
711-WP-001-001

Reuse Report for the

ECS Project

White paper - Not intended for formal review
or Government approval.

March 1996

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

Audrey B. Winston /s/ 3/18/96

Audrey Winston, System Engineer Date
EOSDIS Core System Project

SUBMITTED BY

M. S. Deutsch /s/ 3/18/96

Michael Deutsch, Quality Office Manager Date
EOSDIS Core System Project

Hughes Information Technology Systems
Upper Marlboro, Maryland

This page intentionally left blank.

Abstract

This study of reuse for the ECS Project seeks to move the ECS project toward a component
based development paradigm for a downstream evolutionary change era. This era would be
represented by Releases C and D or equivalent time-span where ECS components would be
included in end-user systems. The study explores how reuse can be explored to increase the
capacity to make evolutionary changes on the current system so that improved user satisfaction
can be realized in this downstream era. The concept of component-based software development
maximizing reuse focuses on the ability to package software into self-contained units that can be
put together to build larger applications.

The end goal from a reuse perspective in preparing for the aforementioned evolutionary change
era is to provide two major assets: 1) A set of reengineered core design patterns with more
generalized characteristics. This will reduce later effort to implement evolutionary changes or to
incorporate into later scaled system variations. 2) A component or pattern based software
engineering process. A byproduct of these assets is a set of frameworks for end users who have
an interest in incorporating basic ECS applications within external systems. This study has made
considerable progress in defining these assets with supporting analyses and experiments.

Keywords: reuse, component-based development, evolutionary change, architecture,
reengineering, design pattern, domain analysis

iii 711-WP-001-001

This page intentionally left blank.

iv 711-WP-001-001

Contents

1. Introduction

1.1 Purpose ..1-1

1.2 Executive Summary ..1-2

1.3 Review and Approval..1-5

2. Reuse Study Scope and Method

2.1 Architecture Overview ..2-1

2.2 Presently Ongoing Reuse Activities..2-2

2.3 Reuse Study Approach ..2-3

3. SDPS Architecture Analysis

3.1 The Resultant ECS Object Model ...3-1

3.2 The Initial Layering and Partitioning of the ECS CSCIs ..3-2

3.3 The Subsequent Layering and Partitioning of the ECS CSCIs ...3-3

4. Advanced Scenarios

4.1 Scenario 1 - Browse and Visualization Scenario ..4-2

4.2 Scenario 2 - Multimedia Conferencing Scenarios...4-3

4.3 Scenario 3 - Interactive Training Scenario..4-4

4.4 Scenario 4 - On-Line Interactive Help Scenario ...4-5

4.5 Scenario 5 - On-Line Interactive Evaluation of New Tool Scenario4-5

4.6 Scenario 6 - Interactive Wireless Communications ..4-6

v 711-WP-001-001

5. Potential Architectural Patterns

5.1 Open Loosely Coupled Architectures ...5-1

5.2 Design Patterns for Reuse ...5-2

5.3 Product Navigation Design Patterns..5-6

5.3.1 ECS Service Domains..5-6

5.3.2 ECS Objects within Service Domains ...5-8

5.4 Reengineering..5-9

5.5 Suggested Reading ...5-11

6. Case Study Experiments

6.1 ReMap ...6-1

6.2 Hypertext Browser Selection...6-3

7. The Pattern-Based Reuse Process

7.1 Overview of this Section ...7-1

7.2 The Process to Select Reusable Components..7-2

7.3 The Process to Identify and Specify Reusable Patterns ..7-5

8. Conclusions and Recommendations

8.1 Conclusions ...8-1

8.2 Recommendations ...8-2

Appendix A

Appendix B

Abbreviations and Acronyms

vi 711-WP-001-001

Figures

Figure 1-1	 A Development Process to Reuse Components:

Matching Desired Components to Available Ones.. 1-2

Figure 1-2 Document and Study Organization.. 1-3

Figure 2-1 SDPS Subsystem Level Architecture... 2-2

Figure 2-2 The Reuse Maturity Scale.. 2-4

Figure 2-3 First Domain Analysis Steps.. 2-5

Figure 2-4 Final Domain Analysis Steps and Reuse Reengineering..................................... 2-5

Figure 3-1 ECS Object Model ... 3-2

Figure 3-2 Processing CSCI .. 3-3

Figure 3-3 Advertising CSCI... 3-4

Figure 4-1	 Advanced Scenarios Help Identify Candidate Reengineering

to Improve Downstream Reuse.. 4-2

Figure 5-1 Request - Transaction - Session - Server - Result.. 5-3

Figure 5-2 Query - Search Server - Data Definition - Advertisement................................... 5-3

Figure 5-3 Data Collection - Data Definition - Advertisement ... 5-4

Figure 5-4 Data Collection - Data Type - Search Server... 5-4

Figure 5-5 Request - Subscription - Event - Result - Notification .. 5-5

Figure 5-6 Request - Agent - Server.. 5-5

Figure 5-7 Key Abstraction Categories ... 5-7

Figure 6-1 Product Quality Characteristics in the ReMap Project .. 6-2

Figure 6-2 Results of the Analysis (AHP Method).. 6-4

Figure 7-1 A General Development Process to Reuse Component....................................... 7-2

Figure 7-2 The Phases in COTS Selection .. 7-3

Figure 7-3 The OTSO Selection Process... 7-4

Figure 7-4 First Domain Analysis Steps.. 7-7

Figure 7-5 Final Domain Analysis Steps and Reuse Reengineering..................................... 7-8

Figure 7-6 Query - Search Server - Data Definition - Advertisement................................... 7-9

Figure 8-1 Overview of the ECS Reuse Program.. 8-3

vii 711-WP-001-001

Figure B-1 Processing CSCI ..B-1

Figure B-2 Data Dictionary CSCI ..B-1

Figure B-3 Planning CSCI..B-2

Figure B-4 Science Data Server CSCI ...B-2

Figure B-5 V0 Gateway CSCI..B-3

Figure B-6 Data Distribution CSCI..B-4

Figure B-7 Storage Management CSCI..B-5

Figure B-8 Algorithm Integration and Test CSCI..B-6

Figure B-9 Advertising CSCI...B-7

Figure B-10 Desktop CSCI ..B-7

Figure B-11 Ingest CSCI..B-8

Figure B-12 Workbench CSCI ...B-9

Tables

Table 5-1 Product Navigation Candidate Design Patterns... 5-2

Table 5-2 Generalizations of ECS Components... 5-9

Table 6-1 Effort Distribution in the OTSO Case Study ... 6-5

viii 711-WP-001-001

1. Introduction

1.1 Purpose

This study of reuse for the ECS Project seeks to move the ECS project toward a component
based development paradigm for a downstream evolutionary change era. This era would be
represented by Releases C and D or equivalent time-span where ECS components would be
included in end-user systems. The study explores how reuse can be explored to increase the
capacity to make evolutionary changes on the current system so that improved user satisfaction
can be realized in this downstream era. While there has been no specific effort toward
reevaluating present architectural concepts, it is unavoidable that reuse must take into account
general information system movement toward more open, loosely coupled structuring. Some of
the processes developed and used in the study have undergone experimentation in actual project
groups and with actual project artifacts assessing, in some cases quantitatively, the effect of the
approach on the group’s activities and resources.

The concept of component-based software development maximizing reuse focuses on the ability
to package software into self-contained units that can be put together to build larger applications.
With component-based software development, the developer using components doesn’t (or
shouldn’t) need to know how the components were written, but just the interfaces that they
expose. Several past and current efforts, in the industry and academia to introduce effective
technologies for component-based software development, have offered important lessons
learned. The strength of the approach is dependent on three critical factors:

•	 Effectiveness of component-based techniques and tools. Effectiveness here means the
infiltration of a reuse paradigm into the processes enacted in the organization.

•	 Implementation decisions on candidate evolutionary system changes based upon both
user utility and degree of reuse of existing components and designs. The net result is a
balance of emphasis on what the users need with when they receive the improvements.

•	 The general plan of the system should stay relatively stable or evolve smoothly if
significant amounts of components are to be reused. This general plan refers to, the
system's main components and their interactions which in this study will be called the
architecture of the system.

The idea behind any successful and effective reuse effort is to match desired capabilities and
existing needs to available artifacts in order to achieve the best possible coverage. The process
described in Figure 1-1 provides an overview of how the development process (modeled here by
using the OMT methodology steps) and the process to select reusable artifacts run parallel and
interact. The arrows in the diagram show some of the major interactions.

1-1 711-WP-001-001

1. Find reuse candidates
2. Define evaluation criteria

•

Analyze and specify requirements
Specify global architecture

Intersystem specification
Specify subsystem architecture

4.

3.

5.

1.

2.
Partitioning

Evaluate and select candidates• Allocation
Specify selected candidates•

3. Match designs

4. Design objects
5.
6.

Implement objects

Component Libraries

R
E
F
E
R
E
N
C
E

A
R
C
H
I
T
E
C
T
U
R
E

Figure 1-1. A Development Process to Reuse Components: Matching Desired
Components to Available Ones

The key to the process described in Figure 1-1 is the double interaction between requirement
specification and reuse candidate selection. One direction of the interaction is the obvious one in
which system requirements are taken into account in the selection of reusable components; only
artifacts that satisfy existing needs are considered, selected and reused. The other direction, less
obvious, is the one in which the specified requirements are reviewed based on the availability of
suitable artifacts; in choosing and prioritizing among requirements to be satisfied, some kind of
cost benefit analysis is performed. Some requirements are satisfied and expanded because there
is the availability of software artifacts that makes their satisfaction easy and cost-effective. Other
requirements are satisfied in a modified way or may be deferred because there is nothing that can
be reused to satisfy them; therefore they might be very expensive or, at least, not cost-effective.

The process shown in Figure 1-1 offers a motivation and an inspiring framework for the study
presented in this paper. This study endeavors to responsibly project future directions where reuse
can be effectively leveraged; the study makes no judgment or statement on matters of contractual
scope.

Major contributors to this study have been Michael Deutsch, Show-Fune Chen, Kevin Limperos,
Tom Dopplick and Dale Rickman of Hughes Information Technology Corporation, Ron
Williamson of Hughes Research Laboratories, and Gianluigi Caldiera and Jyrki Kontio from the
University of Maryland.

1.2 Executive Summary

The end goal from a reuse perspective in preparing for the aforementioned evolutionary change
era is to provide two major assets: 1) A set of reengineered core design patterns with more
generalized characteristics. This will reduce later effort to implement evolutionary changes or to
incorporate into later scaled system variations. 2) A component or pattern based software

1-2 711-WP-001-001

engineering process. A byproduct of these assets is a set of frameworks for end users who have
an interest in incorporating basic ECS applications within external systems. This study has made
considerable progress in defining these assets with supporting analyses and experiments as
shown in Figure 1-2.

Reuse engineering Domain analysis

Assets
for

Downstream
Evolutionary
Change Era

Candidate flexible design
patterns for reengineering:
• Data definition service
• Query service
• Request service
• Request
• Distribution collection
• Task collection
• Resource collection
(Section 5)

Pattern based
engineering process

(Section 7)

Case Study Experiments
Component Selection

(Section 6)

Representative Advanced
Scenarios

(Section 4)

SDPS Object Model/
Architecture Reconstruction

(Section 3)

Figure 1-2. Document and Study Organization

As seen in Figure 1-2, there are two continuing major steps to this reuse study: 1) A reuse
engineering activity that has defined the candidate design patterns and pattern based engineering
process; and 2) A domain analysis that characterizes present artifacts, future representative
scenarios, and case study experiments that shaped the definition of the reusable assets. Pointers
to document sections are indicated, and a summary of each step is presented below.

The present domain, Section 3, is characterized be a reconstruction of the SDPS architecture
from Release B designs. The architecture is captured in an object class model. This is the
baseline from which potential more generalized design patterns can derived to support improved
downstream evolutionary capacity.

1-3 711-WP-001-001

Advanced scenarios, Section 4, were prepared to partially portray the domain of system usage in
the downstream evolutionary era. These scenarios are intended to be representative, not
exhaustive. They are partially driven by a predicted set of assumed technology factors that are
reasonable extrapolations of present technology advances. Some of these scenarios possibly
represent a more loosely coupled operations concept that may occur downstream. The scenarios
suggest areas in the architecture where generalization could be advantageously reengineered.
Scenarios are described for browse and visualization, multimedia conferencing, interactive
training, on-line interactive help, on-line interactive evaluation of new tool, and interactive
wireless communications.

In Section 5, reusable design abstractions are identified from the existing services for
management, search, and distribution of domain specific digital products. Seven design patterns
(see Figure 1-2) can be potentially reengineered to provide a more generalized capability. The
design patterns are more likely to accommodate evolutionary changes with only localized
impacts. Further, these patterns may be transferable into a broader context of domains similar to
ECS that require these common features.

An initial component-based reuse process is offered by existing off-the-shelf software
components. Little published work exists on guidelines for reusable component selection.
University of Maryland personnel collaborated in experiments with Hughes Client Subsystem
developers in selecting two off-the-shelf components: a map tool and a web browser tool
(Section 6). The case studies indicated that a well-defined process allows the selection process to
take place efficiently, the overhead of formal criteria definition is marginal, and the use of
different data consolidation methods may influence the results.

In Section 7 two sub processes are outlined. The first is the process used to select reusable
components in a repeatable and auditable way. The second is the process used to recognize
reusable architectural design patterns starting from the design specifications. The importance of
the resultant processes also lies in their applicability in different domains and circumstances.

At the end of the report some preliminary conclusion and lessons learned are presented
(Section 8). Some of the lessons learned so far are:

•	 It is possible to consolidate some of the best practices in reusable component selection
into a coherent and usable methodology which improves the efficiency and consistency
of selection.

•	 To make the reusable component selection process repeatable, an organization needs to
build up, besides software process maturity, a reuse maturity.

•	 It is possible to use reengineered design patterns for use in future increments of the
system that involve a more loosely coupled operations concept and architectural
structure.

1-4 711-WP-001-001

1.3 Review and Approval

This White Paper is an informal document approved at the Office Manager level. It does not
require formal Government review or approval; however, it is submitted with the intent that
review and comments will be forthcoming.

The ideas expressed in this White Paper are a snapshot of the present thinking and will be
considered as appropriate in both Releases C and D and in the self-governance era.

Questions regarding technical information contained within this paper should be addressed to the
following ECS and/or GSFC contacts:

• ECS Contacts

– Audrey B. Winston, System Engineer, (301) 925-0353, awinston@eos.hitc.com

– Michael S. Deutsch, Quality Office Manager, (301) 925-0358, miked@eos.hitc.com

– Gianluigi Caldiera, University of Maryland, (301) 405-2707, gcaldiera@cs.umd.edu

• GSFC Contacts

–	 Ted Hammer, EOSDIS Product Assurance Manager, (301) 286-3295,
thammer@ccmail.gsfc.nasa.gov

Questions concerning distribution or control of this document should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Systems

1616 McCormick Drive

Upper Marlboro, MD 20774-5372

1-5 711-WP-001-001

This page intentionally left blank.

1-6 711-WP-001-001

2. Reuse Study Scope and Method

The Science Data Processing Segment (SDPS) presents multiple aspects of reuse and has been
chosen as the object for this study. This segment presents reuse of internal and external
components and subsystems, organized as both off-the-shelf products and specific subsystems.
The other two ECS segments, Communications and System Management Segment (CSMS) and
Flight Operations Segment (FOS), also present opportunities for reuse as infrastructure elements
with associated challenges. This notwithstanding, it was decided to focus limited resources on
SDPS as the central application area of ECS. In the following chapters it is explained how the
different pieces of SDPS fit together into an organic reuse program.

2.1 Architecture Overview

The ECS architecture provides the base for an open-system design with a low cost of changing
services and data types. Services and new data products can be added incrementally to the
system over time, providing low cost of entry for all service providers. The service providers
include Distributed Active Archive Centers (DAACs) which provide services for production of
and access to standard science data products, Value-Added Providers (VAPs) which provide
unique services beyond those in ECS, science computing facilities (SCFs) which provide the
core Earth science data processing algorithms and conduct ongoing research, and all other related
data centers.

The subsystems illustrated in the figure below capture the complete distributed functionality of
the ECS spread across the nine sites illustrated in the map. The subsystems are:

•	 CLIENT. Provides the "client" part of the "Client / Server" access paradigm through
graphical user interface and data/service access tools, as well as application program
interface (API) libraries to ECS services.

•	 INTEROPERABILITY. Provides application level “middle-ware” which facilitates
dynamic client access to services and providers holding data collections and services.

•	 DATA MANAGEMENT. Provides system wide distributed search and access services
with multiple science discipline views of data collections and “one stop shopping” with
location transparent access to those services and data.

•	 DATA SERVER. Provides locally optimized search, access, archive and distribution
services with a science discipline view of data collections and an extensible Earth
Science Data Type and Computer Science Data Type view of the archive holdings.

•	 DATA INGEST. Provides the “clients” for the importation of data (science products,
ancillary, correlative, documents, etc.) into ECS data repositories (Data Servers) on an ad
hoc or scheduled basis and deals with external system interfaces.

2-1 711-WP-001-001

Instruments Other External

Data
Ingest

Data
Management

Science
Workbench

Client
(Local Users)

Other Sites

Scientists
Public

data
search

& access

media
distribution

(EDOS) Sites Data
Sources

Data Collection

Planning

Data
Processing

data
availability

Inter
operability

Data
Server

data inputs
& outputs

data search
& access

processing
requests/status

ingested
data

data search
& access

direct
access

Figure 2-1. SDPS Subsystem Level Architecture

•	 PLANNING. Provides for pre-planning of routine / ad hoc / on-demand science data
processing as well as management functions for handling deviations from the operations
plans for individual DAAC sites.

•	 DATA PROCESSING. Provides the functions to host science algorithm software,
perform data processing, process resource management and includes facilities and
toolkits which offer true software portability across advanced computing platforms as
well as science software integration, test and configuration management.

2.2 Presently Ongoing Reuse Activities

While this study seeks to formalize reuse for a future evolutionary change era (such as that
represented by Releases C and D), reuse is being exploited on a more opportunistic basis in the
Releases A and B time frame. A notable example is the reuse of the Hughes Delphi Class
Libraries that furnish a generalized planning and scheduling capability.

A more formalized present reuse activity is being managed by the Development Engineering
organization that is designing and implementing cross-CSCI common elements. These include
scenario primitives, key mechanisms, and failure scenarios. Examples in each of these areas are
noted below:

•	 Scenario primitives (examples)

- L0 check

- Create staging file

- Submit subscription

- Find service

- Acquire data

- Acquire document

- Distributed Info Manager Result Retrieval

- Callback

2-2 711-WP-001-001

•	 Key mechanisms (examples)

- Universal references

- Error/event handling

- Request tracking

• Failure scenarios (examples)

- Session-server-request pattern

- Generic subscription

- Distributed object framework

- Data server DBMS data corruption - Server loses connection to DBMS

- Archive failure after user requests data - External data insert failure

The net effect of these common elements is to induce a more layered software architecture with
visible interfaces that are (re)usable for both Releases A and B. The identification of these
candidate common elements has appeared through ongoing experience with the architecture. It is
speculated that there are other higher level larger scale abstractions that can be generalized for
the benefit of more economical evolutionary change and extension. The session-server-request
pattern noted above is an example of a generalized higher level design pattern that is presently
clear; this study is intended to discover additional design patterns of this nature and document an
associated process for their use.

2.3 Reuse Study Approach

The methodology used in the reuse study is intended to move the ECS project to the upper
regions of the reuse maturity scale where the schedule and cost benefits are greater in making
evolutionary extensions to the system. This progression is illustrated on Figure 2-2.
Generalization of major design patterns, or mini-architectures, is envisioned as the primary
vehicle.

2-3 711-WP-001-001

REUSE MATURITY AND CYCLE-TIME REDUCTION

B
e
n
e
f
i
t
s

Informal
Reuse

Code Reuse

Black-box
Code Reuse

Subsystem
Reuse

Product
Architecture

Reuse

Domain
specific
Reuse

Reduce
development

effort

Reduce
schedule

Improve
flexibility

Satisfy
evolving

needs
Improve overall

time-to-user
and quality

Modules, Classes,
Specs, ...

Generic
components

Large & complex
components

Architecture &
components

Generic product
architectures

Modules, ...

Reduce
development

effort

NOW

LATER

Reuse Maturity

Figure 2-2. The Reuse Maturity Scale

Anecdotal evidence from the Goddard Software Engineering Laboratory and Hewlett-Packard
offers affirmation of the efficacy of this strategy.

The steps of the methodology are largely an expansion of the steps previously shown in Figure 1
2 and are an extrapolation of the experience encountered in GSFC's Software Engineering
Laboratory. These steps are depicted in Figures 2-3 and 2-4.

2-4 711-WP-001-001

2-5 711-WP-001-001

SYNOPSIS OF THE METHODOLOGY

Project
Documentation

CSCI Object Models

ECS Object Model

Figure 2-3. First Domain Analysis Steps

SYNOPSIS OF THE METHODOLOGY

ECS Object Model ECS Design Patterns Domain Asset Library
(Reusable Components)

ADVANCED
SCENARIOS

Figure 2-4. Final Domain Analysis Steps and Reuse Reengineering

The domain analysis steps entailed:

•	 Updating an object model for the SDPS. The building blocks used for this analysis were
the CSCIs of that segment. The level of detail used was Release A Critical Design
Review specifications and Release B Interim Design Review specifications.

•	 Use cases from speculative advanced scenarios for the ECS program were symbolically
executed on the ECS object model to determine leverage areas for critical design patterns.

• Experiments in COTS selection on the Client subsystem.

The reuse reengineering steps entailed:

•	 Derivation of design patterns and exploration of reengineering required for
generalization. An asset library describing these design patterns in terms of purpose,
structure, participants and ECS source will eventually be produced.

•	 Documentation of a pattern based engineering process that will complement eventually
the catalog of designs.

The purpose of the ECS object model and design patterns associated with it was to have a family
of reusable products that are well understood and easily modifiable to satisfy the evolving needs
of the ECS users. The use of both current and advanced scenarios allows us to have a proactive
attitude on system evolution and satisfaction of user needs and to take full advantage of the
power of the architectural point of view.

2-6 711-WP-001-001

3. SDPS Architecture Analysis

3.1 The Resultant ECS Object Model

We began our analysis/diagram of the ECS model by:

• showing the relationships and associations between the subsystems,

• analyzing the use cases to determine where we get the biggest benefit from reuse, and

• better understanding the ECS system.

After all the CSCIs were examined, we compared the 12 block diagrams (refer to Appendix B,
Figures B-1 to B-12) and created a generalized ECS Object Model linking all the objects
together using the Rational Rose tool. Appendix A shows the resultant ECS object model using
Release B documentation, as it is too large to put in the body of this document, but a silhouette
of the resultant model is shown in Figure 3-1. Next we looked at scenarios that might be relevant
to ECS and abstracted design patterns that should prove to be useful.

The goal of the ECS reuse study was to analyze the ECS project and determine which assets of
the system can be reused downstream by focusing attention on the objects being developed now
in the system. The study then followed a process which generalized the concepts so that future
releases can take advantage of reusable design patterns.

3-1 711-WP-001-001

3-2 711-WP-001-001

Client
Interface

Quality
Assurance

Data
Dictionary

Server

Data
Dictionary

DBMS

E-mailer Tool

Data Dictionary
Tool

Earth Science
Search Tool

Global

Configuration/
Start Up

VIRS

LIS

MISR

ERS

ACRIM
SAGE

Gui

Metadata

ECS Object Model

LOCAL INFORMATION
MANAGER (DMS-LIMGR) DISTRIBUTED

INFORMATION
MANAGER

(DMS-DIMGR)
DIM Server

LIM Server

COLOR
SSA ETM

MOPITT CERES

SeaWinds
MODIS

JERS

Maintenance
Tool

DATA
DICTIONARY
(DMS-DDICT)

Descriptors
CSDT

ALGORITHM
INTEGRATION AND
TEST (DPS-AITTL)

SDP Tools

AITTL Tools

User
Preferences

Tool

Session
Management

Hypertext
Viewer

Hypertext
Authoring

Tool
News Reader Tool

Visualization
(EOSView)

Product
Request

Tool WORKBENCH
(CLS-WKBCH)

DESKTOP
(CLS-DESKT)

Data Acquisition
Request Tool

Non-Product
Science ESDT

Non-Science
ESDT

Server

General Earth
Sciences Data

Client
Administration

& Operation

STORAGE
MANAGE-

MENT
Service
Clients

PeripheralsResource
Management

Data Storage

File

SCIENCE DATA
SERVER

(DSS-SDSRV)

Navigating Server

Advertising DBMS
Server

ADVERTISING
SERVICES

(IOS-ADSRV)

DBMS Application
Server

Advanced Text Server

DATA DISTRIBUTION
(DSS-DDIST)

Distribution
Products

Subscriptions

DB Wrappers

DOCUMENT DATA
SERVER (DDS-DDSRV)

DDSRV Client

Search Engine

General Earth
Sciences Data Computer Science

Data Types

DDSRV Server

INGEST
(INS-INGST)

Peripheral
Software

INGEST
Viewing Tools

Operator
Interface

User Network
Interface

Polling Clent
Interface

Session
Manager

Request
Processing

Data Transfer

Data
Preprocessing

Data Storage
Software

Resource
Administration INGEST Client

Subscription Editor

PLANNING
(PLS-PLANG)

Planning Workbench

PDPS Dbms
Production

Request
Editor

Planning
Object Library

Data Management

Resource
Management

Subscription
Manager

Subscription
Submission

On-Demand
Manager

PROCESSING
(DPS-PRONG)

SDP TOOLKIT
(DPS-SDPTK)

Data
Preprocessing

Execution
Management

Job
Management

Cots Management

Cancel Data
COTS

VERSION 0
INTEROPERABILITY

GATEWAY
(DMS-GTWAY)

Gateway
Server

Gateway DBMSV0 IMS Server

Request
Management

Administration
Data

INGEST Dbms

Data Products

Instrument
Data

Products RADARSAT
TMI

PR

Figure 3-1. ECS Object Model

3.2 The Initial Layering and Partitioning of the ECS CSCIs

We began by looking at the TRMM (Release A) documentation, specifically the sections in Data
Item Description (DID) 305 that related to the Computer Software Configuration Items (CSCIs).
Here we gathered information to be used as the basis for our model. We evaluated the
information down to the computer software component (CSC) level and gathered as much detail
as possible resulting in twelve CSCI diagrams such as the one depicted in Figure 3-2. The full set
of the twelve CSCI diagrams are located in Appendix B.

Manages
execution
of PGEs

Provides persistent storage of
planning data, processing date,
schemas used by thePLANG
and PRONG COTS packages,
and AI&T data.

Provides the
job
engine

Manages and allocates
computing resources

for Pge execution.

Manages acquisition
and retention of PGE

input data and archival
of PGE outputs

Provides interface and
mechanism by which
operations personnel
visualize science data
and update metatdata

Provides the interface
by which other CSCIs
invoke the servics of PRONG
or to n otify PRONG of
exeternal events.

Job Management CSC
QA

Monitoring
CSC

Resource
Management CSC

Data
Management CSC

PGE Execution
Management CSC

COTS CSC

Server CSCIs/Operating System

DBMS CSC

scheduling

Figure 3-2. Processing CSCI

Some hints regarding layering were gleaned from the tables and documentation in DID 305.
Further study of the documentation allocated specific classes to CSCs. We studied the object
models in the DID and marked the classes that belong to each CSC using highlighters of
different colors. The goal was to look for associations between classes from different CSCs. If
there was an association, then there would be an interface between the two CSCs. If the
relationship was client/server, then the CSCs would be in adjacent layers with the server below
the client. If the relationship was peer-to-peer, then the CSCs would be in the same layer with a
single line separating them. If two CSCs had client-server relationships with a third CSC but no
relationship with one another, then they were put in the same layer but separated by a double
line. For the description balloons, we pulled the text directly from tables and descriptions in DID
305. Next we deduced the layering from everything learned from the previous activities.

3.3 The Subsequent Layering and Partitioning of the ECS CSCIs

However, we soon realized that we needed to show the use relationships between the objects
rather than simply the associations. So we transformed each of the earlier diagrams to the
adopted Booch Object Notation to document our architectures and created CSCI architecture
class category models based on the information we found; this part of the effort proved to be the
crux of the exercise. An example is shown in Figure 3-3; refer to Appendix B for the full set of
CSCI diagrams. The CSCs were summarized from the documentation and then we partitioned

3-3 711-WP-001-001

the information in such a way as to accurately represent the CSCIs in block diagrams while at the
same time keeping the reuse issue in the forefront. Throughout this exercise we noted use,
inheritance and composite relationships.

Provides
text
search
capability
for
Advertisi
ng
Service.

Application server that
processes the Advertising
Client’s requests (e.g.,
attribute search, create
advertisement, and etc.).

Extracts information from Global
Change Master Directory (GCMD) and
generates ECS advertisements.

DBMS used to store
advertisement
information.

Off the shelf http server
to provides hyperlink
access to
advertisements.

AdvDBMSApplServer

AdvTextSearch

AdvDBMSServer

GCMDExporter

AdvNavigatingServer

Figure 3-3. Advertising CSCI

3-4 711-WP-001-001

4. Advanced Scenarios

This collection of advanced scenarios was prepared to support this study on the reuse of ECS
components. These scenarios are intended to be representative, not exhaustive. They are partially
driven by a predicted set of Assumed Technology Factors listed below that are reasonable
extrapolations of present technology advances. Some of these scenarios possibly represent a
more loosely coupled operations concept that may occur in a downstream era.

• Inexpensive, high powered computers

• High speed long distance communications

• Inexpensive, high-volume storage

• Mobile computing & personal digital assistants (PDA)

• Smart agents

• Continuous speech recognition

• Neural networks

Summarized in the figure below is a tabularization of these advanced scenarios against present
ECS subsystems involved. These affected areas provide the first "clue" on where generalization
of existing assets could furnish downstream reuse leverage. Also deduced are three potentially
beneficial reengineering areas for ECS extension and generalization instigated by these
representative scenarios.

4-1 711-WP-001-001

Advanced scenario

Extended browse &
visualization

Multi-media conferencing

Interactive training

On-line interactive help

On-line interactive
evaluation of new tool

Interactive wireless
communications

Possible technology factors:

• Inexpensive/high powered processors� • Smart agents
• High speed long distance communications� • Continuous speech recognition
• Inexpensive, high volume storage� • Neural networks
• Mobile computing and personal
digital assistants (PDA)

Affected ECS components

Client, data management,
data server

Client, data processing

Client, data management,
data server

Client, data management,
data server

Client

Client, data management,
data server, data processing

Candidate Reengineering

• Generalized Client adapters
to encapsulate interactive
multi-media COTS tools

• "Plug and play" adapters to
encapsulate prototyping
and visualization COTS
tools

• Smart "data managers"

Figure 4-1. Advanced Scenarios Help Identify Candidate Reengineering to
Improve Downstream Reuse

The deduced candidate reengineering areas, if implemented, are intended to answer a more
widespread need to increase evolutionary change capacity with maximum reuse within reduced
schedules. These specific scenarios are employed only as suggestions toward that end. More
details on prospective design patterns within these candidate reengineering areas are treated in
Section 5, Potential Architectural Patterns.

4.1 Scenario 1 - Browse and Visualization Scenario

A scientist studying biospheric-atmospheric interactions attempts to develop a current vegetation
cover map for the continental United States. She feels that many of the EOS products developed
from the surface imagers, such as MODIS, MISR and ASTER will be invaluable in her effort.
The investigator decides to query ECS to see what products are available. She knows that a
multitemporal MODIS NDVI product should be available, so she accesses ECS from her
workstation at the university. She develops an inventory level query to locate regional products
of leaf are index (LAI), net primary productive (NPP) produced annually for the previous 2
years, and level 3 NDVI products.

4-2 711-WP-001-001

The response lists indicate that 100 products meet her initial criteria. To limit the number of
products, she refines her query using more stringent constraints, limiting the search to include
only March through November NDVI data. This more stringent query results in 75 “hits.”

She selects them all and activates the STAGE button on her desktop, which causes the archive to
pre-stage the selected data sets to rapid access storage. Starting with the earliest data, she begins
to scroll forward in time, noting the green up for each year. She automatically transitions from
one frame to the next by simply using the mouse to scroll the data. Moving from one screen to
the next requires about 2 seconds. When she skips through an adjacent screen (scrolling
geographically) her longest wait is 5 seconds. When scrolling through time, the longest wait is
the same, but because of the buffering scheme, she can move forward or backward in time two
scenes at the 2 second update rate.

Knowing that a colleague at the EPA has recently completed a project to map the vegetation
resources of the continental United States, she queries the ECS to see if the results are accessible.
Finding the results in the ECS archive, she downloads a copy of the EPA vegetation data base
and displays it adjacent to the NDVI images she has been examining. The high LAIs for the
midwestern U.S. lead her to believe that the EPA data were developed during the height of the
growing season. She scrolls back in time through earlier NDVI products to see how quickly the
"green up" occurs for this area. Then scrolling forward in time through the data, she interactively
delineates areas for which she will need to obtain high resolution ASTER data to determine the
LAI changes for different crops.

She then repeats the process, comparing the EPA product with different parts of the NDVI
products, noting the green-up of northern and central hardwood forest areas on the NDVI
images. She then compares the regional LAI with the EPA data product. After this quick visual
analysis of NDVI products, she concludes that they have a high degree of integrity and will be
important for her research on NPP for the continental U.S. The scientist specifies electronic
delivery of the image products to her account on the university system.

ECS Subsystems:

Client

Data Management

Data Server

Communications

4.2 Scenario 2 - Multimedia Conferencing Scenarios

A Principal Investigator (PI) and his Co-Investigators (Co-Is) who are studying the global
hydrological cycle have run into a problem. Several Co-Is have developed algorithms for
estimating snow water content using a variety of instruments and techniques. Each algorithm
appears to work well on the data sets used by its developer. However, a deadline for
implementing algorithms on ECS is rapidly approaching, so the best must now be selected. The
PI calls for a teleconference of his Co-Is to examine and test these algorithms.

4-3 711-WP-001-001

When the meeting time arrives, each scientist logs onto ECS and opens the conference window.
As soon as the connection is made, a text / graphics image describing the conference appears on
the screen. The PI begins the conference by listing the various candidate algorithms and
associated developers. He verbally explains again the purpose of the meeting. As changes are
made on his screen, the participants' workstation windows are also updated. The algorithms are
examined in sequence.

The first algorithm is based on both SSM/I passive microwave data and MODIS data. The
responsible Co-I begins by showing text and graphics images describing the algorithm and how
it was developed. He then displays raw SSM/I and MODIS images of the area and applies his
algorithm, producing an image of snow water content values. He next brings up an image of in
situ measurements and creates a new image by taking the difference between the estimated and
actual water content values. He indicates that the differences are mostly small and points out the
areas of best and worst performance by circling them.

At this point, another Co-I, whose algorithm uses only SSM/I data, interrupts and asks if the
algorithm being evaluated is subject to contamination by thin cirrus clouds; she suggests that the
algorithm be applied to data they know were obtained in cloudy areas. She sends a SSM/I image
and some matching ground truth data, while the first CO-I orders the matching MODIS data. He
tries out his algorithm on the new data, and it becomes obvious that the deviations from the
ground truth have increased.

This process continues, with investigators showing results of their algorithms and applying them
to data sets provided by others. Finally, a consensus grows and the best algorithm is chosen for
integration at the DAAC. Immediately afterwards, the participants return directly to their local
work.

ECS Subsystems:

Client

Communications

4.3 Scenario 3 - Interactive Training Scenario

A second year graduate research assistant is learning how to use ECS and will use the same
teleconferencing function in a distributed classroom application. An interactive training session
on data searching has been scheduled with the ECS Team for this afternoon, and he wishes to
participate. At the appropriate time, he logs into ECS, runs the conferencing tool, and joins the
session. An ECS team instructor displays the agenda on his screen, which also appears on each
student's screen. He discusses the ECS data search capability, describing each feature by
example, running data searches with various metadata constraints and observing the results. The
instructor's screen updates during this process also are show on each student's workstation. A
series of sample problems are assigned and the students work on them. The instructor observes
the problems they encounter and offers suggestions. The students log off from the system as they
finish the sample problems.

4-4 711-WP-001-001

ECS Subsystems:

Client

Data Management

Data Server

Communications

4.4 Scenario 4 - On-Line Interactive Help Scenario

Another graduate student has a problem using the system. His search strategy has yielded no
data. After trying the help feature, he still cannot locate data he is certain exists, so he selects the
SPECIAL HELP button from his menu. After a very short delay, an ECS user assistance
representative at the Help Desk links to his workstation. After ECS establishes that the problem
occurred during data search, the student attempts his search once more. ECS user assistance
views the students search efforts on the ECS support workstation.

After seeing the screens illustrating the failed search, ECS user assistance suggests relaxing the
quality constraint. The user changes the strategy to include data with a quality warning flag and
then reruns the search while the expert watches on his screen. This time, the search returns a list
of data sets that have not been cleared by quality assurance because of an instrument calibration
question.

ECS Subsystems:

Client

Data Management

Data Server

Communications

4.5 Scenario 5 - On-Line Interactive Evaluation of New Tool Scenario

An EOS PI notices on the electronic bulletin board that the University of Illinois is making
available a new visualization package. A demonstration of the package by ECS is offered to
interested users. The PI logs onto the ECS and runs his conferencing tool. If desired, the PI can
enable conferencing. The ECS instructor begins showing displays, and the resulting screens also
appear on the workstations of all interest parties. Questions about the product are handled on-line
by a University representative, and the PI sends a data set to use in the demonstration. After
completing the demo, ECS personnel use the conferencing facility to obtain participant feedback.
The PI is excited by the package's possibilities and orders a copy.

ECS Subsystems:

Client

Communications

4-5 711-WP-001-001

4.6 Scenario 6 - Interactive Wireless Communications

Note that this scenario 6 was adapted from an earlier scenario developed on ECS.

8:20 Over coffee, the NASA EOS Program Scientist asks� his computer for any new mail.
Video messages are displayed on his flat screen display in her study.

8:25 While listening to his mail, one of his smart agents interrupts him mail to inform him that
an Aster image over the Amazon which meets his quality criteria has just become available from
ECS. He tells the computer to download the image to his NASA Workstation Server.

8:34 He asks the Server, via the Personal Digital Assistant (PDA), to update % cleared forest
and Carbon release calculations.

8:40 After looking at the new calculations he requests a conference with other advisors.
During the conference the calculations and images can be viewed collaboratively. Consensus is
reached on reporting the new findings.

9:00 Findings, notes and selected image subsets are downloaded to his PDA. Using his PDA
as a slide source, he practices his presentation and video tapes it using his computer’s video
camera. He then views the video on his flat screen.

11:20 While driving to lunch, his PDA informs him there are 3 new articles, since yesterday,
which contain Amazon and deforestation, 20 articles with Amazon and 134 with deforestation.
He requests her PDA to read aloud the 3 articles which contain both keywords.

12:00 When he arrives at the restaurant�for lunch, he informs his PDA to only inform him of
messages from selected colleagues. All other mail and Smart agent messages are stored. During
lunch he receives� 8 mail messages, his PDA stores all but only interrupts him for the one from
his colleague. He responds� to the message and they discuss the issue for several minutes.

1:20 He presents his updated paper “Deforestation as viewed by EOS” at the Washington,
D.C. Conference on Deforestation, using his PDA and wireless communication to send the
data/slides to the conference display unit. During questions additional information is needed,
which gets downloaded to his PDA from his NASA server.

4:00 After the meeting, the conference chairman, requests a meeting to further discuss this
topic. The meeting is set up by their PDAs negotiating a time and place. The conference room is
automatically reserved.

4:30 On the drive home he dictates notes on the presentation which are stored in the PDA and
distributed to his colleagues.

5:00 At home he retrieves new messages and schedules the next days activities. He sets the
PDA to private mode.

4-6 711-WP-001-001

ECS Subsystems:

Client

Data Management

Data Server

Data Processing

Communications

From these scenarios it is possible to reasonably focus on areas where reengineering of the ECS
architecture is likely to accommodate future trends:

• smarter data management capabilities (e.g., smart agent technology),

• “plug and play” adapters to encapsulate prototyping and visualization COTS tools, and

• generalized client adapters to encapsulate multi-media COTS tools.

A further trend implied by these scenarios is more distributed generation of products. Thus,
another candidate reengineering area concerns generalization of ingest processing to
accommodate user driven inputs in addition to the data driven interface presently designed.
These reengineering areas are further treated in the next section on architectural patterns.

4-7 711-WP-001-001

This page intentionally left blank.

4-8 711-WP-001-001

5. Potential Architectural Patterns

The choice of an architecture and the associated design patterns is fundamentally important in
supporting the advanced scenarios. In particular the Extended Browse and Visualization scenario
requires the availability of services supporting search and exploration of complex data sets
archived in ECS. The state of the art in browsing and visualization tools advances much more
rapidly that the basic services in the core system. This requires that the browse and visualization
tools be able to negotiate interfaces, protocols, and data formats with the core system via a
loosely coupled dynamic interface. Multi-media conferencing, interactive training and on-line
interactive help scenarios all require the ability to dynamically link into high-bandwidth system
services providing reliable communication and secure links.

Each scenario requires the negotiation of varying levels of services depending on the cost,
quality, and availability of video conferencing, training, and interactive help services. The on
line interactive evaluation of a new tool scenario requires layered, open system interfacing from
the tool to existing system services that provide the inputs required by the tool. Finally the
interactive wireless communications scenario requires the allocation of system resources to
clients and servers that will enter and leave the system context dynamically. Loose coupling of
clients to servers is fundamental to this type of interaction.

5.1 Open Loosely Coupled Architectures

An open, loosely coupled architecture is a key enabling factor in the development of the ECS
Release A, B, C and D system increments. ECS as a core system provides reusable components
across a wider context including EOSDIS and GCDIS. This system architecture provides the
context for the selection of a set of architectural design patterns that will support the effective
reuse of ECS capabilities across releases and across Earth Science research disciplines.

The choice of an architecture is fundamentally important in arriving at the full benefits of reuse.
This conclusion is based on applied research results of the University of Maryland and other
recent research in the field of software reusability. The ECS architecture is based on an extension
of the classic client - server architecture through the addition of a "middleware" layer between
clients and servers. The middleware layer provides services to allow clients to find relevant
services, to broker the interaction between clients and servers, to manage security, to support
reliable migration of services, to negotiate protocols and data formats, to provide for scalability
of system resources such as network bandwidth, processing capacity, and archival storage
capacity, and to manage and administer the system as a whole.

Product Navigation was used to demonstrate the reuse potential of the ECS architecture. Product
Navigation is a key set of patterns that support users in finding services associated with specific
product collections archived in the ECS repositories.

5-1 711-WP-001-001

5.2 Design Patterns for Reuse

Designing complex software systems is a difficult undertaking and is best accomplished by
experienced designers using techniques, designs, and components that have been successfully
used on previous projects. Building on prior successful applications is a cornerstone of good
system engineering practices. As difficult as design complex software systems is, designing
reusable software is even harder. The use of design patterns has been demonstrated (see
reference Design Patterns, Elements of Reusable Object-Oriented Software) to support the
design or reusable software. The goal of the effort described in this document is to find and
document fundamental patterns that can be generalized to support multiple application domains.
The patterns chosen demonstrate properties that will withstand evolutionary changes and
incorporation into end-user systems with minimal breakage and re-engineering.

This section provides examples of design patterns within the Product Navigation context. The
next section provides detail on the approach used to develop these patterns. The exemplar
patterns are listed in Table 5-1 and are briefly defined. Each of these design patterns are
illustrated by the object models in Figures 5-1 through 5-6. Section 5.3 now analyzes Release A
and ECS assets that are candidate contributors to these design patterns.

Table 5-1. Product Navigation Candidate Design Patterns
Pattern Name Pattern Description

Request -
Transaction-Session -
Server-Result

This pattern models the issuance of a query, the maintenance of state of
search, and the delivery of the response back to the requester.

Query - Search
Server - Data
Definition -
Advertisement

This pattern models the interaction of a requester object with a search engine
and a supporting data dictionary.

Data Collection - Data
Definition -
Advertisement

This pattern models the interaction between a data collection, the definition of
the data types within the collection, and the advertisement of services that are
provided by the collection (such as search, browse or subset)

Data Collection - Data
Type - Search Server

This pattern models the relationship between the data, applications views of the
structure(schema) of that data, and a search engine that provides subsets of
the data based on searchable indices associated with the view.

Request -
Subscription - Event
Result - Notification

This pattern models the subscription to system events associated with an
action specified in the subscription and creates a result.

Request - Agent -
Server

This pattern models the mediation of services between the requester and the
provider of services.

5-2 711-WP-001-001

Request - Transaction - Session - Server - Result

Request

Transaction

Session

Server

Result
Generates

Query

Inherits
Uses

Member-of

Managed-by

Uses

Figure 5-1. Request - Transaction-Session - Server - Result

Query - Search Server - Data Definition - Advertisement

Request

Search Server

Data DefinitionQuery Uses

Exports

Inherits

Inherits

Advertisement

Uses

Server

Figure 5-2. Query - Search Server - Data Definition - Advertisement

5-3 711-WP-001-001

Data Collection - Data Definition - Advertisement

Data DefinitionData Collection Exports

Advertisement
Advertises

Uses

Figure 5-3. Data Collection - Data Definition - Advertisement

Data Collection - Data Type - Search Server

Data Type Data Collection Typed-by

Search Server
Associates-with

Uses

Figure 5-4. Data Collection - Data Type - Search Server

5-4 711-WP-001-001

Request - Subscription - Event - Result - Notification

NotificationEvent

Generates
Result

Generates

Monitors

Subscription

Associates

Request

Defines

Figure 5-5. Request - Subscription - Event - Result - Notification

Request - Agent - Server

Server

Uses

Agent

Request

Associates

DIM

Inherits

Inherits
LIM

Figure 5-6. Request - Agent - Server

5-5 711-WP-001-001

5.3 Product Navigation Design Patterns

The Browse and Visualization advanced scenario indicates the need for an interactive
navigational access capability supporting multi- and inter-disciplinary scientists discover
valuable data and relationships across multiple sensor systems. In a broader context the common
browse and visualization features of each of the domains similar to ECS include the interaction
by humans via a graphical user interface client; the management, access, navigation, and
distribution of a large repository of digitized data; the processing of data from raw sensor data
into higher level products; the reliable storage of large (terabytes) sensor and derived product
data; the management of data processing resources such as communications, storage, processing,
and user interfaces; and the distributed communications infrastructure underlying the entire
system. This section focuses on the category labeled Product Navigation which is responsible for
the management, search, and distribution of domain specific digital products. In the ECS context
the Product Navigation includes those services for data management, data archiving, data
distribution, and service advertising.

The ECS system design is based on a client-middleware-server architecture with objects related
to the Earth Science user and application context defined in the client applications and objects
responsible for storing, accessing, transforming, and distributing data collection state information
stored in server applications. The client and server objects communicate via an intermediate
interoperability layer (middleware) that brokers requests between the client and server objects.

The Product Navigation Design Patterns, examples of which were presented in the previous
section, are a collection of object classes that cut across the Client, Interoperability, Data
Management, and Science Data Server service domains in ECS. These service domains are
described in the next section.

5.3.1 ECS Service Domains

In this system design context the ECS system includes several server applications each
specialized to search a particular view of the ECS data holdings:

• DIM (Distributed Information Management Domain)

The Distributed Information Manager is a search service providing a searchable federated
view of the entire ECS data holdings and associated services.

• LIM (Integrated Site Information Management Domain)

The Local Information Manager is a search service providing a searchable integrated
view of a provider sites ECS data holdings and associated services.

• Data Server (Data Archive Domain)

This provides a set of data services including the search service providing a searchable
view of a logical collection of ECS data.

5-6 711-WP-001-001

• Advertising Search Service (Interoperability Domain)

This a search service providing a searchable view of ECS services and the data
collections associated with those services.

• Data Dictionary Service (Data Definition Domain)

This a search service on definitions of data elements, synonyms, constraints, valid values,
and value dependencies. This service is closely linked to each of the search services
above and provides a search service in its own right for the data definitions and
constraints.

In each case these components take as input, from a client application, a search specification (a
query in SQL, OQL, or other vendor specific extended query language) and return a result set. A
session is maintained by each search service to allow the requester to obtain status and partial
results from the search service. In each of the specializations of the search service described
above a data dictionary is available for assistance in formulating a valid search specification. The
data dictionary is coupled to the views provided by each of the search services.

Each search service is specialized both functionally (i.e. in the algorithm used to process a search
request and optimize the search) and schematically (i.e. in the way it combines the data structure
information from other servers, union version integration).

Figure 5-7 lists the key abstraction categories by Service Domain. These services domains are
mapped onto the ECS system design and key interface and application objects are then defined
and expanded as part of the ongoing preliminary and detailed designs. The following section
maps the key abstractions (objects) defined in Figure 5-7 onto the services domains relevant to
the Product Navigation context.

Key Abstraction Categories
User Interface Domain

Agent Client

CSDT
ESDT

Data Format

Data Definition Domain

Data Definition Data Type

Service Session

Transaction Event

Server

Service Domain

DIM

Data Server Dictionary

Advertising LIM

Subscription Notification

Advertisement

Interoperability Domain Data Collection

Request Result

Information Management Domain

LIM Collection DS Collection

Federation
Integrated

Schema

Figure 5-7. Key Abstraction Categories

5-7 711-WP-001-001

5.3.2 ECS Objects within Service Domains

In the Service Domain, illustrated in Figure 5-7 above, the primary object is the Server and the
associated specializations, such as the DIM, LIM, and Data Server. In the DIM service the
following object classes are relevant:

• Schema Federation

• LIM Collection

• Request

• Result

• Schema

• Earth Science Data Type

• Session

• Subscription

In the LIM service the following object classes are relevant:

• Integrated Schema

• Data Server Collection

• Earth Science Data Type

• Request

• Result

• Schema

• Session

• Subscription

In the Data Server the following object classes are relevant:

• Schema

• Earth Science Data Type

• Computer Science Data Type

• Data Format

• Request

• Result

• Session

• Subscription

5-8 711-WP-001-001

In the Advertising service the following object classes are relevant:

• Advertisement

• Request

• Result

• Subscription

In the Data Dictionary service the following object classes are relevant:

• Term

• Term Definition

• Term Constraint

• Request

• Result

• Subscription

5.4 Reengineering

The previous two sections provide a categorization of the ECS services and propose a
generalization of those services that may be applied across a broader domain than ECS. The
process of adapting the existing ECS components into a broader, more general framework is
called reengineering. The reengineering task involves the adaptation of component interfaces,
protocols and data formats to accommodate the broader framework.

The broader framework, for example, includes the use of middleware services to negotiate the
interfaces, protocols, and data formats between a client process and the service provider's
servers. Specifically, the ECS components can be generalized into the objects and services as
shown in Table 5-2. These objects and services then become the core elements for the design
patterns delineated in Table 5-1.

Table 5-2. Generalizations of ECS Components
ECS Component Objects and Services

Data Dictionary Service → Data Definition Service

(DIM, LIM, Data Server Search, Advertising
Search, Data Dictionary Search) →

Query Service

Sybase and GVL Query → Request and Query

Sybase Table and NFS File Access → Request

Sybase Cursor → Result

Sybase Connection → Session

Sybase Transaction → Transaction

5-9 711-WP-001-001

The data dictionary service is a specialization of a more general data definition service. Data
dictionaries in the data base world perform a very specific role in query support and
optimization, the more general data definition service includes the data dictionary services and
expands the role to provide a wider range of services such as valid values, dependency among
valid values, linkage to service providers for the specific data type, etc.

Each of the services, DIM, LIM, Data Server, Advertising, and Data Dictionary, provide a search
service which is generalized in the domain analysis into a Query Service. The Query Service in
turn is then used to define a multi-pass retrieval model for access information in a variety of
models, such as the Library Model or the Factory Model. The Query Service in turn is
generalized into a Request Service that includes other types of services such as retrieval,
browsing, subsetting, etc.

The Result, Session and Transaction objects are generalizations of database management system
and network files system specific services. To minimize the vendor dependencies and provide a
layer of independence for applications the database and file system specific dependency are
generalized as shown in Table 5-2.

The amount of effort (E) required to reengineer the ECS services into a broader context is a
function of the complexity (C) of the component (n), the number of interfaces (I), the experience
of the reengineering team (X), the number of level of abstraction used to address the varied
domains (L), number of layers in the application development reference model (Y) and a
productivity factor (P).

∑
n
(C

n
* I

n
)

E = P *

X * Y * L

From a practical perspective, each ECS Component in Table 5-2 above varies from five to
twenty thousand lines of custom developed code, representing a range of 20% to 90% of the
functionality of the component. For the larger components such as the Query Service, as much as
80% of the functionality is provided via COTS database management system (DBMS) facilities.
The 20% custom code provides the specialization of the COTS DBMS to the ECS requirements
and the encapsulation of the DBMS implementation. The 20-80 rule of thumb applies also to the
reengineering effort. Certainly experimentation must be used to test the hypothesis that 20% of
the existing code (in the worst case) must be reengineered to generalize the functionality to a
broader domain.

A complicating factor in any information intensive system development effort is the amount of
analysis, design, and development effort that must go into the information modeling and the
schema specification. The information model represents the static structure of the persistent data
in a system. The functionality represented by application code is coupled to varying degrees with
the information model and the resulting exported schema specifications.

5-10 711-WP-001-001

Traditionally, the information model has been separated from the logic of the application
programs to provide a degree of independence of the logic from the data structure. The
independence helps to maximize the productivity during the development phase of a project.
Experience has shown that this separation leads to configuration management problems and high
costs during the maintenance and evolutionary stages of a system.

The object oriented design approach favors integrating the data model and logic of an application
into a unified object model. This combined approach reduces overall maintenance costs and
simplifies the design pattern reengineering task but complicates the joint development.

The ECS development effort is a hybrid development effort. Both an object model and an
information model have been developed and are being reconciled for each major release.
Estimating the amount of reengineering effort necessary will require an analysis of both the
object model and the information model using the factors define above.

5.5 Suggested Reading

ECS, 1994: Summary of the ECS System Design Specification. http://edhs1.gsfc.nasa.gov

Elkington, M., Meyer, R. and McConaughy, G., 1994: Defining the Architecture of EOSDIS to
Facilitate Extension to a Wider Data Information System. ISPRS'94, Ottawa.

Gamma, E, Helm, R, Johnson, R, Vlissides, J., 1995, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley.

Moxon, B. 1993: 19300611 Science-based System Architecture Drivers for the ECS Project.
URL: http://edhs1.gsfc.nasa.gov.

Williamson, R. 1995: EOSDIS Core System: A Strategy for Ground System Cost Reduction,
RAL Conference Paper, September, 1995.

5-11 711-WP-001-001

This page intentionally left blank.

5-12 711-WP-001-001

6. Case Study Experiments

We conducted two case study experiments in this program. Their purpose was to formulate and
evaluate a systematic method for reusable component selection. The case studies were performed
within normal project work in the program. The case studies resulted in the selection method Off
the Shelf Option (OTSO), which will be explained in detail later in this document, and assisted
the program in making the reusable component selections. University of Maryland personnel
worked in-line with ECS Client subsystem developers during this activity.

6.1 ReMap

The objective of our first case study, the ReMap project, was to select an OTS package for the
“map application” in the ECS system. The map application is an application that allows users
define areas graphically on earth’s surface. These areas are used to select data in the EOS
database.

The main alternatives for the map application were the rudimentary demonstration prototype
developed earlier in the project, a product, UIT, from European Space Agency, and two
commercial products, Delphi and STK. However, it became apparent early in the evaluation
process that UIT was superior to other alternatives in terms of matching the required
functionality. Therefore, an official decision to select UIT was done before the OTSO method
was thoroughly carried out. As we wanted to test our method in any case, we conducted a
“simulation” of the process to the end, i.e., we conducted a limited analysis of all alternatives
using most of the criteria and carried out financial and qualitative comparisons. While the
reliability of the results in such a limited case study is low, this allowed us to try out the OTSO
process. Nevertheless, the outcome of our analysis seemed to support the early decision made in
the project.

The ReMap project used two primary sets of criteria in the selection: functional requirements and
product quality characteristics. Figure 6-1 presents the product quality characteristics that were
used in the project. Note that the Figure 6-1 does not contain all the evaluation criteria used for
the ReMap project. Full definitions of the criteria and evaluation results are documented
separately [Kontio, J. and Chen, S. Hypertext Document Viewing Tool Trade Study: Summary
of Evaluation Results, 1995. ECS project Technical Paper 441-TP-002-001, Hughes Information
Technology Corporation.].

6-1 711-WP-001-001

Product
quality

characte
ristics

Non-functional
application

characteristics

Reliability

Usability

Efficiency

Maintaina
bility

Portability

Interoperability

Standards
compliance

Application
architecture

Interfaces to other
systems

programming
language

User interface UI guidelines

Security

Code layout

Module interfaces

Naming
conventions

features not
supported

incompatible
featuresChanges needed

Changes needed

Changes needed

System
architecture

User interface

List of
incopatibilities

Logical interface
class count

Hybrid class
count

Defect rate

Fault tolerance

Recoverability

defect rate

References

Defect count

Thread safety

Fault tolerance
tests

Description of
faults

Classification of
faults

Test results

Understandability

Clarity of
documentation

Detail of
document.

Perceived quality

Fog index

Number of pages

Size of lowest
level element

Description of
lowest element

share of com
mented LOC

Learnability

Availability of
training mat.

Total duration of
courses

Availability of
examples

Availability of on
line help

Availability of on
line tutorial

Complexity of the
system

Operability
Effort to use

Usage problem
list

Time behavior

Resource
behavior

Response time
tests

Time to zoom in

Time to scroll

Memory usage

Initial memory
used

Size of object
code

Memory leakage

Analyzability

Changeability

Stability

Testability

Complexity

Modularity

Coverage of
documentation

List of undo
cumented areas

Code complexity
metric

Module interface
complexity metricAmount&detail of

code comments Quality of code
comments

Availability of test
support

Installability

Conformance

Adaptability

Time to install

Installation
problem list

Additional SW
and HW needed

Figure 6-1. Product Quality Characteristics in the ReMap Project

6-2 711-WP-001-001

In addition to providing feedback to the development of the OTSO method, the ReMap project
lead us to make some other observations that are useful in similar selection processes. First, it
was necessary to refine the stated requirements significantly in order to develop a meaningful
evaluation criteria set. We believe that this is a common phenomenon. When the reusable
software selection takes place, requirements are typically not defined in much detail. Yet detailed
requirement definitions are necessary for evaluating different products. The interaction of the
reusable software selection process and requirements definition process is essential. We also
witnessed that evaluating reuse alternatives not only helped in refining the requirements, it also
led to extending the requirements in some situations. This is an additional challenge in
requirements management. In our case the extended requirements were limited to the area of the
COTS but it is also quite conceivable that the evaluation process influences the whole system
requirements.

Second, a considerable amount of calendar time may need to be spent on installation and
logistics before the evaluation can commence. In our case, this limited the time available for
detailed evaluation. If the reusable OTS software selection is in the critical path in the project,
some attention needs to be placed on the logistics and procurement so that unnecessary delays
are avoided. Overall, it seems that the actual effort spent on evaluating each alternative was not
very high but the calendar time elapsed was.

The third observation in the project was that project personnel were unsure about where to look
for alternatives and when to stop the search. As a result, the OTSO method contains some
guidelines for concluding a search.

Finally, despite all the efforts in criteria definition and evaluation, there will inevitably be some
data that is missing. This may be because the data is simply not available, because it would be
too costly to obtain the data or the data is not available in time.

6.2 Hypertext Browser Selection

The objectives of the second case study [J. Kontio, S. Chen, K. Limperos, R. Tesoriero, G.
Caldiera, and M. S. Deutsch: A COTS Selection Method and Experiences of Its Use, 1995.
Proceedings of the 20th Annual Software Engineering Workshop. NASA. Greenbelt, Maryland.]
were to: 1) validate the feasibility of the evaluation criteria definition approach in the OTSO
method and 2) compare two different methods for analyzing the evaluation data. Our hypotheses
were that the more detailed evaluation criteria definition will result in more effective, consistent
and reliable evaluation process. We also expected that the multiple criteria decision support
method would give decision makers more confidence in the decisions they made than the
conventional weighted scoring method (WSM).

A total of over 48 tools were found during the search for possible tools. Based on the screening
criteria, four of them were selected for hands on evaluation: Mosaic for X, Netscape, Webworks
for Mosaic, and HotJava. These tools were each evaluated by two independent evaluators, most
of whom evaluated two tools. This arrangement allowed each evaluator to have more than one
reference point and enabled discussion and comparison of tools. All evaluators were Hughes

6-3 711-WP-001-001

project personnel and two of them acted as “key evaluators”, i.e., they had previous experience
in off-the-shelf software selection and they coordinated much of the evaluation and analysis in
the case study.

The evaluation criteria were derived from existing, broad requirements. However, it was soon
discovered that the level of detail in the documented requirements was clearly insufficient for
detailed technical evaluation of the software selected. The requirements had to be elaborated and
detailed substantially during this process.

The hands-on evaluation was based on the evaluation criteria defined earlier and evaluators
wrote reports addressing all the evaluation criteria for each tool. The results were discussed in a
joint meeting with all evaluators, and all open issues or conflicting evaluation results were
logged and assigned as action items.

In the joint evaluation meeting the differences between tools were first discussed qualitatively.
The scores for the WSM were also assigned for each tool were assigned after this discussion. In
most cases only the “high” and “low” values were explicitly defined for the scores verbally
before assigning a score. Note that the scores were, therefore, mostly based on ordinal scales.

The qualitative differences between tools were documented separately [Kontio, J. and Chen, S.
Hypertext Document Viewing Tool Trade Study: Summary of Evaluation Results, 1995. ECS
project Technical Paper 441-TP-002-001, Hughes Information Technology Corporation.]. This
report represents the “raw” differences between the tools without any judgments of their
importance or ranking to each other.

After the evaluation meeting, we waited for two weeks before continuing with the analysis,
partially because of the logistics of completing the action items on missing information and
partially to allow the two key evaluators to “forget” the numerical scores that were assigned to
alternatives.

NETSCAPE .291

HOTJAVA .249

WEBWORKS .248

MOSAIC .212

Figure 6-2. Results of the Analysis (AHP Method)

For multiple criteria decision support we used the Analytic Hierarchy Process (AHP) method and
a supporting tool [T. L. Saaty, Expert Choice software 1995, ver. 9, rel. 1995. Expert Choice Inc.
IBM. DOS.]. The resulting scores for the four tools using the AHP analysis method are presented
in Figure 6-2. The bars in Figure 6-2 represent the relative preferences for these tools.

The total effort distribution for the evaluation process is presented in Table 6-1. After the case
study was completed, we interviewed the key evaluators for their experiences, observations and
perception of the process. Specifically, they were asked to state how useful they found the
criteria definition process and the two analysis methods used.

6-4 711-WP-001-001

As far as the OTSO criteria definition process is concerned, we noticed that the effort spent in
criteria definition, 40 hours (i.e., 28% of the total effort) was within the range we expected.
According to our interviews with the evaluators, it clearly had a positive impact in the efficiency,
consistency and quality of evaluations. Evaluators were given a well-defined template that
allowed them to focus on important characteristics of the tools, they were able to discuss the
features with each other and evaluation results were relatively consistent. However, despite our
efforts, there were still some vague definitions for some of the criteria: a couple of criteria
definitions were misunderstood and one was found to be irrelevant during evaluation.

Table 6-1. Effort Distribution in the OTSO Case Study
Activity Effort (hours) %

Search 20 14%

Screening 8 5%

Evaluation 79 55%

Criteria Definition 40 28%

Mosaic for X 10 7%

Netscape 9 6%

Webworks 9.5 7%

HotJava 10.5 7%

Analysis/WSM 5 3%

Analysis/AHP 7 5%

Management/Administration (planning meetings, reporting, etc.) 20 14%

Learning about the Methods and Techniques 1 1%

Other (vendor contacts, installations) 4 3%

Total 144

The comparison of WSM and AHP methods supported our hypothesis. The results of the WSM
seemed reasonable for the evaluators but the WSM table did not provide any insights to the
sensitivity of the results. Also, with 38 criteria, it was rather difficult to see the big picture in the
data.

The AHP method was initially perceived as difficult as its calculation model is more complex
and it involves a high number of paired comparisons. In fact, during the evaluation we made 322
such comparisons, not including revisions made to some comparisons. This would not have been
practical without a graphical, easy to use tool that allowed this to take place within a single
session.

The large volume of individual assessments in the AHP method is perhaps its main weakness.
Even though the overall duration of the assessment session was not too long, the repetitive
assessments may cause fatigue in evaluators. Fortunately, the paired assessment method
automatically produces information on how consistent the evaluations are, which would be the

6-5 711-WP-001-001

likely result of fatigue. The moderator can monitor the consistency, as we did in our case study,
and call a break if consistency rates become alarming.

The AHP method allowed the key evaluators to analyze the results from various perspectives and
play what-if scenarios by changing weights for different criteria groups. Also, the redundancy
built into the paired ranking method and possibility to get feedback on the consistency of
comparisons further increased the confidence in results. As the AHP method produced ratio scale
rankings, the method produced more information for decision making. The key evaluators agreed
that the AHP method produced more information and more reliable information for decision
making.

The surprising result in our case study was that the relative ranking of browsers was different
using the two analysis methods. Both methods ranked Netscape as the best alternative, but the
remaining order of tools was different. WSM ranked HotJava the worst but AHP ranked it the
second, although very close to Webworks. The WSM could not differentiate between Webworks
and Mosaic for X but AHP found clear differences between them.

Given the serious limitations of the WSM approach, we believe that the AHP results are more
reliable and they better represent the real rankings between the tools. We draw this conclusion
primarily based on the confidence the evaluators had with the analysis results. Unfortunately, it
is practically impossible to verify this conclusions with certainty. As in all multiple criteria
decision making situations involving future behavior of a system, preferences change over time
and between initial information may have contained errors, individuals, situations and
information available may change and objectives may also change.

The case studies support our initial hypothesis that the formalization of the reusable component
selection process is beneficial. The case studies also highlight the interaction between the
selection process and requirements definition, a phenomenon outlined in the engineering
paradigm illustrated in Figure 1-1. It also gives insights on the relationship between system
architecture and reuse: the architectural implications of reusable components should be explicitly
considered in the reusable component selection process as well as in the architectural design
process.

6-6 711-WP-001-001

7. The Pattern-Based Reuse Process

7.1 Overview of this Section

The purpose of this section is to provide an overview of the approach developed and used in the
ECS reuse study.

A reuse program is aimed at selecting software artifacts originating from one project and using
them with minor modifications in another project. This also includes repackaging for
downstream releases of the same project. These artifacts are in some cases already packaged as
object libraries or as mini-architectures called design patterns. In other cases the artifacts are not
available in reusable form and some reverse engineering is needed on an existing system in order
to identify them.

Both cases have occurred and been dealt with in the ECS reuse study. On one hand, the study has
focused on the issue of selecting packaged components. A process was specified and criteria
were formulated to perform the selection of a COTS object library. Section 6 has already
presented in some detail the experiments. This section will focus on the process derived from
those experiments and specified for further application. On the other hand, the ECS reuse study
has focused on the extraction of potentially reusable design patterns from the ECS system itself.
Section 4 and 5 have presented examples of the scenarios used and some derived patterns. This
section will present the conceptual framework and the concepts used to derive those patterns.

We have grouped those processes under the general name of pattern-based reuse process because
in both cases the purpose of the analysis is to match what is needed with what is available, i.e.,
use recurrent solutions (patterns) to satisfy recurrent needs. As shown in Figure 1-1, a reuse
program supports the software development process by identifying the needs which have a more
general nature and satisfying them with reusable artifacts. The two processes presented in this
section address this paradigm and provide a repeatable way of doing so.

The repeatability of the processes is ensured by:

• the explicit statement of the selection criteria,

•	 the general nature of the abstraction process used to identify architectural design patterns,
and

•	 the independence from specific design methodologies, as long as they are based on the
object oriented paradigm.

Figure 7-1 shows the role of the two processes presented in this section in the more general
context of a reuse program.

7-1 711-WP-001-001

1.
2.

· Partitioning
· Allocation
·

3.
4. Design objects
5.

PROCESS TO SELECT REUSABLE COMPONENTS

3. Evaluate and select library

Specify subsystem architecture
Intersystem specification

Specify global architecture
Analyze and specify requirements

5.

4.

2.

1.

Match designs

Specify selected library

Define evaluation criteria

Find candidate component libraries

6.

ECS Sub- Design
Segments Systems Objects

Architectural Design Patterns
and Component Libraries

R
E
F
E
R
E
N
C
E

A
R
C
H
I
T
E
C
T
U
R
E

Reusable Patterns
Process to Identify and Specify

Implement objects

Figure 7-1. A General Development Process to Reuse Component

The materials presented in this section are extremely relevant for the implementation of these
reuse strategies in terms of both methodology to obtain design patterns and process used to
support and maintain them.

7.2 The Process to Select Reusable Components

The OTSO method was developed to facilitate a systematic, repeatable and requirements-driven
COTS software selection process [Kontio, J.: OTSO: A Systematic Process for Reusable
Software Component Selection. University of Maryland Technical Reports. College Park, MD:
University of Maryland. CS-TR-3478, UMIACS-TR-95-63, 1995.]. The main principles of the
OTSO method are the following:

•	 a well-defined, systematic process that covers the whole reusable component selection
process,

•	 a systematic method for deriving detailed COTS software evaluation criteria from reuse
goals,

• a method for estimating the relative effort or cost-benefits of different alternatives, and

•	 a method for comparing the “non-financial” aspects of alternatives, including situations
involving multiple criteria.

7-2 711-WP-001-001

The overall phases of COTS software selection are presented in Figure 7-2. The horizontal axis
in Figure 7-2 represents the progress of the evaluation (i.e., time) and vertical axis the number of
alternatives considered at each phase. Starting by the search phase, the number of possible
alternatives may grow quite rapidly. The most potential candidates will need to be sorted out
(screening) to pick the ones that can be evaluated in more detail with the resources available.
Detailed evaluation of a limited number of alternatives determines how well each of the
alternatives meets the evaluation criteria. These results are systematically documented. We have
separated out the analysis phase to emphasize the importance of interpreting evaluation data.
Sometimes it may be possible to make straight-forward conclusions if one of the alternatives is
clearly superior to others. However, in most cases it is necessary to use systematic multiple
criteria decision making techniques to arrive at a decision. Based on the decisions made,
typically one of the alternatives is selected and deployed. Finally, in order to improve the
selection process and to provide feedback on potential further reuse of the component, it is
necessary to assess the success of the reuse component used in a project.

Screening
Search

Evaluation

Deployment
Assessment

Analysis

Time

Figure 7-2. The Phases in COTS Selection

Figure 7-2 presents a high level, sequential view of the OTSO selection process. In Figure 7-3
we have presented a more realistic and detailed view of the OTSO process, using a data flow
diagram notation. Figure 7-3 highlights the central role of evaluation criteria definition. In our
method, the evaluation criteria are gradually defined as selection process progresses. The
evaluation criteria are derived from reuse goals and factors that influence these goals.

N
um

be
r

of
 a

lte
rn

at
iv

es

7-3 711-WP-001-001

Requirement Design Project plan Organizational
specification specification characteristics

Evaluation
criteria

definition

Evaluation
criteria

Evaluation

Selected COTS

External COTS
sources

Analysis of
results

application specific and
functional requirements

Decision(s)

Evaluation
results (data)

Evaluation results

Evaluation
data

reuse strategy, capabilities,
current practices, existing

infrastructure, management
commitment

detailed criteria
definitions

selected criteria

schedule,
constraints

Search

Screening

Criteria definitions

Criteria feedback

Changes to
requirements

Alternatives

selected alternatives
for evaluation

Product
knowledge

In-house COTS
sources

Product
knowledge

design and architecture
constraints

Cost models

Value
estimation

models

Figure 7-3. The OTSO Selection Process

The OTSO method was developed to consolidate some of the best practices we have been able to
identify for COTS selection. We believe that the primary benefit of formalizing the COTS
selection process is that it allows further improvement of it. A repeatable process supports
learning through experience.

Our case studies were intended to provide practical experience in applying the method and to
provide some indication of its feasibility in practice. The case studies seemed to suggest that the
method is practical and it may improve the COTS selection process if it is currently conducted in
an ad hoc manner.

7-4 711-WP-001-001

In particular, the requirements driven, detailed evaluation criteria definition seemed to have a
positive impact on the evaluation process. Furthermore, the marginal cost of more formal criteria
definition seems to be within acceptable range as it can be accomplished within person days of
effort. It also can have a positive effect on the definition of the application requirements.

Second, the case studies showed that the multiple criteria decision support method can produce
more relevant information for COTS selection and this information is perceived as more reliable
by decision makers. At the same time, the additional cost of applying multiple criteria decision
support is small, compared to the WSM approach. However, when the number of alternatives
and criteria are small, WSP may still be a reasonable method to use, provided that its limitations
are taken into account and compensated.

Third, our case study also showed that the choice of the evaluation data analysis method can
have more than a minor impact on evaluation results. If this is true in the general case as well,
this has strong implications on the way evaluation data should be handled in COTS selection
cases.

The case study reported in this paper provided initial results and practical feedback on main
aspects of the OTSO method. It seems that the OTSO method addresses important and often
ignored problems in COTS usage. However, due to the limited number of data points, i.e.,
evaluators and cases, the results are not conclusive. We plan to carry out additional case studies
and experiments to validate our method further.

7.3 The Process to Identify and Specify Reusable Patterns

It is widely believed, in the software engineering community, that the primary benefits
associated with a reuse program are higher software quality and faster cycle time. These benefits,
however, come when the reuse maturity grows from simple reuse of code to reuse of high level
designs and architectures. As Christopher Alexander, an architect, formulated it, the idea is to
make available to the designers a set of solutions to recurring problems which have been proved
useful and reliable in other cases. These solutions are designed by experts in a particular
application domain and then used by non-experts.

Design patterns are mini-architectures which represent recurring solutions to a design problem
within a particular domain. They facilitate architectural level reuse by supporting the definition,
composition, and evaluation of key components in a software system. A software architecture
describes how a specific system is decomposed into components, how these components are
interconnected, and how they interact with each other by either passing information or executing
services. At architectural level, a large amount of experience reuse is possible and for this reason
the reuse study has been focused on this level.

In the case of the ECS system, the idea of design patterns is widely applicable to a variety of
problems. Design patterns can be developed or extracted from Release A and B and applied in
further releases of ECS. Higher level design patterns can also be developed and made available
to the user community in order to develop specific applications interfacing with ECS. In this
study the focus has been on the first application even though the experience accumulated in the
study can usefully be transferred to the other application.

7-5 711-WP-001-001

There are two levels of abstraction to be documented in the specification of design patterns. The
first level is the architectural one, where design patterns are specified according to their function
and role within a system. The specification of this level, an example of which has been presented
in Section 5, is called architectural design pattern (or framework). It is expressed as a set of
classes with special emphasis on functionality and interfaces. The second level specifies the
internal structure of the architectural design pattern, the roles of the component classes, the
mutual interfaces. This level contains the guidelines for implementing the architectural design
pattern through the coordinated interaction of lower level design patterns, each of them reusable
in different contexts. The reuse study described in this paper has focused on the first level and
intends to work on the second in the current year.

This subsection outlines the process used to derive the architectural design patterns shown in
Section 5 of this report. This process, which is repeatable and can be replayed at periodic points
with updated information, is made of the following phases and is shown in Figures 7-4 and 7-5:

1. SCOPING

•	 The context chosen in ECS is the Science and Data Processing Segment (SDPS) and
its CSCIs. The level of detail used is the one offered by the Release A Critical Design
Review Specifications and Release B Interim Design Review Specifications.

•	 The first activity is aimed at defining the scope of the study by choosing one or more
subsystems and subsystem components which have enough interaction among each
other and well identified interfaces with the rest of the system to be seen as building
blocks of the subsystem.

2. OBJECT MODEL ANALYSIS

•	 Once the boundaries of the study has been identified and specified, the object model
of the components of interest is analyzed in order to find abstractions which represent
possible solutions to problems encountered everywhere in the project. The easiest
way to identify the abstractions is by a bottom-up approach grouping together classes
and groups of classes which concurrently provide some specific functionality. The
result of this analysis can be expressed as a set of class categories simply associated
by a very general use relationship.

7-6 711-WP-001-001

SYNOPSIS OF THE METHODOLOGY

Project CSCI Object Models
Documentation

ECS Object Model

Scoping Object Model Analysis

Figure 7-4. First Domain Analysis Steps

3. ADVANCED SCENARIO DEVELOPMENT AND APPLICATION

•	 An advances scenario represents the specification of a direction for the evolution of
the system according to well respected domain experts. It is a way to show what use
is expected for the future versions of the system. The advanced scenarios are applied
to the abstractions identified on the object model in the previous step to verify their
correspondence to the functional needs of the system and to identify critical design
patterns.

•	 Use cases derived from current and advanced scenarios for the ECS program, as
described in Section 4, have been applied to the abstractions identified on the object
model and the following design patterns have been identified:

− Request-Transaction-Session-Server-Result
− Query-Search Server-Data Definition
− Data Collection-Data Definition-Advertisement
− Data Collection-Data Type-Search Server
− Request-Subscription-Event Result-Notification
− Request-Agent-Server

4. DESIGN PATTERN SPECIFICATION

7-7 711-WP-001-001

The design patterns identified in the previous phase are described in terms of:

• Purpose: Role of the design pattern within a system and motivation for its use

•	 Interface: Interaction with the design pattern prescribed for whoever wants to reuse it
in a context different from the one in which it was developed

•	 Structure and participants: Classes and objects participating in the design pattern and
their specific responsibilities

• Origin: Where in the existing system the pattern originates

SYNOPSIS OF THE METHODOLOGY

ECS Object Model ECS Design Patterns Domain Asset Library
(Reusable Components)

SCENARIOS
ADVANCED

Design Pattern
Advanced Scenario Development and Application Specification

Figure 7-5. Final Domain Analysis Steps and Reuse Reengineering

An example of a design pattern is:

Name: Query-Search Server-Data Definition-Advertisement

Purpose: This pattern models the interaction of a requester object with a search engine and a
supporting data dictionary

Interface: The pattern is activated by an incoming request

Structure and participants: See Figure 7-6.

7-8 711-WP-001-001

Query - Search Server - Data Definition - Advertisement

Request

Search Server

Data DefinitionQuery Uses

Exports

Inherits

Inherits

Advertisement

Uses

Server

Figure 7-6. Query - Search Server - Data Definition - Advertisement

Origin: The pattern is partially implemented in the following ECS components:

Data Dictionary Service

Query Service

Search Request

7-9 711-WP-001-001

This page intentionally left blank.

7-10 711-WP-001-001

8. Conclusions and Recommendations

8.1 Conclusions

A potential transition from the Release A and B ECS architecture into an evolutionary change
era may involve a more open and decentralized model. The advanced scenarios typified in
Section 4 strongly suggest this evolution.

The contribution of the reuse study to this general picture is to show what is a reference model of
the ECS architecture and how such model can be derived. The short term, immediate goal is,
however, to prove feasibility and value of an approach to software reuse based on architectural
concepts. The leading idea of the study is that, if we base reuse on a domain specific architecture,
we achieve a better cycle time in satisfying the evolving needs of the user community, and also
obtain the desired model of the core system that provides intellectual order to future concurrent
engineering efforts. Cycle time reduction is achieved by selecting and using “large” reusable
software components well suited to the needs of the application domain. The model of the
system is obtained by looking at domain specific abstractions and searching for design solutions
that seem widely applicable.

As we stated in this report, the goals of the reuse study are very ambitious and can necessarily be
addressed only in sections. In 1995 the study focused on:

•	 Selection of reusable components: An approach has been developed for deriving and
applying evaluation criteria for reusable software components. The approach is based on
a taxonomy of factors that influence the selection of the components and on a hierarchical
decomposition method used to transform the reuse goals into a hierarchy of evaluation
criteria.

•	 Specification of a reference architecture: A methodology has been developed for reverse
engineering a software architecture from the design documentation, and extracting
important and reusable design patterns. The methodology has been applied to some ECS
subsystems.

The major lessons learned in the study are:

•	 It is definitely possible to consolidate some of the best practices in reusable component
selection into a coherent and usable methodology.

• The use of the methodology improves the efficiency and consistency of selection.

•	 To make the reusable component selection process repeatable, an organization needs to
build up, besides software process maturity, a reuse maturity which includes, among
other things,

- specification of the selection process and of the selection criteria,
- organization support: resource allocation, incentives, management support,
- search support, and

8-1 711-WP-001-001

- evaluation support.

•	 It is possible to use a conceptual software architecture to identify promising design
patterns to be used in future increments of the system.

•	 It is possible to develop and use a methodology to derive the conceptual software
architecture and associated design patterns.

•	 To make reuse-in-the-large, it may be necessary for an organization to build up its reuse
process by optimizing it in specific domains.

In conclusion, although many areas of software reuse still need to be explored, the reuse study
has yielded in 1995 some interesting products and valuable lessons learned.

8.2 Recommendations

The experience gathered in 1995 through the study described in this paper should be made
available to the whole ECS community in order to support the development of both a new,
federated solution to the information needs of the Earth Sciences community, and an application
framework relying on such federation.

Therefore the continuation of the reuse study will focus on the specification of architectural
design patterns to be used by whoever wants to interact with the ECS system, or parts of it,
without specifically knowing the details of the ECS implementation. As we said in Section 7, an
architectural design pattern is a reusable design of a program or a part of a program expressed as
a set of classes and objects. It is a mixture of concrete and abstract notions all combined into a
use metaphor, i.e. a way to verbally and conceptually represent the pattern. An example of
metaphor commonly used for retrieval systems is the library metaphor in which the access to
information is modeled as the behavior of an individual using a library (with catalog, cards,
sections, shelves, etc.).

Architectural design patterns are designed by experts in a particular domain (e.g., the designers
of ECS) and then used by non-experts (e.g., an earth scientist who wants to develop a model
based on ECS-extracted data). The principal audience of the continuation of the study will be not
only the community of the ECS developers but also the community of those who want to solve
typical problems associated with the use of ECS.

The reuse program will develop and specify in a reusable way architectural design patterns trying
to assess how well they work to serve the needs of both the developers and users communities.

This part of the program is very much in tune with the overall purpose of the Experience Factory
which is not only to assess the impact of a specific technology, but also to package that
technology and the associated experience for future reuse. While the assessment of the impact of
a reuse-in-the-large technology is still ongoing, the first steps aimed at packaging that technology
and the resulting products are being taken. In the ECS case, because of the open nature of the
system, this activity will try to address the interests of both the developers and the users of EOS.

8-2 711-WP-001-001

Components Components

1995
Methodology

1996
Developer-Oriented

1997
User-Oriented

1998
Infrastructure

Goal: Goal: Goal: Goal:

• Define a methodological • Experiment with the • Expand pattern based • Develop support infrastructure
framework for large scale methodological framework for approach to user community for ECS design patterns
reuse large scale reuse

Activities: Activities: Activities: Activities:

• Assess existing technologies • Identify and specify reusable • Analyze ECS use cases • Develop use processes

• Develop reuse approach
design patterns within ECS

• Identify and specify user • Develop support processes
• Define and use reuse measures relevant reusable design

patterns

• Define use framewrok

Products: Products: Products: Products:

• Process to Select Reusable • Catalog of important design • Catalog of user design patterns • Operational guidelines for the
Components

• Process to Identify and Specify
Reusable Patterns

patterns with full
specifications and ECS
derivation

• Frameworks for incorporation
into end-user systems

reuse support infrastructure

• Improvements and updates to
the methodology

Figure 8-1. Overview of the ECS Reuse Program

Figure 8-1 summarizes the goals of the ECS Reuse Program as they have been presented in this
section. The goals are categorized by year and associated with activities and products. The basic
idea is to apply the methodological concepts of this report to some critical areas of the ECS
system. The results of this exercise should be essentially two products:

•	 A catalog of design patterns internal to the ECS system and reusable across several
subsystems. Each element of the catalog will be a fully specified architectural design
pattern with directions to complete it and execute it.

•	 A similar catalog of user design patterns, i.e. architectural design patterns to be used by
the implementors of applications which rest on the ECS services.

Together with these products the program will deliver operational guidelines for maintaining and
evolving them and for supporting the developers in the user community

8-3 711-WP-001-001

This page intentionally left blank.

8-4 711-WP-001-001

Appendix A

Appendix A is an oversized drawing and is

not available electronically.

A-1 711-WP-001-001

This page intentionally left blank.

A-2 711-WP-001-001

Appendix B

Manages
execution
of PGEs

Provides persistent storage of
planning data, processing date,
schemas used by thePLANG
and PRONG COTS packages,
and AI&T data.

Provides the
job
engine

Manages and allocates
computing resources

for Pge execution.

Manages acquisition
and retention of PGE

input data and archival
of PGE outputs

Provides interface and
mechanism by which
operations personnel
visualize science data
and update metatdata

Provides the interface
by which other CSCIs
invoke the servics of PRONG
or to n otify PRONG of
exeternal events.

Job Management CSC
QA

Monitoring
CSC

Resource
Management CSC

Data
Management CSC

PGE Execution
Management CSC

COTS CSC

Server CSCIs/Operating System

DBMS CSC

scheduling

Figure B-1. Processing CSCI

DB MS used to store
and query Data
Dictionary information

Ap p lication server that
p rocesses the Data
Dictionary requests

Data Dictionary server Data Dictionary DBMS

DB MS

Figure B-2. Data Dictionary CSCI

B-1 711-WP-001-001

Provides persistent
storage for
Planning data

Receives data
availability notices
from SDSRV and
requests that
Processing
release DPRs.

A set of C++ class
libraries that provide
a fremework for the
Planning Workbench

Interfaces with SDSRV
for submission of

Subscriptions
for arriving data

Accepts Prroduction Request
which describe an order for
Data Production, and
translates them into DPRs.

Provides the ability to
create, modify, and
activate a plan for the
scheduling of DPRs

Production Request
Editor CSC

Subscription
Submission CSC

Planning
CSC

Planning Object
Libary CSC

Subscription
Manager CSC

Other CSCIs/Operating System

DBMS Interface Layer

PDPS DBMS CSC

A DBMS interface layer
exists, but not as a
separate CSC

Workbench

Figure B-3. Planning CSCI

Provides the
Interface to OTS
Database
Management
functionality.

Provides
storage and
services for
selected data
types (e.g.
Inventory)

Provides
administration
support services
at the data
server level for
operators and
administrators.

Provides access to
ECS data collections.
Also provides services
associated with
external
interfaces such as
subscriptions,
advertisements, etc.

Provides
support for the
semantics and
storage aspects
unique to earth
science data.

OTS components
used in the
implementation of
various Earth
Science object
class library
methods.

Schema Generation CSC

Earth Science Class
Libraries CSC

Earth Science Class
Libraries OTS
Implementation

Basic Structured
Class Libraries CSC

Database Wrapper Classes CSC

Database Management CSC

Data Server Interface CSC

CSMS/Operating System

Supports
object types
which are
built-in types
of the
underlying
data storage
services.

Data Server Administration CSC

Provides the
mechanisms to
translate the human
readable schema
definition
into a form usable
by the data server.

Operating system
facilities and
communications
infrastructure.
a component of
SDSRV

Not

Figure B-4. Science Data Server CSCI

B-2 711-WP-001-001

Peristent classes
used to relate V0
type requests to
ECS type requetsts
and to temporarily
map data granules
to URs.

V0 ECS Mapping Service provides the
mappings between V0 and ECS schema
and the valids.
mapping service through the gateway
persistent objects. When the data server
performs the schema export, gateway
uses the mapping service to map the
ECS terms to V0 terms.

Data Server Interface
Class Category

This represents the
classes containing the
requests serviced by the
GTWAY CSCI and the
corresponding result
classes.

Operating system
facilities and
communications
infrastructure.
a component of
GTWAY

Other CSCIs/Operating System

V0 ECS Mapping Service
Class Category

Persistent Data Class Category

Request Processing Class Category

Thisrepresents the
interface classes for the
Gateway Subsystem to
the Data Server
Subsystem. For each
service request directed
from the Request
Processing Model, this
model provides a service
interface.
objects for handling
Inventory Search Re
quests, Browse Requests,
Acquisition Requests,
Valid and Distribution
Media Requests.

pings are available to the

Not

It consists of the

Figure B-5. V0 Gateway CSCI

B-3 711-WP-001-001

The classes in
this CSC
represent the
products and
outputs
generated by
the DDIST
CSCI.

The classes in
this CSC
provide the
control and
coordination of
distribution
request
processing
.

Distribution Client Interface

Distribution Request Management

The classes in this
CSC are presented
to client software for
use in initiating,
tracking,
and manipulating
distribution requests.

Operating system
facilities and
communications
infrastructure.
a component of
DDIST

Other CSCIs/Operating System

Distribution Products

Not

Figure B-6. Data Distribution CSCI

B-4 711-WP-001-001

Determines the
volume necessary
to satisfy a storage
client request to
store or retrieve
files

Accepts database
Mounts needed

FILE MANAGEMENT
SERVER

VOLUME SERVER

VOLUME SERVER
WRAPPER

STORAGE
MANAGEMENT

ADMINISTRATION

STORAGE
MANAGEMENT

ADMINISTRATION
INTERFACE WRAPPERS

and archive
volumes and requests and
dismounts maintains queues
unneeded ones	 and schedules of

such requests

Integrates the
Integrates the

volume server into	
storage
management

the operating administrationenvironment software into the
operating
environment

Figure B-7. Storage Management CSCI

B-5 711-WP-001-001

Diagnostic tools which
display input, output,
and intermediate data
files as data dumps,
plots, and/or images

Tool to check Process
Control File format;
to check that no
prohibited functions are
used

Document
Viewing Tools

Tools for displaying
and/or printing the
science software
documentation

Standards
Checkers

Code Analysis
Tools

Tools for
checking
for memory
leaks, etc.

Data Visualization Tools ECS HDF
Visualization
Tools

Provides the capability
to view any ECS-HDF
formatted files

HDF File
Comparison
Utility

Tool for
finding
differen
ces
between
two HDF
files

Binary
Comparison
Environment

Tool for assisting DAAC
user in writing custom
code to find differences
between two binary files

Profiling
Tools

Tools for measuring
the resource
requirements fo the
science software

PGE
Processing GUI

GUI for executing
science software

PGE
Registration
GUI

GUI for registering a
PGE with the
processing system

Report
Generation
Tools

Tools for writing
miscellaneous reports
and for maintaining the
integration and test log

SDP Toolkit-related
Tools

Product Metadata
Display Tool

Tool for
displaying
the product
metadata

Tools for
checking if
science software
follows prescribed
coding standards

tool

File

Figure B-8. Algorithm Integration and Test CSCI

B-6 711-WP-001-001

Provides
text
search
capability
for
Advertisi
ng
Service.

Application server that
processes the Advertising
Client’s requests (e.g.,
attribute search, create
advertisement, and etc.).

Extracts information from Global
Change Master Directory (GCMD) and
generates ECS advertisements.

DBMS used to store
advertisement
information.

Off the shelf http server
to provides hyperlink
access to
advertisements.

AdvDBMSApplServer

AdvTextSearch

AdvDBMSServer

GCMDExporter

AdvNavigatingServer

Figure B-9. Advertising CSCI

Manages
desktop objects

Desktop Manager

Figure B-10. Desktop CSCI

B-7 711-WP-001-001

GUI screens
allowing users
to ingest
approved data
and to perform
ongoing ingest
request status
monitoring.

Moderates ingest
processing� steps.

Performs
required
preprocessing�
and interface
with the� Data
Server for data
insertion.

Operator
administratio
n software to
manage and
control the
Data Storage
Software.

Ingest Request Processing

Ingest Data Transfer

Ingest DBMS

Provides a
template that
instantiates other
client CSCs.

Provides
Science Data
Server client
interface
services.

Transfer
data
from
source
to ECS
staging
space.

Provides
services to
access the
History Log
and
administrative
information of
the Ingest
Subsystem.

Provide all media
peripheral access
software� and
operator�
administration
functions for
ingest peripherals.

GUI screens allowing
operations staff ingest of hard
media, ongoing ingest request
status monitoring, completed
ingest request information
viewing, ingest request
controlling (e.g�., canceling
request), and ingest threshold
controlling (i.e.�, to view or to
set

Tools to allow
displaying of
ingested data
for validation
(analysis)prop
oses.

Software to
store Level
0 data on
working
storage and
repository
storage (for
one year).

Data Base Management
System used to store and
provide access to the Ingest
History Log and other
ingest internal data.

Polls for data
files or
Delivery
Record files
in an agreed
location.

Operator Ingest
Interface

Ingest Session Manager

Polling Ingest Client
Interface

Client

Ingest Data
Preprocessing

Ingest
Administration
Data

Peripheral Software

Viewing
Tools

Data Storage
Software

Resource
Administration

User Network
Ingest Interface

the threshold.

Figure B-11. Ingest CSCI

B-8 711-WP-001-001

Data Visualization

Reuse of V0 Client

Release-A Client

Hypertext Viewer
HTML Viewer
Application

EOS-HDF Data
Viewer and
Analysis
Application

SDPS Toolkit

Tools for
accessing
ECS services�
via APIs

CSMS Toolkit
ECS Systems
Applications�

Figure B-12. Workbench CSCI

B-9 711-WP-001-001

This page intentionally left blank.

B-10 711-WP-001-001

Abbreviations and Acronyms

AHP Analytic Hierarchy Process

API Application Program Interface

BOE Basis of Estimate

Co-I Co-Investigator

CORBA Common Object Request Broker Architecture

COTS Commercial Off the Shelf Software

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSS Communications Subsystem

DBMS Database Management System

DID Data Item Description

ECS EOSDIS Core System

EOSDIS Earth Observing System Data Information System

FOS Flight Operations Segment

HCL Hughes Class Library

LAI leaf are index

NPP net primary productive

OTSO Off the Shelf Option

PDA personal digital assistants

PI Principal Investigator

SCDO Science and Communications Development Organization

SCF Science Computing Facilities

TRMM Tropical Rainfall Monitoring Method

VAP Value-Added Providers

WSM weighted scoring method

AB-1 711-WP-001-001

This page intentionally left blank.

AB-2 711-WP-001-001

