Interfaces with DPLIngest ... 4-26

Table 4.1-4. AIM Interfaces with DAAC Operators (ESDT GUI, QA Update) 4-31

Table 4.1-5. AIM Interfaces with DAAC Operators (XML Replacement Utility) 4-36

Table 4.1-6. AIM Interfaces with DAAC Operators (Granule Deletion)................................. 4-39

Table 4.1-7. AIM Interfaces with DAAC Operators (Archive Check Utilities)....................... 4-42

Table 4.1-8. AIM Interfaces with BMGT... 4-45

Table 4.1-9. AIM Interfaces with OMS and DPL .. 4-47

Table 4.1-10. AIM CSCI Data Stores... 4-50

Table 4.2-1. DPL Ingest Subsystem Interface Events .. 4-53

 xi 305-EMD-220

Table 4.2-2. DPL Ingest CSCI Interface Events... 4-56

Table 4.2-3. DPL Ingest CSCI Processes ... 4-59

Table 4.2-4. DPL Ingest CSCI Process Interface Events ... 4-60

Table 4.2-5. DPL Ingest CSCI Data Stores .. 4-65

Table 4.3-1. Client Subsystem Interface Events... 4-66

Table 4.3-2. SSI&T Tool Events .. 4-66

Table 4.4-1. Data Management Subsystem Interface Events ... 4-69

Table 4.4-2. ECHO WSDL Order Component CSCI Interface Events 4-72

Table 4.4-3. EWOC CSCI Processes.. 4-74

Table 4.4-4. EWOC CSCI Process Interface Events .. 4-74

Table 4.4-5. ECHO WSDL Order Component CSCI Data Stores ... 4-76

Table 4.5-1. Order Manager Subsystem Interface Events .. 4-79

Table 4.5-2. Order Manager Server CSCI Interface Events ... 4-82

Table 4.5-3. OMSRV CSCI Process... 4-85

Table 4.5-4. Order Manager Server CSCI Process Interface Events.. 4-85

Table 4.5-5. CSCI Data Stores.. 4-89

Table 4.5-6. Production Module CSCI Interface Events .. 4-90

Table 4.5-7. Production Module CSCI Process.. 4-93

Table 4.5-8. Production Module CSCI Interface Events .. 4-94

Table 4.6-1. Communications Subsystem (CSS) Interface Events... 4-96

Table 4.6-2. Configuration Registry Server Interface Events .. 4-102

Table 4.6-3. Configuration Registry Server Processes ... 4-104

Table 4.6-4. Configuration Registry Server Process Interface Events 4-105

Table 4.6-5. Configuration Registry Server Data Stores .. 4-107

Table 4.6-6. CCS Middleware Interface Events ... 4-109

Table 4.6-7. CCS Middleware Processes.. 4-110

Table 4.6-8. CCS Middleware Process Interface Events.. 4-110

Table 4.6-9. CCS Middleware Data Stores... 4-111

 xii 305-EMD-220

Table 4.6-10. Virtual Terminal Interface Events .. 4-112

Table 4.6-11. Virtual Terminal Processes .. 4-113

Table 4.6-12. Virtual Terminal Process Interface Events... 4-114

Table 4.6-13. Cryptographic Management Interface Events .. 4-115

Table 4.6-14. Cryptographic Management Interface Processes ... 4-116

Table 4.6-15. Cryptographic Management Interface Process Interface Events 4-117

Table 4.6-16. Cryptographic Management Interface Data Stores .. 4-117

Table 4.6-17. Domain Name Server Process .. 4-120

Table 4.6-18. Domain Name Server Process Interface Events... 4-120

Table 4.6-19. Domain Name Server Data Stores.. 4-121

Table 4.6-20. Infrastructure Libraries... 4-121

Table 4.6-21. Infrastructure Libraries Group Interfaces... 4-123

Table 4.6-22. Distributed Computing Configuration Item (DCCI) CSCI Interface Events ... 4-126

Table 4.6-23. CSMS CSCI to CSS CSC Mappings.. 4-127

Table 4.7-1. Internetworking Subsystem Baseline Documentation List 4-131

Table 4.7-2. Networking Hardware for EMD Networks .. 4-131

Table 4.8-1. Request Responses ... 4-139

Table 4.8-2. Fault Handling Policies .. 4-140

Table 4.8-3. Server Response versus Restart Temperature .. 4-143

Table 4.8-4. Server Response for Request Re-submission... 4-144

Table 4.8-5. Server Responses to Client Failures ... 4-145

Table 4.8-6. Client Restart Notification Exceptions... 4-145

Table 4.8-7. Server Responses to Client Notification .. 4-146

Table 4.9-1. Subscription Server Interface Events ... 4-148

Table 4.9-2. Spatial Subscription Server Processes.. 4-150

Table 4.9-3. Spatial Subscription Server Process Interface Events.. 4-151

Table 4.9-4. Spatial Subscription Server Data Stores... 4-153

Table 4.10-1. Data Pool Subsystem Interface Events... 4-158

 xiii 305-EMD-220

Table 4.10-2. Use Cases for Data Pool Insert... 4-163

Table 4.10-3. Data Pool Insert CSCI Process Description ... 4-164

Table 4.10-4. Data Pool ECS Insert CSCI Process Interface Events 4-165

Table 4.10-5. WebAccess CSCI Process Description .. 4-171

Table 4.10-6. WebAccess CSCI Process Interface Events ... 4-172

Table 4.10-7. Data Pool Data Stores... 4-181

Table 4.11-1. BMGT Subsystem High Level Interface Events .. 4-184

Table 4.11-2. BMGT Metadata Product File Types ... 4-185

Table 4.11-3. BMGT/ECHO Interface Control File Types .. 4-185

Table 4.11-4. ECS Event to BMGT Product Mapping... 4-186

Table 4.11-5. BMGT Processes .. 4-189

Table 4.11-6. Data Store ... 4-204

Table 4.12-1. Migration Utilities Interface Events ... 4-218

Table 4.12.1-1. Initialization Utility CSCI Interface Events .. 4-220

Table 4.12.1-2. Population Utility CSCI Interface Events ... 4-221

Table 4.12.1-3. Staging Utility CSCI Interface Events .. 4-222

Table 4.12.1-4. Checksum Utility CSCI Interface Events.. 4-223

Table 4.12.1-5. Insert Utility CSCI Interface Events ... 4-224

Table 4.12.1-6. Mailer Utility CSCI Interface Events.. 4-225

Table 4.12.1-7. Mailer Utility CSCI Interface Events.. 4-225

Table 4.12.1-8. Migration CSCI Data Stores.. 4-225

Abbreviations and Acronyms

 xiv 305-EMD-220

1. Introduction

1.1 Purpose and Scope
The purpose of the Segment/Design Specification for the Earth Observing System (EOS) Data
and Information System (EOSDIS) Maintenance and Development (EMD) is to provide an
overview of the hardware and software subsystems of the project. This document describes the
high-level design of each ECS software subsystem implemented to satisfy the allocated and
derived functional and performance requirements. This document also provides basic
descriptions of the Commercial Off The Shelf (COTS) hardware and software used in the ECS.
This document contains:

• Functional overviews of each Computer Software Configuration Item (CSCI)
• Context diagrams of each CSCI
• Interface event descriptions based on the context diagrams

• Process architecture diagrams

• Interface event description tables based on the process architecture diagrams

• CSCI data stores (databases as they relate to the process architecture diagrams)

• CSCI functions allocated to processes. For data servers, this includes descriptions of the
functionality offered to clients via the server interfaces. For Graphical User Interface
(GUI) applications, it describes the functionality provided to the GUI users

• Specific limitations of the capabilities provided

• Abbreviations and Acronyms

1.2 Document Organization
The remainder of this document is organized as follows:

• Section 2: Related Documentation

• Section 3: System Description

• Section 4: Subsystem Description

• Section 5: Limitations of Current Implementation

• Abbreviations and Acronyms

 1-1 305-EMD-220

This page intentionally left blank.

 1-2 305-EMD-220

2. Related Documentation

2.1 Parent Documents
The parent documents are the documents from which the scope and content of this Design
Specification are derived. These documents are listed below.

423-46-01 EMD F&PRS

423-46-03 EMD Task 201 Statement of Work

2.2 Applicable Documents
Refer to the 900 Series documentation found on the EMD Baseline Information System (EBIS)
website: http://cmdm.hitc.com/baseline/.

2.2.1 Other Related Documents and Documentation

311-EMD-220 Release 7.22 Ingest Subsystem Database Design and Schema
Specifications for the EMD Project

311-EMD-224 Release 7.22 Order Manager Subsystem Database Design and Schema
Specifications for the EMD Project

311-EMD-225 Release 7.22 Spatial Subscription Server Subsystem Database Design
and Schema Specifications for the EMD Project

311-EMD-226 Release 7.22 DataPool Subsystem Database Design and Schema
Specifications for the EMD Project

311-EMD-227 Release 7.22 Archive Inventory Management (AIM) Database Design
and Schema Specifications for the EMD Project

611-EMD-220 Release 7.22 Mission Operations Procedures for the EMD Project,

625-EMD-221 Release 7.22 Training Material Volume 1: Course Outlines

625-EMD-222 Release 7.22 Training Material Volume 2: Problem Management

625-EMD-223 Release 7.22 Training Material Volume 3: Ingest

625-EMD-224 Release 7.22 Training Material Volume 4: Data Distribution

625-EMD-225 Release 7.22 Training Material Volume 5: Archive Processing

423-42-06 Interface Control Definition for the EOS Data Gateway (EDG):
Messages and Development Data Dictionary V0 and ASTER/ECS
Message Passing Protocol Specification

 2-1 305-EMD-220

http://cmdm.hitc.com/baseline/

RFC 793 Transmission Control Protocol

RFC 768 User Datagram Protocol

RFC 791 Internet Protocol

RFC 1597 Address Allocation for Private Internet

 WWW page is http://cmdm.east.hitc.com

423-41-57-6 ICD between ECS and SIPS, Volume 6 MODIS (MODAPS

423-41-57-7 ICD between ECS and SIPS, Volume 7 AMSR-E

423-41-57-9 ICD between ECS and SIPS, Volume 9 MTMGW

423-41-57-10 ICD between ECS and SIPS, Volume 10, TES Data Flows

423-41-57-11 ICD between ECS and SIPS, Volume 11, ICESat Data Flows

423-41-58 ICD between the ECS and LP DAAC

423-ICD-EDOS/EGS ICD between EDOS and EGS

2.3 ECS Tool Descriptions

2.3.1 Rational Rose

The Rational Rose tool provides support for object-oriented analysis and design. In particular,
the Rose tool provides support for controlled-iterative or component-based development. The
Rose tool is used on the EMD Project to document the object-oriented elements of the design
using class diagrams, use-case diagrams, interaction diagrams, component diagrams, and object
diagrams. The Unified Modeling Language (UML) is the methodology used on the EMD Project
for all design activities (although the Rose tool also supports the Booch ’93 Methodology or the
Object Modeling Technique (OMT) as well).

The Rose tool can also be used to reverse engineer code developed that lacks supporting
documentation to get as-built object diagrams.

Before using the Rational Rose tool, see “Rational Rose 98, Using Rose” for important tool
usage and reference information. In addition, the following references can be obtained and used:

(1) “Unified Method for Object-Oriented Development,” by Grady Booch and Jim Rumbaugh
(version 1.1, Rational Software Corporation) for an introduction to the respective method’s
notation, semantics, and process for object-oriented analysis and design.

(2) the second edition of “Object-Oriented Analysis and Design with Applications” by Grady
Booch, (Benjamin/Cummings, 1994)

(3) “Object-Oriented Modeling and Design” by James Rumbaugh, Michael Blaha, William
Premerlani, Frederick Eddy and William Lorensen, (Prentice-Hall, 1991)

 2-2 305-EMD-220

http://cmdm.east.hitc.com/

(4) “UML Distilled: Applying the Standard Object Modeling Language” by Martin Fowler with
Kendall Scott, Foreword by Grady Booch, Ivar Jacobson, and James Rumbaugh (Addison
Wesley Longman, Inc., 1997)

2.3.2 ClearCase Baseline Manager Configuration Management Tool

ClearCase Baseline Manager (CBLM) consists of the ECS baseline data and a Graphical User
Interface (GUI) used to control the ECS baseline.

The data comes from two sources:

1) Existing Release Notes (914-TDA-xxx) Machines Impacted data

2) Newly approved CCRs

Control Item Identifiers (CIDs) consist of an 8-digit integer with a “b” prefix (e.g., b00083456).
Each COTS S/W product has its own CID. Because CIDs are mapped to ECS hosts, it was
decided to represent information within ClearCase as elements. For the ClearCase CID
elements, the comma separated variable (CSV) format was chosen, as this format is easily ported
into and from other COTS S/W products, specifically Microsoft Access and Excel.

The ClearCase configuration specification chosen was the simplest, or the default configuration
specification. A view, CM_MASTER, was created with the default configuration specification
to manage the data records. The CID records (checked in ClearCase elements) are located in the
/ecs/cm VOB at /ecs/cm/CIDs. This directory currently contains the 256 records that correlate to
XRP-II’s COTS S/W CIDs.

Another important data construct within CBLM is the notion of the Machines Impacted file, and
a CCR identified construct, which maps CIDs to hosts. Each Configuration Change Request
(CCR) affecting the baseline contains information about 1 or more CIDs. Also, the CCR
contains information regarding the hosts receiving the COTS S/W (CID). So the CCR has a
construct that in its simplest form is one “CID_MAP” file, and one Machines Impacted (MI) file.
The “CID_MAP” file is a simple lookup table. In this case, there is only one entry. The entry
contains first a valid CID, followed by one or more blanks, then the name of the “MI” file. In
this case, the MI filename is “MI.” The MI file, contains a list of valid ECS hosts having the
COTS S/W identified within the CID. So a CCR (07-1234) to place a COTS S/W (e.g., Acrobat
Reader), onto host e4eil01, would have an MI file containing one host, e4eil01, and one
CID_MAP. If the Acrobat Reader software is CID b00081234, the CID_MAP file would
contain:

 “b00081234 MI”

And the MI file contains:

 “e4eil01”

The CCR would be found at:

 /ecs/cm/CM/2007CCRs/1234/, a directory

 2-3 305-EMD-220

Under this directory is found the two files, “CID_MAP” and “MI.” Note that there is always
only one CID_MAP file for each CCR, but that the CID_MAP may contain more than one entry.
The simplest example of this is when a COTS S/W product needs to be mapped to SGI, Sun, and
Linux hosts. There would be three MI files, “MI_SGIs”, “MI_Suns”, and “MI_Linux” for
example. The CID_MAP would contain three entries, one mapping the SGI hosts to the SGI
CID, one mapping the Sun hosts to the Sun CID, and one mapping the Linux hosts to the Linux
CID.

As approved CCRs are required to change the CBLM data state, the effectivity date is then
defined as the CCR approval date. This is the date the change becomes valid. The next
construct, named the “Sequencer”, is the table providing the history of change. The last
approved CCR is at the end of the table. As new CCRs get approved, they simply get
concatenated to the end of the list in time order. The Sequencer is an executable script.

The last construct is the “dartboard.” Conceptually, the “dartboard” is a directory within
ClearCase, at /ecs/cm/BLM/dartboard/. All ECS hosts are listed as files in the /dartboard/
directory. In conclusion, then data constructs are:

 CIDs

 CCR directories

 CID_MAPs and MIs under the CCR directories

 Sequencer

 Dartboard

 The way these pieces all work together is now briefly discussed.

When a CCR is approved that affects the baseline, a CCR is checked out. The /ecs/cm/CIDs/
ClearCase directory is checked out. The new CID is created and populated with the information
present on the CCR form. The new CID number then has a ClearCase element created, and the
first version becomes this new CID. The /ecs/cm/CIDs/ directory is then checked back in. Next,
the MI file must be prepared. Within the CCR directory, two new files are “made” (cleartool
mkelem –eltype text_file –nc CID_MAP MI). The hosts, which are to get the COTS S/W, are
entered into the MI file, then the file is checked in as the first version. Next, the CID_MAP file
is created, mapping the new CID number to the MI file. The CID_MAP file is checked in, then
the CCR file is checked back in. This work gets the CCR information locked into ClearCase.

Next, the Sequencer file is edited to show the new CCR number at the end. This action allows
the CCR’s MI and CID_MAP files to overlay onto the ClearCase baseline. This is accomplished
by echoing the contents of the CID (in file /ecs/cm/CIDs/b00083123) onto each of the hosts
specified with the /ecs/cm/CM/2007CCRs/1234/MI file. This data is written to the hosts files
with the dartboard, located at /ecs/cm/BLM/dartboard.

Once the data has been applied to the dartboard, subsequent scripts then produce the output
reports. In conjunction with the current hosts list, the scripts obtain all of the valid hosts of the
site, and basically reformat the data within the dartboard files into reports. Information is added

 2-4 305-EMD-220

to the reports, including the CCR number, related Release Notes documentation, and the CCR
approval date.

The reports are written to the /ecs/cm/BLM/reports directory. Subsequent “expect” scripts then
scp those reports to specific locations on the EBIS server, c4cbl02, and then the reports are
replicated to each of the 5 remote sites (SMC and 4 DAACs).

The languages used in this tool are “sh”, “csh”, “expect”, and C. Also, “.grp” files are used to
represent the ClearCase GUIs. These files are text files that are dynamically generated at the
time that the GUI is launched. Code has been reused from two sources, the DeliveryTool, which
is used to prepare and send data to the sites, and the replication scripts, which are used to
replicate data from the Landover EBIS server c4cbl03, to the protected (SMC, DAACs) servers.

 2-5 305-EMD-220

This page intentionally left blank.

 2-6 305-EMD-220

3. System Description

3.1 Mission and Release 7.22 Objectives
The Mission of the National Aeronautics and Space Administration’s Earth Science Enterprise is
to develop a scientific understanding of the total Earth System and its response to natural or
human-induced changes to the global environment to enable improved prediction capability for
climate, weather and natural hazards. The vantage point of space provides information about
Earth’s land, atmosphere, ice, oceans and biota that is obtained in no other way. Programs of the
enterprise study the interactions among these components to advance the new discipline of Earth
System Science, with a near-term emphasis on global climate change. The research results
contribute to the development of sound environmental policy and economic investment
decisions.

The Earth Observing System Data and Information System (EOSDIS) Core System (ECS) has
been designated as the ground system to collect, archive, produce higher-level data products and
distribute data for the Earth System Science mission.

3.1.1 Release 7.22 Capabilities
The ECS capabilities have been developed in increments called formal releases. Release 7.22,
which is managed by Configuration Management, is a formal release. It is a collection of new
and updated capabilities provided to the users of the system and is described here to show the
progress of system enhancements. The ECS collects and stores, processes, archives and
distributes scientific data from six different platforms (satellites). In the following sub-sections,
the platforms and instruments from which scientific data is collected are identified, the type of
data ingested and archived is presented, search and order capabilities for scientific data, how
data is distributed and processed, system architecture and operation, system security and
Distributed Active Archive Center (DAAC) and external system support are described. Other
capabilities provided by Release 7.22 include processing the data obtained, distributing raw or
processed data as requested, quality assurance of processed data, supporting communication
networks, and systems monitoring via interfaces with the ECS operations staff.

The main objective of Release 7.22 is to provide tools for the DAACs to build their On-line
Archive, migrate data from 9940 tapes to new LTO tapes, detect and repair data integrity issues
with data files. These tools monitor migration, notify operators when migration errors occur,
retry migration in case of errors, perform inventory validation, restore data from tape archive to
on-line archive, restore data from on-line archive to tape archive, publish and un-publish data to
datapool.

Enhancements were made to the end-to-end checksumming capability as part of Release 7.22 to
further improve the integrity of ECS data holdings. Enhancements include:

1) end-to-end checksumming capability for browse and ancillary granule files (PH, QA, DAP);

 3-1 305-EMD-220

2) checksum verification on all data distribution modes ftp-push, scp, or hard media (DVD, CD
and DLT).

3) capability to proactively check the integrity of ECS data holdings

Enhancements were made to the BMGT to react to error messages returned from ECHO, and
query the current state of the ECS inventory to automatically fix, or ignore errors when it can,
and only alert the operator when necessary. The intent is to reduce the number of errors which
DAAC staff must attend to.

Performance improvements were made to datapool webaccess application as part of this release.

Note: it is expected that additional disk capacity to complement existing Data Pool and LTO
Libraries delivered to DAACs have be installed prior to release 7.22 installation.

Release 7.22 unique capabilities and modifications include:

• AIM Data Migration Utilities - in parallel to the 7.22 operational system, the utilities will
migrate data on legacy 9940 media to new LTO media and will insert data ingested prior
to 7.22 install into the Online Archive. The utilities include a Migration Stat Viewer Tool
that provides Operations with a command-line interface to view statistical information
about migration like granule state count, file state count, media state count, error state
count, amount of data processed in a given time interval, and the data rate in a given time
interval.

• To support the operation of the On-Line Archive, the following existing components
have been modified:

– Data Pool Action Driver (DPAD) - to prevent granules from being removed from
the Data Pool the DPAD was modified not to submit cleanup actions to the DPL
Ingest component. DPAD was enhanced to perform registrations only, perform an
additional check to make sure that the media on which the file resides is
physically located in the archive, to check to make sure that the granule is not
logically deleted, or DFA’d and ignore retention priorities and periods.

– NDPIU Enchancements – failure to publish because of a lack of band information
will not cause the granule to be removed from the Data Pool; and Granule
replacement will unpublish, rather than undelete the replaced granule.

– Batch Insert Utility Enhancements - A ‘-collection’ option was added to the Batch
Insert tool, to allow specification of all granules belonging to that collection; A ‘-
actionsource’ option was added to the Batch Insert tool, to allow specification of
publication or registration only for specified granules.

– Order Manager (OMS) Enhancements – 1) modified so that it does not submit
hidden granule cleanup requests to DPL Ingest; 2) The Online-Archive capability
allowed for significant simplification of OMS processing due to the fact that once
granules are staged from the Archive to the DataPool they will remain in the
DataPool. This rendered the water mark configuration parameters obsolete. The

 3-2 305-EMD-220

purpose of the watermark configuration was to limit the amount of data staged in
the .orderdata hidden directory. With the 7.22 Online-Archive the data staged in
the DataPool hidden directory will stay there until it is removed from the Archive.
3) In addition, the bottleneck incurred by staging files from tape will be reduced
over time due to the migration of data from the archive into the DataPool. Files
will no longer need to be read from tape, as they will already be in the DataPool.
With this in mind the 7.22 release of OMS was modified to use only two
configuration parameter to throttle the staging of granules. All configuration
parameters based on cost categories (NoCost, Cheap, Moderate, Expensive) have
been be removed. The parameter "Max Number of Granules Staging" was added
to limit the number of staging requests OMS sends to DPAD. The second
parameter "Max Concurrent Requests Processed" that is needed already exists in
previous release.

– Data Pool Cleanup Enchancements - updated so that it does not delete granules
from the Data Pool when logical deletions occur in the AIM database. It will
instead delete them only when a physical deletion or DFA occurs.

– Data Pool Ingest Enchancements - changed so that it does not create a cleanup
action for hidden granule inserts.

• The release includes the following new components to support the operation of the On-
Line Archive:

– DPL Unpublish Utility - the unpublish utility is a new tool that is designed to
move granules from the public data pool into the hidden data pool. It will 1)
unpublish the specified science granules. 2) remove associated browse granule if
permitted and 3) can be used to unpublish granules which are marked for deletion
in the AIM database (deleteEffectiveDate is set, or DFA flag is set to “Y” or
“H”).

– DPL Publish Utility - it publishes granules that already exist in the Data Pool, but
it can also be used to insert granules into the Data Pool from AIM. Note that the
Publish Utility does not perform the insert and/or publication actions directly,
instead, it submits requests to the Data Pool Action Driver to perform the work on
its behalf.

– RestoreOlaFromTape utility – it will repair individual granules or files that are
lost or damaged in the on-line archive provided that the inventory entries of the
corresponding granules are completely intact.

– The RestoreTapeFromOla utility – it will repair individual files that are lost or
corrupted on tape based on the primary file instance that is present in the on-line
archive. The files being restored must be inventoried both in the AIM and DPL
databases because the utility does not create new AIM or DPL database entries.

• The following utilities replace existing Datapool Cleanup Utility
(EcDlCleanupDataPool.pl)

 3-3 305-EMD-220

– DataPool Cleanup Granules Utility (EcDlCleanupGranules.pl) provides a
mechanism by which the ECS Operations Staff can remove granules from the
DataPool. It will remove the files and database entries associated with the
specified granules from the DataPool. The utility has the ability to find all
granules that were removed from the archive and delete them from the DataPool.
The utility can be used to remove expired non-ECS granules from the DataPool.
All deletions of ECS granules will be exported to ECHO, and the utility has the
ability to export deletions to ECHO before the DAAC removes the granules. If
the utility is not able to remove the granule because it is on order or the file
system for the granule is unavailable or there is a lock on the granule, deletion
will be postponed until the next run.

– DPL cleanup orphan/phantom validation utility (EcDlCleanupFilesOnDisk.pl)
provides a mechanism for the ECS Operator to perform validation of the Data
Pool disk holdings. It can also be used to remove files from the DataPool
directory structure that do not have an associated entry in the Data Pool Database
(orphans). In addition it will create output files specifying any granules in the
Data Pool Database whose files are missing from the Data Pool disk (phantoms).

– Link Checker Utility (EcDlLinkCheck.ksh) – tool used for finding or deleting
‘broken’ symbolic links, i.e., links that point to files that do not exist. The Data
Pool contains three varieties of links. The public ESDT directories contain links
that point to browse files associated with science granules. The hidden ESDT
directories contain links for ordered granules that point to public science files.
The FTP pull directory that is used by OMS contains links to files/links in the
hidden ESDT directories.

• The following existing components have been modified to support extended
checksumming capability:

– Data Pool Ingest Enchancements - added browse and ancillary files
checksumming capability. Checksum values are stored in the DataPool database
during DPIU registration and in AIM database during IIU insertion.

– Order Manager (OMS) Enchancements – modified the behavior to ensure the
checksum of the file in the DataPool has been verified with a configured number
of days. This behavior is applied to all data distribution modes including ftp-pull
(existing), ftp-push, scp, or hard media (DVD, CD and DLT).

– DataPool Action Driver (DPAD) Enchancements – modified the behavior to
update the 'last verified' time when it verified a checksum.

• The following two new components have been added to support extended checksumming
capability:

– DataPool Checksum Verification Utility (DPCV) – it provides a mechanism by
which the Operations can perform checksum verification for files in the Data
Pool. It can be scheduled and run as a background process to proactively verify

 3-4 305-EMD-220

the integrity of files in the Data Pool. The utility could also be run on-demand by
the DAAC operator to verify checksum values for a particular set of files.

– Archive Checksum Validation Utility (ACVU) – it provides a mechanism by
which the Operations can perform checksum verification of files in the AIM
archive. The utility allows the operator to specify which files to verify, by
sampling files based on media ID (a single media ID or a list of media IDs),
volume group (a single volume group or a list of volume groups), or granule ID (a
single granule ID, a list of granule IDs, or an input file containing granule IDs).
The operator may also restrict verification to files which have not had their
checksum verified within an operator-specified time period.

• BMGT Enhancements (phase II) – to reduce operator burden, the subsystem was
modified to handle Ingest Summary reports more intelligently. Modifications primarily
effected Monitor and Manual processes. Monitor process was changed to take actions in
response to errors received from ECHO per configured set of policies. Where necessary
Monitor queues a granule for ReExport to remedy an error without operator intervention.
Monitor will also determine if an error is spurious and can safely be ignored. Manual
export process was enhanced to provide the ability to initiate a corrective export
containing any granules which are in the ReExport Queue. New Error Tuning and
ReExport Queue Listing pages were other minor changes to the BMGT GUI. The
Package Details of the BMGT GUI was enhanced to include a link to a formatted view of
the Ingest Summary Report (if one exists).

• XML Check Utility – the utility provides a mechanism by which the Operations can
periodically check for corruption in the XML Archive.

3.1.1.1 ECS Support of Instruments by Platform

• The Meteor 3 platform supports the Stratospheric Aerosols and Gas Experiment III (SAGE
III) instrument

• The ACRIMSAT platform supports the ACRIM III experiment

• The Terra (AM-1) platform supports the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), Multi-Angle Imaging SpectroRadiometer (MISR),
Moderate Resolution Imaging SpectroRadiometer (MODIS) and Measurements of Pollution
in the Troposphere (MOPITT) instruments

• The Aqua (PM-1) platform supports the Moderate Resolution Imaging SpectroRadiometer
(MODIS) and Advanced Microwave Scanning Radiometer (AMSR) instruments

• The Ice, Cloud and Land Elevation satellite (ICESat) platform supports the Geoscience Laser
Altimeter System (GLAS) instrument

• The AURA platform supports the Tropospheric Emission Spectrometer (TES) instrument

 3-5 305-EMD-220

3.1.1.2 Ingest and Archive Capabilities

The following data is ingested and archived in the ECS from the various instruments described
in Section 3.1.1.1:

• Ingest of science and engineering data from the EOS Data and Operations System (EDOS)

• Ingest of Product Generation Executable (PGE) software from Science Computing Facilities
(SCFs) either electronically or via media tape

• Ingest of ASTER Level 1A/1B data

• Ingest of FDS (formerly FDD) orbit data

• Ingest of SAGE III MOC Level 0 data

• Ingest of SAGE III SCF higher-level products via the SIPS interface

• Ingest of Data Assimilation System (DAS) HDF-EOS data via standard polling with DR

• Ingest of MODIS higher-level products via the SIPS Interface

• Ingest of MOPITT SCF Level 0 data via the SIPS interface

• Ingest of SDPS resident data across a mode in the same DAAC or across DAACs

• Ingest of ACRIM Level 0 and higher-level data from the ACRIM SCF via the SIPS interface

• Ingest of higher-level AMSR data products from the AMSR SCF

• Archive of ICESat GLAS Level 1, Level 2 and Level 3 and ancillary data at the NSIDC
DAAC

• Archive of TES Level 1, Level 2 and Level 3 data

• Archive of products previously processed and archived

3.1.1.3 Search and Order Capabilities

The ECS provides the following capabilities for search and ordering of data from the archive:

• Handling of orders from ECHO via EWOC

• CLS provides an user interface to query Order Status

• Handling of variations on search areas and product-specific spatial representations via WIST
and Datapool Webaccess

• The SSS provides an operator the interface to place standing orders (subscriptions) based on
an ECS event and manage subscription status

• The Data Pool provides an operator the interface to manage insert processes, queues,
collection groups and collection themes for ECS and non-ECS collections

 3-6 305-EMD-220

3.1.1.4 Data Distribution Capabilities

The ECS provides the following Data Distribution capabilities for users:

• Support distributing science data products via FTP Push or Pull, SCP Push, CD-ROM, DVD,
and DLT. (Note: physical media may not be available through all ordering applications.)

3.1.1.5 Data Processing Capabilities

The ECS provides the following capabilities for user/operator data processing options:

• Support the archive of products previously produced and archived

• Provide capability for operator deletion of granules

• Support Quality Assurance (QA) processing of Terra (AM-1) science data products

• Automated support for on-demand requests for ASTER processing

• Provide capability to associate the ASTER browse granule for the L1A product with ASTER
L1B products

3.1.1.6 System Operation and Architecture

The ECS provides the following capabilities to support the system operations and processing
architecture used to provide data and services for users:

• Provide capability for operator deletion of granules, their associated metadata and browse
files

• Provide the associated communications network interfaces with the SCFs

• Support managing the startup and shutdown of system network components, database and
archive administration, system data and file back-up and restores, system performance tuning
and resource usage monitoring, and other routine operator duties

• Operations support to update certain ESDT attributes without requiring the deletion of the
data collection

• Provide ESDTs to support MODIS, and AMSR on Aqua (PM-1)

• Provide the capability for editing of ECS core attribute values

• Support the consolidation of trouble tickets using TestTrack Pro

• Provide fault recovery for mode management

• Provide the capability for startup and shutdown of an entire mode

• Provide the capability for the deletion of science data from the archive

• Provide the capability for the installation of ESDTs to insert and acquire archived data

• Provide for the storage of event information into the AIM database

 3-7 305-EMD-220

• Provide the capability for the monitoring of the usage of memory

• Provide COTS packages to allow operations to generate customized reports from ECS
databases

• Provide a single configuration registry database to replace the numerous ECS application
configuration files

• Provide for the insertion of ECS and non-ECS granules into the Data Pool

• Export ECS metadata and browse data to ECHO via BMGT

• Provide migration tools to migrate data to On-line Archive and LTO Tapes

• Provide delete, publish, restore, validation, consistency and integrity checking tools

3.1.1.7 Security

The ECS provides the following capabilities for system security:

• Encryption of passwords in ECS databases

• SDP Toolkit support for thread safe concurrent processing by the science software

• Secure Transfer of data files from Data Providers upon request

• System data and file backups and restores

3.1.1.8 DAAC/External System Support

ECS Release 7.22 will be distributed to three site locations including:

1. The DAAC at the Langley Research Center (LaRC),

2. The Land Processing DAAC (LP DAAC), and

3. The DAAC at the National Snow and Ice Center (NSIDC)

The ECS Release 7.22 communications network includes the National Aeronautics and Space
Administration (NASA) and the NASA Integrated Services Network (NISN). These portions of
the network are physically located at the DAAC sites. The communications network connects
ECS to data providers at the EDOS, NOAA Affiliated Data Center (ADC), and the EOSDIS
Version 0 system.

The data users for Release 7.22 are the science user community connected to the ECHO,
Datapool Webaccess, the three DAACs, the SCFs, and the MODAPS.

1. LaRC Support:

• ECS Release 7.22 provides a communications network and data/information
management support for MISR instrument data including the receipt of MISR
level 0 data and the LaRC archive and distribution of levels 1, 2 and 3 data and
data products

 3-8 305-EMD-220

• ECS Release 7.22 provides a communications network and data/information
management support for MOPITT instrument data including the receipt of
MOPITT level 0 data, the LaRC archive, and distribution of levels 1, 2 and 3 data

• ECS Release 7.22 provides a communications network and data/information
management support for TES instrument data including the receipt of TES level 0
data and the LaRC archive, and distribution of levels 1, 2 and 3 data

• LaRC DAAC capabilities include:

• Ingest of MISR, TES, and MOPITT Level 0 and related ancillary data

• Archival, and distribution of the higher-level products for MISR

• Receipt of higher-level MOPITT products from the MOPITT SCF, via the
SIPS interface, for archival and distribution

• Receipt of SAGE III products from the SCF, via the SIPS interface, for
archival and distribution

• Receipt of ACRIM products (Level 0 and Level 2 data) from the SCF, via
the SIPS interface, for archival and distribution

• Receipt of TES Levels 1-3 data including algorithm and associated
software packages, metadata, production histories, ancillary data and
Quality Assessment (QA) data for archival and distribution

2. LP DAAC Support:

• ECS Release 7.22 provides a communications network and data/information
management support for ASTER instrument data including the receipt of ASTER
level 1A data electronically at LP DAAC from Japan, and distribution of higher
level ASTER products by LP DAAC

• LP DAAC capabilities include:

• Ingest of ASTER Level 1A/1B, with ancillary data needed for production

• Archival and distribution of ASTER products

• Receipt of higher level MODIS land products from MODAPS, via the
SIPS interface, for archival and distribution

3. NSIDC Support:

• AMSR-E instrument data including the receipt of level 0 data from EDOS at
ECS, and the NSIDC archive and distribution of levels 1, 2 and 3 data. The Level
1A data is received from the NSIDC V0 DAAC while the level 2 and 3 data is
received from the AMSR-E SCF via the SIPS interface

• AMSR-ADEOS II Level 1A data is received from the NSIDC DAAC and
archived and distributed using ECS.

 3-9 305-EMD-220

• ECS Release 7.22 supports the ingest of ICESat GLAS level 1, level 2, level 3
and ancillary input data for archive and distribution at the NSIDC DAAC using
the standard SIPS interface. The ECS also archives GLAS level 0 data received
from EDOS

• NSIDC DAAC capabilities include:

• Receipt of higher-level MODIS snow and ice products from MODAPS, via
the SIPS interface, for archival and distribution

• Ingest of AMSR-E Level 0 data and related ancillary data

• Receipt of the AMSR-E and AMSR-ADEOS II higher-level products via
the SIPS interface, for archival and distribution

• Ingest of GLAS Level 0 data and related ancillary data for archival and
distribution.

• Receipt of the GLAS higher level products from the SCF, via the SIPS
interface, for archival and distribution

4. SCF Support:

• The MOPITT higher-level products are generated at the SCF and provided to the
ECS via the SIPS interface

• ECS Release 7.22 supports receiving SAGE III Level 0 data and higher level
products from the SCF via the SIPS interface

• ECS Release 7.22 supports receiving ACRIM L0 data and higher level products
from the SCF via the SIPS interface

5. MODAPS Support

• ECS Release 7.22 provides a communications network and data/information
management support for MODIS instrument data including: archive and
distribution of higher level data from the MODIS Data Processing System
(MODAPS)

3.2 Release 7.22 Architecture Overview
The ECS Release 7.22 architecture comprises the logical items listed here. Commercial Off The
Shelf (COTS) software and hardware are used, to the extent possible, to implement the ECS
functionality of these logical items.

• System

• Segments

• Subsystems

• Computer software configuration items (CSCIs)

 3-10 305-EMD-220

• Computer software components (CSCs)

• Processes

ECS Release 7.22 was built of the following two segments.

CSMS – Communications and Systems Management Segment •

•

•

SDPS – Science Data Processing Segment

Each segment was in turn built of the following subsystems:

CSMS: CSS – Communications Subsystem

ISS – Internetworking Subsystem

• SDPS: BMGT – Bulk Metadata Generation Tool Subsystem

CLS – Client Subsystem

DMS – Data Management Subsystem

DPL – Data Pool Subsystem

DPL INGEST – Data Pool Ingest Subsystem

 DSS – Data Server Subsystem

 OMS – Order Management Subsystem

 SSS – Spatial Subscription Server Subsystem

Hierarchical Definitions

System: A stand-alone composite of hardware, facilities, material, software, services, and
personnel required for operation based upon a defined set of system level
requirements and designed as a related set of capabilities and procedures.

Segment: A logical and functional subset of related capabilities, implemented with COTS
hardware and COTS and custom developed software to satisfy a defined subset of
the system level requirements.

Subsystem: A logical subset of Segment related capabilities, implemented with COTS
hardware and COTS and custom developed software to satisfy a defined subset of
segment level requirements.

CSCI: A logical subset of Subsystem related capabilities, implemented with COTS and
custom developed software to satisfy a defined subset of the subsystem level
software requirements.

CSC: A logical subset of CSCI related capabilities, implemented with COTS and
custom developed software to satisfy a defined subset of the CSCI level software
requirements.

 3-11 305-EMD-220

Process: A logical and functional set of software, written in a specific order and in a
defined manageable size to manipulate data as part of a product-generating
algorithm. A process is a separately compiled executable (i.e., binary image). A
process can use infrastructure library calls, system service calls, COTS service
calls, and application programming interfaces to manipulate data to generate
products.

Figure 3.2-1 is a hierarchical software diagram. The hierarchical software diagram depicts an
example of the decomposition levels used in the ECS design and described in this document. The
diagram is also a graphical representation of the terms just described.

 3-12 305-EMD-220

ECS

SDPS CSMS

 CSS Software ISS Software

MCI MLCI

Subsystem Level

CSCI Level

Segment Level

System Level

Trouble Ticket
Accountability
Management

Process
ID 3214

CSC Level

Process Level
Process
ID 0768 •

 •
 •

•
 •

 •

Figure 3.2-1. Example Hierarchical Software Diagram

 3-13 305-EMD-220

3.2.1 Release 7.22 Context Description

ECS Release 7.22 provides the capability to collect and process satellite science data as depicted
in Figure 3.2-2.

The Science Data Processing and Communications and Systems Management are the two
segments of Release 7.22 described in this document. The Science Data Processing Segment
(SDPS) provides science data ingest, search and access functions, data archive, and system
management capabilities. The SDPS receives Terra (AM-1) and Aqua (PM-1) Level 0 science
data from EDOS. The SDPS exchanges data with affiliated data centers to obtain science and
other data (i.e., engineering and ancillary) required for data production. Science algorithms,
provided by the Science Computing Facilities (SCFs), are archived for distribution. The
Communications and Systems Management Segment (CSMS) provides the communications
infrastructure for the ECS and systems management for all of the ECS hardware and software
components. The CSMS provides the interconnection between users and service providers within
the ECS, transfer of information between subsystems, CSCIs, CSCs, and processes of the ECS.

 3-14 305-EMD-220

AMSR-E L1A data
AMSR-ADEOS II
L1A data

Higher-level products,
ancillary data, product
history, DAP, QA data

GLAS L0 data

GLAS higher-
level products

AMSR-ADEOS II
AMSR-E data
products

ACRIM L0 data &
higher-level products

L0 data

L0, ancillary
data

Tape input
 ASTER GDS

Data Acquisition
Request

Information
Access

Data
Archiving

ECS

Science Data
Processing
Segment

 SAGE III SCF

SAGE III
L0 data

SAGE III
Higher-level
products

 MODAPS SCF

MODIS higher-
level products

 MOPITT SCF

MOPITT L0
data

MOPITT
Higher-
level products

 ACRIM SCF

 AMSR-E SCF

 GLAS SCF

E
D
O
S
 /
E
M
S
n

Data Distribution

 TES SCF

 NSIDC V0

AMSR-E L0 data

WIST / ECHO

Figure 3.2-2. Release 7.22 Context Diagram

 3-15 305-EMD-220

 3-16 305-EMD-220

The remaining sections of this document provide an overview of Release 7.22 design and as such
do not deal specifically with the configuration of components at each EOSDIS site. For more
information on the site unique configurations, refer to the 920-series of General documents. Each
of the segments consists of subsystems as specified in Section 3.2.

3.2.2 Release 7.22 Architecture

3.2.2.1 Subsystem Architecture

The ECS SDPS subsystems are depicted in Figure 3.2-3. A subsystem consists of the
Commercial Off The Shelf (COTS) and/or ECS developed software and the COTS hardware
needed for its execution. The SDPS subsystems can be grouped into a ‘Push’ or ‘Pull’ category
of functionality with the exception of DSS. As shown in the subsystem architecture diagram, the
information search and data retrieval makes up the ‘Pull’ side of the ECS architecture/design and
consists of the CLS, DMS, OMS, SSS, DPL and also uses the DSS functionality described on the
‘Push’ side of the ECS architecture. Data capture (ingest of data), storage management, planning
and data processing of satellite or previously archived data from other sites make up the ‘Push’
side of the ECS architecture/design and consists of the DSS, DPL, DPL INGEST, and OMS.
This document describes the software and hardware components of each subsystem. However,
since the hardware configurations differ between the sites, the hardware descriptions in this
document are at a generic level. Specific hardware and network configurations for each site are
documented in the 920 and 921 series technical documents.

305-EMD-220

 3-17

ECHO

ECHO Orders

CLS (Check
Order Status)

Communications (CSS)

PULL

Data Management

EMOS

Order Manager
(OMS)

BMGT (Export
Metadata &

Browse)

PUSH

Data Pool
Ingest (DPL

INGST)
External
Data Sources
and
Providers

Online Archive/

Data Pool (DPL)

Insert and
Retrieve

Tape Archive

(LTO)

DSS

Science
Software
and Data

SSS

Figure 3.2-3. Subsystem Architecture Diagram

The ECS SDPS architecture/design consists of:

• BMGT exporting inventory status information to ECHO.

• CLS providing a user interface to check order status.

• DMS providing support for data retrieval across all ECS sites.

• DPL supporting the search, order, and distribution of selected granules with associated
metadata and browse granules (if available).

• DPL INGEST service will handle the SIPS ingest interface, S4P, cross-DAAC ingest,
EDOS ingest, ASTER Ingest and Polling without Delivery Record specifically for
EMOS.

• DSS with the functions needed to manage the inventory of archived data.

• OMS managing all orders received from the DMS EWOC (i.e., from WIST and ECHO),
the Machine-to-Machine Gateway, and the Spatial Subscription Server.

• SSS supporting the creation, viewing and updating of subscriptions and the creation,
viewing and deletion of bundling orders (specification of distribution packages and
criteria for package completion).

CSMS – The following subsystems are the CSMS subsystems, which interact with and support
the SDPS to complete the ECS architecture.

1. The CSS with:

• Control Center System (CCS) Middleware provides a common Name Server, which
packages the common portions of the communication mechanisms into global
objects to be used by all subsystems. The Name Server provides a set of standard
CCS Proxy/Server classes, which encapsulates all of the common code for
middleware communications (e.g., portals, couplers, RWCollectables, etc.)

• Libraries with common software mechanisms for application error handling, aspects
of recovering client/server communications; Universal References to distributed
objects and interfaces to e-mail, file transfer and network file copy capabilities

2. The ISS with:

• Networking hardware devices (e.g., routers, switches, hubs, cabling, etc.) and their
respective embedded software. For more information on site unique configurations,
refer to the 920-series of General documents

 3-18 305-EMD-220

4. Subsystem Description

Design Description Organization and Approach

This section presents a subsystem-by-subsystem overview description of the “as-built” EMD.
The current high-level design information is provided for the Hardware Configuration Items
(HWCI), Computer Software Configuration Items (CSCI), and Computer Software Components
(CSC) for each subsystem and is being delivered to the DAACs in drop increments.

The CSMS subsystem descriptions include:

• Subsystem functional overviews with a subsystem context diagram and a table of interface
event descriptions

• CSCI descriptions with a context diagram and a table with interface event descriptions

• Architecture Diagrams, Process Descriptions, and Process Interface Event Tables. The
Architecture Diagrams show the processes of the CSCI/CSC and how these processes
connect with other CSCIs and CSCs of the same subsystem and the interfaces with other
subsystems and external entities such as Operations, External Data Providers and Users.

• Data Store descriptions for each CSCI in the CSMS subsystem. The Data Stores are
identified with the software name and shown in the architecture diagrams either as single
data stores or as a group of data stores with a generic name such as “Data Stores” or
“database”

• Hardware descriptions of the subsystem hardware items and the fail-over strategy

The convention used for Context and Architecture diagrams includes using circular shapes to
show the subject subsystems, CSCIs, CSCs, or processes (with name in bold), elliptical shapes to
show associated CSCIs, CSCs, or processes within a given subsystem and squares or rectangles
to show external subsystems, CSCIs, CSCs, and processes. Data stores are shown using the data
store or database name with a pair of horizontal lines one above and one below the name, or as a
cylinder with the name below. An interface event is data, a message (which includes a
notification or status); a command, request or status code passed between subsystems, CSCIs,
CSCs, or processes. The convention used to identify events is a straight line between two objects
labeled with a phrase beginning with an action-oriented word to best describe the event. The
arrow on the event line indicates an origination point and to where the event is directed. A direct
response to an event is not always shown on the diagram because sometimes there is no response
(e.g., for an insert or delete request) and other times the response comes from another part of the
EMD. Interface events are identified in the interface event or process interface tables starting
with the interface event at the top or middle of the diagram and going clock-wise around the
diagram. The external interface subsystem is identified in the interface event description and is
in bold to assist with the location of the interface events on the diagram. If there are two items in
bold, there are two different interfaces (Subsystems, CSCIs, or CSCs) requesting the same
interface event. These conventions are consistent with other EMD documentation. The

 4-1 305-EMD-220

convention for naming the EMD processes is Ec <subsystem abbreviation> meaningful name.
The Ec identifies the process as an EMD developed process versus a Commercial Off The Shelf
(COTS) product. The subsystem abbreviations are listed subsystem-by-subsystem.

• Cl for CLS

• Cs for CSS

• Dl for DPL

• Dm for DMS

• DPLINGEST for Data Pool Ingest (new subsystem for 7.20)

• Ds for DSS

• Ms for MSS

• Nb for SSS

• Om for OMS

The meaningful name identifies the process and its functionality within the subsystem, CSCI, or
CSC. An example is EcDsAmIiu, which identifies an EMD-developed DSS process called the
AIM Inventory Insert Utility. Some names within an architecture diagram do not follow this
convention because the names are COTS product names. All COTS product names are kept for
simplicity and to adhere to licensing and trademark agreements. The remaining names that do
not follow the naming convention are imbedded throughout the system and would require time to
replace and cause operational disruptions. These names will be cleaned up during the final
maintenance stages of the contract if directed by the customer.

Object-oriented modeling and design

Object-oriented modeling and design is a new way of thinking about problems using models
organized around real-world concepts. The fundamental construct is the object, which combines
both data structure and behavior in a single entity. Objected-oriented models are useful for
understanding problems, communicating with application experts, modeling enterprises,
preparing documentation and designing programs and databases.1

Superficially the term "object-oriented" means that we organize software as a collection of
discrete objects that incorporate both data structure and behavior. This is in contrast to
conventional programming in which data structure and behavior are only loosely connected.
There is some dispute about exactly what characteristics are required by an object-oriented
approach, but generally include four aspects: identity, classification, polymorphism and
inheritance.11Identity means that data is quantized into discrete, distinguishable entities called
objects. A paragraph in my document, a window on my workstation and a white queen in a chess
game are examples of objects. Objects can be concrete, such as a file, or conceptual, such as a
scheduling policy in a multi-processing operating system. Each object has its own inherent

1 Object-oriented Modeling and design, James Rumbaugh et all, copyright 1991 by Prentice-Hall, Inc. ISBN 0-13-

629841-9

 4-2 305-EMD-220

identity. In other words, two objects are distinct even if all their attribute values (such as name
and size) are identical.1

In the real world an object simply exists, but within a programming language each object has a
unique handle by, which it can be uniquely referenced. The handle may be implemented in
various ways, such as an address, array index or unique value of an attribute. Object references
are uniform and independent of the contents of the objects, permitting mixed collections of
objects to be created, such as a file system directory that contains both files and sub-directories.1

Classification means that objects with the same data structure (attributes) and behavior
(operations) are grouped into a class. Paragraph, Window, and ChessPiece are examples of
classes. A class is an abstraction that describes properties important to an application and ignores
the rest. Any choice of classes is arbitrary and depends on the application.1

Each class describes a possibly infinite set of individual objects. Each object is said to be an
instance of its class. Each instance of the class has its own value for each attribute but shares the
attribute names and operations with other instances of the class. An object contains an implicit
reference to its own class: it "knows what kind of a thing it is."1

Polymorphism means that the same operation may behave differently on different classes. The
move operation, for example, may behave differently on the Window and ChessPiece classes. An
operation is an action or transformation that an object performs or is subject to. Right justify,
display and move are examples of operations. A specific implementation of an operation by a
certain class is called a method. Because an object-oriented operator is polymorphic, it may have
more than one method implementing it.11

In the real world, an operation is simply an abstraction of analogous behavior across different
kinds of objects. Each object "knows how" to perform its own operations. In an object-oriented
programming language, however, the language automatically selects the correct method to
implement an operation based on the name of the operation and the class of the object being
operated on. The user of an operation need not be aware of how many methods exist to
implement a given polymorphic operation. New classes can be added without changing existing
code, provided methods are provided for each applicable operation on the new classes.1

Inheritance is the sharing of attributes and operations among classes based on a hierarchical
relationship. A class can be defined broadly and then refined into successively finer subclasses.
Each sub-class incorporates, or inherits all the properties of its super-class and adds its own
unique properties. The properties of the superclass need not be repeated. For example,
ScrollingWindow and FixedWindow are subclasses of Window. Both subclasses inherit the
properties of Window, such as a visible region on the screen.1

The EMD is a large, complex data storage and retrieval system used to store and retrieve large
amounts of science and science-related data. The system was designed using an object oriented
design approach. With so many objects and the sizes of some of them, it is necessary to have

1 Object-oriented Modeling and design, James Rumbaugh et all, copyright 1991 by Prentice-Hall, Inc. ISBN 0-13-

629841-9

 4-3 305-EMD-220

some insight into the amount of memory being utilized within the EMD. The information about
to be presented is a brief look at the memory management of the "key" (top ten utilized) objects
within the EMD subsystems.

In this object oriented system design, objects are created and used via classes throughout the
system to help perform the functions and meet the needs of the system. The objects for the EMD
are very numerous, sometimes very large and cannot be provided in their entirety at this time.
However, presented in the table below are the "key" objects for this system and how they are
created, passed and deleted within the EMD.

Introduction to memory management approaches and memory usage table

Good memory management in some applications is both important and requires significant
planning and development time. Many important EMD applications are large, long running,
multi-threaded, heavy memory users and therefore are prime candidates for improved memory
management.1

Improper memory management can result in memory leaks, fast memory usage growth or large
application footprints and random crashes. EMD servers are periodically purified for memory
leaks and there is a history of progress in this area. Similar work should be expected to continue
as development and maintenance continues.

Long running server like applications that are free from memory leaks can nonetheless have
significant memory and Central Processing Unit (CPU) usage performance degradation. A
common culprit is heap fragmentation. The repeated allocation and deallocation of memory
(such as with the new and delete operators of C++) can result in a large number of unusable free
blocks of memory. They are free blocks but are interspersed with non-free blocks. They become
unusable since they are not contiguous (fragmented) and as time goes by, it becomes harder and
harder for the OS to service requests for more memory. Such situations even lead to crashes of
other, non-offending applications running in the same box.

There are strategies, tools and software to avoid both memory leaks and fragmentation. This
includes but is not limited to:

• Periodic application of purification software (already an EMD practice)

• Software design, which uses dynamic memory as little as possible, such as automatic
storage or COTS data structures

• Class-level memory management to allocate large chunks of memory instead of one
class instance at a time ("Effective C++" by Scott Meyers and "Advanced C++" by
James Coplien address this technique)

• Non-class level memory pools and

• COTS heap manager

1 Object-oriented Modeling and design, James Rumbaugh et all, copyright 1991 by Prentice-Hall, Inc. ISBN 0-13-

629841-9

 4-4 305-EMD-220

 4-5 305-EMD-220

Table 4-1 below is provided in case further memory management improvements are desired.
Given operator or field input of seemingly inefficient memory or CPU usage, this table can be
used to help target specific EMD subsystems, servers and frameworks or classes for
improvement. It can be decided to apply some of the approaches at one level (e.g., on one guinea
pig server or class) or perhaps experiment with changing the entire EMD C++ system with the
use of a COTS heap manager. In any case, a great deal of planning and manpower is required.

Table 4-1. Memory Management Table (1 of 9)
Subsystem

Name
Executable Name

(M)
Key Classes Description (M) Where Created?

(Executable/
process name) (M)

Passed To
(Executable/

process
name)

Where Deleted?
(process name)

(M)

Number of
Instances

(Example – 1
per granule)

Comments/Remarks
(Items of special interest.

Example - Size per
instantiation, never

“deleted”, etc.)

CSS EcCsRegistry GlParameterList A class that collects the
general parameters of
EMD.

EcCsRegistry not passed

not passed

EcCsRegistry 31

26

 EcCsRegistry

LoadingTool

RWDBMemTable A Rogue Wave DB class
that is a table of data
residing in the program
memory. After
construction, an
RWDBMemTable is no
longer associated with a
table in the database. An
application can modify
the data in an
RWDBMemTable, but the
changes are not
propagated back to the
database.

EcCsRegistry

LoadingTool

not passed

not passed

not passed

EcCsRegistry

LoadingTool

8

2

 4-6 305-EMD-220

Table 4-1. Memory Management Table (2 of 9)
Subsystem

Name
Executable Name

(M)
Key Classes Description (M) Where Created?

(Executable/
process name) (M)

Passed To
(Executable/

process
name)

Where Deleted?
(process name)

(M)

Number of
Instances

(Example – 1
per granule)

Comments/Remarks
(Items of special interest.

Example - Size per
instantiation, never

“deleted”, etc.)

 EcSeLoginProg

LoadingTool

EcCsRegistry

RWDBResult A Rogue Wave DB class
that represents a
sequence of results
whenever a database
operation can potentially
produce multiple SQL
table expressions.

Triggers that can cause
results to be generated
as a result of an INSERT,
DELETE, or UPDATE
statement.

EcSeLoginProg

LoadingTool

EcCsRegistry

not passed

not passed

not passed

not passed

EcSeLoginProg

LoadingTool

EcCsRegistry

2

15

3

 EcSeLoginProg

EcCsRegistry

LoadingTool

EcCsIdNameServer

RWDBReader A Rogue Wave DB class
that provides row-by-row
access to tabular data.

EcSeLoginProg

EcCsRegistry

LoadingTool

EcCsIdNameServer

not passed

not passed

not passed

not passed

EcSeLoginProg

EcCsRegistry

LoadingTool

EcCsIdNameServ
er

13

8

5

2

 4-7 305-EMD-220

Table 4-1. Memory Management Table (3 of 9)
Subsystem

Name
Executable Name

(M)
Key Classes Description (M) Where Created?

(Executable/
process name) (M)

Passed To
(Executable/

process
name)

Where Deleted?
(process name)

(M)

Number of
Instances

(Example – 1
per granule)

Comments/Remarks
(Items of special interest.

Example - Size per
instantiation, never

“deleted”, etc.)

MSS EcAcOrderSrvr

EcMsAcRegUserSrvr

RWDBMemTable A Rogue Wave DB class
that is a table of data
residing in the program
memory. After
construction, an
RWDBMemTable is no
longer associated with a
table in the database. An
application can modify
the data in an
RWDBMemTable, but the
changes are not
propagated back to the
database.

EcAcOrderSrvr

EcMsAcRegUserSr
vr

not passed

not passed

EcAcOrderSrvr

EcMsAcRegUser
Srvr

2

1

 4-8 305-EMD-220

Table 4-1. Memory Management Table (4 of 9)
Subsystem

Name
Executable Name

(M)
Key Classes Description (M) Where Created?

(Executable/
process name) (M)

Passed To
(Executable/

process
name)

Where Deleted?
(process name)

(M)

Number of
Instances

(Example – 1
per granule)

Comments/Remarks
(Items of special interest.

Example - Size per
instantiation, never

“deleted”, etc.)

EcAcOrderSrvr

EcMsAcRegUserSrvr

RWDBResult A Rogue Wave DB class
that represents a
sequence of results
whenever a database
operation may

potentially produce
multiple SQL table
expressions.

Triggers that can cause
results to be generated
as a result of an INSERT,
DELETE, or UPDATE
statement.

EcAcOrderSrvr

EcMsAcRegUserSr
vr

not passed

not passed

EcAcOrderSrvr

EcMsAcRegUser
Srvr

13

10

EcAcOrderSrvr

EcMsAcRegUserSrvr

MsCsSurveyMgrServ
er

RWDBReader A Rogue Wave DB class
that provides row-by-row
access to tabular data.

EcAcOrderSrvr

EcMsAcRegUserSr
vr

not passed

not passed

EcAcOrderSrvr

EcMsAcRegUser
Srvr

16

13

 4-9 305-EMD-220

Table 4-1. Memory Management Table (5 of 9)
Subsystem

Name
Executable Name (M) Key Classes Description (M) Where Created?

(Executable/
process name) (M)

Passed To
(Executabl
e/process

name)

Where Deleted?
(process name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/Remark
s (Items of special
interest. Example -

Size per
instantiation, never

“deleted”, etc.)

DPLINGEST EcDlInPollingService

EcDlInProcessingService

EcDlInNotificationService

DpCoAlert Used to describe
problematic
conditions in DPL
INGEST that require
attention by the
operator.

EcDlInPollingService

EcDlInProcessingServic
e

EcDlInNotificationServic
e

not passed EcDlInPollingService

EcDlInProcessingSer
vice

EcDlInNotificationSer
vice

One per
condition

Alerts are used to
convey descriptions
of problems to
database and are
maintained within the
service for the
lifetime of the
problem. Deleted
when alert is cleared
by operator.

 EcDlInPollingService

EcDlInProcessingService

EcDlInNotificationService

DpCoMessage Used to communicate
a resource addition,
modification,
subtraction,
suspension or
resumption from the
operator to the
service.

EcDlInPollingService

EcDlInProcessingServic
e

EcDlInNotificationServic
e

not passed EcDlInPollingService

EcDlInProcessingSer
vice

EcDlInNotificationSer
vice

One per
operator
action

Messages are used
to communicate
changes in resource
state and are
maintained within the
service until the
change has been
made to the services
representation of that
resource.

 4-10 305-EMD-220

Table 4-1. Memory Management Table (6 of 9)
Subsystem

Name
Executable Name (M) Key Classes Description (M) Where Created?

(Executable/
process name) (M)

Passed To
(Executabl
e/process

name)

Where Deleted?
(process name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/Remark
s (Items of special
interest. Example -

Size per
instantiation, never

“deleted”, etc.)

 EcDlInPollingService

EcDlInProcessingService

EcDlInNotificationService

DpCoResource
and children.

Used to describe a
resource used by
service. For example,
ftp hosts, providers.

EcDlInPollingService

EcDlInProcessingServic
e

EcDlInNotificationServic
e

not passed EcDlInPollingService

EcDlInProcessingSer
vice

EcDlInNotificationSer
vice

One per
resource.

Created on startup or
when a resource is
added to the system.
Deleted when a
resource is removed
from the system or
the service is
shutdown.

 EcDlInPollingService DpInPoller Used to obtain PDR
files from a specific
polling location

EcDlInPollingService not passed EcDlInPollingService One per
polling
location

Created on startup.
Deleted when a
polling location is
removed or the
service is shutdown

 EcDlInPollingService DpInResourceC
heckTimer

Used to periodically
poll for changes in
ingest resource
properties.

EcDlInPollingService not passed EcDlInPollingService One Created on startup.
Deleted on
shutdown.

 EcDlInPollingService DpInPollingData
base

Used to handle all
interaction with ingest
database

EcDlInPollingService not passed EcDlInPollingService One Created on startup.
Deleted on
shutdown.

 EcDlInProcessingService DpInPDRParser Used to parse a PDR
file

EcDlInProcessingServic
e

not passed EcDlInProcessingSer
vice

One per
PDR

Created when
request is activated.
Deleted when
parsing has
completed.

 4-11 305-EMD-220

Table 4-1. Memory Management Table (7 of 9)
Subsystem

Name
Executable Name

(M)
Key Classes Description (M) Where Created?

(Executable/
process name) (M)

Passed To
(Executable/

process
name)

Where Deleted?
(process name)

(M)

Number of
Instances

(Example – 1
per granule)

Comments/Remarks
(Items of special interest.

Example - Size per
instantiation, never

“deleted”, etc.)

EcDlInProcessingServ
ice

DpInPDR Used to represent the
properties of a request
during processing.

EcDlInProcessingS
ervice

not passed EcDlInProcessing
Service

One per
request
activated

Created when request is
activated. Deleted when
request processing is
complete.

 EcDlInProcessingServ
ice

DpInGranule Used to represent the
properties of a granule
during processing.

EcDlInProcessingS
ervice

not passed EcDlInProcessing
Service

One per
granule in
request

Created when request is
activated. Deleted when
request processing is
complete.

 EcDlInProcessingServ
ice

DpInFile Used to represent the
properties of a file during
processing.

EcDlInProcessingS
ervice

not passed EcDlInProcessing
Service

One per file in
a granule

Created when granule is
activated. Deleted when
granule processing is
complete.

 EcDlInProcessingServ
ice

DpInProcessingDBInterf
ace

Used to handle all
interaction with ingest
database

EcDlInProcessingS
ervice

not passed EcDlInProcessing
Service

One Created on startup.
Deleted on shutdown.

 EcDlInNotificiationSer
vice

EcDfAutoDispatcher Email notification queue EcDlInNotificiationS
ervice

not passed EcDlInNotificiatio
nService

One Created on startup.
Deleted on shutdown.

 EcDlInNotificiationSer
vice

EcDfAutoDispatcher File transfer notification
queue

EcDlInNotificiationS
ervice

not passed EcDlInNotificiatio
nService

One Created on startup.
Deleted on shutdown.

 EcDlInNotificationServ
ice

DpInServerMessagesTi
mer

Used to periodically poll
for changes in ingest
resource properties.

EcDlInNotificationS
ervice

not passed EcDlInNotification
Service

One Created on startup.
Deleted on shutdown.

 EcDlInNotificationServ
ice

DpInNotifyPopulateTimer Used to periodically add
new notification actions
from ingest database

EcDlInNotificationS
ervice

not passed EcDlInNotification
Service

One Created on startup.
Deleted on shutdown.

 4-12 305-EMD-220

Table 4-1. Memory Management Table (8 of 9)
Subsystem

Name
Executable Name

(M)
Key Classes Description (M) Where Created?

(Executable/
process name) (M)

Passed To
(Executable/

process
name)

Where Deleted?
(process name)

(M)

Number of
Instances

(Example – 1
per granule)

Comments/Remarks
(Items of special interest.

Example - Size per
instantiation, never

“deleted”, etc.)

 EcDlInNotificationServ
ice

DpInNotifyRemoveComp
letedActionsTimer

Used to remove
completed notification
actions from the ingest
database

EcDlInNotificationS
ervice

not passed EcDlInNotification
Service

One Created on startup.
Deleted on shutdown.

 EcDlInNotificationServ
ice

DpInNotifyEmailAction Used to perform the
notification of ingest via
email

EcDlInNotificationS
ervice

not passed EcDlInNotification
Service

One per email
notification

Created when new email
notification is retrieved
from database. Deleted
when action has been
completed.

 EcDlInNotificationServ
ice

DpInNotifyFileTransferAc
tion

Used to perform the
notification of ingest via
file transfer

EcDlInNotificationS
ervice

not passed EcDlInNotification
Service

One per file
notification

Created when new file
transfer notification is
retrieved from database.
Deleted when action has
been completed.

 EcDlInNotificationServ
ice

DpInNotifyDatabase Used to handle all
interaction with ingest
database

EcDlInPollingServic
e

not passed EcDlInPollingSer
vice

One Created on startup.
Deleted on shutdown.

 EcDlInOdlToXml OdlToXmlTranslator Used to store the
ringpoint section of the
PDR file in xml format

EcDlInOdlToXml not passed EcDlInOdlToXml One Created on startup.
Deleted on shutdown.

 EcDlInOdlToXml OdlToXmlTranslator Used to store the PDR
file

EcDlInOdlToXml not passed EcDlInOdlToXml One Created on startup.
Deleted on shutdown.

 4-13 305-EMD-220

305-EMD-220

Table 4-1. Memory Management Table (9 of 9)
Subsystem

Name
Executable Name

(M)
Key Classes Description (M) Where Created?

(Executable/
process name) (M)

Passed To
(Executable/

process
name)

Where Deleted?
(process name)

(M)

Number of
Instances

(Example – 1
per granule)

Comments/Remarks
(Items of special interest.

Example - Size per
instantiation, never

“deleted”, etc.)

OMS EcOmOrderManager OmSrClientDb

OmSrDbInterface

Handles connection and
queries to the database
server.

EcOmOrderManag
er

Not passed EcOmOrderMana
ger

One instance The memory is deallocated
when the server comes
down.

 EcOmOrderManager OmSrDispatchQueue Keeps track of requests
for processing.

EcOmOrderManag
er

Not passed EcOmOrderMana
ger

Four instances The memory is deallocated
when the server comes
down.

 EcOmOrderManager OmServer Main encapsulating class. EcOmOrderManag
er

Not passed EcOmOrderMana
ger

One instance The memory is deallocated
when the server comes
down.

 EcOmOrderManager OmSrDistributionReques
t

Stores information related
to distribution requests.

EcOmOrderManag
er

Not passed EcOmOrderMana
ger

One instance
per request

The memory is deallocated
when the server comes
down, or when present
request is terminated in
any way.

CLS Not Applicable

SSS Not Applicable

Toolkit Not Applicable

 4-14

4.1 Data Server Subsystem Overview
The Data Server Subsystem (DSS) subsystem consists of one CSCI called the “Archive
Inventory Management” (AIM) CSCI. All other CSCIs were eliminated in previous ECS
releases. The AIM CSCI provides the following services:
• Services for adding new ESDTs
• Services for validation of granule metadata during Ingest
• Recording and tracking the location of files within the Archives
• Recording the addition of new Volume Groups within the Archives
• Supplying events to BMGT
• Providing database functionality for BMGT processing data
• Providing a Universal Reference (UR) for each granule ingested

• Managing the removal of granules from the system

• Managing QA metadata for science granules

• Creation and storage of Metadata Control Files (MCF).

Data Server Subsystem Context

Figure 4.1-1 shows context diagrams for the DSS subsystem. These diagrams illustrate the
interaction of DSS with other ECS subsystems. DPLIngest was separated out into its own
diagram because all the subsystems could not fit into one diagram.

 4-15 305-EMD-220

Data Server
Subsystem

DataPool
Subsystem

Request XML file information
Request Data file information
Request Volume Group information

Return XML File Information
Return Data File Information
Return Volume Group Information
Provide XML Files
Provide Data Files
Lock / Unlock Granules

Order Manager
Subsystem

Operations Staff

Request Granule Status
Request File information
Request Volume Group information

Return Granule Status
Return File Information
Return Volume Group Information
Provide Browse Files

Insert new Earth Science Data Type (ESDT)
Update ESDT
Generate Metadata Control File (MCF)
Generate ESDT specific XML Schema
Request Granule Deletion
Request Update of Quality Assurance (QA) metadata
Request consistency check of the Archive

Bulk Metadata
Generation Tool

Subsystem

Return list of Installed ESDTs
Return Validation Errors

Provide Event Notifications
Provide XML files
Return BMGT processing Data
Provide Granule Linkage
Provide File Locations
Provide Browse Files

Store BMGT Processing Data
Request XML Metadata

Figure 4.1-1. Data Server Subsystem Context Diagram (1 of 2)

 4-16 305-EMD-220

Data Server
Subsystem

DPLIngest

Request Metadata Validation
Record Granule Insert
Request XML file information
Request Volume Group information
Add Volume Group information
Request Universal Reference (UR)
Request Data Search

Return Validation Warnings/Errors
Provide access to MCF
Return XML File Information
Return Volume Group Information
Return Univeral References (UR)

Figure 4.1-1. Data Server Subsystem Context Diagram (2 of 2)

Table 4.1-1 provides a description for each of the interface events shown in the Data Server
Subsystem context diagrams. If the interface is shared between multiple subsystems the
interface event will only occur one time in the table and all subsystems that share the interface
will be listed in the description.

 4-17 305-EMD-220

Table 4.1-1. Data Server Subsystem Interface Events (1 of 3)
Event Interface Event Description

Request XML file
information

When the DPL Ingest component ingests granules such as Browse, Processing
History, or QA, it requests the location of the XML file for the associated science
granule from the DSS Inventory Database and updates the linkage information
within that XML file. The DataPool Action Driver (DPAD) component requests
XML file information when staging granules into the DataPool.

Request Data File The DPAD component requests data file information from the DSS Inventory
Database when staging granules into the DataPool.

Request Volume Group
Information

The DPLIngest component requests volume group information from the DSS
AIM Inventory Database to determine where to store the files being ingested.
The DPAD component requests volume group information when staging
granules into the DataPool. Additionally the OMS and BMGT subsystems
requests browse granule location information.

Return XML File
Information

The DSS Inventory Database provides XML file name and location information
to the DataPool and DPLIngest.

Return Data File
information

The DSS Inventory Database provides data file name, size, checksum, and
location information to the DataPool.

Return Volume Group
Information

The DSS Inventory Database provides a list of directories in the Archive as well
as information to determine where each granule is archived to DataPool, OMS,
and DPLIngest.

Provide XML Files The DataPool and BMGT subsystems read XML files directly from the AIM XML
Archive.

Provide Data Files The DataPool reads Science and Browse granule data files directly form the
AIM Granule Archive.

Lock / Unlock Granules The AIM XRU and QA Update utility use the DataPool database to lock and
unlock granules while they are being processed so that they cannot be
accessed by other ECS components.

Request Granule
Status

The OMS subsystem requests the information from the DSS Inventory
Database to determine if a granule is “marked for deletion”, or “hidden” and thus
can’t be ordered.

Request File
Information

The OMS requests file name, size, and checksum information from the DSS
Inventory Database while processing orders.

Return Granule Status The AIM Inventory Database returns information to allow OMS to determine if a
granule can be ordered.

Return File Information The AIM Inventory database provides information such as file size, checksum,
internal and distribution file names to the OMS.

Provide Browse Files The OMS and BMGT subsystems read browse files directly from the AIM
Granule Archive.

Insert New Earth
Science Data Type

The DSS ESDT Maintenance GUI allows operators to add ESDTs to the
system by providing a descriptor file for the ESDT.

Update ESDT The DSS ESDT Maintenance GUI allows operators to modify a limited set of
attributes associated with an installed ESDT by providing a replacement
descriptor file for the ESDT.

 4-18 305-EMD-220

Table 4.1-1. Data Server Subsystem Interface Events (2 of 3)
Event Interface Event Description

Generate Metadata
Control File

The DSS ESDT Maintenance GUI allows operators to create an MCF file for
each ESDT added, it also contains a function to generate new MCFs for each
installed ESDT.

Request Granule
Deletion

The DSS Granule Deletion utilities provides the operator the ability to identify
granules to be deleted, mark them for future deletion, return them from a
“marked for deletion” to an active status, and physically remove (delete) them
from the archives and Inventory database.

Request Update of
Quality Assurance
metadata

The DSS Quality Assurance Update Utility (QAUU) provides the operator the
ability to modify/add metadata related to the quality of the granule to the XML file
associated with the granule.

Request consistency
check of the Archive

The DSS Archive Check utility allows the operator to check the files stored in
the archives against the records stored in the Inventory database.

Return list of Installed
ESDTS

The DSS AIM ESDT Maintenance GUI provides operator with a list of ESDTs
installed within the Inventory.

Return Validation
Errors

The DSS AIM ESDT Maintenance GUI, when inserting or updating an ESDT,
reports to the operator any errors found when processing the Descriptor.

Store BMGT
Processing Data

The DSS Inventory Database provides a storage location for BMGT processing
data, including the events to be processed.

Request XML
Metadata

The DSS Inventory Database provides the location of XML files within the DSS
XML Archive.

Provide Event
Notifications

The DSS Inventory Database records real-time events for BMGT to process.

Provide XML files The BMGT reads XML metadata from the DSS XML Archive (both descriptors
and granule XML files) when processing collections and granules. The
descriptors are stored in ODL format and are translated to XML for BMGT.

Provide Granule
Linkage

The DSS Inventory Database is used by BMGT to determine the Browse
granules that are associated with the Science Granules being processed.

Provide File Locations The AIM Inventory Database provides the location of XML metadata files and
Browse files to the BMGT.

Request XML
Metadata Validation

The DPLIngest component uses the DSS XML Validation Utility (XVU) to
validate the XML metadata file associated with each granule ingested.

Record Granule Insert The DPLIngest component uses the DSS Inventory Insert Utility (IIU) to
record critical metadata about each granule ingested. The metadata is passed
to the IIU via an XML file. Note: DPLIngest will copy the XML file to the AIM
XML Archive.

Add Volume Group
Information

The DPLIngest GUI component uses the DSS Inventory database to store
information about new volume groups within the archive.

Request Universal
Reference

The DSS Inventory Database provides a UR to the DPL Ingest component for
each granule ingested.

Request Data Search The DPLIngest sends a search request to the DSS Inventory Database for a
granule corresponding to a particular ESDT short name and version, which has
a particular local granule id.

 4-19 305-EMD-220

Table 4.1-1. Data Server Subsystem Interface Events (3 of 3)
Event Interface Event Description

Return Validation
Warnings/Errors

The DSS XVU returns a list of warning and/or error messages to DPL Ingest if
problems were found during the validation of the granule metadata.

Provide access to MCF The DPLIngest component retrieves the appropriate MCF for the ESDT from
the DSS XML Archive when ingesting a non-SIPS granule.

Return Universal
Reference

The DSS Inventory Database provides a UR to DPLIngest for each granule
ingested.

Data Server Subsystem Structure

The DSS is one CSCI and two HWCIs:

• The Archive Inventory Management (AIM) CSCI catalogs earth science data as logical
collections. Each of these collections is referred to as an “Earth Science Data Type”
(ESDT) and the members of the collection are referred to as “Granules.” The AIM CSCI
services requests to add new collections to the inventory, add individual granules to
existing collections, update granules within a collection, check the consistency of the
Inventory database and the Archive file systems, and remove individual granules or whole
collections of granules.

• The XML Archive HWCI stores XML files for each science granule in the Inventory as
well as descriptor files, MCFs, and XML schema files used for validating XML.

• The Granule Data Archive HWCI provides high-capacity system for the long-term storage
of data files.

Detailed information on hardware/software mapping, hardware diagrams, disk partitioning, etc.,
can be found in 920-TDx-00x, the 921-TDx-00x, and the 922-TDx-00x series of baseline
documents. These documents are located at the web site http://pete.hitc.com/baseline/index.html
and click on the Technical Documents button.

Use of COTS in the Data Server Subsystem

• RogueWave’s Tools.h++

The Tools.h++ class libraries provide libraries of object strings and collections. These
class libraries are statically linked and delivered with the custom code installation. This
library is only used by the Archive consistency checking utility.

• Rogue Wave’s Net.h++

ToolsPro.h++ is a C++ class library, which includes the net.h++ class library, which
provides an object-oriented interface to Inter-Process Communication (IPC) and network
communication services. The Net.h++ framework enables developed code to be portable

 4-20 305-EMD-220

http://pete.hitc.com/baseline/index.html

to multiple operating systems and network services. This library is only used by the
Archive consistency checking utility.

• Sybase Adaptive Enterprise Server (ASE)

The Sybase ASE provides the capabilities to retrieve, query, insert, update, and delete
database records.

• Boeing Autometric’s Spatial Query Server

The Spatial Query Server (SQS) provides the capability to store and search spatial
metadata. It is used by the DSS AIM’s IIU and XVU components for inserting and
validating (respectively) spatial metadata.

• Sybase Open Client / CT_LIB

The Sybase Open Client provides access between DSS custom code and the Sybase ASE
DBMS.

Use of shareware products:

 XERCES

A library of software for parsing and manipulating XML, it provides the XVU, IIU, and
the ESDT Maintenance GUI the ability to process XML files.

 JConnect3

The XVU, IIU, and the ESDT Maintanance GUI use JConnect3 to access the Sybase
Database Server.

 Standard Java runtime environment

The XVU, IIU, and the ESDT Maintenance GUI use the standard Java runtime
environment to execute their java processes and to provide a set of supporting
functionality.

 Java Server Faces

JavaServer Faces provides a web based application framework and user interface
components for the ESDT Maintenance GUI. This includes handling navigation
between pages, user input, and display.

4.1.1 Science Data Server Software Description – CSCI REMOVED

4.1.2 Archive Inventory Management Software Description
The Archive Inventory Management (AIM) CSCI is composed of several software components.
Some of these components were moved to the AIM CSCI from other DSS CSCIs while others
are new components used to replace SDSRV functionality. The existing components that are
moved to AIM are:

 Granule Deletion utilities

 4-21 305-EMD-220

o EcDsBulkSearch

o EcDsBulkDelete

o EcDsBulkUndelete

o EcDsDeletionCleanup

 Quality Assurance Update utility

 Archive Check Utility

The new software components included in the AIM CSCI are:

 ESDT Maintenance GUI

 XML Validation Utility

 Inventory Insert Utility

 XML Replacement Utility

 XML Archive Check Utility

The AIM CSCI is used by other ECS CSCIs to manage the XML metadata and storage location
for each granule within the ECS inventory. Table 4.1-2 lists the components of the AIM CSCI
along with a brief description of the component.

Table 4.1-2. AIM Software Components (1 of 3)
Process Type Hardware

CI
COTS /

Developed
Functionality

EcDsBulkSearch.pl Comman
d line
utility

OMLHW Developed EcDsBulkSearch.pl utility provides a
command line operator interface for creating
a list of granules to be used for Bulk Delete
or Bulk Undelete operations.

EcDsBulkDelete.pl Comman
d Line
Utility

OMLHW Developed The EcDsBulkDelete.pl utility provides a
command line operator interface for deleting
granules (marking the granule so that it can’t
be accessed and making it eligible for future
removal) in the Inventory database.

EcDsBulkUndelete.pl Comman
d line
utility

OMLHW Developed The EcDsUnBulkDelete.pl provides a
command line operator interface for
changing granules that were previously
marked as deleted to an “active” state in the
Inventory database.

 4-22 305-EMD-220

Table 4.1-2. AIM Software Components (2 of 3)
Process Type Hardware

CI
COTS /

Developed
Functionality

EcDsDeletionCleanup
.pl

Comman
d line
utility

OMLHW Developed The EcDsDeletionCleanup.pl provides a
command line operator interface for
removing the metadata and data files
associated with granules that were
previously marked for deletion. This utility
removes all references to the deleted
granules from the AIM CSCI.

EcAmQAUpdateUtility Comman
d line
utility

OMLHW Developed The Quality Assurance Update Utility
(QAUU) is a java command line utility that
updates QA information in the XML Archive
and possibly the XML files within the public
DataPool. It processes an input file
specifying the QA attributes that are being
changed along with a specification for the
granules to be updated.

EcDsAmArchiveChec
kUtility

Comman
d line
utility

DPLHW Developed The Archive Check is a C++ utility that
compares the records of the AIM Inventory
database to files in the XML Archive and
Granule Archive. It reports discrepancies for
both missing files and missing database
records.

ESDT Maintenance
GUI

GUI DPLHW Developed The ESDT Maintenance GUI is a web based
java application that installs, updates, and
deletes ESDTs from the system. It can also
be used for informational purposes to see
which ESDTs are installed in the system and
to view an individual descriptor. The GUI is
also responsible for generating ESDT
specific XML schema files and MCFs from
the descriptor and storing them in the XML
Archive.

EcDsAmXvu Utility DPLHW Developed The XML Validation Utility (XVU) is a java
process that parses the XML metadata file
being ingested and validates it against a set
of rules stored in an ESDT specific schema
(located in the XML archive).

EcDsAmIiu Utility DPLHW Developed The Inventor Insert Utility (IIU) is a java
process that parses the XML metadata file
being ingested and inserts the essential
metadata attributes of the granule into the
Inventory database.

 4-23 305-EMD-220

Table 4.1-2. AIM Software Components (3 of 3)
Process Type Hardware

CI
COTS /

Developed
Functionality

EcDsAmXru Comman
d line
utility

DPLHW Developed The XML Replacement utility (XRU) is
command line java utility that replaces XML
files within the XML Archive and creates an
event for the BMGT subsystem to process.
The XRU validates the new candidate file
prior to replacing the original file in the XML
Archive.

EcDsCheckXMLArchi
ve.pl

Comman
d line
utility

DPLHW Developed The XML Archive Check utility compares the
files stored in the XML archive to the entries
in the AIM Inventory database. This utility is
optimized for processing the XML Archive,
while the EcAmQAUpdateUtility is optimized
for processing volume groups.

SQS Server DBLHW COTS The Spatial Query Server is a COTS product
used to validate, store, and query spatial
objects in the AIM Inventory database.

Sybase Server DBLHW COTS The Sybase ASE is the primary database
engine for ECS. It used for storing ESDT
and granule metadata in the AIM Inventory
database.

4.1.2.1 AIM Interfaces with DataPool Ingest

Figure 4.1-2 shows the components of the AIM CSCI that interface with the DPLIngest CSCI.
Oval shapes are used to indicate AIM processes. The diagram shows the interactions between
the AIM components as well as the data stores within the AIM CSCI. Refer to the DPLIngest
section of the 305 document for a complete description of DPLIngest processing.

 4-24 305-EMD-220

Figure 4.1-2. AIM CSCI Context Diagram (DPLIngest)

 4-25 305-EMD-220

Table 4.1-3 explains each of the events/interfaces depicted above.

Table 4.1-3. AIM Interfaces with DPLIngest (1 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Request XML
Metadata
Validation

One per
granule
ingested

EcDsAmXvu EcInProcessingService

Each granule ingested into ECS
must pass a metadata validation
step.
 The DPLIngest

EcInProcessingService
component passes the name
and location of the XML
metadata file within the
DataPool hidden directory to the
AIM XVU process.

 The XVU validates the file using
the XML Services jar file and the
ESDT specific schema located
in the XML Archive.

 The XVU processes the XML
“post validation information set”
to determine the outcome of the
XML validation.

 Optional elements that are
invalid are removed from the file.

 The XVU also performs custom
validation on certain elements
(for example: it validates spatial
metadata using SQS and the
Inventory database.

 The XVU returns a value of 0 or
success, 2 for failure, 3 to
indicate the metadata passed
validation but that some optional
elements were removed, and
finally a value of 4 indicates the
request should be retried at a
later time.

Read XML
Schema

Once per
granule
ingested

 EcDsAmXvu When validating a granule XML file,
the XVU reads the ESDT specific
XML schema from the XML Archive.
The schema is created as part of
installing the ESDT.

 4-26 305-EMD-220

Table 4.1-3. AIM Interfaces with DPLIngest (2 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Read XML File Once per
granule
ingested

 EcDsAmXvu The XML file is read into a DOM tree
within the XVU process.

Validate Spatial Once per
granule

SQS EcDsAmXvu The XVU uses SQS to execute a
query that intersects the spatial
region contained in the XML file with
a known spatial object within the
Inventory database. This causes
SQS to validate the geometry of the
spatial region in the XML file.
Validation errors to the spatial region
are considered fatal, causing the
XVU to return a validation failure.

Store XML File Once per
science
granule
ingested

 EcInProcessingService The EcInProcessingService stores
an XML metadata file for each
science granule ingested. XML files
are not archived for Browse, QA,
Production History, or Delivered
Algorithm Package granules.

Update XML File Once per
browse
granule
ingested

 EcInProcessingService When the EcInProcessingService
ingests a Browse granule, it adds the
Browse ID to the XML metadata file
of each science granule that is
referenced by the Browse granule
linkage information.

Provide MCF Once per
non-SIPs
granule
ingested

 EcInProcessingService When Ingest needs an MCF to pre-
process a Non-SIPS ingest request,
it reads the MCF directly from the
Small File Archive. The directory
where the MCFs are stored is a
configuration item in Ingest.

Request XML File
Info

 Stored Procedure EcInProcessingService Ingest reads the list of XML paths
from the Inventory database. Ingest
creates new paths in the XML
Archive for each ESDT when it
ingests the first granule for the ESDT
for the current month. This new
directory is recorded in the Inventory
database as part of the Record
Granule Insert event.

 4-27 305-EMD-220

Table 4.1-3. AIM Interfaces with DPLIngest (3 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Request
VolumeGroup Info

Once at
startup of
EcInProcessi
ngService or
after new
groups are
added.

Stored Procedure EcInProcessingService Ingest reads the list of open volume
groups from the Inventory database
at startup.

Add Volume
Group

Upon request
by DAAC
operators

Stored Procedure DAAC Operator / DPL
Ingest GUI

The DAAC operator uses the DPL
Ingest GUI to create new volume
groups. The GUI inserts these into
the Inventory database via stored
procedure. When this happens, a
message is created in the Ingest
database to instruct Ingest to refresh
the cached list of volume groups.

Request
Universal
Reference

Once for each
granule
Ingested

Stored Procedure EcInProcessingService Ingest accesses the Inventory
database to get the next available
granule ID. It then uses its
configured UR prefix and the
ShortName and VersionID of the
granule to construct a Universal
Reference.

Request Data
Search

Once for each
Browse
granule
Linkage

Stored Procedure EcInProcessingService Ingest receives Local Granule ID
values in the linkage section of the
Browse ingest request. It searches
the Inventory database (via stored
procedure) to convert these to
granule ID values.

Record Granule
Insert

Once for each
granule
Ingested

EcDsAmIiu EcInProcessingService Ingest sends a request to the AIM
Inventory Insert Utility to record each
granule ingested.

Insert Spatial Once per
science
granule with
spatial
attributes

Embedded SQL EcDsAmIiu The IIU inserts the spatial metadata
into the Inventory database via the
Spatial Query Server. The spatial
metadata is inserted before the non-
spatial metadata. Each use separate
database transactions. If the non-
spatial insert fails, then the spatial is
removed. In the event that the
spatial fails due to a duplicate key
error, the IIU assumes it is
processing a retry of the metadata
insert and proceeds to the non-
spatial insert.

 4-28 305-EMD-220

Table 4.1-3. AIM Interfaces with DPLIngest (4 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Insert Granule Once per
granule
ingested

Stored procedure EcDsAmIiu The IIU records non-spatial
information such as the temporal
metadata, the file information, and
the XML file location in the Inventory
database.

Archive Data Files Once per
granule
ingested

 EcInProcessingService Ingest copies the data files for the
granule into the data archive. The
location/directory is determined by
executing an Inventory database
stored procedure to compare the
granule metadata with the
DsStVolumeGroup table.

4.1.2.2 AIM CSCI interfaces with DAAC Operations Staff

There are several interfaces between the DAAC operations staff and the Archive Inventory
Management (AIM) CSCI. These can’t be show in one diagram so this section is broken up into
several sections, each explaining a common set of DAAC operator interfaces. Each figure is
followed by a table that describes the interfaces / events shown in the figure.

4.1.2.2.1 AIM ESDT Maintenance GUI and QA Update utility

Figure 4.1-3 shows the DAAC operator interfaces with the ESDT Maintenance GUI and the QA
Update utility and interaction of these components with other AIM components.

 4-29 305-EMD-220

Figure 4.1-3. AIM Interfaces with DAAC Operators (ESDT Maintenance GUI and
QA Update utility)

 4-30 305-EMD-220

Table 4.1-4 describes each of the events depicted above.

Table 4.1-4. AIM Interfaces with DAAC Operators (ESDT GUI, QA Update) (1 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Install ESDT Once for each
new ESDT

ESDT Maintenance
GUI

DAAC Operations

The DAAC operators install ESDTs
using the ESDT Maintenance GUI. The
GUI performs the following:
• Reads the descriptor files from a

configured directory.
• Converts the descriptor to XML.
• Records the ESDT in the Inventory

database.
• Validates the descriptor against an

ESDT XML schema using the XML
services module.

• Validates certain elements of the
descriptor against valids stored in
the Inventory database.

• Adds the Collection entry to the
Inventory database.

• Registers an Insert Event in the
Spatial Subscription Server
database.

• Extracts an MCF from the
descriptor and stores it in the XML
archive.

• Builds an ESDT specific XML
schema file and stores it in the XML
Archive.

• Records the completion of the
install in the Inventory database.

 4-31 305-EMD-220

Table 4.1-4. AIM Interfaces with DAAC Operators (ESDT GUI, QA Update) (2 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Update ESDT When ever an
ESDT
descriptor file
changes

ESDT Maintenance
GUI

DAAC Operations

When an ESDT is updated the ESDT
Maintenance GUI performs the
following:
• Reads the new descriptor file from

the configured directory.
• Converts the descriptor to XML.
• Records the update of the ESDT in

the Inventory database.
• Validates the descriptor against an

ESDT XML schema using the XML
services module.

• Updates the Collection entry in the
Inventory database. Note: changes
to metadata such as spatial search
type, Product Specific Attribute
definitions, and other attributes that
could invalidate existing metadata
are not supported.

• Extracts the MCF the from the
descriptor and stores it in the XML
archive

• Builds an ESDT specific XML
schema file and stores it in the XML
Archive.

• Records the completion of the
update in the Inventory database.

 4-32 305-EMD-220

Table 4.1-4. AIM Interfaces with DAAC Operators (ESDT GUI, QA Update) (3 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Remove ESDT Upon
Operator
request (after
all granules
are removed)

ESDT Maintenance
GUI

DAAC Operations ESDTs can be removed from the
system if all the granules are physically
deleted. The ESDT Maintenance GUI
performs the following:
• Marks the ESDT as being removed

in the Inventory database
• Removes the MCF and XML

schema from the XML archive
• Removes the Insert Event from the

SSS database
• Removes any remaining XML

metadata file directories from the
XML archive

• Removes the collection from the
Inventory database

• Removes the ESDT information
from the Inventory database.

Generate MCF Once per
ESDT Install
Update or
upon direct
request by the
operator

 ESDT Maintenance GUI The ESDT Maintenance GUI extracts
the MCF section from the descriptor file
and stores it as a separate file in a
configured MCF directory within the
XML archive.

Generate ESDT
specific schema

Once per
ESDT Install
or Update or
upon direct
request by the
operator

 ESDT Maintenance GUI The ESDT Maintenance GUI reads the
Inventory section of the descriptor file
and compares it to a “common” granule
XML schema. It adds the common
schema elements that match the
descriptor entries to the new ESDT
specific XML schema file and stores it in
the configured descriptor directory of the
XML Archive. The rules in the
descriptor can be set to customize the
element definitions (mandatory/optional
or specific domain list) in the ESDT
specific schema.

Add ESDT /
Collection

Once per
ESDT Install

Stored procedure ESDT Maintenance GUI The ESDT Maintenance GUI executes
several stored procedures to register the
ESDT in the Inventory database.

 4-33 305-EMD-220

Table 4.1-4. AIM Interfaces with DAAC Operators (ESDT GUI, QA Update) (4 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Check Valids Once per
ESDT Install

Stored procedure ESDT Maintenance GUI The ESDT Maintenance GUI checks
certain values in the descriptor file (for
example: Discipline, Topic, Term
Keyword) against a set of valid values
stored in the Inventory database.

Return ESDT List Upon request
by Operator

Stored procedure ESDT Maintenance GUI The ESDT Maintenance GUI retrieves
the list of installed ESDTs and presents
them to the Operator.

Add Descriptor Once per
ESDT Install
or Update

 ESDT Maintenance GUI The ESDT Maintenance GUI copies or
replaces the descriptor file to the
configured descriptor directory within the
XML archive.

Add ESDT
specific schema

Once per
ESDT Install
or Update

 ESDT Maintenance GUI The ESDT Maintenance GUI stores the
ESDT specific granule XML schema in
the descriptor directory of the XML
archive. This schema is used to
validate granules during Ingest.

Add MCF Once per
ESDT Install
or Update

 ESDT Maintenance GUI The ESDT Maintenance GUI extracts
the Inventory section of the descriptor
file and stores it in the configured MCF
directory within the XML archive. This
file can be accessed directly by DPL
Ingest.

Request QA
Update

Whenever
quality
information
for a granule
or set of
granules is
available

EcDsAmQauu DAAC Operations The DAAC operator submits a file that
specifies the granules to be updated
along with the new values for the Quality
Flags for a Measured Parameter. The
QAUU processes the file by uploading it
to one of three different request tables
(based upon the file format LGID, dbID,
or ESDT + Temporal). The request
details are copied to a new table where
the information is normalized into a set
of granules including dbID and Local
Granule ID. The QAUU processes the
list of granules to be updated in batches.

 4-34 305-EMD-220

Table 4.1-4. AIM Interfaces with DAAC Operators (ESDT GUI, QA Update) (5 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Lock Granule Executed
once per
batch, locking
each granule
within the
batch

Stored Procedure EcDsAmQauu The QAUU coordinates with other
processes that access granules in the
DataPool by locking the granule in the
DataPool database (inserting to the
DlOMSGranules table). All the granules
within a batch are locked prior to
processing the batch.

Request XML File
List

Once per
batch of
granules
processed

Stored Procedure EcDsAmQauu The QAUU requests the list of XML files
that correspond to the granules being
processed.

Update XML File Once per
granule
processed

 EcDsAmQauu Depending upon the header file line, the
QAUU either updates the
ScienceQualityFlag or the
OperationalQualityFlag, or the
AutomaticQuality flag for the supplied
Measured Parameter for each granule.
It also updates the associated
QualityFlagExplanation.

Update DPL XML
File

Once per
public DPL
granule
processed

 EcDsAmQauu For each granule within the batch to
process, If the granule is in the public
DataPool, the QAUU copies the updated
XML file from the XML Archive to the
DPL file system.

Update Measured
Parameters

Once per
batch of
granules to
process

Stored Procedure EcDsAmQauu The QAUU updates the quality flags
within the DataPool database for each
supplied Measured Parameter for each
of the granules in the batch. This
update occurs as one large database
transaction.

Unlock Granule Once per
batch of
granules to
process

Stored Procedure EcDsAmQauu When the QAUU finishes processing a
batch of granules, it unlocks them in the
DataPool database by removing the
entries from the DlOMSGranules table.

4.1.2.2.2 AIM XML Replacement and Granule Deletion utilities

Figure 4.1-4 shows the interactions between the XML Replacement Utility and the other AIM
components. There is only one use case for the XRU and it is initialed by the DAAC operator.
The diagram also shows an interface to the DataPool database.

 4-35 305-EMD-220

Figure 4.1-4. AIM Interfaces with DAAC Operators (XML Replacement Utility)

Table 4.1-5 describes the interfaces / events depicted above between the DAAC operators and
the Granule Deletion utilities.

Table 4.1-5. AIM Interfaces with DAAC Operators (XML Replacement Utility)
(1 of 2)

Event Event
Frequency

Interface Initiated By Event Description

Replace XML
File

Upon
request by
the Operator

EcDsAmXru DAAC Operator The XML Replacement utility
replaces XML files in the XML
archive and logs an event for BMGT
to process.

Read Granule
Information

Once per
XML file to
replace

Stored Procedure EcDsAmXru The XRU reads the last update time
of the Granule from the Inventory
database and compares it to the
time in the XML file. It also reads
the location of the XML file in the
XML archive.

 4-36 305-EMD-220

Table 4.1-5. AIM Interfaces with DAAC Operators (XML Replacement Utility)
(2 of 2)

Event Event
Frequency

Interface Initiated By Event Description

Lock Granule Once per
XML file to
replace

Stored Procedure EcDsAmXru The XRU locks the granule in the
DataPool so that it cannot be
accessed by other ECS processes
while it is being replaced.

Read XML
Schema

Once per
XML file to
replace

 EcDsAmXru The XRU reads the XML file into a
DOM tree so that the elements can
be validated.

Validate Spatial Once per
XML file to
replace

Embedded SQL EcDsAmXru The XRU validates the spatial
metadata element of the XML file by
executing a query against a known
value in the Inventory database.
This causes SQS to validate the
spatial value.

Replace XML
File

Once per
XML file to
replace

 EcDsAmXru If the elements of the new XML file
are valid, the existing file in the XML
Archive is replaced with the new file.

Record new
Information

Once per
XML file to
replace

Stored Procedure EcDsAmXru The XRU records a new size,
checksum, and lastUpdate time in
the Inventory database for the
granule.

Log
Replacement
Event

Once per
XML file to
replace

Stored Procedure EcDsAmXru The XRU records an event in the
Inventory database to be processed
by BMGT.

Unlock Granule Once per
XML file to
replace

Stored Procedure EcDsAmXru The XRU removes the lock from the
DataPool database once processing
is completed.

4.1.2.3 AIM Granule Deletion utilities

Figure 4.1-5 shows the DAAC operator interfaces between the DAAC operator and the XML
Replacement and Granule Deletion utilities.

 4-37 305-EMD-220

DAAC Operations Staff

Small File Archive SNAC

Bulk
Delete

Bulk
Undelete

Bulk
Search

Deletion
Cleanup

Search
Database

Granule Data File Archive

Identify
Granules

for Deletion

Mark Granules
Deleted

Restore Deleted
 Granules

Remove Granules
Marked as deleted

Delete
Granule

Delete
XML
File

Fetch File
list

Undelete
Granule

Delete
Data
FIle

Inventory DB
Sybase

Figure 4.1-5. AIM Interfaces with DAAC Operators (Granule Deletion Utilities)

 4-38 305-EMD-220

Table 4.1-6 describes the interfaces / events depicted above between the DAAC operators and
the Granule Deletion utilities.

Table 4.1-6. AIM Interfaces with DAAC Operators (Granule Deletion) (1 of 2)
Event Event

Frequency
Interface Initiated By Event Description

Identify
Granules for
Deletion

Upon
request by
the Operator

EcDsBulkSearch.
pl

DAAC Operator The Bulk Search utility searches the
Inventory database based upon the
supplied arguments to identify a list
of granules. The list is stored in a
text file that is compatible with both
the Bulk Delete and the Bulk
Undelete utilities.

Search
Database

Once per
invocation of
the utility

Dynamic SQL EcDsBulkSearch.pl The Bulk Search utility dynamically
constructs an SQL statement based
upon the arguments given. These
can include ShortName, VersionID,
Temporal Range, insert time, Local
Granule ID, and current deletion
status. The output of the search is
a list of Granule IDs stored in a text
file.

Mark Granules
Deleted

Upon
request by
DAAC
Operator

EcDsBulkDelete.p
l

DAAC Operator The Bulk Delete utility processes a
file containing a list of Granule IDs
and marks each granule as either
“deleted from the Archive” or marks
each granule as deleted on the
current date. Options exist for
marking associated granules. The
associated granules (Browse, QA,
or PH) can be ignored or they can
also be marked as deleted at the
same time the science granule is
deleted.

Delete Granule Once per
granule
deleted

Stored Procedure EcDsBulkDelete.pl The Bulk Delete utility executes a
stored procedure to update the
granule in the Inventory database
with the appropriate deletion status.

Bulk Undelete Upon
request by
DAAC
Operator

EcDsBulkUndelet
e.pl

DAAC Operator The Bulk Undelete processes a file
of Granule IDs and either reverses
the Delete From Archive or the
Granule Deletion status (based
upon the arguments supplied). The
utility also has options for
processing associated granules.

 4-39 305-EMD-220

Table 4.1-6. AIM Interfaces with DAAC Operators (Granule Deletion) (2 of 2)
Event Event

Frequency
Interface Initiated By Event Description

Undelete
Granule

Once per
granule
processed

Stored Procedure EcDsBulkUndelete.pl The Bulk Undelete utility executes a
stored procedure to reverse the
deletion status for each granule
supplied in the input file.
Associated granules are also
processed after all science granules
are individually processed. This is
done in a single stored procedure
based upon the time a transaction
time for the undelete operation.

Remove
Granules
marked as
deleted

Upon
request by
DAAC
operator

EcDsDeletionClea
nup.pl

DAAC Operator The Deletion Cleanup utility
examines the Inventory database
for granules that are eligible for
removal. The eligible granules have
a delete effective date in the
Inventory database (set by the Bulk
Delete utility) that is less than the
time argument passed into the
utility. This time argument is
referred to as the “lag time” for
deleting granules. Once the lag
time has passed, the granule is
eligible for physical removal from
the system.

Fetch File list Once per
invocation of
the utility

Stored Procedure EcDsDeletionCleanup
.pl

The Deletion Cleanup utility uses a
stored procedure in the Inventory
database to expand the list of
granules to delete to cover both the
primary and backup volume groups
and return the actual list of files.

Delete XML File Once per file
processed

 EcDsDeletionCleanup
.pl

For each file to delete, the Deletion
Cleanup utility removes the file from
the XML Archive.

Delete Data File Once per file
processed

 EcDsDeletionCleanup
.pl

For each data file to delete, the
Deletion Cleanup utility removes the
file from both the primary and
backup (if applicable) volume
group(s).

 4-40 305-EMD-220

4.1.2.2.3 AIM Archive Check and XML Archive Check utilities

Figure 4.1-6 shows the interactions between the Archive Check and XML Archive Check
utilities and other AIM components. Both utilities are initiated by the DAAC operator.

Figure 4.1-6. AIM Interfaces with DAAC Operators (Archive Check Utilities)

 4-41 305-EMD-220

Table 4.1-7 describes the interfaces / events depicted above.

Table 4.1-7. AIM Interfaces with DAAC Operators (Archive Check Utilities) (1 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Request
consistency
check of the
Archive

Upon
request by
Operations

EcDsAmArchiveC
heckUtility

DAAC Operations

The Archive Check utility obtains a
list of Volume Groups from the
Inventory database and for each
Volume Group, the utility compares
the list of files in the Volume Group
to the entries recorded in the
Inventory database that correspond
to granules that are mapped to the
Volume Group. The utility also
checks to make sure every science
granule within the Volume Group
has an XML file in the appropriate
directory of the XML Archive.

The mapping of data files to
granules is based upon ShortName,
VersionID, insert time into the
archive, and a comparison of the
acquisition time of the granule with
a date within the Volume Group to
indicate a forward processing or
reprocessing use. This rule can be
executed by any process to
determine the location of the data
file.

XML Files are stored based upon
the Year and Month of the
acquisition time of the granule, or
the Year and Month of the insert
time, if acquisition time is not
captured. The Inventory database
directly records this association to
the absolute directory where the
XML file is stored.

Request
consistency
check of the
XML Archive

Upon
request by
Operations

EcDsAmXMLArchi
veCheck

DAAC Operations

The XML Archive Check utility
iteratively processes each XML
metadata directory and compares
the contents of the directory with the
contents of the Inventory database.
It begins with getting a list of XML
metadata directories from the
database. Then loops through each
one doing the consistency check.

 4-42 305-EMD-220

Table 4.1-7. AIM Interfaces with DAAC Operators (Archive Check Utilities) (2 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Fetch Volume
Groups

Once per
invocation of
the utility

Stored Procedure EcDsAmArchiveChec
kUtility

The Archive Check utility retrieves
the list of Volume Groups to process
from the Inventory database.

Fetch Data File
list

Once per
Volume
Group
processed

Stored Procedure EcDsAmArchiveChec
kUtility

The Archive Check utility retrieves
the “internal” file name associated
with each granule that is mapped to
the Volume Group being processed.
The mapping is based upon ESDT,
insert time into the archive, and a
comparison of the acquisition time
of the granule with a date within the
Volume Group to indicate a forward
processing or reprocessing use.

Fetch XML File
list

Once per
volume
group
processed

Once per
XML
metadata
directory

Stored Procedure EcDsAmArchiveChec
kUtility

EcDsAmCheckXMLAr
chive

The Archive Check utility retrieves a
list of XML files associated with
each granule to be processed within
the Volume Group.
The XML Archive Check utility
iteratively retrieves the list of XML
files in each XML directory.

XML Directory
listing

Once per
granule
processed

 EcDsAmArchiveChec
kUtility

EcDsAmCheckXMLAr
chive

The Archive Check utility verifies
that each granule being processed
has an XML file in the XML Archive.

The XML Archive Check utility
obtains a list of all files within the
XML directory being processed.
This will be compared to the
contents of the Inventory database
which was determined in “Fetch
XML File list.”

Archive
Directory listing

Once per
Volume
Group
processed

 EcDsAmArchiveChec
kUtility

The Archive Check utility obtains a
list of files in the Volume Group
being processed and compares it to
the list of internal file names
retrieved from the Inventory
database.

 4-43 305-EMD-220

Table 4.1-7. AIM Interfaces with DAAC Operators (Archive Check Utilities) (3 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Report
Discrepancies

Once per
invocation of
the utility

 EcDsAmArchiveChec
kUtility

The Archive Check utility writes a
discrepancy report to a text file.
The report lists granules without
data files or XML files in the file
systems (phantoms). It also lists
data files or XML files that are found
in the file systems that are not
present in the Inventory database
(orphans).

Report XML
Discrepancies

Once per
invocation of
the utility

 EcDsAmCheckXMLAr
chive

The XML Archive Check utility
writes a discrepancy report to a text
file. The report lists granules
without XML files in the XML
Archive. It also reports the XML
files that are found in the XML
Archive not present in the Inventory
database.

4.1.2.3 AIM interfaces with BMGT

The BMGT subsystem bypasses the AIM software modules and directly accesses the AIM
Inventory database, XML Archive, and Granule Data File Archive. Access to the Inventory
database is done through stored procedures in the Inventory database. Figure 4.1-7 illustrates
these interfaces.

 4-44 305-EMD-220

Figure 4.1-7. AIM Interfaces with BMGT

Table 4.1-8 describes each of the interfaces show above.

Table 4.1-8. AIM Interfaces with BMGT (1 of 2)
Event Event

Frequency
Interface Initiated By Event Description

Store BMGT
Processing
Data

Constant
throughout
running of
BMGT

Stored
Procedures

BMGT processes The BMGT processes store
persistent data related to their
processing in the Inventory
database. Please refer to the
BMGT subsystem for a more
complete explanation of the
information stored.

 4-45 305-EMD-220

Table 4.1-8. AIM Interfaces with BMGT (2 of 2)
Event Event

Frequency
Interface Initiated By Event Description

Provide Event
Notifications

 Stored
Procedures

ECS processes The Inventory database provides a
table for ECS components to log
events. The events are retained for
a configured time period and
cleaned up by an AIM script. These
events are used by BMGT to
identify the events that occurred
within a given cycle (the events are
copied to a BMGT table). It is
important to configure the event
retention time to be long enough for
BMGT to capture the events before
they are removed.

Return BMGT
processing data

 Stored
Procedures

BMGT processes The BMGT retrieves it’s processing
information directly from the
Inventory database using a series of
stored procedures.

Provide Granule
Linkage

 Stored
Procedures

BMGT processes The BMGT obtains Science to
Browse granule linkage information
directly from the Inventory
database.

Provide XML file
location

Once per
granule
processed

Stored Procedure

BMGT processes The BMGT obtains the location of
the XML file within the XML Archive
directly from the Inventory
database.

Provide Browse
file location

 Stored Procedure

BMGT processes The BMGT obtains the location of
Browse files directly from the
Inventory database.

Provide XML
Files

Once per
granule
processed

 BMGT processes The BMGT reads XML files directly
from the XML archive to produce
the ECSMETG products.

Provide
Descriptor files

Once per
ESDT
processed

 BMGT processes The BMGT reads Descriptor files
directly from the XML archive to
produce the ECSMETC products.

 4-46 305-EMD-220

4.1.2.4 AIM interfaces with the Order Manager and DataPool subsystems

Figure 4.1-8 shows the AIM context diagram for OMS and DPL. Table 4.1-9 shows the AIM
interfaces with OMS and DPL.

Figure 4.1-8. AIM Context Diagram (OMS and DPL)

Table 4.1-9. AIM Interfaces with OMS and DPL (1 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Request
Granule Status

Once for
each
granule in
an Order

Stored Procedure EcOmOrderManager The Order Manager server executes
stored procedures to request the
status information (deleted, active)
for each granule ordered.

Request File
Information

Once for
each
granule in
an Order

Stored Procedure EcOmOrderManager The Order Manager server executes
stored procedures to request file
information, such as file size, for
each granule ordered.

 4-47 305-EMD-220

Table 4.1-9. AIM Interfaces with OMS and DPL (2 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Request
Volume Group
information

Once per
granule
processed

Stored Procedure OMS

DPL DPAD

The OMS executes stored
procedures to request Volume
Group information within the
Inventory database.

The DataPool Action Driver
requests information about the
location of the Granule Data file
from the Inventory database when
staging a granule into the DPL.

Return Granule
Status

Once for
each
granule in
an Order

Stored Procedure EcOmOrderManager The Inventory database returns
information about the status of the
granule within the archive. The
Inventory database also maps Local
Granule IDs to internal granule IDs
for OMS.

Return File
Information

 Stored Procedure EcOmOrderManager The Inventory database returns
information such as file size,
checksum, etc. about each granule
ordered in OMS.

Return Volume
Group
Information

 Stored Procedure EcOmOrderManager The Inventory database returns
information about the location of
Browse files within the AIM Granule
Archive.

Read Browse
File

Once per
browse
granule
ordered

 EcOmOrderManager The OMS distributes browse file
directly out of the Granule Archive.

Request XML
File Information

Once per
granule
processed

Stored Procedure

DPL DPAD The DataPool Action Driver
requests information about the XML
file from the Inventory database
when staging a granule into the
DPL.

Request Data
file information

Once per
granule
processed

Stored Procedure DPL DPAD The DataPool Action Driver
requests information about the
Granule Data file from the Inventory
database when staging a granule
(Science or Browse) into the DPL.

Return XML File
information

Once per
granule
processed

Stored Procedure DPL DPAD The Inventory database provides
information such as file name and
path to the DPAD.

 4-48 305-EMD-220

Table 4.1-9. AIM Interfaces with OMS and DPL (3 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Return Data
File information

Once per
granule
processed

Stored Procedure DPL DPAD The Inventory database provides
information such as file name
(internal and distributed), checksum,
file size, and LocalGranuleId to the
DPAD.

Return Volume
Group
information

Once per
granule
processed

Stored Procedure DPL DPAD The Inventory database provides
volume group information to the
DPAD.

Copy XML File Once per
granule
processed

 DPL DPAD The DPAD stages granules into the
DataPool by copying the XML file
directly from the XML Archive to the
DataPool file system.

Copy Data File Once per
granule
processed

 DPL DPAD The DPAD stages granules into the
DataPool by copying the granule
data file (Science or Browse)
directly from the Granule Data File
Archive to the DataPool file system.

4.1.3 DSS Error Handling and Processing
The Inventory Insert Utility and the XML Validation Utility are Java processes and use a “pipe”
based interface with the DPLIngest. They follow the coding standards for Java and contain only
one log file. Requests and parameters are passed from the DPLIngest to the IIU and XVU by
writing to the pipe. Spaces are used as delimiters between the arguments passed to these
utilities. The final processing status of each request is written to the application log along with
information to identify the granule being processed.

Both of these utilities return results to the DPLIngest by writing to the pipe. The IIU returns a
value of 0 for success if all metadata was successfully inserted. In the case of an error, it returns
a value of 1 along with a detailed text message describing the error. This utility doesn’t contain
any persistent storage of previous requests; it assumes that DPLIngest will always link a specific
granule ID to the same granule. Thus if it encounters a situation where metadata already exists
for a given granule ID, the IIU assumes that it previously processed the granule and returns a
success result.

The XVU has multiple possible return values. It returns a value of 0 for success; it returns a
value of 2 if metadata in the request does not pass the validation process, it returns a value of 3
to indicate that the metadata passed validation but some optional elements were removed (this is
considered a “warning” message), and it returns a value of 4 to indicate that errors were
encountered attempting to validate the granule and that DPLIngest should try the request again.
When the XVU returns 2, 3, or 4 it will also return a detailed text message describing the
warning or error. The XVU has no persistent storage of requests, in the event that DPLIngest

 4-49 305-EMD-220

validates the same granule more than one time, the XVU will process the XML metadata file
without regard to previous any actions.

The ESDT Maintenance GUI responds directly to the operator, thus it displays error messages
within the GUI and has a separate screen for displaying validation errors. It also has an
application log for capturing processing information and error messages. The Granule Deletion
utilities, the Quality Assurance Update utility, the XML Replacement utility, and the Archive
Check utilities are command line utilities that interact directly with the Operator. They write to
the operator console/xterm and use application logs to show detailed processing flow
information and detailed error messages.

4.1.4 DSS Data Stores
Table 4.1-10 provides a description of the data stores for the AIM CSCI, and the conceptual
model of the data store. The physical model for the AIM data stores can be found in the AIM
Database Design and Schema Specifications for the EMD Project (CDRL 311).

Table 4.1-10. AIM CSCI Data Stores (1 of 2)
Data Store Type Description

AIM Inventory Database

The primary purpose of the AIM Inventory database is to configure
ESDTs and track the status and location of granules within the DSS.
The Inventory database catalogs information about the following
objects:
• ESDT definitions
• Collection level information
• Browse data
• Science data (as granules)
• Quality Assessments
• Delivered Algorithm Packages
• Production History

 4-50 305-EMD-220

Table 4.1-10. AIM CSCI Data Stores (2 of 2)
Data Store Type Description

XML Archive File
System

The XML archive is a SAN attached managed file system that is
available to most of the processing blades. It contains directories for
the following:
 A metadata directory stores an XML metadata file for each

Science granule archived in the ECS. The directories for storing
XML metadata are first separated by ESDT. Within each ESDT
granule directories are partitioned into directories based upon
the year and month of the acquisition time. If acquisition time is
not recorded for an ESDT, then the insert time of the granule will
be used.

 A descriptor directory stores a descriptor file along with the
associated XML schema file for the ESDT installed in the mode.

 An MCF directory stores a Metadata Control File (MCF) for each
ESDT installed in the system.

 A BMGT directory is used by the BMGT subsystem for
persistent storage of production outputs and reports.

Granule Archive File
System

The Granule Archive is the primary data store for the ECS. It
consists of a set of managed file systems that are broken up into
directories that are assigned to the storage of files for a given ESDT
or set of ESDTs. These directories are referred to as Volume
Groups and typically have a specific time range of granules that are
stored in the directory.

 4-51 305-EMD-220

4.2 DPL Ingest Subsystem Overview
The Data Pool Ingest service will handle the SIPS ingest interface1, cross-DAAC ingest, EDOS
ingest, ASTER Ingest and Polling without Delivery Record specifically for EMOS. Unlike the
classic INGST subsystem, the Data Pool Ingest service will insert the ingested data into the Data
Pool, in addition to inserting the ingested data into the archive.
DPL Ingest Subsystem Context
Figure 4.2-1 is the DPL Ingest context diagram. The diagram provides an illustration of the Data
Pool Ingest and archiving steps. Table 4.2-1 provides descriptions of the interface events shown
in the DPL Ingest Subsystem context diagram.

Archive
Stornext
archive

DPL Insert

DPL

Request Queue

DPL Ingest
Subsystem

Create PDR Data
Provider Polling

Directory

IIU Insert

AIM

Polling
Notify with
PAN/PDRD

ECS M etadata
Inventory

DPL File
systems

Figure 4.2-1. DPL Ingest Subsystem Context Diagram

1 EOSDIS Document 423-41-57 Interface Control Document between the ECS and the SIPS Volume 0 revision H

 4-52 305-EMD-220

Table 4.2-1. DPL Ingest Subsystem Interface Events
Event Interface Event Description

Create PDR SIPS providers place their data and PDR files into a polling directory. The
directory can be local, e.g., accessible via a mount point; or remote, i.e.,
accessible via FTP/SCP. For Polling without Delivery Record provider, the data
file is transferred to the polling directory rather than a PDR.

Polling The DPL Ingest Service polls these directories as configured by the DAAC.
Request Queue The DPL Ingest Service queues ingest requests for validation and processing.

The DPL Ingest Service queues all PDR that it finds. To decide which validated
PDR will be processed next, it checks available resources, timestamps and
priorities of the requests.

ODL To XML
Conversion

The DPL Ingest Service converts the input ODL metadata (if applicable) to XML
metadata for insertion into DPL.

XML Metadata
Validation

The DPL Ingest Service calls the XML Validation Utility to validate the XML
metadata file.

DPL Insert The granule files are copied into the Data Pool SAN, using hidden directories
for that purpose unless the DAAC requested that the data be published on
insert.

Archive The DPL Ingest Service then copies the granules from the hidden Data Pool
directories into the StorNext archive.

IIU Insert The DPL Ingest Service calls the Inventory Insert Utility to insert the granule
metadata into the AIM database.

SSS notification The DPL Ingest service places a record for the Spatial subscription server to
decide whether any subscription should fire based on the granule insert.

Notify with PAN or
PDRD

The provider is notified of the ingest outcome in the format of PDRD (if PDR
validation failed) or PAN (for reasons other than PDR validation failure).

Queue for Publication The DPL Ingest service places a record for the granule to be published if its
collection is marked for publication. The DPAD will then perform the
publication.

DPL Ingest Subsystem Structure

The DPL Ingest Subsystem consists of four CSCIs: the Polling Service, the Processing Service,
the Notification Service, and the DPL Ingest GUI. The Polling Service is responsible for the
provision of work to the service via transferring Product Delivery Records (PDRs) into the
system and registering them, or in the case of Polling without Delivery record, creating a PDR
for each data file and registering them. The Processing Service picks up registered PDRs and
attempt to ingest the data they describe into the Data Pool and the Archive, performing any
additional processing required for specific inventory. The Processing component will checkpoint
a particular PDR on completion of various steps during processing and register a notification (i.e.
PDRD or PAN) for Notification Service to process when the PDR reached a terminal state.
Terminal states are Successful, Partial_Failure, Failed, Cancelled, and Partially_Cancelled.
Terminal states are conveyed to the provider by means of a Product Acceptance Notification
(PAN) or Product Delivery Discrepancy Report (PDRD). The Notification Service will detect
registered notifications and deliver them to the provider based on the provider configured
notification methods. The DPL Ingest GUI is used to configure, monitor and control the
operations of the DPL Ingest Service.

 4-53 305-EMD-220

Use of COTS in the DPL Ingest Subsystem
• RogueWave’s Tools.h++

The Tools.h++ class libraries are used by the DPL Ingest Service to provide basic
functions and objects such as strings and collections. These libraries must be installed
with the DPL Ingest software for any of the DPL Ingest Service processes to run.

• Sybase Open Client / CT_LIB
The Sybase Open Client provides access between DPL Ingest Service custom code and
the Sybase SQL Server DBMS.

• Sybase Server
The Sybase SQL server provides access for DPL Ingest Service to insert, update and
delete DPL Ingest Requests, DPL Ingest configurations, and Operator Interventions. The
Sybase SQL Server must be running during operations for the DPL Ingest Service to
process DPL Ingest Requests.

• UNIX Network Services
DNS, NFS, E-mail, FTP, TCP/IP and the other Unix services provided are obtained from
the CSS.

4.2.1 DPL Ingest Computer Software Configuration Item Description

4.2.1.1 DPL Ingest Service CSCI Functional Overview
The DPL Ingest Subsystem consists of four CSCIs: the Polling Service, the Processing Service,
the Notification Service, and the DPL Ingest GUI. The Processing Service executes as a process
and interacts with the following CSCIs: INGST Database, the Polling Service, the Notification
Service, the XML Validation Utility (XVU), the Inventory Insert Utility (IIU), and the Data Pool
System (DPL). The Polling Service transfers Product Delivery Records (PDRs) into the system
and registers them to the INGST Database. Processing Service retrieves the PDRs from INGEST
Database and validates them. If the PDR is valid, Processing Service attempts to ingest the
inventory they describe into the Data Pool and Archive, performing any additional processing
required for specific inventory. The Processing Service updates the status of a particular PDR on
completion of various steps during processing. For invalid PDR, a PDRD is generated. An
operator intervention is created if the request encounters a processing problem. DAAC OPS
personnel can use the DPL Ingest GUI to monitor and control the processing of the request. In
response to an intervention, the Operator can view the error details, retry the erroneous granule
or fail the request if the problem cannot be resolve through retries. Processing Service also
generates notification for each request that has reached a terminal state and register notification
in INGEST Database. The Notification Service will detect the registered notifications and deliver
them to the provider based on the provider configured notification methods. Operator Alert is
generated when an internal or external resource failure is detected. When an operator alert is
generated, DPL Ingest services will halt dispatching of the requests that are utilizing those failed
resources, retries the failed operation that caused the alert (if so configured) and automatically
clear the alert if the operation succeeds on retry. Operator can view the operator alerts on DPL
Ingest GUI and can manually clear the operator alerts through the GUI.

 4-54 305-EMD-220

4.2.1.2 DPL Ingest Service CSCI Context
Figures 4.2-2 is the DPL Ingest Service CSCI context diagrams. The diagrams show the events
sent to the DPL Ingest Service CSCIs and the events the DPL Ingest CSCIs send to other CSCIs.
Table 4.2-2 provides descriptions of the interface events shown in the DPL Ingest Service CSCI
context diagram.

Polling CSCI

Processing CSCI

Notification CSCI

External / Local Disk

Sybase Server

Data Provider

StorNext Archive

DPL CSCI
DPL INGEST

GUI CSCI

Create PDRPolling

Fetch Configuration Information

Fetch Configuration Information
Fetch Notification Actions
Create Alert

Fetch Configuration Information
Fetch DPL Ingest Request
Fetch Actions of Request Changes

Register PDR
Create Alert

DPL Insert

Archive Insert

Inventory Insert

Notify with PAN/PDRD

Update DPL Ingest
Request
Create Operator
InterventionSuspend / Resume /

Cancel / Retrieve / Alter
Request
Suspend /
Resume Resource

Transfer Data

Polling CSCI Polling CSCI

Processing CSCI Processing CSCI

Notification CSCI Notification CSCI

External / Local DiskExternal / Local Disk

Sybase Server Sybase Server

Data Provider Data Provider

IIU CSCI

DPL CSCIDPL CSCI
DPL INGEST

GUI CSCI
DPL INGEST

GUI CSCI

Create PDRPolling

Fetch Configuration Information

Fetch Configuration Information
Fetch Notification Actions
Create Alert

Fetch Configuration Information
Fetch DPL Ingest Request
Fetch Actions of Request Changes

Register PDR
Create Alert

DPL Insert

Archive Insert

Validate Metadata

Notify with PAN/PDRD

Update DPL Ingest
Request
Create Operator
InterventionSuspend / Resume /

Cancel / Retrieve / Alter
Request
Suspend /
Resume Resource

Transfer Data
Checksum Data

XVU CSCI

Figure 4.2-2. DPL Ingest CSCI Context Diagram

 4-55 305-EMD-220

Table 4.2-2. DPL Ingest CSCI Interface Events (1 of 2)
Event Interface Event Description

Create PDR SIPS providers place their data and PDR files into a polling directory which will
be polled by the Polling CSCI. The directory can be local, e.g., accessible via a
mount point; or remote, i.e., accessible via FTP.

Polling The Polling CSCI polls PDRs from directories (External/Local Disk) by Data
Provider as configured by the DAAC.

Register PDR The Polling CSCI queues ingest requests for validation and processing into the
Sybase Server (INGST Database). The Processing CSCI later queues all PDR
that it finds. To decide which validated PDR will be processed next, it checks
available resources and DAAC configured priorities.

ODL To XML
Conversion

The DPL Ingest Service converts the input ODL metadata (if applicable) to XML
metadata for insertion into DPL.

XML Metadata
Validation

The DPL Ingest Service calls the XML Validation Utility to validate the XML
metadata file.

DPL Insert The Processing CSCI copies the granule files into the Data Pool SAN, using
hidden directories for that purpose unless the DAAC requested that the data be
published on insert.

Archive Insert The Processing CSCI copies the granule files in to the StorNext archive.
IIU Insert The DPL Ingest Service calls the Inventory Insert Utility to insert the granule

metadata into the AIM database.
SSS notification The DPL Ingest service places a record in the SSS database for the Spatial

subscription server to decide whether any subscription should fire based on the
granule insert.

Notify with PAN or
PDRD

The Notification CSCI sends notification to the Data Provider, it could be
immediate via PDRD if PDR validation failed, or later on via a short or long PAN.

Queue for Publication The DPL Ingest service places a record in the DPL database for the granule to
be published if its collection is marked for publication. The DPAD will then
perform the publication.

Create Alert The Polling CSCI, Processing CSCI and Notification CSCI creates an alert for
resource failures and stores the alert in the Sybase Server (INGST Database).

Fetch Config Info The Polling CSCI, Processing CSCI and Notification CSCI retrieves the
configuration information from Sybase Server (INGST Database).

Update DPL Ingest
Request

The Processing CSCI updates DPL Ingest request in the Sybase Server
(INGST Database).

Create Operator
Intervention

The Polling CSCI, Processing CSCI creates new Operator Intervention for
request failures in the Sybase Server (INGST Database).

Fetch DPL Ingest
Request

The Processing CSCI retrieves information associated with a DPL Ingest request
from the Sybase Server (INGST Database).

Fetch Actions of
Request Changes

The Processing CSCI retrieves actions regarding request changes, such as,
request priority change, cancel request, suspend request, and update request
parameters from the Sybase Server (INGST Database).

Validate Metadata The Processing CSCI populates the metadata files and sends them to the XVU
CSCI for validation.

 4-56 305-EMD-220

 4-57 305-EMD-220

Table 4.2-2. DPL Ingest CSCI Interface Events (2 of 2)
Event Interface Event Description

Insert Metadata The Processing CSCI sends the granule metadata to the IIU CSCI for insertion
into the AIM database.

Fetch Notification
Actions

The Notification CSCI retrieves actions regarding request notifications from the
Sybase Server (INGST Database).

Suspend/Resume/Ca
ncel/Alter/Retrieve
Request

The DPL Ingest GUI CSCI suspends, resumes, cancels, alters and retrieves
requests from the Sybase Server (INGST Database).

Suspend/Resume
Resource

The DPL Ingest GUI CSCI suspends or resumes dispatching to all or selected
resources in the Sybase Server (INGST Database).

Transfer Data The Processing CSCI transfers data files from the External/Local Disk specified
in PDR.

Checksum Data The Processing CSCI checksum data files from the checksum information
specified in PDR or calculate the checksum based on the provider and system
configuration.

4.2.1.3 DPL Ingest Architecture
The Polling Ingest Interface (EcDlInPollingService) polls accessible file system locations to
detect data to be ingested. This process submits a Product Delivery Record (PDR). The Cross-
DAAC Ingest Interface (EcDlInEmailGWServer) polls a configured directory for distribution
notices (flat files converted from email messages). This process detects the distribution notice
files and creates Product Delivery Record files, which are put in a polling directory and polled by
the Polling Ingest Interface.
The Polling Ingest Interface queues ingest requests into the Sybase Server (INGST database) for
Processing Service to pick up. The Processing Interface queues all PDR that it finds, to decide
which validated PDR will be processed next, it checks available resources, timestamps and
priorities of the request. The Processing Interface validates metadata using the XVU and inserts
the granules into the AIM inventory. The Processing Interface copies the granule files into Data
Pool SAN, using hidden directories for that purpose unless the DAAC requested that the data be
published on insert. The processing Interface copies the granule files into the StorNext archive.
The processing service copies the XML metadata file to the small file archive.
Figure 4.2-3 is the DPL Ingest CSCI architecture diagram. The diagram shows the events sent to
the DPL Ingest CSCI processes and the events the DPL Ingest CSCI processes send to other
processes.
Note: System startup and shutdown - Please refer to the release-related, current version of the
Mission Operations Procedures for the EMD Project document (611) and the current EMD
Project Training Material document (625).

305-EMD-220

Polling
CSCI

Processing CSCI

Notification CSCI

External / Local Disk

Sybase Server

Data Provider

StorNext Archive

DPL CSCI
DPL INGEST

GUI CSCI

Polling

Fetch Configuration
Information

Create Alert

Fetch Configuration Information
Fetch DPL Ingest Request
Fetch Actions of Request Changes

Register PDR
Create Alert

DPL Insert
Archive Insert

Notify with PAN/PDRD

Update DPL Ingest
Request
Create Operator
Interventionsume /

eve / Alte

Figure 4.2-3. DPL Ingest CSCI Architecture Diagram Figure 4.2-3. DPL Ingest CSCI Architecture Diagram

Suspend / Re
Cancel / Retri r

urce

Request
Suspend
/ Resume Reso

Transfer
Data

Polling
CSCI
Polling
CSCI

Processing CSCIProcessing CSCI

Notification CSCI Notification CSCI

External / Local DiskExternal / Local Disk

Sybase ServerSybase Server

Data ProviderData Provider

IIU CSCI

DPL CSCIDPL CSCI
DPL INGEST

GUI CSCI
DPL INGEST

GUI CSCI

Create PDRPolling

Fetch Configuration
Information

Create Alert

Fetch Configuration Information
Fetch DPL Ingest Request
Fetch Actions of Request Changes

Register PDR
Create Alert

DPL Insert
Archive Insert

Validate Metadata

Inventory Insert

Notify with PAN/PDRD

Update DPL Ingest
Request
Create Operator
Interventionsume /

eve / Alte
Suspend / Re
Cancel / Retri r

urce

Request
Suspend
/ Resume Reso

Transfer
Data
Checksum
Data

XVU CSCI

Fetch Configuration Information
Fetch Notification Actions

 4-58

4.2.1.4 DPL Ingest Process Descriptions
Table 4.2-3 provides the descriptions of the processes shown in the DPL Ingest CSCI
architecture diagram (Figure 4.2-3).

Table 4.2-3. DPL Ingest CSCI Processes (1 of 2)
Process Type Hardware

CI
Source Functionality

EcDlInPollingService Server DPLHW Developed • Detect new Product Delivery Records
(PDRs) and transfer them into
system.

• Creates a unique identifier for the
request.

• Register request.
EcDlInGui GUI INTHW Developed Provides Maintenance and Operations

(M&O) personnel the capability, via GUI
Interface,
• To modify ingest configuration

parameters.
• To monitor the status of ongoing

ingest requests, to suspend, resume,
cancel, alter or retrieve DPL ingest
requests.

• To suspend or resume resource.
EcDlInProcessingServi
ce

Server DPLHW Developed • Ingests granules associated with
ingest requests (PDRS) into the
Datapool and archive.

• Registers granule information with
AIM

• Manages the DPL ingest request
traffic and the processing of the DPL
ingest requests.

• Provides the capability to process
multiple ingest requests concurrently
by placing the request in a queue.

• In the event of a failure, the
EcDlInProcessingService process
restores on-going requests from the
Ingest database.

EcDlInNotificationServi
ce

Server DPLHW Developed • Send the end-user Notification, either
Product Acceptance (PAN) or Product
Delivery Discrepancy Report (PDRD),
on completing a ingest request.

 4-59 305-EMD-220

Table 4.2-3. DPL Ingest CSCI Processes (2 of 2)
Process Type Hardware

CI
Source Functionality

Sybase Server ACMHW COTS • Stores and provides access to the
DPL Ingest Service internal data. In
particular, the database stores the
Ingest operations databases – DPL
Ingest History Logs and the DPL
Ingest request checkpoint state, and
template information. See Section
4.2.1.6 DPL Ingest Data Stores.

EMD Baseline Information System (EBIS) Document 920-TDx-001 (Hardware Design
Diagram) provides descriptions of the HWCI, and document 920-TDx-002 (Hardware-Software
Map) provides site-specific hardware/software mapping.

4.2.1.5 DPL Ingest Process Interface Descriptions
Table 4.2-4 provides descriptions of the interface events shown in the DPL Ingest CSCI
Architecture diagram.

Table 4.2-4. DPL Ingest CSCI Process Interface Events (1 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Create PDR One per
request

Directories on remote or
local disk

External Data
Provider

SIPS providers place their
data and PDR files into a
polling directory which will
be polled by the
EcDlInPollingService. The
directory can be local, e.g.,
accessible via a mount
point; or remote, i.e.,
accessible via FTP/SCP.

Polling One per
request

Directories on remote or
local disk

Process:
EcDlInPollingServi
ce
Class:
DpInPoller

The EcDlInPollingService
polls PDRs from directories
(External/Local Disk) by
Data Provider as
configured by the DAAC.

 4-60 305-EMD-220

Table 4.2-4. DPL Ingest CSCI Process Interface Events (2 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Register PDR One per
request

Process:
Sybase Server (COTS)

Process:
EcDlInPollingServi
ce
Class:
DpInPollingLocatio
n

The EcDlInPollingService
queues ingest requests for
validation and processing
into the Sybase Server
(INGST database). The
EcDlInProcessingService
later queues all PDR that it
finds. To decide which
validated PDR will be
processed next, it checks
available resources and
DAAC configured priorities.

DPL Insert One per
request

Process:
Sybase Server (COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInInternalFtpTra
nsferQAction

The
EcDlInProcessingService
copies the granule files into
the Data Pool SAN, using
hidden directories for that
purpose unless the DAAC
requested that the data be
published on insert.

Archive Insert One per
request

Process:
StorNext copy

Process:
EcDlInProcessingS
ervice
Class:
DpInInternalFtpTra
nsferQAction

The
EcDlInProcessingService
copies the granule files into
the StoreNext archive file
system.

 4-61 305-EMD-220

Table 4.2-4. DPL Ingest CSCI Process Interface Events (3 of 5)
Event Event

Frequency
Interface Initiated By Event Description

IIU Insert One per
request

Process:
EcDsAmIiu
Library:
iiu.jar

Process:
EcDlInProcessingS
ervice
Class:
DpInInventoryInser
tQAction

The
EcDlInProcessingService
also inserts the granules
into the inventory.

Notify with PAN
or PDRD

One per
email
notification
request

Process:
Sendmail (COTS)
Ftp daemon (COTS)

Process:
EcDlInNotificationS
ervice
Class:
DpInNotifyEmailAct
ion
DpInNotifyFtpActio
n

The
EcDlInNotificationService
sends notification to the
Data Provider, it could be
immediate via PDRD if
PDR validation failed, or
later on via a short or long
PAN.

Create Alert One per
request

Process:
Sybase Server (COTS)

Process:
EcDlInPollingServi
ce
EcDlInProcessingS
ervice
EcDlInNotificationS
ervice
Class:
DpCoAlert

The EcDlInPollingService,
EcDlInProcessingService
and
EcDlInNotificationService
creates an alert for
resource failures and
stores the alert in the
Sybase Server (INGST
Database).

Fetch Config Info One per
startup/
One per
configurable
interval

Process:
Sybase Server (COTS)

Process:
EcDlInPollingServi
ce
EcDlInProcessingS
ervice
EcDlInNotificationS
ervice
Class:
DpInNotifyDatabas
e

The EcDlInPollingService,
EcDlInProcessingService
and
EcDlInNotificationService
retrieve the configuration
information from Sybase
Server (INGST Database).

Update DPL
Ingest Request

One per
request

Process:
Sybase Server (COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInProcessingDbI
nterface

The
EcDlInProcessingService
updates DPL Ingest
request in the Sybase
Server (INGST Database).

 4-62 305-EMD-220

Table 4.2-4. DPL Ingest CSCI Process Interface Events (4 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Create Operator
Intervention

One per
request

Process:
Sybase Server (COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInProcessingDbI
nterface

The
EcDlInProcessingService
creates new Operator
Intervention for request
failures in the Sybase
Server (INGST Database).

Fetch DPL Ingest
Request

One per
request

Process:
Sybase Server (COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInProcessingDbI
nterface

The
EcDlInProcessingService
retrieves information
associated with a DPL
Ingest request from the
Sybase Server (INGST
Database).

Fetch Actions of
Request
Changes

One per
configurable
interval

Process:
Sybase Server (COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInProcessingDbI
nterface

The
EcDlInProcessingService
retrieves actions regarding
request changes, such as,
request priority change,
cancel request, suspend
request, and update
request parameters from
the Sybase Server (INGST
Database).

ODL To XML
Conversion

One per
ODL
metadata

Process:
OdlToXmlConverter
Library:
odlToXml.jar

Process:
EcDlInProcessingS
ervice
Class:
DpInGranuleSched
uler

The
EcDlInProcessingService
invoke a java utility to
convert the ODL metadata
file into XML metadata file.

Validate XML
Metadata

One per
metadata
validation

Process:
EcDsAmXvu
Library:
xmlsvcs

Process:
EcDlInProcessingS
ervice
Class:
DpInXmlValidation
QAction

The
EcDlInProcessingService
populates the metadata
files and sends them to the
XVU for validation.

 4-63 305-EMD-220

Table 4.2-4. DPL Ingest CSCI Process Interface Events (5 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Request Data
Search

One per
granule
pointer in
linkage file

Process:
Sybase Server (COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInGranuleSched
uler

The
EcDlInProcessingService
queries Sybase server
(Inventory database), for
the granule corresponding
to a particular ESDT short
name and version, which
has a particular local
granule id.

Fetch Notification
Actions

One per
configurable
interval

Process:
Sybase Server (COTS)

Process:
EcDlInNotificaionS
ervice
Class:
DpInNotifyDatabas
e

The
EcDlInNotificationService
retrieves actions regarding
request notifications from
the Sybase Server (INGST
Database).

Suspend/Resum
e/Cancel/Alter/R
etrieve Request

One per click Process:
Sybase Server (COTS)

DPL Ingest GUI The DPL Ingest GUI scripts
send suspend, resume,
cancel, alter and retrieve
request command to the
Sybase Server (INGST
Database).

Suspend/Resum
e Resource

One per click Process:
Sybase Server (COTS)

DPL Ingest GUI The DPL Ingest GUI scripts
send, suspend, or resume
resource command to the
Sybase Server (INGST
Database).

Transfer Data One per
science data
file activity

Process:
Ftpd (COTS) or sshd
(COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInInternalFtpTra
nsferQAction/DpInI
nternalScpTransfer
QAction

The
EcDlInProcessingService
transfers data files from the
External/Local Disk
specified in PDR.

Checksum Data One per data
file activity

Process:
Checksum utilities
(COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInChecksumQA
ction

The
EcDlInProcessingService
checksums data files from
the checksum information
specified in PDR or
calculate the checksum
based on the provider and
system configuration.

 4-64 305-EMD-220

4.2.1.6 Ingest Data Stores
The DPL Ingest CSCI uses the COTS product Sybase to store related DPL Ingest Information.
Table 4.2-5 provides descriptions of the data stores.

Table 4.2-5. DPL Ingest CSCI Data Stores
Data Store Type Description

INGST Database Sybase INGST Database is designed to store the persistent information of
user request, processing configuration, request aging configuration,
and request cleanup configuration.

DPL Database Sybase The Data Pool (DPL) database implements the large majority of the
persistent data requirements for the DPL subsystem which supports
large online cache of important ECS data at each DAAC and avoids
tape access to ECS archive.

Inventory Database Sybase The AIM Inventory database is designed to store the minimal
metadata information of ingested granules and file storage
information of data and metadata files.

 4-65 305-EMD-220

4.3 Client Subsystem Overview
The Client Subsystem (CLS) is a set of CSCIs and processes that provide EMD end-user
services.

These services include allowing users to:

• View HDF formatted files

In addition, the workstations operating within an ECS CLS contains infrastructure support
software as part of the CSS and platform support software.

Client Subsystem Context

Table 4.3-1 describes the Client Subsystem Interface events.

Table 4.3-1. Client Subsystem Interface Events
Event Interface Event Description

Enter HDF File
Name

This is a file name for a Hierarchical Data Format (HDF) file. The user opens the file
to see the data in the file.

Client Subsystem Structure

4.3.1 Tools Description

Table 4.3-2 describes the SSI&T event descriptions.

Table 4.3-2. SSI&T Tool Events
Event Event

Frequency
Interface Initiated By Event Description

Hdiff
hdiff

cmd line I/F
and COTS
binary

SSIT Developed
and COTS

Tools to compare binary and HDF
files. The shell program
PPAEcClHDiff and is used to
assist with the viewing and
comparisons.

 4-66 305-EMD-220

4.4 Data Management Subsystem Overview
The Data Management Subsystem (DMS) provides interoperability between the ECHO (EOS
ClearingHouse) and the ECS. The DMS provides this service by supplying a gateway process.
The ECHO WSDL Order Component (EWOC) allows users to order ECS products via order
tools that interface with ECHO. The ECS will no longer support search and browse capabilities
as these will be handled internally by ECHO. The EWOC will provide the means for ECHO to
present orders to ECS on behalf of the user.

DMS functionality includes:
• DMS validates and places orders that users submit using the clients that interface with

ECHO.
• DMS submits orders to External Processors for granules that require external processing.
• DMS allows External Processors to update the status of requests in ECS.

Data Management Subsystem Context

Figure 4.4-1 is the Data Management Subsystem context diagrams. The diagrams show the
events sent to the Data Management Subsystem and the events the Data Management Subsystem
sends to other external systems and CSMS subsystems. Table 4.4-1 provides descriptions of the
interface events shown in the Data Management Subsystem context diagrams.

 4-67 305-EMD-220

Data Management
Subsystem

OMS

ECHO

External

Processor

Insert Product
Distribution Request
Update Request status Login, logout

Return Submit Acknowledgement
Close Provider Order

Submit Order

Submit Order
Return Submit Acknowledgement
Request Order Status Update

Submit External Processing Order
Return Submit Acknowledgement
Return Status Update Acknowledgement

Figure 4.4-1. Data Management Subsystem Context Diagram

 4-68 305-EMD-220

Table 4.4-1. Data Management Subsystem Interface Events
Event Interface Event Description

Insert Product
Distribution Request

The Data Management Subsystem (DMS) inserts product distribution requests
in the Order Manager Data Base Management System within the Order
Manager Subsystem (OMS).

Update Request
Status

The DMS submits a request status update to the OMS

Submit Order The DMS receives product requests from the External Processor*
Return Submit
Acknowledgement

The DMS receives confirmation of an external processing order from the
External Processor

Request Status
Update

The DMS receives status update requests from the External Processor

Submit External
Processing Order

The DMS submits an external processing request in the External Processor

Return Submit
Acknowledgement

The DMS returns a confirmation of an order submitted from External
Processor

Return Status Update
Acknowledgement

The DMS returns a confirmation of a status update request by the External
Processor

Submit Order The DMS receives product requests from the ECHO on behalf of an external
ECS user

Login, logout The DMS logins and logouts to Authentication Service at ECHO to obtain
security token

Return Submit
Acknowledgement

The DMS returns a confirmation of order submitted from ECHO

Close Provider Order The DMS updates the status of requests at ECHO when the requests reach
terminal states at ECS.

*Note: For the purpose of this document, “External Processor” refers to either an External Subsetter (HAS) or an
On-Demand Processor (S4PM), both of which are treated the same by the DMS.

Data Management Subsystem Structure

The DMS consist of one CSCI:

• The ECHO WSDL Order Component (EWOC) is a software configuration item. The
EWOC provides a gateway between ECHO and ECS by allowing users using external
client to submit ECS orders through ECHO. The EWOC validates and submits orders to
ECS for product distribution. The EWOC also allows interaction with External
Processors. External Processors receive external processing orders from the EWOC and
submit status update requests to the EWOC.

Use of COTS in the Data Management Subsystem

• Apache Axis 1.4

The Apache Axis packages are used to generate JAVA web service which uses SOAP
messages for communication.

 4-69 305-EMD-220

Error Handling and processing

EMD Process Framework package is used for general error reporting. The functions can catch
exceptions coming from try blocks and the exception stack trace is logged in the log files.
Exceptions that occur during interaction with ECHO will be propagated to the ECHO to indicate
order status to the user.

There are three kinds of logs: operations, debugging and performance.

Each conforms to and is supported by the process framework package under
/ecs/formal/COMMON/java/gov/nasa/emd/processframework which wraps the Java Logging
utility. Each type of log provides for four different levels of output: NONE, INFORMATION,
VERBOSE and XVERBOSE.

For writing messages to the log, the following function from LogWrapper class is used:

Public static void log(int level, boolean debug, boolean ops, String message),

For example, the following writes to operations log with output level of INFORMATION.

LogWrapper.log (Logger.INFORMATION, false, true, “EWOC Initialization complete”);

For writing messages to the debug log, the following function calls are used:

LogWrapper.log(Logger.VERBOSE, true, false, “CloseRequestPoller”);

4.4.1 ECHO WSDL Order Component Software Description

4.4.1.1 ECHO WSDL Order Component Functional Overview

The ECHO WSDL Order Component (EWOC) CSCI provides a gateway between ECHO and
ECS systems. The users using the client will search, browse and order data using ECHO and
submit orders to the EWOC CSCI. The EWOC CSCI then validates the order according to the
ECS rules, and submits the requests to the Order Manager Subsystem for product distribution.
The EWOC CSCI also updates the status of the request at ECHO to provide the user with an
order status.

The EWOC CSCI is a web service. Apache Axis handles service layer and receives messages
via SOAP format. Once the order is received, the EWOC returns submit acknowledgement
which describes whether order submission was successful. For orders that require external
processing, the EWOC places a request at the External Processor and accepts status update
requests from the External Processor.

4.4.1.2 ECHO WSDL Order Component Context

Figure 4.4-2 is the EWOC CSCI context diagrams. The diagrams show the events sent to other
CSCIs or CSCs and the events the EWOC CSCI receives from other CSCIs and CSCs.
Table 4.4-2 provides descriptions of the interface events shown in the EWOC CSCI context
diagrams.

 4-70 305-EMD-220

EWOC CSCI

OMS Database

ECHO

External

Processor

Insert Product
Distribution Request
Update Request status Login, logout

Return Submit Acknowledgement
Close Provider Order

Submit Order

Submit Order
Return Submit Acknowledgement
Request Order Status Update

Submit External Processing Order
Return Submit Acknowledgement
Return Status Update Acknowledgement

Figure 4.4-2. ECHO WSDL Order Component CSCI Context Diagram

 4-71 305-EMD-220

Table 4.4-2. ECHO WSDL Order Component CSCI Interface Events
Event Interface Event Description

Insert Product
Distribution Request

The ECHO WSDL Ordering Component (EWOC) inserts product distribution
requests in the Order Manager Data Base Management System within the
Order Manager Subsystem (OMS).

Update Request
Status

The EWOC submits a request status update to the OMS

Submit Order The EWOC receives product requests from the External Processor
Return Submit
Acknowledgement

The EWOC receives a confirmation of an external processing order from the
External Processor

Request Order
Status Update

The EWOC receives status update requests from the External Processor

Submit External
Processing Order

The EWOC submits an external processing request in the External
Processor

Return Submit
Acknowledgement

The EWOC returns a confirmation of an order submitted from External
Processor

Return Status Update
Acknowledgement

The EWOC returns a confirmation of a status update request by the External
Processor

Submit Order The EWOC receives product requests from the ECHO on behalf of an external
ECS user

Login, logout The EWOC logins and logouts to Authentication Service at ECHO to obtain
security token

Return Submit
Acknowledgement

The EWOC returns a confirmation of order submitted from ECHO

Close Provider Order The EWOC updates the status of requests at ECHO when the requests reach
terminal states at ECS.

4.4.1.3 ECHO WSDL Order Component Architecture

Figure 4.4-3 is the EWOC CSCI architecture diagram. The diagram shows the events sent to the
EWOC CSCI processes and the events the EWOC CSCI process sends to other processes.

The EWOC CSCI is one process, the EcDmEwoc as shown in the ECHO WSDL Order
Component CSCI Architecture Diagram.

 4-72 305-EMD-220

EcDmEwoc
Order Fulfillment
Order Status Update

OMS Database

ECHO
Authentication
Order Processing

External Processor

Order Fulfillment

Insert Product
Distribution Request
Update Request status Login, logout

Return Submit Acknowledgement
Close Provider Order

Request ECS Product

Request ECS product
Request Order Status Update
Return Product Request
Acknowledgement

Request External Processing Product
Return Submit Acknowledgement
Return Status Update Acknowledgement

Figure 4.4-3. ECHO WSDL Order Component CSCI Architecture Diagram

4.4.1.4 ECHO WSDL Order Component Process Descriptions

Table 4.4-3 provides descriptions of the processes shown in the EWOC CSCI architecture
diagram.

 4-73 305-EMD-220

Table 4.4-3. EWOC CSCI Processes
Process Type Hardware

CI
COTS/

Developed
Functionality

EcDmEwoc Web
Service

DMGHW Developed The ECHO WSDL Order Component is a
web service that runs on Tomcat/Apache.
The EWOC offers two basic interfaces
OrderFulfillment Port: External systems
such as ECHO or External Subsetter can
submit orders to this endpoint. The
EWOC validates the order according to
ECS rules and then bundles the order into
separate requests before submitting the
requests to OMS for product distribution.
If the order is an external processing
order, the EWOC submits an order to the
external processor on behalf of ECS.
OrderStatusUpdate Port: External
processors can submit requests to update
the status of an order using this interface.

4.4.1.5 ECHO WSDL Order Component Process Interface Descriptions

Table 4.4-4 provides descriptions of the interface events shown in the EWOC CSCI architecture
diagram.

Table 4.4-4. EWOC CSCI Process Interface Events (1 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Insert Product
Distribution
Request

One per
product
request

Process:
Sybase Server
(COTS)

Process:
EcDmEwoc

Classes:
OmsDataAccessImpl

The EcDmEwoc inserts
product distribution requests
into the Order Manager DBMS
by invoking OMS stored
procedures.

Update Request
Status

One per status
update
request

Process:
Sybase Server
(COTS)

Process:
EcDmEwoc

The EcDmEwoc updates the
request status in the MSS
database by invoking OMS
stored procedure.

 4-74 305-EMD-220

Table 4.4-4. EWOC CSCI Process Interface Events (2 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Request ECS
Product

One per
product
request

Process:
OrderFulfillment Port

Classes:
OrderFulfillmentPortBindingIm
pl

Process:
External Processor,
ECHO

The External Processor or the
ECHO submits an order
through EWOC’s
OrderFulfillment Port.

Request Order
Status Update

One per
status
update
request

Process:
OrderStatusUpdate Port

Class:
OrderServiceImpl

Process:
External Processor

The External Processor
submits a request status
update through EWOC’s
OrderStatusUpdate Port.

Return Product
Request
Acknowledgement

One per
status
update
request

Process:
OrderFulfillment Port

Classes:
OrderFulfillmentPortBindingIm
pl

Process:
External Processor

The Extermal Processor
returns
SubmitAcknowledgement
which contains the information
regarding the success of
order submission to the
External Processor.

Request Subsetted
Product

One per
product
request

Process:
OrderFulfillment Port

Process:
EcDmEwoc

Class:
EPDataAcessImpl

The EcDmEwoc places a
request at External Processor
for the granule to be
subsetted.

Return Submit
Acknowledgement

One per
product
request

Process:
OrderFulfillment Port

Class:
OrderFulfillmentProtBindingIm
pl

Process:
EcDmEwoc

Class:
OrderFulfillmentPortBindin
gImpl

The EWOC returns
SubmitAcknowledgement
which contains the information
regarding the success of
order submission from the
External Processor.

Return Status
Update
Acknowledgement

One per
status
update
request

Process:
OrderStatusUpdate Port

Class:
OrderServiceImpl

Process:
EcDmEwoc

Class:
OrderFulfillmentPortBindin
gImpl

The EWOC returns
UpdateStatus with information
regarding the success of
request status update

 4-75 305-EMD-220

Table 4.4-4. EWOC CSCI Process Interface Events (3 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Login and logout One every
polling cycle

Process:
AuthenticationService

Class:
AuthenticationServicePortImpl

Process:
EcDmEwoc

Class:
CloseRequestHandlerImpl

The EWOC tries to login to
ECHO’s Authentication
Service and receive a security
token.

Return Submit
Acknowledgement

One per
product
request

Process:
OrderFulfillment Port

Class:
OrderFulfillmentProtBindingIm
pl

Process:
EcDmEwoc

Class:
OrderFulfillmentPortBindin
gImpl

The EWOC returns
SubmitAcknowledgement
which contains the information
regarding the success of
order submission from the
ECHO.

Close Provider
Order

One every
polling cycle

Process:
OrderProcessingService

Class:
OrderProcessingServicePortI
mpl

Process:
EcDmEwoc

Class:
CloseRequestHandlerImpl

The EWOC tries to update the
status of order at ECHO for
orders that are in terminal
states.

4.4.1.6 ECHO WSDL Order Component CSCI Data Stores

The EWOC CSCI calls OMS stored procedures to access OMS DB. The EWOC will have an
OMS database interface only; it will not have an interface with the MSS database. The creation
of MSS order and request objects will be handled through OMS stored procedure calls. Table
4.4-5 provides descriptions of the data stores shown in the EWOC CSCI architecture diagram.

Table 4.4-5. ECHO WSDL Order Component CSCI Data Stores
Data Store Type Functionality

OMS DB Database OMS Database is designed to store the persistent information of user
request, processing mode configuration, media configuration, staging
policy configuration, Ftp Push policy configuration, request aging
configuration, and request cleanup configuration.

4.4.2 Data Management Subsystem Hardware

The primary components of the Data Management Subsystem include one hardware CI, Data
Management Hardware CI (DMGHW). The general-purpose workstations are standalone hosts
without fail-over capability. In the event of a host failure, any of the available workstations
could be used to support end user DAAC maintenance.

 4-76 305-EMD-220

4.4.2.1 Data Management Hardware CI (DMGHW) Description

The DMGHW CI includes Linux workstations. In the EBIS Document 920-TDx-001 (Hardware
Design Diagram) provides descriptions of the HWCI, and document 920-TDx-002 (Hardware-
Software Map) provides site-specific hardware/software mapping. These workstations are used
as end user workstations in maintenance of each of the respective DAAC sites.

 4-77 305-EMD-220

4.5 Order Manager Subsystem Overview
The Order Manager subsystem (OMS) manages all orders placed through ECHO via WIST, the
Spatial Subscription Server, the EPD Server (i.e., external subsetter request and S4PM) and the
Data Pool Web GUI (including HEG orders).

Once a request comes into the OMS subsystem, the server validates the request. Upon successful
validation, the server stages the order in the Data Pool storage area. For Ftp Pull requests, links
are created from the FtpPull directory to the staged files in the Data Pool storage. For Ftp Push
requests, the OMS Ftp Push driver directly distributes the data. Physical media requests are
written to physical media by the OM Production Modules. Upon successful shipment, OMS
sends a Distribution Notice to the end user. An order is considered shipped as soon as the
request status is updated to “Shipped” in the MSS Database. For an FtpPull order, the request
status is updated to “Shipped” after the order is staged and file links are made in the Data Pool
storage; for an FtpPush order, request status is “Shipped” after the Order Manager Server
finishes pushing all the data associated to the order to its destination; For physical media order,
the order is shipped when the Operator updates the request status to “Shipped” through the OMS
GUI.

Special orders such as HEG and External Subsetter orders require further processing by the HEG
Server or the External Subsetter. For HEG orders, the Order Manager creates HEG requests per
granule based on the processing instructions in the original HEG order. The HEG requests are
submitted to the HEG Server through the HEG API. The HEG server processes the HEG
requests and returns the final output to the Order Manager Server which then distributes the final
output to the end user. For External Subsetter Orders, the External Subsetter creates output
granules which are then associated with the Order by the EPD Server. These output granules are
later distributed by the Order Manager Server. The Order Manager Subsystem also includes a
database that stores all order information persistently as soon as an order is received by EMD
and before its receipt is acknowledged. This allows operators to resubmit an order if it
encounters errors downstream, and allows the Order Management Service to perform some up
front checks on the order and generate an operator intervention for the operator to handle the
error conditions.

Order Manager Subsystem Context

Figure 4.5-1 is the Order Manager Subsystem context diagram. The diagram shows the events
sent to the Order Manager Subsystem and the events the Order Manager Subsystem sends to
other subsystems. Table 4.5-1 provides descriptions of the interface events shown in the Order
Manager Subsystem context diagram.

 4-78 305-EMD-220

Submit

Suspend/R esu m e,
Cancel, Alter,
Retrieve
Request
Suspend/R esu m e
Resources

Insert
Media
Distribution
Request

Insert

Send
E ilNotificatio

CSS

Insert Produ ct D istribution
Request

O rder Manager
Subsystem

(OM S)

EW OC
O

DPL W eb Access

Insert Staging
Actions

 User

O perator

Send Email
Notification

Submit Distributio

SSS

HEG
Server

estsHEG R equ n
Requests

EPD Insert
Product
Distribution
Request

ECHO
O

W IST

User
DPL Action Driver

Figure 4.5-1. Order Manager Subsystem Context Diagram

Table 4.5-1. Order Manager Subsystem Interface Events (1 of 2)
Event Interface Event Description

Submit Media
Distribution
Requests

The OMS processes all physical media distribution requests.

Submit Electronic
Distribution
Requests

The OMS processes all electronic distribution requests. Examples of electronic
distribution requests are Ftp Push, Ftp Pull, and Secure Distribution.

Insert Product
Distribution
Requests

The OMS receives Product Distribution Requests from the Data Management
Subsystem (DMS), the Spatial Subscription Server (SSS) and the EPD Server
(External Product Dispatcher)).

Insert Media
Distribution
Requests

The OMS receives Media Distribution Requests from the DPL Subsystem (Web
GUI).

Insert Actions The OMS submits DPL insert actions to the DPL Subsystem.
Suspend/Resume,
Cancel, Alter and
Retrieve Requests

The Operator suspends, resumes, cancels, alters and retrieves requests from
the OMS (OMS DB).

Suspend/Resume
Resources

The Operator suspends and resumes dispatching to all or selected resources.

 4-79 305-EMD-220

Table 4.5-1. Order Manager Subsystem Interface Events (2 of 2)
Event Interface Event Description

Send Email
Notification

The OMS sends email notification to the requesting user when a request is
altered, canceled or shipped or when a request is intervened by operators, or
when an alert or intervention is generated.
The OMS sends email notification to users of the DPL Web Access GUI when
OMS receives requests.

Submit Distribution
Request

The OMS receives Distribution Requests from the EPD Server (External Product
Dispatcher).

Submit HEG
Request

The OMS submits HEG requests to the HEG Server.

Order Manager Subsystem Structure

• The Order Manager Subsystem consists of three CSCIs: the OMSRV, the OM GUI
(described in the 609 document), and the Production Module. The Order Manager Server
(EcOmOrderManager) is a software configuration item. The Order Manager Server
receives product distribution requests and submits them to the appropriate EMD
component based upon the media type specified for the request. The OMS server stages
granules associated with a request in the DPL storage area and then distributes the data
via electronic media (i.e Ftp Push, Ftp Pull, SCP) or physical media (CD, DVD, or DLT).
For special orders such as HEG Orders, the Order Manager creates HEG requests based
on processing instructions and submits the HEG requests to the HEG Server. The output
of the HEG requests are later distributed to the end user. Similar to HEG Orders, output
granules associated with an External Subsetter request are distributed to the end user after
being processed by the external subsetter. Order Manager Subsystem information is
stored persistently in a relational Database Management System (DBMS). The Order
Manager GUI (OMGUI) is used to monitor and control the operations of the Order
Manager Server. In addition, the OMGUI is used to respond to Operator Intervention
Requests generated by the Order Manager Server. The production module is responsible
for creating physical media requests.

Use of COTS in the Order Manager Subsystem

• RogueWave’s Tools.h++

The Tools.h++ class libraries are used by the OMS to provide basic functions and objects
such as strings and collections. These libraries must be installed with the OMS software
for any of the OMS processes to run.

• Sybase Open Client / CT_LIB

The Sybase Open Client provides access between OMS custom code and the Sybase SQL
Server DBMS.

• Sybase Server

 4-80 305-EMD-220

The Sybase SQL server provides access for OMS to insert, update and delete Product
Distribution Requests, OMS configurations, and Operator Interventions. The Sybase
SQL Server must be running during operations for the OMS to process Product
Distribution Requests.

4.5.1 Order Manager Subsystem Software Description

4.5.1.1 Order Manager Server CSCI Functional Overview

The Order Manager Server (OMSRV) CSCI executes as a process and interacts with the
following CSCIs: Order Manager Database, the Science Data Server (SDSRV), and the Data
Pool System (DPL). The Spatial Subscription Server (SSS), EWOC, HEG Server, EPD Server
and the Data Pool Web GUI submit product distribution requests to the OMS. These requests are
all validated. Upon successful validation, the server stages the granules in a request in the DPL
storage area. Hard media requests staged in DPL storage area are distributed through the
production module while electronic Ftp push media requests are directly pushed to the end user.
Note that Order Manager Server dispatches HEG requests to the HEG Server for processing
before being distributed to the end user. For invalid requests, an Operator Intervention is
generated. DAAC OPS personnel can use the Order Manager GUI to correct and resubmit the
request. In response to an intervention, the Operator can also generate an email message, which
is sent to the user by the Order Manager Server. The Order Manager Server also generates an
alert and sends an email to a pre-configured email address when it detects internal or external
resource failure. While a resource is suspended, the OMS Server halts dispatching of the requests
that are utilizing the suspended resource.

4.5.1.2 Order Manager Server CSCI Context

Figure 4.5-2 is the Order Manager Server CSCI context diagram. The diagram shows the events
sent to the Order Manager Server CSCI and the events the Order Manager Server CSCI sends to
other CSCIs. Table 4.5-2 provides descriptions of the interface events shown in the Order
Manager Server CSCI context diagrams.

 4-81 305-EMD-220

Suspend/Resume,
Cancel, Alter,
Retrieve Request,
Suspend/Resume
Resource

Receive Email

Fetch Distribution Request,
Fetch Configuration Info,
Fetch Email Info,
Fetch actions of Request changes,
Fetch actions of notification,
Fetch User Profile Info

Send Intervention/Alert
Generation Email

(DMS)

Send Acceptance Email

Update, Insert, Delete Record

FtpPush Requests

Submit granule staging request

Insert Media Distribution
Request

EWOC

NBSRV CSCI
(SSS)

OMSRV
CSCI

Insert Product
Distribution Request

Insert Product
Distribution Request

Sendmail
Send Distribution

Notification Update Product Distribution Request,
Create Operator Intervention,
Create Alert,

EcOmSCLI

Insert Product
Distribution Request

DPL Web GUI
CSCI(DPL)

Retrieve Record

Ftpd

Sybase
Server

OMS DB
DPL DB

USER

Operator

EPD
CSCI

Insert Product
Distribution
Request

Production
Module CSCI

Process Media
Distribution

HEG CSCI

Submit HEG
Request

Figure 4.5-2. Order Manager Server CSCI Context Diagram

Table 4.5-2. Order Manager Server CSCI Interface Events (1 of 2)
Event Interface Event Description

Submit Media
Distribution Request

The OMSRV CSCI processes physical media requests using the Production
Module CSCI.

Submit Electronic
Distribution Request

All electronic distribution requests are processed by the OMS CSCI.

Send Distribution
Notification

The OMSRV CSCI sends distribution notifications to the end-users.

Send
Intervention/Alert
Generation Email

The OMSRV CSCI sends intervention/alert generation email to the end-users.

Send Acceptance
Email

The OMSRV CSCI sends a request acceptance email to the DPL Web GUI users
upon receiving the request in the OMS DB.

Receive Email User receives a status email sent by the OMSRV CSCI when request is
interventioned, shipped or failed

 4-82 305-EMD-220

Table 4.5-2. Order Manager Server CSCI Interface Events (2 of 2)
Event Interface Event Description

Insert Product
Distribution Request

The GTWAY CSCI, NBSRV CSCI, SCLI CSCI CSC insert product distribution
requests into the Sybase Server (OMS DB) to be queued for processing by the
OMSRV CSCI.

Insert Media
Distribution Request

The DPL Web GUI inserts media distribution request into the Sybase Server
(OMS DB).

Update Product
Distribution Request

The OMSRV CSCI updates product distribution requests in the Sybase Server
(OMS DB as well as the MSS DB).

Create Operator
Intervention

The OMSRV CSCI creates new Operator Intervention for request failures in the
Sybase Server (OMS database).

Create Alert The OMSRV CSCI creates an alert for resource failures and stores the alert in the
Sybase Server (OMS database).

Submit granule
staging request

The OMSRV CSCI submits a request to stage a granule to the Sybase Server
(DPL storage in the OMS DB), which in turn calls DPL stored procedures to insert
an action into the DPL DB.

Fetch Distribution
Request

The OMSRV CSCI retrieves information associated with a product distribution
request from the Sybase Server (OM Database).

Fetch Configuration
Info

The OMSRV CSCI retrieves the OMSRV Configuration information from the
Sybase Server.

Fetch Email Info The OMSRV CSCI retrieves information related to an operator intervention
required to generate an email notification from the Sybase Server.

Fetch actions of
Request changes

The OMSRV CSCI retrieves actions regarding request changes, such as, request
priority change, cancel request, suspend request, and update request ftppush
parameters from the Sybase Server.

Fetch actions of
notification

The OMSRV CSCI retrieves actions regarding granule staged and DPL file
system modified notification from the Sybase Server.

Fetch User Profile
Info

The OMSRV CSCI retrieves user profile information from the Sybase Server
(OMS DB), which in turn calls an MSS stored procedure to retrieve user profile
information from the MSS DB.

FtpPush Request The OMSRV CSCI Ftp Pushes a request to the end-user.
Process Media
Distribution

The OMSRV CSCI submits physical media request to the Production Module.

Submit HEG
Request

The OMSRV CSCI submits HEG requests to the HEG Services for processing.

Suspend/Resume,
Cancel, Alter and
Retrieve Request

The Operator suspends, resumes, cancels, alters and retrieves requests from the
Sybase Server (OMS DB).

Suspend/Resume
Resources

The OMSRV CSCI suspends or resumes dispatching to all or selected resources
in the Sybase Server.

Update, Insert,
Delete Record

The Sybase Server performs update, insert, and delete database operations to
the OMS DB, MSS DB and DPL DB.

Retrieve Record The Sybase Server performs retrieval database operations to/from the OMS DB,
MSS DB and DPL DB.

 4-83 305-EMD-220

4.5.1.3 Order Manager Server CSCI Architecture

Figure 4.5-3 is the Order Manager Server (OMSRV) CSCI architecture diagram. The diagram
shows the events sent to the OMSRV CSCI processes and the events the OMSRV CSCI
processes send to other processes.

The OM Server CSCI consists of one process. This process is the EcOmOrderManager process.

Sendmailsendmail

Figure 4.5-3. Order Manager Server CSCI Architecture Diagram

4.5.1.4 Order Manager Server CSCI Process Description

Table 4.5-3 provides descriptions of the processes shown in the OMSRV CSCI architecture
diagram.

Suspend/Resume, Cancel,
Alter, Retrieve Request,
Suspend/Resume

Receive Email

Create Alert
Submit granule staging

Distribution Request

Distribution Request
Insert Product

Ftppush request

OM DB

EcNbActionDriver .pl

Fetch actions of notification
Fetch actions of request changes,

Fetch Distribution Request,
Fet Configurationch Info,

Fetch Email Info,Update Product
Distribution Request,

Send Acceptance Email,
Send Intervention/Alert
Generation Email

Send email notification,

Submit Electronic

EcOmOrderManager
USER

HegServer Ftpd

EWOC/EPD

Distribution Request
OMS GUI

Sybase Server

Insert Product
Distribution Request

EcOmSCLI
(OMS Client

Library)Insert Media

CartServlet.class
(DPL Web GUI CSCI)

EcNbActionDriver.pl
(NBSRV CSCI)

EcOmMediaProduction

Physical Media Request

Submit Heg Requests

Operator

Click on Screen
Create Operator
Intervention,

Insert/Update/Delete
Record

Retrieve Record

DPL DB

OMS DB

Insert Product
Distribution Request

 4-84 305-EMD-220

Table 4.5-3. OMSRV CSCI Process
Process Type Hardware

CI
COTS/

Developed
Functionality

EcOmOrderManager Server OMSHW Developed The Order Manager Server stages the request
data into the DPL storage by calling the DPL
Action Driver. Hard media request data staged in
DPL storage are distributed through the Production
Module while FTP media requests are directly
pushed to the end user. Note that HEG and
external subsetter requests are first dispatched to
the HEG Server or subsetter for processing. The
processed output is then distributed to the end
user. Order Manager Server sends a Distribution
Notification to the end-user on completing an
order.

EMD Baseline Information System (EBIS) Document 920-TDx-001 (Hardware Design
Diagram) provides descriptions of the HWCI, and document 920-TDx-002 (Hardware-Software
Map) provides site-specific hardware/software mapping.

4.5.1.5 Order Manager Server CSCI Interface Description

Table 4.5-4 provides descriptions of the interface events shown in the Order Manager Server
(OMSRV) CSCI architecture diagram.

Table 4.5-4. Order Manager Server CSCI Process Interface Events (1 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Physical Media
Requests

One or
more per
service
requests

Process:
EcOmPdModule

Process:
EcOmOrderManager
Class:
OmSrPrepareMediaAction
OmSrCreateMediaAction

 The Order Manager Server
uses the production module to
create the physical media.

Insert Product
Distribution
Request

One per
service
request

Process:
Sybase Server
(COTS)

Process:
EWOC, EPD
Script:
EcNbActionDriver.pl

EWOC, EPD and
EcNbActionDriver.pl (SSS)
insert product distribution
request into OMS DB.

Submit Heg
Request

One or
more per
Service
Request

Process:
HgServer

Process:
EcOmOrderManager
Class:
OmSrHegProcessingActio
n

The EcOmOrderManager
submits HEG requests to the
HEG Server.

 4-85 305-EMD-220

Table 4.5-4. Order Manager Server CSCI Process Interface Events (2 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Insert Media
Distribution
Request

One per
service
request

Process:
Sybase Server
(COTS)

Process:
CartServlet.class

The CartServlet.class (DPL
Web GUI CSCI) inserts media
distribution request. Media
distribution request could be
HEG request.

Send
acceptance
email

One per
email
notification
request

Process:
Sendmail
(COTS)

Process:
EcOmOrderManager
Class:

The EcOmOrderManager
sends email notification to the
DPL Web GUI end-users upon
receipt of the request.

Send
Intervention/
Alert
Generation
email

One per
email
notification
request

Process:
Sendmail
(COTS)

Process:
EcOmOrderManager
Class:

The EcOmOrderManager
sends intervention/ alert
generation email to a
configured user email account.

Receive Email One per
email
notification

End User:
specified in request

Process:
Sendmail (COTS)

The User receives email sent
by the EcOmOrderManager.

Send email
notification

One per
email
notification
request

Process:
Sendmail
(COTS)

Process:
EcOmOrderManager
Class:
OmSrEmailRequest

The EcOmOrderManager
sends email notifications to the
end-users.

Fetch
configuration
info

One per
startup

Process:
Sybase Server
(COTS)

Process:
EcOmOrderManager
Library:
Sybase Ct-library
Class:
OmSrDbInterface

The EcOmOrderManager
retrieves configuration
information from the Sybase
Server (OMS database).

Fetch
Distribution
Request

One per
configurable
interval

Process:
Sybase Server
(COTS)

Process:
EcOmOrderManager
Library:
Sybase Ct-library
Classes:
OmSrDbInterface,
OmSrDistributionRequest

The EcOmOrderManager
retrieves information
associated with a product
distribution request from the
database.

 4-86 305-EMD-220

Table 4.5-4. Order Manager Server CSCI Process Interface Events (3 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Fetch actions
of request
changes

One per
configurable
interval

Process:
Sybase Server
(COTS)

Process:
EcOmOrderManager
Library:
Sybase Ct-library
Classes:
OmSrDbInterface,
OmSrDistributionRequest

The EcOmOrderManager
retrieves actions regarding
request changes, such as,
request priority change, cancel
request, suspend request, and
update request Ftp Push
parameters.

Fetch actions
of notification

One per
configurable
interval

Process:
Sybase Server
(COTS)

Process:
EcOmOrderManager
Library:
Sybase Ct-library
Classes:
OmSrDbInterface,
OmSrDistributionRequest

The EcOmOrderManager
retrieves actions regarding
granule staged, and DPL file
system modified notification.

Fetch email
info

One per
configurable
interval

Process:
Sybase Server
(COTS)

Process:
EcOmOrderManager
Library:
Sybase Ct-library
Classes:
OmSrDbInterface,
OmSrDistributionRequest,
OmSrEmailRequest

The EcOmOrderManager
retrieves information related to
an operator intervention
required to generate an email
notification from the Sybase
Server (OM DB).

Update
Product
Distribution
Request

One per
request

Process:
Sybase Server
(COTS)

Process:
EcOmOrderManager
Library:
Sybase Ct-library
Classes:
OmSrDbInterface,
OmSrDistributionRequest

The EcOmOrderManager
updates existing product
distribution requests in the
Sybase Server (OMS DB and
MSS DB).

Create
Operator
Intervention

One per
request

Process:
Sybase Server
(COTS)

Process:
EcOmOrderManager
Library:
Sybase Ct-library
Class:
OmSrDbInterface

The EcOmOrderManager
creates a new Operator
Intervention request in the
Sybase Server (OM DB).

 4-87 305-EMD-220

Table 4.5-4. Order Manager Server CSCI Process Interface Events (4 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Create Alert One per
resource

Process:
Sybase Server
(COTS)

Process:
EcOmOrderManager
Library:
Sybase Ct-library
Class:
OmSrDbInterface

The EcOmOrderManager
creates an alert related to a
resource failure such as Ftp
Push Destination, Archive, and
DPL File System failure to
store in the Sybase Server.

Insert Product
Distribution
Request

One per
service
request

Process:
Sybase Server
(COTS)

Process:
EWOC
EPD
EcOmCLI
Script:
EcNbActionDriver.pl
Library:
OmClientlib
Classes:
OmSrDbInterface

EWOC, EPDm the
EcNbActionDriver, , the
EcOmSCLI, and the DPL Web
Access GUI insert product
distribution requests into the
Sybase Server (Order
Manager DB).

Insert/Update/
Delete/Retriev
e Record

One per
request

Database:
OMS DB, MSS DB,
DPL DB
(COTS)

Process:
Sybase Server
(COTS)

The Sybase server performs
database operations (inserts,
updates, deletions and
retrievals) to the OMS DB,
DPL DB and MSS DB.

Ftppush
request

One per file Process:
Ftpd (COTS)

Process:
EcOmOrderManager

The EcOmOrderManager Ftp
Pushes request data to the
end-user.

Click on
Screen

One per
click

Scripts:
OMS GUI scripts.

Operator

The Operator clicks on the
screen to select the action.

Suspend/
Resume,
Cancel, Alter
and Retrieve
Requests

One per
click

Process:
Sybase Server
(COTS)

Script:
OMS GUI script

The OMS GUI scripts send
suspend/resume, cancel, alter
and retrieve request
commands to the Sybase
Server.

Suspend/
Resume
Resource

One per
click

Process:
Sybase Server
(COTS)

Script:
OMS GUI script

The OMS GUI scripts send
suspend/resume resource
commands to the Sybase
Server.

4.5.1.6 Data Stores

There are data stores associated with the Order Manager Server. They are the OMS DB, DPL
DB and MSS DB. Table 4.5-5 provides a description of these data stores.

 4-88 305-EMD-220

Table 4.5-5. CSCI Data Stores
Data Store Type Description

OMS DB Sybase OMS Database is designed to store the persistent information of
user request, processing mode configuration, media
configuration, staging policy configuration, Ftp Push policy
configuration, request aging configuration, and request cleanup
configuration.

DPL DB Sybase The Data Pool (DPL) database implements the large majority of
the persistent data requirements for the DPL subsystem which
supports Large online cache of important EMD data at each
DAAC and avoids tape access to EMD archive.

MSS DB (Order
Tracking DB)

Database The Order Tracking DB contains product orders and user
requests with the associated current processing status.

4.5.1.7 Production Module CSCI Functional Overview

The Production Module is the interface between Order Manager Server and the various tape and
disc hardware. Order Manager Server places an input file for the Production Module into a SAN
filesystem visible from the platform to which the physical media devices are attached. The
Production Module references this file and stages the indicated data under a single directory so
that it can be processed to tape or disc. The Production Module processes one volume of a
request at a time. For tapes the Production Module writes to media through a system call to pax.
For discs, it creates an image file and then call makes a system call to the Luminex press
program. The Production Module returns overall job status to Order Manager Server through
QuickServer. If there are errors for particular granules, the Production Module places a list of the
problem granules in a file, which can be referenced by Order Manager across the same SAN
mount in the event of failure.

Verification is handled by a Perl script, OmPdQcMain.pl. The script interacts with the tape and
disc devices to do a listing of the media and compares the filenames and file sizes listed with
those created in a summary file during production. Volume and Granule level verification status
is returned to the Order Manager in the same manner as in production.

4.5.1.8 Production Module CSCI Context

Figure 4.5-4 is the Production Module CSCI Context Diagram. The diagram indicates the
interaction the Production Module has with the Order Manager CSCI and the Data Pool File
System.

 4-89 305-EMD-220

Production
Module
CSCI

OmServer
CSCI

Granule Level
Status File

DataPool
File System

QuickServer

Input File

Stage links to DataPool FS in a local
directory

QuickServer runs Production
Module CSCI and returns
exit status

across NFS mount

Figure 4.5-4. Production Module CSCI Context Diagram

Table 4.5-6 describes the Production Module CSCI Interface Events.

Table 4.5-6. Production Module CSCI Interface Events (1 of 2)
Event Interface Event Description

Tape Media
Preparation

The Production Module CSCI stages soft links to the indicated Data Pool files
under a single directory. It creates a summary file and the file used for the tape
label. It returns status to the Order Manager CSCI through QuickServer.

Tape Media
Creation

The Production Module CSCI tars the data to tape, prints the tape label and
returns status to the Order Manager CSCI through QuickServer.

Disc Media
Preparation

The Production Module CSCI stages soft links to the indicated Data Pool files
under a single directory. It calls the COTS product, mkisofs, to create an ISO
image file. It creates the files for the jewel case insert, the summary file and
returns status to the Order Manager CSCI through QuickServer.

Disc Media
Creation

The Production Module CSCI makes a system call to the Luminex press
command. The Production Module polls the press log until the disc burning
process has reached a terminal state.

Granule Level
Error

The Production Module CSCI writes the granule numbers and error code to a file
which can be seen by Order Manager and returns a failure status code

Tape Verification The Production Module CSCI QC script does a listing of the tape in the specified
drive. It compares the filenames and sizes in a listing with the summary file
created during the production process. Status is returned to Order Manager
Server though QuickServer.

 4-90 305-EMD-220

Table 4.5-6. Production Module CSCI Interface Events (2 of 2)
Event Interface Event Description

Disc Verification
on PC

A Production Module CSCI script runs continually on a PC. It polls a mapped Unix
drive for the appearance of a signal file. Using QuickServer, Order Manager starts
the Production Module CSCI QC script, which places the signal file. The PC script
does a listing of the CD/DVD drive on the PC and places it into a file on the Unix
drive. The QC script then parses this file and the summary file and compares the
filenames and sizes. Status is returned to Order Manager Server though
QuickServer.

Disc Verification
on UNIX

The Production Module CSCI QC script does a listing of a defined disc drive
mount point and compares the filenames and sizes with those in the summary file.
Status is returned to Order Manager Server though QuickServer.

Order Cleanup The Production Module CSCI cleanup script is executed by Order Manager
through QuickServer and deletes temporary files not needed for later event
tracing.

Archive/Cleanup The Production Module CSCI Archive/Cleanup GUI creates a cleanup.sh file and
writes an entry in the crontab to execute this file. Remaining artifacts and logs can
be assigned for archiving or removal.

4.5.1.9 Production Module CSCI Architecture

Figure 4.5-5 is the Production Module CSCI architecture diagram. The diagram shows the
interaction with the media hardware as directed by the Order Manager CSCI remotely through
QuickServer.

 4-91 305-EMD-220

Figure 4.5-5. Production Module CSCI Architecture Diagram

4.5.1.10 Production Module CSCI Process Description

Table 4.5-7 provides descriptions of the processes shown in the Production Module Architecture
Diagram.

 4-92 305-EMD-220

Table 4.5-7. Production Module CSCI Process
Process Type Hardware

CI
COTS/

Developed
Functionality

EcOmPdModule driver DIPHW Developed Receives instructions for physical media
processing from Order Manager through a
.PPF file. Also it prints the tape label and
the jewel case insert.

OmPdQcMain.pl Perl script DIPHW Developed This script interfaces with the tape devices,
the Linux disc drive mount point and a
script running on the QC PC to verify
filenames and sizes written to physical
media.

OmPdNtQC.pl Perl script DIPHW Developed Runs on the QC PC and polls the Unix
drive for the arrival of a signal file. It then
does a listing of the PC’s CD/DVD drive
and puts the result in a file on the Linux
box where it can be seen by
OmPdQcMain.pl.

OmPdCleanup.pl Perl script DIPHW Developed A script run by Order Manager through
QuickServer which deletes leftover request
files not needed for logging or later
reference.

OmPdCleanupGUI tcl GUI DIPHW Developed Directs periodic removal or archive of
remaining request and log files through an
entry in the crontab.

EcOmPdPrintJCIFil
e.pl

Perl script DIPHW Developed Inserts granule and request data into the
Jewel Case Insert template and sends the
new file to the Jewel Case printer.

mkisofs process DIPHW COTS Creates an ISO image file for burning to a
CD/DVD that can be read by PC or UNIX
operating systems.

a2ps printer
driver

DIPHW COTS Facilitates the formatted printing of the
Packing List and the QC reports.

Jewel Case Insert
template

file DIPHW COTS Postscript format file containing images
and place holders for granule and request
data.

EBIS Document 920-TDx-001 (Hardware Design Diagram) provides descriptions of the HWCI,
and document 920-TDx-002 (Hardware-Software Map) provides site-specific hardware/software
mapping.

4.5.1.11 Production Module CSCI Interface Description

Table 4.5-8 provides descriptions of the interface events shown in the Order Manager Server
CSCI architecture diagram.

 4-93 305-EMD-220

Table 4.5-8. Production Module CSCI Interface Events
Event Event

Frequency
Interface Initiated By Event Description

Media
Preparation

Once per request
volume

QuickServer Order
Manager

Order Manager submits a
RequestId_Vol.PPF file across
SAN mount containing all non-
configuration data needed for
physical media processing.

Media
Creation

Once per request
volume

QuickServer Order
Manager

Order Manager submits a
RequestId_Vol.PPF file across
SAN mount containing all non-
configuration data needed for
physical media processing.

Verification Once per request
volume

QuickServer Order
Manager

Order Manager submits a
command containing the requestId
and the volume number.

Cleanup Once per order QuickServer Order
Manager

Order Manager submits a
command containing the requestId.

4.5.1.12 Data Stores

The Production Module CSCI receives all needed data from a configuration file and an input file
from Order Manager. It does not interface with a relational database.

4.5.1.13 Production Module Hardware

The Production Module Hardware is not shared with any other subsystem.

 4-94 305-EMD-220

4.6 Communications Subsystem Overview
The Communications Subsystem (CSS) provides the capability to:

• Transfer information internal to the Earth Observing System Data and Information
System (EOSDIS) Maintenance and Development Project (EMD)

• Transfer information between the EMD sites

• Provide connections between the ECS users and service providers

• Manage the ECS communications functions

• Retrieve attribute-value pairs from the Configuration Registry

Communications Subsystem Context Diagram

Figure 4.6-1 is the Communications Subsystem (CSS) context diagrams and Table 4.6-1
provides descriptions of the interface events shown in the CSS context diagrams. NOTE: In
Table 4.6-1 Request Communications Support is shown as a single event to simplify the table
and provide a list of services available from CSS to the other CSMS subsystems.

Communications
 Subsystem

RCS - Query Registry

Media Options,

Return
Configuration
Parameters

Note:

RCS = Request Communications Request,

DPL/OMS

Figure 4.6-1. Communications Subsystem (CSS) Context Diagram

 4-95 305-EMD-220

Table 4.6-1. Communications Subsystem (CSS) Interface Events
Event Interface Event Description

Return Configuration
Parameters

The DPL INGEST, DSS and OMS receive the configuration parameters and
associated values from the Registry Server within the CSS.

Request
Communications
Support (RCS)

The CSS provides a library of services available to each CSMS subsystem.
The subsystem services required to perform specific assignments are
requested from the CSS. These services include:
• CCS Middleware Support
• Database Connection Services
• Bulk Data Transfer Services
• Name/Address Services
• Password Services
• Error/Event Logging
• Message Passing
• Fault Handling Services
• Mode Information
• Query Registry - Retrieving the requested configuration attribute-value

pairs from the Configuration Registry
•

Export Location
Information

The OMS, DMS send physical and logical server location information to the
CSS for data location.

Communications Subsystem Structure

Note: The CSS logical names used in this document do not exactly match the physical
names in the directory structure where the software is maintained. Therefore, after the
logical name of each Computer Software Component (CSC) in parentheses, there is a
physical directory structure name where the software is found. For example, the DCCI
CSCI software can be found under the directory structure Distributed Object Framework
(DOF) and the Server Request Framework software can be found under the directory
structure /ecs/formal/common/CSCI_SRF.

The CSS is composed of one CSCI, the Distributed Computing Configuration Item (DCCI, the
software is found in directory DOF) and one HWCI. The CSS software is used to provide
communication functions, processing capability, and storage.

Use of COTS in the Communications Subsystem

Note: The following RogueWave Libraries are currently delivered with custom code as
static libraries. A separate installation of dynamic libraries is no longer required.

• RogueWave’s Tools.h++

The Tools.h++ class libraries provide basic functions and objects such as strings and
collections.

• RogueWave’s DBTools.h++

 4-96 305-EMD-220

The DBTools.h++ C++ class libraries provide interaction, in an object-oriented manner,
to the Sybase ASE database SQL server. The DBTools provide a buffer between the CSS
processes and the relational database used.

• RogueWave’s Net.h++

The Net.h++ C++ class libraries, which provide functions and templates that facilitate
writing applications, which communicate with other applications.

Other COTS products include:

• Sybase Adaptive Server Enterprise (ASE)

The Sybase ASE provides access for the Subscription Server to insert, update and delete
Subscription Server database information. The Sybase ASE must be running during CSS
operations for the Subscription Server to execute database requests.

In addition, the Configuration Registry stores configuration values for ECS applications
in the Sybase database. The Configuration Registry Server retrieves the values from the
database via a Sybase ASE.

• CCS Middleware

CCS Middleware provides a common NameServer Mechanism, which packages the
common portions of the communication mechanisms into global objects to be used by all
subsystems. It provides a set of standard CCS Proxy/Server classes, which encapsulates
all of the common code for middleware communications (e.g., Portals, Couplers,
RWCollectables, etc.). It also provides a code generator, which produces the application
specific proxy & server code. This allows the software engineer to concentrate on the
application specific code without worrying about the infrastructure.

• UNIX Network Services

UNIX Network Services contain DNS, NFS, E-mail service, FTP, and TCP/IP
capabilities.

Error Handling and processing

EcUtStatus is a class used throughout the ECS custom code for general error reporting. It is
almost always used as a return value for functions and allows detailed error codes to be passed
back up function stacks.

When an error occurs, the error is logged into the applications log (ALOG). The
Communications Subsystem (CSS) and System Management Subsystem (MSS) have two main
mechanisms to handle the error:

1. Return an error status

2. Throw an exception.

The CSS uses the following classes for error handling and processing:

 4-97 305-EMD-220

The EcUtStatus class is used to describe the operational status of many functions. The values
most often reported are "failed" and "ok." But depending upon the application, detailed values
could be set and sent. Please refer to the definition of this class (located in
/ecs/formal/COMMON/CSCI_Util/src/Logging/EcUtStatus.h) for all possible values.

The EcPoError class defines the basic error types and handling functions for using the
EcPoConnectionsRW class (based upon RWDBTool++). The CSS Subscription Server, IOS
Server and MSS Order tracking Server use the EcPoConnectionsRW class.

The RWCString is used to store some status value returned by applications.

Integer is used to return some error status by applications. This is used specifically between
client and server communications.

Many types of exceptions can be sent and handled by the CSS. These include exceptions sent by
Commercial Off The Shelf (COTS) products (such as DCE, RWDBTools++, RWTools++),
systems and exceptions defined by individual applications.

4.6.1 The Distributed Computing Configuration Item Software Description

The DCCI CSCI (the software is found in directory DOF) consists mainly of COTS software and
hardware providing servers, gateways, and software library services to other CSMS CSCIs. The
CSCI is composed of 17 computer software components (CSCs) briefly described here followed
by a description of the HWCI.

The CSCI is composed of 17 computer software components (CSCs) briefly described here as
processes followed by a description of the HWCI.

1. The Configuration Registry Server (the software is found in directory
/ecs/formal/CSS/DOF/src/REGISTRY) provides a single interface to retrieve
configuration attribute-value pairs for ECS Applications from the Configuration Registry
Database. Configurable run-time parameters for Process Framework-based ECS
Applications (including clients and servers) are stored in the Configuration Registry
Database. Upon startup, the Process Framework retrieves this information from the
Configuration Registry Server for the application.

2. The CCS Name service group is a COTS software set of Name and Time Services.

• The ECS Naming Service (the software is found in directory
/ecs/formal/CSS/DOF/src/NS/naming) provides a link between clients and the ECS
servers they need to communicate with to obtain ECS data and services. Servers
register their location information in the ECS Naming Service, independent of
physical location. The clients use the ECS Naming Service to find servers based on
an operating mode. This is the primary way clients locate servers.

• The Time Service (the software is found in directory
/ecs/formal/CSS/DOF/src/TIME/time) keeps the ECS computer network system
clocks synchronized by monitoring and adjusting the operating system clock for each
individual host machine in the network. The Time service provides an API to obtain

 4-98 305-EMD-220

time in various formats. Some applications need to simulate the current time by
applying a delta to the current time. The Time Service retrieves time deltas and
applies them to the system time.

The remote file access group provides the capability to transfer and manage files using the
following five functions: FTP, FTP Notification, Bulk Data Server (BDS), Network File System
(NFS), and Filecopy.

3. The NFS (no physical directory) provides a distributed file sharing system among
computers. NFS consists of a number of components, including a mounting protocol and
server, a file locking protocol and server, and daemons that coordinate basic file service.
A server exports (or shares) a filesystem when it makes the filesystem available for use
by other machines in the network. An NFS client must explicitly mount a filesystem
before using it.

4. The Filecopy utility (the software is found in directory
/ecs/formal/common/CSCI_Util/src/CopyProg) copies files from a specified source
location to a specified destination location with options available for data compression.
The DPL CSCI uses the Filecopy utility to transfer large files.

14. Virtual Terminal (no physical directory) provides the capability for the Operations staff
on an ECS platform to remotely log onto another ECS machine.

15. Cryptographic Management Interface (CMI, the software is found in directory
/ecs/formal/CSS/DOF/src/AUTHN) provides processes a means for obtaining random
passwords and gaining access to Sybase.

16. The Domain Name Service (DNS, the software is found in directory
ecs/formal/CSS/NameServer/src) provides host names and addresses to a specified
network by querying and answering queries. DNS provides naming services between the
hosts on the local administrative domain and also across domain boundaries. DNS is
distributed among a set of servers (name servers); each of which implements DNS by
running a daemon called in.named. On the client side, the service is provided through the
resolver, which is not a daemon. The resolver resolves user queries by needing the
address of at least one name server (provided in a configuration file parameter). Each
domain must have at least two kinds of DNS servers (a primary and secondary server)
maintaining the data corresponding to the domain. The primary server obtains the master
copy of the data from disk when it starts up the in.named. The primary server delegates
authority to other servers in or outside of the domain. The secondary server maintains a
copy of the data for the domain. When the secondary server starts in.named, the server
requests all data for the given domain from the primary server. The secondary server
checks periodically with the primary server for updates. DNS namespace has a
hierarchical organization consisting of nested domains like directories. The DNS
namespace consists of a tree of domains. See Figure 4.6-33 for an illustration of the
domain tree hierarchy.

17. The Infrastructure Library provides a set of services including the following.

 4-99 305-EMD-220

• Process Framework (PF) (the software is located in directory
/ecs/formal/CSS/DOF/src/PF/pf): The PF is a software library of services, which
provides a flexible mechanism (encapsulation) for the ECS Client and Server
applications to transparently include specific ECS infrastructure features from the
library of services. (Library services include: process configuration and initialization,
mode management and event handling, life cycle services (server start-up and shut-
down), communications services (message passing, FTP, underlying transport
protocol, number of simultaneous threads), naming and directory services (CCS
Middleware naming service), and set-up of security parameters.) The PF process is
the encapsulation of an object with ECS infrastructure features and therefore the
encapsulated object is fully equipped with the attributes needed to perform the
activities assigned to it. The PF was developed for the ECS custom developed
applications and is not meant for use by any COTS software applications. The PF
ensures design and implementation consistency between the ECS Client and Server
applications through encapsulation of the implementation details of the ECS
infrastructure services. Encapsulation therefore removes, for example, the task of
each programmer repeatedly writing common initialization code. The PF is built by
first developing a process classification for the EMD project from the client/server
perspective. Then the required capabilities are allocated for each respective process
level and type. PF-based ECS applications use Process Framework to read in their
configuration information at startup. PF-based servers use Process Framework to
initialize themselves as a CCS Middleware server and put it in a listen state to begin
to accept requests from appropriate clients.

• Universal References (the software is found in directory /ecs/formal/
COMMON/CSCI_UR/src/UR/framework): Universal References (URs) provide
applications and users a system wide mechanism for referencing ECS data and
service objects. Manipulating logical entities represented at run time as C++ objects
in virtual memory performs ECS functions. Users and applications require references
to the logical entities beyond the effective computational time to keep the objects in
memory. Therefore, applications and users are given URs to these objects. Once an
UR is made for an object, the object can be disposed of and later reconstituted from
the UR. URs take up a small fraction of the space to keep in memory and can be
externalized into an ASCII string, which an end user can manage. URs have the
capability of re-accessing and/or reconstituting the object into memory as needed.
Therefore, the object does not have to remain in memory, and can if appropriate, be
written to a secondary storage system, like a database. While the UR mechanism
guarantees reliable data externalization and internalization, the content of each type
of UR is application specific. Only the object (this is referred to as the "UR
Provider") that initially provides the UR is allowed to access and understand its
content. URs are strongly typed to enforce appropriate access control to internal data
both at compile time and during run time. Since URs are typed and have object
specific data in them, separate UR object classes exist for each UR Provider class
referred to. All of these UR classes use the mechanisms provided by the UR
framework.

 4-100 305-EMD-220

• Event Logging (the software is found in directoryLOGGING): Event logging is the
capability of recording events into files and provides a convenient way to generate
and report detailed events. All ECS CSCIs use event and error logging as an audit
trail for all transactions that occur during the ECS data processing and distributing.

• Server Locator (the software is found in directory
/ecs/formal/CSS/DOF/src/NS/service_locator): The Server Locator is a class that
enables servers to register their location without referring to its physical location and
be uniquely identified and located in the ECS. Client applications use the Server
Locator to find any registered server. The Server Locator is used in ECS in any
client-server CCS Middleware-based communication.

• Failure Recovery Framework (the software is found in directory
/ecs/formal/CSS/DOF/src/FH): The Failure Recovery Framework provides a general-
purpose fault recovery routine enabling client applications to reconnect with servers
after the initial connection is lost. This is accomplished through the CCS Naming
Service, through which the Failure Recovery Framework can determine whether a
server is listening. The Failure Recovery Framework provides a default and
configurable amount of retries and duration between retries. This fault recovery takes
effect for each attempt by the client to communicate with the server for all
applications that employ the Failure Recovery Framework.

• EcPo Connections (the software is found in directory /ecs/formal/
COMMON/CSCI_DBWrapper): A suite of classes providing a basic set of database
connection management methods and an error handling mechanism for database
users, which is found in the DBWrapper directory of the Infrastructure Library
Group.

• Time Service (the software is found in directory
/ecs/formal/CSS/DOF/src/TIME/time): the class providing the structured time
information and get RogueWave type of time information.

• CSS software is executed on multiple hardware hosts throughout the ECS system to
provide communication functions, processing capability, and storage. The software
and hardware relationships are discussed in the CSS Hardware CI description.

4.6.1.1 Configuration Registry Server Software Description

4.6.1.1.1 Configuration Registry Server Functional Overview

The Configuration Registry Server provides an interface to retrieve configuration attribute-value
pairs and another interface to retrieve distribution options for ECS Servers from the
Configuration Registry Database, via a Sybase ASE. The Configuration Registry Server
maintains an internal representation of the tree in which configuration attribute-value pairs and
distribution options are stored. General configuration parameters used by many servers are
stored in higher nodes in the tree. Parameters specific to a single ECS Server are contained in
the leaf nodes of the tree.

 4-101 305-EMD-220

The Configuration Registry Server not only accepts queries to the Configuration Registry
Database with a configuration path and returns a list of attribute-value pairs, but also accepts
queries of distribution options to the Configuration Registry Database with an ESDT short name
and version and returns a hierarchical list of attributes. A wild-card character may be specified as
the last element in the path to retrieve all attributes in the sub-tree specified. Each Configuration
Registry Server is MODE specific, with multiple Registry Servers running in a mode to provide
redundancy.

4.6.1.1.2 Configuration Registry Server Context

Figure 4.6-2 is the Configuration Registry Server context diagrams. Table 4.6-2 provides
descriptions of the interface events in the Configuration Registry Server context diagrams.

RCS - Query
Registry

Configuration
Registry Server

CSC

DPL INGEST,
OMS

Return Configuration
Parameters

Figure 4.6-2. Configuration Registry Server Context Diagram

Table 4.6-2. Configuration Registry Server Interface Events (1 of 2)
Event Interface Event Description

RCS - Query
Registry

Upon startup, the MCI and other DCCI CSCI CSCs query the Configuration
Registry Server for configuration parameters and their respective value(s). The
ECS Servers pass in a path that corresponds to a sub-tree in the MODE
configuration value tree maintained by the server. The Registry Server uses this
path as a starting point in the tree and returns all parameters and their associated
values in the sub-tree below it.

Return Configuration
Parameters

The Configuration Registry CSC returns the requested configuration parameters
to the MCI and DCCI, CSCIs.

4.6.1.1.3 Configuration Registry Server Architecture

Figure 4.6-3 is the Configuration Registry Server architecture diagram. The diagram shows the
events sent to the Configuration Registry Server process and the events the Configuration
Registry Server process sends to other processes.

 4-102 305-EMD-220

EMD Applications

EMD Applications

EcCsRegistry

Return Configuration Parameter (only)

RCS-Query Registry (only)

RCS- Request Distribution Media

Options, Query Registry

Return Dist. Media Options,

Return Configuration Parameters

Registry

Sybase ASE

Return Registry Information

Request Registry Information

Figure 4.6-3. Configuration Registry Server Architecture Diagram

4.6.1.1.4 Configuration Registry Server Process Descriptions

Table 4.6-3 provides a description of the processes in the Configuration Registry Server
architecture diagram.

 4-103 305-EMD-220

Table 4.6-3. Configuration Registry Server Processes
Process Type Hardware

CI
COTS /

Developed
Functionality

EcCsRegistry Server OMSHW Developed The Configuration Registry Server provides an
interface to retrieve configuration attribute-value
pairs (the returned attribute-value pairs are stored
in cache memory on the PF client side). The
Configuration Registry Server provides an interface
to retrieve distribution options for ECS Servers from
the Configuration Registry Database, via a Sybase
ASE. The Configuration Registry Server not only
accepts queries to the Configuration Registry
Database with a configuration path and returns a
list of attribute-value pairs, but also accepts queries
of distribution options to the Configuration Registry
Database with an ESDT short name and version
and returns a list of attributes. A wild-card
character may be specified as the last element in
the path to retrieve all attributes in the sub-tree
specified. The Configuration Registry Server
provides another interface to retrieve external data
subsetters for Synergy.

EBIS Document 920-TDx-001 (Hardware Design Diagram) provides descriptions of the HWCI,
and document 920-TDx-002 (Hardware-Software Map) provides site-specific hardware/software
mapping.

4.6.1.1.5 Configuration Registry Server Process Interface Descriptions

Table 4.6-4 provides descriptions of the interface events shown in the Configuration Registry
Server architecture diagram.

 4-104 305-EMD-220

Table 4.6-4. Configuration Registry Server Process Interface Events (1 of 2)
Event Event

Frequency
Interface Initiated by Event Description

RCS - Query
Registry

One per
client
request

Process:
EcCsRegistry
Library:
EcCsRegistry
Class:
EcRgRegistryServer_C

Processes:
DPL Servers
OMS

An ECS
application
(process) sends a
query request to the
Configuration
Server to retrieve a
list of attribute-value
pairs (configuration
parameters)
needed by the
application.

Return
Configuration
Parameters

One set per
request

Processes:
DPL Servers
OMS

Process:
EcCsRegistry
Library:
EcCsRegistry
Class:
EcRgRegistryServer_C

The EcCsRegistry
returns the
attribute-value pairs
(configuration
parameters) to the
various ECS
applications
(processes) upon
request.

Retrieve
Registry
Information

Per client
request

Registry Database Sybase ASE (COTS) The Sybase ASE
receives the
request and
retrieves the
necessary attribute-
value pairs and
returns them to the
EcCsRegistry.

Request
Registry
Information

Per client
request

Sybase ASE (COTS) Process:
EcCsRegistry
Class:
EcRgRegistryServer_S

The Configuration
Server sends the
request to the
Sybase ASE to
retrieve the
attribute-value
pairs.

 Return
Registry
Information

Per client
request

Process:
EcCsRegistry
Class:
EcRgRegistryServer_S

Sybase ASE (COTS) The Configuration
Server receives the
registry information
(attribute-value
pairs) from the
Sybase ASE.

 4-105 305-EMD-220

Table 4.6-4. Configuration Registry Server Process Interface Events (2 of 2)
Event Event

Frequency
Interface Initiated by Event Description

RCS - Query
Registry (only)

One per
client
request

Process:
EcCsRegistry
Library:
EcCsRegistry
Class:
EcRgRegistryServer_C

Processes:
Datapool Servers
OMS

An ECS
application
(process) sends a
query request to the
Configuration
Server to retrieve a
list of attribute-value
pairs (configuration
parameters)
needed by the
application.

Return
Configuration
Parameters
(only)

One set per
request

Processes:
Datapool Servers
OMS

Process:
EcCsRegistry
Library:
EcCsRegistry
Class:
EcRgRegistryServer_C

The EcCsRegistry
returns the
attribute-value pairs
(configuration
parameters) to the
various ECS
applications
(processes) upon
request.

RCS - Request
Distribution
Media Options

One per
client
request

Process:
EcCsRegistry
Library:
EcCsRegistry
Class:
EcRgRegistryServer_C

Processes:
EcDsScienceDataServer,
EcDsHdfEosServer,
EcDmV0ToEcsGateway,
EcCsMtMGateway

An ECS
application
(process) sends a
query of distribution
options to the
Configuration
Server to retrieve a
list of distribution
options.

Return Dist.
Media Options

One set per
request

Processes:
EcDsScienceDataServer,
EcDsHdfEosServer,
EcDmV0ToEcsGateway,
EcCsMtMGateway

Process:
EcCsRegistry
Library:
EcCsRegistry
Class:
EcRgRegistryServer_C

The EcCsRegistry
returns the
distribution media
options (tape) to
the various ECS
applications
(processes) upon
request.

4.6.1.1.6 Configuration Registry Server Data Stores

The Configuration Registry Server uses a Sybase ASE database for its persistent storage. The
following is a brief description of the types of data contained in the database:

• Mode: This data store contains the list of modes and a description of the purpose of the
mode.

• Node: This data store contains information that describes each node in the tree.

 4-106 305-EMD-220

• NodeContact: This data store contains the information of the person who is responsible for
the information contained in each node of the tree.

• Attribute tree: This data store contains a list of tree names and a description of each tree.

• Attribute: This data store contains a description of each attribute whose value is assigned to
a particular node.

• AttributeValidEnum: This data store contains enumerated string values for attributes of
enumerated types.

• AccessControlList: This data store contains the access control information for each node.

• ConfiguredValue: This data store contains the value for the parameter stored in a node, and
associated information.

• ConfigurationManagementContact: This data store contains a list of configuration
management contacts for information stored in the Configuration Registry.

Table 4.6-5 provides descriptions of the data found in the separate Sybase ASE data stores used
by the Configuration Registry Server. More detailed information on these data stores can be
found in the Configuration Registry Database Design and Schema Specifications for the EMD
Project.

Table 4.6-5. Configuration Registry Server Data Stores (1 of 2)
Data Store Type Functionality

Mode Sybase This data store contains the list of modes and a description of the
purpose of the mode. It also contains a mapping of the mode to
the tree name.

AttributeTree Sybase This data store contains a list of tree names and a description of
each tree.

Node Sybase This data store contains information that describes each node in
the tree. This information includes a NodeID, the tree name to
which it belongs, the node name, its parent NodeID, the node
type, and a node description.

NodeContact Sybase This data store contains the information of the person who is
responsible for the information contained in each node of the tree.
It includes the NodeID, and the FirstName, LastName, Org
(organization), and Email address of the person responsible.

AccessControlList Sybase This data store contains the access control information for each
node. It includes the NodeID, an AclSequenceNumber, AclType,
AclUser, AclGroup, and Create, Read, Update, and Delete flags.

Attribute Sybase This data store contains a description of each attribute whose
value is assigned to a particular node. It lists the attribute type,
minimum and maximum values, and the NodeID.

 4-107 305-EMD-220

Table 4.6-5. Configuration Registry Server Data Stores (2 of 2)
Data Store Type Functionality

AttributeValidEnum Sybase This data store contains enumerated string values for attributes of
enumerated type. It includes a string name for each enumerated
value, a description of the value, and a NodeID.

ConfiguredValue Sybase This data store contains the value for the parameter stored in a
node, and associated information. It includes the NodeID,
DataType, and TimeStamp of last change, Comment for the
change, Float, Integer, or String value, ValueVersion number, and
userid of the user who made the change.

ConfigurationManage
mentContact

Sybase This data store contains a list of configuration management
contacts for information stored in the Configuration Registry.

4.6.1.2 CCS Middleware Support Group Description

The CCS Middleware support group consists of the CCS Name Server.

4.6.1.2.1 CCS Middleware Functional Overview

The CCS Name Server of the CSS enables clients to locate and communicate with the various
ECS servers. The ECS servers register their location information into the CCS Name Server
(EcCsIdNameServer) independent of the server's physical location. Servers registering in the
EcCsIdNameServer are available to be accessed by other application clients. Clients use the
remote service name and the ECS operating mode to find the server of interest.

4.6.1.2.2 CCS Middleware Context

Figure 4.6-4 is the CCS Middleware context diagram. Table 4.6-6 provides descriptions of the
interface events shown in the CCS Middleware context diagram.

 CCS Middleware
 CSC

ECS Applications –,DPL INGEST, OMS

Export
Location
Information

Import
Location
Information

Figure 4.6-4. CCS Middleware Context Diagram

 4-108 305-EMD-220

Table 4.6-6. CCS Middleware Interface Events
Event Interface Event Description

Import location information
(binding information)

An ECS application requests server location information from the CCS
Name Server and saves the information in its local cache via the CCS
Name Server client proxy component.

Export location information
(binding information)

The CCS Middleware CSC stores physical and logical location
information received from ECS Applications in the CCS Name Server
via the CCS Name Server client proxy component.

4.6.1.2.3 CCS Middleware Architecture

Figure 4.6-5 is the CCS Middleware support group architecture diagram. The diagram shows the
events sent to the CCS Middleware process and the events the CCS Middleware process send to
other processes.

EsCsIdNameServe

ECS Applications

Export Location
Information

Import Location
Information

Figure 4.6-5. CCS Middleware Architecture Diagram

4.6.1.2.4 CCS Middleware Process Descriptions

Table 4.6-7 provides descriptions of the processes shown in the CCS Middleware architecture
diagram. ECS applications store server location information on the CCS Name Server
(EcCsIdNameServer).

 4-109 305-EMD-220

Table 4.6-7. CCS Middleware Processes
Process Type Hardware

CI
COTS/

Developed
Functionality

EcCsIdNameServer Internal OMSHW COTS Stores server location information and
provides interfaces for storing and
retrieving the location information.

EBIS Document 920-TDx-001 (Hardware Design Diagram) provides descriptions of the HWCI,
and document 920-TDx-002 (Hardware-Software Map) provides site-specific hardware/software
mapping.

4.6.1.2.5 CCS Middleware Process Interface Descriptions

Table 4.6-8 provides descriptions of the interface events shown in the CCS Middleware
architecture diagram.

Table 4.6-8. CCS Middleware Process Interface Events (1 of 2)
Event Event

Frequency
Interface Initiated By Event Description

Import
location
information

One per
server

Process:
EcCsIdNameServer
Libraries:
EcPf,
Middleware,
FoNs,
FoIp,
oodce
Classes:
CCSMdwNameServer,
FoNsNameServerProxy,
CCSMdwRwNetProxy

Processes:
ECS Applications (All
servers identified in the
architecture diagram.)
Libraries:
EcPf,
Middleware,
FoNs,
FoIp,
oodce
Classes:

CCSMdwNameServer,
FoNsNameServerProxy,
CCSMdwRwNetProxy

An ECS application
retrieves server
location information
from the
EcCsIdNameServer
via the CCS Name
Server client
component in the
ECS application.

 4-110 305-EMD-220

Table 4.6-8. CCS Middleware Process Interface Events (2 of 2)
Event Event

Frequency
Interface Initiated By Event Description

Export
location
information

One per
server

Process:
EcCsIdNameServer
Libraries:
EcPf,
Middleware,
FoNs,
FoIp,
oodce
Classes:
CCSMdwNameServer,
FoNsNameServerProxy,
CCSMdwRwNetProxy

Processes:
ECS Applications (All
processes identified in
the architecture
diagram.)
Libraries:
EcPf,
Middleware,
FoNs,
FoIp,
oodce
Classes:
CCSMdwNameServer,
FoNsNameServerProxy,
CCSMdwRwNetProxy

The ECS
application places
physical and logical
location information
in the
EcCsIdNameServer
via the CCS Name
Server client
component in the
ECS application.

4.6.1.2.6 CCS Middleware Data Stores

Table 4.6-9 provides a description of the data store shown in the CCS Middleware architecture
diagram.

Table 4.6-9. CCS Middleware Data Stores
Data Store Type Functionality

StringId Sybase This data store contains the ECS Mode information.
Service Sybase This data store contains the service name an ECS application server

listens on.
Host Sybase This data store contains the host name an ECS application server runs

on.
ProcessId Sybase This data store contains the process id an ECS application server runs

with.
ClassId Sybase This data store contains the binding information of an ECS application

server, which includes process id and port number.
ServerUR.map Other A flat file for the Server Locator classes to map short, logical service

names to CCS Name Server entry names.

4.6.1.3 Virtual Terminal Description

4.6.1.3.1 Virtual Terminal Functional Overview

The Virtual Terminal (VT) effectively hides the terminal characteristics and data handling
conventions from both the server host and Operations staff, and enables the Operations staff to

 4-111 305-EMD-220

remotely log on to other ECS machines. The CSS provides the secure shell server (sshd2) on
available systems and common capability support for the ECS remote terminal service.

4.6.1.3.2 Virtual Terminal Context

The CSS provides the secure shell (sshd2) remote access to the ECS systems. SSH is distributed
as a third party remote server access service. The SSH service provides users with access to the
ECS character-based user interface (CHUI) search and order tool. Figure 4.6-6 is the Virtual
Terminal context diagram and Table 4.6-10 provides the descriptions of the interface events
shown in the Virtual Terminal context diagram.

Terminal Session Requests

Terminal Session Replies

Terminal Session Requests

ECS Users

ECS Character–based
User Interface (CHUI)
search and order tool
(Web Access; SSH)

Secure
Shell

Server
(SSH)

Terminal Session Replies

Figure 4.6-6. Virtual Terminal Context Diagram

Table 4.6-10. Virtual Terminal Interface Events
Event Interface Event Description

Terminal Session Requests
(Web access)

ECS users request a connection to a specified host via SSH.

Terminal Session Requests
(ECS Users)

ECS users request a telnet session with a specified ECS host.

Terminal Session Replies
(from SSH to ECS or other
remote users)

The SSH Server residing on the ECS host responds to the terminal
session requests and interacts via the successful connection.

4.6.1.3.3 Virtual Terminal Architecture

Figure 4.6-7 is the Virtual Terminal architecture diagram. The diagram shows the event traffic
between the Remote Terminal Session with ECS Users and SSH with remote users.

 4-112 305-EMD-220

SSH Internet
Service

SSH Session Request

Terminal Session Request

SSH
(Remote Users)

Terminal
Session
Replies

SSH Session Replies Terminal
Session
Request

Terminal Session Replies

sshd2
SSH

(ECS Users)

Figure 4.6-7. Virtual Terminal Architecture Diagram

4.6.1.3.4 Virtual Terminal Process Descriptions

Table 4.6-11 provides the descriptions of the processes shown in the Virtual terminal
architecture diagram.

Table 4.6-11. Virtual Terminal Processes
Process Type Hardware

CI
COTS/

Developed
Functionality

SSH
(Remote Users)

Client CSSHW COTS Provides the dial-up terminal session
as requested on the client-side via
remote service.

SSH
(ECS Users)

Client CSSHW COTS Provides the user interface to a
remote system using the SSH
protocol.

(Internet Service) Server/Client CSSHW COTS Enables users to interact with the
host through a remote service.

sshd2 Server CSSHW COTS Function provides servers
supporting SSH with virtual terminal
protocol.

EBIS Document 920-TDx-001 (Hardware Design Diagram) provides descriptions of the HWCI,
and document 920-TDx-002 (Hardware-Software Map) provides site-specific hardware/software
mapping.

4.6.1.3.5 Virtual Terminal Process Interface Descriptions

Table 4.6-12 provides the descriptions of the interface events shown in the Virtual Terminal
architecture diagram.

 4-113 305-EMD-220

Table 4.6-12. Virtual Terminal Process Interface Events
Event Event

Frequency
Interface Initiated by Event Description

SSHSessi
on
Request

One per
connection
request

Process:
sshd2 (dial-up
service)

Process:
SSH (COTS –
remote users)

Any ECS user requiring a logon to another
machine from the current machine. Users
request to establish connection to a
specified host via SSH.

SSH
Session
Replies

One per
session
reply

Process:
SSH (remote
service)

Process:
sshd2 (remote
service)

The SSH Server service provides users a
remote session to request a terminal
session to the secure shell client.

Terminal
Session
Request
(SSH)

One per
request to
establish a
session

Process:
sshd2

Process:
sshd2 (remote
service)

Either the user or the client application
service requests to establish a session
with the specified host.

Terminal
Session
Replies
(SSH)

One per
connection
request

Process:
SSH (ECS users)

Process:
sshd2

The Host Virtual Terminal Process, sshd2,
responds to the connection requests and
establishes or maintains the sessions.

4.6.1.3.6 Virtual Terminal Data Stores

Data stores are not applicable for the Virtual Terminal.

4.6.1.4 Cryptographic Management Interface Software Description

4.6.1.4.1 Cryptographic Management Interface Functional Overview

The Cryptographic Management Interface (CMI) classes provide the requesting process with a
server account and a randomly generated password so the server can access security required
services (i.e., Sybase ASE). These passwords (and optionally login names) are generated
dynamically based on a psuedo-random number used as the seed for the password.

4.6.1.4.2 Cryptographic Management Interface Context

Figure 4.6-8 is the Cryptographic Management Interface context diagram. Servers (PF or non-
PF) use the CMI with a need for access to security required services. Table 4.6-13 provides
descriptions of the interface events shown in the Cryptographic Management Interface context
diagram.

 4-114 305-EMD-220

EcCMIFile.cmi

Text and special
characters

CMI
Password Seed

Server Account and
random password

EMD Applications

Figure 4.6-8. Cryptographic Management Interface Context Diagram

Table 4.6-13. Cryptographic Management Interface Events
Event Interface Event Description

Password seed The ECS applications request an account and provide a
password seed to CMI.

Server account and random
password

Account with random passwords created for the server is passed
back to the server.

Text and special characters Text and special characters read from a file for password
generation.

4.6.1.4.3 Cryptographic Management Interface Architecture

Figure 4.6-9 is the Cryptographic Management Interface (CMI) architecture diagram. The
diagram shows the event traffic between the CMI process and the ECS applications that interact
with CMI for database connections.

 4-115 305-EMD-220

EcCMIFile.cmi

Text and special
characters

CMI
Password Seed

Server Account and
random password

EMD Applications

Figure 4.6-9. Cryptographic Management Interface Architecture Diagram

4.6.1.4.4 Cryptographic Management Interface Process Descriptions

Table 4.6-14 provides descriptions of the processes shown in the Cryptographic Management
Interface context diagram.

Table 4.6-14. Cryptographic Management Interface Processes
Process Type Hardware

CI
COTS/

Developed
Functionality

ECS
Process
Names

Server CSSHW Developed Requests account with random password for
access to security required services.

CMI Other CSSHW Developed A server account and randomly generated
password are returned to the requesting server.

EBIS Document 920-TDx-001 (Hardware Design Diagram) provides descriptions of the HWCI,
and document 920-TDx-002 (Hardware-Software Map) provides site-specific hardware/software
mapping.

4.6.1.4.5 Cryptographic Management Interface Process Interface Descriptions

Table 4.6-15 provides the descriptions of the interface events shown in the Cryptographic
Management Interface architecture diagram.

 4-116 305-EMD-220

Table 4.6-15. Cryptographic Management Interface Process Interface Events
Event Event

Frequency
Interface Initiated by Event Description

Password
seed

One per
password
seed

Process:
CMI
Library:
EcSeCmi
Class:
EcSeCmi

DCCI Process:
EcCsRegistry

The server provides a
unique number as a seed
for generating a password
to the ECS Applications.

Server
Account
and
random
password

One per
account
and
password

DCCI Process:
EcCsRegistry

Process:
CMI
Library:
EcSeCmi
Class:
EcSeCmi

CMI generates a random
password for the account
based on the seed.

4.6.1.4.6 Cryptographic Management Interface Data Stores

Table 4.6-16 provides descriptions of the data store shown in the Cryptographic Management
Interface architecture diagram.

Table 4.6-16. Cryptographic Management Interface Data Stores
Data Store Type Functionality

EcCMIFile.cmi File This is a flat file of textual and special characters used by the CMI
password generation algorithm to create passwords.

4.6.1.5 Domain Name Server Software Description

4.6.1.5.1 Domain Name Server Functional Overview

Domain Name Server (DNS) performs name-to-address and address-to-name resolution between
hosts within the local administrative domain and across domain boundaries. DNS is COTS
software implemented as server by running a daemon called “in.named.” Servers running the
in.named daemon are referred to as name servers.

The server is implemented through a resolver instead of a daemon from the client side. The
function of in.named is to resolve user queries for device names or addresses (DNS requires the
address of at least one name server to be in the file /etc/resolv.conf). The name server, when
queried for a name or an address, returns the answer to the query or a referral to another name
server to query for the answers.

Each domain uses at least two kinds of DNS servers (primary and secondary) to maintain the
name and address data corresponding to the domain. The primary server keeps the master copy
of the data when it starts up in the “in.named,” daemon and delegates authority to other servers
both inside and outside of its domain. A secondary server maintains a copy of the name and
address data for the domain. When secondary server boots in.named, it requests the data for a

 4-117 305-EMD-220

given domain from the primary server. The secondary server then checks with the primary server
periodically and requests updates to the daemon data so the secondary server is kept up to date
with the primary.

DNS namespace is hierarchically organized, with nested domains, like directories. The DNS
namespace consists of a tree of domains. Figure 4.6-10 is an Internet domain hierarchy diagram.
The top-level domains are edu, arpa, com, gov, net, and for simplicity, not showing org, mil, and
int, at the root level. The second level domain is nasa for gov. The third level domain is ecs for
the EMD project for nasa.gov.

•

edu arpa com gov net

the root level

top level domains

ibm hitc nasa second level domains

enterprise ecs third level domains
and individual hosts

dss2

Figure 4.6-10. Domains Hierarchy Diagram

The fourth level domains in the EMD project include domains of DAACs: gsfcb, gsfcmo, and
etc. Figure 4.6-11 is the hierarchy diagram of the fourth level domains in the EMD project. The
DAAC and M&O domains are part of the overall DNS. The top-level domain is ecs.nasa.gov and
the two lower level domains for the DAACs, for example, gsfcb.ecs.nasa.gov and
gsfcmo.ecs.nasa.gov for the GSFC DAAC. The former is for the production network and the
latter are for the GSFC M&O network.

ecs

gsfcb gsfcmo larcb larcmo edcb edcmo nsidcb nsidcmo vatc

nasa

gov

.

The fourth level domains in the ECS project

Figure 4.6-11. DNS Domains of the EMD Project Diagram

 4-118 305-EMD-220

Figure 4.6-12 is the ECS topology domain diagram.

EDC
SMC

ecs.nasa.gov

VATC
ecs.nasa.gov DAAC User

ecs.nasa.gov

VATC

vatc.ecs.nasa.gov

LaRC

larcb.ecs.nasa.gov

edcmo.ecs.nasa.gov

edcb.ecs.nasa.gov GSFC

gsfcb.ecs.nasa.gov

NSIDC

nsidcb.ecs.nasa.gov

nsidcmo.ecs.nasa.gov

larcmo.ecs.nasa.gov

gsfcmo.ecs.nasa.gov

Figure 4.6-12. ECS Topology Domains Diagram

4.6.1.5.2 Domain Name Server Context

Figure 4.6-13 is the Domain Name Server context diagram.

Domain
Name
Server
User

Domain Name
RequestName

Request

 Resolver
 (COTS)

/etc/resolv.conf

Device
Address

Name server name

Device names,
Device addresses

Figure 4.6-13. Domain Name Server Context Diagram

4.6.1.5.3 Domain Name Server Architecture

The Domain Name Server architecture diagram is the same as the context diagram and is not
duplicated here. When the DNS client has a request for data, it searches the servers listed in the
/etc/resolv.conf file in the order the servers were added to the file. When the first server does not
contain the information of interest for the client, the second server in the list is searched and the
search continues until the information is found.

 4-119 305-EMD-220

4.6.1.5.4 Domain Name Server Process Descriptions

Table 4.6-17 provides descriptions of the Domain Name Server processes shown in the Domain
Name Server context diagram.

Table 4.6-17. Domain Name Server Process
Process Type Hardware

CI
COTS/

Developed
Functionality

resolver Client CSSHW COTS Searches data store of device names
and device addresses for information
requested in the Domain Name Request.
First entry in the file /etc/resolv.conf is
used as the place to start searching.

EBIS Document 920-TDx-001 (Hardware Design Diagram) provides descriptions of the HWCI,
and document 920-TDx-002 (Hardware-Software Map) provides site-specific hardware/software
mapping.

4.6.1.5.5 Domain Name Server Process Interface Descriptions

Table 4.6-18 provides descriptions of the interface events shown in the Domain Name Server
architecture diagram.

Table 4.6-18. Domain Name Server Process Interface Events
Event Event

Frequency
Interface Initiated by Event Description

Request
Domain
Name

One per
user
request

COTS Software:
resolver

User A DNS user requests data.

Name
server
name

One per
search
directory
change

Data Store COTS Software:
resolver

The resolver retrieves the pathname for
the directory to search for the user
requested data from the /etc/resolv.conf
database table. New file names are added
to the list in the order they are stored.

Device
Address

One per
resolved
address

COTS Software:
resolver

COTS Software:
name server

Returns the resolved address to the
domain name requester via the Resolver.

Request
Name

One per
domain
name
request

COTS Software:
name server

COTS Software:
resolver

The resolver retrieves the domain name
(device name and address) for the name
server from an internal file used by the
COTS software.

4.6.1.5.6 Domain Name Server Data Stores

Table 4.6-19 provides descriptions of the data store shown in the Domain Name Server
architecture diagram.

 4-120 305-EMD-220

Table 4.6-19. Domain Name Server Data Stores
Data Store Type Functionality

/etc/resolv.conf Other Stores the primary and secondary server names.

4.6.1.6 Infrastructure Libraries Group Description

4.6.1.6.1 Infrastructure Libraries Group Functional Overview

The Infrastructure Library Group (ILG) is a library of reusable software frameworks and
infrastructures used by ECS servers configured as a distributed client-server system.
Table 4.6-20 provides descriptions of the infrastructures in the ILG.

Table 4.6-20. Infrastructure Libraries (1 of 2)
Library Description

Process Framework (PF) The PF is a software library of services, which provides a flexible
mechanism (encapsulation) for the ECS client and server applications to
transparently include specific ECS infrastructure features from the library
of services, such as mode management, error and event logging, life-cycle
services, and the CCS Middleware Naming Service.

Server Request
Framework (SRF)

The SRF infrastructure provides the standard for ECS synchronous and
asynchronous communications between ECS applications. SRF is used to
provide the client-server communications between the DPL INGEST
Request Manager and Granule Server. SRF provides enhanced CCS
Middleware call message passing and persistent storage as a CSS
support capability with the described features available by subsystem
request.

Universal References (UR) A Universal Reference provider object from C++ objects generates UR
during their run time in virtual memory. The UR is a representation of the
original object. URs can be transformed from an object to an ASCII
representation and again returned to an object. URs are objects the users
and applications use with full capabilities. Once the UR is obtained, the
original object can be discarded and later reconstituted and used. URs can
refer to objects local or remote to an address space. Therefore, the object
does not have to remain in memory, and can, as appropriate, be written to
a secondary storage system like a database.

Error/Event Logging Event/Error logging is the capability of recording events into files and
provides a convenient way to generate and report detailed events. All ECS
CSCIs use event and error logging as an audit trail for all transactions
(requests for data or services) that occur during the ECS data processing
and distributing.

Message Passing (MP) Message Passing provides peer-to-peer asynchronous communications
service, which notifies clients of specific event triggers. This service is
provided upon subsystem request by the CSS. It is an alternative means
of communication.

 4-121 305-EMD-220

Table 4.6-20. Infrastructure Libraries (2 of 2)
Library Description

ServerUR Provides unique identification (universal reference) for data and service
objects in the ECS. The Server Locator is a class that enables servers to
register their location without referring to its physical location and be
uniquely identified and located in the ECS. Client applications use the
Server Locator to find any registered server. The Server Locator is used in
ECS in any client-server CCS Middleware-based communication.

Fault Handling (FH) The Failure Recovery Framework provides a general-purpose fault
recovery routine enabling client applications to reconnect with servers
after the initial connection is lost. This is accomplished through the CCS
Naming Service, through which the Failure Recovery Framework can
determine whether a server is listening. The Failure Recovery
Framework provides a default and configurable amount of retries and
duration between retries. This fault recovery takes effect for each attempt
by the client to communicate with the server for all applications that
employ the Failure Recovery Framework.

DBWrapper directory The DBWrapper directory is the DBMS Interface Infrastructure Library
used by ECS applications to connect to the Sybase ASEs. Sybase ASEs
operate by ECS defined guidelines for mode management, thread safety,
error handling, error recovery, security, configuration management, and
performance of database connections.

4.6.1.6.2 Infrastructure Libraries Group Context

A context diagram is not applicable to the Infrastructure Libraries Group.

4.6.1.6.3 Infrastructure Libraries Group Architecture

An architecture diagram is not applicable to the Infrastructure Libraries Group.

4.6.1.6.4 Infrastructure Libraries Group Process Descriptions

Descriptions of the individual processes in the Infrastructure Libraries Group are not applicable.

4.6.1.6.5 Infrastructure Libraries Group Interface Descriptions

Table 4.6-21 provides descriptions of the interfaces the Infrastructure Libraries Group.

 4-122 305-EMD-220

Table 4.6-21. Infrastructure Libraries Group Interfaces (1 of 2)
Library Interface Initiated by Library Description

Process
Framework (PF)

Library:
EcPf
Classes:
EcPfManagedServer,
EcPfClient

EcCsRegistry,
DPL Servers
OMS

The PF is a software library of
services, which provides a flexible
mechanism (encapsulation) for the
ECS client and server applications
to transparently include specific
ECS infrastructure features from
the library of services. Features
and services include:
• Mode management
• Error and event logging
• Life-cycle services
• CCS Naming Service

Universal
References
(UR)

Library (Common):
EcUr

Object Origination A Universal Reference provider
object from C++ objects generates
UR during their run time in virtual
memory. The UR is a
representation of the original
object. URs can be transformed
from an object to an ASCII
representation and again returned
to an object. URs are objects the
users and applications use with
full capabilities. Once the UR is
obtained, the original object can
be discarded and later
reconstituted and used. URs can
refer to objects local or remote to
an address space. Therefore, the
object does not have to remain in
memory, and can, as appropriate,
be written to a secondary storage
system like a database.

 4-123 305-EMD-220

Table 4.6-21. Infrastructure Libraries Group Interfaces (2 of 2)
Library Interface Initiated by Library Description

Error/Event
Logging

Library:
event
Class:
EcLgErrorMsg

DPL Servers
OMS

Event/Error logging is the
capability of recording events into
files and provides a convenient
way to generate and report
detailed events. All ECS CSCIs
use event and error logging as an
audit trail for all transactions
(requests for data or services) that
occur during the ECS data
processing and distributing.

ServerUR Library (Common):
EcUr
Class:
EcUrServerUR

Processes:
EcOmOrderManager
DPL Servers
Classes:
EcNsServiceLoc

DSS Libraries:
DsBt,
DsDe1,
DsGe

Provides unique identification
(universal reference) for data and
service objects in the ECS. The
Server Locator is a class that
enables servers to register their
location without referring to its
physical location and be uniquely
identified and located in the ECS.
Client applications use the Server
Locator to find any registered
server. The Server Locator is used
in ECS in any client-server CCS
Middleware-based
communication.

Fault Handling
(FH)

Library:
EcFh
Class:
EcFhExecutor

EcOmOrderManager
DPL Servers

The Failure Recovery Framework
provides a general-purpose fault
recovery routine enabling client
applications to reconnect with
servers after the initial connection
is lost. This is accomplished
through the CCS Naming Service,
through which the Failure
Recovery Framework can
determine whether a server is
listening. The Failure Recovery
Framework provides a default and
configurable amount of retries and
duration between retries. This
fault recovery takes effect for each
attempt by the client to
communicate with the server for
all applications that employ the
Failure Recovery Framework.

 4-124 305-EMD-220

4.6.1.6.6 Infrastructure Library Group Data Stores

Data Stores are not applicable for the Infrastructure Library Group.

4.6.2 The Distributed Computing Configuration Item Context

Figure 4.6-14 is the Distributed Computing Configuration Item (DCCI) CSCI context diagrams.
The diagrams show the events sent to the DCCI CSCI and the events the DCCI CSCI sends to
other CSCIs. Table 4.6-22 provides descriptions of the interface events shown in the DCCI CSCI
context diagrams.

DCCI CSCI

DPL INGEST

RCS - Query Registry,
Export Location Information,
Filesystem Request

Return Configuration
Parameters,
Import Location Information

OMS
Export Location
Information

Note:
RCS = Request Communications Support,

Figure 4.6-14. Distributed Computing Configuration Item (DCCI) CSCI
Context Diagram

 4-125 305-EMD-220

Table 4.6-22. Distributed Computing Configuration Item (DCCI) CSCI Interface
Events

Event Interface Event Description
Filesystem Request The NFS clients request ECS files or directories via an established mount point.

The NFS Server makes the storage device(s) and its data accessible for use by
the clients.

Submit Subscription The DPL CSCI submits a subscription request to the DCCI CSCI using the
advertisement subscribing to an insert event for an ESDT.

Password Seed The DPL CSCI requests an account and provides a password seed to the CMI.
Notify of Subscription The DCCI CSCI sends notification (via message passing) to the DPL CSCI

when the subscribed event occurs.
Server Account and
random password

An account with random passwords, created for the server, is passed back to
the server in the DPL CSCI from the DCCI CSCI.

Password Seed The DPL CSCI requests an account and provides a password seed to the CMI.
Import Location
Information

The DPL CSCI request server location information from the CCS Name Server.

Server Account and
random password

An account with random passwords, created for the server, is passed back to
the server in the DPL CSCI from the DCCI CSCI.

Import Location
Information

The DPL INGEST CSCI request server location information from the CCS Name
Server.

Export Location
Information

The DCCI CSCI stores physical and logical location information, received from
the DPL INGEST CSCIs, in the CCS Name Server.

Request
Communications
Support

The DCCI CSCI provides a library of services available to the DPL INGEST
CSCI. The CSCI services required to perform specific assignments are
requested from the DCCI CSCI. These services include:
• CCS Middleware Support
• Database Connection Services
• File Transfer Services
• Network & Distributed File Services
• Bulk Data Transfer Services
• File Copying Services
• Name/Address Services
• Password Services
• Server Request Framework (SRF)
• Universal Reference (UR)
• Error/Event Logging
• Message Passing
• Fault Handling Services
• Mode Information
• Query Registry - Retrieving the requested configuration attribute-value pairs

from the Configuration Registry
Request Distribution Media Options from the Configuration Registry

 4-126 305-EMD-220

4.6.3 Distributed Computing Configuration Item Architecture

An architecture diagram is not applicable for the DCCI CSCI. However, Table 4.6-23 shows the
mapping between CSMS CSCIs and CSS CSCs.

Table 4.6-23. CSMS CSCI to CSS CSC Mappings (1 of 1)
CSMS CSCI CSS CSC Process Used CSS Libraries Used
DPL INGEST − CCS Middleware

− E-Mail Parser
Gateway Server

− FTP
− NFS
− Configuration

Registry Server

− EcCsIdNameServer
− EcCsEmailParser

− ftp_popen
− NFS Client
− EcCsRegistry

− PF
− ServerUR
− Error Logging
− Event Logging
− UR
− Fault Handling Services
− Server Request

Framework (SRF)
− CCS Middleware

4.6.4 Distributed Computing Configuration Item Process Descriptions

Process descriptions are not applicable for the DCCI CSCI.

4.6.5 Distributed Computing Configuration Item Process Interface Descriptions

Process interface descriptions are not applicable for the DCCI CSCI.

4.6.6 Distributed Computing Configuration Item Data Stores

Data stores are not applicable for the DCCI CSCI.

4.6.7 Communications Subsystem Hardware CI Description

Document 920-TDx-001 (HW Design Diagram) provides descriptions of the Distributed
Computing Configuration HWCI and document 920-TDx-002 (Hardware-Software Map)
provides site-specific hardware/software mapping.

Three DCCI software programs run on this host including the Domain Name Server (DNS),
Network Information Services (NIS), and Mail Server. DNS enables host names to be
distinguished based on their host name and IP address relationship. NIS is a service that stores
information that users, workstations, and applications must have to communicate across the
network.. This information includes machine addresses, user names, passwords, and network
access permissions. The Mail Server provides standard electronic mail capability.

The CSS Server is a stand-alone host and intrinsically does not have fail-over capability. DNS
and Distributed Time Service (DTS) are loaded on multiple hosts designated as secondary. Any
one of these hosts can operate as primary servers for the DNS or DTS services in the event of
non-recoverable hardware failure of the primary host.

 4-127 305-EMD-220

4.7 Internetworking Subsystem (ISS) Overview
The Internetworking Subsystem (ISS) contains one hardware configuration item (HWCI), the
Internetworking HWCI. INCI provides internetworking services based on protocols and
standards corresponding to the lower four layers of the OSI reference model as described below.

Transport Protocols

EMD provides IP-based connection-oriented and connectionless transport services. The
connection-oriented service is implemented using TCP, while User Datagram Protocol (UDP) is
used for connectionless transport. Higher layer applications use one or the other based on such
requirements as performance and reliability.

Transmission Control Protocol (TCP), specified in RFC 793, is a connection-oriented,
end-to-end reliable protocol designed to fit into a layered hierarchy of protocols to support
multi-network applications. It provides for reliable inter-process communication between pairs
of processes in host computers attached to networks within and outside EMD. Because TCP
assumes it may obtain potentially unreliable datagram service from the lower level protocols, it
involves additional overhead due to the implementation of re-transmission and acknowledgment
processes.

The UDP, specified in RFC 768, provides a procedure for application programs to send messages
to other programs with minimal overhead. The protocol is transaction oriented and delivery of
data is not guaranteed, since there is no acknowledgment process or re-transmission mechanism.
Therefore, applications requiring ordered and reliable delivery of data would use TCP.

Network Layer Protocols

The network layer provides the functional and procedural means to transparently exchange
network data units between transport entities over network connections, both for
connection-mode and connectionless-mode communications. It relieves the transport layer from
concern of all routing and relay operations associated with network connections.

The Internet protocol (IP) Version 4, specified in RFC 791, is the EMD supported network
protocol, based on its dominance in industry usage and wide community support. As part of IP
support, ICMP and ARP are also supported.

Physical/Datalink Protocols

Physical and data-link protocols describe the procedural and functional means of accessing a
particular network topology. For the DAAC networks, the data-link/physical protocol is
10/100/1000 Mbps Ethernet.

 4-128 305-EMD-220

Internetworking Hardware HWCI (INCI)

This HWCI provides the networking hardware for internal and external DAAC connectivity.
The HWCI includes Ethernet switches and cabling; routers and cabling; and network test
equipment. Each network hardware device is discussed in detail in Section 4.7.2.

4.7.1 Internetworking Subsystem Description

4.7.1.1 DAAC LAN Architecture

This section provides an overview of the DAAC network architecture. Information on DAAC
specific implementation level detailed designs can be found in Section 4.7.1.5.

The generic architecture for DAAC Local Area Networks (LANs) is illustrated in Figure 4.7-1.
The topology consists of a Production Network, and a SAN LAN Network. A Portus Firewall
protects the Production network. Each of the networks is discussed in more detail below.

Note that not all sites have the complete complement of hardware and subsystems shown in
Figure 4.7-1. For instance NSIDC’s EMD router also has a direct connection to NASA
Integrated Services Network (NISN), EDC does not have an EMD router, and LaRC does not
have an EMD router or Portus firewall.

To Campus network,
NISN, other DAACs,
SMC, EDOS, and
ASTER

Gigabit Ethernet

100 Ethernet

MetaData
Servers

Me
Distri

Serv

Name
Server

Database
Server

dia
bution

er

ACSLS

Workstations
Printers

Portus
Firewall

Storage
Arrays

Management
Server

VLAN1
Production

Ethernet
Switch

(CAT 6506)

VLAN10
Ethernet
Switch

(CAT 6506)

Campus
Router

EMD
Router
(7200)

SAN LAN
Ethernet
Switch

(CAT 3560)

Blade
Chassis

Mgt

Blade
Chassis

Mgt

BladeCenter
Chassis

DataPool
Server

External
Interface
Server

Internal
Interface
Server

FTP
Server

HEG
Server

Name
Server

SSS
Server OM

Server

Backup
Server

Home
Directoy
Server

Finisar
Server

Finisar Probe

Figure 4.7-1. DAAC Networks: Generic Architecture Diagram

 4-129 305-EMD-220

The Production Network consists of a Catalyst 6506 multi-port Ethernet Switch. All servers,
workstations, printers, and the BladeCenter chassis are connected to individual switch ports.

The SAN LAN Network consists of a Catalyst 3560 multi-port Ethernet Switch. This network is
used for the StorNext file system MetaData and to manage the storage arrays. All servers which
use the StorNext file system and storage arrays are connected to this network.

All servers in the BladeCenter chassis connect via the two internal Ethernet switches to both the
Production and SAN LAN Ethernet switches.

4.7.1.2 DAAC Addressing and Routing Architecture

All devices connected to the Production Network are assigned Class C address space. All
devices connected to the SAN LAN are assigned private addresses as specified in RFC 1918 (as
of 02/96). Documents that list IP address assignments to all hosts and network attached devices
are listed in Table 4.7-1. All EMD address space (except for addresses used on the SAN LAN
Ethernet networks) is provided from address blocks designated by NISN.

The use of static routes is the main protocol used to route IP packets within EMD. Routing
Information Protocol (RIPv2) is used to route IP packets from the PVC and VATC Production
networks. EMD Production Networks are advertised to all EMD via NISN.

4.7.1.3 Network-based Security Architecture

The network architecture provides a strong level of security by implementation a Proxy Firewall
(Portus). This firewall blocks incoming network traffic unless there is a rule specifically
allowing the traffic to pass into the DAACs. Note that in addition to network-based security;
EMD has implemented other security measures, such as secure shell (SSH) and host access lists
(ACLs), which are discussed in the CSS sections of this document.

4.7.1.4 Internetworking Subsystem Detailed Design

The ISS implementation level detailed design is documented in the documents listed in
Table 4.7-1. Document 920-TDx-001 (HW Design Diagram) provides descriptions of the ISS
HWCI and document 920-TDx-002 (Hardware-Software Map) provides site-specific
hardware/software mapping.

All of the documents are under configuration control and can be obtained from EMD
Configuration Management. . The documents are not on line for security reasons. Therefore
special authorization is needed for their release.

 4-130 305-EMD-220

Table 4.7-1. Internetworking Subsystem Baseline Documentation List
Document Name EDC LaRC NSIDC

Hardware/Network
Diagram

921-TDE-002 921-TDL-002 921-TDN-002

Host IP Address
Assignment Table

921-TDE-003 921-TDL-003 921-TDN-003

Network Hardware IP
Address Assignment

921-TDE-004 921-TDL-004 921-TDN-004

4.7.2 Network COTS Hardware

The DAAC LANs contain three types of COTS hardware: Firewall, Ethernet switches, and
Routers. All hosts in the DAACs are attached to Ethernet switches. The Routers are used to
provide access to external networks (NISN, Abilene, and Campus nets). Table 4.7-2 provides a
list of networking hardware used in EMD networks.

The following descriptions of Network Hardware devices are provided as illustrative detail. All
details of the hardware configuration should be verified with the appropriate Hardware/Network
documents listed in Table 4.7-1.

Table 4.7-2. Networking Hardware for EMD Networks
Networking Hardware Vendor

Firewall Portus IBM PowerPC Server
Router (EMD Router) Cisco 7200
Ethernet Switch Catalyst 3560G
Ethernet Switch Catalyst 6506
Ethernet Switch Catalyst 2924
Ethernet Cables 10baseT, 100baseT, or 1000baseT connection to servers,

workstations, printers, PCs, and x-terms

4.7.2.1 EMD Ethernet Switch

The EMD Ethernet switch is the Cisco Catalyst 6506 with multiple 10/100/1000 Mbps ports and
powerful packet engines. The switch has a switching fabric of 32Mbps. It forms the core of the
EMD Production network by interconnecting all servers, workstations, printers, PCs, and x-
terms. The switch has redundant power supply and fan units. It also has redundant packet
engines. All modules are hot swappable.

4.7.2.2 EMD Router

The EMD Router is a Cisco 7200 series router running Cisco’s Internetwork Operating System
(IOS). The router has three 1000 Mbps Ethernet ports. The EMD Router is only used at NSIDC

 4-131 305-EMD-220

and it provides connectivity to EMD sites and the Internet via its interfaces with NISN and the
local campus network.

The ECS Router has redundant power supply and fan units.

For support purposes, the PVC and VATC in Landover also have 7200 routers which interface
with EBnet at GSFC.

4.7.2.3 SAN LAN Ethernet Switch

The EMD SAN LAN Ethernet switch is a Cisco Catalyst 3560 switch capable of supporting up
to 48 10/100/1000 Mbps ports. .

4.7.2.4 Firewall

The EMD Firewall is an IBM PowerPC Server. It is a Proxy type firewall, which is capable of
supporting several 100/1000 Mbps Ethernet interfaces. 1000 Mbps interfaces are used for the
Production network. All Production networks are connected to the firewall.

Note: All M&O networks are connected to their local Campus network.

At LP DAAC, the firewall interfaces directly with the Campus routers which provide all external
network connectivity.

 4-132 305-EMD-220

4.8 EMD General Process Failure Recovery Concepts
During EMD processing, client or server failures can occur. These failures cause certain
recovery events to take place within the EMD. To understand the General Process Failure
Recovery of the EMD processes, several key concepts must be described. These failure recovery
concepts are:

1) Client-Server Rebinding

2) Sybase Reconnecting

3) Request Identification

4) Senior Clients

5) Request Responsibility

6) Queues

7) Request Responses

8) Duplicate Request Detection

9) Server Crash and Restart

10) Client Crash and Restart

These concepts compose the general philosophy of the EMD process failure recovery. The
General Process is performed as a “process chain” to service requests for data or other services
(e.g., order tracking or data retrieval from another processing system) via the client/server
architecture. A brief description of each of the key concepts for General Process Failure
Recovery follows.

4.8.1 Client-Server Rebinding
EMD uses a socket-based infrastructure to provide an rpc-like capability for a distributed object
environment. In the infrastructure, the client applications call proxy objects that represent a
server's server objects. A proxy object uses the socket name service to find its server object by its
known name. The socket name service returns an internal reference to the server object, known
as its "binding handle". The process itself is called "binding".

There are two possible failure situations to be discussed for rebinding. These failure situations
are:

• System Startup Failures

• Server Crashes

It is conceivable that the initial attempt to "bind" with a server fails, for example, because the
server is not up or because the socket name server is not running. The EMD socket-based
infrastructure provides parameters for a number of automatic retries of a binding attempt and a
retry interval.

 4-133 305-EMD-220

The internal reference to a server object can become invalid, for example, if the server is
shutdown and re-started. When this happens, the client needs to obtain a new reference. This
process is called "rebinding." EMD client libraries contain code that makes an automatic attempt
at rebinding with the server to support failure recovery.

Without such an automatic rebinding attempt, all client applications of a server would have to be
brought down and re-started if a server fails (the re-started application can, of course, "bind"
again). And if these applications have client applications, the client applications would need to
be re-started and so on down the process chain. The result would be that the failure of a single
server could ripple through most of the EMD and require the shutdown and re-start of a large
portion of the system.

With automatic rebinding this is not usually the case. Only rarely is it necessary to bring down a
server to allow it to get a new "binding handle". When a server goes down (i.e., crashes), the
other application(s), which communicate with it lose their “binding handle.” However, the
application(s) do continually try to rebind to the "downed" server. If the "downed" server comes
back up before the number of retries are exhausted, the application(s) do eventually get a new
valid "binding handle" for the re-started server and communications can continue. Operations
may notice a brief pause in the execution of some applications, but as soon as the failed server is
back on-line, the system reverts to a normal state.

Client-server rebinding is generally done in the client library. Any configurable parameters are
contained in the client libraries included in the client applications. The configurable parameters
have defaults.

4.8.2 Sybase Reconnecting
A similar approach has been implemented by the EMD infrastructure that provides the interface
with the Sybase ASEs. For example, an EMD application may attempt to connect to its Sybase
ASE while the server is still in the process of starting up. The connection attempt fails, but the
infrastructure code attempts the connection for a configurable number of times, waiting for a
configurable amount of time between each connection attempt.

Most EMD applications obtain a connection for the duration of a transaction and relinquish it
when they are done with it. These applications have been directed to implement the following
recovery behavior: if they get a Sybase error that requires the transaction be re-done (for
example, a deadlock error), they release and then re-request the connection. If the cause of the
error was a Sybase ASE fault, this connection attempt fails, but causes the infrastructure code to
enter the connection re-try loop. If the Sybase ASE is restarted before the retries are exhausted,
the application continues normally and now completes the transaction in progress when the
Sybase fault occurred.

However, operations should be aware of the following facts:

• Not all EMD applications are able to use the EMD Sybase interface code. In addition,
the MSS order tracking server uses its own DB connection API for performance reasons.

 4-134 305-EMD-220

• Not all EMD applications are able to use Sybase transactions and automatic re-
connection in the manner described.

4.8.3 Request Identification
EMD generates a unique identifier for each type of request that requires fault-handling
provisions. These "recoverable requests" fall into one of these two categories:

1) User Requests: their request identifiers are generated by the System Management
Subsystem (MSS) when request-tracking information is created.

2) System Requests: their identifiers are system generated and referred to as RPC ID. They
are based on the Universal Unique Identifier (UUID), a mechanism for creating system-
wide unique identifications.

Some examples of EMD processes that use the User Requests are the E-mail Parser Gateway,
and ASTER Gateway.

The following describes how request identification is used during recovery. As a request
propagates through the system, each associated client/server exchange is assigned a unique RPC
ID. However, the RPC ID for each interaction is derived from the previous RPC ID received by
the client for this request. Thus, all RPC IDs associated with a given request have a common
portion, which relates the various client/server calls to one another. More importantly, given the
previous RPC ID, clients consistently reproduce the same RPC ID that was submitted to the
server on the subsequent event. The concept of reproducible RPC IDs is central to the EMD
fault recovery capability. When requests are retried from client to server, they are always
submitted with the same RPC ID as was used in the original submission of the request, even if
either the client or server has crashed between retries.

RPC IDs are also central to the check-pointing aspect of fault recovery. As requests arrive at
fault recovery-enabled servers, they are recorded in a persistent store (typically, a database),
tagged with the RPC ID, which identifies the request. As the request is serviced, check-pointing
state information may be updated in the persistent store, up to and including the completion
status of the request. This allows the servers to resume servicing from the last check-pointed
state, particularly upon re-submission from a client.

Many kinds of requests do not pose recovery issues and thus, do not employ request identifiers.
For example, if a search is submitted to AIM, and no response is received, the client application
can simply re-submit the search. However, some types of requests do pose recovery issues.

4.8.4 Senior Clients
A Senior Client is an EMD client process that originates an EMD request, has fault recovery
requirements and may lead to a chain of sub-requests. The Senior Client assigns the original
request identifier (rpcid). It is responsible for re-submitting the request if it gets a retry error or
no response. It is responsible for reassigning the same rpcid upon re-submission of a request.

Senior Clients include the Ingest Granule Server, the ASTER Gateway, the E-mail Parser
Gateway, the Subscription Server, and AIM.

 4-135 305-EMD-220

Senior Clients that send requests and receive acknowledgments of receipt of their requests from
the receiving servers can expect to receive an outcome (a response, a code, data, or messages). If
no acknowledgments are received from the receiving server, the Senior Client must re-submit the
request with the same RPCID as the initial request after a failure recovery. The unique RPCID
helps receiving servers to recognize duplicate requests so these duplicate requests can be
acknowledged or ignored.

There is one exception to this re-submission rule. Senior Clients are not responsible for recovery
of the process environment and completion of the requests, if they are cold started. If the restart
is a cold start, there are no automatic restarts for any previous requests and all requests are
submitted as new requests.

In essence, a Senior Client takes on the role of the "end user" for system requests. If anything
happens to a request upstream, it has the ultimate responsibility for deciding what to do with the
request (retry or suspend/abort it and tell the operator, i.e., "the buck stops" with the Senior
Client).

4.8.5 Request Responsibility
The responsibility for the handling of recoverable requests by a server is given in the EMD by
determining if the request is synchronous or asynchronous.

Synchronous Requests

On a synchronous request, the application submitting the request is waiting for a
response. Regardless of how the request is handled downstream, whether it succeeded or
failed depends on the response the waiting application gets back. From its perspective,
the request is not complete until it receives a response.

Therefore, if an EMD application initializes a request and submits it synchronously, it has
the responsibility for getting the request completed. This means if the request does not
complete, for example, because the connection is lost to the server to which the request is
submitted, the application needs to submit it again.

Asynchronous Requests

When an application sends an asynchronous request, the receiving server is responsible
for completing the request once it accepts the request. For example, the server may need
to save the request (perhaps in a queue in a database) before sending an acknowledgment
to the originating application. Of course, the server (Server A) can eventually complete
processing the request and pass it on to another server (Server B), also asynchronously.
Once Server B accepts the request, it is responsible for seeing it to completion.

EMD examples of asynchronous interfaces include the Order Manager Server and its
component servers.

 4-136 305-EMD-220

4.8.6 Queues
The reason queues are mentioned here is because they represent an important aspect of recovery.
If a server uses queues to defer work until later, it needs to be concerned about what happens to
the queue if the server crashes. The recovery rules in the request responsibility section state:

• If the server queues up synchronous requests, the client application is responsible for
recovering the synchronous requests.

• If the server queues up asynchronous requests after accepting them, it is responsible for
the asynchronous requests, which means, if a queue contains asynchronous requests, the
server must make sure it can recover the queue in case of a crash.

Instead, a server handling asynchronous requests must keep a queue in a safe place so it can be
recovered in case of a restart (such a restart that recovers the current requests is called a "warm
start"). If a warm start takes place with asynchronous requests, the sending application does not
even notice there was a problem. The processing gets completed eventually.

Note, however, that queued synchronous requests require special consideration: If a warm start
takes place and some of the queued requests are synchronous, the sending application is
generally aware of the failure (it had to rebind, See Client-server Rebinding Section). Since it
did not receive a response, it re-submits the request. The server must recognize the request as a
re-submission and either ignore it or - if it already completed by the time the re-submission is
received - return the completion status as a response to this rpc. Moreover, servers that might
handle a large number of concurrent synchronous requests have to be able to deal with a sudden
spike of request submissions following a warm start, as their clients re-submit these requests.

A warm start can cause a problem; for instance, one of the active requests may be the reason the
server crashed. This could result in a warm restart loop: each time the warm start is attempted
the server crashes again because of the bad request. In such a case, operations can use a cold
start to empty the queue of all requests (at the expense of having to recover queued asynchronous
requests that were lost manually).

4.8.7 Request Responses
Servers have the responsibility to classify a response appropriately. Client applications have the
responsibility to process a response appropriately, depending on its type.

Client applications can pass the response on to the calling application (e.g., success, warning, or
fatal error); or retry (retry error). At the beginning of a request chain, there may be a user or
operator (if this is a user or operator submitted request). In this case, the error is passed back to
the user/operator for action where possible.

Where this is not possible (e.g., system generated requests, or if a data order runs into an error
after it was already accepted and the user/operator is no longer connected), errors are logged.
They are brought to the attention of the DAAC operations staff for action if there is a
corresponding server GUI for the operator. However, not all EMD servers are associated with an
operator GUI. In these cases, operators need to monitor the server logs for errors on a regular
basis.

 4-137 305-EMD-220

Failure events are classified as having any of three severity levels:
• Fatal errors,
• Retry errors and
• Warnings

Fatal errors are returned when a request cannot be serviced, even with operator intervention. For
example, if a request is made to distribute data via FTP to a non-existent host, the request is
failed with a fatal error.

Retry errors can be recovered from and such errors should be returned back to the client only
when the server cannot recover from the error automatically. Retry errors may also necessitate
operator assistance for recovery purposes, such as in the case of a tape left in a device that must
be manually removed.

Warnings are provided where operations can proceed without interruption, but where an
unexpected circumstance was detected. For example, if a client requests a file to be removed,
and the file does not exist, there is no error, per se, but a warning is generated to caution the
client the file to be removed did not exist in the first place.

The situation where a server does not return a response represents a special case. It can occur, for
example, when an application calls a server and the server crashes before it can send a response
or there is a communication error that prevents a response within a reasonable time. The situation
is important because now the client application does not really know what happened to the
request:

a. Did it reach the server?

b. Did the server start the request but not complete it?

c. Did the server complete the request with an error but was not able to send the error
response?

d. Did the server process it successfully?

The EMD recovery policy is that in such situations, the client application should either re-submit
the request or if it is possible, return an appropriate error to the user/operator who submitted the
request (to avoid leaving them with a hanging GUI while EMD goes through endless retries).

Note that if the request did reach the server, the server now sees the request twice (i.e., this has
become a duplicate request). Therefore, there need to be provisions to handle duplicate requests
gracefully.

Table 4.8-1 summarizes the five categories of request responses, and the specific requirements
for the application or server currently responsible for the request. EMD servers have been
directed to classify their responses accordingly.

 4-138 305-EMD-220

Table 4.8-1. Request Responses
Request Response Response Description

Success The server sends back a message to acknowledge the
successful completion of the request to the client. The
request is considered complete.

Warning This is provided where operations proceed without
interruption, but where an unexpected circumstance is
detected. The calling application needs to determine
whether to alert the user or operator of the situation.

Error, retry the request This can happen if the server encountered a temporary
error condition, such as a media error on output. The
request can be "retried" and the application responsible for
the request should re-submit it after a suitable wait time.
However, if the request does not succeed after a
(configurable) number of retries, it should be considered
"failed." If a GUI supports the application, the request may
be suspended (if it makes sense to alert the operations staff
to remedy the situation).

Error, cannot retry the request This can happen if the server encounters an error condition
that is sure to re-occur if the same request is submitted
again. Examples might be a syntax error in the request
(indicating some internal software problem), or an attempt
to retrieve a non-existent granule. The request is
considered "failed." The server responsible for the request
sends back a failure notification. If a GUI supports the
application, the request may be suspended (if it makes
sense to get the operations staff involved at this point), but
the operations staff may or may not be able to help.

No response returned by server This can happen, for example, if the server to which the
request was submitted crashes before a response or an
acknowledgment is returned. In this case, the client can
make no assumptions about the request. The client
responsible for the request should send the request again
or retry the request.

Transient errors such as network errors are always retry errors. In general, clients and servers
that experience transient, retry errors can first attempt to recover by retrying the operation
automatically. One special case of this is “rebinding”. Rebinding refers to the process by which
a client automatically attempts to re-establish communications with a socket server in the event
communications are disrupted. This disruption may be caused by transient network failure, or by
the server being brought down or crashing. In any case, the client automatically attempts to
reconnect to the server for a configurable period of time on a client-by-client basis.

EMD processes that encounter an error or receive an error from a server request may either pass
the error back to a higher-level client or present it to the operator for operator intervention. The
fault handling policies are detailed in Table 4.8-2.

 4-139 305-EMD-220

Table 4.8-2. Fault Handling Policies (1 of 2)
CI Client Processes Fault Handling Policy

DPLINGEST EcDlInPollingService Retry errors: Errors are retried a configurable number
of times for resources, then the resource is
suspended. Examples of retriable errors are
connection failures and timeouts for file transfers.
Fatal errors: Resources are suspended immediately
for non-transient errors. Examples of non-transient
errors are host address does not exist, and login to
host failed.

 EcDlInProcessingService Retry errors: Errors are retried a configurable number
of times for resources, then the resource is
suspended. Examples of retriable errors are
connection failures and timeouts for quick server
operations such as ODL to XML conversion and Data
Pool Insertion.
Fatal errors: Resources are suspended immediately
for non-transient errors. Examples of non-transient
errors are quick server not running and failures to
login to a transfer host.

 EcDlInNotificationService Retry errors: Errors are retried a configurable number
of times for resources, then the resource is
suspended. Examples of retriable errors are
connection failures and timeouts for file transfers.
Fatal errors: Resources are suspended immediately
for non-transient errors. Examples of non-transient
errors are host address does not exist, and login to
host failed.

OEA EcOwOgcEchoAdaptor Fatal errors: Errors are logged and request is marked
as “FAILED”, error responses are sent to users to
inform them of the errors.

 4-140 305-EMD-220

Table 4.8-2. Fault Handling Policies (2 of 2)
CI Client Processes Fault Handling Policy

SSS EcNbSubscribedEventDriver
EcNbActionDriver
EcNbDeleteRequestDriver
EcNbRecoverDriver

All errors are logged.
Failed attempts to connect to Sybase are retried.
Failed database queries are retried if the reason for
failure was deadlock.

OMS EcOmOrderManagerServer All errors are logged.
Failed attempts to connect to Sybase are retried.
Retry errors: Errors are retried a configurable number
of times, then passed back to the calling process.
Fatal errors: Errors are logged and the request is
suspended and operator intervention is generated.
Operators then have a choice to hold, fail or resubmit
the request.

BMGT EcBmBMGT Fatal Errors: All Errors are logged but not retried.
If BMGT is run as a cron job and it fails to complete,
BMGT can be run manually for that particular day by
using EcBmBMGTStart script. The operator needs to
update EcBmBMGTUserParams.xml file in the config
directory by setting
<begindate> day prior to the date of
failure</begindate>
<enddate>day of the failure</enddate>

BMGT EcBmBulkURL Fatal Errors: All Errors are logged but not retried.
If BulkURL is run as a cron job and it fails to complete,
BulkURL can be run manually for that particular day
by using EcBmBulkURLStart <MODE> Insert.
The operator needs to update
EcBmBulkURLConfigParams.xml file in the config
directory by setting <begindate> day prior to the date
of failure</begindate>
<enddate>day of the failure</enddate>
<doPreviousFlag>false</doPreviousFlag>

DPL TBD TBD

4.8.8 Duplicate Request Detection
The above scheme for handling requests in cases of faults poses a potential problem. The request
could have been re-submitted because there was no response returned by the server. But, in fact,
the server completed the request but was unable to get the status back to the client (e.g., because
of communications problems or a machine crash). The following measures are intended to deal
with this situation:

• Trivial duplicate requests. There are many interfaces where sending a new request to
retry a service whose outcome is unknown either has no or negligible impact on the

 4-141 305-EMD-220

EMD. This is because many EMD services have been designed with this goal in mind.
For example, after a failure, the AIM CSCI can send a duplicate request for inserting a
new collection to the Data Dictionary CSCI or the Advertising Service CSCI. The Data
Dictionary CSCI or the Advertising Service CSCI simply interprets the second request as
an update for the (now) existing collection. When AIM exports the same event more than
once to the Subscription Service Computer Software Component (CSC), it assumes it is
meant as a replacement for the previous one. This made designing the recovery for an
ESDT update fairly simple. If the update fails, it can always be re-started at the
beginning. Any duplicate requests issued to dictionary, or subscription services are of no
consequence.

• Recognize non-trivial duplicate requests. Where executing the same request more than
once can have undesirable consequences, EMD provides a mechanism for recognizing re-
submitted requests. Each request is tagged with a unique identifier (see Request
Identification Section). Upon submission of a request, the receiving server of the request
must check the identifier and recognize when it is a re-submission of a previous request it
received. For example, the server may realize the request has been completed and simply
acknowledges the successful completion. Yet another example is the OMS CSCI
recognizing a duplicate request originating from the Gateway if the gateway is configured
not to allow duplicates.

4.8.9 Server Crash and Restart
• Server Crash

When a server crashes, the only impact on the system is that clients cannot continue to
submit requests for processing. Synchronous requests in progress result in an exception
being thrown back to the client process, which enters a rebinding failure recovery mode
(see Client-Server Rebinding section above). Attempts to submit requests while the
server is down results in the client blocking until a communications timeout has been
reached.

• Server Restart

When a server restarts, it may perform various re-synchronization activities in order to
recover from an unexpected termination. In the event of a server cold start or cold restart,
the server also cancels all outstanding requests and reclaims all associated resources.
Note that the distinction between cold start and cold restart is described in the section
above on Start Temperature. Specifics of server startup behavior are detailed in
Table 4.8-3. Unless otherwise stated, existing request queues are always retained for
warm restarts and cleared for cold starts or cold restarts.

 4-142 305-EMD-220

Table 4.8-3. Server Response versus Restart Temperature
CI Server(s) Special Behavior on

Warm Restart
Special Behavior on Cold

Start or Cold Restart
DPLINGEST EcDlInPollingService None. None.

DPLINGEST EcDlInProcessingService All ingest requests that
did not reach a terminal
state in the previous
processing run will be re-
queued in processing and
executed from their last
persisted state.

All ingest requests that did
not reach a terminal state in
the previous processing run
will be moved to the state
‘TERMINATED’. They will not
be re-queued.

DPLINGEST EcDlInNotificationService None. None.
OEA EcOwOgcEchoAdaptor N/A N/A
SSS EcNbSubscribedEventDriver

EcNbActionDriver
EcNbDeleteRequestDriver
EcNbRecoverDriver

N/A N/A

OMS EcOmOrderManagerServer N/A N/A

• Request Re-submission

Upon restarting a crashed client or server, requests are typically re-submitted. If the restarted
process was started warm, the fault recovery capabilities permit the server to resume
processing of the request from its last check-pointed state. This prevents needless repetition
of potentially time-consuming activities. Specific behavior of servers upon re-submission of
a request is detailed in Table 4.8-4. Note that a cell value of N/A means the server either has
no clients or the clients do not re-submit requests.

 4-143 305-EMD-220

Table 4.8-4. Server Response for Request Re-submission
CI Server(s) Behavior on Request Re-submission

DPLINGEST EcDlInPollingService
EcDlInNotificationService

N/A

DPLINGEST EcDlInProcessingService. The newly resubmitted request will have the same
requestid and continue being processed from the
last check-pointed state from the last processing run.

OEA EcOwOgcEchoAdaptor The newly resubmitted request will be using a
different referenceId and resultSetNamen (otherwise
error will be generated), therefore, OEA server will
treat it as a new request.

SSS EcNbEventDriver
EcNbActionDriver
EcNbDeleteRequestDriver
EcNbRecoverDriver

There is no resubmission of requests.
EcNbRecoverDriver monitors the SSS database for
events or actions that did not run to completion and
re-enqueues them.

OMS EcOmOrderManagerServer Incomplete requests in OMS are picked up and
processed upon restarting OMS Server. The
incomplete requests have the same requestid. If the
request has already been staged the first time
around, the granules should be inData Pool already
and does not need to be staged again.

4.8.10 Client Crash and Restart
• Client Crash

When a client crashes in the EMD system, fault recovery-enabled servers have several
possible responses. Servers may continue to service client requests, independent of the
client’s status. Servers may choose to suspend processing of client requests, but permit
the requests to be resumed upon client recovery. Or, servers may terminate servicing of
the client requests, canceling all work done on the requests. The behavior of each CI is
detailed in Table 4.8-5. Note that the behavior of a server in the event of a client crash
does not vary from client to client.

 4-144 305-EMD-220

Table 4.8-5. Server Responses to Client Failures
CI Server(s) Behavior on Client Crash

EcDlInProcessingService
EcDlInNotificationService

Requests in process are serviced to completion. DPLINGEST

EcDlInPollingService N/A
OEA EcOwOgcEchoAdaptor Requests in process are serviced to completion.

SSS EcNbSubscribedEventDriver
EcNbActionDriver
EcNbDeleteRequestDriver
EcNbRecoverDriver

Processing is database driven and not influenced by
outside processes.

OMS EcOmOrderManagerServer Requests in process are serviced to completion.

• Client Restart

When a client restarts in the EMD system, it sends a restart notification to each server
with which it interacts. Clients notify servers they have come up “cold” or “warm”, and
do not differentiate between cold start and cold restart. Generally, the notification
temperature sent to the server matches the temperature at which the client process is
restarted.

Table 4.8-6 shows exceptions to the general behavior for client submission of restart notification:

Table 4.8-6. Client Restart Notification Exceptions
Client Processes Server Processes Restart Notification

EcDlInPollingService
EcDlInProcessingService
EcDlInNotificationService

N/A N/A

N/A EcNbSubscribedEventDriver
EcNbActionDriver
EcNbDeleteRequestDriver
EcNbRecoverDriver

N/A

EcOmOrderManagerServer N/A N/A

The default server behavior in response to a startup notification from a client is as follows:

• Warm Notification: Outstanding requests for the restarted client are left available in the
persistent store. These requests may be re-submitted by the client, and serviced to
completion upon re-submission. Associated resources are left allocated until the requests
are completed.

 4-145 305-EMD-220

• Cold Notification: All outstanding requests for the restarted client are cancelled. If the
client re-submits any cancelled request using the same RPC ID (e.g., by pressing the
Retry button from an operator GUI), it failed with a fatal error due to the client cold
startup notification. Any resources associated with the cancelled requests are released
and reclaimed by the system.

Specific aspects of server behavior upon receipt of a client restart notification are detailed in
Table 4.8-7:

Table 4.8-7. Server Responses to Client Notification
CI Server(s) Behavior on Cold

Notification
Behavior on Warm

Notification
DPLINGEST EcDlInPollingService

EcDlInProcessingService
EcDlInNotificationService

N/A N/A

OEA EcOwOgcEchoAdaptor N/A N/A
SSS EcNbSubscribedEventDriver

EcNbActionDriver
EcNbDeleteRequestDriver
EcNbRecoverDriver

N/A N/A

OMS EcOmOrderManagerServer N/A N/A

Some known limitations within the EMD are:

a.) Requests with many sub-requests can experience timing problems because of nested
retries or because one of the requests is suspended.

b.) Coding errors can cause unanticipated fault behavior that is different from what is
described above (and such occurrences should be reported as NCRs).

c.) System engineers and designers may have made mistakes in classifying errors (e.g., as
fatal versus retry).

d.) Not all EMD applications use the error recovery capabilities of the EMD Sybase interface
infrastructure.

 4-146 305-EMD-220

4.9 Spatial Subscription Server (SSS) Subsystem Overview
The Spatial Subscription Server (SSS) subsystem is the principal means by which users can
establish standing orders for data. Users enter subscriptions for specific ESDTs using a GUI or
command line interface (CLI). A subscription may be qualified by specifying one or more
constraints on the metadata of matching granules. This includes the capability of qualifying the
subscription spatially by specifying a geographic area (rectangle) over which the data was
collected. A subscription has one or more associated actions such as data distribution, email
notification, Data Pool insertion, or bundling, i.e. adding a granule to an Order Manager bundle.
In addition to the subscription creation components, the SSS subsystem is comprised of a
database, installed on a Sybase ASE server, and four runtime drivers: an event driver to match
subscriptions with granule events, an action driver to execute the actions of matched
subscriptions, a recovery driver to restart stalled events or actions, and a deletion driver to clean
up the database.
Spatial Subscription Server (SSS) Context
Figure 4.9-1 is the Spatial Subscription Server context diagram. Table 4.9-1 provides
descriptions of the interface events in the Spatial Subscription Server context diagram.

Enqueue
Granule Events

DPL Ingest

Insert granule
into action
queue

Send theme validation

 Request XML
file location

Return Status

Return
XML file
location

GUI
ESDT Maint.

(SSS CSCI)
 SSS

(OMS)
Order Manager

Register Events,
Replace Events Bundle or

Acquire

Request
Subscription

Notify of
Subscription

 Note:
 The Subscription Server GUI is shown in the
 architecture diagram EMD User/

Operations Staff

Inventory
Database

Data Pool
Database

Figure 4.9-1. Spatial Subscription Server Context Diagram

 4-147 305-EMD-220

Table 4.9-1. Subscription Server Interface Events
Event Interface Event Description

Request XML file
location

The Inventory database contains information about new granules, including the
location of their XML metadata files. The SSS event driver queries the Inventory
database for this information.

Notify of
Subscription

The SSS CSC sends email notification to the EMD User when the subscribed
event occurs, provided that a notification action was requested in the subscription.

Request
Subscription

A subscriber (EMD user requests Operations Staff to create the subscription)
sends information (ESDT and, optionally, acceptable metadata values) with the
subscription, specifying one or more actions (e.g., acquire and/or notification) to be
taken when the subscribed event occurs.

Return status Status returned by a stored procedure to indicate whether or not the call
succeeded.

Register Events The ESDT Maintenance GUI inserts information about an Earth Science Data
Type (ESDT) into the SSS database when an ESDT is installed into the system.

Enqueue Granule
Events

DPL Ingest will enqueue new granule events via an SSS stored procedure call.

Replace Events The ESDT Maintenance GUI modifies the SSS database when an ESDT is
deleted from the system.

Bundle or Acquire SSS notifies OMS, via a stored procedure call, when a granule has matched a
subscription. If the subscription is bundled, i.e. associated with an OMS bundling
order, then the granule is inserted into the appropriate OMS bundle. If the
subscription is not bundled, then an acquire request is sent to OMS.

Insert granule into
action queue

If a subscription has an associated Data Pool action, then SSS will insert a row
into the Data Pool database action queue table, indicating that the granule that
matched the subscription should be inserted into the Data Pool.

Send theme
validation

If a subscription’s Data Pool action is associated with a Data Pool theme, then the
Data Pool will verify, via stored procedure call that the theme exists and is enabled
for insert.

4.9.1 Spatial Subscription Server Architecture
Figure 4.9-2 is the Spatial Subscription Server architecture diagram. The diagram shows the
events sent to the Spatial Subscription Server processes and the events the Subscription Server
processes send to other processes.

 4-148 305-EMD-220

DPL

DPL
Ingest

OMS

SSS
DB

Event
Driver

Insert DPL Delete
Driver

SSS
GUI

Action
Driver

Dequeue Event

Enqueue Event

EMD
User Manage

Subscriptions

Notify

Bundle

Acquire

Manage
Subscriptions

Recover
Driver

Restart Action

Cleanup DB

Dequeue Action

Figure 4.9-2. Spatial Subscription Server Architecture Diagram

Table 4.9-2 provides descriptions of the processes shown in the Spatial Subscription Server
architecture diagram.

 4-149 305-EMD-220

Table 4.9-2. Spatial Subscription Server Processes
Process Type Hardware

CI
COTS/

Developed
Functionality

EcNbSubscribedEventDriver
(“Event Driver”)

Server OMSHW Developed The SSS event driver dequeues events
and matches them with active
subscriptions. Information about matched
subscriptions is placed in the action queue.
If a matched subscription has a Data Pool
action, the event driver inserts information
into the Data Pool database.

EcNbActionDriver (“Action
Driver”)

Server OMSHW Developed The SSS action driver dequeues matched
subscriptions and executes their
associated actions (acquire or notification).
An acquire directed to the Order Manager.
If a subscription is bundled, then the
granule that matched it is added to that
bundle via an OMS interface.

EcNbDeleteRequestDriver
(“Delete Driver”)

Server OMSHW Developed The SSS delete driver dequeues from the
delete request queue and cleans up
database storage for the completed action
or event.

EcNbRecoverDriver
(“Recover Driver”)

Server OMSHW Developed The SSS recover driver monitors the event
and action queues for stalled
events/actions and reenqueues them so
that they will be tried again.

EcNbSubscriptionGUI
(“SSS GUI”)

GUI OMSHW Developed The SSS GUI provides an operator
interface for submitting, updating and
deleting subscriptions. It is also used for
creating OMS bundling orders and for
bundling subscriptions to bundling orders.

Sybase ASE Server ACMHW COTS The Sybase ASE is where the SSS
database resides.

EMD Baseline Information System (EBIS) Document 920-TDx-001 (Hardware Design
Diagram) provides descriptions of the HWCI, and document 920-TDx-002 (Hardware-Software
Map) provides site-specific hardware/software mapping.

4.9.1.1 Subscription Server Process Interface Descriptions
Table 4.9-3 provides descriptions of the interface events shown in the Subscription Server
architecture diagram.

 4-150 305-EMD-220

Table 4.9-3. Spatial Subscription Server Process Interface Events (1 of 2)
Event Event

Frequency
Interface Initiated by Event Description

Enqueue
Event

Once per
granule ingest

Process:
ProcSubscribedEventEnqueue

Process:
DPL Ingest

The stored procedure is called
when a new granule is ingested
by DPL Ingest.

Dequeue
Event

Once per event Process:
ProcSubscribedEventDequeue

Process:
EcNbSubscribedEventDriver

An event driver instance will
dequeue up to 10 events from
the event queue at one time. It
will then process the events
sequentially by getting the
metadata for each granule and
comparing it with the list of
active subscriptions. If a
subscription matches a granule
event, information about the
match is placed into the action
queue.

Insert DPL Once per event Process:
TrigInsEcNbDpEventDetails

Process:
EcNbSubscribedEventDriver

When a granule event matches
one or more subscriptions, at
least one of which has an
associated Data Pool action,
the event driver will insert
information about the granule
(with subscription numbers)
into the Data Pool database. A
single insert per event is
performed by an insert trigger
on the table
EcNbDpEventDetails.

Dequeue
Action

Once per
matched
subscription

Process:
ProcActionDequeue

Process:
EcNbActionDriver

An action driver instance will
dequeue up to 10 matched
subscriptions from the action
queue at one time. It will then
process them sequentially by
getting the actions for each
subscription. If the subscription
is bundled, then the granule is
added to the current bundle for
that bundling order via a stored
procedure call to the OMS
database. Otherwise, the
action driver will initiate an
acquire of the granule or send
email notification to the user,
depending on how the
subscription was set up.

 4-151 305-EMD-220

Table 4.9-3. Spatial Subscription Server Process Interface Events (2 of 2)
Event Event

Frequency
Interface Initiated by Event Description

Acquire Once per
matched
subscription

Process:
OmCreateNonBundlingOrder
(OMS case)

Process:
EcNbActionDriver

If a matched subscription has an
associated acquire action, the
action driver will initiate the
acquire by a stored procedure
call to OMS.

Bundle Once per
matched
subscription

Process:
OmInsertBundleRequest

Process:
EcNbActionDriver

If a matched subscription is a
bundled subscription, the action
driver will send information about
the granule to OMS via a stored
procedure call.

Notify Once per
matched
subscription

Process:
mailx

Process:
EcNbActionDriver

If a matched subscription has an
associated notification action, the
action driver will compose an
email message and send it to the
address specified in the
subscription definition.

Restart
Action

Once per
action or event

Process:
ProcActionReEnqueue,
ProcSubscribedEventReEnque
ue

Process:
EcNbRecoverDriver

If an action or event appears to
have stalled, i.e. did not run to
completion based on evidence in
the log tables, the recover driver
will reenqueue the action or
event in its appropriate queue.

Cleanup
DB

Once per
action or event

Process:
ProcDequeueDeleteRequest,
ProcDeleteProcessedSub,
ProcDeleteProcessedEvent

Process:
EcNbDeleteRequestDriver

The delete driver will clean up
tables in the database based on
entries in the delete request
queue. Each entry in this queue
corresponds to one action or one
event.

Manage
Subscrip-
tions

Various Process:
EcNbSubscriptionGUI

Process:
EcNbSubscriptionGUI

The SSS GUI allows a user to
create, delete, edit or view
subscriptions. Or to create,
delete, edit or view bundling
orders and bundle subscriptions
to them.

4.9.1.2 Subscription Server Data Stores
Spatial Subscription Server uses the COTS software Sybase Adaptive Server Enterprise (ASE)
for the storage of persistent data. The following is a brief description of the principal types of
data contained in the database:
• Attributes: includes the ESDTs for which subscriptions can be created and the metadata

attributes that can be used to qualify those subscriptions.
• Subscriptions: information about subscriptions that have been created for users, their

associated qualifying expressions, and their associated actions.

 4-152 305-EMD-220

• Events: information about newly arrived data granules, their metadata, and the subscriptions
that match them.

• Actions: information about actions for matched subscriptions that need to be carried out,
e.g. acquire or email notification.

Table 4.9-4 provides descriptions of the data found in the principal Sybase ASE data stores used
by the Spatial Subscription Server. More detail on these and other data stores can be found in the
Spatial Subscription Server Database Design and Schema Specifications for the EMD Project
(311).

Table 4.9-4. Spatial Subscription Server Data Stores (1 of 2)
Data Store Type Functionality

EcNbEventDefinition Attributes Contains the list of events to which a user can subscribe.
EcNbEventMetadataAttrDef Attributes Contains the list of attributes which can be used to qualify a

subscription.
EcNbEventAttrXref Attributes Cross-references subscribable events with the metadata

attributes pertaining to them.
EcNbSubscription Subscriptions Contains the list of user subscriptions.
EcNbMatchingExpression Subscriptions Contains the list of expressions used to qualify subscriptions.
EcNbSubMatchExp_XREF Subscriptions Cross-references subscriptions with matching expressions

(qualifiers).
EcNbSubMatchingExpInteger Subscriptions Contains the range of integer values used to qualify a

subscription by an integer attribute.
EcNbSubMatchingExpFloat Subscriptions Contains the range of float values used to qualify a subscription

by a float attribute.
EcNbSubMatchingExpString Subscriptions Contains the string values used to qualify a subscription by a

string attribute.
EcNbSubMatchingExpDate Subscriptions Contains the range of date values used to qualify a subscription

by a date attribute.
EcNbNoseMatchingExpression Subscriptions Contains the values used to qualify a subscription by orbit data.
EcNbSpatialMatchingExpression Subscriptions Contains the values used to qualify a subscription spatially.
EcNbActionDefinition Subscriptions Contains the list of actions associated with subscriptions.
 EcNbOrderAction Subscriptions Contains detailed information about acquire actions associated

with subscriptions.
EcNbNotificationAction Subscriptions Contains detailed information about email notification actions

associated with subscriptions.
EcNbDpAction Subscriptions Contains detailed information about Data Pool actions

associated with subscriptions.
EcNbSubscribedEventQueue Events Contains information about granules which have entered the

system that could match user subscriptions.

 4-153 305-EMD-220

Table 4.9-4. Spatial Subscription Server Data Stores (2 of 2)
Data Store Type Functionality

EcNbSubEventQueueLog Events A log of all operations performed on the subscribed event
queue.

EcNbEventMetadataInteger Events Contains metadata values for integer attributes of granule
events.

EcNbEventMetadataFloat Events Contains metadata values for float attributes of granule events.
EcNbEventMetadataString Events Contains metadata values for string attributes of granule events.
EcNbEventMetadataDate Events Contains metadata values for date attributes of granule events.
EcNbEventMetadataNose Events Contains metadata values for attributes of granule events

relating to orbit data.
EcNbDpEventDetails Events Used by the event driver to process Data Pool actions.
EcNbEventTruth Events Used by the event driver as part of the matching algorithm

between granule events and user subscriptions.
EcNbActionQueue Actions Contains information about subscriptions which have been

matched with granule events.
EcNbActionQueueLog Actions A log of all operations performed on the action queue.
EcNbDistribution Actions Used by the action driver to suppress duplicate distribution of

granules.
EcNbDeleteRequestQueue Events,

Actions
A list of actions and events that can be removed from the
database.

 4-154 305-EMD-220

4.10 Data Pool Subsystem Overview
As of Release 7.22, the Data Pool is a large online archive of ECS data at each DAAC. Science,
metadata (in xml format), and browse files (in jpg format) are stored in the public Data Pool.
Hidden directories in the Data Pool file systems (/datapool/<mode>/user/<fs>/.orderdata) are
used as staging areas for all granules being inserted into the Data Pool, granules whose
collections are configured hidden and for granules being ordered via the Order Management
Subsystem (OMS).
The Data Pool subsystem consists of the following components and supporting utilities:

1. Data Pool Insert: inserts ECS data into the Data Pool. ECS data is copied from the
ECS archive into the Data Pool, based on an ECS granule id. The Data Pool database
inventory is updated for each granule inserted in the Data Pool. Data Pool Insert
consists of six major subcomponents:
a) the Data Pool Action Driver (DPAD): a C++ executable which schedules Data

Pool insert actions based on a queue of Data Pool insert actions populated by the
Spatial Subscription Server, the Batch Insert Utility, Data Pool Ingest, the Order
Manager Server, or the Migration processes.

b) the New (7.20) Data Pool Insert Utility (NDPIU), a java executable which
manages the registration and publication of an ECS data granule into the Data
Pool;

c) the Data Pool Quick Server, a C++ executable which is installed on the ECS
service hosts. The Quick Server is used by the DPAD to perform copy and
checksum operations. It is also used by DPL Ingest and OMS to perform
operations which are performed on ECS service hosts for load balancing reasons,
or which cannot be performed on the local host due to lack of data access (mount
points, etc.)

d) the Data Pool Metadata to XML generation tool (M2XT), a java executable which
translates ECS granule metadata from the AIM database into XML, for storage in
the Data Pool directories;

e) the band extraction utility (bandtool), a C executable invoked by the DPAD,
which extracts band information from HDF-EOS granules and stores the extracted
information in a .BandHeader file in the temp area on the ESDT file system. The
.BandHeader file is used by the NDPIU during granule registration. The bandtool
is invoked only if the granule being inserted is from a collection eligible for
conversion by the HDF-EOS to GeoTiff Conversion Tool (HEG);

f) the jpeg extraction utility (hdf2jpeg), a C executable invoked by the NDPIU,
which extracts browse images (jpeg or raster) from a browse hdfeos file on
browse publication.

2. Data Pool On-line Archive Cleanup and Validation: The functionalities of
EcDlCleanupDataPool.pl have been grouped and built into separate scripts for
performance improvement. Additional validation between AIM database and Data
Pool on-line archive is added as part of the on-line archive capability.

 4-155 305-EMD-220

a) EcDlCleanupFilesOnDisk.pl a perl utility, which reports and fixes
inconsistencies between Data Pool directories and the database, namely
orphan/phantom validation and orphan cleanup.

b) EcDlCleanupGranules.pl: a perl utility, which cleans granules from Data Pool
on-line archive and the database.

c) EcDlInventoryValidationTool.pl: a perl utility, which identifies discrepancies
between AIM and DPL inventories.

d) EcDlLinkCheck.ksh: a corn shell script, which provides report on invalid soft
links in Data Pool on-line archive and optionally remove them.

3. Data Pool Web Access (EcDlWebAccess): a java-based web application, which
runs with the apache web server and related COTS. The Data Pool Web Access
application allows end-users to perform drill-down searches for Data Pool data, to
view metadata and browse images online, and to convert and/or order Data Pool data.

4. Data Pool Maintenance GUI (EcDlDpm): a perl-based web GUI that allows
DAAC operations staff to monitor Data Pool insert activity and to control the Data
Pool configuration.

5. Data Pool Access Statistics utilities: perl utilities which parse firewall ftp logs
(EcDlRollupFwFtpLogs.pl) and Data Pool Web Access custom code logs
(EcDlRollupWebLogs.pl) for accesses to the Data Pool directories, and then roll up
access information for storage in the Data Pool database.

6. Data Pool FTP Server: customized wu-ftp daemon, which supports ftp access to
Data Pool directories and also provides a checksum-on-download service.

7. Data Pool Update Granule Expiration utility (EcDlUpdateGranule.pl): a perl
utility, which allows operations staff to update the Data Pool expiration date and
retention priority for specified Data Pool granules.

8. Data Pool Batch Insert Utility (EcDlBatchInsert.pl): a perl utility, which allows
operations staff to queue ECS and non-ECS data for insert into the Data Pool.

9. Data Pool Most Recent Insert Utility (EcDlMostRecentInsert.pl): a perl utility,
which creates files at the file system and data collection level of the Data Pool
directory structure which contain information about granules recently inserted into the
Data Pool at those levels.

10. Data Pool Collection Remapping Utility (EcDlRemap.pl): a perl utility, which
allows DAAC operations staff to remap all data in a Data Pool collection directory
from one higher level collection group directory to another.

11. Data Pool Move Collection Utility (EcDlMoveCollection.pl): a perl utility, which
allows DAAC operations staff to move a Data Pool collection from one file system to
another.

12. Data Pool Density Map Utility (EcDlDensityMapUtility.pl): a perl utility, which
calculates spatial density map information about Data Pool collections and stores this
information in the Data Pool database. This utility normally runs as a cron job.

 4-156 305-EMD-220

13. Data Pool Statistics Table Population Utility (EcDlPopulateStatTables.pl): a perl
utility, which populates tables in the Data Pool database which maintain counts of
granules by collection and collection group, for use by the Web Access drill down
web pages. This utility normally runs as a cron job.

14. Data Pool Hidden Scrambler Utility (EcDlHiddenScrambler.pl): a perl utility,
which creates new names for specified hidden directories, saves these names,
renames the existing hidden directories, and updates existing FTP Pull links that point
to the previous hidden directories to point to the corresponding renamed directory.

15. Data Pool Database (DataPool[_<MODE>]): a Sybase database which stores Data
Pool inventory and configuration information.

16. Data Pool Checksum Verification Utility: A java-based stand-alone utility which
can verify the integrity of files in the Data Pool using checksums. The utility could be
set up as a background process as well as run on-demand by the DAAC operator to
verify checksum values for a particular set of files.

17. Data Pool Restore On-line Archive From Tape Utility: A java-based stand-alone
utility which performs bulk repairs of the on-line archive, especially in the case of
serious disk errors or a loss of a Data Pool file system. It can also be used to restore
the integrity of granules which have files missing or corrupted, or missing links.

18. Data Pool Restore AIM Tape Archive From On-line Archive Utility: A java-
based stand-alone utility which provides bulk repair as well as individual science
granules in the AIM tape archive by replacing science granules with their copy from
Data Pool On-line archive.

19. Data Pool Publish Utility: A java-based utility which allows operations staff to
submit ECS insert actions for publication or registration, optionally with load control.

20. Data Pool Unpublish Utility: A java-based utility which moves granules from the
public Data Pool on-line archive to the hidden Data Pool on-line archive.

4.10.1 Data Pool Subsystem Context
Figure 4.10-1 is the Data Pool Subsystem context diagram. The diagram shows the interaction
of the Data Pool Subsystem with other EMD subsystems. Table 4.10-1 provides descriptions of
the interface events shown in the Data Pool Subsystem context diagram.

 4-157 305-EMD-220

Data Pool
Subsystem

(DPL)

Operator

SSS

User

OMS

DSS

Insert
Action

Monitor Data Pool Inserts
Configure Data Pool
Cleanup Data Pool
Manage Collections
Gather Access Statistics
Insert Action
Update Granule Expiration
Update QA
Post Most Recent Inserts
Unpublish Granule
Validate Inventory
Restore On-line Archive
From Tape
Restore Tape From On-line
Archive
Verify Checksum

FTP Data Pool Data
Drill down
Order Data Pool
Data

Insert
Action

Insert
Distribution
Request

Get
Metadata

Send Email
Notification

Get Archive
Location

ECS
Archive

Copy

MSS

Check Order Status

DPL
Ingest Insert

Action
Send Alert Email

Figure 4.10-1. Data Pool Subsystem Context Diagram

Table 4.10-1. Data Pool Subsystem Interface Events (1 of 3)
Interface Event Interface Event Description

Send Alert Email The Data Pool Action Driver sends an alert email to a configured email
address to notify operators of problems with an ECS Service Host, an
archive file system, or a Data Pool file system.

Monitor Data Pool
Inserts

The operator uses the Data Pool Maintenance GUI to monitor the
queue of Data Pool inserts and to monitor the active insert processes.

Configure Data Pool The operator uses the Data Pool Maintenance GUI to set values of
Data Pool configuration parameters, and to define Data Pool entities
such as themes and compression algorithms.

 4-158 305-EMD-220

Table 4.10-1. Data Pool Subsystem Interface Events (2 of 3)
Interface Event Interface Event Description

Cleanup Data Pool The operator runs the Data Pool Cleanup utilities to clean specified
granules out of the Data Pool on-line archive, and to identify and
cleanup granules, which are orphans (on Data Pool disk but not in the
database) or phantoms (in the Data Pool database but not on disk), or
invalid links(soft links point to invalid files).

Manage Collections The operator uses the Data Pool Maintenance GUI to add, remove, or
change specifications for Data Pool collections. The operator uses the
Remap Collection utility to map a collection from one collection group to
another. The operator uses the Move Collection utility to move a
collection from one file system to another.

Gather Access
Statistics

The operator uses the access statistics rollup scripts for the firewall ftp
and web access logs to gather statistics about end user access to data
pool files, and to store those statistics in the Data Pool database.

Insert Action The operator uses the Batch Insert utility or Data Pool Publish utility to
insert historical data from the ECS archive into the Data Pool.

Update Granule
Expiration

The operator uses the Update Granule Expiration utility to update the
expiration date or retention priority for a Data Pool granule or set of
granules.

Update QA The operator uses the QA Update utility to propagate updates of QA
information from the Inventory to the Data Pool.

Post Most Recent
Inserts

The operator uses the Most Recent Inserts utility to post information
about recent Data Pool Inserts to the Data Pool ftp directories.

Unpublish Granule The operator uses the Data Pool Unpublish Utility to move granules
from public Data Pool on-line archive to hidden Data Pool on-line
archive.

Validate Inventory The operator uses the Data Pool Inventory Validation Utility to identify
discrepancies between AIM and DPL inventories.

Restore On-line
Archive From Tape

The operator uses the Restore On-line Archive From Tape Utility to
restore the integrity of granules to on-line archive from tape.

Restore Tape From
On-line Archive

The operator uses the Restore Tape From On-line Archive Utility to
restore the integrity of granules to tape from on-line archive.

Verify Checksum The operator uses the Data Pool Checksum Verification Utility to verify
the integrity of the granules in Data Pool on-line archive.

FTP Data Pool data The end user uses the customized WU-FTP service to download Data
Pool data.

Drill Down The end user uses the Web Access web pages to perform searches for
Data Pool data.

Order Data Pool data The end user uses the Web Access web pages to order Data Pool data
for ftp or media distribution. The end user may choose to convert,
reformat, or subset the data using the HDF-EOS to GeoTiff Conversion
Tool (HEG).

 4-159 305-EMD-220

Table 4.10-1. Data Pool Subsystem Interface Events (3 of 3)
Interface Event Interface Event Description

Send Email
Notification

The DPL subsystem (Web Access component) sends email to the end
user indicating that the user’s Data Pool order has been submitted.
Email is sent by the WebAccess component only for downloads without
HEG conversion, and only if the user requests email. (OMS sends
order acknowledgement and distribution notice emails).

Insert Action The Data Pool Ingest subsystem inserts a Data Pool insert action into
the Data Pool Insert Action Queue (DlInsertActionQueue) for granules
which are configured to be published in the Data Pool.

Insert Action The OMS subsystem inserts a Data Pool insert action into the Data
Pool Insert Action Queue (DlInsertActionQueue) for granules to be
staged to the Data Pool for ECS distribution requests.

Insert Distribution
Request

The DPL subsystem (WebAccess component) inserts distribution
requests in the OMS database for Data Pool orders placed using the
Data Pool Web Access web pages.

Check Order Status The DPL subsystem (WebAccess component) checks status of orders
in the MSS database.

Copy The DPL subsystem copies data from the ECS Archive to the
appropriate Data Pool file system.

Get Archive Location The DPL subsystem looks up archive location information in the
Inventory database, for granules which will be copied from the ECS
archive to the Data Pool.

Get Metadata The DPL subsystem gets metadata about ECS granules (QA,PH,etc)
from the Inventory database, and uses this metadata to store
corresponding metadata in the Data Pool database and to create an
xml metadata file on Data Pool disk.
The DPL subsystem gets metadata path about ECS granules
(SCIENCE) from Inventory database, and uses this path to get xml files
from small archive to DataPool filesystem.

Insert Action The Spatial Subscription Server subsystem inserts Data Pool insert
actions in the Data Pool Insert Action Queue (DlInsertActionQueue) for
granules which are being inserted into the ECS inventory for which a
Data Pool insert subscription is placed. Data Pool insert subscriptions
are qualified subscriptions (unqualified Data Pool insert subscriptions
have been replaced by DPL Ingest configuration of ESDTs for public
Data Pool insert.)

4.10.2 Data Pool Hardware Context
Figure 4.10-2 is the Data Pool hardware context diagram. The diagram shows the interaction of
the Data Pool custom code and COTS (in italics) with EMD hardware components.

 4-160 305-EMD-220

silo 1

Figure 4.10-2. Data Pool Hardware Context

4.10.3 Data Pool Insert CSCI Functional Overview
ECS granules are inserted into the Data Pool via a two-step process. The first step, registration,
involves storing basic inventory information about the granule, needed by EMD custom code
applications, in the Data Pool database, and copying the granule to a “hidden” directory structure
(datapool/<mode>/user/<filesystem>/.orderdata) in the Data Pool. The second step, publication,
occurs only for granules which belong to collections configured to be placed in the public Data
Pool, where they are available for web access and anonymous ftp download. During the
publication step, additional inventory information needed to support web access to public
granules is stored in the Data Pool database, and the granule is moved from the Data Pool hidden
directory structure to the public directory structure, where it can be accessed via anonymous ftp.
A functional overview of the two-step Data Pool Insert process for ECS granules is shown below
in two diagrams. The first diagram (Figure 4.10-3) shows the process for registration of a
granule in the Data Pool. The second diagram (Figure 4.10-4) shows the process for publication
of a granule in the Data Pool.

Sybase
d t b

S
A
N

/datapool/<mo

/usr/ecs/<mode

silo 2

silo 3

S
A
N

SNSM
Metadata Server

x4sml01

/stornext/snfs<n>

silo 2 x4dpl01
DPAD
DPIU

DPL Utilities

x4ftl01

silo 3

ftp access to DPL

Wu-ftp

x4eil01
Web Access

Apache/tomcat

x4iil01
DPL Maint. GUI

iplanet

x4dbl01

x4msl01

ECS Service Hosts

QuickServer Sybase
Database

/datapool/<mode>/
user/<fsn>

/stornext/
brwsfs

/stornext/
amfs<n>

WebGlis data
(via automount)

/usr/ecs/<mode>/
CUSTOM/

 4-161 305-EMD-220

DPAD

NDPIU

Archive
Quick Server

Service Host
Quick Server

ECS
Archive

DPL
Disk DPL

DB

STMGT
DB

Inventory
DB

R2. Get actions

R1. Insert actions

temp

hidden

public

R7. Invoke copy
R9. Invoke checksum

R8. Copy

R8. Copy
R10. Checksum

R3. Get file info

R4. Get volume groups

R5. Get tape info

R6, R17. Update status

R11. Extract band info

R12. Invoke
Registration

R13. Get metadata

R15. Register R16. Move science and xml
to hidden directory

OMS, Batch Insert,
SSS, Publish Utility

StorNext
DB (COTS)

R5. Get tape info

R14. write xml

Figure 4.10-3. Data Pool Insert CSCI Architecture Diagram – Registration

DPAD

NDPIU

DPL
Disk DPL

DB

P2. Get actions

P1. Insert actions

temp
hidden

public

P6. Update status

P3. Invoke
Publication

P4. Publish Registered
Granule

DPL Ingest

P5. Move to
public directory

Figure 4.10-4. Data Pool Insert CSCI Architecture Diagram - Publication

 4-162 305-EMD-220

There are five use cases for the Data Pool Insert process, one for each ECS process or component
which requests insertion of a granule into the Data Pool. These use cases, and their relationship
to the registration and publication steps, is shown in Table 4.10-2.

Table 4.10-2. Use Cases for Data Pool Insert
Requestor Context Data Pool Insert processes

OMS stages granules in the hidden
Data Pool for distribution

Registration (events R1 – R17 in
Table 4.10-3 for data type such
as QA, PH, DAP, etc; events R1-
R12 and R15-R17 in Table 4.10-
3 for science granules).

Data Pool Ingest requests publication of a granule
in the Data Pool after the granule
has been ingested and archived

Publication (events P1 – P6 in
Table 4.10-4).

Batch Insert Utility queues existing ECS and non-
ECS granules for insertion into
the public Data Pool

Registration
Publication
(events R1-R16 in Table 4.10-3
for data type such as QA, PH,
DAP, etc; events R1-R12 and
R15-R16 in Table 4.10-3 for
science granules, and P3-P6 in
Table 4.10-4)

Publish Utility Queues existing ECS granules
for publication or registration in
Data Pool on-line archive

Registration
Publication
(events R1-R16 in Table 4.10-3
for data type such as QA, PH,
DAP, etc; events R1-R12 and
R15-R16 in Table 4.10-3 for
science granules, and P3-P6 in
Table 4.10-4)

Spatial Subscription Server queues granules for insertion into
the public Data Pool as a result
of a qualified subscription with a
Data Pool insert action

Registration
Publication
(events R1-R16 in Table 4.10-3
for data type such as QA, PH,
DAP, etc; events R1-R12 and
R15-R17 in Table 4.10-4 for
science granules, and P3-P6 in
Table 4.10-4)

Note that Data Pool Ingest also stages granules in the hidden Data Pool during granule ingest.
That process is somewhat different than the Registration process described below, in that it uses
a different invocation of the NDPIU and does not involve the DPAD. Data Pool Ingest staging
of granules in the hidden Data Pool is documented in the Data Pool Ingest chapter of this
document.
Table 4.10-3 provides a process description for each of the major custom code components of the
Data Pool insert process. Table 4.10-4 describes the interface events among the Data Pool insert
process components for registration and publication.

 4-163 305-EMD-220

Table 4.10-3. Data Pool Insert CSCI Process Description
Process Type Hardware

CI
COTS/

Developed
Functionality

EcDlActionDriver Server DPLHW Developed EcDlActionDriver (DPAD)is a C++
server that is responsible for
dispatching Data Pool insert actions
for ECS granules from the insert
action queue in the Data Pool
database (DlInsertActionQueue) as
well as performing registration or
publication of ECS granules(possibly
involving copy, checksum, band
extraction operations).

EcDlInsertUtility Java
utility

DPLHW Developed EcDlInsertUtility (NDPIU) is a java
executable that is invoked by the
EcDlActionDriver to register and
publish ECS granules in the Data
Pool (populate DPL database and
move files to hidden or public Data
Pool). One copy of the
EcDlInsertUtility is invoked for each
ECS granule to be inserted in the
Data Pool.

EcDlQuickServer Server ACMHW,
DIPHW,
DRPHW,
SPRHW,
MSSHW,
AITHW,
CSSHW,
DMGHW,
DPSHW,
INTHW,
DPLHW,
OMSHW

Developed The EcDlQuickServer (Service Host
Quick Server) is a C++ server which
performs CPU-intensive operations,
such as copy and checksum, on ECS
service hosts.

EcDlM2XT Utility DPLHW Developed Java utility that gets granule
metadata from the Inventory
database and constructs an XML file.

hdf2jpeg Utility DPLHW Developed Java utility that extracts jpgs from an
HDFEOS granule.

bandtool Utility DPLHW Developed C utility that extracts band
information from an HDFEOS
granule.

 4-164 305-EMD-220

Table 4.10-4. Data Pool ECS Insert CSCI Process Interface Events (1 of 4)
Event Event Frequency Interface Initiated By Event Description

R1. Insert
Action

One per granule
inserted in
Inventory which
qualifies for
existing
subscription with
Data Pool Insert
action

Database:
DataPool
(DlInsertActionQueue)

Trigger:
TrigInsEcNbDpEventDetails.
sql

When a granule is
inserted into Inventory
which matches an existing
subscription with Data
Pool Insert action, the
trigger inserts a row into
the DlInsertActionQueue
in the Data Pool database
with actionSource = null.

R1. Insert
Action

One per granule in
Syn IV order
placed through
Order Manager

Database:
DataPool

Process:
OmServer
Stored Proc:
OmInsDPLAction

When a granule is ordered
in Syn IV mode via the
Order Manager, OMS
inserts a row into the
DlInsertActionQueue in
the Data Pool database,
with actionSource = O.

R1. Insert
Action

One per granule in
input file for the
Batch Insert utility.

Database:
DataPool

Utility: EcDlBatchInsert.pl For each valid granule in
its input file, the Batch
Insert Utility inserts a row
into the
DlInsertActionQueue in
the Data Pool database,
with actionSource = B or
R.

R1.Insert
Action

One per granule in
input file, or on the
command line for
the Batch Insert
utility.

Database:
DataPool

Process: EcDlPublishUtility For each valid granule in
its input file or on the
command line, the Publish
Utility inserts a row into
the DlInsertActionQueue
in the Data Pool database,
with actionSource = B or
R.

R2. Get
Action

Continuously, as
long as there are
actions in
DlInsertActionQue
ue with status =
null or status =
RETRY. If no
actions, once per
configured time
interval (IdleSleep
in DlConfig)

Database:
DataPool

Process: EcDlActionDriver
(DPAD)

The DPAD gets batches
of actions (with status =
null or status = RETRY)
from the
DlInsertActionQueue.

 4-165 305-EMD-220

Table 4.10-4. Data Pool ECS Insert CSCI Process Interface Events (2 of 4)
Event Event Frequency Interface Initiated By Event Description

R3. Get file
info

Once per file per
ECS granule to be
inserted

Database: Inventory
(EcInDb)
(DsMdUserDataFile)

Process: EcDlActionDriver
(DPAD)

The DPAD gets file name
information for each file in
the granule from the
Inventory database.

R4. Get
volume
groups

Once per ECS
granule to be
inserted

Database: Inventory
(DsStVolumeGroup)

Process: EcDlActionDriver
(DPAD)

The DPAD gets the name
of the open volume group
for the granule’s collection
(shortname, versionid)
from the Inventory
database.

R5. Get
tape info

Once per file per
ECS granule to be
inserted

Process: Java Quick
Server
Database: COTS StorNext
metadata database

Process: EcDlActionDriver
(DPAD)

The DPAD calls the Java
Quick Server, which runs
on the StorNext (COTS)
metadata server, to
retrieve tape label
information for the granule
files, based on the volume
group information from the
Inventory database.

R6.
Update
status

Once per ECS
granule to be
inserted

Database: Data Pool
(DlInsertActionQueue,
DlActiveInsertProcesses)

Process: EcDlActionDriver
(DPAD)

The DPAD updates the
status of the insert in the
Data Pool database.

R7.
Invoke
copy

Once per file per
ECS granule

Process: EcDlQuickServer Process: EcDlActionDriver
(DPAD)

The DPAD chooses a
QuickServer on an ECS
Service Host to perform
the file copy operation.
The Service Host is
chosen based on
availability.

R8. Copy Once per file per
ECS granule

Storage Device:
Data Pool disk (managed
by COTS StorNext
Storage Area Network)
Storage Device: ECS
Archive tape or cache
(managed by COTS
StorNext)

Process:
EcDlQuickServer
DlAdCopy

The QuickServer, running
on an ECS Service Host,
uses the DlAdCopy to
copy the science file and
its associated metadata
xml file from the ECS
Archive (tape or cache) to
the Data Pool file system
associated with the
granule’s collection.

R9.
Invoke
checksum

Once per file per
ECS granule

Process: EcDlQuickServer Process: EcDlActionDriver
(DPAD)

The DPAD chooses a
QuickServer on an ECS
Service Host to perform
the file checksum
operation. The Service
Host is chosen based on
availability.

 4-166 305-EMD-220

Table 4.10-4. Data Pool ECS Insert CSCI Process Interface Events (3 of 4)
Event Event Frequency Interface Initiated By Event Description

R10.
Checksum

Once per file per
ECS granule

Storage Device:
Data Pool disk (managed
by COTS StorNext
Storage Area Network)
Storage Device: ECS
Archive tape or cache
(managed by COTS
StorNext)

Process:
EcDlQuickServer

The QuickServer, running
on an ECS Service Host,
checksums the science
file and the associated
metadata xml file if
needed on the Data Pool
file system (temp
directory).

R11.
Extract
band info

Once per ECS
science granule,
where the
collection is
enabled for HEG
conversion (i.e.,
convertEnabledFl
ag is on for the
collection)

Storage Device: temp
directory in Data Pool file
system

Process:
EcDlActionDriver (DPAD)
bandtool

The DPAD uses the
bandtool utility to extract
band information from the
science granule, and
writes band information to
a temporary file in the
Data Pool file system

R12.
Invoke
registratio
n

Once per ECS
science granule

Process: EcDlInsertUtility
(NDPIU)

Process: EcDlActionDriver
(DPAD)

The DPAD invokes an
instance of the NDPIU
from a pool to perform the
granule registration.

R13. Get
metadata

Once per ECS
QA, PH, DAP and
browse granule

Database:
Inventory
(EcDsScienceData
Server1/EcInDb)

Process: EcDlInsertUtility
(NDPIU),

The NDPIU gets metadata
about the ECS QA, PH,
DAP, brose granule from
the Inventory database.

R14. Write
xml

Once per ECS
QA, PH, DAP and
browse granule

Storage Device: temp
directories in Data Pool
file system

Process: EcDlInsertUtility
(NDPIU)

The NDPIU writes the xml
metadata file for the
granule to the temp
directory on the Data Pool
file system.

R15.
Register

Once per ECS
granule

Database: Data Pool Process: EcDlInsertUtility
(NDPIU)

The NDPIU populates
basic tables in the Data
Pool database with
inventory information
about the granule.

R16. Move
science
and xml to
hidden
directory

Once per data file
and xml file per
ECS granule

Storage Device: temp and
hidden directories in Data
Pool file system

Process: EcDlInsertUtility
(NDPIU)

The NDPIU moves the
science file(s) and xml file
for the granule from the
temp directory in the Data
Pool file system to the
appropriate hidden
directory (under
/.orderdata).

 4-167 305-EMD-220

Table 4.10-4. Data Pool ECS Insert CSCI Process Interface Events (4 of 4)
Event Event Frequency Interface Initiated By Event Description

[R17.
Update
status]

Once per insert
request

Database: Data Pool Process: EcDlActionDriver
(DPAD)

The DPAD updates the
insert request status in the
DlInsertActionQueue.

[P1. Insert
action]

Once per
publication
request

Database: Data Pool
(DlInsertActionQueue)

Process: Data Pool Ingest
Processing

The DPL Ingest
Processing server places
a request for granule
publication in the
DlInsertActionQueue.

[P2. Get
actions]

Continuously, as
long as there are
actions in
DlInsertActionQue
ue with status =
null or status =
RETRY. If no
actions, once per
configured time
interval (IdleSleep
in DlConfig)

Database:
DataPool

Process: EcDlActionDriver
(DPAD)

The DPAD gets batches
of actions (with status =
null or status = RETRY)
from the
DlInsertActionQueue.

P3. Invoke
publication

Once per ECS
granule to be
published in the
Data Pool

Process: EcDlInsertUtility
(NDPIU)

Process: EcDlActionDriver
(DPAD)

The DPAD invokes an
instance of the NDPIU
from a pool to perform the
granule publication.

P4.
Publish
registered
granule

Once per ECS
granule to be
published in the
Data Pool

Database: Data Pool Process: EcDlInsertUtility
(NDPIU)

The NDPIU populates
additional tables in the
Data Pool database with
inventory information
needed to support web
access to the granule.

P5. Move
to public
directory

Once per ECS
granule to be
published in the
Data Pool

Storage Device: hidden
and public directories in
Data Pool file system

Process: EcDlInsertUtility
(NDPIU)

The NDPIU moves the
data file(s) and xml file for
the granule from the
hidden directory in the
Data Pool file system to
the appropriate public
directory

P6.
Update
status

Once per ECS
granule to be
published in the
Data Pool

Database: Data Pool Process: EcDlActionDriver
(DPAD)

The DPAD updates the
insert request status in the
DlInsertActionQueue to
the final request state, and
removes the insert
request from the
DlActiveInsertProcesses
table.

 4-168 305-EMD-220

4.10.4 WebAccess CSCI Functional Overview
Data Pool Web Access (EcDlWebAccess) is a java-based Web application that runs on a Web
application server with related COTS software. The Data Pool Web Access application allows
end-users and operators to interface with Data Pool data on the Sybase server. It allows end-users
to perform drill-down searches for Data Pool data, to view metadata and browse images online,
to request conversion of Data Pool data and to order data via ftp pull, ftp push or physical media
orders.
Figure 4.10-5 is the WebAccess CSCI architecture diagram. The diagram shows the events sent
to the WebAccess CSCI processes and the events the WebAccess CSCI processes send to other
processes.

 4-169 305-EMD-220

EcDlWebAccess

Web Browser
(COTS)

User

Application Server
(Apache/Tomcat COTS)

Set Search Order
Request Drill-down Search
View Results
View Metadata Info and Browse Images
Download Granules
Add/Remove Granules into/from Shopping Cart
Request HEG Processing
Select Media
Enter User Profile
View Confirmation Page
Submit Simple Download (FTP Pull Non-HEG) order
Submit FTP Pull HEG Order
Submit FTP Push Order (Non-HEG & HEG)
Submit Physical Media Orders (Non-HEG & HEG)
Request Order Status

Spatial
AppletSelect Spatial Area of Interest

Retrieve search results
Get file location
Get HEG info

Display Home Page
Display Drill-down page
Display Result page
Display User Profile Page
Display Shopping Cart Page
Display Media Options
Display Metadata
Display Browse Image
Display Confirmation Page
Display Order Status
Display HEG Processing
Options

Send HTTP Request

Set Drill-down Search order
Perform Drill-down Search
Add Granules into Shopping Cart
Remove Granules from Shopping Cart
Present Shopping Cart
Present Media Options
Set Media Selection
Set HEG Options
Present User Profile Page

Send Application Response

Send HTTP Response

FTP Service

Data Pool
Storage

Download Granules

Retrieve Granules

Retrieve metadata
Retrieve Browse Images

OMS DB

Data Pool
DB

MSS DB

Get Media Limits
Insert Orders
(FTPPull HEG, FTP Push,

Physical Media)
Check Order Status
Insert Orders
(FTPPull HEG,
FTPPush, Physical
Media)

Send Application Request

EcDlWebAccess

Web Browser
(COTS)

User

Application Server
(Apache/Tomcat COTS)

Set Search Order
Request Drill-down Search
View Results
View Metadata Info and Browse Images
Download Granules
Add/Remove Granules into/from Shopping Cart
Request HEG Processing
Select Media
Enter User Profile
View Confirmation Page
Submit Simple Download (FTP Pull Non-HEG) order
Submit FTP Pull HEG Order
Submit FTP Push Order (Non-HEG & HEG)
Submit Physical Media Orders (Non-HEG & HEG)
Request Order Status

Spatial
AppletSelect Spatial Area of Interest

Retrieve search results
Get file location
Get HEG info

Display Home Page
Display Drill-down page
Display Result page
Display User Profile Page
Display Shopping Cart Page
Display Media Options
Display Metadata
Display Browse Image
Display Confirmation Page
Display Order Status
Display HEG Processing
Options

Send HTTP Request

Set Drill-down Search order
Perform Drill-down Search
Add Granules into Shopping Cart
Remove Granules from Shopping Cart
Present Shopping Cart
Present Media Options
Set Media Selection
Set HEG Options
Present User Profile Page

Send Application Response

Send HTTP Response

FTP Service

Data Pool
Storage

Download Granules

Retrieve Granules

Retrieve metadata
Retrieve Browse Images

OMS DB

Data Pool
DB

MSS DB

Get Media Limits
Insert Orders
(FTPPull HEG, FTP Push,

Physical Media)
Check Order Status
Insert Orders
(FTPPull HEG,
FTPPush, Physical
Media)

Send Application Request

Figure 4.10-5. WebAccess CSCI Architecture Diagram

4.10.4.1 WebAccess Process Descriptions
Table 4.10-5 provides descriptions of the processes shown in the WebAccess architecture
diagram.

 4-170 305-EMD-220

Table 4.10-5. WebAccess CSCI Process Description
Process Type Hardware CI COTS/

Developed
Functionality

EcDlWebAccess Web
App

INTHW Developed EcDlWebAccess is a web
application that runs inside a web
server. It provides user friendly
web pages which allow users to
search and retrieve data from
Data Pool, view granules and
related granule products. Once
the list of granules has been
retrieved, the user can then order
granules through ftp-pull, ftp-push
or physical media orders. Users
may also request HEG
conversions for granules in an
order.

Application Server Server INTHW COTS Application Server hosts the
EcDlWebAccess web application.

Spatial
Applet

Applet INTHW Developed The spatial applet allows users to
interactively select desired area of
interest on a map of the earth.
The spatial applet uses WebGlis,
a COTS product from USGS, to
produce the map.

Web Browser Browser ACMHW,
DIPHW,
DRPHW,
SPRHW,
MSSHW,
AITHW,
CSSHW,
DMGHW,
DPSHW,
INTHW,
DPLHW,
OMSHW

COTS The Web Browser loads and
displays EcDlWebAccess web
pages.

4.10.4.2 WebAccess Process Interface Descriptions
Table 4.10-6 describes the interface events among the WebAccess CSCI processes.

 4-171 305-EMD-220

Table 4.10-6. WebAccess CSCI Process Interface Events (1 of 10)
Event Event

Frequency
Interface Initiated by Event Description

Set Search
Order

One Per
Search
Sequence

Process:
Web Browser
(COTS)

User The user configures the
presentation of drill-down
sequence following
certain rules. The
parameters are: Data
Group, Theme, Data Set,
Date, Time, Spatial,
Cloud Cover, Day/Night
Flag and Science QA.

Request Drill-
down Search

One Per
Request

Process:
Web Browser
(COTS)

User The User specifies
search criteria on each
Drill-Down page
(Theme/Group/ESDT,
Temporal, TimeOfDay,
AreaOfInterest, Cloud
Cover etc.).

View Results One Per
Request

Process:
Web Browser
(COTS)

User The User Clicks “Get the
Granules” link on the drill-
down page, or the drill-
down search attributes
have been exhausted.

View
Metadata Info
and Browse
Images

One Per
Request

Process:
Web Browser
(COTS)

User The User chooses to view
the metadata information
and/or browse image of a
granule.

Download
Granules

One Per
Request

Process:
Web Browser
(COTS)
Wu-FTP (COTS)

User The User downloads the
granules by initializing a
ftp request.

Add/Remove
Granules
into/from
Shopping Cart

One or
Many Per
Order
Request

Process:
Web Browser
(COTS)

User The User adds/removes
granules into/from
shopping cart.

Request HEG
Processing

One or
Many Per
Order
Request

Process:
Web Browser
(COTS)

User The User selects format,
projection, projection
parameters, spatial
subsetting or band
subsetting for the
granules in the shopping
cart.

 4-172 305-EMD-220

Table 4.10-6. WebAccess CSCI Process Interface Events (2 of 10)
Event Event

Frequency
Interface Initiated by Event Description

Select Media One Per
Order
Request

Process:
Web Browser
(COTS)

User The User selects one
media option from the
following: ftp-pull, ftp-
push, CDROM and DVD.

Enter User
Profile

One Per
Order
Request

Process:
Web Browser
(COTS)

User The User enters user
profile: name, email
address, contact address,
shipping address for a
physical media order, ftp
push related info for an
ftp-push order.

View
Confirmation
Page

One Per
Order
Request

Process:
Web Browser
(COTS)

User

The User performs
checkout and is
presented with the detail
of the orders.

Submit Simple
Download
(FTP-Pull
Non-HEG)
order

One Per
Order
Request

Process:
Web Browser
(COTS)

User The User submits a
simple download order
that does not require
HEG processing and is
presented with data pool
order Id, download links.

Submit FTP
Pull HEG
Order

One Per
Order
Request

Process:
Web Browser
(COTS)

User The User submits an ftp
pull HEG order and is
presented with an OMS
order id and order status.

Submit FTP
Push Order
(nonHEG and
HEG)

One Per
Order
Request

Process:
Web Browser
(COTS)

User The User submits an
ftppush order, either with
or without HEG
processing, and is
presented with an OMS
order id and order status.

Submit
Physical
Media Order
(nonHEG and
HEG)

One Per
Order
Request

Process:
Web Browser
(COTS)

User The User submits a
physical media order,
either with or without
HEG processing, and is
presented with an OMS
order id and order status.

 4-173 305-EMD-220

Table 4.10-6. WebAccess CSCI Process Interface Events (3 of 10)
Event Event

Frequency
Interface Initiated by Event Description

Request
Order Status

One or
Many Per
Request

Process:
Web Browser
(COTS)

User The User requests
the order status.

Send HTTP
Request

One Per
User
Request

Process:
Application
Server (COTS)

Process:
Web Browser (COTS)

The Web Browser
sends HTTP request
on behalf of the user
to the Application
Server.

Send
Application
Request

One Per
User
Request

Process:
EcDlWebAccess

Process:
Application Server
(COTS)

The Application
Server sends the
request to
EcDlWebAccess.

Set Drill-
down Search
Order

One Per
Request

Process:
EcDlWebAccess

Application Server
(COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
SearchOrderServlet.java
SearchOrderBean.java
SearchOrderAction.java

The EcDlWebAccess
sets the sequence of
the searching
parameters: Data
Group, Theme, Data
Set, Date, Time,
Spatial, Cloud Cover,
Day/Night Flag and
Science QA.

Perform Drill-
down Search

One Per
Request

Process:
EcDlWebAccess

Application Server
(COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
DrilldownServlet.java
SearchRequestBean.java
AbstractDataBean.java
ISummaryData.java

The EcDlWebAccess
performs search
based on the current
drill-down searching
parameters.

 4-174 305-EMD-220

Table 4.10-6. WebAccess CSCI Process Interface Events (4 of 10)
Event Event

Frequency
Interface Initiated by Event Description

Select
Spatial
Area of
Interest

One Per
Request

Process:
Web
Browser
(COTS)

Process:
Web Browser (COTS)
Spatial Applet
Library:
EcDlSpatial.jar

The Web Browser hosts
the Spatial Applet,
handles user’s
interaction with a data
coverage map of the
earth and converts
User’s selection of
spatial area of interest
to HTTP request.

Retrieve
Search
Results

One or Many
Per Order
Request

Database:
DataPool

Application Server (COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
GranuleRetrieverServlet.java
GranuleDataBean.java

The EcDlWebAccess
retrieves the search
results from the Data
Pool database,
including notable data
set level information
such as average
granule size, source
parameter for cloud
cover, product quality
summary link or
whether the data for a
data set is typically
compressed.

Get File
Location

One per file
in result set

Database:
DataPool

Process:
EcDlWebAccess

EcDlWebAccess gets
Data Pool disk location
for metadata and
browse files from the
Data Pool database.

Retrieve
Metadata

One Per
Request

Storage
Device:
Data Pool
disk

Application Server (COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
XMLServlet.java

The EcDlWebAccess
retrieves the metadata
of a granule from Data
Pool disk.

 4-175 305-EMD-220

Table 4.10-6. WebAccess CSCI Process Interface Events (5 of 10)
Event Event

Frequency
Interface Initiated by Event Description

Retrieve
Browse
Image

One Per
Request

Storage Device:
Data Pool disk

Application Server (COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
BrowseServlet.java

The
EcDlWebAccess
retrieves the
browse image of a
granule from Data
Pool disk.

Add
Granules
into
Shopping
Cart

One or
Many Per
Order
Request

Process:
EcDlWebAccess

Application Server (COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
GranuleRetrieverServlet.java
CartBean.java

The
EcDlWebAccess
adds one or more
granules into a
shopping cart.

Remove
Granules
from
Shopping
Cart

One or
Many Per
Order
Request

Process:
EcDlWebAccess

Application Server (COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
CartServlet.java
CartBean.java
SetCartInfoAction.java
EmptyCartAction.java

The
EcDlWebAccess
removes granule(s)
from a shopping
cart.

Present
Shopping
Cart

One or
Many Per
Order
Request

Process:
EcDlWebAccess

Application Server (COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
CartServlet.java
CartBean.java
DisplayCartAction.java

The
EcDlWebAccess
returns a shopping
cart along with
some data set level
information and
HEG processing
options.

 4-176 305-EMD-220

Table 4.10-6. WebAccess CSCI Process Interface Events (6 of 10)
Event Event

Frequency
Interface Initiated by Event Description

Get Media
Limits

One Per
Order
Request

Database:
Order Manager DB

Process:
EcDlWebAccess

EcDlWebAccess gets
media limit
information from the
OMS DB.

Present
Media
Options

One Set Per
order request

Process:
EcDlWebAccess

Application Server
(COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
CartServlet.java
MediaAction.java

The EcDlWebAccess
returns a media
option list based on
the configured media
limits.

Set Media
Selection

One Per
Request

Process:
EcDlWebAccess

Application Server
(COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
CartServlet.java
MediaAction.java

The EcDlWebAccess
saves the media
selection for the
order.

Get HEG
info

One per
Request,
where
convertEnabl
edFlag is set
for one or
more
collections in
cart

Database:
DataPool

Process:
EcDlWebAccess

EcDlWebAccess gets
information from the
Data Pool database to
determine which, if
any, HEG processing
options to present.

Set HEG
Options

One per
Request

Process:
EcDlWebAccess

Application Server
(COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
CartServlet.java

The EcDlWebAccess
saves the HEG
processing options for
the order.

 4-177 305-EMD-220

Table 4.10-6. WebAccess CSCI Process Interface Events (7 of 10)
Event Event

Frequency
Interface Initiated by Event Description

Present
User
Profile
Page

One Per
Request

Process:
EcDlWebAccess

Application Server
(COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
CartServlet.java
ProfileAction.java

The EcDlWebAccess
returns a user profile
page associated with
the media via
Application Server.

Process
FTP Pull
NON HEG
(Simple
Download)
Order

One Per
Request

Process:
EcDlWebAccess

Application Server
(COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
CartServlet.java
SubmitOrderAction.java
DownloadOrderImpl.java

The EcDlWebAccess
saves the simple
download order into
DPL DB via Sybase
Server and presents an
order acknowledgement
page for user to view
the order it and
download the data.

Insert
Orders
(FTPPull
HEG,
FTPPush,
Physical
Media)

One Per
Order
Request

Process:
EcDlWebAccess

Application Server
(COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
CartServlet.java
SetCartInfoAction.java
OmOrderImpl.java
OmHEGOrderImpl.java

The EcDlWebAccess
saves the order into OM
DB and MSS DB via
Sybase Server and
presents an order
acknowledgement page
for user to view the
order it and order
status.

 4-178 305-EMD-220

Table 4.10-6. WebAccess CSCI Process Interface Events (8 of 10)
Event Event

Frequency
Interface Initiated by Event Description

Check
Order
Status

One or Many
Per Order
Request

Process:
EcDlWebAccess

Application Server (COTS)
Process:
EcDlWebAccess
Library:
EcDlWaDrill.jar
Class:
OrderTrackingServlet.java
OrderTrackingBean.java

The EcDlWebAccess
tracks the order status
in the MSS database,
with the email address
and order id.

Send
Applicatio
n
Response

One Per
User
Request

Process:
Application
Server (COTS)

Process:
EcDlWebAccess

EcDlWebAccess
sends the response to
the Application
Server.

Send
HTTP
Response

One Per
User
Request

Process:
Web Browser
(COTS)

Process:
Application Server (COTS)

The Application
Server sends the
response from
EcDlWebAccess back
to Web Browser.

Display
Home
Page

One Per
Request

User Process:
Web Browser (COTS)

The Web Browser
displays the home
page where user can
set the drill-down
order or start drill-
down search with data
set, data group or
theme.

Display
Drill-down
Page

One Per
Request

User
Process:
Web Browser (COTS)

The Web Browser
displays the Drill-down
page with the values
of drill-down
parameter.

Display
Result
Page

One Per
Request

User
Process:
Web Browser (COTS)

The Web Browser
displays the Result
Page the captures
notable data set level
information such as
average granule size,
source parameter for
cloud cover, product
quality summary link
or whether the data
for a data set is
typically compressed.

 4-179 305-EMD-220

Table 4.10-6. WebAccess CSCI Process Interface Events (9 of 10)
Event Event

Frequency
Interface Initiated by Event Description

Display User
Profile Page

One Per
Request

User Process:
Web Browser
(COTS)

The Web Browser
displays the user profile
page during the final step
in the order submission
process.

Display
Shopping Cart
Page

One Per
Request

User Process:
Web Browser
(COTS)

The Web Browser
displays a shopping cart
along with some data set
level information and
HEG processing options.

Display Media
Options

One Per
Request

User Process:
Web Browser
(COTS)

The Web Browser
displays the media
options available for the
current order.

Display
Browse Image

One Per
Request

User Process:
Web Browser
(COTS)

The Web Browser
displays browse image
associated with a
granule.

Display
Metadata

One Per
Request

User Process:
Web Browser
(COTS)

The Web Browser
displays the full hierarchy
metadata information of a
granule.

Display
Confirmation
Page

One Per
Request

User Process:
Web Browser
(COTS)

The Web Browser
displays the confirmation
page of the order.

Display Order
Status

One Per
Request

User Process:
Web Browser
(COTS)

The Web Browser
displays the order status
upon submission of a ftp
pull HEG order, ftp push
(HEG & NON-HEG) and
physical media order
(HEG & NON-HEG)

Display HEG
Processing
Options

One Per
Request

User Process:
Web Browser
(COTS)

Besides the shopping cart
page, the Web browser
also displays HEG
processing options in the
input projection
parameter page, band
subsetting page and
spatial subsetting page.

 4-180 305-EMD-220

Table 4.10-6. WebAccess CSCI Process Interface Events (10 of 10)
Event Event

Frequency
Interface Initiated by Event Description

Download
Granules

One Per
User
Request for
Granule on
Results
Page

Process:
FTP Service

User
Process:
Web Browser
(COTS)

The user downloads
granules from the results
page using the Data Pool
FTP Service.

Retrieve
Granules

One Per
User
Request for
Granule on
Results
Page

Storage Device:
Data Pool Disk

Process:
FTP Service

The Data Pool FTP
Service retrieves the
granule from Data Pool
disk and downloads it to
the user via ftp protocol.

4.10.5 Data Stores
There are two data stores associated with the Data Pool subsystem. They are the Data Pool
database (DPL DB) and the Order Manager database (OMS DB). Table 4.10-7 provides a
description of these data stores.

Table 4.10-7. Data Pool Data Stores
Data Store Type Description

DPL DB Sybase The Data Pool (DPL) database implements the
large majority of the persistent data requirements
for the Data Pool subsystem. The Data Pool
database contains: a) inventory data for the Data
Pool granules, including data warehousing
(Dimension and Fact) data which support Web
Access drill down; b) configuration data for the
Data Pool; c) interim processing data for the Data
Pool utilities; d) data for monitoring Data Pool
insert queues and processing; e) Data Pool
access statistics; and f) information about data
pool entities such as collection groups,
collections, file systems, compression algorithms,
and themes.

OMS DB Sybase The Order Manager (OMS) database stores
persistent information about orders placed using
the Data Pool WebAccess web pages.

 4-181 305-EMD-220

4.11 Bulk Metadata Generation Tool Subsystem Overview
The ECS Bulk Metadata Generator Tool (BMGT) was created to support the development of
value-added providers and external search and order tools by providing them with detailed
metadata for the collections and granules archived at a DAAC. Currently, the EOS
Clearinghouse (ECHO) is the primary consumer of this capability. With the recent removal of
the Science Data Server and V0Gateway from ECS, and the adoption of ECHO and WIST as the
primary search and order interface for ECS holdings, BMGT has taken on a vital role in the ECS
system. In its latest incarnation, BMGT automatically exports its generated metadata to ECHO,
while allowing other value-added providers and end users to request metadata through the
standard ECS data ordering pathways.

Generally, BMGT metadata export is initiated at a regular interval as a UNIX cron job to export
any changes to DAAC holdings in a timely manner. At the end of each interval, metadata
reflecting added, removed, or changed granules and collections in the DAAC archive is
generated in XML format. The generated products are exported to ECHO via FTP, as well as
being archived as ECS data. In addition to automatically exporting metadata reflecting changes
to the archive holdings, the BMGT can be manually executed to generate metadata for specific
granules and collections. The output of these ‘Manual’ exports includes the products requested
by the operator and can be ingested into ECS, exported to ECHO, both, or neither, as needed.
Manual exports can be used to reconcile any discrepancies with ECHO or produce targeted sets
of metadata for a particular task, among other things.

In addition to core granule metadata, retrieved from the XML met files in the ECS XML archive,
BMGT exports additional metadata which may be useful to ECHO, or a value-added provider.
This additional data includes the visibility of the granule, the URLs (if any) to immediately
download the data from the datapool FTP server, and linkages to browse files. The browse
image files themselves are also sent to ECHO as part of the metadata package, and also can be
ordered by any value-added provider interested in BMGT metadata via normal ECS ordering
pathways.

NOTE: The BMGT uses the terms ‘cycle’, ‘package’, and ‘export cycle/package’
interchangeably, and they are used as such in this document.

4.11.1 BMGT Subsystem Context

Figure 4.11-1 is the BMGT Subsystem context diagram. The diagram shows the high level
events generated between BMGT and other subsystems.

 4-182 305-EMD-220

BMGT
(subsystem)

Operator (via shell
or cron job)

ECHO

Export package

DPL
Initiate Cleanup export

AIM Database

Get metadata

DPL Database

Get URL Info

DPL
INGEST

Ingest metadata products
(SIPS I/F)

XML Archive

Get granule metadata

Get Ingest Summary Report

-Initiate Automatic export
-Initiate Manual export
-View/set cfg parameters
-View cycle status/details
-View ReExport Queue
-Initiate Corrective ReExport ECS

Initiate DlCleanup

Figure 4.11-1. BMGT Subsystem High Level Context Diagram

 4-183 305-EMD-220

Table 4.11-1 provides descriptions of the interface events in the BMGT Subsystem context
diagram.

Table 4.11-1. BMGT Subsystem High Level Interface Events
Event Interface Event Description

Initiate Automatic
export

The operator initiates a script, either from the command line or as a cron job, and the
BMGT ensures that the automatic export cycles for the current day have been pre-
populated, and initiates the generation of any cycles for which the time range has
ended.

Initiate Manual Export The operator runs a script, which will initiate the generation of an export package
containing the metadata requested by the operator i.e., based on a list of
granules/collections/groups and desired products, not an event time range.

Get URL Info BMGT reads necessary information from Data Pool database to support the export of
FTP URLs and/or their change or removal due to granule inserts and deletes and
collection moves in the public datapool.

Initiate DlCleanup The operator initiates the DataPool cleanup script to remove some granules from the
DataPool, logically and/or physically.

Initiate Cleanup
export

Data Pool Cleanup utility initiates a BMGT Cleanup export cycle to convey Data Pool
granule deletes to ECHO (See ‘Get URL Info’ event above). The cleanup cycle is
initiated independent of the Automatic export schedule and only exports URL deletes.

Ingest metadata
products

BMGT generated products can be archived in the ECS system. The BMGT generates
ODL MET files and a PDR file for all Metadata products which are to be ingested to
enable ingesting through the ‘Polling with Delivery Record Ingest’ interface of
DataPool Ingest.

Get metadata BMGT reads collection, granule, browse, valids, and other metadata from the AIM
database.

Get granule metadata BMGT reads granule metadata from the XML metadata files located on the small file
archive.

Export package

BMGT uses FTP to push a zip’d copy of the generated products plus associated
browse to ECHO.

Get Ingest Summary
Report

BMGT uses FTP to pull Ingest Summary Reports from ECHO. These detail the result
of ECHO ingest for the packages exported by BMGT.

View/set cfg
parameters

The operator uses the BMGT GUI to view the current values for various configuration
parameters that affect the behavior of BMGT. If the operator is logged in to the GUI
as an administrative user, he/she can modify these values. The Operator can also
view, but not modify, the configured error handlers for all errors which may be
returned from ECHO in an Ingest Summary report.

View cycle
status/details

The operator uses the BMGT GUI to view a list of recent export cycles and their
current status. The operator also views details on each cycle or a list of cycles which
have failed.

View ReExport
Queue

The operator uses the BMGT GUI to view a list of granule currently queued for
reExport due to a previous error returned from ECHO.

Initiate Corrective
ReExport

The operator initiates a script, which will initiate generation of metadata for granules
on the ReExport Queue.

 4-184 305-EMD-220

4.11.2 BMGT/ECHO Interface

The interface from BMGT to ECHO (‘Export package’ in Figure 4.11-1) is in the form of
metadata ‘packages’. A package consists of a zip file and zero or more binary browse image
files. The zip file contains zero or more XML files which contain metadata on ECS archive
holdings (see Table 4.11-2). The zip file always contains at the very least a single manifest file
(see Table 4.11-3) which lists the contents of the package, and provides some additional control
data.

The interface from ECHO to BMGT(‘Get ingest summary report’ in Figure 4.11-1) is in the form
of an Ingest Summary Report (ISR) which contains a summary of the outcome of ECHO’s
attempted ingest of a package sent by BMGT.

Table 4.11-2 and 4.11-3 describe the types of files which make up the ECHO/BMGT interface.

Table 4.11-2. BMGT Metadata Product File Types
File Type Schema Description

METC BMGTCollectionMetadata.dtd Collection metadata.
METG BMGTGranuleMetadata.dtd Granule metadata.
BBR BMGTBrowseMetadata.dtd Browse granule metadata.
Browse Data N/A Binary Browse image file.
Valids BMGTValidsMetadata.dtd ECS valids.
METU BMGTUpdateMetadata.dtd Granule QA updates and browse linkages.
Hide/Unhide BMGTUpdateMetadata.dtd Visibility of granule (hide/unhide) based on value of

DeleteFromArchive.
Bulk URL BMGTUpdateMetadata.dtd Public DataPool FTP URLs.

Table 4.11-3. BMGT/ECHO Interface Control File Types
File Type Schema Description

Manifest PackageManifest.xsd List of files contained in a package as well as additional
control data.

Ingest
Summary
Report

IngestReport.xsd Summary of the outcome of ECHO’s attempted ingest of
a metadata package.

4.11.3 ECS Events and BMGT products

In general, BMGT is run automatically on a set schedule, splitting a 24 hour day into 1 or more
equally sized intervals. At the end of each interval, BMGT will export to ECHO (via the
interface described in 1.1.2) metadata reflecting any relevant changes to the ECS holdings since
the end of the last interval. Relevant changes include inserts, deletes, and updates to collections
and granules which are configured to be exported to ECHO. Such events cause database triggers
to be fired which record the events in database tables where they are then picked up by BMGT.
BMGT will evaluate all relevant events in a given time frame, and export the new state of the

 4-185 305-EMD-220

affected object as an add, delete, or update to the ECS metadata stored at ECHO. If any event
has been superseded by a later event, it will not be exported, or will be modified to reflect the
actual state of the granule or collection in ECS. Table 4.11-4 describes the types of events which
are relevant to BMGT/ECHO, and what type of product is exported to reflect each event during
an automatic export cycle. In a Manual BMGT export cycle, the same types of metadata are
generated and exported, but for objects and products specified by operator input rather than by
events. A Manual BMGT cycle will only generate inserts and deletes, not updates (with a few
exceptions).

Most BMGT products are grouped together by product type (METG, URL, METC, etc) and by
ESDT grouping (defined in site specific configuration). This will result in one (or more,
depending on volume) files in a package per product and ESDT group combination for which
there is metadata to be produced. ‘Ungrouped’ products do not follow ESDT groupings and will
group all metadata for a given product into one file (or set of files if the volume of metadata
exceeds a configured per-file limit). Table 4.11-4 specifies in the ‘Notes’ column if a product is
ungrouped. All other products are grouped.

Table 4.11-4. ECS Event to BMGT Product Mapping (1 of 2)
Event Type Cause/location Products [<FileType> <Schema

element>]
Notes

GRINSERT Granule inserted into
AIM database, or
logically undeleted.

[METG GranuleURMetaData]
If granule in public DataPool: See
INSERT(datapool)
If associated browse (if any) not
already exported: See
BRINSERT
If granule is hidden in AIM DB:
See GRHIDE

METG Contains browse
linkage (if any).

GRDELET
E

Granule deleted from
AIM either logically or
physically.

[METG GranuleURMetaData]
If Associated Browse has no
more links, remove it: See
BRDELETE

Sets DeleteTime in granule
metadata.

GRHIDE Granule hidden in AIM
DB, and not available
for order.

[Hide/Unhide Update*] Ungrouped

GRUNHID
E

Granule unhidden in
AIM DB, and now
available for order.

[Hide/Unhide Update*] Ungrouped

CLINSERT Collection inserted into
AIM DB.

[METC CollectionMetaData]

CLDELETE Collection deleted
from AIM DB.

[METC DeleteCollection]

CLUPDAT
E

Collection modified in
AIM DB.

[METC CollectionMetaData] Overwrites old collection
metadata with new.

 4-186 305-EMD-220

Table 4.11-4. ECS Event to BMGT Product Mapping (2 of 2)
Event Type Cause/location Products [<FileType> <Schema

element>]
Notes

BRINSERT Browse file inserted in
AIM DB

[BBR BrowseCrossReference +
Browse File]

Exports actual browse data
+ its metadata.

BRDELETE Last link to browse file
deleted in AIM DB

[BBR BrowseCrossReference] Sets DeleteTime for affected
browse granule so it will be
removed from ECHO.

BRLINK Science/Browse link
added to AIM DB.

[METU Delete + Add*] Adds browse link to affected
granule (removing any
existing link first).

BRUNLINK Science/Browse link
removed from AIM
DB.

[METU Delete*]
If Browse has no more links,
remove it: See BRDELETE.

Instructs ECHO to remove
any Browse linkages for
specified granule.

QAUPDATE QA parameters
modified in AIM DB.

[METU Update*]

INSERT
(datapool)

Granule Added to
public datapool.

[BulkURL Add*] Ungrouped (Will span
multiple files if number of
granules exceeds
MAX_SIZE_ECSMETU set
in BMGT GUI).

DELETE
(datapool)

Granule logically or
physically removed
from public datapool.

[BulkURL Delete*] Ungrouped (Will span
multiple files if number of
granules exceeds
MAX_SIZE_ECSMETU set
in BMGT GUI).

CLMOVED
(datapool)

Collection metadata
updated in DPL DB.

[BulkURL Delete + Add*] Replaces URL(s) of granules
in affected collection & in
public DPL.
Ungrouped (Will span
multiple files if number of
granules exceeds
MAX_SIZE_ECSMETU set
in BMGT GUI).

VALIDS Valids modified in AIM
DB.

[METV ValidsFile] Exports entire set of ECS
valids.
Ungrouped

*Add, Update, and Delete elements for METU, Hide/Unhide, and BulkURL products reside
within a ProviderAccountService/UpdateMetadata/Granule element, which is left out in this
table for clarity/simplicity.

4.11.4 BMGT Architecture

Figure 4.11-2 displays the BMGT Architecture diagram.

 4-187 305-EMD-220

Generator

Packager

Export

Server

Monitor

Generated
Packaged

 Ingest
summary report

Automatic
Export

Manual

Export

Request

Cleanup

Corrective

Export

Figure 4.11-2. BMGT Architecture Diagram

 4-188 305-EMD-220

Table 4.11-2 provides descriptions of processes shown in the architecture diagram.

Table 4.11-5. BMGT Processes (1 of 3)
Process Type Hardware

CI
COTS/

Developed
Functionality

Automatic Pre Processor Application OMSHW Developed Script is kicked off by operator or
cron job. Based on BMGT
configuration, the BMGT
determines whether any automatic
export cycles are ready to be
generated/exported. If so, they are
prepared and flagged for
generation. If necessary, will also
prepopulate the export schedule
for the current day.

Manual Pre Processor Application OMSHW Developed The operator runs a script to
explicitly tell the BMGT to initiate
an export cycle. The Manual start
script provides a large number of
options for generating the export
package to fit the operator’s
needs.

Corrective ReExport Pre
Processor

Application OMSHW Developed The operator runs a script to
initiate the re export of full
metadata for granules which were
queued for re export after an error
was returned from ECHO
indicating a problem ingesting
metadata for the granule.

DataPool Cleanup Utility Application DPLHW Developed When Data Pool Cleanup is run, it
triggers the BMGT to produce a
Bulk URL export package in order
to notify ECHO as quickly as
possible of the removal of granules
from the Data Pool. The BMGT
Monitor is also involved in this
process as it prepares and flags
the cleanup cycle for generation
after being notified by DPL
cleanup that a cleanup cycle is
needed.

 4-189 305-EMD-220

Table 4.11-5. BMGT Processes (2 of 3)
Process Type Hardware

CI
COTS/

Developed
Functionality

Generator Server OMSHW Developed Once a BMGT cycle has been
flagged for generation, the task of
creating the required output
products (ECSMETC, ECSMETG,
ECSBBR, ECSMETV and the
ECSMETU[Qa/BrLink, Visibility
metadata, URL metadata]) falls to
the Generator. For performance
reasons, the Generator is a multi-
threaded application. It uses the
information assembled by the
preprocessor to create one or
more output products. It also
manages dependencies between
products. Once the products have
been created, the work passes to
the Packager.

Packager Server OMSHW Developed The Packager is responsible for
'assembling' the export package.
This includes renaming files to
include file counts, creating ECS
.met files and PDRs for Ingest into
ECS(when necessary), and
creating manifest and zip files for
export to ECHO. The Packager will
also generate synchronization
packages where necessary to
ensure that BMGT and ECHO
keep their unique package
identifiers in sync.

Export Server Server OMSHW Developed Once the products have been
packaged, the Export Server takes
over. It is responsible for FTP'ing
the package to ECHO, as well as
pulling Ingest Summary Reports
from ECHO to the local system
where they can be picked up by
the Monitor.

 4-190 305-EMD-220

Table 4.11-5. BMGT Processes (3 of 3)
Process Type Hardware

CI
COTS/

Developed
Functionality

Monitor Server OMSHW Developed The Monitor performs a number of
general purpose 'monitoring' tasks,
such as making sure the export
cycles do not get ‘stalled’ and
cleaning up old packages. It also
performs some of the
preprocessor work for cleanup
export packages requested by
datapool cleanup and processes
the Ingest Summary Reports
generated by ECHO, validating
them against the BMGT audit trail
and handling any errors reported
within.

EBIS document 920-TDx-001 (HW Design Diagram) provides descriptions of the HWCIs and
document 920-TDx-002 (Hardware-Software Map) provides site-specific hardware/software
mapping.

4.11.5 Use of COTS in the BMGT Subsystem

• JRE

The JRE constitutes Java virtual machine and the Java platform core libraries. It provides
applications with the Java platform. Included with it is JAXP (Java API for XML
Processing), which is also used by BMGT.

• jConnect

jConnect implements the JDBC interface and provides Java applications with drivers to
access Sybase database SQL server.

• JDOM

JDOM libraries allow java applications to create and edit xml documents.

• Sybase Server

The BMGT accesses the Inventory database to read inventory metadata, Data Pool
database to get URL information for granules in Datapool, and Ingest database to monitor
ingest of generated products into ECS.

• JAF / Javamail

 4-191 305-EMD-220

Java Activation Framework (JAF) and Javamail provide BMGT the capability to send
email messages.

• JWSDP

The BMGT utilizes Java Architecture for XML Binding (JAXB) functionality of jwsdp
package. JAXB is a Java technology that allows easy binding of XML schemas to Java
objects. This allows an application to easily create xml documents conforming to
schemas.

• Velocity

Used for creating templates for MET and PDR files.

• Protomatter

Used to maintain a pool of Database connections for both Datapool and Inventory
databases.

• JAMon

The Java Application Monitor (JAMon) is a simple, high performance, thread safe, Java
API that allows to easily monitor production applications.

• Sun Java System Web Server

BMGT (Document Type Definitions) DTD schemas are hosted on the web server to
provide access to consumers, like ECHO, who intend to validate the xml products.

• Perl

Interpreted scripting language used to implement the Manual Start Script
(EcBmBMGTManualStart.pl).

4.11.6 BMGT Subsystem Software Description

4.11.6.1 BMGT CSCI Functional Overview

The BMGT servers shown in Table 4.11-2 are always running, waiting for work to do.
However, metadata generation will only be initiated when one of the four ‘preprocessor’ utilities
is run, either by the operator or as a cron job. There is one preprocessor for each BMGT cycle
type (AUTOMATIC, MANUAL, CORRECTIVE, and CLEANUP). Each preprocessor is
responsible for deciding which products need to be generated for the cycle, as well as which
granules or events go into those products. Each preprocessor will ensure that the appropriate
events (or granules/collections for manual or corrective export) are flagged to be processed in the
new cycle, assign the cycle a unique and sequential package ID (if needed), and flag the cycle as
ready to generate.

In general, the use case for each BMGT cycle type is as follows:

AUTOMATIC. Preprocessor is kicked off as cron job, configured to run at a set interval
(could also be run by operator). Based on BMGT configuration, the BMGT determines

 4-192 305-EMD-220

whether any automatic export cycles are ready to be generated/exported. If so, they are
prepared and flagged for generation. If the pre processor has not yet been run during the
current day, then all cycles for the current day are pre populated with placeholders.

MANUAL. The operator runs the manual preprocessor script to explicitly tell the BMGT
to initiate an export cycle. This script provides a large number of options for generating
the export package to fit the operator’s needs.

CORRECTIVE. The operator runs the corrective preprocessor script to initiate the re
export of granules queued for re export do to ECHO ingest error.

CLEANUP. When Data Pool Cleanup is run, it triggers the BMGT to produce a Bulk
URL export package in order to notify ECHO as quickly as possible of the removal of
granules from the Data Pool. The BMGT Monitor is also involved in this process as it
prepares and flags the cleanup cycle for generation after being notified by cleanup that a
cleanup package is required. DlCleanup and BMGT Monitor together act as the Cleanup
preprocessor.

Once a cycle has been preprocessed and flagged for generation by the preprocessor, the BMGT
servers handle the remainder of the cycle’s processing. A nominal export cycle will be picked
up by the Generator server, which will generate the appropriate products. The cycle will then be
picked up by the Packager server, which will rename the products to include a file count, create
PDR, met, and manifest files as needed, and create a zip file containing the products. The Export
server will then FTP push the zip file, along with any browse files to ECHO and then wait for an
Ingest Summary Report to be generated by ECHO, which it will then pull via FTP to a local
directory. The Monitor server will ensure that an Ingest Summary Report is received within a
configured time limit, and when it does, will read it, compare it with the BMGT audit statistics
for the cycle, and update the cycle status accordingly. Assuming no errors in the report, the
Monitor will clean up the files generated by the cycle, as well as some of the cycle’s database
records. If there is an error, the monitor will handle the error as detailed in section 4.11.6.8.
After a configured amount of time, the Monitor will completely remove the cycle from the
BMGT records.

The following sections provide more detailed descriptions of the various components briefly
described above.

4.11.6.2 Automatic Export Process

The Automatic Export Process is a command line tool, usually spawned by a cron task. Its
purpose is to initiate automatic export cycles at configured intervals. Since the process may be
executed more frequently than the configure interval, it must perform checks to make sure it
really is time to initiate an export cycle (i.e., there is a complete export interval which has not yet
been flagged for generation), and exit otherwise. When the automatic preprocessor is run for the
first time for a given day, a complete days worth of export cycles are 'pre-populated' in the
database as placeholders to be initiated at a later time.

When an export cycle is to be started, the Automatic Preprocessor selects the events that will be
used to generate the output products. These events, generated automatically by the database

 4-193 305-EMD-220

during normal operations, effectively document the changes that have occurred to the metadata
holdings, such as granule or collection inserts, updates, or deletions. The Automatic Preprocessor
copies the events relevant to the time interval covered by the export cycle into special BMGT
working tables for use by the Generator.

Once the events have been selected, the Automatic Preprocessor sets up the collection group
configuration. This configuration, initially stored in a file, is used to group the data in the output
products. It must first be loaded into the database, and then checks are performed in order to
detect configuration changes, such as the recent enabling of a collection for collection or granule
metadata export. These changes require additional data to be exported, and the Automatic
Preprocessor converts them into one or more events, which are added to the BMGT working
tables for processing. The final step in collection group configuration is to make a copy of the
current configuration (so that a subsequent run can perform a comparison in order to detect the
changes described above).

Once the collection group configuration has been loaded, the audit trail can be created, recording
statistics and status for each product in a cycle. This is used later by the Generator to track
progress, and the Monitor to verify the Ingest Summary Reports.

Next, the Automatic Preprocessor checks for collection deletion events. If a collection is deleted,
then the BMGT must not export any granules for that collection. So if it finds a collection
deletion event, the Automatic Preprocessor removes all other events for granules belonging to
that collection from the working tables.

At this point, the cycle is ready to be generated, and the Automatic Preprocessor updates the
database so that the cycle will be picked up by the Generator. It also assigns a package sequence
number to the export cycle. In order to prevent possible recovery problems and gaps in the
sequence number, these two steps are performed atomically.

The Automatic Export Process has now completed its task, and will exit. Figure 4.11-3 below
summarizes the sequence of events that occur in the database.

 4-194 305-EMD-220

DsMdBmgtPkyCycles

DsMdBmgtCycleEvents

DsMdGrEventHistory

Automatic

Export Process

DsMdBmgtWrkGroups

DsMdBmgtGroupConfig

DsMdGranules

DsMdBmgtAuditStats

1

3

5

4

2

4

6

7
8

2

Figure 4.11-3. Automatic Preprocessor Database Sequence

The Automatic Preprocessor performs the following database interactions (diagrammed in
Figure 4.11-3) to prepare a cycle for generation:

1. Retrieve export cycle details
2. Select events for export cycle into working table
3. Load collection group configuration
4. Add events related to configuration changes
5. Make permanent copy of collection group configuration
6. Create audit trail
7. Remove events related to collection deletions
8. Update export cycle to trigger generation

4.11.6.3 Manual Export Process

The Manual Preprocessor is a command line tool used by the operator. Its purpose is to allow the
operator to generate custom export cycles. For example, a targeted package containing only a
few specific granules and products may be required to correct synchronization issues between
ECS and ECHO. The Manual Preprocessor provides a wide range of command line options that

 4-195 305-EMD-220

allow the selection of granules by ID, collection, collection group, or a combination of collection
and an insert time range. It also allows the operator to select the output products that should be
generated, and whether or not they will be exported to ECHO and/or ingested into ECS (or
neither).

The first step performed by the Manual Preprocessor is to check whether another manual export
cycle is currently operating. If so, it must verify with the operator that this is acceptable.
Assuming it is, the Manual Preprocessor verifies the command line options to eliminate any
incompatible options, or return an error if required options are omitted.

Once the command line options have been verified, it creates an export cycle entry in the
database in order to create a unique identifier for this export cycle (note that this entry also
records other package information, such as whether it should exclude subsequent automatic runs
from processing concurrently, the products that are to be generated, whether it is a deletion run,
and whether it is being exported/ingested). It then uses the command line options to build a list
of granules and/or collections in the database (while product generation for an automatic export
cycle works exclusively from event lists, in the case of a manual export cycle, it works
exclusively from granule and collection lists).

If the command line options provide explicitly granule IDs, either directly, or via a file, these are
loaded into a special working table. If one or more collections are provided, these are loaded into
another working table, and then used to select their associated granules (if necessary). If one or
more groups are provided, then the collections associated with the specified group(s) are loaded
into the collection working table mentioned above, and used to populate the granule working
table if necessary.

Once the granule and collection lists have been populated, the Manual Export Process loads the
collection group configuration. This is slightly simpler than the automatic export case, and
simply involves loading the configuration into the database (no configuration changes need to be
detected). The Manual Export Process will attempt to load configuration for only those groups
required by the command line options (this is not always possible, so sometimes unnecessary
groups will be loaded into the database tables).

Once the collection group configuration has been loaded, the audit trail can be created for the
requested products and groups. This is used later by the Generator to track progress, and the
Monitor to verify the Ingest Summary Reports.

At this point, the cycle is ready to be generated, and the Manual Preprocessor updates the
database to assign a package sequence number (if requested), and at the same time, update a
status column so that the cycle will be picked up by the Generator. To prevent race conditions,
these operations are performed as one atomic operation.

The Manual Export Process has now completed its task, and will exit. Figure 4.11-4 below
summarizes the sequence of events that occur in the database.

 4-196 305-EMD-220

DsMdBmgtPkgCycles

DsMdBmgtWrkCollections

DsMdBmgtWrkGranules

Manual Export

Process

DsMdBmgtWrkGroups

DsMdGranules

DsMdBmgtAuditStats

1

2

5 4

6

3

7

Figure 4.11-4. Manual Export Process Database Sequence

The Manual Preprocessor performs the following database interactions (diagrammed in Figure
4.11-4) to prepare a cycle for generation:

1. Create export cycle row
2. Load group configuration
3. Load collections into working table
4. Populate granules based on collection/insert time (if METG being produced)
5. Load granules into working table
6. Create audit trail
7. Update export cycle to trigger generation

4.11.6.4 Cleanup

The DataPool Cleanup Utility is part of the DataPool subsystem which has been modified to
interface directly with BMGT. It is run periodically, either on a cron, or manually by an
operator, to remove granules from the DataPool and free disk space. If any of the removed
granules were public in the DataPool, it must invoke BMGT to notify ECHO that the DataPool
URLs it has for them are no longer valid.

 4-197 305-EMD-220

When Cleanup is initiated, either in ‘predelete’ or ‘deleteall’ modes, it will create a ‘CLEANUP’
cycle entry in the database. Unlike automatic and manual cycles, there is very little flexibility in
how a cleanup cycle is generated and exported – it will be assigned a package sequence ID,
exported to ECHO, not ingested into ECS, and it will generate only the BulkURL product.
Before exiting (or moving on to delete granules, in ‘deleteall’ mode), Cleanup will wait to make
sure the cycle has been recognized by the BMGT Monitor server. The Monitor, in turn, will
select the URL delete events that are to be processed by this export cycle. In this respect, a
Cleanup export cycle behaves as an automatic export cycle (i.e. it works from an event list).

Once the events have been selected, the Monitor will create the audit trail for the export cycle.
This is very simple, since it consists of a single, ungrouped product (URL).

Finally, the Monitor will assign a package sequence number and mark the export cycle to tell the
Generator that it can be processed.

4.11.6.5 Corrective ReExport Process

The Corrective ReExport pre processor is built in to the Manual pre processor. Invoking this pre
processor will initiate a Corrective export, which is essentially a specialized manual export. A
corrective export uses the ReExport Queue as its list of granules to export metadata for rather
than command line options. Thus, no options can be specified other than ‘—noarchive’ for a
corrective export. A separate utility exists which allows the operator to generate a report or
summary of the contents of the ReExport Queue, as well as delete granules from the queue.

4.11.6.6 Generator

The Generator is responsible for generating the actual products. Products include collection
metadata (ECSMETC), granule metadata (ECSMETG), Valids (ECSMETV), Bulk Browse
metadata (ECSBBR), updates to collection and granule metadata (ECSMETU), QA and browse
links metadata (ECSMETU), granule hide/unhide updates, and Bulk URL updates on the Data
Pool holdings (ECSMETU).

The Generator is a server process. It monitors the database export cycles table looking for
packages that are ready for generation (as happens when the Manual or Automatic Preprocessor,
or DataPool Cleanup runs). These packages will initially be in the NEW state. When it finds a
package that is ready, it retrieves the export cycle details.

Before the Generator can start processing a package, it must first check to see what type of
package it is, and whether there are any currently executing packages that may prevent it from
executing. For example:

An automatic export cycle package cannot be processed if there is currently another automatic
export cycle package being processed.

An cleanup export cycle package cannot be processed if there is currently another cleanup export
cycle being processed.

 4-198 305-EMD-220

An automatic or cleanup export cycle cannot be processed it there is a manual export cycle being
processed, and the manual export cycle is marked as being ‘exclusive’.

Assuming that the package can be processed, the Generator starts its work. First, it updates the
package state to STARTED, to allow the GUI to display the fact that it is now being worked. It
then determines what products are going to be created. It then creates a number of specialized
product processor instances – once for each product that is to be generated. It also creates a
specialized data source instance for each product. These data sources are abstracted classes
which allow the differing sources of product data (events vs. granule lists) to be hidden from the
product generation code.

Once all the product processors and data sources have been initialized, the Generator creates a
number of threads to perform the actual work. The Generator is responsible for managing the
dependencies between the different products. For example, the visibility product cannot be
generated until the METG product has completed. The generator will sequence these
dependencies as follows.

All products requested:

• Collection, granule, and valids metadata are generated

• If granule metadata are successfully generated then
 Browse, Bulk URL, and hide/unhide are generated
 If browse generation is successful then

• Browse link updates are generated

Only Browse products requested:
• Browse product is generated

• If Browse generation successful then
 Generate browse links product

Only granule metadata product is requested:
• Granule metadata are generated

• If granule metadata generate successfully then
 Generate browse and bulk URL
 If browse generated successful then

• Generate browse links

 4-199 305-EMD-220

While the different products have different algorithms for generating the output, they all follow a
common theme. A product consists of one or more product groups. The processing thread will
iterate through these product groups, one at a time. For each product group, it will select all the
data for that product group from the data source, and generate one or more output files. It repeats
this process until there are no more product groups. The status of each product is recorded at the
product group level, including the number of granules or collections (by insert, update, delete),
as well as the number of skipped granules/collections.

Once all products have finished, the Generator reviews the status of all the product groups. If
there were any errors, or the number of skipped granules exceeds a configurable limit, the
product generation fails. In this case, the Generator will send an email, and set the status of the
export cycle to PRODUCT GENERATE FAILED. In some cases, if it turns out that there was no
data to export, the status will be set to SKIPPED, otherwise, the status will be set to PRODUCT
GENERATED.

All of the algorithms (source code and database) in the Generator are designed in such a way that
they can be restarted – for example, if the Generator was abruptly terminated, or the machine
died. Simply restarting the Generator will cause the package to be picked up and continued. This
recovery works at the product group level, so that completed product groups would not be
processed again, but incomplete product groups (partially processed, or completed product
groups that contained skipped granules) would be restarted. This applies to all types of export
cycles – manual, automatic, corrective, and cleanup.

4.11.6.7 Packager

The Packager server is responsible for:
• Renaming files to include file count values

• Creating PDR and .met files for ECS Ingest, and moving them to a polling location

• Creating manifest and ZIP file for ECHO export

The Packager periodically checks the database to look for export cycles that have reached the
PRODUCT GENERATED state. These export cycles are now eligible for processing by the
Packager.

The first task for the Packager is to rename the product files. Primarily, it must include the file
count in some of the filenames (this is generally difficult to do in the generator, since the number
of output files is not known until they have all been created).

Once the product files have been renamed, it checks to see if the export cycle is configured for
ingest into the ECS system. If so, it uses the export cycle information and package directory file
listing to create the .met files for the products that are to be ingested, as well as the PDR. Once
complete, the PDR is moved to a configured drop box (polling location) where DPL Ingest can
pick it up.

 4-200 305-EMD-220

Next, if the package is due for export to ECHO, the Packager creates a manifest file (a XML file
listing the package contents). It then zips up the XML files and the manifest, into a single ZIP
file.

Packages that produced no outputs in the generation phase will still send an empty package to
ECHO. This is done to maintain the sequence numbers of packages – for example it is possible
for a manual run to be started using the next available sequence number, then an automatic run to
be started. The manual run may produce no products, but the subsequent automatic run does
produce products and its sequence number is one higher. If the Packager did not send the empty
package, a sequence number would have been skipped and the ECHO would not then process the
outputs from the automatic run.

Once the export cycle’s product files have been packaged, the Packager updates the status of the
export cycle to PACKAGE GENERATED.

4.11.6.8 Export Server

The Export Server is responsible for transferring an export package to ECHO via FTP, and for
retrieving Ingest Summary Reports.

The Export Server periodically checks the export cycles table in the database for packages that
are in the PACKAGE GENERATED state, and are configured for export to ECHO.

When it finds such a package, the Export Server updates the export cycle state to
TRANSFERRING. It then establishes an FTP session with the ECHO FTP server, and starts
transferring the files.

Due to the way in which ECHO works, the Export Server is required to transfer the package ZIP
file last, after any BROWSE files. Since the zip file is likely to be smaller than the BROWSE
files, and there is only one zip file, it is used to signal that the transfer is complete. ECHO will
wait a configured amount of time after finding a new zip file before uncompressing and
extracting the XML files and reading the Manifest.

Upon completing the file transfers, the Export Server will update the export cycle status to
EXPORTED.

The Export Server will also periodically poll the ECHO FTP area for Ingest Summary Report
files (It is assumed that ECHO will copy the complete Ingest Summary Report file to their FTP
area rather than write the file in place to minimize the chance of the BMGT Export Server
picking up an incomplete report). The Export Server will pull the Ingest Summary Report to a
temporary area on the local machine, and then move it to a configured drop box directory (where
the Monitor will find it).

The Export Server operation can be suspended or resumed by the operator via the GUI. While
the Export Server is suspended, FTP operations to and from ECHO will be suspended.

When the operator selects a package on the BMGT GUI and requests its transmission be
canceled, the Export Server will cancel the transmission (if transmission has not already
occurred) and update the status of the package.

 4-201 305-EMD-220

4.11.6.9 Monitor

The Monitor Server is responsible for processing Ingest Summary Reports, cleaning up export
package files when required, looking for ‘stalled’ packages, and initiating CLEANUP cycles
requested by DataPool Cleanup.

Once an Ingest Summary Report is found in the Ingest Summary Report drop box directory, the
Monitor parses the report and inserts the statistics it contains into the Inventory Database audit
trail. If the Ingest Summary Report indicates a complete success, the export cycle status is
updated to COMPLETE. If the package is scheduled for ingest into ECS, no further action is
taken at this point. If the package is not scheduled for ingest, the Monitor can clean up the
package files, and some of the database tables (excluding the audit trail).

Alternatively, if the Ingest Summary Report indicates one or more errors, one of a set of error
handling policies will be used to alert the operator and/or attempt to remedy the error situation.
The possible error handling policies are outlined below, and the listing of which policy is used
for which error can be found in the BMGT GUI on the “Configuration/Error Tuning” page.

4.11.6.9.1 BMGT Monitor Error Handling Policies

Notify DAAC Staff

This is the default policy, and the policy that was used for almost all errors in BMGT Phase
I. The cycle will be placed in “COMPLETE_WITH_ERRORS” and an email will be sent to
the configured DAAC Operator email address listing all errors for the cycle.

Notify DAAC Staff and ECHO

This is virtually the same as “Notify DAAC Staff”, except that a note is added to the email
informing the DAAC staff that they should contact ECHO to make them aware of the error.

Re Export Object

If a science granule insert or replacement caused the error, this policy will add the granule to
the re export queue along with any associated browse granule(s). If a science granule update
caused the error, then any browse granule associated with that science granule will be added
to the re export queue. If the error indicated that a browse or science granule was not found
in ECHO, and indeed, that granule has been physically or logically deleted, this policy does
nothing. In any case, the cycle will be put in the COMPLETE_WITH_WARNINGS state
unless the error is ignored.

Note that this policy is currently meant only to be used for BROWSE_NOT_EXISTS and
GRANULE_NOT_EXISTS errors, and may not work as described above in other situations.

Essentially, three ReExport policies (as defined in the BE_7F_01 Ops Concept) are
implemented as one policy in the BMGT Monitor. What is ReExported (primary object,
associated object, both) is determined by the state of the relevant objects in the ECS archive,
and the distinction between these policies is transparent to the operator.

 4-202 305-EMD-220

Ignore Error

Do nothing (and set status to COMPLETE).

Conditionally Ignore Error

If the error indicates that an object cannot be found, and the object is indeed physically or
logically deleted in ECS, do nothing (and set status to COMPLETE). Also, if the error is in
response to a URL delete, and the granule is not in public datapool, do nothing (and set status
to COMPLETE). Otherwise, send an error email to the DAAC Operator and set the cycle to
COMPLETE_WITH_ERRORS.

Retry Package Export

Set the cycle to PACKAGE_RETRANSMIT which will cause it to be retransmitted to
ECHO.

Regenerate Products

Set the cycle to PRODUCT_REGENERATE, causing the metadata files to be regenerated.

The Monitor performs additional (monitoring) tasks, as follows:

If the Monitor detects that an Ingest Summary Report for a package has not been received from
ECHO within a configurable time frame, it will send a warning email to the operator.
Additionally, it will update the export cycle state to indicate that the email has been sent (and
thus prevent it from happening again).

If the Monitor detects that a package has not begun transfer to ECHO within a configurable time
frame after being started, it will send a warning email to the operator. Additionally, it will update
the export cycle state to indicate that the email has been sent (and thus prevent it from happening
again).

The Monitor periodically checks for export cycles that were ingested into ECS, and are now
awaiting cleanup. In this case, it must check the DPL Ingest database to verify that the PDR has
been processed successfully. If so, it can clean up the package files, and some of the database
tables (excluding the audit trail).

The Monitor periodically runs a cleanup task in the database to remove the audit trail entries for
completed export cycles older than a configurable number of days.

The Monitor polls the database to look for cleanup export cycles which have been requested by
DataPool Cleanup, but not yet initiated. If one is found, Monitor will select datapool delete
events to be exported, and flag the cycle for generation.

Refer to EMD/SIPS ICD - 423-41-57, EMD/ECHO Metadata Inventory ICD (this is still a work-
in-progress artifact) and BMGT whitepaper - 170-WP-023-007 to better understand interfaces
and OPS concept.

For reference, DTD schemas are included in Section 4.11.2.13.

 4-203 305-EMD-220

4.11.6.10 BMGT CSCI Context
BMGT consists of only one CSCI. Therefore, the Subsystem Context in Figure 4.11-1
represents the BMGT CSCI Context, and it will not be replicated here.

4.11.6.11 BMGT CSCI Process Interface Description
BMGT consists of only one CSCI. Therefore, the interface description in Table 4.11-1
represents the BMGT CSCI Process Interface, and it will not be replicated here.

4.11.6.12 Data Stores
BMGT uses AIM, Ingest, and Datapool databases as well as the StorNext XML archive to
generate its products. Table 4.11-6 describes the Data Stores.

Table 4.11-6. Data Store
Data Store Type Description

Inventory DB Sybase BMGT reads required Metadata info from Inventory DB.
Data Pool DB Sybase BMGT reads required DPL URL Info from Data Pool DB.
Ingest DB Sybase BMGT accesses Ingest request status information from the Ingest

DB.
Small file archive StorNext

file system
BMGT reads granule and collection metadata files from the XML
archive, applies XSLT stylesheets to them, and inserts the resulting
XML into its output products.

4.11.6.13 Data Stores BMGT GUI CSCI Functional Overview

The BMGT GUI is a JSF based web GUI, designed along the lines of the DPL Ingest GUI. It
will allow the operator to monitor the generation and export of BMGT packages (Automatic,
Manual, Corrective and Cleanup).

The GUI provides DAAC staff with the following functions:
• Display BMGT export processes that are currently in progress

• Monitor the status of the BMGT FTP service function that FTPs products to ECHO

• Allow the operator to suspend / resume FTP of products to ECHO

• List the N most recent export packages and view detailed information about them, where
N is configurable by the DAAC staff

• Cancel an export package that is currently being transmitted to ECHO;

• List the N most recently completed packages which resulted in errors and view detail
information about them

• View and change BMGT configuration parameters, except for configuration items such
as collection group / collection mapping that must be specified in XML configuration files.
Changing the BMGT runtime configuration parameters will be restricted to DAAC staff
that is logged in as BMGT administrator

 4-204 305-EMD-220

• View BMGT Monitor policies for handling errors returned from ECHO.

• View the contents of the ReExport Queue.

• Display global alerts upon a configured number of FTP to ECHO failures

4.11.6.14 BMGT DTD’s

4.11.6.14.1 BMGTCollectionMetadata.dtd
<!ELEMENT CollectionMetaDataFile (DTDVersion, DataCenterId, TemporalCoverage,
DefaultPackage, CollectionMetaData*, DeleteCollection*)>

<!—Version identifier of the DTD used to generate the file
<!ELEMENT DTDVersion (#PCDATA)>

<!—DataCenterId of the site that stores this metadata (e.g., EDC)
<!ELEMENT DataCenterId (#PCDATA)>

<!—the start and end dates of this MetaDataFile (YYYY-MM-DD)
<!ELEMENT TemporalCoverage (StartDate, EndDate)>
<!ELEMENT StartDate (#PCDATA)>
<!ELEMENT EndDate (#PCDATA)>

<!—Default Packaging Information will apply to every data collection unless over
written in the collection-level metadata
<!ELEMENT DefaultPackage (MediaTypes+, ProductionOptions, EstimatedCost?)>
<!ELEMENT EstimatedCost (#PCDATA)>

<!ELEMENT MediaTypes (MediaType, MediaFormats+)>
<!ELEMENT MediaType (#PCDATA)>

<!ELEMENT MediaFormats (MediaFormat, MediaParameters*)>
<!ELEMENT MediaFormat (#PCDATA)>

<!ELEMENT MediaParameters (ParameterName?, Specialized?, Obscured?, Type?,
Mandatory?, MaxLen?, Label?, MediaValids?)>
<!ELEMENT ParameterName (#PCDATA)>
<!ELEMENT Specialized (#PCDATA)>
<!ELEMENT Obscured (#PCDATA)>
<!ELEMENT Type (#PCDATA)>
<!ELEMENT Mandatory (#PCDATA)>
<!ELEMENT MaxLen (#PCDATA)>
<!ELEMENT Label (#PCDATA)>

<!ELEMENT MediaValids (MediaValid)+>
<!ELEMENT MediaValid (#PCDATA)>

<!ELEMENT ProductionOptions (ProductionHistoryOptionName?,
AncillaryDataOptionName?, NativeGranuleOptionName?)>
<!ELEMENT ProductionHistoryOptionName (#PCDATA)>
<!ELEMENT AncillaryDataOptionName (#PCDATA)>
<!ELEMENT NativeGranuleOptionName (#PCDATA)>

<!ELEMENT CollectionMetaData (ShortName, VersionID, InsertTime, LastUpdate?,
LongName, CollectionDescription, RevisionDate?, SuggestedUsage1?,
SuggestedUsage2?, ProcessingCenter?, ProcessingLevelId?,
ProcessingLevelDescription?, ArchiveCenter, VersionDescription,
CitationforExternalPublication?, CollectionState?, MaintenanceandUpdateFrequency?,
AccessConstraints?, CollectionPackage?, Spatial?, Temporal?, Contact*,

 4-205 305-EMD-220

DisciplineTopicParameters*, Platform*, StorageMedium*, AdditionalAttributes*,
BrowseProduct?, SpatialKeyword*, TemporalKeyword*, CSDTDescription*, Locality*,
CollReview*, Documents?, CollectionAssociation*, AnalysisSource*,
Campaign*,AssociatedDIFs?)>
<!ELEMENT ShortName (#PCDATA)>
<!ELEMENT VersionID (#PCDATA)>
<!ELEMENT InsertTime (#PCDATA)>
<!ELEMENT LastUpdate (#PCDATA)>
<!ELEMENT LongName (#PCDATA)>
<!ELEMENT CollectionDescription (#PCDATA)>
<!ELEMENT RevisionDate (#PCDATA)>
<!ELEMENT SuggestedUsage1 (#PCDATA)>
<!ELEMENT SuggestedUsage2 (#PCDATA)>
<!ELEMENT ProcessingCenter (#PCDATA)>
<!ELEMENT ProcessingLevelId (#PCDATA)>
<!ELEMENT ProcessingLevelDescription (#PCDATA)>
<!ELEMENT ArchiveCenter (#PCDATA)>
< !ELEMENT VersionDescription (#PCDATA)>
< !ELEMENT CitationforExternalPublication (#PCDATA)>
<!ELEMENT CollectionState (#PCDATA)>
<!ELEMENT MaintenanceandUpdateFrequency (#PCDATA)>
<!ELEMENT AccessConstraints (#PCDATA)>
<!ELEMENT StorageMedium (#PCDATA)>
<!ELEMENT SpatialKeyword (#PCDATA)>
<!ELEMENT TemporalKeyword (#PCDATA)>

<!ELEMENT CollectionPackage (MediaTypes+, ProductionOptions, EstimatedCost?)>

<!ELEMENT Spatial (SpatialCoverageType, HorizontalSpatialDomain?,
VerticalSpatialDomain*, CoordinateSystemContainer?, OrbitParameters?,
GranuleSpatialRepresentation?)>
<!ELEMENT SpatialCoverageType (#PCDATA)>

<!ELEMENT HorizontalSpatialDomain ((ZoneIdentifier?,Geometry) | Global)>
<!ELEMENT ZoneIdentifier (#PCDATA)>
<!ELEMENT Geometry (CoordinateSystem?, (Point | Circle | BoundingRectangle |
Gpolygon))>

<!ELEMENT CoordinateSystem (Geodetic | Cartesian)>
<!ELEMENT Geodetic EMPTY>
<!ELEMENT Cartesian EMPTY>
<!ELEMENT Global EMPTY>

< !ELEMENT Point (PointLongitude, PointLatitude)>
< !ELEMENT PointLongitude (#PCDATA)>
< !ELEMENT PointLatitude (#PCDATA)>

< !ELEMENT Circle (CenterLatitude, CenterLongitude, Radius, RadiusUnits)>
< !ELEMENT CenterLatitude (#PCDATA)>
< !ELEMENT CenterLongitude (#PCDATA)>
< !ELEMENT Radius (#PCDATA)>
< !ELEMENT RadiusUnits (#PCDATA)>

< !ELEMENT BoundingRectangle (WestBoundingCoordinate, NorthBoundingCoordinate,
EastBoundingCoordinate, SouthBoundingCoordinate)>
<!ELEMENT WestBoundingCoordinate (#PCDATA)>
<!ELEMENT NorthBoundingCoordinate (#PCDATA)>
<!ELEMENT EastBoundingCoordinate (#PCDATA)>
<!ELEMENT SouthBoundingCoordinate (#PCDATA)>

<!ELEMENT Gpolygon (Boundary+)>

 4-206 305-EMD-220

<!ELEMENT Boundary (Point, Point, Point, Point*)>

<!ELEMENT VerticalSpatialDomain (VerticalSpatialDomainType,
VerticalSpatialDomainValue)>
<!ELEMENT VerticalSpatialDomainType (#PCDATA)>
<!ELEMENT VerticalSpatialDomainValue (#PCDATA)>

<!ELEMENT CoordinateSystemContainer (VerticalCoordinateSystemContainer?,
HorizontalCoordinateSystemContainer?)>
<!ELEMENT VerticalCoordinateSystemContainer (AltitudeSystemDefinition?,
DepthSystemDefinition?)>

<!ELEMENT AltitudeSystemDefinition (AltitudeDatumName, AltitudeDistanceUnits,
AltitudeEncodingMethod, AltitudeResolution)>
<!ELEMENT AltitudeDatumName (#PCDATA)>
<!ELEMENT AltitudeDistanceUnits (#PCDATA)>
<!ELEMENT AltitudeEncodingMethod (#PCDATA)>
<!ELEMENT AltitudeResolution (#PCDATA)>

<!ELEMENT DepthSystemDefinition (DepthDatumName, DepthDistanceUnits,
DepthEncodingMethod, DepthResolution)>
<!ELEMENT DepthDatumName (#PCDATA)>
<!ELEMENT DepthDistanceUnits (#PCDATA)>
<!ELEMENT DepthEncodingMethod (#PCDATA)>
<!ELEMENT DepthResolution (#PCDATA)>

<!ELEMENT HorizontalCoordinateSystemContainer (GeodeticModel?,
(GeographicCoordinateSystem | PlanarCoordinateSystems | LocalCoordinateSystem))>

<!ELEMENT GeodeticModel (HorizontalDatumName?, EllipsoidName, SemiMajorAxis,
DenominatorofFlatteningRatio)>
<!ELEMENT HorizontalDatumName (#PCDATA)>
<!ELEMENT EllipsoidName (#PCDATA)>
<!ELEMENT SemiMajorAxis (#PCDATA)>
<!ELEMENT DenominatorofFlatteningRatio (#PCDATA)>

<!ELEMENT GeographicCoordinateSystem (LatitudeResolution, LongitudeResolution,
GeographicCoordinateUnits)>
<!ELEMENT LatitudeResolution (#PCDATA)>
<!ELEMENT LongitudeResolution (#PCDATA)>
<!ELEMENT GeographicCoordinateUnits (#PCDATA)>

<!ELEMENT PlanarCoordinateSystems (PlanarCoordinateSystem)>

<!ELEMENT PlanarCoordinateSystem (PlanarCoordinateSystemContainer+)>

<!ELEMENT PlanarCoordinateSystemContainer (PlanarCoordinateInformation,
(MapProjection | LocalPlanarCoordinateSystem | GridCoordinateSystem))>

<!ELEMENT PlanarCoordinateInformation (PlanarDistanceUnits,
PlanarCoordinateEncodingMethod, (DistanceandBearingRepresentation |
CoordinateRepresentation))>
<!ELEMENT PlanarDistanceUnits (#PCDATA)>
<!ELEMENT PlanarCoordinateEncodingMethod (#PCDATA)>

<!ELEMENT DistanceandBearingRepresentation (DistanceResolution, BearingResolution,
BearingUnits, BearingReferenceDirection, BearingReferenceMeridian)>
<!ELEMENT DistanceResolution (#PCDATA)>
<!ELEMENT BearingResolution (#PCDATA)>
<!ELEMENT BearingUnits (#PCDATA)>
<!ELEMENT BearingReferenceDirection (#PCDATA)>
<!ELEMENT BearingReferenceMeridian (#PCDATA)>

 4-207 305-EMD-220

<!ELEMENT CoordinateRepresentation (AbscissaResolution, OrdinateResolution)>
<!ELEMENT AbscissaResolution (#PCDATA)>
<!ELEMENT OrdinateResolution (#PCDATA)>

<!ELEMENT MapProjection (MapProjectionName, MapProjectionPointer?)>
<!ELEMENT MapProjectionName (#PCDATA)>
<!ELEMENT MapProjectionPointer (#PCDATA)>

<!ELEMENT LocalPlanarCoordinateSystem (LocalPlanarCoordinateSystemDescription,
LocalPlanarGeoreferenceInformation)>
<!ELEMENT LocalPlanarCoordinateSystemDescription (#PCDATA)>
<!ELEMENT LocalPlanarGeoreferenceInformation (#PCDATA)>

<!ELEMENT GridCoordinateSystem (GridCoordinateSystemName)>
<!ELEMENT GridCoordinateSystemName (#PCDATA)>

<!ELEMENT LocalCoordinateSystem (LocalCoordinateSystemDescription,
LocalGeoreferenceInformation)>
<!ELEMENT LocalCoordinateSystemDescription (#PCDATA)>
<!ELEMENT LocalGeoreferenceInformation (#PCDATA)>

<!ELEMENT OrbitParameters (SwathWidth, Period, InclinationAngle)>
<!ELEMENT SwathWidth (#PCDATA)>
<!ELEMENT Period (#PCDATA)>
<!ELEMENT InclinationAngle (#PCDATA)>

<!ELEMENT GranuleSpatialRepresentation (Cartesian | Geodetic | Orbit | NoSpatial)>
<!ELEMENT Orbit EMPTY>
<!ELEMENT NoSpatial EMPTY>

<!ELEMENT Temporal (TimeType, DateType, TemporalRangeType, PrecisionofSeconds,
EndsatPresentFlag, (RangeDateTime | SingleDateTime+))>
<!ELEMENT TimeType (#PCDATA)>
<!ELEMENT DateType (#PCDATA)>
<!ELEMENT TemporalRangeType (#PCDATA)>
<!ELEMENT PrecisionofSeconds (#PCDATA)>
<!ELEMENT EndsatPresentFlag (#PCDATA)>

<!ELEMENT RangeDateTime (RangeBeginningDate, RangeBeginningTime, RangeEndingDate?,
RangeEndingTime?)>
<!ELEMENT RangeBeginningDate (#PCDATA)>
<!ELEMENT RangeBeginningTime (#PCDATA)>
<!ELEMENT RangeEndingDate (#PCDATA)>
<!ELEMENT RangeEndingTime (#PCDATA)>

<!ELEMENT SingleDateTime (CalendarDate, TimeofDay)>
<!ELEMENT CalendarDate (#PCDATA)>
<!ELEMENT TimeofDay (#PCDATA)>

<!ELEMENT Contact (ContactRole, HoursOfService?, ContactInstructions?,
(Organization | ContactPerson), Address?, Email?, Telephone*, Fax*, ContactURL?)>

<!ELEMENT ContactRole (#PCDATA)>
<!ELEMENT HoursOfService (#PCDATA)>
<!ELEMENT ContactInstructions (#PCDATA)>

<!ELEMENT Organization (OrganizationName)>
<!ELEMENT OrganizationName (#PCDATA)>

<!ELEMENT ContactPerson (FirstName, MiddleName?, LastName, JobPosition?)>
<!ELEMENT FirstName (#PCDATA)>

 4-208 305-EMD-220

<!ELEMENT MiddleName (#PCDATA)>
<!ELEMENT LastName (#PCDATA)>
<!ELEMENT JobPosition (#PCDATA)>

<!ELEMENT Address (StreetAddress, City, StateProvince, PostalCode, Country)>
<!ELEMENT StreetAddress (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT StateProvince (#PCDATA)>
<!ELEMENT PostalCode (#PCDATA)>
<!ELEMENT Country (#PCDATA)>

<!ELEMENT Email (#PCDATA)>
<!ELEMENT Telephone (#PCDATA)>
<!ELEMENT Fax (#PCDATA)>
<!ELEMENT ContactURL (#PCDATA)>

<!ELEMENT DisciplineTopicParameters (DisciplineKeyword, TopicKeyword, TermKeyword,
VariableKeyword?, ECSParameterKeyword*)>
<!ELEMENT DisciplineKeyword (#PCDATA)>
<!ELEMENT TopicKeyword (#PCDATA)>
<!ELEMENT TermKeyword (#PCDATA)>
<!ELEMENT VariableKeyword (#PCDATA)>
<!ELEMENT ECSParameterKeyword (#PCDATA)>

<!ELEMENT Platform (PlatformShortName, PlatformLongName, PlatformType,
PlatformCharacteristic*, Instrument*)>
<!ELEMENT PlatformShortName (#PCDATA)>
<!ELEMENT PlatformLongName (#PCDATA)>
<!ELEMENT PlatformType (#PCDATA)>

<!ELEMENT PlatformCharacteristic (PlatformCharacteristicName,
PlatformCharacteristicDescription, PlatformCharacteristicDataType,
PlatformCharacteristicUnit?, PlatformCharacteristicValue)>
<!ELEMENT PlatformCharacteristicName (#PCDATA)>
<!ELEMENT PlatformCharacteristicDescription (#PCDATA)>
<!ELEMENT PlatformCharacteristicDataType (#PCDATA)>
<!ELEMENT PlatformCharacteristicUnit (#PCDATA)>
<!ELEMENT PlatformCharacteristicValue (#PCDATA)>

<!ELEMENT Instrument (InstrumentShortName, InstrumentLongName?,
InstrumentTechnique?, NumberOfSensors?, InstrumentCharacteristic*, Sensor*,
OperationMode*)>
<!ELEMENT InstrumentShortName (#PCDATA)>
<!ELEMENT InstrumentLongName (#PCDATA)>
<!ELEMENT InstrumentTechnique (#PCDATA)>
<!ELEMENT NumberOfSensors (#PCDATA)>

<!ELEMENT InstrumentCharacteristic (InstrumentCharacteristicName,
InstrumentCharacteristicDescription, InstrumentCharacteristicDataType,
InstrumentCharacteristicUnit?, InstrumentCharacteristicValue)>
<!ELEMENT InstrumentCharacteristicName (#PCDATA)>
<!ELEMENT InstrumentCharacteristicDescription (#PCDATA)>
<!ELEMENT InstrumentCharacteristicDataType (#PCDATA)>
<!ELEMENT InstrumentCharacteristicUnit (#PCDATA)>
<!ELEMENT InstrumentCharacteristicValue (#PCDATA)>

<!ELEMENT Sensor (SensorShortName, SensorLongName?, SensorTechnique?,
SensorCharacteristic*)>
<!ELEMENT SensorShortName (#PCDATA)>
<!ELEMENT SensorLongName (#PCDATA)>
<!ELEMENT SensorTechnique (#PCDATA)>

 4-209 305-EMD-220

<!ELEMENT SensorCharacteristic (SensorCharacteristicName,
SensorCharacteristicDescription, SensorCharacteristicDataType,
SensorCharacteristicUnit?, SensorCharacteristicValue)>
<!ELEMENT SensorCharacteristicName (#PCDATA)>
<!ELEMENT SensorCharacteristicDescription (#PCDATA)>
<!ELEMENT SensorCharacteristicDataType (#PCDATA)>
<!ELEMENT SensorCharacteristicUnit (#PCDATA)>
<!ELEMENT SensorCharacteristicValue (#PCDATA)>
<!ELEMENT OperationMode (#PCDATA)>

<!ELEMENT AdditionalAttributes (AdditionalAttributeDataType,
AdditionalAttributeDescription, AdditionalAttributeName, MeasurementResolution?,
ParameterRangeBegin?, ParameterRangeEnd?, ParameterUnitsOfMeasure?,
ParameterValueAccuracy?, ValueAccuracyExplanation?, ParameterValue*)>
<!ELEMENT AdditionalAttributeDataType (#PCDATA)>
<!ELEMENT AdditionalAttributeDescription (#PCDATA)>
<!ELEMENT AdditionalAttributeName (#PCDATA)>
<!ELEMENT MeasurementResolution (#PCDATA)>
<!ELEMENT ParameterRangeBegin (#PCDATA)>
<!ELEMENT ParameterRangeEnd (#PCDATA)>
<!ELEMENT ParameterUnitsOfMeasure (#PCDATA)>
<!ELEMENT ParameterValueAccuracy (#PCDATA)>
<!ELEMENT ValueAccuracyExplanation (#PCDATA)>
<!ELEMENT ParameterValue (#PCDATA)>

<!—List of browse granules that are related to this collection
<!ELEMENT BrowseProduct (BrowseGranuleId*)>
<!ELEMENT BrowseGranuleId (#PCDATA)>

<!ELEMENT CSDTDescription (PrimaryCSDT, Implementation?, CSDTComments?,
IndirectReference?)>
<!ELEMENT PrimaryCSDT (#PCDATA)>
<!ELEMENT Implementation (#PCDATA)>
<!ELEMENT CSDTComments (#PCDATA)>
<!ELEMENT IndirectReference (#PCDATA)>

<!ELEMENT Locality (LocalityType, LocalityDescription?)>
<!ELEMENT LocalityType (#PCDATA)>
<!ELEMENT LocalityDescription (#PCDATA)>

<!ELEMENT CollReview (ScienceReviewDate, ScienceReviewStatus, FutureReviewDate?)>
<!ELEMENT ScienceReviewDate (#PCDATA)>
<!ELEMENT ScienceReviewStatus (#PCDATA)>
< !ELEMENT FutureReviewDate (#PCDATA)>

< !ELEMENT Documents (Document+)>
< !ELEMENT Document (DocumentType ?, DocumentURL ?, DocumentURLComment ?)>
<!ELEMENT DocumentType (#PCDATA)>
<!ELEMENT DocumentURL (#PCDATA)>
<!ELEMENT DocumentURLComment (#PCDATA)>

<!ELEMENT CollectionAssociation (AssociatedShortName, AssociatedVersionId,
CollectionType, CollectionUse1?, CollectionUse2?)>
<!ELEMENT AssociatedShortName (#PCDATA)>
<!ELEMENT AssociatedVersionId (#PCDATA)>
<!ELEMENT CollectionType (#PCDATA)>
<!ELEMENT CollectionUse1 (#PCDATA)>
<!ELEMENT CollectionUse2 (#PCDATA)>

<!ELEMENT AnalysisSource (AnalysisType, AnalysisShortName, AnalysisLongName?,
AnalysisTechnique?)>

 4-210 305-EMD-220

<!ELEMENT AnalysisType (#PCDATA)>
<!ELEMENT AnalysisShortName (#PCDATA)>
<!ELEMENT AnalysisLongName (#PCDATA)>
<!ELEMENT AnalysisTechnique (#PCDATA)>

<!ELEMENT Campaign (CampaignShortName, CampaignLongName?, CampaignStartDate?,
CampaignEndDate?)>
<!ELEMENT CampaignShortName (#PCDATA)>
<!ELEMENT CampaignLongName (#PCDATA)>
<!ELEMENT CampaignStartDate (#PCDATA)>
<!ELEMENT CampaignEndDate (#PCDATA)>

<!ELEMENT AssociatedDIFs (DIF+)>
<!ELEMENT DIF (EntryID)>
<!ELEMENT EntryID (#PCDATA)>

<!ELEMENT DeleteCollection(ShortName, VersionID, DeleteTime)>
<!ELEMENT DeleteTime (#PCDATA)>

4.11.6.14.2 BMGTGranuleMetadata.dtd
<!ELEMENT GranuleMetaDataFile (DTDVersion, DataCenterId, TemporalCoverage,
GranuleURMetaData*)>

<!—Version identifier of the DTD used to generate the file
<!ELEMENT DTDVersion (#PCDATA)>

<!—DataCenterId of the site that stores this metadata (e.g., EDC)
<!ELEMENT DataCenterId (#PCDATA)>

<!—the start and end dates of this MetaDataFile (YYYY-MM-DD)
<!ELEMENT TemporalCoverage (StartDate, EndDate)>
<!ELEMENT StartDate (#PCDATA)>
<!ELEMENT EndDate (#PCDATA)>

<!ELEMENT GranuleURMetaData
(GranuleUR, DbID?, InsertTime?, LastUpdate?, DeleteTime?, CollectionMetaData?,
ECSDataGranule?, PGEVersionClass?, (RangeDateTime | SingleDateTime)?,
SpatialDomainContainer?, OrbitCalculatedSpatialDomain?, MeasuredParameter?,
ProcessingQA?, StorageMediumClass?, Review?, Platform*, AnalysisSource*,
Campaign*, PSAs?, InputGranule?, BrowseProduct?, PHProduct?, QAProduct?,
AlgorithmPackage*, AncillaryInputGranules?)>
<!ELEMENT GranuleUR (#PCDATA)>
<!ELEMENT DbID (#PCDATA)>
<!ELEMENT InsertTime (#PCDATA)>
<!ELEMENT LastUpdate (#PCDATA)>
<!ELEMENT DeleteTime (#PCDATA)>

<!ELEMENT CollectionMetaData (ShortName, VersionID)>
<!ELEMENT ShortName (#PCDATA)>
<!ELEMENT VersionID (#PCDATA)>

<!ELEMENT ECSDataGranule
(SizeMBECSDataGranule, ReprocessingPlanned?, ReprocessingActual?, LocalGranuleID?,
DayNightFlag?, ProductionDateTime, LocalVersionID?)>
<!ELEMENT SizeMBECSDataGranule (#PCDATA)>
<!ELEMENT ReprocessingPlanned (#PCDATA)>
<!ELEMENT ReprocessingActual (#PCDATA)>
<!ELEMENT LocalGranuleID (#PCDATA)>
<!ELEMENT DayNightFlag (#PCDATA)>
<!ELEMENT ProductionDateTime (#PCDATA)>

 4-211 305-EMD-220

<!ELEMENT LocalVersionID (#PCDATA)>

<!ELEMENT PGEVersionClass (PGEVersion)>
<!ELEMENT PGEVersion (#PCDATA)>

<!ELEMENT RangeDateTime
(RangeEndingTime, RangeEndingDate, RangeBeginningTime, RangeBeginningDate)>
<!ELEMENT RangeEndingTime (#PCDATA)>
<!ELEMENT RangeEndingDate (#PCDATA)>
<!ELEMENT RangeBeginningTime (#PCDATA)>
<!ELEMENT RangeBeginningDate (#PCDATA)>

<!ELEMENT SingleDateTime (TimeofDay, CalendarDate)>
<!ELEMENT TimeofDay (#PCDATA)>
<!ELEMENT CalendarDate (#PCDATA)>

<!ELEMENT SpatialDomainContainer
(GranuleLocality*, VerticalSpatialDomain*, HorizontalSpatialDomainContainer?)>

<!ELEMENT GranuleLocality (LocalityValue)>
<!ELEMENT LocalityValue (#PCDATA)>

<!ELEMENT VerticalSpatialDomain (VerticalSpatialDomainContainer)>

<!ELEMENT VerticalSpatialDomainContainer
(VerticalSpatialDomainType, VerticalSpatialDomainValue)>
<!ELEMENT VerticalSpatialDomainType (#PCDATA)>
<!ELEMENT VerticalSpatialDomainValue (#PCDATA)>

<!ELEMENT HorizontalSpatialDomainContainer
(ZoneIdentifierClass?, (Point | Circle | BoundingRectangle | Gpolygon | Global))>

< !ELEMENT ZoneIdentifierClass (ZoneIdentifier)>
< !ELEMENT ZoneIdentifier (#PCDATA)>

< !ELEMENT Point (PointLongitude, PointLatitude)>
< !ELEMENT PointLongitude (#PCDATA)>
< !ELEMENT PointLatitude (#PCDATA)>

< !ELEMENT Circle (CenterLatitude, CenterLongitude, Radius, RadiusUnits)>
< !ELEMENT CenterLatitude (#PCDATA)>
< !ELEMENT CenterLongitude (#PCDATA)>
< !ELEMENT Radius (#PCDATA)>
< !ELEMENT RadiusUnits (#PCDATA)>

< !ELEMENT BoundingRectangle
(WestBoundingCoordinate, NorthBoundingCoordinate, EastBoundingCoordinate,
SouthBoundingCoordinate)>
<!ELEMENT WestBoundingCoordinate (#PCDATA)>
<!ELEMENT NorthBoundingCoordinate (#PCDATA)>
<!ELEMENT EastBoundingCoordinate (#PCDATA)>
<!ELEMENT SouthBoundingCoordinate (#PCDATA)>

<!ELEMENT Gpolygon (Boundary)+>
<!ELEMENT Boundary (Point, Point, Point, Point*)>

<!ELEMENT Global EMPTY>

<!ELEMENT OrbitCalculatedSpatialDomain (OrbitCalculatedSpatialDomainContainer)+>

<!ELEMENT OrbitCalculatedSpatialDomainContainer

 4-212 305-EMD-220

(OrbitalModelName?, OrbitNumber?, OrbitRange?, EquatorCrossingLongitude,
EquatorCrossingDate, EquatorCrossingTime)>

<!ELEMENT OrbitalModelName (#PCDATA)>
<!ELEMENT OrbitNumber (#PCDATA)>

<!ELEMENT OrbitRange (StartOrbitNumber, StopOrbitNumber)>
<!ELEMENT StartOrbitNumber (#PCDATA)>
<!ELEMENT StopOrbitNumber (#PCDATA)>

<!ELEMENT EquatorCrossingLongitude (#PCDATA)>
<!ELEMENT EquatorCrossingDate (#PCDATA)>
<!ELEMENT EquatorCrossingTime (#PCDATA)>

<!ELEMENT MeasuredParameter (MeasuredParameterContainer)+>
<!ELEMENT MeasuredParameterContainer (ParameterName, QAStats?, QAFlags?)>
<!ELEMENT ParameterName (#PCDATA)>

<!ELEMENT QAStats
(QAPercentMissingData, QAPercentOutofBoundsData?, QAPercentInterpolatedData?,
QAPercentCloudCover?)>
<!ELEMENT QAPercentMissingData (#PCDATA)>
<!ELEMENT QAPercentOutofBoundsData (#PCDATA)>
<!ELEMENT QAPercentInterpolatedData (#PCDATA)>
<!ELEMENT QAPercentCloudCover (#PCDATA)>

<!ELEMENT QAFlags
(AutomaticQualityFlag?, AutomaticQualityFlagExplanation?, OperationalQualityFlag?,
OperationalQualityFlagExplanation?, ScienceQualityFlag?,
ScienceQualityFlagExplanation?)>
<!ELEMENT AutomaticQualityFlag (#PCDATA)>
<!ELEMENT AutomaticQualityFlagExplanation (#PCDATA)>
<!ELEMENT OperationalQualityFlag (#PCDATA)>
<!ELEMENT OperationalQualityFlagExplanation (#PCDATA)>
<!ELEMENT ScienceQualityFlag (#PCDATA)>
<!ELEMENT ScienceQualityFlagExplanation (#PCDATA)>

<!ELEMENT ProcessingQA (ProcessingQAContainer)+>

<!ELEMENT ProcessingQAContainer (ProcessingQADescription, ProcessingQAAttribute)>
<!ELEMENT ProcessingQADescription (#PCDATA)>
<!ELEMENT ProcessingQAAttribute (#PCDATA)>

<!ELEMENT StorageMediumClass (StorageMedium)+>
<!ELEMENT StorageMedium (#PCDATA)>

<!ELEMENT Review (ReviewContainer)+>
<!ELEMENT ReviewContainer (ScienceReviewStatus, ScienceReviewDate,
FutureReviewDate?)>
<!ELEMENT ScienceReviewStatus (#PCDATA)>
<!ELEMENT ScienceReviewDate (#PCDATA)>
<!ELEMENT FutureReviewDate (#PCDATA)>

<!ELEMENT Platform (PlatformShortName,Instrument*)>
<!ELEMENT PlatformShortName (#PCDATA)>

<!ELEMENT Instrument (InstrumentShortName, Sensor*, OperationMode*)>
<!ELEMENT InstrumentShortName (#PCDATA)>
<!ELEMENT OperationMode (#PCDATA)>

<!ELEMENT Sensor (SensorShortName, SensorCharacteristic*)>

 4-213 305-EMD-220

<!ELEMENT SensorShortName (#PCDATA)>

<!ELEMENT SensorCharacteristic (SensorCharacteristicName,
SensorCharacteristicValue)>
<!ELEMENT SensorCharacteristicName (#PCDATA)>
<!ELEMENT SensorCharacteristicValue (#PCDATA)>

<!ELEMENT AnalysisSource (AnalysisShortName)>
<!ELEMENT AnalysisShortName (#PCDATA)>

<!ELEMENT Campaign (CampaignShortName)>
<!ELEMENT CampaignShortName (#PCDATA)>

<!ELEMENT PSAs (PSA+)>
<!ELEMENT PSA (PSAName, PSAValue+)>
<!ELEMENT PSAName (#PCDATA)>
<!ELEMENT PSAValue (#PCDATA)>

<!ELEMENT InputGranule (InputPointer+)>
<!ELEMENT InputPointer (#PCDATA)>

<!—List of browse granules that are related to this granule
<!ELEMENT BrowseProduct (BrowseGranuleId+)>
<!ELEMENT BrowseGranuleId (#PCDATA)>

<!—List of production history granules that are related to this granule
<!ELEMENT PHProduct (PHGranuleId+)>
<!ELEMENT PHGranuleId (#PCDATA)>

<!—List of QA granules that are related to this granule
<!ELEMENT QAProduct (QAGranuleId+)>
<!ELEMENT QAGranuleId (#PCDATA)>

<!ELEMENT AlgorithmPackage (AlgorithmPackageName, AlgorithmPackageVersion,
AlgorithmPackageMaturityCode, AlgorithmPackageAcceptDate, DeliveryPurpose,
PGEName, PGEVersion, PGEIdentifier, PGEFunction, PGEDateLastModified, SWVersion,
SWDateLastModified, SSAPComponent*)>
<!ELEMENT AlgorithmPackageName (#PCDATA)>
<!ELEMENT AlgorithmPackageVersion (#PCDATA)>
<!ELEMENT AlgorithmPackageMaturityCode (#PCDATA)>
<!ELEMENT AlgorithmPackageAcceptDate (#PCDATA)>
<!ELEMENT DeliveryPurpose (#PCDATA)>
<!ELEMENT PGEName (#PCDATA)>
<!ELEMENT PGEIdentifier (#PCDATA)>
<!ELEMENT PGEFunction (#PCDATA)>
<!ELEMENT PGEDateLastModified (#PCDATA)>
<!ELEMENT SWVersion (#PCDATA)>
<!ELEMENT SWDateLastModified (#PCDATA)>

<!ELEMENT SSAPComponent (ComponentType, ComponentName, SSAPAlgorithmPackageName,
SSAPInsertDate)>
<!ELEMENT ComponentType (#PCDATA)>
<!ELEMENT ComponentName (#PCDATA)>
<!ELEMENT SSAPAlgorithmPackageName (#PCDATA)>
<!ELEMENT SSAPInsertDate (#PCDATA)>

<!ELEMENT AncillaryInputGranules (AncillaryInputGranule+)>
<!ELEMENT AncillaryInputGranule (AncillaryInputType, AncillaryInputPointer)>
<!ELEMENT AncillaryInputType (#PCDATA)>
<!ELEMENT AncillaryInputPointer (#PCDATA)>

 4-214 305-EMD-220

4.11.6.14.3 BMGTBrowseMetadata.dtd
<!ELEMENT BrowseReferenceFile (DTDVersion, DataCenterId, TemporalCoverage,
BrowseCrossReference*)>

<!—Version identifier of the DTD used to generate the file
<!ELEMENT DTDVersion (#PCDATA)>

<!—DataCenterId of the site that stores this metadata (e.g., LP DAAC-EMD)
<!ELEMENT DataCenterId (#PCDATA)>

<!—the start and end dates of this MetaDataFile (YYYYDDD)
<!ELEMENT TemporalCoverage (StartDate, EndDate)>
<!ELEMENT StartDate (#PCDATA)>
<!ELEMENT EndDate (#PCDATA)>

<!ELEMENT BrowseCrossReference (GranuleUR, BrowseGranuleId?, InsertTime?,
LastUpdate?, DeleteTime?, InternalFileName, BrowseDescription?, BrowseSize?)>
< !ELEMENT GranuleUR (#PCDATA)>
< !ELEMENT BrowseGranuleId (#PCDATA)>
< !ELEMENT InsertTime (#PCDATA)>
< !ELEMENT LastUpdate (#PCDATA)>
< !ELEMENT DeleteTime (#PCDATA)>
< !ELEMENT InternalFileName (#PCDATA)>
< !ELEMENT BrowseDescription (#PCDATA)>
< !ELEMENT BrowseSize (#PCDATA)>

4.11.6.14.4 BMGTValidsMetadata.dtd
<!ELEMENT ValidsFile (DTDVersion, DataCenterId, TemporalCoverage,
DictionaryAttribute+, KeywordValids+)>

<!—Version identifier of the DTD used to generate the file
<!ELEMENT DTDVersion (#PCDATA)>

<!—DataCenterId of the site that stores the metadata (e.g. LP DAAC-EMD)
<!ELEMENT DataCenterId (#PCDATA)>

<!—The start and end dates of this MetaDataFile (YYYYDDD)
<!ELEMENT TemporalCoverage (StartDate, EndDate)>
<!ELEMENT StartDate (#PCDATA)>
<!ELEMENT EndDate (#PCDATA)>

<!—Attributes and their Data Types
<!ELEMENT DictionaryAttribute (QualifiedAttrName, Type, Length, RuleText*)>
<!ELEMENT QualifiedAttrName (#PCDATA)>
<!ELEMENT Type (#PCDATA)>
<!ELEMENT Length (#PCDATA)>
<!ELEMENT RuleText (#PCDATA)>

<!—Keyword Attributes and their Domain Values
<!ELEMENT KeywordValids (DisciplineKeyword, TopicKeyword, TermKeyword,
VariableKeyword?, ParameterKeyword?)>
<!ELEMENT DisciplineKeyword (#PCDATA)>
<!ELEMENT TopicKeyword (#PCDATA)>
<!ELEMENT TermKeyword (#PCDATA)>
<!ELEMENT VariableKeyword (#PCDATA)>
<!ELEMENT ParameterKeyword (#PCDATA)>

 4-215 305-EMD-220

4.11.6.14.5 BMGTUpdateMetadata.dtd
<!ELEMENT ProviderAccountService (UpdateMetadata)>
<!--UpdateMetadata can update a single collection, multiple collections, a single
granule, or multiple granules in one transaction. Each update allows the addition
of new metadata-->
<!ELEMENT UpdateMetadata (Collection*, Granule*)>
<!ELEMENT Collection (Target+, (Add | Update | Delete)+)>
<!ELEMENT Granule (Target+, (Add | Update | Delete)+)>
<!-- Target+ allows the same change to be made to several different granules or
collections simultaneously. This is especially useful for bulk deletions of
OnlineURLs. -->
<!ELEMENT Target (ID, ProviderLastUpdateDateTime, SaveDateTimeFlag?)>
<!-- SaveDateTimeFlag is the flag that allows echo to update the last update date
time for Target. The default is SAVE -->
<!ELEMENT Add (QualifiedTag, MetadataValue)>
<!ELEMENT Update (QualifiedTag, MetadataValue)>
<!ELEMENT Delete (QualifiedTag+)>
<!ELEMENT QualifiedTag (#PCDATA)>
<!ELEMENT MetadataValue (#PCDATA)>
<!ELEMENT ProviderLastUpdateDateTime (#PCDATA)>
<!ELEMENT SaveDateTimeFlag (SAVE | DONTSAVE)>
<!ELEMENT SAVE EMPTY>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT DONTSAVE EMPTY>

 4-216 305-EMD-220

4.12 Migration Utilities Overview
The AIM data migration utilities is responsible for migrating data on legacy 9940 media to new
LTO media, as well as for inserting data ingested prior to 7.22 install, into the Online Archive.
Since this process is expected to take many months, it will be designed to work in parallel to the
operational system, and with as little impact as possible.
For the purposes of migration, there are three possible scenarios to deal.

• Data needs to be migrated (it is on 9940 media and in the Data Pool)
• Data needs to be migrated and inserted (it is on the 9940 media and not in the Data Pool)
• Data needs to be inserted (it is on LTO media, but not in the Data Pool)

The migration will make no assumption about the number of granules in each of the three
scenarios. The later case is a result of installing the LTO libraries before 7.22 installation.
In the normal case, only primary volume group data will be migrated. Backup volume group data
will not be migrated unless explicitly requested. All un-migrated data will be discarded when the
9940 archive hardware is retired. XML metadata files will not be migrated, since they are disk
only. Browse data will be not be migrated by this system, since the primary archive is disk based,
and Browse data is only inserted into the Data Pool on demand.
Migration Utilities Context
Figure 4.12-1 is the Migration utilities context diagram. The diagram provides an illustration of
the migration steps. Table 4.12-1 provides descriptions of the interface events shown in the DPL
Ingest Subsystem context diagram. Table provides descriptions of the interface events shown in
the Migration utilities context diagram.

Migration
Utilities

9940

StorNext
Archive

DPL

LTO

Stage data

Backup data

Migration
Database

Update database

DPL Insert

Checksum Data

Stage data

Figure 4.12-1. Migration Utilities Context Diagram

 4-217 305-EMD-220

Table 4.12-1. Migration Utilities Interface Events
Event Interface Event Description

Stage Data Migration stages data from both 9940 and LTO media. Data is staged from
9940 media in order to migrate it to LTO media. Data is staged from LTO media
when it needs inserting into the Data Pool.

Checksum Data Migration will checksum staged data when it is not being inserted into the Data
Pool (and therefore, this only occurs for data staged from 9940 media).

Backup Data The DPL Ingest Service queues ingest requests for validation and processing.
The DPL Ingest Service queues all PDR that it finds. To decide which validated
PDR will be processed next, it checks available resources, timestamps and
priorities of the requests.

DPL Insert Migration submits a request to the Data Pool subsystem (the Action Driver) to
insert a granule into the Data Pool once all the files for that granule have been
staged.

Update Database The migration utilities make multiple updates to its database throughout the
entire migration utilities, tracking individual file, granule, and media state
transition. The Migration database resides within the AIM database.

Migration Utilities Structure
The Migration utilities consist of seven CSCIs: the Initialization Utility, the Population Utility,
the Staging Utility, the Checksum Utility, the Insert Utility, the Monitor Utility, and the Mailer
Utility.
The Initialization Utility is designed to populate media configuration information needed by the
data migration utilities. This script will use the volume group history from the AIM database, in
conjunction with commands sent to the Java Quick Server, to determine the file paths, media,
and policy classes for data that needs to be migrated. It will populate this data into the migration
database. This script is run once only, and is expected to take from a few minutes to an hour to
complete.
The Population Utility will be used at the start of the data migration utilities to determine the
files that need to be migrated from the legacy 9940 media to the new LTO media. This
information will be populated into the migration database, and will be used by the subsequent
migration utilities. This utility will be run periodically, usually in the DAAC downtime.
The Staging Utility is responsible for staging granule files from tape back into the Archive cache
in the most efficient manner possible. It monitors the archive cache state so that it does not
become over-full and impact DPL Ingest operations.
The Checksum Utility will be used to verify the integrity of files being migrated when those files
are not being inserted into the Data Pool, i.e. they already exist in the Data Pool, or the collection
is not configured in the Data Pool.
The Insert Utility will be used to schedule the insert of granules into the Data Pool, and to initiate
the final migration step of files onto the new LTO media. While the existing DPL Action Driver

 4-218 305-EMD-220

will be used to perform the granule inserts, this utility will monitor the current Data Pool load,
and control the granule insert rate to avoid impacting the existing DAAC Data Pool operations.
The Monitor Utility is used to monitor the progress of the data migration. It performs a number
of database queries to extract the current migration state, as well as throughput statistics. These
values are saved to a log file which can be examined by the DAAC operators.
In Mailer Utility is used to send email notifications of errors to a configured list of subscribers.
Use of COTS in the Migration Utilities

• Perl
The Migration components are written in Perl. They use no special features beyond those
distributed to the DAACs.

• Sybase Open Client / CT_LIB
The Sybase Open Client provides access between the Migration components and the
Sybase SQL Server DBMS that houses the Migration database.

• Sybase Server
The Sybase SQL server provides access for the Migration service to its database.

• StorNext
The Migration utilities uses direct (via Java Quick Server calls) and indirect (via
filesystem operations) StorNext functionality.

• UNIX Network Services
The Migration utilities make use of standard UNIX services, such as SMTP, TCP/IP, and
message queues.

4.12.1 Migration Computer Software Configuration Item Description

4.12.1.1 Migration Service CSCI Functional Overview
Figures 4.12.1-1 through Figure 4.12.1-7 show the utility context diagrams. Table 4.12.1-1
through Table 4.12.1-8 provides detailed descriptions of each Migration utilities component, and
the associated interface events.

 4-219 305-EMD-220

SNMS
Quick Server

StorNext
Database

Data
Initialization

Utility

AIM
Database

Load Volume
Groups

Get Policy
Class

Get Associated
Media

Execute StorNext
dirclass command Execute StorNext

medinfo command Insert Media
Information

Figure 4.12.1-1. Initialization Utility Context Diagram

Table 4.12.1-1. Initialization Utility CSCI Interface Events
Event Interface Event Description

Load Volume Groups The Initialization Utility loads the complete volume group history information from
the DsStVolumeGroups table in the AIM database.

Get Policy Class The Initialization Utility sends a request to the SNMS Quick Server to map a
volume group directory to a policy class.

Execute StorNext
dirclass command

The SNMS Quick Server executes the StorNext ‘fsdirclass’ command to obtain
policy class and drive pool information for a directory path.

Get Associated Media The Initialization Utility sends a request to the SNMS Quick Server to request a
list of the media associated with a given policy class.

Execute StorNext
medinfo command

The SNMS Quick Server executes the StorNext ‘fsmedlist’ command to obtain a
list of all the media associated with a given policy class.

Insert Media
Information

The Initialization Utility insert media information into the Migration database.

 4-220 305-EMD-220

SNMS
Quick Server

StorNext
Database

Data
Population

Utility

AIM
Database

Update File Information
Update Media State List Media

Read Media
List

Select Media
Get volume groups

Shared
Disk

Write Media
List

Execute StorNext
medinfo Command

Figure 4.12.1-2. Population Utility Context Diagram

Table 4.12.1-2. Population Utility CSCI Interface Events
Event Interface Event Description

Select Media The Population Utility selects the next, highest priority media available for
processing.

List Media The Population Utility sends a request to the SNMS Quick Server to list the
contents of a media.

Execute StorNext
medinfo Command

The SNMS Quick Server executes the StorNext command to list the contents of
a named media.

Write Media List The StorNext command writes the media listing to a file on a shared disk.

Read Media List The Population Utility reads the media listing from the shared disk and parses it.

Get Volume Groups The Population Utility retrieves volume group information from the database to
verify the primary/backup nature of file directory paths.

Update File State The Population Utility updates file location information in the Migration database,
and marks the file as ready for staging.

Update Media State The Population Utility updates the media state in the Migration database to
indicate that the media has been processed.

 4-221 305-EMD-220

SNMS
Quick Server

StorNext
Database

Data Staging
Utility

AIM
Database

Update Database
Stage Files

Execute StorNext
retrieve Command Select Media

Get File List

Figure 4.12.1-3. Staging Utility Context Diagram

Table 4.12.1-3. Staging Utility CSCI Interface Events
Event Interface Event Description

Select Media The Staging Utility selects the next, highest priority media available for staging.

Get File List The Staging Utility retrieves an ordered list of all the files on a given media.

Stage Files The Staging Utility sends a request to the SNMS Quick Server to request a batch
of files be staged from tape into the Archive Cache file system.

Execute StorNext
retrieve Command

The SNMS Quick Server executes the StorNext ‘fsretrieve’ command to stage a
batch of files.

Update Database The Staging Utility updates the database to indicate that the files have been
staged, and may now be eligible for further processing.

 4-222 305-EMD-220

Service
Quick Server

Data
Checksum

Utility

AIM
Database

Update File Checksum File

Retrieve Files

Figure 4.12.1-4. Checksum Utility Context Diagram

Table 4.12.1-4. Checksum Utility CSCI Interface Events
Event Interface Event Description

Retrieve Files The Checksum Utility retrieves a list of files that need checksumming from the
Migration database.

Checksum File The Checksum Utility sends a request to a service host Quick Server to
checksum the file, and waits for the result.

Update File The Checksum Utility updates the entry for the file in the Migration database.

SNMS
Quick Server

StorNext
Database

Data Insert
Utility

AIM
Database

Execute StorNext
 Command

Retrieve Reg Granules
Retrieve Pub Granules
Retrieve Files
Update Files

DPL
Database Check Reg Load

Check Pub Load
Insert Reg
Request

Set Pending
Set Complete

Flush File

Figure 4.12.1-5. Insert Utility Context Diagram

 4-223 305-EMD-220

Table 4.12.1-5. Insert Utility CSCI Interface Events
Event Interface Event Description

Check Reg Load The Insert Utility queries the Action Driver request queue to determine the
current registration request load.

Retrieve Reg
Granules

The Insert Utility retrieves a list of granules from the database that need inserting
into the Data Pool.

Insert Reg Request The Insert Utility submits a request to the Action Driver queue for insert of a
granule into the Data Pool.

Set Pending The Insert Utility updates the state of the granule in the Migration database to
indicate that it is pending insert into the Data Pool.

Check Pub Load The Insert Utility queries the Action Driver request queue to determine the
current publication request load.

Retrieve Pub
Granules

The Insert Utility retrieves a list of granules from the database that need
publishing in the Data Pool.

Insert Pub Request The Insert Utility submits a request to the Action Driver queue for publication of a
granule in the Data Pool.

Set Complete The Insert Utility updates the state of the granule in the Migration database to
indicate that it processing of this granule is complete.

Retrieve Files The Insert Utility retrieves a list of files that are ready to be flushed from the
Archive Cache file system.

Flush File The Insert Utility sends a request to the SNMS Quick Server to flush a file from
the Archive Cache file system.

Execute StorNext
Command

The SNMS Quick Server executes a StorNext command to enable file truncation
and invalidate the current tape copy of the file.

Update Files The Insert Utility updates the file state in the Migration database to indicate that
the file has been completely processed.

SMTP
server Migration

Utility

Mail
Utility

Figure 4.12.1-6. Mailer Utility Context Diagram

Inbox

Write Mail Message

Read Mail
 Messages

Send Mail

Archive Mail

Archive

 4-224 305-EMD-220

Table 4.12.1-6. Mailer Utility CSCI Interface Events
Event Interface Event Description

Write Mail Message A migration component encounters an error that requires an email notification,
and writes the mail body into a file in a configured directory.

Read Mail Messages Periodically, the Mailer Utility reads all the mail messages in the configured
directory.

Send Mail The Mailer Utility communicates with the SMTP server to send a batch of mail
messages to the configured recipients.

Archive Mail The Mailer Utility moves the processed mail messages into an archive directory.

Mail
Utility

Migration
Database

Archive

Read Status

Log Status

Figure 4.12.1-7. Monitor Utility Context Diagram

Table 4.12.1-7. Mailer Utility CSCI Interface Events
Event Interface Event Description

Read Status The Monitor Utility connects to the Migration database performs a number of
queries to determine the current status of migration.

Log Status The Monitor Utility writes the migration status to a configured log file.

Table 4.12.1-8. Migration CSCI Data Stores
Data Store Type Description

AIM Database Sybase The Migration schema resides within the AIM database. It is used to store
persistent information regarding the migration state of all the files, granules,
and media in the system. All migration database tables are prefixed with
‘DsMg’. All Migration specific stored procedures are prefixed with ‘ProcMg’.

 4-225 305-EMD-220

This page intentionally left blank.

 4-226 305-EMD-220

Abbreviations and Acronyms

A
ABC++ Document Generator used to provide class level detail

ACMHW Access and Control Management Hardware (Configuration Item)

AD Advertisement

ADC Affiliated Data Center (National Oceanic and Atmospheric

 Administration only)

AGS ASTER Ground System

AIT Algorithm Integration and Test

AIM Archive Inventory Management

AITHW Algorithm Integration and Test Hardware (Configuration Item)

AI&T Algorithm Integration and Test

AITTL Algorithm Integration and Test Tools (Computer Software

 Configuration Item)

ALOG Applications Log

AM-1 See TERRA (spacecraft)

AOI Area of Interest

AOS ASTER Operations Segment

AP Algorithm Package

APC Access/Process Coordinators

API Application Program Interface

AQA Algorithm Quality Assurance

AQUA PM-1 Satellite (AIRS, AMSR-E, AMSU, CERES, HSB, MODIS)

AR Action Request

AS Administration Stations

ASCII American Standard Code for Information Interchange

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

ATM Asynchronous Transfer Mode

 AB-1 305-EMD-220

AURA NASA mission to study the earth’s ozone, air quality and climate (formerly the
CHEM mission)

B
BCP Bulk Copy Program

 Bulk Copy Procedure

BDS Bulk Data Server

BMGT ECS Bulk Metadata Generator Tool

BLM Baseline Manager

C
CAD Computer Aided Design

CCB Change Control Board (Raytheon Convention)

 Configuration Control Board (NASA Convention)

CCDI ClearCase DDTS Integration

CCR Configuration Change Request

CDE Common Desktop Environment

CDR Critical Design Review

CDRL Contract Data Requirements List

CD-ROM Compact Disk - Read Only Memory

CDS Cell Directory Service

CFG Configuration File

CGI Common Gateway Interface

CHUI Character-based User Interface

CI Configuration Item

CLS Client Subsystem

CM Configuration Management

CMI Cryptographic Management Interface

CMP Configuration Management Plan

CN Change Notice

CO Contracting Officer

COTS Commercial Off the Shelf (Software or Hardware)

 AB-2 305-EMD-220

CPF Calibration Parameter File

CPU Central Processing Unit

CRM Change Request Manager

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSMS Communications and Systems Management Segment (ECS)

CSS Communications Subsystem

D
DAAC Distributed Active Archive Center

DADS Data Archive and Distribution System

DAO Data Assimilation Office

DAP Delivered Algorithm Package

DAS Dual Attached Station

DB Database

DBMS Database Management System

DCCI Distributed Computing Configuration Item

DCN Document Change Notice

DDICT Data Dictionary (Computer Software Configuration Item)

DDR Detailed Design Review

 Data Delivery Record (same as a Product Delivery Record)

DDT DAAC Distribution Technician

DDTS Distributed Defect Tracking System (COTS)

DEM Digital Elevation Model

DESKT Desktop (Computer Software Configuration Item)

DEV Custom Developed Code

DFS Distributed File System

DID Data Item Description

DIPHW Distribution and Ingest Peripheral Hardware Configuration Item

DLL Dynamic Link Library

DLT Digital Linear Tape

 AB-3 305-EMD-220

DM Data Management

DMGHW Data Management Hardware (Configuration Item)

DMS Data Management Subsystem

DNS Domain Name Service

DOF Distributed Object Framework

DORRAN Distributed Ordering, Researching, Reporting, and Accounting Network (At
EDC)

DP Data Provider

DPAD DataPool Action Driver

DPL Data Pool Subsystem

DPR Data Processing Request

DPRID Data Processing Request Identifier

DPREP Data Pre-Processing

DR Data Repository

DRPHW Data Repository Hardware (Configuration Item)

DSC Development Solution for the C programming language

DSS Data Server Subsystem

DTD Document Type Definition

DTF Sony DTF Tape cartridge system (replacement for the D3 tape cartridge system)

DTS Distributed Time Service

E
EBIS EMD Baseline Information System

ECHO ECS Clearing House

ECN Engineering Change Notice

ECS Earth Observing System Data and Information Core System

EDC Earth Resource Observation System (EROS) Data Center

EDF ECS Development Facility

EDG EOS Data Gateway

EDHS ECS Data Handling System

EDN Expedited Data Set Notification

 AB-4 305-EMD-220

EDOS Earth Observing System Data and Operations System

EDR Expedited Data Set Request

EDS Expedited Data Set

EC Error conditions (in tickets)

EGS EOS Ground System

EISA Enhanced Industry Standard Architecture

E-mail Electronic Mail (also Email, e-mail, and email)

EMOS ECS Mission Operations Segment (formerly FOS)

EMSn EOSDIS Mission Support network

EOC Earth Observing System Operations Center

EOS Earth Observing System

EOSDIS Earth Observing System Data and Information System

EPD External Product Dispatcher

EROS Earth Resource Observation System

ESDIS Earth Science Data and Information System (GSFC Code 505)

ESDT Earth Science Data Type

ESRI Environmental Systems Research Institute

ETM+ Enhanced Thematic Mapper Plus (Landsat 7)

EWOC ECHO WSDL Order Component

F
FC Functional components (capabilities in tickets)

FCAPS Fault, Configuration, Accountability, Performance, and Security services

FDS Flight Dynamics System

FH Fault Handling

FLDB Fileset Location Database

F&PRS Functional and Performance Requirements Specification

FSMS File and Storage Management System

FTP File Transfer Protocol

FTPD File Transfer Protocol Daemon

 AB-5 305-EMD-220

G
GB gigabyte (109)

Gb gigabit (109)

GCDIS Global Change Data and Information System

GCMD Global Change Master Directory (not developed by ECS)

GFE Government Furnished Equipment

GLAS Geoscience Laser Altimeter System

GSFC GODDARD Space Flight Center (NASA facility and DAAC)

GSMS Ground System Management Subsystem (ASTER)

GTWAY (ASTER) Gateway (Computer Software Configuration Item)

GUI Graphical User Interface

H
HDF Hierarchical Data Format

HDF-EOS an EOS proposed standard for a specialized HDF data format

HMI Human Machine Interface

HSB Humidity Sounder for Brazil

HTML HyperText Markup Language

HTTP HyperText Transport Protocol

HWCI Hardware Configuration Item

I
IAS Image Assessment System

ICESat Ice, Cloud and Land Elevation Satellite

ICD Interface Control Document

ID User Identification (or Identifier)

IDG Infrastructure Development Group

IDL Interactive Data Language

I/F Interface

IGS International Ground Station (Landsat 7)

IHCI Internetworking hardware configuration item

 AB-6 305-EMD-220

IIU DSS Inventory Insert Utility

ILG Infrastructure Library Group

ILM Inventory, Logistics, Maintenance (ILM) Manager

IMS Information Management System (ECS element name)

INHCI Internetworking HWCI

I/O Input/Output

IP Internet Protocol
International Partner

IRD Interface Requirements Document

IRR Incremental Release Review

ISIPS ICESat Science Investigator-Led Processing System

ISO International Standards Organization

ISR ECHO Ingest Summary Report

ISS Internetworking Subsystem

I&T Integration and Test

J
JESS Java Earth Science Server

JEST Java Earth Science Tool

JPL Jet Propulsion Laboratory (DAAC)

K
KFTP Kerberos File Transfer Protocol

L
L0 - L4 Level-0 through Level-4 data (ECS)

L0R Landsat Reformatted Data

LAMS Landsat 7 Archive Management System

LAN Local Area Network

LaRC Langley Research Center (DAAC)

LFS Local File System

LZ77 Lampel-Ziv coding

 AB-7 305-EMD-220

M
M&O Maintenance and Operations

MB Megabyte (106)

Mbps Megabits Per Second

MCF Metadata Configuration File

MCI Management Software Configuration Item (Computer Software

 Configuration Item)

MSSHW (System) Management (Subsystem) Hardware Configuration Item

MISR Multi-Imaging SpectroRadiometer

MLCI Management Logistics Configuration Item (Computer Software

 Configuration Item)

MM Mode Management

MMO Mission Management Office

MMS Mode Management Service

M&O Maintenance and Operations (Staff)

MOC Mission Operations Center

MOPITT Measurements of Pollution in the Troposphere

MP Message Passing

MS Mass Storage

MSCD Mirror Scan Correction Data (file)

MSS System Management Subsystem

MTA LAMS Metadata File

MTP Distribution Product Metadata File Extension (<filename>.MTP)

MTPE Mission to Planet Earth

N
NASA National Aeronautics and Space Administration

NCEP National Centers for Environmental Predictions

NCR Non-conformance Report

NESDIS National Environmental Satellite, Data, and Information Service (NOAA)

 AB-8 305-EMD-220

NFS Network File System

NIS Network Information Service

NMC National Meteorological Center (located at National Oceanic and

 Atmospheric Administration - NOAA)

NNTP Network News Transfer Protocol

NOAA National Oceanic and Atmospheric Administration

NSI National Aeronautics and Space Administration Science Internet

NSIDC National Snow and Ice Data Center (DAAC)

O
ODL Object Description Language

OEA OGC-ECHO Adaptor

OEM Original Equipment Manufacturer

OMS Order Manager Subsystem

OMSRV Order Manager Server

OMGUI Order Manager Graphical User Interface

OOA Object oriented analysis

OOD Object oriented design

OODCE Object Oriented distributed computing environment

OPS CON Operations Concept

OS Operating System

OSI Open Systems Interconnect

P
PAN Production Acceptance Notification

PC Personal Computer

 Performance Constraints (in tickets)

PCD Payload Correction Data (file)

PCFG Process Configuration File

PDR Product Delivery Record

PDRD Product Delivery Record Discrepancy

PF Process Framework

 AB-9 305-EMD-220

PI Principal Investigator

PM-1 EOS Afternoon Equator Crossing Mission (See Aqua); Mission to study the land,
oceans and the earth’s radiation budget

PMPDR Physical Media Product Delivery Record

PSA Product Specific Attributes

Q
QA Quality Assurance

QDS Quick Look Data Set (Same as Expedited Data Set)

QAUU DSS Quality Assurance Update Utility

R
RAID Redundant Array of Inexpensive Disks

RAM Random Access Memory

RCS Request Communications Support

RDBMS Relational Database Management System

REL Release

RFA Remote File Access

RFC Request For Comments

RIP Routing Information Protocol

RMA Reliability, Maintainability and Availability

RMS Request Management Services

ROSE Request Oriented Scheduling Engine

RPC Remote Procedure Call

RSC Raytheon Systems Company

RTU Rights to Use

S
S4PM Simple, Scalable, Script-based Science Processor for Missions

SAGE III Stratospheric Aerosol and Gas Experiment III

SAN Storage Area Network

SAS Single Attached Station

SATAN Security Administrator Tool for Analyzing Networks

 AB-10 305-EMD-220

SCF Science Computing Facility

SCLI SDSRV Command Line Interface

SCSI Small Computer System Interface

SDE Software Development Environment

SDF Software Development Folder

SDP Science Data Processing

SDPTK Science Data Processing Toolkit

 Science Data Processing Toolkit (Computer Software Configuration Item)

SDSRV Science Data SeRVer (Computer Software Configuration Item)

SGI Silicon Graphics, Inc.

SIM Spectral Irradiance Monitor

SIPS Science Investigator-Led Processing Systems

SMC System Management Center

 System Monitoring and Coordination Center

SMP Symmetric Multi-processor

SMTP Simple Mail Transport Protocol

SOLSTICE Solar Stellar Irradiance Comparison Experiment

SORCE Solar Radiation and Climate Experiment

SPARC Single Processor Architecture

SPRHW Science Processing Hardware (Configuration Item)

SQL Structured Query Language

SQS Spatial Query Server

SRF Server Request Framework

SSAP Science Software Archive Package

SSIT Science Software Integration and Test

SSS Spatial Subscription Server Subsystem

STK StorageTek

Sybase (ECS) COTS database management product (ASE)

SYSLOG System Log

 AB-11 305-EMD-220

T
TAR Tape Archive

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TELNET Telecommunications Network

TERRA EOS AM Mission spacecraft 1, morning equator crossing spacecraft series
-- ASTER, MISR, MODIS and MOPITT instruments; Mission to study the land,
oceans and the earth’s radiation budget

TIM Total Irradiance Monitor

TM Thematic Mapper (Landsat)

TT Trouble Ticket

TTPro TestTrack Pro

U
UDP User Datagram Protocol

UML Unified Modeling Language

UR Universal Reference

URL Universal Resource Locator

USGS U. S. Geological Survey

UUID Universal Unique Identifier

V
VT Virtual terminal

W
WAN Wide Area Network

WIST Warehouse Inventory Search Tool

WSDL Web Service Definition Language

WKBCH WorKBenCH (Computer Software Configuration Item)

WKSHW Working Storage Hardware Configuration Item

WRS Worldwide Reference System

WS Working Storage

WWW World Wide Web

 AB-12 305-EMD-220

X
xAR x Acquisition Request (where x is any kind of or generic acquisition request)

XBDS Bulk Data Service Protocol

XDR External Data Representation

XFS Extended File System

XML eXtensible Markup Language

XSD XML Schema

XRU DSS XML Replacement utility

XVU DSS XML Validation Utility

 AB-13 305-EMD-220

This page intentionally left blank.

 AB-14 305-EMD-220

	4. Subsystem Description
	4.1 Data Server Subsystem Overview
	4.1.1 Science Data Server Software Description – CSCI REMOVED

	4.1.2 Archive Inventory Management Software Description
	4.1.2.1 AIM Interfaces with DataPool Ingest
	4.1.2.2 AIM CSCI interfaces with DAAC Operations Staff
	4.1.2.2.1 AIM ESDT Maintenance GUI and QA Update utility
	4.1.2.2.2 AIM XML Replacement and Granule Deletion utilities
	4.1.2.3 AIM Granule Deletion utilities
	 4.1.2.2.3 AIM Archive Check and XML Archive Check utilities
	4.1.2.3 AIM interfaces with BMGT
	 4.1.2.4 AIM interfaces with the Order Manager and DataPool subsystems

	4.1.3 DSS Error Handling and processing
	4.1.4 DSS Data Stores

	305emd220s4.2_DMO.pdf
	4.2 DPL Ingest Subsystem Overview
	4.2.1 DPL Ingest Computer Software Configuration Item Description
	4.2.1.1 DPL Ingest Service CSCI Functional Overview
	4.2.1.2 DPL Ingest Service CSCI Context
	4.2.1.3 DPL Ingest Architecture
	4.2.1.4 DPL Ingest Process Descriptions
	4.2.1.5 DPL Ingest Process Interface Descriptions
	4.2.1.6 Ingest Data Stores

	

	305emd220s4.3_DMO.pdf
	4.3 Client Subsystem Overview
	4.3.1 Tools Description

	305emd220s4.4_DMO.pdf
	4.4 Data Management Subsystem Overview
	4.4.1 ECHO WSDL Order Component Software Description
	4.4.1.1 ECHO WSDL Order Component Functional Overview
	4.4.1.2 ECHO WSDL Order Component Context
	4.4.1.3 ECHO WSDL Order Component Architecture
	4.4.1.4 ECHO WSDL Order Component Process Descriptions
	4.4.1.5 ECHO WSDL Order Component Process Interface Descriptions
	4.4.1.6 ECHO WSDL Order Component CSCI Data Stores
	4.4.2 Data Management Subsystem Hardware
	4.4.2.1 Data Management Hardware CI (DMGHW) Description

	305emd220s4.5_DMO.pdf
	4.5 Order Manager Subsystem Overview
	4.5.1 Order Manager Subsystem Software Description
	4.5.1.1 Order Manager Server CSCI Functional Overview
	4.5.1.2 Order Manager Server CSCI Context
	4.5.1.3 Order Manager Server CSCI Architecture
	4.5.1.4 Order Manager Server CSCI Process Description
	4.5.1.5 Order Manager Server CSCI Interface Description
	4.5.1.6 Data Stores
	4.5.1.7 Production Module CSCI Functional Overview
	4.5.1.8 Production Module CSCI Context
	4.5.1.9 Production Module CSCI Architecture
	4.5.1.10 Production Module CSCI Process Description
	4.5.1.11 Production Module CSCI Interface Description
	4.5.1.12 Data Stores
	4.5.1.13 Production Module Hardware

	305emd220s4.6_DMO.pdf
	4.6 Communications Subsystem Overview
	4.6.1 The Distributed Computing Configuration Item Software Description
	4.6.1.1 Configuration Registry Server Software Description
	4.6.1.1.1 Configuration Registry Server Functional Overview
	4.6.1.1.2 Configuration Registry Server Context
	4.6.1.1.3 Configuration Registry Server Architecture
	4.6.1.1.4 Configuration Registry Server Process Descriptions

	4.6.1.1.5 Configuration Registry Server Process Interface Descriptions
	4.6.1.1.6 Configuration Registry Server Data Stores

	4.6.1.2 CCS Middleware Support Group Description
	4.6.1.2.1 CCS Middleware Functional Overview
	4.6.1.2.2 CCS Middleware Context
	4.6.1.2.3 CCS Middleware Architecture
	4.6.1.2.4 CCS Middleware Process Descriptions
	4.6.1.2.5 CCS Middleware Process Interface Descriptions
	4.6.1.2.6 CCS Middleware Data Stores

	4.6.1.3 Virtual Terminal Description
	4.6.1.3.1 Virtual Terminal Functional Overview
	4.6.1.3.2 Virtual Terminal Context
	4.6.1.3.3 Virtual Terminal Architecture
	4.6.1.3.4 Virtual Terminal Process Descriptions
	4.6.1.3.5 Virtual Terminal Process Interface Descriptions
	4.6.1.3.6 Virtual Terminal Data Stores

	4.6.1.4 Cryptographic Management Interface Software Description
	4.6.1.4.1 Cryptographic Management Interface Functional Overview
	4.6.1.4.2 Cryptographic Management Interface Context
	4.6.1.4.3 Cryptographic Management Interface Architecture
	4.6.1.4.4 Cryptographic Management Interface Process Descriptions
	4.6.1.4.5 Cryptographic Management Interface Process Interface Descriptions
	4.6.1.4.6 Cryptographic Management Interface Data Stores

	4.6.1.5 Domain Name Server Software Description
	4.6.1.5.1 Domain Name Server Functional Overview
	4.6.1.5.2 Domain Name Server Context
	4.6.1.5.3 Domain Name Server Architecture
	4.6.1.5.4 Domain Name Server Process Descriptions
	4.6.1.5.5 Domain Name Server Process Interface Descriptions
	4.6.1.5.6 Domain Name Server Data Stores

	4.6.1.6 Infrastructure Libraries Group Description
	4.6.1.6.1 Infrastructure Libraries Group Functional Overview
	4.6.1.6.2 Infrastructure Libraries Group Context
	4.6.1.6.3 Infrastructure Libraries Group Architecture
	4.6.1.6.4 Infrastructure Libraries Group Process Descriptions
	4.6.1.6.5 Infrastructure Libraries Group Interface Descriptions
	4.6.1.6.6 Infrastructure Library Group Data Stores

	4.6.2 The Distributed Computing Configuration Item Context
	4.6.3 Distributed Computing Configuration Item Architecture
	4.6.4 Distributed Computing Configuration Item Process Descriptions
	4.6.5 Distributed Computing Configuration Item Process Interface Descriptions
	4.6.6 Distributed Computing Configuration Item Data Stores
	4.6.7 Communications Subsystem Hardware CI Description

	305emd220s4.8_DMO_new47.pdf
	4.7 Internetworking Subsystem (ISS) Overview
	4.7.1 Internetworking Subsystem Description
	4.7.1.1 DAAC LAN Architecture
	4.7.1.2 DAAC Addressing and Routing Architecture
	4.7.1.3 Network-based Security Architecture
	4.7.1.4 Internetworking Subsystem Detailed Design

	4.7.2 Network COTS Hardware
	4.7.2.1 EMD Ethernet Switch
	4.7.2.2 EMD Router
	4.7.2.3 SAN LAN Ethernet Switch
	4.7.2.4 Firewall

	305emd220s4.9_DMO_new48.pdf
	4.8 EMD General Process Failure Recovery Concepts
	4.8.1 Client-Server Rebinding
	4.8.2 Sybase Reconnecting
	4.8.3 Request Identification
	4.8.4 Senior Clients
	4.8.5 Request Responsibility
	4.8.6 Queues
	4.8.7 Request Responses
	4.8.8 Duplicate Request Detection
	4.8.9 Server Crash and Restart
	4.8.10 Client Crash and Restart

	305emd200s4.10_DMO_new49.pdf
	4.9 Spatial Subscription Server (SSS) Subsystem Overview
	4.9.1 Spatial Subscription Server Architecture
	4.9.1.1 Subscription Server Process Interface Descriptions
	4.9.1.2 Subscription Server Data Stores
	

	305emd220s4.11_DMO_new410.pdf
	4.10 Data Pool Subsystem Overview
	4.10.1 Data Pool Subsystem Context
	4.10.2 Data Pool Hardware Context
	4.10.3 Data Pool Insert CSCI Functional Overview
	4.10.4 WebAccess CSCI Functional Overview
	4.10.4.1 WebAccess Process Descriptions
	4.10.4.2 WebAccess Process Interface Descriptions

	4.10.5 Data Stores

	305emd220s4.12_DMO_new411.pdf
	4.11 Bulk Metadata Generation Tool Subsystem Overview
	4.11.1 BMGT Subsystem Context
	4.11.2 BMGT/ECHO Interface
	4.11.3 ECS Events and BMGT products
	4.11.4 BMGT Architecture
	4.11.5 Use of COTS in the BMGT Subsystem
	4.11.6 BMGT Subsystem Software Description
	4.11.6.1 BMGT CSCI Functional Overview
	4.11.6.2 Automatic Export Process
	4.11.6.3 Manual Export Process
	4.11.6.4 Cleanup
	4.11.6.5 Corrective ReExport Process
	4.11.6.6 Generator
	4.11.6.7 Packager
	4.11.6.8 Export Server
	4.11.6.9 Monitor
	4.11.6.9.1 BMGT Monitor Error Handling Policies
	Notify DAAC Staff
	Notify DAAC Staff and ECHO
	Re Export Object
	Ignore Error
	Conditionally Ignore Error
	Retry Package Export
	Regenerate Products

	4.11.6.10 BMGT CSCI Context
	4.11.6.11 BMGT CSCI Process Interface Description
	4.11.6.12 Data Stores
	4.11.6.13 Data Stores BMGT GUI CSCI Functional Overview
	4.11.6.14 BMGT DTD’s
	4.11.6.14.1 BMGTCollectionMetadata.dtd
	4.11.6.14.2 BMGTGranuleMetadata.dtd
	4.11.6.14.3 BMGTBrowseMetadata.dtd
	4.11.6.14.4 BMGTValidsMetadata.dtd
	 4.11.6.14.5 BMGTUpdateMetadata.dtd

	305emd220s4.13_DMO_new412.pdf
	4.12 Migration Utilities Overview
	4.12.1 Migration Computer Software Configuration Item Description
	4.12.1.1 Migration Service CSCI Functional Overview

	305emd220sfm.pdf
	1. Introduction
	1.1 Purpose and Scope
	1.2 Document Organization
	2. Related Documentation
	2.1 Parent Documents
	2.2 Applicable Documents
	2.2.1 Other Related Documents and Documentation

	2.3 ECS Tool Descriptions
	2.3.1 Rational Rose
	2.3.2 ClearCase Baseline Manager Configuration Management Tool

	3. System Description
	3.1 Mission and Release 7.22 Objectives

	3.1.1 Release 7.22 Capabilities
	3.1.1.1 ECS Support of Instruments by Platform
	3.1.1.2 Ingest and Archive Capabilities
	3.1.1.3 Search and Order Capabilities
	3.1.1.4 Data Distribution Capabilities
	3.1.1.5 Data Processing Capabilities
	3.1.1.6 System Operation and Architecture
	3.1.1.7 Security
	3.1.1.8 DAAC/External System Support
	3.2 Release 7.22 Architecture Overview
	3.2.1 Release 7.22 Context Description
	3.2.2 Release 7.22 Architecture
	3.2.2.1 Subsystem Architecture

