
813-RD-014-001

EOSDIS Core System Project

Communications Subsystem

CORBA Prototype Results

Phase One

for the ECS Project

January 1996

Hughes Information Technology Systems
Upper Marlboro, Maryland

Communications Subsystem

CORBA Prototype Results

Phase One

ECS Project

January 1996

Prepared Under Contract NAS5-60000
CDRL Item #

APPROVED BY

Naveen Hota /s/

Naveen Hota, CSS Manager
EOSDIS Core System Project

Parag Ambardekar /s/

Parag Ambardekar, ECS Rel. A Manager
EOSDIS Core System Project

2/1/96

Date

2/1/96

Date

Hughes Information Technology Systems
Upper Marlboro, Maryland

813-RD-014-001

This page intentionally left blank.

813-RD-014-001

Preface

This document is a contract deliverable with an approval code of 3. This document is delivered

to NASA for information only, but is subject to approval as meeting contractual requirements.

Any questions should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Systems

1616 McCormick Drive

Upper Marlboro, MD 20774-5372

iii 813-RD-014-001

This page intentionally left blank.

iv 813-RD-014-001

Abstract

The Communications Subsystem (CSS) provides the overall communications infrastructure, and
the communications services to support other subsystems in the Science and Communications
Development Office (SCDO) and the Flight Operations Segment (FOS). This document
describes the first phase of CORBA prototyping at CSS. In addition to tracking development of
several most significant commercial ORB products, this prototype has brought about a set of
application implementations using ORB and object services�includes naming, event,
relationships, life cycle, persistence, delegation, and property. The evaluation package is
SunSoft's CORBA1.2-compliant DOE (beta version).

Keywords: CSMS, CSS, OMG, CORBA, ORB, CORBAservices, Naming, Event, Relationship,
Life Cycle, Persistence, Delegation, Property, DCE, OODCE, Release A.

v 813-RD-014-001

This page intentionally left blank.

vi 813-RD-014-001

Change Information Page

List of Effective Pages

Page Number Issue

Title Original

iii through x Original

1-1 through 1-4 Original

2-1 and 2-2 Original

3-1 through 3-6 Original

4-1 through 4-6 Original

5-1 and 5-2 Original

A-1 and A-2 Original

AB-1 Original

Document History

Document Number Status/Issue Publication Date CCR Number

813-RD-014-001 Original January 1996

vii 813-RD-014-001

This page intentionally left blank.

viii 813-RD-014-001

Contents

Preface

Abstract

1. Introduction

1.1 DCE and ECS Project ..1-1

1.2 Why CORBA ...1-1

2. Objectives and Approaches

2.1 Objectives...2-1

2.2 Approaches...2-1

3. CORBA Commercial ORBs

3.1 Digital's ObjectBroker..3-3

3.2 Expersoft's PowerBroker..3-3

3.3 HP's ORB Plus ...3-4

3.4 IBM's SOM ..3-5

3.5 IONA's Orbix ...3-6

3.6 SunSoft's NEO (not an acronym)...3-7

ix 813-RD-014-001

4 Application Development Using DOE

4.2 The Developed Applications...4-11

4.2.1 Life Cycle..4-11

4.2.2 Naming ..4-11

4.2.3 Events ..4-12

4.2.4 Relationship ..4-13

4.2.5 Persistent Storage Manager (PSM) ...4-13

4.2.6 Delegation ...4-14

4.2.7 Property ...4-14

5 Conclusions and Outlook

5.1 Conclusions ...5-15

5.2 Outlook..5-16

Appendix A. References and On-line Sources

Abbreviations and Acronyms

x 813-RD-014-001

1. Introduction

1.1 DCE and ECS Project

ECS Project is relying on DCE for its implementation of the communications infrastructure. The
goal is to use the most advanced yet mature technology to build an integrated distributed system
that best utilizes networked resources. DCE meets the criteria of ECS by reducing the
difficulties in designing and implementing the distributed system, providing proven
heterogeneous interoperability, and offering a set of basic services�includes security, name
service, time service, and distributed file system required by robust and secure applications.

1.2 Why CORBA

ECS project is under way at a time when distributed object computing is gaining increasing
momentum, fueled by rapid advances in hardware and growing desire for software industry to
build, upgrade, and reuse software as components based on frameworks. As is known, Objects
draw strengths and derive marvels from their intrinsic characteristics: encapsulation, inheritance,
and polymorphism. Objects in a distributed environment, or distributed objects, are even more
capable, holding the greatest potential for creating, using, and reusing the so-called component
software that is language-neutral and platform-independent. We have seen the power brought
about by semiconductor IC components in electronics industry. Distributed object computing
promises us a similar revolutionary future when software engineering, to a large extent, becomes
a matter of plug-and-play with high flexibility, reusability, and reliability. This will be
especially true for system integration with COTS components from various vendors. Within next
two years, distributed object computing is believed to be ripe and ready for prime-time
deployment and usage.

To bring the concept to reality, that allows software components to be assembled according to
requirements and then inter-operate on all kinds of machines in heterogeneous distributed
environments, an industry standard has to be in place. In fact, Common Object Request Broker
Architecture and Specification (CORBA) of the Object Management Group (OMG, formed in
1989) was born in response to this development and need.

CORBA is a specification that supports the Object Management Architecture (OMA) of OMG.
The recently updated OMA Reference Model consists of five major parts: (1) The Object
Request Broker (ORB), which enables objects to transparently make and receive requests and
submissions in a distributed environments; (2) Object Services (CORBAservices), which is a
collection of services (interfaces and objects) that support basic functions for using and
implementing objects; (3) Horizontal Common Facilities (or horizontal facility interfaces),
which are a collection of facilities that form a foundation (hence, horizontal), providing general­
purpose capabilities useful in many applications regardless of application content; (4) Domain
Facilities (or vertical domain-specific interfaces), each of which is specific to a vertical market
or industry in areas such as healthcare, finance, manufacturing, retail sales, interactive

1-1 813-RD-014-001

multimedia, and telecommunications. (5) Application Interfaces (non-standardized application­
specific interfaces), which are specific to particular end-user applications. OMA components (3)
and (4) are referred to as CORBAfacilites whose scope extends from user interface, to
information management, system management, task management, as well as many vertical
market facilities.

CORBA is ambitious and important: First, it is potentially capable of bringing all existing
applications including client/server middleware to the ORB, the object bus, because of the fact
that any specification of services is always separated from the implementation by means of
Interface Definition Language (IDL). Secondly, it provides a solid foundation, with the magic of
system self-description, for a component-based future. CORBA allows intelligent components to
discover each other and inter-operate on the object bus, which is made possible by the ingenious
self-describing schemes using interface/implementation repository and typecodes.

With the adoption of CORBA 2.0 (December 1994), any proprietary ORB can connect with the
universe of ORBs by translating object requests to and from the Internet Inter-ORB Protocol
(IIOP). In addition, CORBA 2.0 specifies DCE as its first of many optional Environment-
Specific Inter-ORB Protocols (ESIOPs). A CORBA 2.0 demo was actually showcased at the
Object World in San Francisco (August 1995), eight months after the standard's adoption.

OMG CORBAservices specifies an extensive set of ORB-related services including eleven
currently adopted standards:

1.	 Naming Service allows objects on the ORB to locate other objects by providing ability to
bind a name to an object (e.g., object reference) relative to a naming context. Naming
contexts are described with graphs, and the graphs can be supported in a distributed,
federated fashion. The service implementation can be application specific or based on
existing network directories or naming contexts�including ISO's X.500, OSF's DCE, and
Sun's NIS.

2.	 Event Service supports asynchronous events, event "fan-in", notification "fan-out", and
reliable delivery (both push and pull models) by de-coupling event suppliers and
consumers through event channels. Event channels are objects and can be chained
together; event suppliers and consumers register their interests in certain events with the
event channel(s) while knowing nothing of each other. No specific event type is
imposed.

3.	 Life Cycle Service defines operations for creating, copying, moving, and deleting objects
and supports compound life cycle operations on graphs of related objects (see
Relationship Service below).

4.	 Persistent Object Service provides a set of interfaces for storing objects persistently on a
variety of storage servers�including Object Databases (ODBMSs), relational Databases
(RDBMSs), and simple files.

5.	 Transaction Service provides two-phase commit coordination among recoverable
components using either flat or nested transactions. It supports interoperability between
different programming models (e.g., object and procedural), interoperability over

1-2 813-RD-014-001

federated ORBs, both implicit and explicit propagation, and execution of multiple
transaction concurrently through use of TP monitor.

6.	 Concurrency Control Service enables multiple clients to coordinate their access to shared
resources through use of locks. The locks have different modes to allow flexible conflict
resolution.

7.	 Relationship Service provides a way to create dynamic associations (or links) between
objects that know nothing of each other. It allows graphs of related objects to be
traversed without activating the related objects. The service can be used to enforce
referential integrity constraints, to track containment relationships, and for any type of
linkage among components.

8.	 Externalization Service provides a standard way for getting data into and out of objects in
a stream-like mechanism, and usually works in association with Life Cycle Service and
Relationship Service.

9.	 Query Service provides query operations for objects. It's a superset of SQL based on the
upcoming SQL3 specification and the Object Database Management Group's (ODMG)
Object Query Language (OQL).

10. Licensing Service supports any model of usage control at any point in a software
component's life cycle. It supports charging per session, per node, per instance creation,
and per site.

11. Properties Service provides operations to let you associate named-values pairs (or,
properties) with an object dynamically.

Five more services are expected to be standardized in 1996, with Time and Security services
approved early in the year:

1.	 Time Service keeps clocks on different machines synchronized in the distributed
environment.

2.	 Security Service provides support for authentication, authorization, audit trail, and non­
repudiation.

3.	 Trader Service provides a kind of directory service that is reminiscent of Yellow Pages
(phone book), as opposed to White Pages whose function is fulfilled by the naming
service. A trader object stores information such as object reference and type of service
whenever a service provider (object) registers with it, and subsequently performs
"matchmaking" tasks when it is requested by a client.

4.	 Collection Service allows manipulation of objects in a group, such as queues, stacks, lists,
arrays, trees, sets, and bags.

5.	 Change Management tracks versions and evolution history of individual software
components as well as objects' interfaces and implementations.

1-3 813-RD-014-001

This page intentionally left blank.

1-4 813-RD-014-001

2. Objectives and Approaches

2.1 Objectives

Given the importance of the CORBA technology and the nature of ECS project, it is imperative
to continue to follow the latest advances of CORBA technology and to investigate the feasibility
of CORBA technology for future ECS releases.

The goal of our CORBA prototyping is as follows: Continue to follow advances of CORBA
specifications, CORBAservices, and CORBAfacilities; continue to track maturation of vendor
software in areas such as product performance and service availability. Prototype and validate
ECS migration strategy by testing selected services for trail migration (gauge difficulties, costs,
etc.). Identify migration paths from OODCE implementation to full object implementation using
ORB products.

2.2 Approaches

For the first phase of this investigation, the effort has been the evaluation of Distributed Objects
Everywhere (DOE, beta version) from SunSoft whose formal release became available in
October 1995 and was renamed as Solaris NEO. This product is CORBA1.2-compliant and is
arguably the first complete development, operating and management environment for object­
oriented networked applications.

The first phase of the prototype has gone beyond evaluating DOE demos that came with the
product. It is a successful implementation of several CORBA applications. Our aim has been the
eventual DCE migration to CORBA. To gain first-hand experience in programming with DOE,
each application is centered on utilizing one of the several object services supported by DOE.
The services include naming, events, relationship, life cycle, transparent persistence
management, delegation, and property.

The second phase of investigation that immediately follows, will be more challenging and
promise to be the "holy grail" of the whole endeavor: Identify and test-implement migration from
OODCE to CORBA�based on the experiences from the first to create CORBA objects that will
be able to communicate and interoperate with OODCE objects.

The preliminary strategy is to build necessary wrapper objects that will facilitate interactions
among objects from the two camps, CORBA and OODCE. In all, three sets of objects will be
built including CORBA objects, OODCE objects, and wrapper objects.

2-1 813-RD-014-001

This page intentionally left blank.

2-2 813-RD-014-001

3. CORBA Commercial ORBs

3.1 Digital's ObjectBroker

ObjectBroker 2.6 is a CORBA 1.2 compliant product. It is layered on top of either TCP/IP or
DECnet. Future releases will support the DCE RPC and Microsoft's COM. Digital will support
a queuing system�DECmessageQ�that provides asynchronous ORB messaging.

ObjectBroker 2.6 runs on OpenVMS VAX, OpenVMS Alpha, Ultrix Risc, Solaris, SunOS,
Digital UNIX, AIX, HP-UX 9000/700 and 800, SGI IRIX, Windows NT intel, Windows NT
Alpha, Mac system 7 (client only), MS Windows (client only), OS/2, MVS, OS400, Tandem
integrity, Tandem Non-Stop. ObjectBroker 2.6 offers the following features in terms of language
bindings and object services:

+ Language bindings for C and C++.

+� Naming services is currently supported via Framework Based Environment (FBE); there
is a plan to make it a built-in service instead of a FBE add-on. Other object services are
also planned, including Life Cycle, Events, Transactions.

+ Kerberos DCE authentication via DCE's Generic Security Services interface (GSSAPI).

As for the interoperability protocols specified by CORBA 2.0, Digital plans to support DCE RPC
for ESIOP before implementing support for GIOP on top of IIOP.

Digital's strategy is to develop and sell COM/OLE compatible family of products. These
products will interoperate with CORBA. ObjectBroker is thus aligned.

3.2 Expersoft's PowerBroker

PowerBroker 4.0 distinguishes itself with four key characteristics:

1.	 Scalability: All messaging between remote objects is direct, avoiding the bottleneck of a
centralized routing agent. PowerBroker distributed daemons interact only on demand,
minimizing overall network overhead and system initialization time.

2.	 Standards-Based: PowerBroker is the first CORBA 2.0 compliant ORB available for
deployment. Expersoft authored GIOP and is a key contributor to IIOP.

3.	 Interoperability: Any component of a software system�legacy, client/server or object­
based�can be configured as a distributed object that exports its interface through
surrogates. Desktop programs can communicate directly with each other, and disparate
applications are connected creating a completely unified corporate network.

3-1 813-RD-014-001

4.	 Performance: PowerBroker IPC mechanisms are direct and do not make use of non­
object oriented intermediate transport layers (e.g., RPCs). PowerBroker's direct
management of IPC results in an order of magnitude advantage in messaging when
compared against other commercial ORBs. Asynchronous messaging has been made a
key element of PowerBroker's core technology.

PowerBroker 4.0 runs on Solaris, SunOS, HP-UX, AIX, IRIX, Digital UNIX for Alpha, MS
Windows (clients only), MS Windows/NT. In addition, it offers the following features:

Three programming models�

+ a CORBA compliant environment with C++ language mappings,

+ a CORBA compliant environment with SmallTalk language mappings,

+ a C++ centric programming model;

A set of integrated services�

+ Object Naming Service, supports recursive searches, security, events registration

+ Replicated, Federated Naming Services, provides added reliability and efficiency

+� Object Storage Service, provides automatic generation of methods to store and load
objects

+� Object Life Cycle Service, automatically generate methods to migrate and duplicate
objects

+ Event Service/Publish and Subscribe, provide filters and persistency to events streams

+� Expersoft PowerBroker CORBA/OLE, extends OLE applications into distributed
enterprise

+ Expersoft PowerBroker Rogue Wave, extends RW class libraries into distributed objects

+ Expersoft PowerBroker Object Store, integrates ODBMS with the ORB

A set of management tools�

+ Domain Tools, dynamically displays the status of processes, objects, and connections

+ Name Tool, a graphical monitoring and management program for the naming services

+ Registration Tool, used for updating domains with new versions of object implementation

+� Domain Management APIs, for building applications that track/initiate management
events

+ SNMP, SNMP based tools gain access to environment via a PowerBroker supplied agent.

3.3 HP's ORB Plus

ORB Plus 1.0 from Hewlett-Packard was a CORBA 1.2 ORB that ran only on HP-UX and was
structured on top of the DCE RPC and TCP/IP. This product was subsequently removed from
the market due to its excessive overhead and problems with its C++ language mapping.

3-2 813-RD-014-001

Nevertheless, HP remains influential in the development of the CORBA specification. It is
speculated that HP may have delayed making ORB Plus 2.0 available to deliver an "industrial­
strength" ORB based on DCE. Consequently, ORB Plus 2.0 is expected to take advantage of
DCE security, RPC, and directory services. A full DCE/ESIOP is also expected, complemented
by a set of CORBA services including Naming, Events, Life Cycle, Persistence, Transactions,
Relationship, Externalization, Licensing, and Query.

As a part of its broader distributed-object framework, HP has released its HP Distributed
SmallTalk recently (August, 1995), which incorporates OMG CORBA 2.0 specifications. In
addition, it offers CORBAservices such as Transaction and Concurrency Control.

3.4 IBM's SOM

System Object Model (SOM) is a software standards developed by IBM to ensure the portability
of objects across platforms and development languages. It is an object packaging technology
that is language-neutral, platform-independent. On a single machine, SOM provides an object­
structured protocol that allows applications to access and use objects and objects definitions
regardless of what programming language created them. Distributed SOM (DSOM), on the other
hand, supports OMG's CORBA standards. Specifically, SOM 2.1 is based on CORBA 1.2 and
provides all CORBA 1.2 ORB functionality. It provides a transport-layer encapsulation
framework that supports TCP/IP, IPX/SPX, NetBIOS, and SNA. Under this framework, the
SOM ORB has been extended to support DCE.

SOM 2.1 currently runs on Windows 3.X, OS/2, AIX, Macintosh, and MVS and has the
additional features as follows:

+ Language bindings for C and C++; SmallTalk may be available from language vendors.

+� Replication Framework, makes copies of a single object available concurrently to
multiple clients, and maintains consistency among the copies, with updates to any one
copy automatically reflected in all other copies.

+ Persistence Framework, allows to save and restore SOM objects to and from a repository.

+� Emitter Framework, produces an output file representing part or all of an object interface
definition, making it easy to develop additional language bindings for SOM.

+� Collection Class Framework, gives programmers such frequently needed data structures
as lists, queues, and dictionaries, and lets them inherit from and use these SOM classes in
applications with no need to re-code or retest the functions.

+� Direct-to-SOM (DTS) compiler support, combined with a DTS compiler, enables
development of SOM objects directly from C++ without writing object definitions in
IDL. Existing C++ source code can also be compiled to directly produce SOM objects.

+� Metaclass Framework, extends CORBA, allows dynamic creation of components from
existing components, and lets you tailor existing components for a given environment by
automatically inserting system behavior into binary object classes.

3-3 813-RD-014-001

+� Expected in 1996 are CORBA 2.0 support and additional CORBA services including
Events, Life Cycle, Transaction, Concurrency Control, and Externalization. SOM 3.X
also intends to offer security based on DCE and ORB-based system management based
on Tivoli.

SOM 2.1 is an important CORBA ORB, because SOM provides OpenDoc's underlying CORBA­
compliant object bus.

3.5 IONA's Orbix

Orbix 2.0 is CORBA 2.0 compliant, supports both the Orbix protocol for optimized
communication between Orbix objects and the OMG IIOP for communication with objects in
other IIOP compatible environments. Orbix uses TCP/IP as its transport layer. It builds on
sockets (WinSock on the Windows platform). It also supports the ONC-RPC. Orbix provides a
transport-layer encapsulator that shields applications from the underlying transports.

The entire Orbix system is implemented in C++ and is very portable. Orbix 2.0 runs on Solaris
2.x, SunOS 4.1.x, HP-UX 9.x, IRIX 5.x, AIX 3.2.5, DEC Alpha OSF/1 2.0, DEC Ultrix 4.3,
Novell UnixWare 2.0, Windows NT 3.5, Windows 3.1. It has additional features as follows:

+� New C++ mapping in full compliance with the OMG specification; Ada and SmallTalk
mappings are expected in early 1996

+ Naming, Event CORBA services. (Transaction Service is expected in early 1996).

Orbix's extensions to CORBA:

+� Implementation repository and administration tools�The repository is used to locate the
executable files for a server when a request arrives for one of its objects.

+� A stream based interface to the DII�C++ class libraries that encapsulate CORBA DII are
provided, which makes writing DII clients simpler using familiar stream-like calls.

+� Programmer's control over proxies/surrogates�Proxies are local representatives for remote
objects. In performance-sensitive applications, server programmers can override the
standard proxy code (using inheritance) and implement strategies to cache state and
accept callbacks from server objects, which is also referred to as smart proxy.

+� Collocation of client and server code�Client and server code can be linked together in the
same address space, without requiring recompilation. The resultant code is highly
efficient (bypassing all marshaling stubs).

+� Process level filters�Programmers can develop their own filter code for incoming and
outgoing messages for both clients and servers. This facilitates integration of thread
packages, monitoring and debugging, auditing and authentication/authorization/
encryption support.

+� Object level filters�Programmers can develop their own filter code for invocations and
responses on individual objects. This is frequently useful to enable a group of associated
objects to collectively respond to a request.

3-4 813-RD-014-001

+� Location Service�A consultation service that assists the binding of client object references
to remote servers, when the name of a host providing the service is unknown.

+� Loaders and object fault handling�For servers with a large number of objects, it might be
impractical to hold all of the objects in memory. When an invocation on an object arrives
at its server, application specific "loader" code can be used to load the object from a file
or other storage, and resume the invocation transparently to the client.

IONA is partly owned by SunSoft and is ready to bridge Solaris NEO with OLE to provide
interoperability between the two environments. In addition, IONA is aligned with ODI to make
Orbix objects persistent by storing them in ODI ObjectStore and to make ObjectStore objects
accessible remotely by making them CORBA compliant. IONA is also working on integrating
Orbix with Novell's Tuxedo TP Monitor, which will provide process management and load
balancing for Orbix objects.

3.6 SunSoft's NEO (not an acronym)

NEO, formerly known as Distributed Object Everywhere (DOE), consists of Solaris NEO, the
networked object add-on extension to the Solaris operating envrironment; Solstice NEO, object
administration tools bundled with Solaris NEO; and WorkShop NEO, the software product suite
for networked object application development and the tools needed to program. NEO is based
on OMG CORBA and OpenStep standards. Currently it is CORBA 1.2 compliant. SunSoft
plans to have the core features of CORBA 2.0 shipping in the fourth quarter of 1996.

Solaris NEO is unique in that it is an integral part of the Solaris operating environment, built on
Solaris' strengths such as robustness and multithreading, and is not merely a middleware ORB
implementation as are most CORBA-compliant products. It will interoperate with ORBs on
other platforms rather than be ported. Interoperability and application portability are to be
achieved through partnerships with other vendors (e.g., IONA for the OLE/COM to CORBA
interoperability), support of CORBA2, and Java for Internet access.

Solaris NEO uses TCP/IP as its underlying protocol. NEO IDL compiler (OMG-compliant)
supports C and C++ language binding. By adding support for the Java language to the IDL
compiler, SunSoft is working on integrating the Java (language) and HotJava (Browser)
technology with NEO's object network to facilitate Web-based front-end applications. This
technology has been nicknamed JOE.

Solaris NEO object services include Naming, Events, Life Cycle, Relationship, Property,
Persistence and Delegation. Additional services including Transaction, Concurrency Control,
Externalization, Licensing, and Query will be provided in the next release. The big advantages
that NEO offers are:

+ Object administration and management

+ Network scalability through MT/MP and network object services

+ Windows/OLE interoperability on the PC's with NEO (via IONA's software)

+ Access to legacy data including RDBMS access (via Persistence Software)

3-5 813-RD-014-001

+� Comprehensive development environment for building networked objects and assembling
those networked object into applications

+ A CORBA-compliant implementation of OpenStep

+ Internet/Web support (Java)

Additionally, OpenStep is the richest, most elegant open systems GUI development and
deployment environment on the market today. The NEO OpenStep API and development tools
will provide the most advanced GUI environment for distributed object applications. At the
same time, developers may choose to develop Motif/CDE applications.

The Solaris NEO network has SNMP traps built into it, so Solstice and other SNMP tools can be
used to monitor it.

3-6 813-RD-014-001

4 Application Development Using DOE

4.1 Development Overview

DOE provides a broad set of distributed application tools and infrastructures for developers. The
high-level components are briefly described below.

+� Object Development Framework (ODF)�DOE's development infrastructure that makes
developing ORB objects easy. DOE ODF contains components that:

+� Define an object implementation's characteristics in an implementation file�This
allows a developer to declare server characteristics. These include concurrency
control (locking policy), object creation operations, object installation details and
persistent data management. The ODF then generates code based on this
characterization.

.impl�a notation used to referred to, as well as a suffix to, the implementation file.

+� Define persistent data using the Data Definition Language (DDL) in a data definition
file�DDL language allows a developer to define the persistent object data for an ORB
object. ODF's persistent data storage mechanism uses this definition to transparently
read and write persistent ORB object data.

.ddl�a notation used to referred to, as well as a suffix to, the data definition file.

+ Provides facilities for tracing and logging ORB object status information.

+ Provides additional runtime ease-of-use functions.

+� Interface Support�Support for the Interface Definition Language (IDL), as defined in an
interface definition file, implements two powerful features of DOE: transparent
distributed communication across the ORB and client/server language independence.

.idl�a notation used to referred to, as well as a suffix to, the interface definition file.

+� DOE Debugger�In addition to traditional debugger features, the DOE Debugger allows a
developer to trace code from a distributed client into the object server code and back
again.

+� CORBAservices�DOE provides a basic set of CORBAservices that implement common
tasks such as naming, relationships, property, and event management.

In the course of the first prototyping phase, each application has been developed in three stages:
(1) creation and compilation of IDL; (2) implementation and compilation on the server side; (3)
implementation and compilation on the client side. Each stage is organized in a separate sub­
directory, due to the many files generated in each process.

4-1 813-RD-014-001

To develop a new object server, follow these steps:

1.	 Define a .idl file describing the interface for the objects that is being implemented�Define
the interfaces to be supported by the object server in one or more .idl files. Later, provide
separate C++ implementation code to support these interfaces. IDL interfaces are
language/implementation independent. This allows a developer to modify object
implementation over time without compromising the plug-and-play qualities of the
object.

2.	 Define a .impl file describing the object implementations�The implementation definition
file allows a developer to customize how the objects are to be created, activated and
deactivated, when the server may timeout, and other useful runtime options. The file is
processed by the odfcc compiler to produce C++ code that the developer would otherwise
need to write himself.

3.	 Define the objects' DDL if ODF managed persistence is to be used�ODF will
automatically and transparently save any data members declared in a DDL (Data
Definition Language) file. A developer can also create or use his own persistence
mechanism. It is strongly recommended that all objects be made persistent.

4.	 Create odfimake�Imake macros are used for defining ODF based servers, ODF based
clients, IDL interface libraries, ODF implementation binaries, DDL schema binaries,
shell scripts, exception message catalogs, user started servers, and packages. These
macros have to be organized and adapted to each application.

5.	 Run odfimake�This command uses the Imakefile composed with Imake macros to
generate a standard ODF Makefile.

6. Run make impl�The odfcc compiler will generate C++ implementation "skeletons".

7.	 Run make copy_samples�This step copies the skeleton files to working directories from
odf_output subdirectories.

8.	 Define the C++ implementation classes in the header .hh file and write method
implementation code in the .cc file.

9.	 Build the object server�Type make with no arguments to build the IDL stub library, DDL
type files (if applicable), and the object server. Each server may run one or more objects.

10. Register the interface and server with the ORB and create factory objects and register
them in the Naming service�Type make register.

The following section provides a brief description for each application set developed in the first
phase of this prototype. Contact the author for in-depth design and implementation issues. A
demo can also be arranged.

4-2 813-RD-014-001

4.2 The Developed Applications

4.2.1 Life Cycle

DOE-provided lifecycle interfaces are used to create and destroy an object; interfaces for move
and copy are not supported in DOE 1.0.

In this application, the primary goal is to take advantage of the hooks that are called during the
life cycle of a server, an object implementation, and an object instance, to manage own
persistence (instead of using the system provided Persistence Storage Manager, Sec. 4.2.5). The
idea is to implement our own mechanism to keep the object persistent, by means of saving the
data member(s) of an object into a file (or a database) when the object deactivates, and retrieving
the data back when the same object is activated next time. The data member(s) is copied into a
data structure before this data structure itself is written to the file with an index. The index
records offset of the structure within the file. Each structure also carries a flag indicating
whether the file space occupied by the structure is still in use or it is no longer in use and ready to
be reused.

A name is assigned and stored together with the index (or the offset indicating the structure's
location within the file) as a name-value pair in the object's reference data store. All DOE
objects are given a small reference data store of size 1024 bytes when it is initially created.

The following are the hooks that correspond to different lifecycle events and are specified in the
implementation file .impl:

1.	 Registration�Create a data file when the server is registered; this happens when make
register is executed to register the interface and the server. The directory in which the
file will be created, can be specified in the Imakefile to override default.

2. Server Startup�Open the file and store the file descriptor.

3.	 Object Initialization�Obtain and store the object reference of a newly created object in a
name space.

4. Object Activation�Read the instance's data from the persistent data file.

5. Object Deactivation�Write the instance's data to the persistence data file.

6. Server Shutdown�Close the file that has been opened when the object activated.

Other task-specific operations are specified in the .idl file (interface definition) and are invoked
explicitly by a client program rather than operate as hooks at the server side.

4.2.2 Naming

This application consists of three client programs: listContext, copyContext, and delContext. The
provided naming service is used by including the Naming.idl file in the application's .idl file.
Naming.idl has defined a rich set of interfaces that are CORBA-compliant; this application uses
only a selected set of them.

4-3 813-RD-014-001

1.	 listContext, acquires object reference from a specified naming context and list all the
name-to-object-reference bindings contained within the naming context. This is similar
to "ls" command in Unix.

To accomplish this task, build an initial context and a CosName representation for the
path which is a naming context specified as a command line argument; obtain the object
reference to the naming context (an object by itself); obtain and iterate over a list of
bindings in the context, printing each one.

2.	 copyContext, create a new naming context, copy another context's bindings into it, and
bind it within a third context so that it may be found. This is similar to "cp" in Unix.

To accomplish this task, first traverse to a specified source naming context as in the
implementation of listContext, then iterate through the name bindings it contains and
duplicate them in the destination naming context which is then bound to the initial
naming context.

3.	 delContext, destroys the naming context created previously in copyContext. This is
similar to "rm" in Unix.

To accomplish this, traverse to the naming context to be destroyed, unbind its name
bindings, and then destroy the naming context.

4.2.3 Events

This application consists of five cooperating sub-applications conducting asynchronous
communications among the participants. The provided event service is used to configure the
"event channel" by adding/removing suppliers and/or consumers, and to perform event "fan-in"
and notification "fan out" through the event channel.

1.	 createEventChannel�This is a client program that creates an event channel and register it
in the name space. The created event channel will be used by the following four
applications.

2. pullConsumer�This is a client program that pulls information from the event channel.

3.	 pushSupplier�This is a client program that prompts users for information, and then pushes
it into the event channel for distribution to any registered consumers.

4.	 pushConsumer� T h i s i s a s e r v e r p r o g r a m i m p l e m e n t i n g t h e
CosEventComm::PushConsumer interface. The server will print out any information it
receives (pushed to it from the event channel). A separate client program is used to
create the actual push consumer.

5.	 pullSupplier�This is a server program that is called upon by a separate client program to
create an event item (and, signal "more"). The server implements its own buffering using
a structure array. At any time, the event channel may pull an item out of the buffer (and,
signal "less") if the buffer is not empty. A "producer/consumer" algorithm is used. In a
two-threads scenario: One thread, the mt-producer, writes items into the buffer if space is
available, else it waits. The other thread, the mt-consumer, reads/removes items from the

4-4 813-RD-014-001

buffer when they are available, else it waits. To avoid blocking too many threads, the
object function raises an exception if the buffer is full rather than blocks.

ODF provides one mutex lock per object by default; any given object only services one client
request at a time. To be able to implement the MT producer/consumer algorithm�specifically,
using cond_wait(cond_t *, mutext_t *) and cond_signal(cond_t *) to coordinate the usage of the
self-managed buffer�a finer-grained locking mechanism is used so that each condition variable is
tested under the protection of the same mutex lock as the one used for locking an individual
method.

4.2.4 Relationship

This application consists of four parts, which builds relationships at run time among objects. The
relationships can be traversed starting from an arbitrary object.

1.	 Folder�Create an otherwise normal object, Folder, in the server program. To allow itself
to be able to participate in a Containment relationship, Folder inherits "NodeDelegate" in
its interface from the Relationships.idl supported by the relationship service and adds to
itself a "contains_role" at its initialization time.

2.	 Document�Create an otherwise normal objects, Document, in another server program. To
allow itself to be able to participate in a Containment relationship, Document inherits
"NodeDelegate" in its interface from the Relationships.idl supported by the relationship
service and adds to itself a "contained_in_role" at its initialization time.

3.	 CreateRelationship�A client program finds objects including the two documents, folder,
and ContaimentRelationshipFactory from the name space; then uses roles_of_type
operation to get respective roles of documents and folder objects; finally builds two
Containment relationships. The involved folder and documents objects have no
knowledge of the relationships being built. The relationships are objects themselves; the
same are true for roles and nodes that participate in a relationship.

4.	 List�This is a client program that takes advantage of the existing relationships and
navigates among the distributed objects that are otherwise independent. Setting out from
any one object, the client hops from one object to another and asks each one to perform
certain tasks, in this case, listing each object's name and the role it plays in the
relationship.

4.2.5 Persistent Storage Manager (PSM)

Unlike the self-managed persistence in Life Cycle (Sec. 4.2.1), PSM is a service provided by
DOE to make things easier. This application is ingenuous and thus a good starting point
programming with DOE. In this application, an "adder" object is created. The adder takes two
integers from a client and performs the addition before returning a result. Remember, all this
happens over the network; the object may deactivate, and the server may shutdown. By using
the support of PSM, the "adder" object is able to recover, hence the client program is able to
obtain the adder's result that has been calculated prior to its deactivation.

Persistent attribute(s) is declared in the .ddl file; PSM is specified in the .impl file.

4-5 813-RD-014-001

4.2.6 Delegation

Like persistence management, implementation reuse can be realized by means of either user­
implemented delegation or ODF's support for delegation. Delegation, in this context, means that
one object relays a method invocation to another object which will either complete the task or
relay the invocation one step further until the task is done.

Re-using the adder's implementation, this application implements a slightly more sophisticated
object, "adder-deductor", that is capable of subtraction as well as addition using the ODF's
support (in fact, a user-implemented delegation has also been successfully programmed). The
.idl file incorporates adder's operation through interface inheritance and defines its own
subtraction operation. Addition method invocation is delegated transparently, while subtraction
method invocation is passed to the adder after reversing sign of the second argument.

Adder object is specified as a delegate in the .impl file.

4.2.7 Property

One way to add attributes to an ORB object is through the IDL interface, in which case IDL
attributes are statically fixed at compile-time. By contrast, properties are dynamic attributes
which may be added and removed at run-time and without any involvement on the object's
part�similar to how relationships among objects are built. In that application (Sec. 4.2.4), a folder
contains two documents; each document is contained in a folder. Suppose at one point, for
example, we want to archive all the documents and folders on the network and need to assign
each of them an ISBN number, an attribute that the folder and document objects do not have at
compile-time. How can we accomplish this? Property service provides a solution.

This application uses property service and is based on the previous Section to build a primitive
distributed calculator object. This object is able to conduct operations such as addition,
subtraction, multiplication, and division. The first two operations are delegated to adder­
deductor (Sec. 4.2.6) which are then delegated further to the adder object (Sec. 4.2.5). Properties
describing functionality of the calculator is supported by the PropertySet object through a
separate delegation. PropertySet is an interface within PropertyService and is part of the
calculator object's interface through interface inheritance.

Two client programs have also been implemented: One adds properties, or attributes, to the
calculator object; the other actually makes use of that information by accessing these attributes.

4-6 813-RD-014-001

5 Conclusions and Outlook

5.1 Conclusions

DOE has proven itself to be a viable ORB product and is relatively easy to program with (as
compared to DCE). The extensive CORBA services have made building a modestly
sophisticated set of objects an easy task.

Overhead varies for method invocation on network objects, depending on how many services (or,
server objects) are active. It may take longer time for the invoked object to respond if required
services are deactivated. The response time, however, approaches that of a local application if all
required services are active and available.

A distributed object becomes deactivated, and a server shutdown if either has not been used for a
specific period of time, so as to save network resources. A server has to be started up before an
object can be activated. On the other hand, objects within a server have to be deactivated before
the server can be shutdown. The duration for objects and servers to remain active is configurable
at server installation.

Table 5-1 provides an estimated range between the longest response time when server is down
and the shortest response time when involved objects are active and available. This information
should be used as a guide and by no means applicable under all circumstances, due to differences
in hardware and testing environment (e.g., how many processes are running concurrently).

Table 5-1. Object Service vs. Response Time
Object Service Response Time*

(seconds)

Response Time*

(seconds)

Naming Service 16 1

Events Service 11 1

Relationship Service 14 1

Persistent Storage Manager 3 1

ODF Delegation Service 3 1

Property Service 10 1

* 	The recorded figures are the elapsed (wall clock) time; the CPU time consumed by each individual service is less

than 0.1 seconds.

The machine in use was a SPARCstation 10 (Sun 4/80), having 64 MB of RAM. Currently, no
authoritative bench mark for ORB products is available, but some are said to be in production or
planned.

5-1 813-RD-014-001

5.2 Outlook

Future tasks for the application of CORBA-compliant products should be two-fold. First,
continue to carry out OODCE to CORBA migration, beginning with prototype, as this is relevant
to ECS project. Secondly, evaluate ORBs from other vendors, possibly including IONA, IBM,
HP, ExperSoft, Digital, as well as SunSoft. This should go beyond the association with DCE,
because CORBA and DCE offer technologies that are quite different.

It should be noted that an ORB product that supports DCE IOP (CORBA2 ESIOP) does not
necessarily make itself a better candidate for future releases of ECS. From the viewpoint of
system integration, there is no instant interoperability between ORB objects and OODCE
objects, regardless of the type of inter-ORB protocol supported by the ORB product.

5-2 813-RD-014-001

Appendix A. References and On-line Sources

OMG Standards:

CORBA: Architecture and Specification 2.0 (July, 1995), OMG.

CORBAservices (March, 1995), OMG.

CORBAfacilities (November, 1995), OMG.

Vendor newsletters.

On-line Sources:

World Wide Web Site: http://www.omg.org

FTP Site: ftp.omg.org

Internet Address: info@omg.org

Vendor WWW Home Pages.

For specific OMG documents, go to OMG FTP site (see above) where a rich source of

information can be found. File /pub/docs/doclist.txt contains name-and-sequence-number indices

for all the documents in the directory /pub/docs.

A-1 813-RD-014-001

This page intentionally left blank.

A-2 813-RD-014-001

Abbreviations and Acronyms

COM Component Object Model (Microsoft), or Common Object Model (Digital)

CORBA Common Object Request Broker Architecture

COTS Commercial-Off-the-Shelf (hardware or software)

CSMS Communications and System Management Segment

CSS Communications Subsystem

DCE Distributed Computing Environment

DDL Data Definition Language

DOE Distributed Object Everywhere

DSOM Distributed SOM

ECS EOSDIS Core System

EOS Earth Observing System

EOSDIS EOS Data and Information System

ESIOP Environment-Specific Inter-ORB Protocol

FBE Framework Based Environment

GIOP General Inter-ORB Protocol

IC Integrated Circuit

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

ODBMS Object Database Management System

ODF Object Development Framework

OLE Object Linking and Embedding

OMA Object Management Architecture

OMG Object Management Group

OODCE Object-oriented DCE

ORB Object Request Broker

OSF Open Systems Foundation

PSM Persistent Storage Manager

RDBMS Relational Database Management System

RPC Remote Procedure Call

SNMP Simple Network Management Protocol

SOM System Object Model

AB-1 813-RD-014-001

	1. Introduction
	1.1 DCE and ECS Project
	1.2 Why CORBA

	2. Objectives and Approaches
	2.1 Objectives
	2.2 Approaches

	3. CORBA Commercial ORBs
	3.1 Digital's ObjectBroker
	3.2 Expersoft's PowerBroker
	3.3 HP's ORB Plus
	3.4 IBM's SOM
	3.5 IONA's Orbix
	3.6 SunSoft's NEO (not an acronym)

	4. Application Development Using DOE
	4.1 Development Overview
	4.2 The Developed Applications
	4.2.1 Life Cycle
	4.2.2 Naming
	4.2.3 Events
	4.2.4 Relationship
	4.2.5 Persistant Storage Manager (PSM)
	4.2.6 Delegation
	4.2.7 Property

	5. Conclusions and Outlook
	5.1 Conclusions
	5.2 Outlook

	Appendix A. References and On-line Sources

