This page intentionally left blank.
This document is a contract deliverable with an approval code of 3. As such, it does not require formal Government approval. This document is delivered for information only, but is subject to approval as meeting contractual requirements.

Any questions should be addressed to:
Data Management Office
The ECS Project Office
Raytheon Systems Company
1616 McCormick Dr.
Upper Marlboro, MD 20774-5301
Abstract

This is Volume 12 of a series of lessons containing the training material for Release 5A of the Earth Observing System Data and Information System (EOSDIS) Core System (ECS). This lesson provides a detailed description of the different tasks that need to be accomplished in order to: record and manage proposed and approved Configuration Change Requests (CCRs); record, report, manage, and distribute changes to custom ECS software, science software, and database control files; record, report, and maintain system-level changes to the as-built operational baseline; and generate the Configuration Status Accounting Records (CSARs).

Keywords: training, instructional design, course objective, Configuration Management, Configuration Change Request, software changes, Configuration Status Accounting, Baseline Manager, Inventory/Logistical Management
List of Effective Pages

<table>
<thead>
<tr>
<th>Page Number</th>
<th>Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Original</td>
</tr>
<tr>
<td>iii through xii</td>
<td>Original</td>
</tr>
<tr>
<td>1 through 74</td>
<td>Original</td>
</tr>
<tr>
<td>Slide Presentation 1 through 48</td>
<td>Original</td>
</tr>
</tbody>
</table>

Document History

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Status/Issue</th>
<th>Publication Date</th>
<th>CCR Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>625-CD-512-001</td>
<td>Original</td>
<td>July 1999</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Preface

Abstract

Introduction

Identification ... 1
Scope ... 1
Purpose .. 1
Status and Schedule ... 1
Organization .. 1

Related Documentation

Parent Document ... 3
Applicable Documents .. 3
Information Documents .. 3
 Information Documents Referenced .. 3
 Information Documents Not Referenced .. 3

Configuration Management Overview

Lesson Overview .. 5
Lesson Objectives .. 5
Importance ... 6

M&O Role in ECS CM Activities

Change Management ... 10
Configuration Problem Management ... 11

Configuration Change Adjudication ... 12
Development, Deployment, and Installation of Changes............................. 13
Operations Configuration Baseline Maintenance ... 13
Science Software CM ... 14
System Operations Support (SOS) ... 14
Maintenance of the M&O Libraries ... 15
Library Administration .. 15
Baseline Control during Maintenance and Operations 16
Site Authority ... 17
Configuration Identification ... 17
Configuration Status Accounting ... 18
Configuration Audits ... 20

Configuration Control Boards (CCBs)
Specific CM responsibilities ... 24
Relationships among CCBs .. 25
Science Software and Change Control ... 26

Configuration Change Requests (CCRs)
Change Request Manager ... 28

Impact Analysis
CCR Impact Summary .. 35

Software Baselines and Changes
Software Transfer and Installation ... 38
Software Transfer ... 40
Installation at Site ... 40
Hardware Baselines and Changes

Hardware Installation .. 44

Changes to the Baseline

Management Subfunction and Trouble Ticket System ... 45
Baseline and Inventory Management: Processes ... 47
 Baseline Terms and Concepts ... 47
Baseline and Inventory Management: Tools .. 51
 Baseline Manager (BLM)... 54
 Inventory/Logistical Management (ILM) .. 63

Practical Exercise

Custom Software Problem .. 71

Slide Presentation

Slide Presentation Description ... 73
This page intentionally left blank.
Introduction

Identification

Training Material Volume 12 is part of Contract Data Requirements List (CDRL) Item 129, whose requirements are specified in Data Item Description (DID) 625/OP3 and is a required deliverable under the Earth Observing System Data and Information System (EOSDIS) Core System (ECS), Contract (NAS5-60000).

Scope

Training Material Volume 12 describes the processes and procedures for Maintenance and Operations configuration management (CM) of ECS. This lesson is designed to provide the operations staff with sufficient knowledge and information to satisfy all lesson objectives.

Purpose

The purpose of this Student Guide is to provide a detailed course of instruction that forms the basis for understanding Configuration Management. Lesson objectives are developed and are used to guide the flow of instruction for this lesson. The lesson objectives serve as the basis for verifying that all lesson topics are contained within this Student Guide and slide presentation material.

Status and Schedule

This lesson module provides detailed information about training for Release 5A. Subsequent revisions will be submitted as needed.

Organization

This document is organized as follows:

Introduction: The Introduction presents the document identification, scope, purpose, and organization.

Related Documentation: Related Documentation identifies parent, applicable and information documents associated with this document.

Student Guide: The Student Guide identifies the core elements of this lesson. All Lesson Objectives and associated topics are included.

Slide Presentation: Slide Presentation is reserved for all slides used by the instructor during the presentation of this lesson.
Related Documentation

Parent Document
The parent document is the document from which this ECS Training Plan’s scope and content are derived.

423-41-01 Goddard Space Flight Center, EOSDIS Core System (ECS) Statement of Work

Applicable Documents
The following documents are referenced within this ECS Training Plan, or are directly applicable, or contain policies or other directive matters that are binding upon the content of this document:

420-05-03 Goddard Space Flight Center, Earth Observing System (EOS) Performance Assurance Requirements for the EOSDIS Core System (ECS)
423-41-02 Goddard Space Flight Center, Functional and Performance Requirements Specification for the Earth Observing System Data and Information System (EOSDIS) Core System (ECS)

Information Documents

Information Documents Referenced
The following documents are referenced herein and amplify or clarify the information presented in this document. These documents are not binding on the content of the ECS Training Plan.

102-CD-002-003 Science Data Processing Segment Maintenance and Operations Configuration Management Plan for the ECS Project
611-CD-500 Mission Operations Procedures for the ECS Project

Information Documents Not Referenced
The following documents, although not referenced herein and/or not directly applicable, do amplify or clarify the information presented in this document. These documents are not binding on the content of the ECS Training Plan.

220-TP-001 Operations Scenarios - ECS Release B.0 Impacts
305-CD-020 Release B SDPS/CSMS System Design Specification Overview for the ECS Project
305-CD-021 Release B SDPS Client Subsystem Design Specification for the ECS Project
305-CD-022 Release B SDPS Interoperability Subsystem Design Specification for the ECS Project
305-CD-023 Release B SDPS Data Management Subsystem Design Specification for the ECS Project
305-CD-024 Release B SDPS Data Server Subsystem Design Specification for the ECS Project
305-CD-025 Release B SDPS Ingest Subsystem Design Specification [for the ECS Project
305-CD-026 Release B SDPS Planning Subsystem Design Specification for the ECS Project
305-CD-027 Release B SDPS Data Processing Subsystem Design Specification for the ECS Project
305-CD-028 Release B CSMS Communications Subsystem Design Specification for the ECS Project
305-CD-029 Release B CSMS System Management Subsystem Design Specification for the ECS Project
305-CD-030 Release B GSFC DAAC Design Specification for the ECS Project
305-CD-031 Release B Langley DAAC Design Specification for the ECS Project
305-CD-033 Release B EDC DAAC Design Specification for the ECS Project
305-CD-034 Release B ASF DAAC Design Specification for the ECS Project
305-CD-035 Release B NSIDC DAAC Design Specification for the ECS Project
305-CD-036 Release B JPL PO.DAAC Design Specification for the ECS Project
305-CD-037 Release B ORNL DAAC Design Specification for the ECS Project
305-CD-038 Release B System Monitoring and Coordination Center Design Specification for the ECS Project
305-CD-039 Release B Data Dictionary Subsystem Design Specification for the ECS Project
601-CD-001 Maintenance and Operations Management Plan for the ECS Project
604-CD-001 Operations Concept for the ECS Project: Part 1 -- ECS Overview
605-CD-002 Release B SDPS/CSMS Operations Scenarios for the ECS Project
607-CD-001 ECS Maintenance and Operations Position Descriptions
500-1002 Goddard Space Flight Center, Network and Mission Operations Support (NMOS) Certification Program, 1/90
Lesson Overview

This lesson provides you with the process for Configuration Management (CM), including the Configuration Change Request (CCR) Process, the Configuration Change Board (CCB) process, software and hardware baselines and changes, and Configuration Status Accounting. It provides practical experience in using the tools you will need for processing CCRs, change control accounting, and baseline management.

Lesson Objectives

Overall Objective - The overall objective of this lesson is proficiency in the methodology and procedures for configuration management (CM) of the Earth Observing System Data and Information System (EOSDIS) Core System (ECS) during maintenance and operations.

Condition - The student will be given a baseline configuration for ECS, common CM tools, a copy of 609-CD-500-001 *Release 5A Operations Tools Manual*, a copy of 611-CD-500-001 *Mission Operation Procedures for the ECS Project*, and a requirement for a change to the baseline.

Standard - The student will use CM tools in accordance with prescribed methods and complete required procedures without error to accomplish all coordination and actions necessary to effect the required change.

Specific Objective 1 - The student will describe the M&O role in ECS CM activities.

Condition - The student will be given a timeline depicting major elements of ECS maintenance and operations.

Standard - The student will correctly identify the overall CM requirement and specific CM objective of M&O, and correctly list or state a specific M&O role in relation to each of the following: 1) the control of changes at operational sites, 2) the maintenance and operation of science software, and 3) the Sustaining Engineering Organization (SEO) CM function.

Specific Objective 2 - The student will list the CCBs involved in ECS CM, identify their inter­relationships, and list their responsibilities and functions in ECS CM.

Condition - The student will be given a copy of 609-CD-500-001 *Release 5A Operations Tools Manual* and a copy of 611-CD-500-001 *Mission Operation Procedures for the ECS Project*.

Standard - The student will identify the position of each CCB within the CCB hierarchy without error, and correctly list at least one major responsibility for each, and correctly list three functions of CM Administrators at SMC, EOC, the DAACs, and SCFs.

Specific Objective 3 - The student will execute the procedure to record, report, document, and distribute a change request.
Condition - The student will be given a requirement for a hardware or software change, a copy of 609-CD-500-001 Release 5A Operations Tools Manual, a copy of 611-CD-500-001 Mission Operation Procedures for the ECS Project, and access to DDTS.

Standard - The student will use DDTS correctly to enter data documenting the request, print a report on the request, and identify without error the proper distribution for the report.

Specific Objective 4 - The student will prepare a request for impact analysis.

Condition - The student will be given a copy of 611-CD-500-001 Mission Operation Procedures for the ECS Project and a written description of a science software upgrade configuration change request.

Standard - The student will develop the request for impact analysis, correctly identifying all potentially affected elements of ECS to be analyzed, and use the Change Request Manager software correctly to ensure proper distribution for the impact analysis and impact summary.

Specific Objective 5 - The student will execute the procedure to record, report, document, and distribute a hardware change.

Condition - The student will be given a copy of 609-CD-500-001 Release 5A Operations Tools Manual, a copy of 611-CD-500-001 Mission Operation Procedures for the ECS Project, a requirement for a hardware change, data on the hardware change, and access to the Change Request Manager and the Baseline Manager and Inventory/Logistical Management software.

Standard - The student will use the software correctly to process the change, print a report documenting the change, and identify without error the proper distribution for the change.

Specific Objective 6 - The student will execute the procedure to record, report, document, and distribute a change to the baseline.

Condition - The student will be given a copy of 609-CD-500-001 Release 5A Operations Tools Manual, a copy of 611-CD-500-001 Mission Operation Procedures for the ECS Project, a requirement for a baseline change, a written description of the baseline change, and access to the Baseline Manager and Inventory/Logistical Management software.

Standard - The student will use the Baseline Manager and Inventory/Logistical Management software correctly to enter data documenting the change and print a report documenting the change. The student will identify without error the proper distribution for the change.

Importance

This lesson provides students who will be CM Administrators at the DAACs, SMC, and SEO with the knowledge and skills needed for effective ECS configuration management. It also provides students who will be System Engineers, System Test Engineers, and Maintenance Engineers at the DAACs with background knowledge and skills for their roles in CM, including implementation and documentation of system-wide changes directed by the Earth Science Data
and Information System (ESDIS) CCB and changes directed by a local CCB and/or the Sustaining Engineering Organization (SEO). It ensures management of the capability to:

- control operations across ECS functional segments and operational sites.
- manage successful implementation of large numbers of anticipated system changes.
- interface effectively with interfacing organizations and Change Control Boards (CCBs).
- communicate changes and baseline definitions to all affected organizations.

It familiarizes students with:

- the importance of early customer involvement in changes.
- the CM tools to be used in all elements of the ECS Project during operations.
- the organization and interactions among hierarchical CCBs.
- the proper use and deployment of CM database assets to support all CCBs.
- the necessary coordination among all elements involved in accomplishing a change in ECS.

It facilitates the achievement of a streamlined CM approach that ensures local organizations operate effectively with the needed autonomy to accomplish their missions, minimizing outside intervention to promote timely resolution of local problems and to enable change during continued timely production of data products.
This page intentionally left blank.
M&O Role in ECS CM Activities

The Maintenance and Operations (M&O) CM activities begin when ECS products are accepted by ESDIS at the host operational sites (i.e., pass Release Readiness Review (RRR) or an otherwise formal transition to operations). In the CM concept:

- ECS operations baselines are established at RRR.
- baselines include:
 - COTS hardware and software.
 - custom software.
 - science software.
 - data base schema.
 - related ECS documentation.

Controlling the maintenance and operations changes to ECS products as deployed at the host sites is an ECS Maintenance and Operations (M&O) CM requirement. M&O's specific CM objective is to control the host site's baseline for component changes that may result from:

- new ECS System Releases with new versions of the system configuration baseline, to be responsive to changed requirements and/or to provide new functionality.

- modification of the ECS operations configuration that provide DAAC-unique functionality; these changes are the responsibility of the DAAC CCB and are not controlled by the ECS CCB unless or until those changes are presented to ECS via CCR and approved by the ECS CCB/M&O CCB for incorporation in the ECS core configuration.

- maintenance actions, which may be "corrective" actions to repair residual flaws or "perfective" actions to improve the effectiveness, maintainability, or performance of the current version of the operations configuration. Perfective maintenance changes or "routine enhancements" are those that:
 - are not a change to a Level 3 requirement.
 - are not a change to an external interface.
 - are within established ECS M&O budget.
 - do not unreasonably conflict with development Releases and implementation of "corrective" maintenance changes.
Operational sites each have a change control function, which is referred to as the site Configuration Control Board (CCB) activity. These sites include:

- Distributed Active Archive Centers (DAACs).
- the EOS Operations Center (EOC).
- the ESDIS System Monitoring and Coordination Center (SMC).

M&O is not a decision-making authority, but assists in implementing site-level and project-wide decisions. The M&O organization provides administrative and technical support to site CCBs to coordinate use of approved CM procedures and to ensure that changes to site hardware, software, and procedures are properly documented and coordinated. Specific responsibilities include:

- Configuration identification: maintenance and control of technical documentation.
- Configuration status accounting: recording and reporting information about the configuration status of ECS documentation, hardware, and software throughout the project life cycle; XRP-II is a software tool used in this baseline management.
- Configuration audits: M&O supports internal and ESDIS assessments of project compliance with relevant CM plans, to ensure that CM policies, procedures, and practices are followed, that approved changes are properly implemented, and that the as-deployed configuration of ECS matches the as-built documentation of configuration items, or that adequate records of differences are available at all times.

Change Management

The ECS M&O organization provides administrative and technical support services for the CCB at each site. Review and approval of maintenance changes are the responsibility of the M&O CCB; the changes are delivered to operations through Pre-Ship Reviews (PSRs).

The management of changes entails several coordinated activities:

- documenting, managing, resolving, and reporting problems with the operational configuration.
- proposing, reviewing, and adjudicating corrective and perfective changes to the operations system configuration.
- developing and deploying the configuration changes to operations.
- maintaining the operational baseline, including approved/shipped and installed change status.

Figure 1 shows the flow, responsibilities, and relationships among change management activities and entities. Major activities or responsibilities are identified by numbers in the figure and addressed with corresponding numbers in the following subsections.
Configuration Problem Management

Configuration Problem Management addresses the management of problems, requiring either corrective or perfective maintenance. At a local site (e.g., DAAC), problems are managed as Trouble Tickets (TTs). At the ECS Development Facility (EDF), a TT may be forwarded for management as a Non-Conformance Report (NCR).

- Problems are documented in TTs from submitters [1] at the DAACs or Help Desk to an ECS Trouble Ticket database [2]. Trouble Ticket Investigators [3] at the local site level are assigned to investigate and report the status of the TT.

- A TT Tele-conference [4], with members from ECS maintenance and operations, ECS sustaining engineering, the System Monitoring Center (SMC), and the DAACs, reviews the impact, assigns an initial priority, and assigns the problems for investigation by forwarding the tickets to a Non-Conformance Report (NCR) database [5]. An NCR assignee [6] from ECS sustaining engineering [7], which includes personnel in the functions of system engineering, CM, test, and development, is assigned to investigate and report the status of the NCR.

- Problems from the NCR database are then reviewed by an NCR Prioritization Team [8], consisting of members from ECS Program Management and ESDIS, for overall program impact. The NCR priority is adjusted as necessary.

Figure 1. Change Management
For corrective software changes to the operations configuration, the prioritized changes are tracked by the Deployment Integrated Product Team (IPT) [9], consisting of members from ECS maintenance and operations, ECS sustaining engineering [10], the SMC, and the DAACs.

After ECS sustaining engineering test verifies the fix, and before an NCR is closed, the NCR is reviewed by the NCR Board [11]. A recommended closure list is forwarded by the NCR Board to the M&O CCB [12]. The M&O CCB, which includes members from ECS maintenance and operations, ECS sustaining engineering, the SMC, and the DAACs, approves the closure list.

Proposed perfective software and hardware changes are submitted to the M&O CCB [12] in the form of Configuration Change Requests (CCRs) [13] for review and adjudication.

Configuration Change Adjudication

Configuration Change Adjudication is the exercise of change control authority and the documentation of approved and executed changes.

The Deployment IPT [9] includes the M&O CCB chairperson [14] and members from ECS maintenance and operations, ECS sustaining engineering, the SMC, and the DAACs. Using the results of the NCR Prioritization Team [8], the IPT tracks NCR work-off and testing activity. The IPT also proposes patch contents and schedule to the M&O CCB via CCRs/Engineering Change Orders (ECOs)/Documentation Change Notices (DCNs). CCRs contain the problem description, operations impact, recommended priority, proposed configuration change and/or solution, sites affected, and lists the CIs and affected documentation. ECOs and DCNs consist of the patches, installation instructions, the configuration baseline changes, and the requirements/design/operations procedure documentation.

The IPT [9] conducts PSRs. PSRs review the patch with the receiving SMC and DAACs. PSRs describe the system changes and associated documentation changes including the test results (as found during testing in the EDF facility). The operations procedure changes, configuration baseline changes (including database changes), and installation instructions are also part of a PSR.

If the patch CCR is approved by the M&O CCB, the actions (ECOs) and documentation DCNs will be assigned to accomplish deployment and installation of the change. Drawing ECOs and documentation DCNs are forwarded to the ECS data management function [15] that manages the Document Master database [16].

ECS CM will ship the patch to the System Monitoring Center (SMC) [17] for distribution to the DAACs. At this point, baseline changes will be reflected in the ECS Configuration Baseline database [18] as shipped/released changes.
For problems that request perfective changes to the operational baseline, the CCRs are reviewed by the M&O CCB [12]. If a perfective change CCR is approved by the M&O CCB, the actions (ECOs) and documentation (DCNs) will be recorded and assigned to accomplish development, deployment and installation of the change. The CCR will then be forwarded to ECS sustaining engineering [19] to initiate the change. The M&O CCB will also status and report the progress of the CCR/ECO/DCN closure actions [13].

If any proposed change results in a cost and/or schedule impact exceeding the M&O CCB level of authority, or involves a change to a System Level 3 requirement or external interface, the Class 1 CCR will be forwarded to the ESDIS CCB/Project Configuration Management Board (SS PCMB) [20] for adjudication. If the M&O CCB determines that a CCR should be considered for incorporation into a future ECS System Release, the M&O CCB submits the CCR to the ECS Development Facility (EDF)/Science Development (SCDV) CCB [21] for adjudication.

Development, Deployment, and Installation of Changes

Development, deployment, and installation of changes are the mechanism by which approved changes are implemented.

- ECS sustaining engineering [22] develops or procures (COTS) proposed changes and tests the changes within the current operational baselined configuration at the EDF test facility. In addition to coordinating patch content and schedule as members of the Deployment IPT, ECS sustaining engineering provides the installation instructions, configuration baseline changes, and requirements/design documentation changes.

- Upon approval of a patch CCR by the M&O CCB [12], the SMC and DAACs are informed of the approval and schedule through their representatives at the M&O CCB.

- After ECS CM ships the approved patch to the SMC [17], the SMC tracks the status of the installations performed by the DAACs. The DAACs’ changed configuration baseline and installed status is then updated in the ECS Configuration Baseline database [18], and the DAACs notify ECS of the installed status so that the ECO can be closed.

Operations Configuration Baseline Maintenance

The ECS Configuration Management Organization (CMO) supports maintenance of the operations configuration baseline. Its activities include:

- administering the actions of the M&O CCB and the IPT; this activity includes recording, establishing status for, and reporting progress of the CCRs, ECOs, DCNs, and action items.

- maintaining the master copy of the ECS Configuration Baseline database containing the current change status for all CIs including approved/shipped and installed states.
Performing, and reporting status of, periodic configuration baseline verifications and audits performed in the test environment in the EDF and at the DAACs.

Science Software CM

Each site maintains control over its site operational environment and products developed and/or delivered outside of the ECS project. Science software is one such outside product:

- facilitates the ECS production of Standard Products.

- developed by science investigators at the Science Computing Facilities (SCFs).

- once delivered to the DAAC, it enters the custody of the local DAAC CM organization.

- supported as needed by ECS local personnel.

- Integration and Testing (I&T) conducted by DAAC management in coordination with the local ECS Project's Science Software I&T team.

- after acceptance, revised science software package and all test data are transferred to the control of the local DAAC Manager.

- changes to science software having inter-DAAC dependencies requires coordination with the affected DAACs.

- local DAAC CM organizations ensure that coordination and agreement among ESDIS and affected DAACs is completed before changed science software is moved into production operations.

System Operations Support (SOS)

The SOS organization provides a service-oriented organization, standard tools, and processes supplied as CM procedures that can be universally applied to implement ECS on-site CM functions at all operational activities. The SOS performs a range of project-wide CM activities:

- liaison between the ECS Project on-site activities and the ESDIS CCB.

- liaison between ECS Project on-site operations and the Sustaining Engineering Organization (SEO).

- coordination of CM functions to ensure that CM procedures are carried out in accordance with the ESDIS CM Plan.
• coordination with ECS on-site CCBs.
• maintenance of the Change Request Management System.
• support for ECS Project Reviews and audits.
• oversight for dissemination of controlled items to operational sites.
• monitoring installed configurations of developed software and COTS hardware and software for conformance to approved baselines.

The SOS reviews proposed changes to system-wide ECS operations baselines, assesses impacts of the proposed changes, and provides recommendations to the ESDIS CCB on them.

Maintenance of the M&O Libraries

ECS products deployed to the operational sites include software that is common to various operational sites, a golden copy of which is centrally maintained, and software which is site-specific. Both common and site-specific software that has been released for operational use is maintained in the M&O SW Library at each site (On-Site SW Library).

- maintained centrally at the SMC (golden copy).
- maintained by site personnel (on-site library).

Library Administration

Software documentation and other documentation may be available in hard copy or soft copy. COTS documentation is to be physically located in the library in its own section. Documentation available on CD ROM is to be located in a separate cabinet. Documentation available on line is to be posted in the library and on the Document Management Server.

Document management functions are served by two directories that exist only on the Document Management Server host machines:

- `$ECS_HOME/OPS/CUSTOM/docins`: serves to retain descriptive or other material.
- `$ECS_HOME/OPS/CUSTOM/docserver`: serves to retain the documents themselves.

At SOS, documentation and software residing in the library are controlled and maintained through a library database designed in Microsoft Access. The database enables personnel to locate and retrieve document information. The database search functions provide adequate information to retrieve the most current version of a document. The database also permits COTS documentation requests to be submitted to the librarian.
Site personnel maintain partitioned libraries to facilitate access control of science software and other software not developed by ECS. Site personnel are responsible for any CM activities concerned with this library. Specifically, certain ECS documents are under CM control as part of the baseline (e.g., 609-CD-500-001, *Release 5A Operations Tools Manual*). The Baseline Manager Tool is used to record the change history and updates to those documents, as well as to provide the master index for the library. Use of the Baseline Manager Tool is addressed in a different context under a later topic in this lesson.

Baseline Control during Maintenance and Operations

ECS is characterized by a phased implementation and delivery using multiple releases. From an M&O CM perspective, each major release has the following major milestones:

- acceptance of each host site’s Installation Plan (IP); documents the COTS hardware, the hardware’s configuration, and the installation schedule for each site.

- a Consent to Ship Review (CSR); documents the state of the configuration items including the development configuration at the ECS Development Facility (EDF), the actual configuration of each host site’s hardware, and the planned configuration of each host site’s software.

- a Release Readiness Review (RRR); documents the state of the configuration items including the actual configurations at each of the host sites.

- an Operational Readiness Review (ORR); documents the flight-certified and ESDIS-approved fully integrated EOS Ground System (EGS).

Prior to RRR, the development CM controls the baseline. Development organizations follow the practices and procedures of the host site configuration control process for installation of hardware into the facility and use of hardware (including operational test strings).

At RRR M&O CM impounds the configuration including:

- COTS hardware.

- COTS software and control files.

- Custom software binaries.

- Custom software database schema and/or contents.
• Build and installation procedures, job control decks, test, training and operational material, and related documentation; subsequent configuration changes are controlled by the appropriate engineering or operations organization at each site.

Site Authority

At RRR, the ECS On-Site Organization interfaces with the local site CCB and provides engineering recommendations for requested changes to common software. Change control authority depends on the type of change in question:

• ESDIS - authority over changes to common software for system-wide implementation.

• site CCB - authority over site-specific Class II changes (those not requiring contractual change for implementation).

 – site-specific parameters for COTS software installed at operational sites.

 – specific configuration of tools and utilities installed at local site, as delegated by ESDIS.

Configuration Identification

Configuration identification establishes unique identifiers for ECS control items to allow for the establishment and maintenance of control and status accounting for the items:

• Hardware.
• Software.
• Databases.
• Documentation.

Configuration identification originates from the ECS Development Configuration Items List (CIL), as delineated in the ECS System Baseline Specification. The specification also:

• Defines the configuration baseline data structure and data schema.
• Delineates how the items will be named, described, versioned, and controlled.

• Defines the item's associated engineering specifications and location of the actual controlled baseline data (including the ECS Configuration Baseline database).

The ECS Configuration Baseline may be changed by introduction of a new baseline associated with a new System Release at a Consent-to-Ship Review (CSR) or through changes accompanying system patches at Pre-Ship Reviews (PSRs).
For configuration control, use the following procedure.

Configuration Control

1. The Change Control Boards (CCBs) chartered by the ESDIS CCB shall apply configuration control measures to all the ECS CIs and the associated documentation prior to the time they are baselined for operations.

2. Provide a formal and effective means for proposing engineering changes to CIs.

3. Provide a formal and effective means for requesting deviations and waivers.

4. Provide formal notices of revisions.

6. Ensure the implementation of approved changes.

Configuration Status Accounting

Configuration Status Accounting produces reports or metrics and maintains records to support configuration management. These reports/metrics and records provide status tracking information to assist in the management of changes, supporting activities such as the following (with the indicated data):

- identification and resolution of configuration problems (e.g. Trouble Ticket and NCR listings and progress reports).
- M&O CCB review and approval of changes to the operations baselines (e.g. CCR listings and progress reports, CCB agendas and minutes).
- monitoring progress for releasing and development of configuration changes (e.g. ECO status reports, DCN status reports, IPT Drop Matrix listings).
- maintenance of ECS Configuration Baseline status (e.g. Approved/Shipped Changes, Installed Changes).
- verification and auditing of the operations configuration baselines (e.g. discrepancy metrics/reports reflecting differences between the approved and installed baselines in both the testing environment in the Verification and Acceptance Test Center [VATC] and at the DAACs).
For configuration status accounting, use the following procedure.

Configuration Status Accounting

1. Issue a Change Request Manager report on new CCRs and revisions monthly.
 - Provide an annual summary of CCRs and revisions.

2. Ensure CCB review of all CCRs.
 - Distribute CCR copies (and Impact Analysis forms if applicable) for review prior to the CCB meeting.
 - Print and distribute a formal agenda prior to the CCB meeting.

3. Status open action items regularly between CCB meetings.

4. Conduct CCB meetings and formally record the CCB’s disposition of each CCR.
 - Record actions, assignments, and due dates.
 - Distribute minutes to the standard distribution and inform those assigned responsibility of assigned action items.

5. Maintain document changes through the SEO Librarian.
 - When all authorized document changes have been accomplished, prepare a Document Change Notice (DCN).
 - Post the final version.
 - Distribute hard copy as required.

 - After CCB disposition, regularly status open CCRs until closure.
 - Class I events include: CCR to Project Control Management Board for review approval; Technical Review Board; and ESDIS Disposition.
 - For M&O implementation, further events include: Consent Obtained; Item Received; Installed; Document Completed.
 - A Class I CCR is not closed until the ESDIS contract officer’s authorization is received or the reference CCR has been withdrawn.
 - Class II document change CCRs may be closed with the CM Administrator’s issuance of the DCN.
 - Other non-document change CCRs may be closed when the originator verifies to the CM Administrator that all specified changes have been implemented.
Configuration Audits

Configuration audits are conducted by the ECS CMO, with the participation of the M&O CCB and the Deployment IPT, and with the support of the site CM function. These audits are of two types:

- Functional Configuration Audits (FCA).
- Physical Configuration Audit (PCA).

These audits validate that:

- the as built configuration compares with the approved baseline.
- test results verify that each ECS product meets its specified performance requirements to the extent determinable by testing.
- the as-built configuration being shipped compares with the final configuration tested in the VATC.

Any differences between the audited configuration and the final tested configuration are documented. After DAAC installation, automated scripts will be used to compare DAAC configurations to baseline documentation, with corrections as necessary either to the baseline documentation or to the DAAC configuration.

For configuration audits, use the following procedure.

Configuration Audits

1. Review the set of issues addressed in the process for which the audit is to be taken.
 - Audits are standardized within the set of issues addressed.
 - Functional Configuration Audit/Physical Configuration Audit (FCA/PCA).
 - Security Issues.
 - General Accounting.
 - Test Readiness Review.
 - Operational Certification.

2. Prepare an audit plan specifying the detailed assessments to be conducted.
 - Identify the tests, inspections, reviews, or other verifications required.
3 Prepare an agenda for any conferences to be held.
 • Identify the planned location, date, attendees, time schedule, and topics addressed.

4 Schedule resources necessary to conduct meetings and to collect and analyze the data.
 • Ensure availability of all necessary technical documentation (e.g., applicable specifications, drawings, manuals, schedules, design data, test data).
 • Ensure availability of all tools and inspection equipment necessary for evaluation and verification.
 • Ensure unencumbered access to the areas and facilities of incoming inspection, fabrication, production, and testing.
 • Ensure any necessary isolation of the item(s) and detailed parts to be reviewed.

5 Collect data.
 • Conduct the planned tests, inspections, reviews, or other verifications.

6 Analyze data to produce interpretable test results.
 • Conduct any necessary statistical tabulations, summaries, and analyses.

7 Prepare meeting minutes, including resulting audit action items.
 • Attach relevant documentation (e.g., copies of inspection reports, process sheets, data sheets, and other documentation deemed necessary by Government FCA/PCA teams.)
Configuration Control Boards (CCBs)

There are multiple levels of configuration management within the ECS Project. The project Configuration Control Board (CCB) procedures exist in the context of procedures reflected in the Earth Observing System (EOS) Configuration Management Plan, 420-02-02. That plan identifies the organization, authority, and responsibilities of CCBs for NASA Headquarters, the Earth Science Enterprise (ESE) Office, Projects within the ESE/EOS organization at GSFC, and contractors and Principal Investigators. Contractor CCB procedures, including those for ECS, are subject to the approval of their respective ESE/EOS Project Office. For the ECS program, that office is the Earth Science Data and Information System (ESDIS).

Figure 2 illustrates four levels of a CCB hierarchy for the ECS program relative to that office.

- NASA management layers.
 - Two NASA management layers at Headquarters (level 1) and Goddard Space Flight Center’s Earth Science Data and Information System (ESDIS)(level 2) control the overall ECS mission and contract, respectively. The level 2 Change Control Board (CCB) controls the ECS implementation, maintenance, and operations at the various field sites.
– At level 2, ESDIS establishes ECS CM policies and, through contract, controls ECS implementation, maintenance, and operations at the various field sites. There are also four project CCBs (AM Project, PM Project, Chemistry and Special Flights Project, and Landsat 7 Project), as well as the Earth Science Enterprise Management Control Board (MCB), which reviews Class I project change requests prior to their submission to the NASA HQ PCB.

• Project Control Management Board (level 3): The Missions System Board (PCMB) manages and controls the requirements for the ECS Flight Operation Segment (FOS), EOS Polar Ground Stations, EDOS, NISN, and ETS. The Science Systems Board (PCMB) oversees the Science and Communications Development Office at the ECS contractor, the SMC, and the individual DAAC boards.

• ECS Project CCB (level 4): At this level, the performing organization (ECS Development) controls ECS development activities through the RRR.

• On-site CCBs (level 4): control the operational ECS; each DAAC board and the SMC are responsible for maintaining the site physical baseline.
 – run by host organizations.
 – supported by ECS M&O.

Specific CM responsibilities Specific CM responsibilities pertain to each level:

- ESDIS Management -- establishes ECS CM policies.

- CCBs -- classify, prioritize, evaluate, recommend, and approve (within their authority) changes to the ECS operations baselines.

- CM administrators (at SMC, EOC, DAACs, and SCFs) --
 – establish and maintain CM records, including hardware lists, drawings, and documents.
 – facilitate the configuration change request (CCR) process.
 – monitor and report status of proposed and approved CM actions.
 – support their respective CCB (as required).

- Sustaining Engineering Organization (SEO) --
 – assesses feasibility and cost, schedule and performance impacts of proposed system-wide changes.
 – implements such changes when directed by ESDIS.
• DAAC System Engineers/System Test Engineers --
 − assess DAAC impacts of system-wide proposed changes.
 − develop and maintain ESDIS-approved DAAC-specific modifications to ECS products.

• Maintenance Coordinators --
 − maintain ECS HW and report configuration changes resulting from maintenance actions.

Relationships among CCBs

Figure 3 illustrates some of the relationships and activities in which CCBs are involved.

There are several areas of coordination and control involved in ECS configuration management:

• CCBs at operations centers and the ECS CCB interact directly with the ESDIS CCB.

• ECS sub-tier development CCBs manage installation and changes at each location prior to RRR under the governance of the ECS CCB and, as necessary, the ESDIS and host center CCBs.

• the ECS M&O organization at each center does not constitute a CCB but, rather, supports the host organization’s CCB.
• the ESDIS CCB provides configuration control over all ECS developed CIs, in accordance with the ESDIS Distributed Active Archive Center (DAAC) Strategic/Management Plan.

Science Software and Change Control

Each Science Computing Facility (SCF) performs its own configuration control, without an active support role by the ECS contractor. Specifically, the SCF provides two types of configuration control:

• Configuration control of software and databases that are to be executed in another site’s environment.

• Configuration control of SCF resources that are made available to the EOSDIS community.

The ECS M&O CM function at each DAAC accepts science software and data items from the SCF. These items are incorporated into the DAAC’s operational baseline as directed by the DAAC CCB.

The EOC controls the operational configuration of the required EOC operational baseline. The ECS M&O CM function provides services as directed.

The Project Control Management Board is charged with the responsibility for centralized coordination and control of ECS CM activities to ensure:

• ECS integrity and quality of service.

• Successful coordination with internal and external networks, systems, and on-site facilities.

• Timely ESDIS CCB visibility into and oversight of ECS operations.

• Convenient user administrative services.
Configuration Change Requests (CCRs)

All requests for change must be documented using a Configuration Change Request (CCR) form.

- Generated against the data base, document/drawing, or hardware/software product baseline affected by the proposed change.
- Persons other than the CM Administrator may complete the form electronically using word processing software.
- Numbered items on the form correspond exactly to the data entry required to be performed by the CM Administrator using the Change Request Manager tool.
- Submitted to the appropriate CCB.
- May be used as a cover sheet for deviations and waivers.

A sample of a CCR Form appears in Figure 4.
Change Request Manager

Figure 5 illustrates the main screen of the Change Request Manager tool, DDTS. It is used at the sites to prepare CCRs, and at the SMC to consolidate system-wide CCRs.

Figure 5. Change Request Manager (DDTS) Main Screen
Suppose experience with ECS has led to discussion and consensus among operators that the label for one of the dialog boxes in one of the custom ECS applications should be changed from “File Selection” to “Production Request Selection.” As CM Administrator, you have received a paper copy or electronic mail with a CCR for the proposed change. Use the following procedure and the Change Request Manager to enter the necessary data, compose, and print the CCR.

CCR Preparation

1. On workstation \textit{x0mss##}, at the UNIX prompt in a terminal window, type

 /usr/ecs/mode/COTS/ddts/bin/xddts

 at a UNIX command prompt and then press the \textit{Return} key (where \textit{mode} is likely to be TS1, TS2, or OPS).

 - **NOTE:** The \textit{x} in the workstation name will be a letter designating your site: \textit{g} = GSFC, \textit{m} = SMC, \textit{l} = LaRC, \textit{e} = EDC, \textit{n} = NSIDC, \textit{o} = ORNL, \textit{a} = ASF, \textit{j} = JPL; the ## will be an identifying two-digit number (e.g., \textit{n0mss02} indicates a management services subsystem workstation at NSIDC). If you access the workstation through a secure shell remote login (ssh), you must enter \texttt{xhost <remote_workstation_name>} and enter \texttt{setenv DISPLAY <local_workstation IP address>:0.0} prior to the ssh before entering the command after the ssh.

 - A default warning dialog box is displayed.

2. Click on the \textit{OK} button.

 - The \textit{Pure DDT S} top portion of the \textit{Change Request Manager main screen} is displayed.

3. To submit a new CCR, click on the \textit{Submit} button.

 - The \textit{Submit a New Defect} screen is displayed, with the \textit{Submit to which class of projects} field defaulted to \textit{Software}.

4. Type a question mark (i.e., ?).

5. Click on \textit{Change_Request} to select (highlight) it and then click on the \textit{OK} button.

 - On the \textit{Submit a New Defect} screen, \textit{Change_Request} is displayed in the \textit{Submit to which class of projects} field.

 - The cursor moves to the \textit{Project Name} field.

6. Type \texttt{ECS_CHNG_REQ} and then press the \textit{Enter} key.

 - The \textit{Record} screen is displayed, showing a system-generated unique \texttt{CCR number} and the \texttt{Date}, with the cursor at the \textit{Revision} field.
The **Revision** field is optional. Because this is the first submission of this CCR, press the **Tab** key to bypass this field.

- The cursor moves to the **Priority** field.

The default priority is **routine**, which is appropriate for this CCR. For higher priority CCRs, possible entries are **urgent**, and **emergency**. Press the **Tab** or **Enter** key.

- The cursor moves to the **Change Class** field.

The default **Change Class** is **II**, which is appropriate for this CCR. The other option is **I**, for changes handled by ESDIS because of cost, schedule, or mission impacts that may require requirements changes. Press the **Tab** or **Enter** key.

- The cursor moves to the **Title** field. (The **Status** field is system generated.)

Type up to 72 characters for a descriptive title for the CCR (e.g., in this case, **Change Dialog Name to Production Request Selection**). Then press the **Tab** or **Enter** key.

- The cursor moves to the **Originator Name** field.

Type up to 25 characters (use the login name) to indicate the name of the person who is the author of the proposed change. Then press the **Tab** or **Enter** key.

- The cursor moves to the first **Organization** field.

Type up to 30 characters to indicate the name of the originator’s organization (e.g., **NSIDC DAAC**). Then press the **Tab** or **Enter** key.

- The cursor moves to the first **Phone Number** field.

Type the telephone number where the originator can be reached. Then press the **Tab** or **Enter** key.

- The cursor moves to the **Organization Evaluation Engineer** field.

Type up to 25 characters (use the login name) to indicate the name of the person who initially determines whether or not the proposal has merit and should be entered into the DDTS database. Then press the **Tab** or **Enter** key.

- The cursor moves to the second **Organization** field. (The **CM Admin. Name** field is system generated.)

Type up to five characters to indicate the name of the CM Administrator’s organization (NOTE: Valid values are **ASF**, **EDC**, **EOC**, **GSFC**, **JPL**, **LaRC**, **NSIDC**, **ORNL**, and **SMC**). Then press the **Tab** or **Enter** key.

- The cursor moves to the **Phone Number** field.

Type the telephone number where the CM Administrator can be reached. Then press the **Tab** or **Enter** key.

- The **Proposed Change** enclosure screen is displayed.
The **Proposed Change** enclosure screen enables the operator to enter a free-text description of the perceived need or problem and a proposed solution. Use the arrow keys on the keyboard to move the cursor down two lines, and, under the **Need or Problem** heading, type a sentence or two stating that the current title on the dialog box is causing a problem. Then use the arrow keys to move the cursor down under the **Proposed Solution** label, and type a sentence stating the proposal to change the dialog box label to “Production Request Selection.”

Follow menu path **File→Save Changes and Dismiss Editor** on the **Proposed Change** enclosure screen.

- The contents of the enclosure are saved and the **Change Request Manager main screen** is displayed, with the entered CCR data appearing in the **Record** section.

Click on the **Commit** button.

- The CCR Record is stored in the DDTS database and its name appears in the list of ‘**Change Request’ Records** in the top portion of the **Change Request Manager main screen**.

Click on the **Print…** button on the **Change Request Manager main screen**.

- The **Printing Options** screen is displayed. This screen provides the operator with the capability to print a highlighted CCR or all of the CCRs in the index on the main screen, either in full-page, index, one-line, or three-line format.

Click on the **Print…** button on the **Printing Options** screen.

- The highlighted CCR is sent to the printer.

On the hard copy of the CCR, check off the designated CCB for changes processed by the ESDIS CCB and its ECS site-level chartered CCBs at the SMC, DAACs, and EOC. (**NOTE**: This information is not entered into the Change Request Manager.)

- Select target CCB from among ESDIS, ECS, SMC, EOC, or one of the DAACs (GSFC, LaRC, ASF, EDC, JPL, NSIDC, ORNL).
This page intentionally left blank.
Impact Analysis

As an adjunct to the CCR process, support of the ESDIS CCB may require the assessment of the impact of a proposed CCR on local or system maintenance and operations. The impact assessment may be conducted by the SEO or site maintenance and operations engineers. However, assessing the impact of CCRs with significant system implications and/or potential system-wide application may require the assistance of the ECS development organization. There is a formal procedure for requesting impact analysis. It requires preparation of a form requesting CCR Impact Analysis. The form is illustrated in Figure 6.

Figure 6. CCR Impact Analysis Form
The CCR Impact Analysis Form may be completed electronically using word processing software. When a CCR is distributed to the parties of record (see step 7 under “System-level Change Control” and “Site-level Change Control, pages 10 -14 of this lesson guide), an accompanying Impact Analysis form requests from each Evaluator an assessment of the projected costs and technical impacts of the proposed change. For guidance in preparing impact analysis requests, use the following procedure.

Impact Analysis Request Procedure

1. Determine the sites from which to request impact assessments for the CCR under consideration.
 - After the impact assessments are completed, these sites, designated impact evaluators, are entered into the Change Request Manager software (DDTS). The site(s) may be one or more of the following: SEO, ESDIS, GSFC, LaRC, ASF, EDC, JPL, NSIDC, ORNL, SMC, EOC, EDF.

2. Enter the **Responder Request Number** on the first CCR Impact Analysis form.
 - The **Responder Request Number** can be an arbitrary sequence number from 1 - 12 which, in conjunction with the **CCR Number**, uniquely identifies the impact analysis request. The numbers 1 - 12 should be used because they correspond to numbers used to enter the impact evaluators into the Change Request Manager after the impact assessments are completed.

3. Enter the **CCB Schedule Date** on the CCR Impact Analysis form.

4. Enter on the CCR Impact Analysis form the **CCR Number** of the CCR to be evaluated.

5. Enter on the CCR Impact Analysis form the **CCR Log Date**.
 - The **CCR Log Date** is the date the CCR was submitted.

6. Enter on the CCR Impact Analysis form the data identifying the CCR Originator.
 - The data include the name of the **CCR Originator**, address, phone, and e-mail.

7. Enter on the CCR Impact Analysis form the data identifying the Evaluation Engineer.
 - This refers to the Organization Evaluation Engineer listed as the Evaluation Engineer on the CCR. The data to be entered include the name of the **Evaluation Engineer**, address, phone, and e-mail.

8. Enter the **Requested Return Date** on the CCR Impact Analysis form.
 - The **Requested Return Date** should be set for up to two weeks prior to the CCB Schedule Date, to allow preparation and entry of a summary of all Impact Assessments and to permit submission of the CCR with the CCR Impact Summary to the CCB one week prior to the schedule date for the CCB meeting.

9. Repeat steps 2 - 8 for each additional Impact Evaluator identified in Step 1.
CCR Impact Summary

When the Impact Assessment requests are received at the site(s) of the Impact Evaluators, a responder is assigned to conduct the assessment and prepare the response. The responder conducts the assessment and fills in the necessary data on the Impact Analysis form:

- Responder data.
- Rough Order of Magnitude (ROM) Impact Analysis.
- Technical Assessment.
- Responder signature and date.

The Impact Evaluator returns the CCR Impact Analysis form to the requesting Evaluation Engineer. The Evaluation Engineer uses the returned Impact Analysis data to prepare a CCR Impact Summary form. The form is illustrated in Figure 7.

![CCR Impact Summary Form](image_url)

Figure 7. CCR Impact Summary Form
The Evaluation Engineer may complete the CCR Impact Summary form electronically using word processing software. The CM Administrator then uses the Change Request Manager software (DDTS) to enter the Impact Summary and attach it to the CCR. To attach a CCR Impact Summary using the Change Request Manager tool, use the following procedure (Note: To change the state of a CCR, you must have CM Administrator privileges).

Preparing a CCR Impact Summary

1. With the Change Request Manager open and its Record screen (see Figure 5) showing the data for the CCR (which has been committed to the database), follow menu path Change_State→Assign-Eval.
 - The Record screen displays associated data fields for assigning impact assessment and the cursor at the Evaluation Engineer field.

2. Enter the name of the Evaluation Engineer.
 - Use the login name (up to 8 characters) of the engineer responsible for analyzing the proposed system change.

3. Enter the name of the Evaluation Engineer’s Organization.
 - Enter up to 5 characters; must be one of the following: SEO, ESDIS, GSFC, LaRC, ASF, EDC, JPL, NSIDC, ORNL, SMC, EOC, EDF.

4. Other entries on the screen are optional; as desired, enter any of the optional data: Evaluation Engineer’s Email Address, Impact Evaluators, Sites Affected, Related CCR#, CI Affected, Documents Affected, Release Affected, Baselines Affected.
 - The Impact Summary enclosure screen is displayed.

5. Enter information as desired from the Evaluation Engineer’s CCR Impact Summary.
 - The Impact Summary enclosure screen allows entry of free-text information under headings of Summarize the impact statements received from the organizations requested to provide impacts, Resources Summarized, Technical Summary, ROM Summary (BOE, Cost, and Schedule), and Recommendation.

6. Follow menu path File→Save to save the enclosure.
 - The selected state, Assigned-Eval, is now shown as the current state (Status) of the CCR record.
Software Baselines and Changes

Software releases are deployed through SMC by the ECS CCB or SEO with approval of the ESDIS CCB:

- Version Description Document (VDD) provides summary documentation package.
- ECS Project CMO or SEO maintenance programmers assemble and package the delivery.
- Delivery to SMC, or, with ESDIS permission, directly to the sites.

A number of situations may require a change in software baselines. For example:

- a COTS software problem – an operator or user reports (using a Trouble Ticket) a problem with a COTS software package, and the vendor provides a patch to resolve the problem.
- a custom software problem – an operator or user reports (using a Trouble Ticket) a problem with custom ECS software, and the resolution involves a software modification.
- a science software upgrade – the Science Computing Facility (SCF) develops and provides an upgrade to the science software and the Science Software Support Team recommends its implementation.
- a COTS software upgrade – one of the COTS software packages is upgraded by its commercial developer, and the upgrade is shipped by the vendor to the ECS Property Administrator, in accordance with the vendor’s contract.
- a system enhancement – a science user or one of the DAAC operators proposes an enhancement to one of the ECS custom software configuration items, and, when approved by the ESDIS CCB, the enhancement is developed by the SEO or by the ECS development organization.
Software Transfer and Installation

For any of the scenarios, a software maintenance package that has been prepared by the SEO is transferred from the SMC to a remote site (a DAAC), and later the package is installed on a selected host computer under a CM-controlled process. Figure 8 illustrates the functional flow for the transfer.

- Change originates at the SEO, beginning when the SMC CM Administrator receives the software maintenance change.
- SMC CM Administrator provides ECS system-wide CM and exercises control and/or monitoring over the configurations.
- SMC CM Administrator directs transfer to a designated DAAC drop-off point, the on-site software library.
- Site CM Administrator ensures that changes are properly documented and coordinated, and maintains control of all configured hardware and software.

![Figure 8. Software Transfer Functional Flow](38 625-CD-512-001)
Figure 9 illustrates the functional flow for installation.

- At the DAAC, the installation actions are executed by the DAAC Software Maintenance Engineer.
- The installation is under direction from the DAAC CCB.
- The DAAC CM Administrator ensures that changes are properly documented and coordinated, maintains control of all configured hardware and software, and assists in the development and administration of the library with respect to CM procedures.
- The DAAC Software Maintenance Engineer produces, delivers, and documents corrections, modifications, and enhancements made to ECS software (including COTS products), and/or adapts or incorporates COTS software for ECS use.
- The DAAC System Test Engineer develops and executes tests of received software changes with the support of DAAC operators, and submits requests to the DAAC Resource Planner for installation scheduling.

![Figure 9. Software Installation Functional Flow](image)
Software Transfer

When the SEO has completed preparation of a software maintenance change package for a change approved by the ESDIS CCB, the SEO CM Administrator requests that the SMC distribute the package. The SMC CM Administrator promotes the change into the Operational Baseline and updates the Baseline Record and Inventory Record using the Baseline Manager tool and Inventory/Logistical Management tool (XRP-II).

Update the SMC Software Baseline Record

The next step is to update the Baseline Record to document the software baseline change. The process, tool, and procedure for accomplishing this update are described in detail in a subsequent subsection on Changes to the Baseline. When the Baseline Record update is complete, the SMC CM Administrator completes the transfer.

- Notifies the remote site(s) that will receive the change package.
- Checks the software change package for completeness before dispatch.
- Dispatches the package to the remote site(s).
- Receives confirmation that the package has been received.

Installation at Site

Installation is dependent on Review and approval by ESDIS, and then proceeds systematically:

- the Version Description Document (VDD) gets final updates for system and center-specific material identified by ESDIS or the operational centers, and the final VDD is published.
- the build is installed, along with operational and user documentation.
 - ECS Assistant for installation.
 - Scripts for System Administrator to do installation.
- controlled document updates are provided to SEO Document Maintenance and entered into the CM system.
- the CM system is updated to reflect M&O and center-specific baselines.

Subsequently, the DAAC Software Maintenance Engineer implements and tests the new software:

- Tests individual packages (unit, subsystem, system).
- Runs the full final software in the operational environment.
- Notifies the SMC of the results.
Finally, the DAAC CM Administrator updates the site baseline record using the Baseline Manager (BLM) tool, as described in detail in a subsequent subsection on Changes to the Baseline.

- DAAC CCR Number.
- Software Package Identification.
- Package Name.
- Software Upgrade Name.
- Version.
- File Structure.
- Type.
- Installation Date.

As appropriate, especially for COTS software changes, it may also be necessary to update the inventory and property management records, using the Inventory/Logistics Management (ILM) tool (see subsequent section on Changes to the Baseline).
This page intentionally left blank.
Hardware Baselines and Changes

The hardware baseline is established at Release Readiness Review (RRR) following formal Physical Configuration Audit (PCA) and Functional Configuration Audit (FCA).

- ESDIS approves the establishment of the operations baseline.
- the configuration baseline is recorded in the Engineering Release Record.
- M&O conducts testing of builds to ensure proper implementation of CCRs with no defects introduced.

Changes to the hardware baselines are anticipated to be infrequent, because the hardware is primarily COTS. In the event of hardware failure, if the repair can be made with a part of the same make, model, and version as the faulty one, there is no need for a CCR because the baseline remains the same. Under some circumstances, however, a CCB action may be necessary. For example:

- a COTS hardware repair that requires a CCR -- a COTS hardware problem that is repaired, under emergency conditions and with the approval of the site manager, with a part that does not conform to the baseline (e.g., timely repair is essential and the only spare part available is a later version) requires a CCR to document the configuration change and the authority for the change.

- a system enhancement – any change in hardware configuration that occurs in a new release, or as an upgrade, requires a CCR.
Hardware Installation

Repair with part of same make, model, version may be made by the vendor’s maintenance technician; the Maintenance Engineer simply records the action and enters the serial number of the new part in the property management system.

If no spare of the baseline make, model, and version is available to make a timely repair for a system that must be returned to service immediately, but a workable part is available (e.g., a later version), the site manager may authorize that part to be used for repair if tests conclude that it works properly. Nevertheless, this constitutes a change that requires the following CM actions:

- preparation of a CCR to document the change.
- review/approval by the site CCB.
- review by SEO/ESDIS to assess impacts/applicability to other sites.
- provision of controlled document updates to SEO Document Maintenance and entry into CM.
- CM system updates (e.g., baseline, inventory) to reflect the approved change.
- Audits (i.e., FCA/PCA) supported as described previously.
Changes to the Baseline

Changes to configuration items typically require use of several software tools for their management, implementation, and documentation. We have seen how the Change Request Manager, DDTS, is used for Configuration Change Requests, and how the ECS Assistant is used for the installation of approved software changes. This subsection provides a brief review of the role of the Management Subfunction Trouble Ticket software in baseline changes, and then addresses the use of two additional tools:

- the Baseline Manager (BLM) – an XRPII application for maintaining data defining the ECS baseline and recording changes to that baseline.
- the Inventory/Logistical Management (ILM) tool – an XRPII application for maintaining records related to inventory changes (e.g., item identification data, such as serial numbers, part numbers, manufacturers, vendors, or other data).

Management Subfunction and Trouble Ticket System

You will no doubt remember that the impetus for a change may often be a system event that results in a Trouble Ticket. Many changes involve the management subfunction software. Specifically, the management software includes the Trouble Ticket System (TTS), which is a tool used at the DAACs, SMC, and EOC to record and report problems with ECS. Most of the problems encountered are fixed locally, but some problems involve system-level issues. For those, the SEO may use a TT Telecon to discuss the issues. Problems that may have such system-level implications are those that may be related to groups of trouble tickets (TTs), that may affect more than a single site, that must be referred to the ESDIS Project Office and the ECS development organization, or that require coordination for multi-site change implementation.

Figure 10 shows the flow of a TT and related CCR through the various CCBs and the TT Telecon. Circled numbers on the figure indicate key elements in the flow:

1. An approved TT is discussed at a TT Telecon.
2. At the Telecon, a decision is made whether to escalate the resolution of the TT.
3. If the decision is to escalate, rather than resolve the issue with a local solution, a CCR is proposed.
4. A CCR Telecon and related deliberations may result in iterations of rework, entailing related CCRs, responsibility for the affected configuration items, impact analysis, and other activities to optimize the resolution.
5. The site CCB deliberates on the CCR.
6. The site CCB forwards the CCR with recommendations to the ESDIS CCB.
7. As necessary, the ESDIS CCB forwards the CCR to the ECS CCB and other CCBs for impact assessment.

8. If appropriate, elements 5, 6, and 7 may be iterated in rework with additional deliberations and feedback, with possible disapproval. Otherwise, the CCR is approved for further action by the ESDIS CCB.

9. If the ESDIS CCB approves the CCR, it may issue CCR Implementation Instructions to the site CCB.

10. If the CCR entails additional development affecting ECS, the ESDIS CCB may issue CCR Implementation Instructions to the ECS CCB and/or other CCBs.

11. The site CCB issues CCR implementation directives, and their status is monitored and coordinated with the SEO through a CCR Telecon.

12. The CCR Telecon also coordinates the schedule for implementation of changes that is reported back to the TT Telecon.

13. The TT Telecon monitors the scheduled implementation.

14. At the conclusion of the scheduled implementation, the CCR is verified.
Baseline and Inventory Management: Processes

The ECS provides BLM and ILM tools to assist in documenting changes to the baseline and inventory, and to maintain a historical record of those changes. The tools are used in the System Monitoring and Coordination (SMC) function to maintain system-level records, and at operational sites to maintain site-level records. Sometimes it is appropriate for a tool to be used at the system level (e.g., to specify the nature and effective date of a change to the system baseline), with a transfer of appropriate records to the sites to reflect the change. As another example, some functions are typically not exercised at the site level (e.g., purchasing of system equipment), and therefore ILM records related to those functions (e.g., purchase orders, vendor data) are not maintained at the sites. The tools are applied at the sites, however, to prepare and maintain site-specific records. For SMC system-level comprehensive documentation (e.g., records reflecting baselines or inventory at all sites), site-specific records are transferred to the SMC BLM/ILM systems.

Baseline Terms and Concepts

Baseline management is a process to identify and control baselined versions of hardware and software, to provide a standard configuration of systems throughout all sites, and allow unique site-configured systems and baselines. It identifies interdependencies between hardware and software items, and permits maintenance of a complete history of baseline changes throughout the life of the project. For ECS baseline management and BLM tools, it certain terms and concepts are key to understanding how data on the system baseline are stored and tracked.

- **Control Item** – any ECS item under version control by Configuration Management.

- **Configuration Item** – an aggregation of hardware, firmware, software, or any discrete component or portion, which satisfies and end user function and is designated for configuration control.

- **Baseline** – a configuration identification document or set of such documents formally designated by the Government at a specific time during the life cycle of a configuration item (CI).

- **Configured Article** – a control item reportable as part of the Configured Articles List (CAL).

- **CIL** – a Configuration Items List (CIL) identifies the approved set of CIs that are subject to CM requirements and procedures.

- **CAL** – a Configured Articles List (CAL) describes all CIs, critical item hardware and software, and supporting documentation by which the exact configuration definition of the hardware and software can be determined.
Additional terms, some of which address specific entries in the BLM tool, further define how data on the system baseline items and structure are tracked.

Assembly – an item made up of other items. A *Parent* item is a higher-level item (e.g., an assembly), which may have one or more *Child* items, or components.

Bill of Material – the list of items that comprise an assembly.

Product Structure – the parent-child pairings that define the bill of material for an assembly; each product structure record specifies the effective dates and quantities for a single component of a parent for each engineering change.

Active Date – the date a component becomes effective in an assembly’s bill of material.

Inactive Date – the date a component is no longer effective in an assembly’s bill of material.

Engineering Change – a mechanism for grouping, reporting, and controlling product changes collectively.

Revision – the sequence number of a product structure change to an assembly; it signifies a change to the configuration of an assembly that does not alter its form, fit, or function.

Implementation Status – a record describing the deployment of a control item to a site and the current state and associated date of its implementation; each control item has one record for each site to which it is deployed.

Exporting Data – creating a formatted file or records extracted from the BLM database; control item engineering change, product structure, and interdependency records may be extracted and sent to another BLM site via ftp.

Importing Data – loading BLM data from a formatted file.

At the lowest level, the baseline is composed of configured articles that are the specific types of items that make up ECS and are tracked using the BLM tool. It is important to recognize, however, that we impose a conceptual structure on those configured articles to help us think about the system. In fact, it is possible to conceptualize the structure of the system in a number of different ways, and we may select a different conceptual structure based on the requirements of the situation. The ECS baseline management approach and the BLM tool permit recording and tracking these different conceptual baselines, which can be related to the same records of the configured articles.

For example, system designers may conceptualize the system in terms that will help them track subsystems and the configuration items for which each subsystem team is responsible. This may produce a baseline structured according to a design view, such as that illustrated in Figure 11.
Figure 11. ECS Baseline Concept from a Design (CIL/CAL) View

At an operations site, the concept reflected in the upper layers of the Design View baseline structure may not be particularly useful. Although the same configured articles are involved, it may be desirable, for instance, to track items from the viewpoint of network administration. The resulting baseline product structure may reflect that shown in Figure 12.

Even if an operations site is to view ECS product structure as composed of subsystems, it is likely that the concept of CIs will be of little use. Instead, the site is likely to be focused on what hosts make up the subsystems. Therefore, the subsystem view at an operations site may be similar to that illustrated in Figure 13.

When the Baseline Manager database is installed at a site, it will reflect ECS-developed product structures, and site personnel will not normally need to enter all the data necessary to define these product structures. Instead, BLM tasks are likely to be limited to areas such as processing changes and entering site-unique data. However, an understanding of the different ways of conceptualizing the system will help in interpreting baseline data reflected in the BLM.
Figure 12. ECS Baseline Concept from an Operational (Network) View

Figure 13. ECS Baseline Concept from an Operational (Subsystem) View
Baseline and Inventory Management: Tools

The Baseline Manager (BLM) tool and the Inventory/Logistical Management (ILM) tool are applications of XRP-II. The main screen of XRP-II, illustrated in Figure 14, permits access to four menus (Note: Depending on the access level established for you by the XRP-II administrator, you may not have access to all of the menus):

- **Baseline Management** menu provides access to functions for maintaining control item and bill of material information.

- **ILM Main Menu** provides access to functions for Inventory/Logistical Management (ILM) services, including entry and management of EIN (Equipment Identification Number) information and management of the EIN structure for the ECS inventory.

- **System Utilities Menu** provides access to functions for maintaining information that spans functional domains, and for importing and exporting records.

- **System Tools** menu provides access to functions for managing the security, health, and configuration of XRP-II.

![Figure 14. XRP-II Main Menu Screen for Baseline Manager and Inventory/Logistical Management](image)

The user interface for XRP-II is a Character User Interface (CHUI). The various screens are accessible through navigation of the hierarchical menu structure illustrated in Figure 20 (1 - 3). Data concerning one or more control items can be added, modified, or deleted by selecting
Figure 15. XRP-II Hierarchical Menu Structure (1 of 3)

Figure 15. XRP-II Hierarchical Menu Structure (2 of 3)
an appropriate data entry screen from the Control Item Master Menu. Data entry screens permit modification of the master file (or catalog) that describes control items individually. Each screen accesses a particular set of records and contains a unique set of fields corresponding to a control item’s class. All screens function in the same way, and use bottom-line commands such as those shown in the **Software Items Only** details screen illustrated in Figure 16.

Figure 16. XRP-II Software Items Only CHUI
Baseline Manager (BLM)

To understand the use of the BLM software, consider as an example a software change consisting of a revised Graphical User Interface (GUI) package for the ECS Ingest application. The revised GUI package is considered a new software element, one of several elements in the collection, or “catalog,” of control items that make up the Operator Ingest Interface (I/F) Computer Software Component (CSC) assembly in the ECS product structure. To document the change, it is necessary to add the new element to the catalog of version-controlled items, define an engineering change for the Operator Ingest I/F CSC assembly, and include the element in the list of items that will now make up that assembly.

Therefore, to update the baseline records for this software change, you will need to add records: a) to define the new item, b) to specify its place in the product structure (i.e., what assembly it belongs to) through an engineering change notice, and c) list the item(s) that constitute the change. The updates will use the Software Items Only screen previously illustrated in Figure 16, and will require the use of an Engineering Change screen, shown in Figure 17, as well as an Item List form accessible through a menu choice on the Engineering Change Entry screen. The following procedure illustrates the use of the Baseline Manager tool and these screens to accomplish the update (Note: You must have XRP-II privileges to perform the update).

![Figure 17. XRP-II BLM Engineering Change Screen](image-url)
Update the Baseline Record using the Baseline Manager Tool

1. On workstation x0mss##, at the UNIX prompt in a terminal window, type pcs <ipaddress> xterm at a UNIX command prompt and then press the Return key.

 • NOTE: The x in the workstation name will be a letter designating your site: g = GSFC, m = SMC, l = LaRC, e = EDC, n = NSIDC, o = ORNL, a = ASF, j = JPL; the ## will be an identifying two-digit number (e.g., n0mss02 indicates a management services subsystem workstation at NSIDC). If you access the workstation through a secure shell remote login (ssh), you must enter xhost <remote_workstation_name> and enter setenv DISPLAY <local_workstation IP address>:0.0 prior to the ssh before entering the command after the ssh. The <ipaddress> is the ip address of x0mss##, and xterm is required when entering this command on a Sun terminal.

 • A script is executed which determines the operator’s terminal type from the environment, prompts for a terminal ID, and establishes a Baseline Manager/ILM operating environment. XRP-II is then started and the Main Screen is displayed.

2. Type the number 1 (for Baseline Management) and press the Enter key.

 • The Baseline Management menu screen is displayed.

3. Type the number 1 (for Control Item Master) and press the Enter key.

 • The Control Item Master menu screen is displayed.

4. Type the number 3 (for Software Items Only) and press the Enter key.

 • A “Selecting items . . .” message is briefly displayed, and then the Software Items Only CHUI screen is displayed, populated with data for the first record.

5. Type “/A” (for Add).

 • The fields are cleared and the cursor is at the entry field for Control Item ID:, with a note stating “RETURN for next.”

6. Press the Enter key.

 • The system generated Control Item ID is displayed in the text field and the cursor moves to the NAME: field.

 • Make a written note of the Control Item ID, which you may need to enter on another form later in the exercise; you can find it using system functions, but it may be handy to have it written down.

7. Type the name of the element (for this exercise, type “Training: GUI change”) and then press the Enter key.

 • The typed entry is displayed in the NAME: field.

 • The cursor moves to the MNEMONIC: field.
To bypass entry of a Mnemonic, which is not required, press the Enter key.

- The cursor moves to the DESCRIPTION: field.

Type a description (e.g., “Training: Catalog element for GUI change” and then press the Enter key.

- The typed entry is displayed in the field, and a selection zoom box for the next field, Item Class:, is displayed, showing choices of baseline, software, hardware, other, partition, host, system, design, network, and document.

Use the keyboard arrow keys to move to the cursor to software, and then type T (for Tag) to select, or “Tag,” the selection (software).

- The selection is highlighted to indicate that it is tagged.

Type Q (for Quit), and then press the Enter key.

- The selection (software) appears in the Item Class: field.

- The cursor moves to the ITEM SUBCLASS: field.

Type Interfaces -GUI and then press the Enter key.

- Although entry in the ITEM SUBCLASS: field is not required, and it may be bypassed by just pressing the Enter key, entries in this field are useful for searching and sorting in preparation of reports. Software subclasses typically will include such entries as application, API, DBMS, utility, tool, operating system (OS), patch, OS patch, bundle, and others.

- The cursor moves to the VERSION: field.

If there is a version identified for the changed software element, enter it here. For this exercise, type “1.2” and then press the Enter key.

- The typed entry appears in the VERSION: field.

- The cursor moves to the PRED ITEM: field.

If you know the Baseline Manager Control Item ID for the Predecessor item (in this case, for the old GUI package for Ingest), enter it in the PRED ITEM: field and then press the Enter key. For this exercise, type ”ECS-000000” and then press the Enter key.

- The typed entry appears in the PRED ITEM: field.

- The cursor moves to the *CONFIG ARTICLE: field (the “*” indicates that entry is required).

Type ”Y” and then press the Enter key.

- The typed entry appears in the *CONFIG ARTICLE: field.

- The cursor moves to the *PLANNING RESOURCE: field (the “*” indicates that entry is required).
16 Type "N" and then press the Enter key.
 • The typed entry appears in the *PLANNING RESOURCE: field.
 • The cursor moves to the SCOPE: field.
17 Type “C” (for Core; other choices are “S” for site-Specific, “U” for site-Unique, and “O” for Other) and then press the Enter key.
 • The typed entry appears in the SCOPE: field.
 • The cursor moves to the IMPLEMENTATION STATUS: field.
18 For this exercise, to bypass the IMPLEMENTATION STATUS: field, press the Enter key.
 • The IMPLEMENTATION STATUS: field is a shortcut to the control item implementation status table containing the list of sites to which a control item is deployed, together with the installation date and implementation status of the control item at each site. It permits the option of typing “/Z” to Zoom out to the table, where you can add or update implementation status records.
 • A selection zoom box for the next field, DEVELOPER:, is displayed, showing choices of coded names of companies/organizations that produced the control item.
19 This exercise addresses custom software developed by ECS, but ECS is not in the displayed list. Therefore, type “Q” (for Quit).
 • The displayed list disappears, and the cursor is left in the DEVELOPER: field.
20 Type “ECS” and then press the Enter key.
 • The typed entry appears in the DEVELOPER: field.
 • The cursor moves to the RESP ENG: field.
21 Type “/Z” to zoom out to a table listing responsible engineers’ names, addresses, and phone numbers.
 • The data for the first responsible engineer are displayed. You may scroll up and down the list by typing “N” (for Next) or “P” (for Prior), or, you may type “V” to switch the view to display the data for several engineers in columns.
 • If the name you need is not in the list, you may add data for the responsible engineer by typing “/A” (for Add) and filling in the fields.
22 When you have the cursor at the ENGINEER: field for the responsible engineer you want to select, type “T” (for Tag) to tag that engineer for entry into the RESP ENG: field.
 • The tagged entry is highlighted.
23 Type “Q” (for Quit).
 • The number for the responsible engineer is displayed in the RESP ENG: field.
 • The cursor moves to the COMMODITY CODE: field.

24 Type “/Z” to zoom out to a table listing classifications for how the item was produced or obtained.
 • A selection zoom box appears with a pick list; choices are mod-COTS (modified COTS), GFE, freeware, custom, sharewar (shareware), other, and heritage.

25 Use the keyboard arrow keys to scroll down to custom, and then type “T” (for Tag) to tag the selection for entry into the COMMODITY CODE: field.
 • The selection is highlighted.

26 Type “Q” (for Quit).
 • The selection (custom) is displayed in the COMMODITY CODE: field.
 • The cursor moves to the OEM PART: field.

27 Other fields on the Software Items Only CHUI are not required entry fields. Therefore, this completes the entries on this screen for now. Type “Q” (for Quit) or press the F3 key to return to the Control Item Master menu.
 • The Control Item Master menu is displayed.

28 Press the F3 key to return to the Baseline Management menu.
 • The Baseline Management menu is displayed.

29 To select Bill of Material, type “2” and then press the Enter key.
 • The Bill of Material menu is displayed.

30 To select Engineering Change Approval (the screen used to create a record for an approved change), type “2” and then press the Enter key.
 • A “Selecting items . . .” message is briefly displayed, and then the Engineering Change Approval CHUI screen is displayed, populated with data for the first record.
 • The Engineering Change Approval screen is used to add approved engineering changes in the BLM, and should be used for all entries of CCB-approved changes.

31 Type “/A“ (for Add).
 • The fields are cleared and the cursor is at the entry field for Parent Part:.

32 Type “/Z” to display a table of control items from which to select a Parent Part.
 • A selection zoom box is displayed showing, in columns, Control Items, Names, and Mnemonics.
Type “S” to initiate a search for selected items.

- A message is displayed instructing “SELECT: enter field(s) to be selected then F5 start (F2 clear F3 cancel) . . .” followed by a field to enter the search string.

To move the selection field under the Name column in the zoom box, press the Enter key.

- The field for entry of the search string moves to the right, under the Name column.

To search the list for the name **Operator Ingest I/F CSC**, Type “**Operator**” and then press the F5 key.

- The selection zoom box displays the Control Item ID and Name for the **Operator Ingest I/F CSC**.

Type “T” (for Tag) to tag the selection for entry into the **Parent Part:** field.

- The tagged entry is highlighted.

Type “Q” (for Quit).

- The Control Item ID for the Operator Ingest I/F CSC is displayed in the **Parent Part:** field.
- The cursor moves to the **Engineering Change:** field, with a note “RETURN for null”.

Type the number or identifier of the Engineering Change Notice (for this exercise, type **Training**) and then press the Enter key.

- The screen displays the typed information in the **Engineering Change:** field, displays the Control Item Name (in this case, **Operator Ingest I/F CSC**), in the Name: field, and populates the **Date Entered:**, **Operator ID:**, **Active Date:**, and **Inactive Date:** fields.

- The cursor moves to the **PROJECT:** field.

Type **ECS** and then press the Enter key.

- The cursor moves to the **APPROVAL CODE:** field.

Type “A” (for Approved) and then press the Enter key.

- The cursor moves to the **APPROVAL DATE:** field, with an unspecified date provided as ***/**/**.

Type the date on which the change was approved, in the format mm/dd/yy, and then press the Enter key. For this exercise, use today’s date.

- The cursor moves to the **CCR #:** field.

Entries in the fields **CCR #:**, **TT:** **SORT ORDER:** **DRAWING:** **REVISION:** **IMPLEMENTATION CODE:** and **BASELINE / RELEASE:** are not mandatory; to
bypass a field, just press the Enter key, continuing until the cursor is at the ACTIVE DATE: field.

- If there are associated data (e.g., if the Engineering Change is associated with a CCR and/or Trouble Ticket, or if there is a relevant engineering drawing), enter the relevant data in the appropriate fields (e.g., enter the CCR ID number, enter the TT ID number, enter the Drawing identification) before you press the Enter key.

- If you wish to enter data to be used in later sorting or manipulating the data base (e.g., Sort Order, Implementation Code), enter the relevant data in the appropriate fields before you press the Enter key.

- The cursor moves to the next field; when the cursor reaches the ACTIVE DATE: field, do not press the Enter key to bypass the field.

43 Type today’s date, using format mm/dd/yy, and then press the Enter key.

- The cursor moves to the INACTIVE DATE: field.

44 Press the F3 key to exit from the Add mode.

- If you press the Enter key instead, the bottom line menu changes to show function key options; you still need to exit from the Add mode (by pressing the F3 key).

- The screen shows the data you have added, with the bottom line menu offering choices available for the change.

45 Press I (for Items).

- The BLM enters the Add mode for items and the screen displays an entry form for listing the items in the Engineering Change that are to be added to the Parent Part at the effective date of the Engineering Change notice; the form header data reflects the Engineering Change Entry for the Parent Part, and the cursor is in the first column, labeled COMPONENT.

46 Type “/Z” to display a table of control items from which to select a Component.

- A selection zoom box is displayed showing, in columns, Control Items, Commodities, Names, Mnemonics, and Status.

47 Type “S” to initiate a search for selected items.

- A message is displayed instructing “SELECT: enter field(s) to be selected then F5-start (F2-clear F3-cancel) . . .” followed by a field to enter the search string.

48 To move the selection field under the Name column in the zoom box, press the Enter key twice.

- The field for entry of the search string moves to the right, under the Name column.
To search the list for the name of the item you are adding to the baseline (Training: Catalog element for GUI change), Type “Training*” and then press the F5 key.

- The selection zoom box displays the Control Item ID and Name for the items beginning with “Training,” including Training: Catalog element for GUI change.

If necessary, use the keyboard arrow keys to scroll up or down the list until the cursor is at the desired entry (Training: Catalog element for GUI change); then type “T” (for Tag) to tag the selection for entry into the Component list.

- The tagged entry is highlighted.

Type “Q” (for Quit).

- The Control Item ID for the Training: Catalog element for GUI change is displayed in the Component column in the items form, and other associated data populates other columns on the form.

To document that the predecessor item will no longer be part of the baseline, type /A to add the predecessor item and document its Inactive Date.

- The screen displays the cursor in a blank entry field in the COMPONENT column.

Type “/Z” to display the table of control items from which to select a Component.

- A selection zoom box is displayed showing, in columns, Control Items, Commodities, Names, Mnemonics, and Status.

Type “S” to initiate a search for selected items.

- A message is displayed instructing “SELECT: enter field(s) to be selected then F5-start (F2-clear F3-cancel) . . .” followed by a field to enter the search string.

To move the selection field under the Name column in the zoom box, press the Enter key twice.

- The field for entry of the search string moves to the right, under the Name column.

To search the list for the name of the predecessor item you are adding to the baseline (Training: Predecessor GUI Item), Type “Training*” and then press the F5 key.

- The selection zoom box displays the Control Item ID and Name for the items beginning with “Training,” including Training: Predecessor GUI Item.

If necessary, use the keyboard arrow keys to scroll up or down the list until the cursor is at the desired entry (Training: Predecessor GUI Item); then type “T” (for Tag) to tag the selection for entry into the Component list.

- The tagged entry is highlighted.
58 Type “W” (for Where) to obtain a Control Items Query screen showing where the item is used.
 • The Control Items Query screen is displayed showing the Parent Part(s) where the component is used, with data including Active and Inactive Dates.

59 Make a written note of the Active Date and the Inactive Date for the component in question; ensure you use the data from the Parent Part that is the subject of the Engineering Change Approval you are preparing, and type “R” for (Right) to scroll to the right as necessary to see the needed information.
 • It is necessary to note these dates so you can enter valid data on the items list. Because the items list screen takes the Active Date and Inactive Date for each item from the dates on the Engineering Change Approval screen, you will need to enter these dates manually.

60 Type “Q” (for Quit).
 • The Control Items List where you tagged a component is redisplayed.

61 Type “Q” (for Quit).
 • The Control Item ID for the Training: Predecessor GUI Item is displayed in the Component column in the items form, and other associated data populates other columns on the form (including the Active Date and Inactive Date taken from the Engineering Change Approval screen).

62 Press the Enter key repeatedly until the cursor is positioned in the ACT DATE column for the Training: Predecessor GUI Item.

63 Type “/M” (for Modify).
 • The screen displays a blank entry field for the ACT DATE for the item, and the bottom line menu indicates MODIFY mode, enabling changes to the item information.

64 Type the Active Date you noted in step 58, using format mm/dd/yy, and then press the Enter key.
 • The cursor moves to the INACT DATE column.
 • Note: The entry field is not blank, but the system is still in the MODIFY mode.

65 Type the date that the item is to become obsolete (the same as the ACTIVE DATE for the new item), and then press the Enter key.
 • The Active and Inactive Dates are changed.

66 Press the F3 key to exit from the MODIFY mode.
 • The bottom line menu displays available choices, including Q (for Quit).
67 Type “Q” (for Quit) to exit from the Items screen.
 • The Engineering Change Entry form is displayed, at the Parent Part for which you
 just entered items data.

68 Type “Q” (for Quit).
 • The Bill of Material Menu is displayed.

69 Press the F8 key.
 • XRP-II is closed.

Inventory/Logistical Management (ILM)

The ILM system is used to enter and maintain property records for all items in the ECS
inventory. This includes not only equipment items tagged with physical serial tags, but also non-
physical items which, although they cannot be physically tagged, must be tracked as inventory
items (e.g., software items). At each site, each item requiring serial tag control, whether an
actual tag control or an assigned number provided by the system, must have an Equipment
Identification Number (EIN). The illustration at the upper left of Figure 18 shows the ILM EIN
Entry screen in the ADD mode, as it appears when EIN Entry is selected from the ILM EIN
Menu. When entries are completed and the ADD mode is exited, the information is available by
selecting EIN Manager from the ILM EIN Menu to access a screen like that shown at the lower
right of the figure.

![ILM Screens: EIN Entry (Upper Left) and EIN Manager (Lower Right)](image_url)

Figure 18. ILM Screens: EIN Entry (Upper Left) and EIN Manager (Lower Right)
Once assigned an EIN, an item is tracked by ILM, with all movement and status recorded throughout its life. The ILM system also provides reports for hard copy requirements. To understand the use of the ILM software, consider as an example the arrival at your site of a new RAID (Redundant Array of Inexpensive Disks) unit as an upgrade to the science processor. To update the ILM record for our example, use the following procedure.

Update the Inventory/Logistical Management Record using the ILM Tool

1. On workstation `x0mss##`, at the UNIX prompt in a terminal window, type `pcs <ipaddress> xterm` at a UNIX command prompt and then press the **Return** key.
 - **NOTE:** The `x` in the workstation name will be a letter designating your site: `g` = GSFC, `m` = SMC, `l` = LaRC, `e` = EDC, `n` = NSIDC, `o` = ORNL, `a` = ASF, `j` = JPL; the `##` will be an identifying two-digit number (e.g., `n0mss02` indicates a management services subsystem workstation at NSIDC). If you access the workstation through a secure shell remote login (ssh), you must enter `xhost <remote_workstation_name>` and enter `setenv DISPLAY <local_workstation IP address>:0.0` prior to the ssh before entering the command after the ssh. The `<ipaddress>` is the ip address of `x0mss##`, and `xterm` is required when entering this command on a Sun terminal.
 - A script is executed which determines the operator’s terminal type from the environment, prompts for a terminal ID, and establishes a Baseline Manager/ILM operating environment. XRP-II is then started and the **Main Screen** is displayed.

2. Type the number **2** (for **ILM Main Menu**) and press the **Enter** key.
 - The **ILM Main Menu** screen is displayed.

3. Type the number **1** (for **EIN Menu**) and press the **Enter** key.
 - The **EIN Menu** screen is displayed.

4. Type the number **1** (for **EIN Entry**) and press the **Enter** key.
 - The **EIN Entry** screen is displayed; the system is in the **Add mode**, the cursor is at the **EIN:** entry field, and the message “RETURN for next” is displayed.

5. The **EIN:** field is for the Equipment Identification Number from the silver identification tag attached to a hardware item (in our example, a RAID unit). For this exercise, type **0000TTTT** as the EIN. If the item were an item with no physical tag number (e.g., a software item, you could just press the **Enter** key to let the system generate a number.
 - The **EIN** is displayed in the entry field and the cursor moves to the **SERIAL NUMBER:** field, followed by the message “RETURN for next.”
 - The system provides a **Tran Code:**; the current year as default for **YEAR MFG:**; the **NASA CONTRACT:** (NAS5-60000), and a **LOCATION:**.
For this exercise, type **S99999** and then press the **Enter** key. For an item with no serial number, you could just press the **Enter** key to accept the next system-generated serial number.

- The **Serial Number** is displayed in the entry field and the cursor moves to the **OEM PART NUMBER:** field.

7 Type “/Z” to zoom out to a table listing OEM Part Numbers for selection.

- The data for the first OEM Part Number are displayed. You may scroll up and down the list by typing “N” (for Next) or “P” (for Prior), or, you may type “V” to switch the view to display the data for several OEM Parts in columns.

- Note: To use this zoom-out capability to select a part number, the part and associated data must have been entered previously (using the OEM Part Numbers screen, accessible through the ILM Master Menu). For this exercise, data have been entered for an OEM Part “M&O TRAINING.”

8 Type “S” to initiate a search for selected items.

- A message is displayed instructing “SELECT: enter field(s) to be selected then **F5-start (F2-clear F3-cancel)** . . .” followed by a field to enter the search string.

9 To search the list for the name of the OEM Part (**M&O TRAINING**) you want to enter on the EIN Entry Screen, Type “**M&O**” and then press the **F5** key.

- The selection zoom box displays the OEM Part, MFG, and OEM Model for the item(s) beginning with “**M&O**,” including **M&O TRAINING**.

10 If necessary, use the keyboard arrow keys to scroll up or down the list until the cursor is at the desired entry (**M&O TRAINING**); then type “**T**” (for Tag) to tag the selection for entry into the **OEM PART NUMBER:** field on the EIN Entry screen.

- The tagged entry is highlighted.

11 Type “Q” (for Quit).

- The number or entry (in this case “**M&O TRAINING**”) for the OEM PART is displayed in the **OEM PART NUMBER:** field.

- The cursor moves to the **OEM DESCRIPTION:** field, which now has data filled in from the prior entry of OEM Part data.

- Other OEM Part data (i.e., **HDWSFT CODE:**; **MODEL/VERSION:**; **MFG:**; **VENDOR:**; **UNIT COST:**; and **YEAR MFG:** (which now has the default current year replaced with the year entered for the OEM Part).

12 To accept the data filled in the **OEM DESCRIPTION:** field, just press the **Enter** key.

- The cursor moves to the **BASELINE ID:** field, which is an entry to identify an equivalent item contained in the Baseline Manager (BLM).
Type “/Z” to zoom out to a table listing Control Items, Names, and Mnemonics from the BLM for selection.

Type “S” to initiate a search for selected items.

- A message is displayed instructing “SELECT: enter field(s) to be selected then F5-start (F2-clear F3-cancel) . . .” followed by a field to enter the search string.

To move the selection field under the Mnemonic column in the zoom box, press the Enter key twice.

- The field for entry of the search string moves to the right, under the Mnemonic column.

To search the list for the name of the relevant baseline item (in this case, RAID) so that you can enter its Control Item ID Number on the EIN Entry Screen, Type “RAID*” and then press the F5 key.

- The selection zoom box displays the Control Item ID, Name, Mnemonic, and (if you type “R” to scroll Right) other fields in the Control Items Query for the item(s) beginning with “RAID.”

If necessary, use the keyboard arrow keys to scroll up or down the list until the cursor is at the Control Item ID for the desired item. For this exercise, select the first item on the list; then type “T” (for Tag) to tag the selection for entry into the BASELINE ID: field on the EIN Entry screen.

- The tagged entry is highlighted.

- NOTE: In an actual ILM entry, you may not be able to tell from information displayed whether one of the listed BLM items is appropriate. You will need to query the BLM data prior to making the ILM entry to identify the correct item and note its identification so you can select it during the ILM entry.

Type “Q” (for Quit).

- The Control Item ID number for the baseline item is displayed in the BASELINE ID: field.

- The cursor moves to the ECS NAME: field.

Type a name that the item will be known by (e.g., RAID SPRG UPGRADE) and then press the Enter key.

- The cursor moves to the HDWSFT CODE: field.
20 The **HDWSFT CODE:** field has an entry filled in from the prior selection of the OEM Part Number; just press the **Enter** key.

- The operator may fill or change this field by typing “/Z” to zoom to a Hardware/Software data file for selection of codes that have previously been entered using the Hardware/Software Codes screen accessible through the ILM Master Menu.
- The cursor moves to the **MODEL/VERSION:** field.

21 The **MODEL/VERSION:** field has an entry filled in from the prior selection of the OEM Part Number; just press the **Enter** key.

- The cursor moves to the **YEAR MFG:** field.

22 The **YEAR MFG:** field has an entry filled in from the prior selection of the OEM Part Number; just press the **Enter** key.

- The cursor moves to the **SOFTWARE LIC NUM:** field.

23 Because this exercise addresses a hardware change, there is no license number required; just press the **Enter** key.

- The screen displays a Maintenance Vendor zoom box showing three-letter codes, names, and terms for vendors, permitting selection for the **MAINT VENDOR:** field.

24 For this exercise, type “N” and/or use the down arrow key on the keyboard until the cursor is at the three-letter code **SGI;** then type “T” (for Tag) to tag the selection for entry into the **MAINT VENDOR:** field on the EIN Entry screen.

- The tagged entry is highlighted.

25 Type “Q” (for Quit).

- The zoom box is closed and the selected three-letter code for the maintenance vendor is displayed in the **MAINT VENDOR:** field.

- The cursor remains at the **MAINT VENDOR:** field.

26 Press the **Enter** key.

- The screen displays a Maintenance Contracts zoom box showing contract, vendor, and other data in a list that has been previously entered using the Maintenance Contracts screen accessible through the ILM Maintenance Menu, permitting selection for the **MAINT CONTRACT:** field.

27 If the list shows an entry for SGI, you can use the keyboard arrow keys to scroll to that entry, and then type “T” to tag the entry before typing “Q.” To leave the **MAINT CONTRACT:** field blank for this exercise, just type ”Q” (to Quit the zoom box selection).

- The zoom box is closed.

- The cursor remains at the **MAINT CONTRACT:** field.
28 Press the **Enter** key.

- The cursor moves to the **STATUS CODE:** field, and a default entry “R” (for Received) appears in the field.

29 Type “/Z” to zoom out to a table listing status codes with their descriptions for selection.

30 The keyboard arrow keys may be used if necessary to scroll up and down the list; with the cursor at I (for Installed), type “T” (for Tag) to tag the selection for entry into the **STATUS CODE:** field on the EIN Entry screen.

- The tagged entry is highlighted.

31 Type “Q” (for Quit).

- The selected Status Code is displayed in the **STATUS CODE:** field.
- The cursor moves to the **NASA CONTRACT:** field, which shows a default entry of NAS5-60000.

32 To leave the default NASA Contract entry, just press the **Enter** key.

- The cursor moves to the **RELEASE CODE:** field.

33 Type “R4” (for Release 4), and then press the **Enter** key.

- The cursor moves to the **PO Number:** field; normally, this field will have an entry filled in by the Receiving system to designate the Purchase Order against which the item was received.

34 For this exercise, press the **Enter** key to leave the **PO Number:** field blank.

- The cursor moves to the **LOCATION:** field.

35 Type “/Z” to zoom out to a table listing Location ID codes and other data for ECS sites to permit selection.

36 The keyboard arrow keys may be used if necessary to scroll up and down the list; with the cursor at your site, type “T” (for Tag) to tag the selection for entry into the **LOCATION:** field on the EIN Entry screen.

- The tagged entry is highlighted.

37 Type “Q” (for Quit).

- The selected Location ID Code is displayed in the **LOCATION:** field.
- The cursor moves to the **BUILDING:** field.

38 The **BUILDING:** field can be used to designate the building number within the site where the item is; for this exercise, type an appropriate building number or leave the field blank, and then press the **Enter** key.

- The cursor moves to the **ROOM:** field.
The **ROOM**: field can be used to designate the room number within the building where the item is; for this exercise, type an appropriate room number or leave the field blank, and then press the **Enter** key.

- The cursor moves to the **USER**: field.

The **USER**: field can be used for a code to designate the person who has the item. If employee data has been previously entered using the Employee Manager screen accessible through the ILM Master Menu, the operator can type “/Z” to zoom to a list of User IDs to select one to fill this field. For this exercise, leave the field blank and just press the **Enter** key.

- The cursor moves to the **UNIT COST**: field.

The **UNIT COST**: field has an entry filled in from the prior selection of the OEM Part Number; just press the **Enter** key.

- The cursor moves to the **NOTE**: field.

The **NOTE**: field can be used to enter a 60-character note attached to the item (e.g., to identify something unique about the item). For this exercise, type “**Item entered for training only**” and then press the **Enter** key.

- The cursor moves to the **WARRANTY EXP DATE**: field.

The **WARRANTY EXP DATE**: field is used to specify the end date of the warranty period; it defaults to 365 days from the date of entry. To leave the default entry in the field for this exercise, just press the **Enter** key.

- The EIN Entry screen exits the Add mode; the bottom line menu reflects available choices.

Type “Q” (for Quit).

- The **EIN Menu** is displayed.

Press the **F8** key to exit.

- XRP-II is closed.
This page intentionally left blank.
Practical Exercise

Introduction
This exercise is designed to practice key elements of the Configuration Management procedures. Perform the tasks identified in the exercise.

Equipment and Materials
One ECS workstation.

Mission Operation Procedures for the ECS Project, 611-CD-004-004.

Custom Software Problem
This exercise involves a problem with custom software developed for ECS and maintained by the SEO.

A science user trying to use one of the ECS toolkits experiences an inability to get the desired results when using the toolkit with another ECS application. The science user reports the problem to the site’s User Services Desk. The User Services Desk records the information and opens a Trouble Ticket (TT) in the TTS. The TT is routed to the site Sustaining Engineer(s) for diagnosis. The Sustaining Engineer verifies that the toolkit’s interface to the other ECS application does not provide the desired results and identifies two sources of error: a) the user is attempting a procedure that has not typically been supported at this site and that requires a display hardware upgrade, and b) there are source statements in the software that are in error. The engineer estimates that it will take one person-month to correct and test the application.

1. Generate a CCR for the display hardware upgrade from a Wyse Model WY-150 monochrome display monitor to a Silicon Graphics Model GDM-20D11 Color Graphic Display.

2. Generate a CCR for the software change.

3. Generate a CCR to document the hardware and software changes.

4. Prepare distribution lists for review of the proposed changes.

5. Use ClearCase™ to process the transfer and installation of the software patch.

6. Log in the new software file using the Baseline Manager.

7. Perform the required Change Control Accounting for the software and hardware changes.

8. Assume delivery of the new display monitor and create updates to the Inventory/Logistical Management records using the ILM tool.
Slide Presentation

Slide Presentation Description

The following slide presentation represents the slides used by the instructor during the conduct of this lesson.
This page intentionally left blank.