
305-EED-001, Rev. 02

EOSDIS Evolution and Development (EED) Contract

Release 8.2 Segment/Design
Specifications for the EED Contract

Revision 02

September 2013

Raytheon Company
Riverdale, Maryland

 305-EED-001, Rev. 02

This page intentionally left blank.

 305-EED-001, Rev. 02

This page intentionally left blank.

 iii 305-EED-001, Rev. 02

Preface

This document is a formal contract deliverable. It requires Government review and approval
within 45 business days. Changes to this document will be made by document change notice
(DCN) or by complete revision.

Any questions or proposed changes can be addressed to:

Data Management Office
The EED Contract Office
Raytheon Company
5700 Rivertech Court
Riverdale, MD 20737

Revision History

Document Number Status/Issue Publication Date CCR Number

305-EED-001 Original March 2011 11-0023

305-EED-001 Revision 01 April 2012 12-0091

305-EED-001 Revision 02 September 2013 13-0226

 iv 305-EED-001, Rev. 02

This page intentionally left blank.

 v 305-EED-001, Rev. 02

Abstract

The Release 8.2 Segment/Design Specification is an overview description of the EED Project.
The functionality of the ECS software is described at the Subsystem, Computer Software
Configuration Item (CSCI), Computer Software Component (CSC), and Process levels.
Architecture and context diagrams illustrate the process interconnections within the ECS CSCIs
and the external connections to other CSCIs, subsystems, and specified segment interfaces.
Interface event description tables describe the data, messages, notifications, or status information
that occurs at each level of functionality within the ECS. A basic description of the Commercial
Off The Shelf (COTS) software and hardware used in ECS is included.

The high-level design in this document is the level of information derived from requirement
sources, and used by the development team to complete the ECS design implementation for a
software system at an 8.2 state of maturity.

Keywords: Release 8.2, Overview, SDPS, CSMS, Design, Detailed Design, Subsystem,
Architecture, Software, Hardware, Object Oriented, Security, Gateway, Reports, User Interface
and GUI.

 vi 305-EED-001, Rev. 02

This page intentionally left blank.

 vii 305-EED-001, Rev. 02

Contents

1. Introduction

1.1 Purpose and Scope ... 1-1

1.2 Document Organization ... 1-1

2. Related Documentation

2.1 Parent Documents .. 2-1

2.2 Applicable Documents ... 2-1

2.2.1 Other Related Documents and Documentation.. 2-1

2.3 ECS Tool Descriptions .. 2-2

2.3.1 ClearCase Baseline Manager Configuration Management Tool 2-2

3. System Description

3.1 Mission and Release 8.2 Objectives .. 3-1

3.1.1 Release 8.2 Capabilities ... 3-1

3.2 Release 8.2 Architecture Overview ... 3-8

3.2.1 Release 8.2 Context Description .. 3-11

3.2.2 Release 8.2 Architecture .. 3-13

4. Subsystem Description

4.1 Data Server Subsystem Overview ... 4-11

4.1.1 Archive Inventory Management Software Description 4-17

4.1.2 DSS Error Handling and Processing .. 4-45

4.1.3 DSS Data Stores ... 4-46

4.2 DPL Ingest Subsystem Overview .. 4-48

4.2.1 DPL Ingest Computer Software Configuration Item Description 4-50

4.3 Client Subsystem Overview ... 4-61

 viii 305-EED-001, Rev. 02

4.3.1 Tools Description ... 4-61

4.4 Data Management Subsystem Overview ... 4-62

4.4.1 ECHO WSDL Order Component Software Description 4-65

4.4.2 Data Management Subsystem Hardware ... 4-71

4.5 Order Manager Subsystem Overview .. 4-73

4.5.1 Order Manager Subsystem Software Description ... 4-76

4.6 Communications Subsystem Overview ... 4-84

4.6.1 The Distributed Computing Configuration Item Software Description 4-86

4.6.2 The Distributed Computing Configuration Item Context 4-101

4.6.3 Distributed Computing Configuration Item Architecture 4-103

4.6.4 Distributed Computing Configuration Item Process Descriptions 4-103

4.6.5 Distributed Computing Configuration Item Process Interface Descriptions ... 4-103

4.6.6 Distributed Computing Configuration Item Data Stores 4-104

4.6.7 Communications Subsystem Hardware CI Description 4-104

4.7 Internetworking Subsystem (ISS) Overview ... 4-105

4.7.1 Internetworking Subsystem Description .. 4-106

4.7.2 Internetworking Hardware HWCI (INCI) ... 4-108

4.8 EED General Process Failure Recovery Concepts .. 4-110

4.8.2 Client-Server Rebinding .. 4-110

4.8.2 Database Reconnecting .. 4-110

4.8.3 Request Identification .. 4-111

4.8.4 Request Responsibility .. 4-111

4.8.5 Queues.. 4-112

4.8.6 Request Responses ... 4-112

4.8.7 Duplicate Request Detection ... 4-117

4.8.8 Server Crash and Restart .. 4-117

4.8.9 Client Crash and Restart .. 4-119

4.9 Spatial Subscription Server (SSS) Subsystem Overview .. 4-121

4.9.1 Spatial Subscription Server Architecture ... 4-122

4.10 Data Pool Subsystem Overview... 4-128

4.10.1 Data Pool Subsystem Context .. 4-130

4.10.2 Data Pool Hardware Context ... 4-133

4.10.3 Data Pool Insert CSCI Functional Overview ... 4-133

 ix 305-EED-001, Rev. 02

4.10.4 Data Stores ... 4-142

4.11 Bulk Metadata Generation Tool Subsystem Overview ... 4-144

4.11.1 BMGT Subsystem Context .. 4-144

4.11.2 BMGT/ECHO Interface ... 4-146

4.11.3 ECS Events and BMGT products .. 4-147

4.11.4 BMGT Architecture ... 4-149

4.11.5 Use of COTS in the BMGT Subsystem ... 4-153

4.11.6 BMGT Subsystem Software Description... 4-153

List of Figures

Figure 3.2-1. Example Hierarchical Software Diagram ... 3-10

Figure 3.2-2. Release 8.2 Context Diagram .. 3-12

Figure 3.2-3. Subsystem Architecture Diagram ... 3-14

Figure 4.1-1. Data Server Subsystem Context Diagram ... 4-12

Figure 4.1-2. AIM CSCI Context Diagram (DPLIngest) ... 4-21

Figure 4.1-3. AIM Interfaces with DAAC Operators (ESDT Maintenance GUI and QA
Update utility).. 4-26

Figure 4.1-4. AIM Interfaces with DAAC Operators (XML Replacement Utility) 4-32

Figure 4.1-5. AIM Interfaces with DAAC Operators (Granule Deletion Utilities) 4-34

Figure 4.1-6. AIM Interfaces with DAAC Operators (Archive Check Utilities) 4-37

Figure 4.1-7. AIM Interfaces with BMGT ... 4-41

Figure 4.1-8. AIM Context Diagram (OMS and DPL) ... 4-43

Figure 4.2-1. DPL Ingest Subsystem Context Diagram ... 4-48

Figure 4.2-2. DPL Ingest CSCI Context Diagram .. 4-51

Figure 4.4-1. Data Management Subsystem Context Diagram .. 4-63

Figure 4.4-2. ECHO WSDL Order Component CSCI Context Diagram 4-66

Figure 4.4-3. ECHO WSDL Order Component CSCI Architecture Diagram 4-68

Figure 4.5-1. Order Manager Subsystem Context Diagram ... 4-74

Figure 4.5-2. Order Manager Server CSCI Context Diagram .. 4-77

Figure 4.5-3. Order Manager Server CSCI Architecture Diagram ... 4-79

 x 305-EED-001, Rev. 02

Figure 4.6-1. Virtual Terminal Context Diagram ... 4-88

Figure 4.6-2. Virtual Terminal Architecture Diagram .. 4-89

Figure 4.6-3. Cryptographic Management Interface Context Diagram 4-91

Figure 4.6-4. Cryptographic Management Interface Architecture Diagram 4-92

Figure 4.6-5. Domains Hierarchy Diagram .. 4-94

Figure 4.6-6. DNS Domains of the EED Project Diagram ... 4-95

Figure 4.6-7. ECS Topology Domains Diagram .. 4-95

Figure 4.6-8. Domain Name Server Context Diagram ... 4-96

Figure 4.6-9. Distributed Computing Configuration Item (DCCI) CSCI
Context Diagram ... 4-102

Figure 4.7-1. DAAC Networks: Generic Architecture Diagram .. 4-106

Figure 4.9-1. Spatial Subscription Server Context Diagram .. 4-121

Figure 4.9-2. Spatial Subscription Server Architecture Diagram ... 4-123

Figure 4.10-1. Data Pool Subsystem Context Diagram .. 4-131

Figure 4.10-2. Data Pool Hardware Context .. 4-133

Figure 4.10-3. Data Pool Insert CSCI Architecture Diagram – Registration 4-134

Figure 4.10-4. Data Pool Insert CSCI Architecture Diagram – Publication........................... 4-135

Figure 4.11-1. BMGT Subsystem High Level Context Diagram ... 4-144

Figure 4.11-2. BMGT Architecture Diagram ... 4-149

Figure 4.11-3. Dispatcher Using Producer-Consumer Design Pattern 4-154

Figure 4.11-4. Bucket on a Queue .. 4-157

Figure 4.11-5. Dispatcher Thread and the Sequence of Calls to Various Components 4-158

Figure 4.11-6. Component Dependencies ... 4-161

Figure 4.11-7. Dispatcher Database Sequence ... 4-162

Figure 4.11-8. Components of Exporter and Their Dependencies ... 4-167

Figure 4.11-9. Combined Sequences of Export Request and Export Activity Statuses 4-173

Figure 4.11-10. Manual Export Process Database Sequence ... 4-183

 xi 305-EED-001, Rev. 02

List of Tables

Table 4-1. Memory Management Table .. 4-6

Table 4.1-1. Data Server Subsystem Interface Events .. 4-14

Table 4.1-2. AIM Software Components .. 4-18

Table 4.1-3. AIM Interfaces with DPLIngest ... 4-22

Table 4.1-4. AIM Interfaces with DAAC Operators (ESDT GUI, QA Update) 4-27

Table 4.1-5. AIM Interfaces with DAAC Operators (XML Replacement Utility) 4-32

Table 4.1-6. AIM Interfaces with DAAC Operators (Granule Deletion) 4-35

Table 4.1-7. AIM Interfaces with DAAC Operators (Archive Check Utilities)....................... 4-38

Table 4.1-8. AIM Interfaces with BMGT ... 4-41

Table 4.1-9. AIM Interfaces with OMS and DPL .. 4-43

Table 4.1-10. AIM CSCI Data Stores ... 4-46

Table 4.2-1. DPL Ingest Subsystem Interface Events .. 4-49

Table 4.2-2. DPL Ingest CSCI Interface Events ... 4-52

Table 4.2-3. DPL Ingest CSCI Processes ... 4-54

Table 4.2-4. DPL Ingest CSCI Process Interface Events ... 4-55

Table 4.2-5. DPL Ingest CSCI Data Stores .. 4-60

Table 4.3-1. Client Subsystem Interface Events ... 4-61

Table 4.3-2. SSI&T Tool Events .. 4-61

Table 4.4-1. Data Management Subsystem Interface Events ... 4-64

Table 4.4-2. ECHO WSDL Order Component CSCI Interface Events 4-67

Table 4.4-3. EWOC CSCI Processes .. 4-69

Table 4.4-4. EWOC CSCI Process Interface Events .. 4-69

Table 4.4-5. ECHO WSDL Order Component CSCI Data Stores ... 4-71

Table 4.5-1. Order Manager Subsystem Interface Events .. 4-74

Table 4.5-2. Order Manager Server CSCI Interface Events ... 4-77

Table 4.5-3. OMSRV CSCI Process ... 4-79

 xii 305-EED-001, Rev. 02

Table 4.5-4. Order Manager Server CSCI Process Interface Events .. 4-80

Table 4.5-5. CSCI Data Stores .. 4-83

Table 4.6-1. Communications Subsystem (CSS) Interface Events... 4-84

Table 4.6-2. Virtual Terminal Interface Events .. 4-89

Table 4.6-3. Virtual Terminal Processes .. 4-90

Table 4.6-4. Virtual Terminal Process Interface Events ... 4-90

Table 4.6-5. Cryptographic Management Interface Events .. 4-91

Table 4.6-6. Cryptographic Management Interface Processes ... 4-92

Table 4.6-7. Cryptographic Management Interface Process Interface Events 4-93

Table 4.6-8. Cryptographic Management Interface Data Stores .. 4-93

Table 4.6-9. Domain Name Server Process .. 4-96

Table 4.6-10. Domain Name Server Process Interface Events ... 4-97

Table 4.6-11. Domain Name Server Data Stores .. 4-97

Table 4.6-12. Infrastructure Libraries ... 4-97

Table 4.6-13. Infrastructure Libraries Group Interfaces ... 4-99

Table 4.6-14. Distributed Computing Configuration Item (DCCI) CSCI Interface Events ... 4-102

Table 4.6-15. CSMS CSCI to CSS CSC Mappings .. 4-103

Table 4.7-1. Internetworking Subsystem Baseline Documentation List 4-108

Table 4.7-2. Networking Hardware for EED Networks ... 4-108

Table 4.8-1. Request Responses ... 4-114

Table 4.8-2. Fault Handling Policies .. 4-115

Table 4.8-3. Server Response versus Restart Temperature .. 4-118

Table 4.8-4. Server Response for Request Re-submission ... 4-119

Table 4.8-5. Server Responses to Client Failures ... 4-120

Table 4.9-1. Subscription Server Interface Events ... 4-122

Table 4.9-2. Spatial Subscription Server Processes .. 4-124

Table 4.9-3. Spatial Subscription Server Process Interface Events .. 4-125

Table 4.10-1. Data Pool Subsystem Interface Events ... 4-131

 xiii 305-EED-001, Rev. 02

Table 4.10-2. Use Cases for Data Pool Insert ... 4-135

Table 4.10-3. Data Pool Insert CSCI Process Description ... 4-136

Table 4.10-4. Data Pool ECS Insert CSCI Process Interface Events 4-138

Table 4.10-5. Data Pool Data Stores ... 4-142

Table 4.11-1. BMGT Subsystem High Level Interface Events .. 4-145

Table 4.11-2. Request Content Types ... 4-146

Table 4.11-3. Response Content Types .. 4-146

Table 4.11-4. ECS Event to BMGT Product Mapping ... 4-147

Table 4.11-5. BMGT Processes .. 4-150

Table 4.11-6. Metadata Native to Target Schema Mappings ... 4-164

Table 4.11-7. Generator Behavior .. 4-165

Table 4.11-8. ECHO Error Messages for Both Collections and Granules 4-178

Table 4.11-9. ECHO Error Messages for Both Collections and Granules 4-179

Table 4.11-10. ECHO Error Messages for Granules Only ... 4-180

Table 4.11-11. Data Store ... 4-188

Abbreviations and Acronyms

 xiv 305-EED-001, Rev. 02

This page intentionally left blank.

 1-1 305-EED-001, Rev. 02

1. Introduction

1.1 Purpose and Scope

The purpose of the Segment/Design Specification for the Earth Observing System (EOS) Data
and Information System (EOSDIS) Core System (ECS) is to provide an overview of the
hardware and software subsystems of the project. This document describes the high-level design
of each ECS software subsystem implemented to satisfy the allocated and derived functional and
performance requirements. This document also provides basic descriptions of the Commercial
Off The Shelf (COTS) hardware and software used in the ECS. This document contains:

 Functional overviews of each Computer Software Configuration Item (CSCI)

 Context diagrams of each CSCI

 Interface event descriptions based on the context diagrams

 Process architecture diagrams

 Interface event description tables based on the process architecture diagrams

 CSCI data stores (databases as they relate to the process architecture diagrams)

 CSCI functions allocated to processes. For data servers, this includes descriptions of the
functionality offered to clients via the server interfaces. For Graphical User Interface
(GUI) applications, it describes the functionality provided to the GUI users

 Specific limitations of the capabilities provided

 Abbreviations and Acronyms

1.2 Document Organization

The remainder of this document is organized as follows:

 Section 2: Related Documentation

 Section 3: System Description

 Section 4: Subsystem Description

 Section 5: Limitations of Current Implementation

 Abbreviations and Acronyms

 1-2 305-EED-001, Rev. 02

This page intentionally left blank.

 2-1 305-EED-001, Rev. 02

2. Related Documentation

2.1 Parent Documents

The parent documents are the documents from which the scope and content of this Design
Specification are derived. These documents are listed below.

423-46-01 EED F&PRS

423-46-03 EED Task 201 Statement of Work

2.2 Applicable Documents

Refer to the 900 Series documentation found on the EED Baseline Information System (EBIS)
website: http://cmdm.hitc.com/baseline/.

2.2.1 Other Related Documents and Documentation

311-EED-001, Rev. 02 Release 8.2 Ingest Subsystem (INS) Database Design and Schema
Specifications for the EED Contract

311-EED-002, Rev. 02 Release 8.2 Order Manager Subsystem (OMS) Database Design and
Schema Specifications for the EED Contract

311-EED-003, Rev. 02 Release 8.2 Spatial Subscription Server Subsystem (SSS) Database
Design and Schema Specifications for the EED Contract

311-EED-005, Rev. 02 Release 8.2 Archive Inventory Management (AIM) Database Design
and Schema Specifications for the EED Contract

611-EED-001, Rev. 02 Release 8.2 Mission Operations Procedures for the EED Contract

625-EED-001, Rev. 02 Release 8.2 Training Material Volume 1: Course Outlines

625-EED-002, Rev. 02 Release 8.2 Training Material Volume 2: Problem Management

625-EED-003, Rev. 02 Release 8.2 Training Material Volume 3: Ingest

625-EED-004, Rev. 02 Release 8.2 Training Material Volume 4: Data Distribution

625-EED-005, Rev. 02 Release 8.2 Training Material Volume 5: Archive Processing

423-42-06 Interface Control Definition for the EOS Data Gateway (EDG):
Messages and Development Data Dictionary V0 and ASTER/ECS
Message Passing Protocol Specification

RFC 793 Transmission Control Protocol

RFC 768 User Datagram Protocol

 2-2 305-EED-001, Rev. 02

RFC 791 Internet Protocol

RFC 1597 Address Allocation for Private Internet

 WWW page is http://cmdm.east.hitc.com

423-41-57-6 ICD between ECS and SIPS, Volume 6 MODIS (MODAPS

423-41-57-7 ICD between ECS and SIPS, Volume 7 AMSR-E

423-41-57-9 ICD between ECS and SIPS, Volume 9 MTMGW

423-41-57-10 ICD between ECS and SIPS, Volume 10, TES Data Flows

423-41-57-11 ICD between ECS and SIPS, Volume 11, ICESat Data Flows

423-41-58 ICD between the ECS and LP DAAC

423-ICD-EDOS/EGS ICD between EDOS and EGS

2.3 ECS Tool Descriptions

2.3.1 ClearCase Baseline Manager Configuration Management Tool

ClearCase Baseline Manager (CBLM) consists of the ECS baseline data and a Graphical User
Interface (GUI) used to control the ECS baseline.

The data comes from two sources:

1) Existing Release Notes (914-TDA-xxx) Machines Impacted data

2) Newly approved CCRs

Control Item Identifiers (CIDs) consist of an 8-digit integer with a “b” prefix (e.g., b00083456).
Each COTS S/W product has its own CID. Because CIDs are mapped to ECS hosts, it was
decided to represent information within ClearCase as elements. For the ClearCase CID
elements, the comma separated variable (CSV) format was chosen, as this format is easily ported
into and from other COTS S/W products, specifically Microsoft Access and Excel.

The ClearCase configuration specification chosen was the simplest, or the default configuration
specification. A view, CM_MASTER, was created with the default configuration specification
to manage the data records. The CID records (checked in ClearCase elements) are located in the
/ecs/cm VOB at /ecs/cm/CIDs. This directory currently contains the 256 records that correlate to
XRP-II’s COTS S/W CIDs.

Another important data construct within CBLM is the notion of the Machines Impacted file, and
a CCR identified construct, which maps CIDs to hosts. Each Configuration Change Request
(CCR) affecting the baseline contains information about 1 or more CIDs. Also, the CCR
contains information regarding the hosts receiving the COTS S/W (CID). So the CCR has a
construct that in its simplest form is one “CID_MAP” file, and one Machines Impacted (MI) file.
The “CID_MAP” file is a simple lookup table. In this case, there is only one entry. The entry

 2-3 305-EED-001, Rev. 02

contains first a valid CID, followed by one or more blanks, then the name of the “MI” file. In
this case, the MI filename is “MI.” The MI file, contains a list of valid ECS hosts having the
COTS S/W identified within the CID. So a CCR (07-1234) to place a COTS S/W (e.g., Acrobat
Reader), onto host e4eil01, would have an MI file containing one host, e4eil01, and one
CID_MAP. If the Acrobat Reader software is CID b00081234, the CID_MAP file would
contain:

 “b00081234 MI”

And the MI file contains:

 “e4eil01”

The CCR would be found at:

 /ecs/cm/CM/2007CCRs/1234/, a directory

Under this directory is found the two files, “CID_MAP” and “MI.” Note that there is always
only one CID_MAP file for each CCR, but that the CID_MAP may contain more than one entry.
The simplest example of this is when a COTS S/W product needs to be mapped to SGI, Sun, and
Linux hosts. There would be three MI files, “MI_SGIs”, “MI_Suns”, and “MI_Linux” for
example. The CID_MAP would contain three entries, one mapping the SGI hosts to the SGI
CID, one mapping the Sun hosts to the Sun CID, and one mapping the Linux hosts to the Linux
CID.

As approved CCRs are required to change the CBLM data state, the effective date is then
defined as the CCR approval date. This is the date the change becomes valid. The next
construct, named the “Sequencer”, is the table providing the history of change. The last
approved CCR is at the end of the table. As new CCRs get approved, they simply get
concatenated to the end of the list in time order. The Sequencer is an executable script.

The last construct is the “dartboard.” Conceptually, the “dartboard” is a directory within
ClearCase, at /ecs/cm/BLM/dartboard/. All ECS hosts are listed as files in the /dartboard/
directory. In conclusion, then data constructs are:

 CIDs

 CCR directories

 CID_MAPs and MIs under the CCR directories

 Sequencer

 Dartboard

 The way these pieces all work together is now briefly discussed.

When a CCR is approved that affects the baseline, a CCR is checked out. The /ecs/cm/CIDs/
ClearCase directory is checked out. The new CID is created and populated with the information
present on the CCR form. The new CID number then has a ClearCase element created, and the
first version becomes this new CID. The /ecs/cm/CIDs/ directory is then checked back in. Next,
the MI file must be prepared. Within the CCR directory, two new files are “made” (cleartool

 2-4 305-EED-001, Rev. 02

mkelem –eltype text_file –nc CID_MAP MI). The hosts, which are to get the COTS S/W, are
entered into the MI file, then the file is checked in as the first version. Next, the CID_MAP file
is created, mapping the new CID number to the MI file. The CID_MAP file is checked in, then
the CCR file is checked back in. This work gets the CCR information locked into ClearCase.

Next, the Sequencer file is edited to show the new CCR number at the end. This action allows
the CCR’s MI and CID_MAP files to overlay onto the ClearCase baseline. This is accomplished
by echoing the contents of the CID (in file /ecs/cm/CIDs/b00083123) onto each of the hosts
specified with the /ecs/cm/CM/2007CCRs/1234/MI file. This data is written to the hosts files
with the dartboard, located at /ecs/cm/BLM/dartboard.

Once the data has been applied to the dartboard, subsequent scripts then produce the output
reports. In conjunction with the current hosts list, the scripts obtain all of the valid hosts of the
site, and basically reformat the data within the dartboard files into reports. Information is added
to the reports, including the CCR number, related Release Notes documentation, and the CCR
approval date.

The reports are written to the /ecs/cm/BLM/reports directory. Subsequent “expect” scripts then
scp those reports to specific locations on the EBIS server, c4cbl02, and then the reports are
replicated to each of the 5 remote sites (SMC and 4 DAACs).

The languages used in this tool are “sh”, “csh”, “expect”, and C. Also, “.grp” files are used to
represent the ClearCase GUIs. These files are text files that are dynamically generated at the
time that the GUI is launched. Code has been reused from two sources, the DeliveryTool, which
is used to prepare and send data to the sites, and the replication scripts, which are used to
replicate data from the Landover EBIS server c4cbl03, to the protected (SMC, DAACs) servers.

 3-1 305-EED-001, Rev. 02

3. System Description

3.1 Mission and Release 8.2 Objectives

The Mission of the National Aeronautics and Space Administration’s (NASA) Earth Science
Enterprise (ESE) is to develop a scientific understanding of the total Earth System and its
response to natural or human-induced changes to the global environment to enable improved
prediction capability for climate, weather and natural hazards. The vantage point of space
provides information about Earth’s land, atmosphere, ice, oceans and biota that is obtained in no
other way. Programs of the enterprise study the interactions among these components to advance
the new discipline of Earth System Science, with a near-term emphasis on global climate change.
The research results contribute to the development of sound environmental policy and economic
investment decisions.

The Earth Observing System Data and Information System (EOSDIS) Core System (ECS) has
been designated as the ground system to collect, archive, produce higher-level data products and
distribute data for the Earth System Science mission.

3.1.1 Release 8.2 Capabilities

The ECS capabilities have been developed in increments called formal releases. Release 8.2,
which is managed by Configuration Management, is a formal release. It is a collection of new
and updated capabilities provided to the users of the system and is described here to show the
progress of system enhancements. The ECS collects and stores, processes, archives and
distributes scientific data from six different platforms (satellites). In the following sub-sections,
the platforms and instruments from which scientific data is collected are identified, the type of
data ingested and archived is presented, search and order capabilities for scientific data, how
data is distributed and processed, system architecture and operation, system security and
Distributed Active Archive Center (DAAC) and external system support are described. Other
capabilities provided by Release 8.2 include processing the data obtained, distributing raw or
processed data as requested, quality assurance of processed data, supporting communication
networks, and systems monitoring via interfaces with the ECS operations staff.

Release 8.2 includes the following unique capabilities and modifications:

 Sybase to PostgreSQL Database Migration

The SDPS was converted from using the Sybase RDBMS to using the PostgreSQL RDBMS as
part of Release 8.2. All functional aspects of the SDPS remained the same so a “Ticket” was not
produced for this activity; there were no L4 requirement changes. This activity was limited to
changes in the implementation of the L4’s. As a result of this change, all Sybase stored
procedures were ported to PostgreSQL functions and all the SDPS applications and utilities that
connect to Sybase were modified to connect to PostgreSQL. The standard C++ database

 3-2 305-EED-001, Rev. 02

interface class was rewritten to use the PostgreSQL client libraries. Finally all DBA scripts
(such as backup scripts) were modified to work with PostgreSQL.

 BMGT rewritten to use ECHO’s REST API

This release reimplements the BMGT subsystem. Whereas the legacy BMGT packaged
metadata over the course of a number of hours, zipped it up, and pushed it to ECHO via FTP, the
new BMGT pushes metadata via REST-style HTTP calls almost immediately after detecting
inventory changes or receiving an operator request. The 8.2 BMGT provides support for ISO
metadata (needed for SMAP), in addition to the standard ECS metadata, and is meant to be
extensible to support future metadata formats with minimal code change. In addition to using a
more modern transfer mechanism and adding multi format metadata support, release 8.2 BMGT
also greatly simplifies the BMGT workflow, removing complicated code that was meant to deal
with reconciling multiple events over a number of hours. Unless otherwise specified, all exports
consist of the current state of the specified collection or granule. Exports are consolidated over
the course of a short polling interval, and updates are now treated as replacements and
indistinguishable from metadata inserts. All of this makes BMGT much more efficient and
maintainable.

 Addition of ISO 19115 metadata support for SMAP

 SMAP (Soil Moisture Active Passive) is the first of the Decadal Survey Missions. NASA
requires that science metadata generated by the Decadal Survey Missions such as SMAP must
conform to ISO 19115 and its related standard for XML encoding, ISO 19139. In order to
enable the archival of SMAP data at the NSIDC DAAC, support for ISO 19115 metadata was
added to the SDPS.

 Blade Center Refresh

The Custom Code v8.2 has been deployed on the HP BladeSystem hardware that replaces the
soon to be EOSL IBM BladeCenter hardware. New and enhanced hardware and software
technology is provided with the HP BladeSystem. Upgrades to the Red Hat Enterprise Linux 6
operating systems were installed on bare metal HP Blades and VMWare virtual machines.
Ethernet bandwidth increased to from 1Gb to 10Gb capability along with increased fibre channel
bandwidth from 2Gb to 8Gb for the Storage Area Network. This increased capacity allowed
Custom Code servers to be reduced from 7 to 5 which reduces the hardware resources, power
consumption, and system administration responsibilities to maintain the new Release 8.2 Custom
Code infrastructure.

 Web Access Retirement

Previously deployed data access enhancements, along with Reverb and other external data
discovery tools, have allowed the customer base to fully migrate away from the Web Access
application. This release completes the retirement of this application. A transition process has
been provided to the DAACs to ensure that there are no outstanding web access initiated orders
pending, and to redirect any new user attempts to access the application. This transition process
is a prerequisite to installing 8.2. As of Release 8.2, the Web Access application is no longer

 3-3 305-EED-001, Rev. 02

included in the SDPS installation. Supporting database tables have been removed, as well as the
EcDlPopulateStatTables.pl script, cron entry, and related executables.

3.1.1.1 ECS Support of Instruments by Platform

 The Meteor 3 platform supported the Stratospheric Aerosols and Gas Experiment III (SAGE
III) instrument

 The ACRIMSAT platform supports the ACRIM III experiment

 The Terra (AM-1) platform supports the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), Multi-Angle Imaging SpectroRadiometer (MISR),
Moderate Resolution Imaging SpectroRadiometer (MODIS) and Measurements of Pollution
in the Troposphere (MOPITT) instruments

 The Aqua (PM-1) platform supports the Moderate Resolution Imaging SpectroRadiometer
(MODIS) and Advanced Microwave Scanning Radiometer (AMSR-E) instruments

 The Ice, Cloud and Land Elevation satellite (ICESat) platform supported the Geoscience
Laser Altimeter System (GLAS) instrument

 The Aura platform supports the Tropospheric Emission Spectrometer (TES) instrument

 Various aircraft support the set of Operation IceBridge instruments including the Airborne
Topographic Mapper (ATM), the Digital Mapping System (DMS), and the Land, Vegetation,
and Ice Sensor (LVIS), and the Pathfinder Advanced Radar Ice Sounder (PARIS).

 The SMAP (Soil Moisture Active Passive) platform will support the SMAP instrument.

3.1.1.2 Ingest and Archive Capabilities

The following data is ingested and archived in the ECS from the various instruments described
in Section 3.1.1.1:

 Ingest of science and engineering data from the EOS Data and Operations System (EDOS)

 Ingest of Product Generation Executable (PGE) software from Science Computing Facilities
(SCFs) either electronically or via media tape

 Ingest of ASTER Level 1A/1B data

 Ingest of FDS (formerly FDD) orbit data

 Ingest of SAGE III MOC Level 0 data

 Ingest of SAGE III SCF higher-level products via the SIPS interface

 Ingest of Data Assimilation System (DAS) HDF-EOS data via standard polling with DR

 Ingest of MODIS higher-level products via the SIPS Interface

 Ingest of MOPITT SCF Level 0 data via the SIPS interface

 3-4 305-EED-001, Rev. 02

 Ingest of SDPS resident data across a mode in the same DAAC or across DAACs

 Ingest of ACRIM Level 0 and higher-level data from the ACRIM SCF via the SIPS interface

 Ingest of higher-level AMSR data products from the AMSR SCF

 Ingest of the Operation IceBridge data at the NSIDC DAAC

 Archive of ICESat GLAS Level 1, Level 2 and Level 3 and ancillary data at the NSIDC
DAAC

 Archive of the SMAP Level 0 through Level 4 data at the NSIDC DAAC

 Archive of TES Level 1, Level 2 and Level 3 data

 Archive of products previously processed and archived

3.1.1.3 Search and Order Capabilities

The ECS provides the following capabilities for search and ordering of data from the archive:

 Handling of orders from ECHO via EWOC

 CLS provides an user interface to query Order Status

 Handling of variations on search areas and product-specific spatial representations via WIST,
Reverb, and Data Pool Webaccess

 The SSS provides an operator the interface to place standing orders (subscriptions) based on
an ECS event and manage subscription status

 The Data Pool provides an operator the interface to manage insert processes, queues,
collection groups and collection themes for ECS and non-ECS collections

3.1.1.4 Data Distribution Capabilities

The ECS provides the following Data Distribution capabilities for users:

 Support distributing science data products via FTP Push or Pull, and SCP Push.

3.1.1.5 Data Processing Capabilities

The ECS provides the following capabilities for user/operator data processing options:

 Support the archive of products previously produced and archived

 Provide capability for operator deletion of granules

 Support Quality Assurance (QA) processing of science data products

 Automated support for on-demand requests for ASTER processing

 Provide capability to associate the ASTER browse granule for the L1A product with ASTER
L1B products

 3-5 305-EED-001, Rev. 02

3.1.1.6 System Operation and Architecture

The ECS provides the following capabilities to support the system operations and processing
architecture used to provide data and services for users:

 Provide capability for operator deletion of granules, their associated metadata and browse
files

 Provide the associated communications network interfaces with the SCFs

 Support managing the startup and shutdown of system network components, database and
archive administration, system data and file back-up and restores, system performance tuning
and resource usage monitoring, and other routine operator duties

 Operations support to update certain ESDT attributes without requiring the deletion of the
data collection

 Provide the capability for editing of ECS core attribute values

 Support the consolidation of trouble tickets using TestTrack Pro

 Provide fault recovery for mode management

 Provide the capability for startup and shutdown of an entire mode

 Provide the capability for the deletion of science data from the archive

 Provide the capability for the installation of ESDTs to insert and acquire archived data

 Provide for the storage of event information into the AIM database

 Provide the capability for the monitoring of the usage of memory

 Provide COTS packages to allow operations to generate customized reports from ECS
databases

 Provide a single configuration registry database to replace the numerous ECS application
configuration files

 Provide for the insertion of ECS and non-ECS granules into the Data Pool

 Export ECS metadata and browse data to ECHO via BMGT

 Provide delete, publish, restore, validation, consistency and integrity checking tools

3.1.1.7 Security

The ECS provides the following capabilities for system security:

 Encryption of passwords in ECS databases

 SDP Toolkit support for thread safe concurrent processing by the science software

 Secure Transfer of data files from Data Providers upon request

 3-6 305-EED-001, Rev. 02

 System data and file backups and restores

3.1.1.8 DAAC/External System Support

ECS Release 8.2 will be distributed to three site locations including:

1. The Atmospheric Science Data Center (ASDC) DAAC at the Langley Research Center
(LaRC),

2. The Land Processes DAAC (LP DAAC), and

3. The DAAC at the National Snow and Ice Center (NSIDC)

The ECS Release 8.2 communications network includes the National Aeronautics and Space
Administration (NASA) and the NASA Integrated Services Network (NISN). These portions of
the network are physically located at the DAAC sites. The communications network connects
ECS to data providers at the EDOS, NOAA Affiliated Data Center (ADC), and the EOSDIS
Version 0 system.

The data users for Release 8.2 are the science user community connected to the ECHO, Data
Pool Webaccess, the three DAACs, the SCFs, and the MODAPS.

1. LaRC Support:

 ECS Release 8.2 provides a communications network and data/information
management support for MISR instrument data including the receipt of MISR
level 0 data and the LaRC archive and distribution of levels 1, 2 and 3 data and
data products

 ECS Release 8.2 provides a communications network and data/information
management support for MOPITT instrument data including the receipt of
MOPITT level 0 data, the LaRC archive, and distribution of levels 1, 2 and 3 data

 ECS Release 8.2 provides a communications network and data/information
management support for TES instrument data including the receipt of TES level 0
data and the LaRC archive, and distribution of levels 1, 2 and 3 data

 LaRC DAAC capabilities include:

 Ingest of MISR, TES, and MOPITT Level 0 and related ancillary data

 Archival, and distribution of the higher-level products for MISR

 Receipt of higher-level MOPITT products from the MOPITT SCF, via the
SIPS interface, for archival and distribution

 Receipt of SAGE III products from the SCF, via the SIPS interface, for
archival and distribution

 Receipt of ACRIM products (Level 0 and Level 2 data) from the SCF, via
the SIPS interface, for archival and distribution

 3-7 305-EED-001, Rev. 02

 Receipt of TES Levels 1-3 data including algorithm and associated
software packages, metadata, production histories, ancillary data and
Quality Assessment (QA) data for archival and distribution

2. LP DAAC Support:

 ECS Release 8.2 provides a communications network and data/information
management support for ASTER instrument data including the receipt of ASTER
level 1A data electronically at LP DAAC from Japan, and distribution of higher
level ASTER products by LP DAAC

 LP DAAC capabilities include:

 Ingest of ASTER Level 1A/1B, with ancillary data needed for production

 Archival and distribution of ASTER products

 Receipt of higher level MODIS land products from MODAPS, via the
SIPS interface, for archival and distribution

3. NSIDC Support:

 AMSR-E instrument data including the receipt of level 0 data from EDOS at
ECS, and the NSIDC archive and distribution of levels 1, 2 and 3 data. The Level
1A data is received from the NSIDC V0 DAAC while the level 2 and 3 data is
received from the AMSR-E SCF via the SIPS interface

 AMSR-ADEOS II Level 1A data is received from the NSIDC DAAC and
archived and distributed using ECS.

 ECS Release 8.2 supports the ingest of ICESat GLAS level 1, level 2, level 3 and
ancillary input data for archive and distribution at the NSIDC DAAC using the
standard SIPS interface.

 NSIDC DAAC capabilities include:

 Receipt of higher-level MODIS snow and ice products from MODAPS, via
the SIPS interface, for archival and distribution

 Ingest of AMSR-E Level 0 data and related ancillary data

 Receipt of the AMSR-E and AMSR-ADEOS II higher-level products via
the SIPS interface, for archival and distribution

 Archival and distribution of GLAS Level 0 data and related ancillary data

 Receipt of the GLAS higher level products from the SCF, via the SIPS
interface, for archival and distribution

 Receipt of the Operation IceBridge data including ATM, DMS, LVIS, and
PARIS higher-level products, among others, via the SIPS interface, for

 3-8 305-EED-001, Rev. 02

archival and distribution. The product metadata are created by the ECS
MetGen program.

 Receipt of SMAP Level 0 through Level 4 data from the SMAP SDS, via
the SIPS interface, for archival and distribution

4. SCF Support:

 The MOPITT higher-level products are generated at the SCF and provided to the
ECS via the SIPS interface

 ECS Release 8.2 supports receiving SAGE III Level 0 data and higher level
products from the SCF via the SIPS interface

 ECS Release 8.2 supports receiving ACRIM L0 data and higher level products
from the SCF via the SIPS interface

5. MODAPS Support

 ECS Release 8.2 provides a communications network and data/information
management support for MODIS instrument data including: archive and
distribution of higher level data from the MODIS Data Processing System
(MODAPS)

3.2 Release 8.2 Architecture Overview

The ECS Release 8.2 architecture comprises the logical items listed here. Commercial Off The
Shelf (COTS) software and hardware are used, to the extent possible, to implement the ECS
functionality of these logical items.

 System

 Segments

 Subsystems

 Computer software configuration items (CSCIs)

 Computer software components (CSCs)

 Processes

ECS Release 8.2 was built of the following two segments.

 CSMS – Communications and Systems Management Segment

 SDPS – Science Data Processing Segment

Each segment was in turn built of the following subsystems:

 CSMS: CSS – Communications Subsystem

ISS – Internetworking Subsystem

 3-9 305-EED-001, Rev. 02

 SDPS: BMGT – Bulk Metadata Generation Tool Subsystem

CLS – Client Subsystem

DMS – Data Management Subsystem

DPL – Data Pool Subsystem

DPL INGEST – Data Pool Ingest Subsystem

 DSS – Data Server Subsystem

 OMS – Order Management Subsystem

 SSS – Spatial Subscription Server Subsystem

Hierarchical Definitions

System: A stand-alone composite of hardware, facilities, material, software, services, and
personnel required for operation based upon a defined set of system level
requirements and designed as a related set of capabilities and procedures.

Segment: A logical and functional subset of related capabilities, implemented with COTS
hardware and COTS and custom developed software to satisfy a defined subset of
the system level requirements.

Subsystem: A logical subset of Segment related capabilities, implemented with COTS
hardware and COTS and custom developed software to satisfy a defined subset of
segment level requirements.

CSCI: A logical subset of Subsystem related capabilities, implemented with COTS and
custom developed software to satisfy a defined subset of the subsystem level
software requirements.

CSC: A logical subset of CSCI related capabilities, implemented with COTS and
custom developed software to satisfy a defined subset of the CSCI level software
requirements.

Process: A logical and functional set of software, written in a specific order and in a
defined manageable size to manipulate data as part of a product-generating
algorithm. A process is a separately compiled executable (i.e., binary image). A
process can use infrastructure library calls, system service calls, COTS service
calls, and application programming interfaces to manipulate data to generate
products.

Figure 3.2-1 is a hierarchical software diagram. The hierarchical software diagram depicts an
example of the decomposition levels used in the ECS design and described in this document. The
diagram is also a graphical representation of the terms just described.

 3-10 305-EED-001, Rev. 02

ECS

SDPS CSMS

CSS Software ISS Software

MCI MLCI

Subsystem Level

CSCI Level

Segment Level

System Level

Trouble Ticket
Accountability
Management

Process
ID 3214

CSC Level

Process Level
Process
ID 0768 •

 •
 •

•

•

•

Figure 3.2-1. Example Hierarchical Software Diagram

 3-11 305-EED-001, Rev. 02

3.2.1 Release 8.2 Context Description

ECS Release 8.2 provides the capability to collect and process satellite science data as depicted
in Figure 3.2-2.

The Science Data Processing and Communications and Systems Management are the two
segments of Release 8.2 described in this document. The Science Data Processing Segment
(SDPS) provides science data ingest, search and access functions, data archive, and system
management capabilities. The SDPS receives Level 0 science data from EDOS. The SDPS
exchanges data with affiliated data centers to obtain science and other data (i.e., engineering and
ancillary) required for data production. Science algorithms, provided by the Science Computing
Facilities (SCFs), are archived for distribution. The Communications and Systems Management
Segment (CSMS) provides the communications infrastructure for the ECS and systems
management for all of the ECS hardware and software components. The CSMS provides the
interconnection between users and service providers within the ECS, transfer of information
between subsystems, CSCIs, CSCs, and processes of the ECS.

 3-12 305-EED-001, Rev. 02

AMSR-E L1A data
AMSR-ADEOS II
L1A data

Higher-level products,
ancillary data, product
history, DAP, QA data

GLAS L0 data

GLAS higher-
level products

AMSR-ADEOS II
AMSR-E data
products

ACRIM L0 data &
higher-level products

L0 data

L0, ancil lary
data

Tape input
 ASTER GDS

Data Acquisition
Request

Information
Access

Data

Archiving

ECS

Science Data

Processing
Segment

 SAGE III SCF

SAGE III
L0 data

SAGE III
Higher-level
products

 MODAPS SCF

MODIS higher-
level products

 MOPITT SCF

MOPITT L0
data

MOPITT
Higher-
level products

 ACRIM SCF

 AMSR-E SCF

 GLAS SCF

E
D
O
S
 /
E
M
S
n

Data Distribution

 TES SCF

 NSIDC V0

AMSR-E L0 data

WIST / ECHO
 SMAP SDS

SMAP L0-L4
Data

Figure 3.2-2. Release 8.2 Context Diagram

 3-13 305-EED-001, Rev. 02

The remaining sections of this document provide an overview of Release 8.2 design and as such
do not deal specifically with the configuration of components at each EOSDIS site. For more
information on the site unique configurations, refer to the 920-series of General documents. Each
of the segments consists of subsystems as specified in Section 3.2.

3.2.2 Release 8.2 Architecture

3.2.2.1 Subsystem Architecture

The ECS SDPS subsystems are depicted in Figure 3.2-3. A subsystem consists of the
Commercial Off The Shelf (COTS) and/or ECS developed software and the COTS hardware
needed for its execution. The SDPS subsystems can be grouped into a ‘Push’ or ‘Pull’ category
of functionality with the exception of DSS. As shown in the subsystem architecture diagram, the
information search and data retrieval makes up the ‘Pull’ side of the ECS architecture/design and
consists of the CLS, DMS, OMS, SSS, DPL and also uses the DSS functionality described on the
‘Push’ side of the ECS architecture. Data capture (ingest of data), storage management, planning
and data processing of satellite or previously archived data from other sites make up the ‘Push’
side of the ECS architecture/design and consists of the DSS, DPL, DPL INGEST, and OMS.
This document describes the software and hardware components of each subsystem. However,
since the hardware configurations differ between the sites, the hardware descriptions in this
document are at a generic level. Specific hardware and network configurations for each site are
documented in the 920 and 921 series technical documents.

 3-14 305-EED-001, Rev. 02

Figure 3.2-3. Subsystem Architecture Diagram

ECHO

ECHO Orders

CLS (Check

Order Status)

Communications (CSS)

PULL

Data Management

EMOS

Order Manager

(OMS)

BMGT (Export

Metadata &

Browse)

PUSH

Data Pool

Ingest (DPL

INGST)
External

Data Sources

and

Providers

Online Archive/

Data Pool (DPL)

Insert and

Retrieve

Tape Archive

(LTO)

DSS

Science

Software

and Data

SSS

 3-15 305-EED-001, Rev. 02

The ECS SDPS architecture/design consists of:

 BMGT exporting inventory status information to ECHO.

 CLS providing a user interface to check order status.

 DMS providing support for data retrieval across all ECS sites.

 DPL supporting the search, order, and distribution of selected granules with associated
metadata and browse granules (if available).

 DPL INGEST service will handle the SIPS ingest interface, S4P, cross-DAAC ingest,
EDOS ingest, ASTER Ingest and Polling without Delivery Record specifically for
EMOS.

 DSS with the functions needed to manage the inventory of archived data.

 OMS managing all orders received from the DMS EWOC (i.e., from WIST and ECHO),
the Machine-to-Machine Gateway, and the Spatial Subscription Server.

 SSS supporting the creation, viewing and updating of subscriptions and the creation,
viewing and deletion of bundling orders (specification of distribution packages and
criteria for package completion).

CSMS – The following subsystems are the CSMS subsystems, which interact with and support
the SDPS to complete the ECS architecture.

1. The CSS with:

 Control Center System (CCS) Middleware provides a common Name Server, which
packages the common portions of the communication mechanisms into global
objects to be used by all subsystems. The Name Server provides a set of standard
CCS Proxy/Server classes, which encapsulates all of the common code for
middleware communications (e.g., portals, couplers, RWCollectables, etc.)

 Libraries with common software mechanisms for application error handling, aspects
of recovering client/server communications; Universal References to distributed
objects and interfaces to e-mail, file transfer and network file copy capabilities

2. The ISS with:

 Networking hardware devices (e.g., routers, switches, hubs, cabling, etc.) and their
respective embedded software. For more information on site unique configurations,
refer to the 920-series of General documents

 3-16 305-EED-001, Rev. 02

This page intentionally left blank.

 4-1 305-EED-001, Rev. 02

4. Subsystem Description

Design Description Organization and Approach

This section presents a subsystem-by-subsystem overview description of the “as-built” ECS. The
current high-level design information is provided for the Hardware Configuration Items (HWCI),
Computer Software Configuration Items (CSCI), and Computer Software Components (CSC) for
each subsystem and is being delivered to the DAACs in drop increments.

The CSMS subsystem descriptions include:

 Subsystem functional overviews with a subsystem context diagram and a table of interface
event descriptions

 CSCI descriptions with a context diagram and a table with interface event descriptions

 Architecture Diagrams, Process Descriptions, and Process Interface Event Tables. The
Architecture Diagrams show the processes of the CSCI/CSC and how these processes
connect with other CSCIs and CSCs of the same subsystem and the interfaces with other
subsystems and external entities such as Operations, External Data Providers and Users.

 Data Store descriptions for each CSCI in the CSMS subsystem. The Data Stores are
identified with the software name and shown in the architecture diagrams either as single
data stores or as a group of data stores with a generic name such as “Data Stores” or
“database”

 Hardware descriptions of the subsystem hardware items and the fail-over strategy

The convention used for Context and Architecture diagrams includes using circular shapes to
show the subject subsystems, CSCIs, CSCs, or processes (with name in bold), elliptical shapes to
show associated CSCIs, CSCs, or processes within a given subsystem and squares or rectangles
to show external subsystems, CSCIs, CSCs, and processes. Data stores are shown using the data
store or database name with a pair of horizontal lines one above and one below the name, or as a
cylinder with the name below. An interface event is data, a message (which includes a
notification or status); a command, request or status code passed between subsystems, CSCIs,
CSCs, or processes. The convention used to identify events is a straight line between two objects
labeled with a phrase beginning with an action-oriented word to best describe the event. The
arrow on the event line indicates an origination point and to where the event is directed. A direct
response to an event is not always shown on the diagram because sometimes there is no response
(e.g., for an insert or delete request) and other times the response comes from another part of the
ECS. Interface events are identified in the interface event or process interface tables starting with
the interface event at the top or middle of the diagram and going clock-wise around the diagram.
The external interface subsystem is identified in the interface event description and is in bold to
assist with the location of the interface events on the diagram. If there are two items in bold,
there are two different interfaces (Subsystems, CSCIs, or CSCs) requesting the same interface
event. These conventions are consistent with other ECS documentation. The convention for

 4-2 305-EED-001, Rev. 02

naming the ECS processes is Ec <subsystem abbreviation> meaningful name. The Ec identifies
the process as an ECS developed process versus a Commercial Off The Shelf (COTS) product.
The subsystem abbreviations are listed subsystem-by-subsystem.

 Bm for BMGT

 Cl for CLS

 Cs for CSS

 Dl for DPL (also Data Pool Ingest and DataAccess)

 Dm for DMS

 Ds for DSS

 Ms for MSS

 Nb for SSS

 Om for OMS

The meaningful name identifies the process and its functionality within the subsystem, CSCI, or
CSC. An example is EcDsAmXvu, which identifies an ECS-developed DSS process called the
AIM XML Validation Utility. Some names within an architecture diagram do not follow this
convention because the names are COTS product names. All COTS product names are kept for
simplicity and to adhere to licensing and trademark agreements. The remaining names that do
not follow the naming convention are imbedded throughout the system and would require time to
replace and cause operational disruptions. These names will be cleaned up during the final
maintenance stages of the contract if directed by the customer.

Object-oriented modeling and design

Object-oriented modeling and design is a new way of thinking about problems using models
organized around real-world concepts. The fundamental construct is the object, which combines
both data structure and behavior in a single entity. Objected-oriented models are useful for
understanding problems, communicating with application experts, modeling enterprises,
preparing documentation and designing programs and databases.1

Superficially the term "object-oriented" means that we organize software as a collection of
discrete objects that incorporate both data structure and behavior. This is in contrast to
conventional programming in which data structure and behavior are only loosely connected.
There is some dispute about exactly what characteristics are required by an object-oriented
approach, but generally include four aspects: identity, classification, polymorphism and
inheritance.11Identity means that data is quantized into discrete, distinguishable entities called
objects. A paragraph in my document, a window on my workstation and a white queen in a chess
game are examples of objects. Objects can be concrete, such as a file, or conceptual, such as a
scheduling policy in a multi-processing operating system. Each object has its own inherent

1 Object-oriented Modeling and design, James Rumbaugh et all, copyright 1991 by Prentice-Hall, Inc. ISBN 0-13-

629841-9

 4-3 305-EED-001, Rev. 02

identity. In other words, two objects are distinct even if all their attribute values (such as name
and size) are identical.1

In the real world an object simply exists, but within a programming language each object has a
unique handle by which it can be uniquely referenced. The handle may be implemented in
various ways, such as an address, array index or unique value of an attribute. Object references
are uniform and independent of the contents of the objects, permitting mixed collections of
objects to be created, such as a file system directory that contains both files and sub-directories.1

Classification means that objects with the same data structure (attributes) and behavior
(operations) are grouped into a class. Paragraph, Window, and ChessPiece are examples of
classes. A class is an abstraction that describes properties important to an application and ignores
the rest. Any choice of classes is arbitrary and depends on the application.1

Each class describes a possibly infinite set of individual objects. Each object is said to be an
instance of its class. Each instance of the class has its own value for each attribute but shares the
attribute names and operations with other instances of the class. An object contains an implicit
reference to its own class: it "knows what kind of a thing it is."1

Polymorphism means that the same operation may behave differently on different classes. The
move operation, for example, may behave differently on the Window and ChessPiece classes. An
operation is an action or transformation that an object performs or is subject to. Right justify,
display and move are examples of operations. A specific implementation of an operation by a
certain class is called a method. Because an object-oriented operator is polymorphic, it may have
more than one method implementing it.11

In the real world, an operation is simply an abstraction of analogous behavior across different
kinds of objects. Each object "knows how" to perform its own operations. In an object-oriented
programming language, however, the language automatically selects the correct method to
implement an operation based on the name of the operation and the class of the object being
operated on. The user of an operation need not be aware of how many methods exist to
implement a given polymorphic operation. New classes can be added without changing existing
code, provided methods are provided for each applicable operation on the new classes.1

Inheritance is the sharing of attributes and operations among classes based on a hierarchical
relationship. A class can be defined broadly and then refined into successively finer subclasses.
Each sub-class incorporates, or inherits all the properties of its super-class and adds its own
unique properties. The properties of the superclass need not be repeated. For example,
ScrollingWindow and FixedWindow are subclasses of Window. Both subclasses inherit the
properties of Window, such as a visible region on the screen.1

The ECS is a large, complex data storage and retrieval system used to store and retrieve large
amounts of science and science-related data. The system was designed using an object oriented
design approach. With so many objects and the sizes of some of them, it is necessary to have

1 Object-oriented Modeling and design, James Rumbaugh et all, copyright 1991 by Prentice-Hall, Inc. ISBN 0-13-

629841-9

 4-4 305-EED-001, Rev. 02

some insight into the amount of memory being utilized within the ECS. The information about to
be presented is a brief look at the memory management of the "key" (top ten utilized) objects
within the ECS subsystems.

In this object oriented system design, objects are created and used via classes throughout the
system to help perform the functions and meet the needs of the system. The objects for the ECS
are very numerous, sometimes very large and cannot be provided in their entirety at this time.
However, presented in the table below are the "key" objects for this system and how they are
created, passed and deleted within the ECS.

Introduction to memory management approaches and memory usage table

Good memory management in some applications is important and requires significant planning
and development time. Many important ECS applications are large, long running, multi-
threaded, heavy memory users and therefore are prime candidates for improved memory
management.1

Improper memory management can result in memory leaks, fast memory usage growth or large
application footprints and random crashes. ECS servers are periodically purified for memory
leaks and there is a history of progress in this area. Similar work should be expected to continue
as development and maintenance continues.

Long running server like applications that are free from memory leaks can nonetheless have
significant memory and Central Processing Unit (CPU) usage performance degradation. A
common culprit is heap fragmentation. The repeated allocation and deallocation of memory
(such as with the new and delete operators of C++) can result in a large number of unusable free
blocks of memory. They are free blocks but are interspersed with non-free blocks. They become
unusable since they are not contiguous (fragmented) and as time goes by, it becomes harder and
harder for the OS to service requests for more memory. Such situations even lead to crashes of
other, non-offending applications running in the same box.

There are strategies, tools and software to avoid both memory leaks and fragmentation. This
includes but is not limited to:

 Periodic application of purification software (already an ECS practice)

 Software design which uses dynamic memory as little as possible, such as automatic
storage or COTS data structures

 Class-level memory management to allocate large chunks of memory instead of one
class instance at a time ("Effective C++" by Scott Meyers and "Advanced C++" by
James Coplien address this technique)

 Non-class level memory pools and

 COTS heap manager

1 Object-oriented Modeling and design, James Rumbaugh et all, copyright 1991 by Prentice-Hall, Inc. ISBN 0-13-

629841-9

 4-5 305-EED-001, Rev. 02

Table 4-1 below is provided in case further memory management improvements are desired.
Given operator or field input of seemingly inefficient memory or CPU usage, this table can be
used to help target specific ECS subsystems, servers and frameworks or classes for
improvement. It can be decided to apply some of the approaches at one level (e.g., on one guinea
pig server or class) or perhaps experiment with changing the entire ECS C++ system with the use
of a COTS heap manager. In any case, a great deal of planning and manpower is required.

 4-6 305-EED-001, Rev. 02

Table 4-1. Memory Management Table (1 of 5)
Subsystem

Name

Executable Name (M) Key Classes Description (M) Where Created?

(Executable/

process name) (M)

Passed

To

(Executab

le/proces

s name)

Where Deleted?

(process name) (M)

Number of

Instances

(Example –

1 per

granule)

Comments/Remark

s (Items of special

interest. Example -

Size per

instantiation, never

“deleted”, etc.)

DPLINGEST EcDlInPollingService

EcDlInProcessingService

EcDlInNotificationService

DpCoAlert Used to describe

problematic

conditions in DPL

INGEST that require

attention by the

operator.

EcDlInPollingService

EcDlInProcessingService

EcDlInNotificationService

not

passed

EcDlInPollingService

EcDlInProcessingSer

vice

EcDlInNotificationSer

vice

One per

condition

Alerts are used to

convey descriptions

of problems to

database and are

maintained within the

service for the

lifetime of the

problem. Deleted

when alert is cleared

by operator.

 EcDlInPollingService

EcDlInProcessingService

EcDlInNotificationService

DpCoMessage Used to communicate

a resource addition,

modification,

subtraction,

suspension or

resumption from the

operator to the

service.

EcDlInPollingService

EcDlInProcessingService

EcDlInNotificationService

not

passed

EcDlInPollingService

EcDlInProcessingSer

vice

EcDlInNotificationSer

vice

One per

operator

action

Messages are used

to communicate

changes in resource

state and are

maintained within the

service until the

change has been

made to the services

representation of that

resource.

 4-7 305-EED-001, Rev. 02

Table 4-1. Memory Management Table (2 of 5)
Subsystem

Name

Executable Name (M) Key Classes Description (M) Where Created?

(Executable/

process name) (M)

Passed

To

(Executab

le/proces

s name)

Where Deleted?

(process name) (M)

Number of

Instances

(Example –

1 per

granule)

Comments/Remark

s (Items of special

interest. Example -

Size per

instantiation, never

“deleted”, etc.)

 EcDlInPollingService

EcDlInProcessingService

EcDlInNotificationService

DpCoResource

and children.

Used to describe a

resource used by

service. For example,

ftp hosts, providers.

EcDlInPollingService

EcDlInProcessingService

EcDlInNotificationService

not

passed

EcDlInPollingService

EcDlInProcessingSer

vice

EcDlInNotificationSer

vice

One per

resource.

Created on startup or

when a resource is

added to the system.

Deleted when a

resource is removed

from the system or

the service is

shutdown.

 EcDlInPollingService DpInPoller Used to obtain PDR

files from a specific

polling location

EcDlInPollingService not

passed

EcDlInPollingService One per

polling

location

Created on startup.

Deleted when a

polling location is

removed or the

service is shutdown
 EcDlInPollingService DpInResourceC

heckTimer

Used to periodically

poll for changes in

ingest resource

properties.

EcDlInPollingService not

passed

EcDlInPollingService One Created on startup.

Deleted on

shutdown.

 EcDlInPollingService DpInPollingData

base

Used to handle all

interaction with ingest

database

EcDlInPollingService not

passed

EcDlInPollingService One Created on startup.

Deleted on

shutdown.

 EcDlInProcessingService DpInPDRParser Used to parse a PDR

file

EcDlInProcessingService not

passed

EcDlInProcessingSer

vice

One per

PDR

Created when

request is activated.

Deleted when

parsing has

completed.

 4-8 305-EED-001, Rev. 02

Table 4-1. Memory Management Table (3 of 5)
Subsystem

Name

Executable Name

(M)

Key Classes Description (M) Where Created?

(Executable/

process name) (M)

Passed To

(Executable/

process

name)

Where Deleted?

(process name)

(M)

Number of

Instances

(Example – 1

per granule)

Comments/Remarks

(Items of special interest.

Example - Size per

instantiation, never

“deleted”, etc.)

EcDlInProcessingServ

ice

DpInPDR Used to represent the

properties of a request

during processing.

EcDlInProcessingS

ervice

not passed EcDlInProcessing

Service

One per

request

activated

Created when request is

activated. Deleted when

request processing is

complete.

 EcDlInProcessingServ

ice

DpInGranule Used to represent the

properties of a granule

during processing.

EcDlInProcessingS

ervice

not passed EcDlInProcessing

Service

One per

granule in

request

Created when request is

activated. Deleted when

request processing is

complete.

 EcDlInProcessingServ

ice

DpInFile Used to represent the

properties of a file during

processing.

EcDlInProcessingS

ervice

not passed EcDlInProcessing

Service

One per file in

a granule

Created when granule is

activated. Deleted when

granule processing is

complete.

 EcDlInProcessingServ

ice

DpInProcessingDBInterf

ace

Used to handle all

interaction with ingest

database

EcDlInProcessingS

ervice

not passed EcDlInProcessing

Service

One Created on startup.

Deleted on shutdown.

 EcDlInNotificiationSer

vice

EcDfAutoDispatcher Email notification queue EcDlInNotificiationS

ervice

not passed EcDlInNotificiatio

nService

One Created on startup.

Deleted on shutdown.

 EcDlInNotificiationSer

vice

EcDfAutoDispatcher File transfer notification

queue

EcDlInNotificiationS

ervice

not passed EcDlInNotificiatio

nService

One Created on startup.

Deleted on shutdown.

 EcDlInNotificationServ

ice

DpInServerMessagesTi

mer

Used to periodically poll

for changes in ingest

resource properties.

EcDlInNotificationS

ervice

not passed EcDlInNotification

Service

One Created on startup.

Deleted on shutdown.

 EcDlInNotificationServ

ice

DpInNotifyPopulateTimer Used to periodically add

new notification actions

from ingest database

EcDlInNotificationS

ervice

not passed EcDlInNotification

Service

One Created on startup.

Deleted on shutdown.

 4-9 305-EED-001, Rev. 02

Table 4-1. Memory Management Table (4 of 5)
Subsystem

Name

Executable Name

(M)

Key Classes Description (M) Where Created?

(Executable/

process name) (M)

Passed To

(Executable/

process

name)

Where Deleted?

(process name)

(M)

Number of

Instances

(Example – 1

per granule)

Comments/Remarks

(Items of special interest.

Example - Size per

instantiation, never

“deleted”, etc.)

 EcDlInNotificationServ

ice

DpInNotifyRemoveComp

letedActionsTimer

Used to remove

completed notification

actions from the ingest

database

EcDlInNotificationS

ervice

not passed EcDlInNotification

Service

One Created on startup.

Deleted on shutdown.

 EcDlInNotificationServ

ice

DpInNotifyEmailAction Used to perform the

notification of ingest via

email

EcDlInNotificationS

ervice

not passed EcDlInNotification

Service

One per email

notification

Created when new email

notification is retrieved

from database. Deleted

when action has been

completed.

 EcDlInNotificationServ

ice

DpInNotifyFileTransferAc

tion

Used to perform the

notification of ingest via

file transfer

EcDlInNotificationS

ervice

not passed EcDlInNotification

Service

One per file

notification

Created when new file

transfer notification is

retrieved from database.

Deleted when action has

been completed.

 EcDlInNotificationServ

ice

DpInNotifyDatabase Used to handle all

interaction with ingest

database

EcDlInPollingServic

e

not passed EcDlInPollingSer

vice

One Created on startup.

Deleted on shutdown.

 EcDlInOdlToXml OdlToXmlTranslator Used to store the

ringpoint section of the

PDR file in xml format

EcDlInOdlToXml not passed EcDlInOdlToXml One Created on startup.

Deleted on shutdown.

 EcDlInOdlToXml OdlToXmlTranslator Used to store the PDR

file

EcDlInOdlToXml not passed EcDlInOdlToXml One Created on startup.

Deleted on shutdown.

 4-10 305-EED-001, Rev. 02

Table 4-1. Memory Management Table (5 of 5)
Subsystem

Name

Executable Name

(M)

Key Classes Description (M) Where Created?

(Executable/

process name) (M)

Passed To

(Executable/

process

name)

Where Deleted?

(process name)

(M)

Number of

Instances

(Example – 1

per granule)

Comments/Remarks

(Items of special interest.

Example - Size per

instantiation, never

“deleted”, etc.)

OMS EcOmOrderManager OmSrClientDb

OmSrDbInterface

Handles connection and

queries to the database

server.

EcOmOrderManag

er

Not passed EcOmOrderMana

ger

One instance The memory is deallocated

when the server comes

down.

 EcOmOrderManager OmSrDispatchQueue Keeps track of requests

for processing.

EcOmOrderManag

er

Not passed EcOmOrderMana

ger

Four instances The memory is deallocated

when the server comes

down.

 EcOmOrderManager OmServer Main encapsulating class. EcOmOrderManag

er

Not passed EcOmOrderMana

ger

One instance The memory is deallocated

when the server comes

down.

 EcOmOrderManager OmSrDistributionReques

t

Stores information related

to distribution requests.

EcOmOrderManag

er

Not passed EcOmOrderMana

ger

One instance

per request

The memory is deallocated

when the server comes

down, or when present

request is terminated in

any way.

CLS Not Applicable

SSS Not Applicable

Toolkit Not Applicable

 4-11 305-EED-001, Rev. 02

4.1 Data Server Subsystem Overview

The Data Server Subsystem (DSS) subsystem consists of one CSCI called the “Archive
Inventory Management” (AIM) CSCI. All other CSCIs were eliminated in previous ECS
releases. The AIM CSCI provides the following services:

 Services for adding new ESDTs
 Services for validation of granule metadata during Ingest
 Recording and tracking the location of files within the Archives
 Recording the addition of new Volume Groups within the Archives
 Supplying events to BMGT
 Providing database functionality for BMGT processing data

 Providing a Universal Reference (UR) for each granule ingested

 Managing the removal of granules from the system

 Managing QA metadata for science granules

 Creation and storage of Metadata Control Files (MCF).

NOTE: As of Release 8.2, the AIM and DataPool Databases have been combined. Since some
tables still remain logically a part of the DataPool database despite being physically co-located
with the AIM Database, there are still references to the ‘DataPool’ database in this document.
Except where otherwise specified, references to the AIM, Inventory, and DataPool databases can
be considered to refer to the same physical database.

Data Server Subsystem Context

Figure 4.1-1 shows context diagrams for the DSS subsystem. These diagrams illustrate the
interaction of DSS with other ECS subsystems. DPLIngest was separated out into its own
diagram because all the subsystems could not fit into one diagram.

 4-12 305-EED-001, Rev. 02

Data Server
Subsystem

DataPool
Subsystem

Request XML file information
Request Data file information
Request Volume Group information

Return XML File Information
Return Data File Information
Return Volume Group Information
Provide XML Files
Provide Data Files
Lock / Unlock Granules

Order Manager
Subsystem

Operations Staff

Request Granule Status
Request File information
Request Volume Group information

Return Granule Status
Return File Information
Return Volume Group Information
Provide Browse Files

Insert new Earth Science Data Type (ESDT)
Update ESDT
Generate Metadata Control File (MCF)
Generate ESDT specific XML Schema
Request Granule Deletion
Request Update of Quality Assurance (QA) metadata
Request consistency check of the Archive

Bulk Metadata
Generation Tool

Subsystem

Return list of Installed ESDTs
Return Validation Errors

Provide Event Notifications
Provide XML files
Return BMGT processing Data
Provide Granule Linkage
Provide File Locations
Provide Browse Files

Store BMGT Processing Data
Request XML Metadata

Figure 4.1-1. Data Server Subsystem Context Diagram (1 of 2)

 4-13 305-EED-001, Rev. 02

Figure 4.1-1. Data Server Subsystem Context Diagram (2 of 2)

Table 4.1-1 provides a description for each of the interface events shown in the Data Server
Subsystem context diagrams. If the interface is shared between multiple subsystems the
interface event will only occur one time in the table and all subsystems that share the interface
will be listed in the description.

 4-14 305-EED-001, Rev. 02

Table 4.1-1. Data Server Subsystem Interface Events (1 of 3)
Event Interface Event Description

Request XML file
information

When the DPL Ingest component ingests granules such as Browse, Processing
History, or QA, it requests the location of the XML file for the associated science
granule from the DSS Inventory Database and updates the linkage information
within that XML file. The DataPool Action Driver (DPAD) component requests
XML file information when staging granules into the DataPool.

Request Data File The DPAD component requests data file information from the DSS Inventory
Database when staging granules into the DataPool.

Request Volume Group
Information

The DPLIngest component requests volume group information from the DSS
AIM Inventory Database to determine where to store the files being ingested.
The DPAD component requests volume group information when staging
granules into the DataPool. Additionally the OMS and BMGT subsystems
requests browse granule location information.

Return XML File
Information

The DSS Inventory Database provides XML file name and location information
to the DataPool and DPLIngest.

Return Data File
information

The DSS Inventory Database provides data file name, size, checksum, and
location information to the DataPool.

Return Volume Group
Information

The DSS Inventory Database provides a list of directories in the Archive as well
as information to determine where each granule is archived to DataPool, OMS,
and DPLIngest.

Provide XML Files The DataPool and BMGT subsystems read XML files directly from the AIM XML
Archive.

Provide Data Files The DataPool reads Science and Browse granule data files directly form the
AIM Granule Archive.

Lock / Unlock Granules The AIM XRU and QA Update utility use the DataPool database to lock and
unlock granules while they are being processed so that they cannot be
accessed by other ECS components.

Request Granule
Status

The OMS subsystem requests the information from the DSS Inventory
Database to determine if a granule is “marked for deletion”, or “hidden” and thus
can’t be ordered.

Request File
Information

The OMS requests file name, size, and checksum information from the DSS
Inventory Database while processing orders.

Return Granule Status The AIM Inventory Database returns information to allow OMS to determine if a
granule can be ordered.

Return File Information The AIM Inventory database provides information such as file size, checksum,
internal and distribution file names to the OMS.

Provide Browse Files The OMS and BMGT subsystems read browse files directly from the AIM
Granule Archive.

Insert New Earth
Science Data Type

The DSS ESDT Maintenance GUI allows operators to add ESDTs to the
system by providing a descriptor file for the ESDT.

Update ESDT The DSS ESDT Maintenance GUI allows operators to modify a limited set of
attributes associated with an installed ESDT by providing a replacement
descriptor file for the ESDT.

 4-15 305-EED-001, Rev. 02

Table 4.1-1. Data Server Subsystem Interface Events (2 of 3)
Event Interface Event Description

Generate Metadata
Control File

The DSS ESDT Maintenance GUI allows operators to create an MCF file for
each ESDT added, it also contains a function to generate new MCFs for each
installed ESDT.

Request Granule
Deletion

The DSS Granule Deletion utilities provides the operator the ability to identify
granules to be deleted, mark them for future deletion, return them from a
“marked for deletion” to an active status, and physically remove (delete) them
from the archives and Inventory database.

Request Update of
Quality Assurance
metadata

The DSS Quality Assurance Update Utility (QAUU) provides the operator the
ability to modify/add metadata related to the quality of the granule to the XML file
associated with the granule.

Request consistency
check of the Archive

The DSS Archive Check utility allows the operator to check the files stored in
the archives against the records stored in the Inventory database.

Return list of Installed
ESDTS

The DSS AIM ESDT Maintenance GUI provides operator with a list of ESDTs
installed within the Inventory.

Return Validation
Errors

The DSS AIM ESDT Maintenance GUI, when inserting or updating an ESDT,
reports to the operator any errors found when processing the Descriptor.

Store BMGT
Processing Data

The DSS Inventory Database provides a storage location for BMGT processing
data, including the events to be processed.

Request XML
Metadata

The DSS Inventory Database provides the location of XML files within the DSS
XML Archive.

Provide Event
Notifications

The DSS Inventory Database records real-time events for BMGT to process.

Provide XML files The BMGT reads XML metadata from the DSS XML Archive (both descriptors
and granule XML files) when processing collections and granules. The
descriptors are stored in ODL format and are translated to XML for BMGT.

Provide Granule
Linkage

The DSS Inventory Database is used by BMGT to determine the Browse
granules that are associated with the Science Granules being processed.

Provide File Locations The AIM Inventory Database provides the location of XML metadata files and
Browse files to the BMGT.

Request XML
Metadata Validation

The DPLIngest component uses the DSS XML Validation Utility (XVU) to
validate the XML metadata file associated with each granule ingested.

Record Granule Insert The DPLIngest component records critical metadata about each granule
ingested into AIM Inventory Database. This is done via Data Pool Insert Utility
(NDPIU), and the metadata is passed to the NDPIU via an XML file. Note:
DPLIngest will copy the XML file to the AIM XML Archive.

Add Volume Group
Information

The DPLIngest GUI component uses the DSS Inventory database to store
information about new volume groups within the archive.

Request Universal
Reference

The DSS Inventory Database provides a UR to the DPL Ingest component for
each granule ingested.

Request Data Search The DPLIngest sends a search request to the DSS Inventory Database for a
granule corresponding to a particular ESDT short name and version, which has
a particular local granule id.

 4-16 305-EED-001, Rev. 02

Table 4.1-1. Data Server Subsystem Interface Events (3 of 3)
Event Interface Event Description

Return Validation
Warnings/Errors

The DSS XVU returns a list of warning and/or error messages to DPL Ingest if
problems were found during the validation of the granule metadata.

Provide access to MCF The DPLIngest component retrieves the appropriate MCF for the ESDT from
the DSS XML Archive when ingesting a non-SIPS granule.

Return Universal
Reference

The DSS Inventory Database provides a UR to DPLIngest for each granule
ingested.

Data Server Subsystem Structure

The DSS is one CSCI and two HWCIs:

 The Archive Inventory Management (AIM) CSCI catalogs earth science data as logical
collections. Each of these collections is referred to as an “Earth Science Data Type”
(ESDT) and the members of the collection are referred to as “Granules.” The AIM CSCI
services requests to add new collections to the inventory, add individual granules to
existing collections, update granules within a collection, check the consistency of the
Inventory database and the Archive file systems, and remove individual granules or whole
collections of granules.

 The XML Archive HWCI stores XML files for each science granule in the Inventory as
well as descriptor files, MCFs, and XML schema files used for validating XML.

 The Granule Data Archive HWCI provides high-capacity system for the long-term storage
of data files.

Detailed information on hardware/software mapping, hardware diagrams, disk partitioning, etc.,
can be found in 920-TDx-00x, the 921-TDx-00x, and the 922-TDx-00x series of baseline
documents. These documents are located at the web site http://pete.hitc.com/baseline/index.html
and click on the Technical Documents button.

Use of COTS in the Data Server Subsystem

 RogueWave’s Tools.h++

The Tools.h++ class libraries provide libraries of object strings and collections. These
class libraries are statically linked and delivered with the custom code installation. This
library is only used by the Archive consistency checking utility.

 Rogue Wave’s Net.h++

ToolsPro.h++ is a C++ class library, which includes the net.h++ class library, which
provides an object-oriented interface to Inter-Process Communication (IPC) and network
communication services. The Net.h++ framework enables developed code to be portable

 4-17 305-EED-001, Rev. 02

to multiple operating systems and network services. This library is only used by the
Archive consistency checking utility.

 PostgreSQL Server

The PostgreSQL Server provides the capabilities to retrieve, query, insert, update, and
delete database records.

 PostgreSQL Client Access Library libpq

The PostgreSQL Client Access Library libpq provides access between DSS custom code
and the PostgreSQL backend server.

Use of shareware products:

 XERCES

A library of software for parsing and manipulating XML, it provides the XVU and the
ESDT Maintenance GUI the ability to process XML files.

 JDBC

The XVU and the ESDT Maintenance GUI use JDBC Driver to access the PostgreSQL
Database Server.

 Standard Java runtime environment

The XVU and the ESDT Maintenance GUI use the standard Java runtime environment to
execute their java processes and to provide a set of supporting functionality.

 Java Server Faces

JavaServer Faces provides a web based application framework and user interface
components for the ESDT Maintenance GUI. This includes handling navigation
between pages, user input, and display.

4.1.1 Archive Inventory Management Software Description

The Archive Inventory Management (AIM) CSCI is composed of several software components.
Some of these components were moved to the AIM CSCI from other DSS CSCIs while others
are new components used to replace SDSRV functionality. The existing components that are
moved to AIM are:

 Granule Deletion utilities

o EcDsBulkSearch

o EcDsBulkDelete

o EcDsBulkUndelete

o EcDsDeletionCleanup

 4-18 305-EED-001, Rev. 02

 Quality Assurance Update utility

 Archive Check Utility

The new software components included in the AIM CSCI are:

 ESDT Maintenance GUI

 XML Validation Utility

 XML Replacement Utility

 XML Archive Check Utility

The AIM CSCI is used by other ECS CSCIs to manage the XML metadata and storage location
for each granule within the ECS inventory. Table 4.1-2 lists the components of the AIM CSCI
along with a brief description of the component.

Table 4.1-2. AIM Software Components (1 of 3)
Process Type Hardware

CI
COTS /

Developed
Functionality

EcDsBulkSearch.pl Comman
d line
utility

OMLHW Developed EcDsBulkSearch.pl utility provides a
command line operator interface for creating
a list of granules to be used for Bulk Delete
or Bulk Undelete operations.

EcDsBulkDelete.pl Comman
d Line
Utility

OMLHW Developed The EcDsBulkDelete.pl utility provides a
command line operator interface for deleting
granules (marking the granule so that it can’t
be accessed and making it eligible for future
removal) in the Inventory database.

EcDsBulkUndelete.pl Comman
d line
utility

OMLHW Developed The EcDsBulkUndelete.pl provides a
command line operator interface for
changing granules that were previously
marked as deleted to an “active” state in the
Inventory database.

 4-19 305-EED-001, Rev. 02

Table 4.1-2. AIM Software Components (2 of 3)
Process Type Hardware

CI
COTS /

Developed
Functionality

EcDsDeletionCleanup
.pl

Comman
d line
utility

OMLHW Developed The EcDsDeletionCleanup.pl provides a
command line operator interface for
removing the metadata and data files
associated with granules that were
previously marked for deletion. This utility
removes all references to the deleted
granules from the AIM CSCI.

EcAmQAUpdateUtility Comman
d line
utility

OMLHW Developed The Quality Assurance Update Utility
(QAUU) is a java command line utility that
updates QA information in the XML Archive
and possibly the XML files within the public
DataPool. It processes an input file
specifying the QA attributes that are being
changed along with a specification for the
granules to be updated.

EcDsAmArchiveChec
kUtility

Comman
d line
utility

DPLHW Developed The Archive Check is a C++ utility that
compares the records of the AIM Inventory
database to files in the XML Archive and
Granule Archive. It reports discrepancies for
both missing files and missing database
records.

ESDT Maintenance
GUI

GUI DPLHW Developed The ESDT Maintenance GUI is a web based
java application that installs, updates, and
deletes ESDTs from the system. It can also
be used for informational purposes to see
which ESDTs are installed in the system and
to view an individual descriptor. The GUI is
also responsible for generating ESDT
specific XML schema files and MCFs from
the descriptor and storing them in the XML
Archive.

EcDsAmXvu Utility DPLHW Developed The XML Validation Utility (XVU) is a java
process that parses the XML metadata file
being ingested and validates it against a set
of rules stored in an ESDT specific schema
(located in the XML archive).

 4-20 305-EED-001, Rev. 02

Table 4.1-2. AIM Software Components (3 of 3)
Process Type Hardware

CI
COTS /

Developed
Functionality

EcDsAmXru Comman
d line
utility

DPLHW Developed The XML Replacement utility (XRU) is
command line java utility that replaces XML
files within the XML Archive and creates an
event for the BMGT subsystem to process.
The XRU validates the new candidate file
prior to replacing the original file in the XML
Archive.

EcDsCheckXMLArchi
ve.pl

Comman
d line
utility

DPLHW Developed The XML Archive Check utility compares the
files stored in the XML archive to the entries
in the AIM Inventory database. This utility is
optimized for processing the XML Archive,
while the EcAmQAUpdateUtility is optimized
for processing volume groups.

PostgreSQL Server DBLHW COTS The PostgreSQL is the primary database
engine for ECS. It used for storing ESDT
and granule metadata in the AIM Inventory
database.

4.1.1.1 AIM Interfaces with DataPool Ingest

Figure 4.1-2 shows the components of the AIM CSCI that interface with the DPLIngest CSCI.
Oval shapes are used to indicate AIM processes. The diagram shows the interactions between
the AIM components as well as the data stores within the AIM CSCI. Refer to the DPLIngest
section of the 305 document for a complete description of DPLIngest processing.

 4-21 305-EED-001, Rev. 02

Record Granule Insert

DataPool Ingest

Insert
Granule

Inventory Insert
Utility

XML Archive

XML Validation Utility

Request XML
Metadata Validation

Store XML File
Update XML FIle

Provide MCF

Granule Data Archive

XML
Services

Archive Data FilesRead XML FIle

Request XML File Info
Request Volume Group Info

Add Volume Group Info
Request Universal Reference

Request Data Search

DataPool File
System

Read XML Schema

Inventory Database

Insert
Spatial

Figure 4.1-2. AIM CSCI Context Diagram (DPLIngest)

 4-22 305-EED-001, Rev. 02

Table 4.1-3 explains each of the events/interfaces depicted above.

Table 4.1-3. AIM Interfaces with DPLIngest (1 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Request XML
Metadata
Validation

One per
granule
ingested

EcDsAmXvu EcDlInProcessingService

Each granule ingested into ECS
must pass a metadata validation
step.

 The DPLIngest
EcDlInProcessingService
component passes the name
and location of the XML
metadata file within the
DataPool hidden directory to the
AIM XVU process.

 The XVU validates the file using
the XML Services jar file and the
ESDT specific schema located
in the XML Archive.

 The XVU processes the XML
“post validation information set”
to determine the outcome of the
XML validation.

 Optional elements that are
invalid are removed from the file.

 The XVU also performs custom
validation on certain elements.

 The XVU returns a value of 0 or
success, 2 for failure, 3 to
indicate the metadata passed
validation but that some optional
elements were removed, and
finally a value of 4 indicates the
request should be retried at a
later time.

Read XML
Schema

Once per
granule
ingested

 EcDsAmXvu When validating a granule XML file,
the XVU reads the ESDT specific
XML schema from the XML Archive.
The schema is created as part of
installing the ESDT.

 4-23 305-EED-001, Rev. 02

Table 4.1-3. AIM Interfaces with DPLIngest (2 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Read XML File Once per
granule
ingested

 EcDsAmXvu The XML file is read into a DOM tree
within the XVU process.

Store XML File Once per
science
granule
ingested

 EcDlInProcessingService The EcDlInProcessingService stores
an XML metadata file for each
science granule ingested. XML files
are not archived for Browse, QA,
Production History, or Delivered
Algorithm Package granules.

Update XML File Once per
browse
granule
ingested

 EcDlInProcessingService When the EcDlInProcessingService
ingests a Browse granule, it adds the
Browse ID to the XML metadata file
of each science granule that is
referenced by the Browse granule
linkage information.

Provide MCF Once per
non-SIPs
granule
ingested

 EcDlInProcessingService When Ingest needs an MCF to pre-
process a Non-SIPS ingest request,
it reads the MCF directly from the
Small File Archive. The directory
where the MCFs are stored is a
configuration item in Ingest.

Request XML File
Info

 Stored Procedure EcDlInProcessingService Ingest reads the list of XML paths
from the Inventory database. Ingest
creates new paths in the XML
Archive for each ESDT when it
ingests the first granule for the ESDT
for the current month. This new
directory is recorded in the Inventory
database as part of the Record
Granule Insert event.

 4-24 305-EED-001, Rev. 02

Table 4.1-3. AIM Interfaces with DPLIngest (3 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Request
VolumeGroup Info

Once at
startup of
EcDlInProces
singService or
after new
groups are
added.

Stored Procedure EcDlInProcessingService Ingest reads the list of open volume
groups from the Inventory database
at startup.

Add Volume
Group

Upon request
by DAAC
operators

Stored Procedure DAAC Operator / DPL
Ingest GUI

The DAAC operator uses the DPL
Ingest GUI to create new volume
groups. The GUI inserts these into
the Inventory database via stored
procedure. When this happens, a
message is created in the Ingest
database to instruct Ingest to refresh
the cached list of volume groups.

Request
Universal
Reference

Once for each
granule
Ingested

Stored Procedure EcDlInProcessingService Ingest accesses the Inventory
database to get the next available
granule ID. It then uses its
configured UR prefix and the
ShortName and VersionID of the
granule to construct a Universal
Reference.

Request Data
Search

Once for each
Browse
granule
Linkage

Stored Procedure EcDlInProcessingService Ingest receives Local Granule ID
values in the linkage section of the
Browse ingest request. It searches
the Inventory database (via stored
procedure) to convert these to
granule ID values.

Record Granule
Insert

Once for each
granule
Ingested

NDPIU EcDlInProcessingService Ingest sends a request to the Data
Pool Insert Utility to record each
granule ingested.

Insert Spatial Once per
science
granule with
spatial
attributes

Embedded SQL NDPIU The NDPIU inserts the spatial
metadata into the Inventory database
via the Spatial Query Server. The
spatial metadata is inserted before
the non-spatial metadata. Each use
separate database transactions. If
the non-spatial insert fails, then the
spatial is removed. In the event that
the spatial fails due to a duplicate
key error, the NDPIU assumes it is
processing a retry of the metadata
insert and proceeds to the non-
spatial insert.

 4-25 305-EED-001, Rev. 02

Table 4.1-3. AIM Interfaces with DPLIngest (4 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Insert Granule Once per
granule
ingested

Stored procedure NDPIU The NDPIU records non-spatial
information such as the temporal
metadata, the file information, and
the XML file location in the Inventory
database.

Archive Data Files Once per
granule
ingested

 EcDlInProcessingService Ingest copies the data files for the
granule into the data archive. The
location/directory is determined by
executing an Inventory database
stored procedure to compare the
granule metadata with the
DsStVolumeGroup table.

4.1.1.2 AIM CSCI interfaces with DAAC Operations Staff

There are several interfaces between the DAAC operations staff and the Archive Inventory
Management (AIM) CSCI. These can’t be show in one diagram so this section is broken up into
several sections, each explaining a common set of DAAC operator interfaces. Each figure is
followed by a table that describes the interfaces / events shown in the figure.

4.1.1.2.1 AIM ESDT Maintenance GUI and QA Update utility

Figure 4.1-3 shows the DAAC operator interfaces with the ESDT Maintenance GUI and the QA
Update utility and interaction of these components with other AIM components.

 4-26 305-EED-001, Rev. 02

Figure 4.1-3. AIM Interfaces with DAAC Operators (ESDT Maintenance GUI and
QA Update utility)

 4-27 305-EED-001, Rev. 02

Table 4.1-4 describes each of the events depicted above.

Table 4.1-4. AIM Interfaces with DAAC Operators (ESDT GUI, QA Update) (1 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Install ESDT Once for each
new ESDT

ESDT Maintenance
GUI

DAAC Operations

The DAAC operators install ESDTs
using the ESDT Maintenance GUI. The
GUI performs the following:

 Reads the descriptor files from a
configured directory.

 Converts the descriptor to XML.

 Records the ESDT in the Inventory
database.

 Validates the descriptor against an
ESDT XML schema using the XML
services module.

 Validates certain elements of the
descriptor against valids stored in
the Inventory database.

 Adds the Collection entry to the
Inventory database.

 Registers an Insert Event in the
Spatial Subscription Server
database.

 Extracts an MCF from the
descriptor and stores it in the XML
archive.

 Builds an ESDT specific XML
schema file and stores it in the XML
Archive.

 Records the completion of the
install in the Inventory database.

 4-28 305-EED-001, Rev. 02

Table 4.1-4. AIM Interfaces with DAAC Operators (ESDT GUI, QA Update) (2 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Update ESDT When ever an
ESDT
descriptor file
changes

ESDT Maintenance
GUI

DAAC Operations

When an ESDT is updated the ESDT
Maintenance GUI performs the
following:

 Reads the new descriptor file from
the configured directory.

 Converts the descriptor to XML.

 Records the update of the ESDT in
the Inventory database.

 Validates the descriptor against an
ESDT XML schema using the XML
services module.

 Updates the Collection entry in the
Inventory database. Note: changes
to metadata such as spatial search
type, Product Specific Attribute
definitions, and other attributes that
could invalidate existing metadata
are not supported.

 Extracts the MCF the from the
descriptor and stores it in the XML
archive

 Builds an ESDT specific XML
schema file and stores it in the XML
Archive.

 Records the completion of the
update in the Inventory database.

 4-29 305-EED-001, Rev. 02

Table 4.1-4. AIM Interfaces with DAAC Operators (ESDT GUI, QA Update) (3 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Remove ESDT Upon
Operator
request (after
all granules
are removed)

ESDT Maintenance
GUI

DAAC Operations ESDTs can be removed from the
system if all the granules are physically
deleted. The ESDT Maintenance GUI
performs the following:

 Marks the ESDT as being removed
in the Inventory database

 Removes the MCF and XML
schema from the XML archive

 Removes the Insert Event from the
SSS database

 Removes any remaining XML
metadata file directories from the
XML archive

 Removes the collection from the
Inventory database

 Removes the ESDT information
from the Inventory database.

Generate MCF Once per
ESDT Install
Update or
upon direct
request by the
operator

 ESDT Maintenance GUI The ESDT Maintenance GUI extracts
the MCF section from the descriptor file
and stores it as a separate file in a
configured MCF directory within the
XML archive.

Generate ESDT
specific schema

Once per
ESDT Install
or Update or
upon direct
request by the
operator

 ESDT Maintenance GUI The ESDT Maintenance GUI reads the
Inventory section of the descriptor file
and compares it to a “common” granule
XML schema. It adds the common
schema elements that match the
descriptor entries to the new ESDT
specific XML schema file and stores it in
the configured descriptor directory of the
XML Archive. The rules in the
descriptor can be set to customize the
element definitions (mandatory/optional
or specific domain list) in the ESDT
specific schema.

Add ESDT /
Collection

Once per
ESDT Install

Stored procedure ESDT Maintenance GUI The ESDT Maintenance GUI executes
several stored procedures to register the
ESDT in the Inventory database.

 4-30 305-EED-001, Rev. 02

Table 4.1-4. AIM Interfaces with DAAC Operators (ESDT GUI, QA Update) (4 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Check Valids Once per
ESDT Install

Stored procedure ESDT Maintenance GUI The ESDT Maintenance GUI checks
certain values in the descriptor file (for
example: Discipline, Topic, Term
Keyword) against a set of valid values
stored in the Inventory database.

Return ESDT List Upon request
by Operator

Stored procedure ESDT Maintenance GUI The ESDT Maintenance GUI retrieves
the list of installed ESDTs and presents
them to the Operator.

Add Descriptor Once per
ESDT Install
or Update

 ESDT Maintenance GUI The ESDT Maintenance GUI copies or
replaces the descriptor file to the
configured descriptor directory within the
XML archive.

Add ESDT
specific schema

Once per
ESDT Install
or Update

 ESDT Maintenance GUI The ESDT Maintenance GUI stores the
ESDT specific granule XML schema in
the descriptor directory of the XML
archive. This schema is used to
validate granules during Ingest.

Add MCF Once per
ESDT Install
or Update

 ESDT Maintenance GUI The ESDT Maintenance GUI extracts
the Inventory section of the descriptor
file and stores it in the configured MCF
directory within the XML archive. This
file can be accessed directly by DPL
Ingest.

Request QA
Update

Whenever
quality
information
for a granule
or set of
granules is
available

EcDsAmQauu DAAC Operations The DAAC operator submits a file that
specifies the granules to be updated
along with the new values for the Quality
Flags for a Measured Parameter. The
QAUU processes the file by uploading it
to one of three different request tables
(based upon the file format LGID, dbID,
or ESDT + Temporal). The request
details are copied to a new table where
the information is normalized into a set
of granules including dbID and Local
Granule ID. The QAUU processes the
list of granules to be updated in batches.

 4-31 305-EED-001, Rev. 02

Table 4.1-4. AIM Interfaces with DAAC Operators (ESDT GUI, QA Update) (5 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Lock Granule Executed
once per
batch, locking
each granule
within the
batch

Stored Procedure EcDsAmQauu The QAUU coordinates with other
processes that access granules in the
DataPool by locking the granule in the
AIM database (inserting to the
DlOMSGranules table). All the granules
within a batch are locked prior to
processing the batch.

Request XML File
List

Once per
batch of
granules
processed

Stored Procedure EcDsAmQauu The QAUU requests the list of XML files
that correspond to the granules being
processed.

Update XML File Once per
granule
processed

 EcDsAmQauu Depending upon the header file line, the
QAUU either updates the
ScienceQualityFlag or the
OperationalQualityFlag, or the
AutomaticQuality flag for the supplied
Measured Parameter for each granule.
It also updates the associated
QualityFlagExplanation.

Update DPL XML
File

Once per
public DPL
granule
processed

 EcDsAmQauu For each granule within the batch to
process, If the granule is in the public
DataPool, the QAUU copies the updated
XML file from the XML Archive to the
DPL file system.

Update Measured
Parameters

Once per
batch of
granules to
process

Stored Procedure EcDsAmQauu The QAUU updates the quality flags
within the AIM database for each
supplied Measured Parameter for each
of the granules in the batch. This
update occurs as one large database
transaction.

Unlock Granule Once per
batch of
granules to
process

Stored Procedure EcDsAmQauu When the QAUU finishes processing a
batch of granules, it unlocks them in the
AIM database by removing the entries
from the DlOMSGranules table.

4.1.1.2.2 AIM XML Replacement and Granule Deletion utilities

Figure 4.1-4 shows the interactions between the XML Replacement Utility and the other AIM
components. There is only one use case for the XRU and it is initiated by the DAAC operator.
The diagram also shows an interface to the DataPool database.

 4-32 305-EED-001, Rev. 02

Figure 4.1-4. AIM Interfaces with DAAC Operators (XML Replacement Utility)

Table 4.1-5 describes the interfaces / events depicted above between the DAAC operators and
the Granule Deletion utilities.

Table 4.1-5. AIM Interfaces with DAAC Operators (XML Replacement Utility)
(1 of 2)

Event Event
Frequency

Interface Initiated By Event Description

Replace XML
File

Upon
request by
the Operator

EcDsAmXru DAAC Operator The XML Replacement utility
replaces XML files in the XML
archive and logs an event for BMGT
to process.

Read Granule
Information

Once per
XML file to
replace

Stored Procedure EcDsAmXru The XRU reads the last update time
of the Granule from the Inventory
database and compares it to the
time in the XML file. It also reads
the location of the XML file in the
XML archive.

 4-33 305-EED-001, Rev. 02

Table 4.1-5. AIM Interfaces with DAAC Operators (XML Replacement Utility)
(2 of 2)

Event Event
Frequency

Interface Initiated By Event Description

Lock Granule Once per
XML file to
replace

Stored Procedure EcDsAmXru The XRU locks the granule in the
DataPool so that it cannot be
accessed by other ECS processes
while it is being replaced.

Read XML
Schema

Once per
XML file to
replace

 EcDsAmXru The XRU reads the XML file into a
DOM tree so that the elements can
be validated.

Replace XML
File

Once per
XML file to
replace

 EcDsAmXru If the elements of the new XML file
are valid, the existing file in the XML
Archive is replaced with the new file.

Record new
Information

Once per
XML file to
replace

Stored Procedure EcDsAmXru The XRU records a new size,
checksum, and lastUpdate time in
the Inventory database for the
granule.

Log
Replacement
Event

Once per
XML file to
replace

Stored Procedure EcDsAmXru The XRU records an event in the
Inventory database to be processed
by BMGT.

Unlock Granule Once per
XML file to
replace

Stored Procedure EcDsAmXru The XRU removes the lock from the
DataPool database once processing
is completed.

4.1.1.3 AIM Granule Deletion utilities

Figure 4.1-5 shows the DAAC operator interfaces between the DAAC operator and the XML
Replacement and Granule Deletion utilities.

 4-34 305-EED-001, Rev. 02

DAAC Operations Staff

Small File Archive SNAC

Bulk
Delete

Bulk
Undelete

Bulk
Search

Deletion
Cleanup

Search
Database

Granule Data File Archive

Identify
Granules

for Deletion

Mark Granules
Deleted

Restore Deleted
 Granules

Remove Granules
Marked as deleted

Delete
Granule

Delete
XML
File

Fetch File
list

Undelete
Granule

Delete
Data
FIle

Inventory DB
Sybase

Figure 4.1-5. AIM Interfaces with DAAC Operators (Granule Deletion Utilities)

 4-35 305-EED-001, Rev. 02

Table 4.1-6 describes the interfaces / events depicted above between the DAAC operators and
the Granule Deletion utilities.

Table 4.1-6. AIM Interfaces with DAAC Operators (Granule Deletion) (1 of 2)
Event Event

Frequency
Interface Initiated By Event Description

Identify
Granules for
Deletion

Upon
request by
the Operator

EcDsBulkSearch.
pl

DAAC Operator The Bulk Search utility searches the
Inventory database based upon the
supplied arguments to identify a list
of granules. The list is stored in a
text file that is compatible with both
the Bulk Delete and the Bulk
Undelete utilities.

Search
Database

Once per
invocation of
the utility

Dynamic SQL EcDsBulkSearch.pl The Bulk Search utility dynamically
constructs an SQL statement based
upon the arguments given. These
can include ShortName, VersionID,
Temporal Range, insert time, Local
Granule ID, and current deletion
status. The output of the search is
a list of Granule IDs stored in a text
file.

Mark Granules
Deleted

Upon
request by
DAAC
Operator

EcDsBulkDelete.p
l

DAAC Operator The Bulk Delete utility processes a
file containing a list of Granule IDs
and marks each granule as either
“deleted from the Archive” or marks
each granule as deleted on the
current date. Options exist for
marking associated granules. The
associated granules (Browse, QA,
or PH) can be ignored or they can
also be marked as deleted at the
same time the science granule is
deleted.

Delete Granule Once per
granule
deleted

Stored Procedure EcDsBulkDelete.pl The Bulk Delete utility executes a
stored procedure to update the
granule in the Inventory database
with the appropriate deletion status.

Bulk Undelete Upon
request by
DAAC
Operator

EcDsBulkUndelet
e.pl

DAAC Operator The Bulk Undelete processes a file
of Granule IDs and either reverses
the Delete From Archive or the
Granule Deletion status (based
upon the arguments supplied). The
utility also has options for
processing associated granules.

 4-36 305-EED-001, Rev. 02

Table 4.1-6. AIM Interfaces with DAAC Operators (Granule Deletion) (2 of 2)
Event Event

Frequency
Interface Initiated By Event Description

Undelete
Granule

Once per
granule
processed

Stored Procedure EcDsBulkUndelete.pl The Bulk Undelete utility executes a
stored procedure to reverse the
deletion status for each granule
supplied in the input file.
Associated granules are also
processed after all science granules
are individually processed. This is
done in a single stored procedure
based upon the time a transaction
time for the undelete operation.

Remove
Granules
marked as
deleted

Upon
request by
DAAC
operator

EcDsDeletionClea
nup.pl

DAAC Operator The Deletion Cleanup utility
examines the Inventory database
for granules that are eligible for
removal. The eligible granules have
a delete effective date in the
Inventory database (set by the Bulk
Delete utility) that is less than the
time argument passed into the
utility. This time argument is
referred to as the “lag time” for
deleting granules. Once the lag
time has passed, the granule is
eligible for physical removal from
the system.

Fetch File list Once per
invocation of
the utility

Stored Procedure EcDsDeletionCleanup
.pl

The Deletion Cleanup utility uses a
stored procedure in the Inventory
database to expand the list of
granules to delete to cover both the
primary and backup volume groups
and return the actual list of files.

Delete XML File Once per file
processed

 EcDsDeletionCleanup
.pl

For each file to delete, the Deletion
Cleanup utility removes the file from
the XML Archive.

Delete Data File Once per file
processed

 EcDsDeletionCleanup
.pl

For each data file to delete, the
Deletion Cleanup utility removes the
file from both the primary and
backup (if applicable) volume
group(s).

 4-37 305-EED-001, Rev. 02

4.1.1.3.1 AIM Archive Check and XML Archive Check utilities

Figure 4.1-6 shows the interactions between the Archive Check and XML Archive Check
utilities and other AIM components. Both utilities are initiated by the DAAC operator.

Figure 4.1-6. AIM Interfaces with DAAC Operators (Archive Check Utilities)

 4-38 305-EED-001, Rev. 02

Table 4.1-7 describes the interfaces / events depicted above.

Table 4.1-7. AIM Interfaces with DAAC Operators (Archive Check Utilities) (1 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Request
consistency
check of the
Archive

Upon
request by
Operations

EcDsAmArchiveC
heckUtility

DAAC Operations

The Archive Check utility obtains a
list of Volume Groups from the
Inventory database and for each
Volume Group, the utility compares
the list of files in the Volume Group
to the entries recorded in the
Inventory database that correspond
to granules that are mapped to the
Volume Group. The utility also
checks to make sure every science
granule within the Volume Group
has an XML file in the appropriate
directory of the XML Archive.

The mapping of data files to
granules is based upon ShortName,
VersionID, insert time into the
archive, and a comparison of the
acquisition time of the granule with
a date within the Volume Group to
indicate a forward processing or
reprocessing use. This rule can be
executed by any process to
determine the location of the data
file.

XML Files are stored based upon
the Year and Month of the
acquisition time of the granule, or
the Year and Month of the insert
time, if acquisition time is not
captured. The Inventory database
directly records this association to
the absolute directory where the
XML file is stored.

Request
consistency
check of the
XML Archive

Upon
request by
Operations

EcDsAmXMLArchi
veCheck

DAAC Operations

The XML Archive Check utility
iteratively processes each XML
metadata directory and compares
the contents of the directory with the
contents of the Inventory database.
It begins with getting a list of XML
metadata directories from the
database. Then loops through each
one doing the consistency check.

 4-39 305-EED-001, Rev. 02

Table 4.1-7. AIM Interfaces with DAAC Operators (Archive Check Utilities) (2 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Fetch Volume
Groups

Once per
invocation of
the utility

Stored Procedure EcDsAmArchiveChec
kUtility

The Archive Check utility retrieves
the list of Volume Groups to process
from the Inventory database.

Fetch Data File
list

Once per
Volume
Group
processed

Stored Procedure EcDsAmArchiveChec
kUtility

The Archive Check utility retrieves
the “internal” file name associated
with each granule that is mapped to
the Volume Group being processed.
The mapping is based upon ESDT,
insert time into the archive, and a
comparison of the acquisition time
of the granule with a date within the
Volume Group to indicate a forward
processing or reprocessing use.

Fetch XML File
list

Once per
volume
group
processed

Once per
XML
metadata
directory

Stored Procedure EcDsAmArchiveChec
kUtility

EcDsAmCheckXMLAr
chive

The Archive Check utility retrieves a
list of XML files associated with
each granule to be processed within
the Volume Group.

The XML Archive Check utility
iteratively retrieves the list of XML
files in each XML directory.

XML Directory
listing

Once per
granule
processed

 EcDsAmArchiveChec
kUtility

EcDsAmCheckXMLAr
chive

The Archive Check utility verifies
that each granule being processed
has an XML file in the XML Archive.

The XML Archive Check utility
obtains a list of all files within the
XML directory being processed.
This will be compared to the
contents of the Inventory database
which was determined in “Fetch
XML File list.”

Archive
Directory listing

Once per
Volume
Group
processed

 EcDsAmArchiveChec
kUtility

The Archive Check utility obtains a
list of files in the Volume Group
being processed and compares it to
the list of internal file names
retrieved from the Inventory
database.

 4-40 305-EED-001, Rev. 02

Table 4.1-7. AIM Interfaces with DAAC Operators (Archive Check Utilities) (3 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Report
Discrepancies

Once per
invocation of
the utility

 EcDsAmArchiveChec
kUtility

The Archive Check utility writes a
discrepancy report to a text file.
The report lists granules without
data files or XML files in the file
systems (phantoms). It also lists
data files or XML files that are found
in the file systems that are not
present in the Inventory database
(orphans).

Report XML
Discrepancies

Once per
invocation of
the utility

 EcDsAmCheckXMLAr
chive

The XML Archive Check utility
writes a discrepancy report to a text
file. The report lists granules
without XML files in the XML
Archive. It also reports the XML
files that are found in the XML
Archive not present in the Inventory
database.

4.1.1.4 AIM interfaces with BMGT

The BMGT subsystem bypasses the AIM software modules and directly accesses the AIM
Inventory database, XML Archive, and Granule Data File Archive. Access to the Inventory
database is done through stored procedures in the Inventory database. Figure 4.1-7 illustrates
these interfaces.

 4-41 305-EED-001, Rev. 02

Figure 4.1-7. AIM Interfaces with BMGT

Table 4.1-8 describes each of the interfaces show above.

Table 4.1-8. AIM Interfaces with BMGT (1 of 2)
Event Event

Frequency
Interface Initiated By Event Description

Store BMGT
Processing
Data

Constant
throughout
running of
BMGT

Stored
Procedures

BMGT processes The BMGT processes store
persistent data related to their
processing in the Inventory
database. Please refer to the
BMGT subsystem for a more
complete explanation of the
information stored.

 4-42 305-EED-001, Rev. 02

Table 4.1-8. AIM Interfaces with BMGT (2 of 2)
Event Event

Frequency
Interface Initiated By Event Description

Provide Event
Notifications

 Stored
Procedures

ECS processes The Inventory database provides a
table for ECS components to log
events. The events are retained for
a configured time period and
cleaned up by an AIM script. These
events are used by BMGT to
identify the events that occurred
within a given cycle (the events are
copied to a BMGT table). It is
important to configure the event
retention time to be long enough for
BMGT to capture the events before
they are removed.

Return BMGT
processing data

 Stored
Procedures

BMGT processes The BMGT retrieves its processing
information directly from the
Inventory database using a series of
stored procedures.

Provide Granule
Linkage

 Stored
Procedures

BMGT processes The BMGT obtains Science to
Browse granule linkage information
directly from the Inventory
database.

Provide XML file
location

Once per
granule
processed

Stored Procedure

BMGT processes The BMGT obtains the location of
the XML file within the XML Archive
directly from the Inventory
database.

Provide Browse
file location

 Stored Procedure

BMGT processes The BMGT obtains the location of
Browse files directly from the
Inventory database.

Provide XML
Files

Once per
granule
processed

 BMGT processes The BMGT reads XML files directly
from the XML archive to produce
the METG/C products.

Provide
Descriptor files

Once per
ESDT
processed

 BMGT processes The BMGT reads Descriptor files
directly from the archive to produce
the METC products. These files are
in ODL format, and BMGT uses the
xmlsvcs framework to convert them
to XML.

 4-43 305-EED-001, Rev. 02

4.1.1.5 AIM interfaces with the Order Manager and DataPool subsystems

Figure 4.1-8 shows the AIM context diagram for OMS and DPL. Table 4.1-9 shows the AIM
interfaces with OMS and DPL.

Figure 4.1-8. AIM Context Diagram (OMS and DPL)

Table 4.1-9. AIM Interfaces with OMS and DPL (1 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Request
Granule Status

Once for
each
granule in
an Order

Stored Procedure EcOmOrderManager The Order Manager server executes
stored procedures to request the
status information (deleted, active)
for each granule ordered.

Request File
Information

Once for
each
granule in
an Order

Stored Procedure EcOmOrderManager The Order Manager server executes
stored procedures to request file
information, such as file size, for
each granule ordered.

 4-44 305-EED-001, Rev. 02

Table 4.1-9. AIM Interfaces with OMS and DPL (2 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Request
Volume Group
information

Once per
granule
processed

Stored Procedure OMS

DPL DPAD

The OMS executes stored
procedures to request Volume
Group information within the
Inventory database.

The DataPool Action Driver
requests information about the
location of the Granule Data file
from the Inventory database when
staging a granule into the DPL.

Return Granule
Status

Once for
each
granule in
an Order

Stored Procedure EcOmOrderManager The Inventory database returns
information about the status of the
granule within the archive. The
Inventory database also maps Local
Granule IDs to internal granule IDs
for OMS.

Return File
Information

 Stored Procedure EcOmOrderManager The Inventory database returns
information such as file size,
checksum, etc. about each granule
ordered in OMS.

Return Volume
Group
Information

 Stored Procedure EcOmOrderManager The Inventory database returns
information about the location of
Browse files within the AIM Granule
Archive.

Read Browse
File

Once per
browse
granule
ordered

 EcOmOrderManager The OMS distributes browse file
directly out of the Granule Archive.

Request XML
File Information

Once per
granule
processed

Stored Procedure

DPL DPAD The DataPool Action Driver
requests information about the XML
file from the Inventory database
when staging a granule into the
DPL.

Request Data
file information

Once per
granule
processed

Stored Procedure DPL DPAD The DataPool Action Driver
requests information about the
Granule Data file from the Inventory
database when staging a granule
(Science or Browse) into the DPL.

Return XML File
information

Once per
granule
processed

Stored Procedure DPL DPAD The Inventory database provides
information such as file name and
path to the DPAD.

 4-45 305-EED-001, Rev. 02

Table 4.1-9. AIM Interfaces with OMS and DPL (3 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Return Data
File information

Once per
granule
processed

Stored Procedure DPL DPAD The Inventory database provides
information such as file name
(internal and distributed), checksum,
file size, and LocalGranuleId to the
DPAD.

Return Volume
Group
information

Once per
granule
processed

Stored Procedure DPL DPAD The Inventory database provides
volume group information to the
DPAD.

Copy XML File Once per
granule
processed

 DPL DPAD The DPAD stages granules into the
DataPool by copying the XML file
directly from the XML Archive to the
DataPool file system.

Copy Data File Once per
granule
processed

 DPL DPAD The DPAD stages granules into the
DataPool by copying the granule
data file (Science or Browse)
directly from the Granule Data File
Archive to the DataPool file system.

4.1.2 DSS Error Handling and Processing

The XML Validation Utility is a Java processe and use a “pipe” based interface with the
DPLIngest. They follow the coding standards for Java and contain only one log file. Requests
and parameters are passed from the DPLIngest to the NDPIU and XVU by writing to the pipe.
Spaces are used as delimiters between the arguments passed to these utilities. The final
processing status of each request is written to the application log along with information to
identify the granule being processed.

Both of these utilities return results to the DPLIngest by writing to the pipe. The NDPIU returns
a value of 0 for success if all metadata was successfully inserted. In the case of an error, it
returns a value of 1 along with a detailed text message describing the error. This utility doesn’t
contain any persistent storage of previous requests; it assumes that DPLIngest will always link a
specific granule ID to the same granule. Thus if it encounters a situation where metadata already
exists for a given granule ID, the NDPIU assumes that it previously processed the granule and
returns a success result.

The XVU has multiple possible return values. It returns a value of 0 for success; it returns a
value of 2 if metadata in the request does not pass the validation process, it returns a value of 3
to indicate that the metadata passed validation but some optional elements were removed (this is
considered a “warning” message), and it returns a value of 4 to indicate that errors were
encountered attempting to validate the granule and that DPLIngest should try the request again.
When the XVU returns 2, 3, or 4 it will also return a detailed text message describing the
warning or error. The XVU has no persistent storage of requests, in the event that DPLIngest

 4-46 305-EED-001, Rev. 02

validates the same granule more than one time, the XVU will process the XML metadata file
without regard to previous any actions.

The ESDT Maintenance GUI responds directly to the operator, thus it displays error messages
within the GUI and has a separate screen for displaying validation errors. It also has an
application log for capturing processing information and error messages. The Granule Deletion
utilities, the Quality Assurance Update utility, the XML Replacement utility, and the Archive
Check utilities are command line utilities that interact directly with the Operator. They write to
the operator console/xterm and use application logs to show detailed processing flow
information and detailed error messages.

4.1.3 DSS Data Stores

Table 4.1-10 provides a description of the data stores for the AIM CSCI, and the conceptual
model of the data store. The physical model for the AIM data stores can be found in the AIM
Database Design and Schema Specifications for the EED Contract (CDRL 311).

Table 4.1-10. AIM CSCI Data Stores (1 of 2)
Data Store Type Description

AIM Inventory Database

The primary purpose of the AIM Inventory database is to configure
ESDTs and track the status and location of granules within the DSS.
The Inventory database catalogs information about the following
objects:

 ESDT definitions

 Collection level information

 Browse data

 Science data (as granules)

 Quality Assessments

 Delivered Algorithm Packages

 Production History

 4-47 305-EED-001, Rev. 02

Table 4.1-10. AIM CSCI Data Stores (2 of 2)
Data Store Type Description

XML Archive File
System

The XML archive is a SAN attached managed file system that is
available to most of the processing blades. It contains directories for
the following:

 A metadata directory stores an XML metadata file for each
Science granule archived in the ECS. The directories for storing
XML metadata are first separated by ESDT. Within each ESDT
granule directories are partitioned into directories based upon
the year and month of the acquisition time. If acquisition time is
not recorded for an ESDT, then the insert time of the granule will
be used.

 A descriptor directory stores a descriptor file along with the
associated XML schema file for the ESDT installed in the mode.

 An MCF directory stores a Metadata Control File (MCF) for each
ESDT installed in the system.

 A BMGT directory is used by the BMGT subsystem for
persistent storage of production outputs and reports.

Granule Archive File
System

The Granule Archive is the primary data store for the ECS. It
consists of a set of managed file systems that are broken up into
directories that are assigned to the storage of files for a given ESDT
or set of ESDTs. These directories are referred to as Volume
Groups and typically have a specific time range of granules that are
stored in the directory.

 4-48 305-EED-001, Rev. 02

4.2 DPL Ingest Subsystem Overview
The Data Pool Ingest service handles the SIPS ingest interface1, cross-DAAC ingest, EDOS
ingest, ASTER Ingest and Polling without Delivery Record specifically for EMOS. Unlike the
classic INGST subsystem, the Data Pool Ingest service will insert the ingested data into the Data
Pool, in addition to inserting the ingested data into the archive.

DPL Ingest Subsystem Context

Figure 4.2-1 is the DPL Ingest context diagram. The diagram provides an illustration of the Data
Pool Ingest and archiving steps. Table 4.2-1 provides descriptions of the interface events shown
in the DPL Ingest Subsystem context diagram.

Figure 4.2-1. DPL Ingest Subsystem Context Diagram

1 EOSDIS Document 423-41-57 Interface Control Document between the ECS and the SIPS Volume 0 revision H

 4-49 305-EED-001, Rev. 02

Table 4.2-1. DPL Ingest Subsystem Interface Events
Event Interface Event Description

Create PDR SIPS providers place their data and PDR files into a polling directory. The
directory can be local, e.g., accessible via a mount point; or remote, i.e.,
accessible via FTP/SCP. For Polling without Delivery Record provider, the data
file is transferred to the polling directory rather than a PDR.

Polling The DPL Ingest Service polls these directories as configured by the DAAC.

Request Queue The DPL Ingest Service queues ingest requests for validation and processing.
The DPL Ingest Service queues all PDR that it finds. To decide which validated
PDR will be processed next, it checks available resources, timestamps and
priorities of the requests.

ODL To XML
Conversion

The DPL Ingest Service converts the input ODL metadata (if applicable) to XML
metadata for insertion into DPL.

XML Metadata
Validation

The DPL Ingest Service calls the XML Validation Utility to validate the XML
metadata file.

DPL Insert The granule files are copied into the Data Pool SAN, using hidden directories
for that purpose unless the DAAC requested that the data be published on
insert.

Archive The DPL Ingest Service then copies the granules from the hidden Data Pool
directories into the StorNext archive.

Update Archive
Information

The DPL Ingest Service updates archive information in the AIM database.

SSS notification The DPL Ingest service places a record for the Spatial subscription server to
decide whether any subscription should fire based on the granule insert.

Notify with PAN or
PDRD

The provider is notified of the ingest outcome in the format of PDRD (if PDR
validation failed) or PAN (for reasons other than PDR validation failure).

Queue for Publication The DPL Ingest service places a record for the granule to be published if its
collection is marked for publication. The DPAD will then perform the
publication.

DPL Ingest Subsystem Structure

The DPL Ingest Subsystem consists of four CSCIs: the Polling Service, the Processing Service,
the Notification Service, and the DPL Ingest GUI. The Polling Service is responsible for the
provision of work to the service via transferring Product Delivery Records (PDRs) into the
system and registering them, or in the case of Polling without Delivery record, creating a PDR
for each data file and registering them. The Processing Service picks up registered PDRs and
attempt to ingest the data they describe into the Data Pool and the Archive, performing any
additional processing required for specific inventory. The Processing component will checkpoint
a particular PDR on completion of various steps during processing and register a notification (i.e.
PDRD or PAN) for Notification Service to process when the PDR reached a terminal state.
Terminal states are Successful, Partial_Failure, Failed, Cancelled, and Partially_Cancelled.
Terminal states are conveyed to the provider by means of a Product Acceptance Notification
(PAN) or Product Delivery Discrepancy Report (PDRD). The Notification Service will detect
registered notifications and deliver them to the provider based on the provider configured
notification methods. The DPL Ingest GUI is used to configure, monitor and control the
operations of the DPL Ingest Service.

 4-50 305-EED-001, Rev. 02

Use of COTS in the DPL Ingest Subsystem

 RogueWave’s Tools.h++

The Tools.h++ class libraries are used by the DPL Ingest Service to provide basic
functions and objects such as strings and collections. These libraries must be installed
with the DPL Ingest software for any of the DPL Ingest Service processes to run.

 PostgreSQL libpq

The PostgreSQL libpq provides access between DPL Ingest Service custom code and the
PostgreSQL backend server.

 PostgreSQL Server

The PostgreSQL server provides access for DPL Ingest Service to insert, update and
delete DPL Ingest Requests, DPL Ingest configurations, and Operator Interventions. The
PostgreSQL Server must be running during operations for the DPL Ingest Service to
process DPL Ingest Requests.

 UNIX Network Services

DNS, NFS, E-mail, FTP, TCP/IP and the other UNIX services provided are obtained
from the CSS.

4.2.1 DPL Ingest Computer Software Configuration Item Description

4.2.1.1 DPL Ingest Service CSCI Functional Overview

The DPL Ingest Subsystem consists of four CSCIs: the Polling Service, the Processing Service,
the Notification Service, and the DPL Ingest GUI. The Processing Service executes as a process
and interacts with the following CSCIs: INGST Database, the Polling Service, the Notification
Service, the XML Validation Utility (XVU), and the Data Pool System (DPL). The Polling
Service transfers Product Delivery Records (PDRs) into the system and registers them to the
INGST Database. Processing Service retrieves the PDRs from INGEST Database and validates
them. If the PDR is valid, Processing Service attempts to ingest the inventory they describe into
the Data Pool and Archive, performing any additional processing required for specific inventory.
The Processing Service updates the status of a particular PDR on completion of various steps
during processing. For an invalid PDR, a PDRD is generated. An operator intervention is
created if the request encounters a processing problem. DAAC OPS personnel can use the DPL
Ingest GUI to monitor and control the processing of the request. In response to an intervention,
the Operator can view the error details, retry the erroneous granule or fail the request if the
problem cannot be resolve through retries. Processing Service also generates notification for
each request that has reached a terminal state and register notification in INGEST Database. The
Notification Service will detect the registered notifications and deliver them to the provider
based on the provider configured notification methods. Operator Alert is generated when an
internal or external resource failure is detected. When an operator alert is generated, DPL Ingest
services will halt dispatching of the requests that are utilizing those failed resources, retries the
failed operation that caused the alert (if so configured) and automatically clears the alert if the
operation succeeds on retry. Operator can view the operator alerts on DPL Ingest GUI and can
manually clear the operator alerts through the GUI.

 4-51 305-EED-001, Rev. 02

4.2.1.2 DPL Ingest Service CSCI Context

Figure 4.2-2 is the DPL Ingest Service CSCI context diagrams. The diagrams show the events
sent to the DPL Ingest Service CSCIs and the events the DPL Ingest CSCIs send to other CSCIs.
Table 4.2-2 provides descriptions of the interface events shown in the DPL Ingest Service CSCI
context diagram.

Figure 4.2-2. DPL Ingest CSCI Context Diagram

Polling CSCI

Processing CSCI

Notification CSCI

External / Local Disk Data Provider

StorNext Archive

DPL CSCI

DPL INGEST
GUI CSCI

Create PDRPolling

Fetch Configuration Information

Fetch Configuration Information
Fetch Notification Actions
Create Alert

Fetch Configuration Information
Fetch DPL Ingest Request
Fetch Actions of Request Changes

Register PDR
Create Alert

DPL Insert

Archive Insert

Update Archive
Information

Notify with PAN/PDRD

Update DPL Ingest
Request
Create Operator
Intervention

Suspend / Resume /
Cancel / Retrieve / Alter
Request
Suspend /
Resume Resource

Transfer Data

Polling CSCI Polling CSCI

Processing CSCI Processing CSCI

Notification CSCI Notification CSCI

External / Local DiskExternal / Local Disk

Postgres Server

Data Provider Data Provider

DPL CSCIDPL CSCI

DPL INGEST
GUI CSCI

DPL INGEST
GUI CSCI

Create PDRPolling

Fetch Configuration Information

Fetch Configuration Information
Fetch Notification Actions
Create Alert

Fetch Configuration Information
Fetch DPL Ingest Request
Fetch Actions of Request Changes

Register PDR
Create Alert

DPL Insert
Insert Metadata

Archive Insert

Validate Metadata

Notify with PAN/PDRD

Update DPL Ingest
Request
Create Operator
Intervention

Suspend / Resume /
Cancel / Retrieve / Alter
Request
Suspend /
Resume Resource

Transfer Data
Checksum Data

XVU CSCI

 4-52 305-EED-001, Rev. 02

Table 4.2-2. DPL Ingest CSCI Interface Events (1 of 2)
Event Interface Event Description

Create PDR SIPS providers place their data and PDR files into a polling directory which will
be polled by the Polling CSCI. The directory can be local, e.g., accessible via a
mount point; or remote, i.e., accessible via FTP.

Polling The Polling CSCI polls PDRs from directories (External/Local Disk) by Data
Provider as configured by the DAAC.

Register PDR The Polling CSCI queues ingest requests for validation and processing into the
PostgreSQL Server (INGST Database). The Processing CSCI later queues all
PDR that it finds. To decide which validated PDR will be processed next, it
checks available resources and DAAC configured priorities.

ODL To XML
Conversion

The DPL Ingest Service converts the input ODL metadata (if applicable) to XML
metadata for insertion into DPL.

XML Metadata
Validation

The DPL Ingest Service calls the XML Validation Utility to validate the XML
metadata file.

DPL Insert The Processing CSCI copies the granule files into the Data Pool SAN, using
hidden directories for that purpose unless the DAAC requested that the data be
published on insert.

Archive Insert The Processing CSCI copies the granule files in to the StorNext archive.

Update Archive
Information

The DPL Ingest Service updates archive information in the AIM database.

SSS notification The DPL Ingest service places a record in the SSS database for the Spatial
subscription server to decide whether any subscription should fire based on the
granule insert.

Notify with PAN or
PDRD

The Notification CSCI sends notification to the Data Provider, it could be
immediate via PDRD if PDR validation failed, or later on via a short or long PAN.

Queue for Publication The DPL Ingest service places a record in the AIM database for the granule to
be published if its collection is marked for publication. The DPAD will then
perform the publication.

Create Alert The Polling CSCI, Processing CSCI and Notification CSCI creates an alert for
resource failures and stores the alert in the PostgreSQL Server (INGST
Database).

Fetch Config Info The Polling CSCI, Processing CSCI and Notification CSCI retrieves the
configuration information from PostgreSQL Server (INGST Database).

Update DPL Ingest
Request

The Processing CSCI updates DPL Ingest request in the PostgreSQL Server
(INGST Database).

Create Operator
Intervention

The Polling CSCI, Processing CSCI creates new Operator Intervention for
request failures in the PostgreSQL Server (INGST Database).

Fetch DPL Ingest
Request

The Processing CSCI retrieves information associated with a DPL Ingest request
from the PostgreSQL Server (INGST Database).

Fetch Actions of
Request Changes

The Processing CSCI retrieves actions regarding request changes, such as,
request priority change, cancel request, suspend request, and update request
parameters from the PostgreSQL Server (INGST Database).

Validate Metadata The Processing CSCI populates the metadata files and sends them to the XVU
CSCI for validation.

 4-53 305-EED-001, Rev. 02

Table 4.2-2. DPL Ingest CSCI Interface Events (2 of 2)
Event Interface Event Description

Insert Metadata The Processing CSCI sends the granule metadata to the DPL CSCI for insertion
into the AIM database.

Fetch Notification
Actions

The Notification CSCI retrieves actions regarding request notifications from the
PostgreSQL Server (INGST Database).

Suspend/Resume/Ca
ncel/Alter/Retrieve
Request

The DPL Ingest GUI CSCI suspends, resumes, cancels, alters and retrieves
requests from the PostgreSQL Server (INGST Database).

Suspend/Resume
Resource

The DPL Ingest GUI CSCI suspends or resumes dispatching to all or selected
resources in the PostgreSQL Server (INGST Database).

Transfer Data The Processing CSCI transfers data files from the External/Local Disk specified
in PDR.

Checksum Data The Processing CSCI checksum data files from the checksum information
specified in PDR or calculate the checksum based on the provider and system
configuration.

4.2.1.3 DPL Ingest Architecture

The Polling Ingest Interface (EcDlInPollingService) polls accessible file system locations to
detect data to be ingested. This process submits a Product Delivery Record (PDR). The Cross-
DAAC Ingest Interface (EcDlInEmailGWServer) polls a configured directory for distribution
notices (flat files converted from email messages). This process detects the distribution notice
files and creates Product Delivery Record files, which are put in a polling directory and polled by
the Polling Ingest Interface.

The Polling Ingest Interface queues ingest requests into the PostgreSQL Server (INGST
database) for Processing Service to pick up. The Processing Interface queues all PDR that it
finds, to decide which validated PDR will be processed next, it checks available resources,
timestamps and priorities of the request. The Processing Interface validates metadata using the
XVU and inserts the granules into the AIM inventory. The Processing Interface copies the
granule files into Data Pool SAN, using hidden directories for that purpose unless the DAAC
requested that the data be published on insert. The processing Interface copies the granule files
into the StorNext archive. The processing service copies the XML metadata file to the small file
archive.

Figure 4.2-3 is the DPL Ingest CSCI architecture diagram. The diagram shows the events sent to
the DPL Ingest CSCI processes and the events the DPL Ingest CSCI processes send to other
processes.

Note: System startup and shutdown - Please refer to the release-related, current version of the
Mission Operations Procedures for the EED Contract document (611) and the current EED
Contract Training Material document (625).

 4-54 305-EED-001, Rev. 02

4.2.1.4 DPL Ingest Process Descriptions

Table 4.2-3 provides the descriptions of the processes shown in the DPL Ingest CSCI
architecture diagram (Figure 4.2-3).

Table 4.2-3. DPL Ingest CSCI Processes (1 of 2)
Process Type Hardware

CI
Source Functionality

EcDlInPollingService Server DPLHW Developed Detect new Product Delivery Records
(PDRs) and transfer them into
system.

 Creates a unique identifier for the
request.

 Register request.

EcDlInGui GUI INTHW Developed Provides Maintenance and Operations
(M&O) personnel the capability, via GUI
Interface,
 To modify ingest configuration

parameters.
 To monitor the status of ongoing

ingest requests, to suspend, resume,
cancel, alter or retrieve DPL ingest
requests.

 To suspend or resume resource.

EcDlInProcessingServi
ce

Server DPLHW Developed Ingests granules associated with
ingest requests (PDRS) into the
Datapool and archive.

 Registers granule information with
AIM

 Manages the DPL ingest request
traffic and the processing of the DPL
ingest requests.

 Provides the capability to process
multiple ingest requests concurrently
by placing the request in a queue.

 In the event of a failure, the
EcDlInProcessingService process
restores on-going requests from the
Ingest database.

EcDlInNotificationServi
ce

Server DPLHW Developed Send the end-user Notification, either
Product Acceptance (PAN) or Product
Delivery Discrepancy Report (PDRD),
on completing a ingest request.

 4-55 305-EED-001, Rev. 02

Table 4.2-3. DPL Ingest CSCI Processes (2 of 2)
Process Type Hardware

CI
Source Functionality

PostgreSQL Server ACMHW COTS Stores and provides access to the
DPL Ingest Service internal data. In
particular, the database stores the
Ingest operations databases – DPL
Ingest History Logs and the DPL
Ingest request checkpoint state, and
template information. See Section
4.2.1.6 DPL Ingest Data Stores.

EMD Baseline Information System (EBIS) Document 920-TDx-001 (Hardware Design
Diagram) provides descriptions of the HWCI, and document 920-TDx-002 (Hardware-Software
Map) provides site-specific hardware/software mapping.

4.2.1.5 DPL Ingest Process Interface Descriptions

Table 4.2-4 provides descriptions of the interface events shown in the DPL Ingest CSCI
Architecture diagram.

Table 4.2-4. DPL Ingest CSCI Process Interface Events (1 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Create PDR One per
request

Directories on remote or
local disk

External Data
Provider

SIPS providers place their
data and PDR files into a
polling directory which will
be polled by the
EcDlInPollingService. The
directory can be local, e.g.,
accessible via a mount
point; or remote, i.e.,
accessible via FTP/SCP.

Polling One per
request

Directories on remote or
local disk

Process:
EcDlInPollingServi
ce
Class:
DpInPoller

The EcDlInPollingService
polls PDRs from directories
(External/Local Disk) by
Data Provider as
configured by the DAAC.

 4-56 305-EED-001, Rev. 02

Table 4.2-4. DPL Ingest CSCI Process Interface Events (2 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Register PDR One per
request

Process:
PostgreSQL Server
(COTS)

Process:
EcDlInPollingServi
ce
Class:
DpInPoller

The EcDlInPollingService
queues ingest requests for
validation and processing
into the PostgreSQL Server
(INGST database). The
EcDlInProcessingService
later queues all PDR that it
finds. To decide which
validated PDR will be
processed next, it checks
available resources and
DAAC configured priorities.

DPL Insert One per
request

Process:
PostgreSQL Server
(COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInDplRegistratio
nQAction

The
EcDlInProcessingService
copies the granule files into
the Data Pool SAN, using
hidden directories for that
purpose unless the DAAC
requested that the data be
published on insert.

Archive Insert One per
request

Process:
StorNext copy

Process:
EcDlInProcessingS
ervice
Class:
DpInArchiveQActio
n

The
EcDlInProcessingService
copies the granule files into
the StoreNext archive file
system.

 4-57 305-EED-001, Rev. 02

Table 4.2-4. DPL Ingest CSCI Process Interface Events (3 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Update Archive
Information

One per
request

Process:
PostgreSQL Server
(COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInInventoryInser
tQAction

The
EcDlInProcessingService
updates archive
information in the AIM
database.

Notify with PAN
or PDRD

One per
email
notification
request

Process:
Sendmail (COTS)
Ftp daemon (COTS)

Process:
EcDlInNotificationS
ervice
Class:
DpInNotifyEmailAct
ion
DpInNotifyFtpActio
n

The
EcDlInNotificationService
sends notification to the
Data Provider, it could be
immediate via PDRD if
PDR validation failed, or
later on via a short or long
PAN.

Create Alert One per
request

Process:
PostgreSQL Server
(COTS)

Process:
EcDlInPollingServi
ce
EcDlInProcessingS
ervice
EcDlInNotificationS
ervice
Class:
DpCoAlert

The EcDlInPollingService,
EcDlInProcessingService
and
EcDlInNotificationService
create an alert for resource
failures and stores the alert
in the PostgreSQL Server
(INGST Database).

Fetch Config Info One per
startup/
One per
configurable
interval

Process:
PostgreSQL Server
(COTS)

Process:
EcDlInPollingServi
ce
EcDlInProcessingS
ervice
EcDlInNotificationS
ervice
Class:
DpInNotifyDatabas
e

The EcDlInPollingService,
EcDlInProcessingService
and
EcDlInNotificationService
retrieve the configuration
information from
PostgreSQL Server
(INGST Database).

Update DPL
Ingest Request

One per
request

Process:
PostgreSQL Server
(COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInProcessingDbI
nterface

The
EcDlInProcessingService
updates DPL Ingest
request in the PostgreSQL
Server (INGST Database).

 4-58 305-EED-001, Rev. 02

Table 4.2-4. DPL Ingest CSCI Process Interface Events (4 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Create Operator
Intervention

One per
request

Process:
PostgreSQL Server
(COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInProcessingDbI
nterface

The
EcDlInProcessingService
creates new Operator
Intervention for request
failures in the PostgreSQL
Server (INGST Database).

Fetch DPL Ingest
Request

One per
request

Process:
PostgreSQL Server
(COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInProcessingDbI
nterface

The
EcDlInProcessingService
retrieves information
associated with a DPL
Ingest request from the
PostgreSQL Server
(INGST Database).

Fetch Actions of
Request
Changes

One per
configurable
interval

Process:
PostgreSQL Server
(COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInProcessingDbI
nterface

The
EcDlInProcessingService
retrieves actions regarding
request changes, such as,
request priority change,
cancel request, suspend
request, and update
request parameters from
the PostgreSQL Server
(INGST Database).

ODL To XML
Conversion

One per
ODL
metadata

Process:
OdlToXmlConverter
Library:
odlToXml.jar

Process:
EcDlInProcessingS
ervice
Class:
DpInGranuleSched
uler

The
EcDlInProcessingService
invoke a java utility to
convert the ODL metadata
file into XML metadata file.

Validate XML
Metadata

One per
metadata
validation

Process:
EcDsAmXvu
Library:
xmlsvcs

Process:
EcDlInProcessingS
ervice
Class:
DpInXmlValidation
QAction

The
EcDlInProcessingService
populates the metadata
files and sends them to the
XVU for validation.

 4-59 305-EED-001, Rev. 02

Table 4.2-4. DPL Ingest CSCI Process Interface Events (5 of 5)
Event Event

Frequency
Interface Initiated By Event Description

Request Data
Search

One per
granule
pointer in
linkage file

Process:
PostgreSQL Server
(COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInGranuleSched
uler

The
EcDlInProcessingService
queries PostgreSQL server
(Inventory database), for
the granule corresponding
to a particular ESDT short
name and version, which
has a particular local
granule id.

Fetch Notification
Actions

One per
configurable
interval

Process:
PostgreSQL Server
(COTS)

Process:
EcDlInNotificaionS
ervice
Class:
DpInNotifyDatabas
e

The
EcDlInNotificationService
retrieves actions regarding
request notifications from
the PostgreSQL Server
(INGST Database).

Suspend/Resum
e/Cancel/Alter/R
etrieve Request

One per click Process:
PostgreSQL Server
(COTS)

DPL Ingest GUI The DPL Ingest GUI scripts
send suspend, resume,
cancel, alter and retrieve
request command to the
PostgreSQL Server
(INGST Database).

Suspend/Resum
e Resource

One per click Process:
PostgreSQL Server
(COTS)

DPL Ingest GUI The DPL Ingest GUI scripts
send, suspend, or resume
resource command to the
PostgreSQL Server
(INGST Database).

Transfer Data One per
science data
file activity

Process:
Ftpd (COTS) or sshd
(COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInInternalFtpTra
nsferQAction/DpInI
nternalScpTransfer
QAction

The
EcDlInProcessingService
transfers data files from the
External/Local Disk
specified in PDR.

Checksum Data One per data
file activity

Process:
Checksum utilities
(COTS)

Process:
EcDlInProcessingS
ervice
Class:
DpInChecksumQA
ction

The
EcDlInProcessingService
checksums data files from
the checksum information
specified in PDR or
calculate the checksum
based on the provider and
system configuration.

 4-60 305-EED-001, Rev. 02

4.2.1.6 Ingest Data Stores

The DPL Ingest CSCI uses the COTS product PostgreSQL to store related DPL Ingest Information.
Table 4.2-5 provides descriptions of the data stores.

Table 4.2-5. DPL Ingest CSCI Data Stores
Data Store Type Description

INGST Database Postgre
SQL

INGST Database is designed to store the persistent information of
user request, processing configuration, request aging configuration,
and request cleanup configuration.

Inventory Database Postgre
SQL

The AIM Inventory database is designed to store the minimal
metadata information of ingested granules and tape archive file
storage information of data and metadata files. It also implements
the large majority of the persistent data requirements for the DPL
subsystem which supports large online cache of important ECS data
at each DAAC and avoids tape access to ECS archive.

 4-61 305-EED-001, Rev. 02

4.3 Client Subsystem Overview

The Client Subsystem (CLS) is a set of processes that provide EED end-user services.

These services include allowing users to:

 View HDF formatted files

In addition, the workstations operating within an ECS CLS contains infrastructure support
software as part of the CSS and platform support software.

Table 4.3-1 describes the Client Subsystem Interface events.

Table 4.3-1. Client Subsystem Interface Events
Event Interface Event Description

Enter HDF File
Name

This is a file name for a Hierarchical Data Format (HDF) file. The user opens the file
to see the data in the file.

4.3.1 Tools Description

Table 4.3-2 describes the SSI&T event descriptions.

Table 4.3-2. SSI&T Tool Events
Event Event

Frequency
Interface Initiated By Event Description

Hdiff

hdiff

cmd line I/F
and COTS
binary

SSIT Developed
and COTS

Tools to compare binary and HDF
files. The shell program EcClHDiff
and is used to assist with the
viewing and comparisons.

 4-62 305-EED-001, Rev. 02

4.4 Data Management Subsystem Overview

The Data Management Subsystem (DMS) provides interoperability between the ECHO (EOS
ClearingHouse) and the ECS. The DMS provides this service by supplying a gateway process.
The ECHO WSDL (Web Service Definition Language) Order Component (EWOC) allows users
to order ECS products via order tools that interface with ECHO. The ECS will no longer support
search and browse capabilities as these will be handled internally by ECHO. The EWOC will
provide the means for ECHO to present orders to ECS on behalf of the user.

DMS functionality includes:

 DMS validates and places orders that users submit using the clients that interface with
ECHO.

 DMS submits orders to External Processors for granules that require external processing.

 DMS allows External Processors to update the status of requests in ECS.

Data Management Subsystem Context

Figure 4.4-1 is the Data Management Subsystem context diagrams. The diagrams show the
events sent to the Data Management Subsystem and the events the Data Management Subsystem
sends to other external systems and CSMS subsystems. Table 4.4-1 provides descriptions of the
interface events shown in the Data Management Subsystem context diagrams.

 4-63 305-EED-001, Rev. 02

-

Figure 4.4-1. Data Management Subsystem Context Diagram

Data Management
Subsystem

OMS

ECHO

External

Processor

Insert Product
Distribution Request
Update Request status Login, logout

Return Submit Acknowledgement
Close Provider Order

Submit Order

Submit Order
Return Submit Acknowledgement
Request Order Status Update

Submit External Processing Order
Return Submit Acknowledgement
Return Status Update Acknowledgement

 4-64 305-EED-001, Rev. 02

Table 4.4-1. Data Management Subsystem Interface Events
Event Interface Event Description

Insert Product
Distribution Request

The Data Management Subsystem (DMS) inserts product distribution requests
in the Order Manager Data Base Management System within the Order
Manager Subsystem (OMS).

Update Request
Status

The DMS submits a request status update to the OMS

Submit Order The DMS receives product requests from the External Processor*.

Return Submit
Acknowledgement

The DMS receives confirmation of an external processing order from the
External Processor.

Request Status
Update

The DMS receives status update requests from the External Processor.

Submit External
Processing Order

The DMS submits an external processing request in the External Processor.

Return Submit
Acknowledgement

The DMS returns a confirmation of an order submitted from External
Processor.

Return Status Update
Acknowledgement

The DMS returns a confirmation of a status update request by the External
Processor.

Submit Order The DMS receives product requests from the ECHO on behalf of an external
ECS user.

Login, logout The DMS logins and logouts to Authentication Service at ECHO to obtain
security token.

Return Submit
Acknowledgement

The DMS returns a confirmation of order submitted from ECHO.

Close Provider Order The DMS updates the status of requests at ECHO when the requests reach
terminal states at ECS.

*Note: For the purpose of this document, “External Processor” refers to either an External Subsetter (HSA) or an

On-Demand Processor (S4PM), both of which are treated the same by the DMS.

Data Management Subsystem Structure

The DMS consist of one CSCI:

 The ECHO WSDL Order Component (EWOC) is a software configuration item. The
EWOC provides a gateway between ECHO and ECS by allowing users using external
client to submit ECS orders through ECHO. The EWOC validates and submits orders to
ECS for product distribution. The EWOC also allows interaction with External
Processors. External Processors receive external processing orders from the EWOC and
submit status update requests to the EWOC.

Use of COTS in the Data Management Subsystem

 Apache Axis 1.4

The Apache Axis packages are used to generate JAVA web service which uses SOAP
messages for communication.

 4-65 305-EED-001, Rev. 02

Error Handling and processing

EMD Process Framework package is used for general error reporting. The functions can catch
exceptions coming from try blocks and the exception stack trace is logged in the log files.
Exceptions that occur during interaction with ECHO will be propagated to the ECHO to indicate
order status to the user.

There are three kinds of logs: operations, debugging and performance.

Each conforms to and is supported by the process framework package under
/ecs/formal/COMMON/java/gov/nasa/emd/processframework which wraps the Java Logging
utility. Each type of log provides for four different levels of output: NONE, INFORMATION,
VERBOSE and XVERBOSE.

For writing messages to the log, the following function from LogWrapper class is used:

Public static void log(int level, boolean debug, boolean ops, String message),

For example, the following writes to operations log with output level of INFORMATION.

LogWrapper.log (Logger.INFORMATION, false, true, “EWOC Initialization complete”);

For writing messages to the debug log, the following function calls are used:

LogWrapper.log (Logger.VERBOSE, true, false, “CloseRequestPoller”);

4.4.1 ECHO WSDL Order Component Software Description

4.4.1.1 ECHO WSDL Order Component Functional Overview

The ECHO WSDL Order Component (EWOC) CSCI provides a gateway between ECHO and
ECS systems. The users using the client will search, browse and order data using ECHO and
submit orders to the EWOC CSCI. The EWOC CSCI then validates the order according to the
ECS rules, and submits the requests to the Order Manager Subsystem for product distribution.
The EWOC CSCI also updates the status of the request at ECHO to provide the user with an
order status.

The EWOC CSCI is a web service. Apache Axis handles service layer and receives messages
via SOAP format. Once the order is received, the EWOC returns submit acknowledgement
which describes whether order submission was successful. For orders that require external
processing, the EWOC places a request at the External Processor and accepts status update
requests from the External Processor.

4.4.1.2 ECHO WSDL Order Component Context

Figure 4.4-2 is the EWOC CSCI context diagrams. The diagrams show the events sent to other
CSCIs or CSCs and the events the EWOC CSCI receives from other CSCIs and CSCs.
Table 4.4-2 provides descriptions of the interface events shown in the EWOC CSCI context
diagrams.

 4-66 305-EED-001, Rev. 02

Figure 4.4-2. ECHO WSDL Order Component CSCI Context Diagram

EWOC CSCI

OMS Database

ECHO

External

Processor

Insert Product
Distribution Request
Update Request status Login, logout

Return Submit Acknowledgement
Close Provider Order

Submit Order

Submit Order
Return Submit Acknowledgement
Request Order Status Update

Submit External Processing Order
Return Submit Acknowledgement
Return Status Update Acknowledgement

 4-67 305-EED-001, Rev. 02

Table 4.4-2. ECHO WSDL Order Component CSCI Interface Events
Event Interface Event Description

Insert Product
Distribution Request

The ECHO WSDL Ordering Component (EWOC) inserts product distribution
requests in the Order Manager Data Base Management System within the
Order Manager Subsystem (OMS).

Update Request
Status

The EWOC submits a request status update to the OMS.

Submit Order The EWOC receives product requests from the External Processor.

Return Submit
Acknowledgement

The EWOC receives a confirmation of an external processing order from the
External Processor.

Request Order
Status Update

The EWOC receives status update requests from the External Processor.

Submit External
Processing Order

The EWOC submits an external processing request in the External
Processor.

Return Submit
Acknowledgement

The EWOC returns a confirmation of an order submitted from External
Processor.

Return Status Update
Acknowledgement

The EWOC returns a confirmation of a status update request by the External
Processor.

Submit Order The EWOC receives product requests from the ECHO on behalf of an external
ECS user

Login, logout The EWOC logins and logouts to Authentication Service at ECHO to obtain
security token.

Return Submit
Acknowledgement

The EWOC returns a confirmation of order submitted from ECHO.

Close Provider Order The EWOC updates the status of requests at ECHO when the requests reach
terminal states at ECS.

4.4.1.3 ECHO WSDL Order Component Architecture

Figure 4.4-3 is the EWOC CSCI architecture diagram. The diagram shows the events sent to the
EWOC CSCI processes and the events the EWOC CSCI process sends to other processes.

The EWOC CSCI is one process, the EcDmEwoc as shown in the ECHO WSDL Order
Component CSCI Architecture Diagram.

 4-68 305-EED-001, Rev. 02

Figure 4.4-3. ECHO WSDL Order Component CSCI Architecture Diagram

4.4.1.4 ECHO WSDL Order Component Process Descriptions

Table 4.4-3 provides descriptions of the processes shown in the EWOC CSCI architecture
diagram.

EcDmEwoc

Order Fulfillment
Order Status Update

OMS Database

ECHO
Authentication
Order Processing

External Processor

Order Fulfillment

Insert Product
Distribution Request
Update Request status Login, logout

Return Submit Acknowledgement
Close Provider Order

Request ECS Product

Request ECS product
Request Order Status Update
Return Product Request
Acknowledgement

Request External Processing Product
Return Submit Acknowledgement
Return Status Update Acknowledgement

 4-69 305-EED-001, Rev. 02

Table 4.4-3. EWOC CSCI Processes
Process Type Hardware

CI
COTS/

Developed
Functionality

EcDmEwoc Web
Service

DMGHW Developed The ECHO WSDL Order Component is a
web service that runs on Tomcat/Apache.

The EWOC offers two basic interfaces.

OrderFulfillment Port: External systems
such as ECHO or External Subsetter can
submit orders to this endpoint. The
EWOC validates the order according to
ECS rules and then bundles the order into
separate requests before submitting the
requests to OMS for product distribution.
If the order is an external processing
order, the EWOC submits an order to the
external processor on behalf of ECS.

OrderStatusUpdate Port: External
processors can submit requests to update
the status of an order using this interface.

4.4.1.5 ECHO WSDL Order Component Process Interface Descriptions

Table 4.4-4 provides descriptions of the interface events shown in the EWOC CSCI architecture
diagram.

Table 4.4-4. EWOC CSCI Process Interface Events (1 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Insert Product
Distribution
Request

One per
product
request

Process:

PostgreSQL Server

(COTS)

Process:

EcDmEwoc

Classes:

OmsDataAccessImpl

The EcDmEwoc inserts
product distribution requests
into the Order Manager DBMS
by invoking OMS stored
procedures.

Update Request
Status

One per status
update
request

Process:

PostgreSQL Server

(COTS)

Process:

EcDmEwoc

The EcDmEwoc updates the
request status in the MSS
database by invoking OMS
stored procedure.

 4-70 305-EED-001, Rev. 02

Table 4.4-4. EWOC CSCI Process Interface Events (2 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Request ECS
Product

One per
product
request

Process:

OrderFulfillment Port

Classes:

OrderFulfillmentPortBindingIm
pl

Process:

External Processor,

ECHO

The External Processor or the
ECHO submits an order
through EWOC’s
OrderFulfillment Port.

Request Order
Status Update

One per
status
update
request

Process:

OrderStatusUpdate Port

Class:

OrderServiceImpl

Process:

External Processor

The External Processor
submits a request status
update through EWOC’s
OrderStatusUpdate Port.

Return Product
Request
Acknowledgement

One per
status
update
request

Process:

OrderFulfillment Port

Classes:

OrderFulfillmentPortBindingIm
pl

Process:

External Processor

The Extermal Processor
returns
SubmitAcknowledgement
which contains the information
regarding the success of
order submission to the
External Processor.

Request Subsetted
Product

One per
product
request

Process:

OrderFulfillment Port

Process:

EcDmEwoc

Class:

EPDataAcessImpl

The EcDmEwoc places a
request at External Processor
for the granule to be
subsetted.

Return Submit
Acknowledgement

One per
product
request

Process:

OrderFulfillment Port

Class:

OrderFulfillmentProtBindingIm
pl

Process:

EcDmEwoc

Class:

OrderFulfillmentPortBindin
gImpl

The EWOC returns
SubmitAcknowledgement
which contains the information
regarding the success of
order submission from the
External Processor.

Return Status
Update
Acknowledgement

One per
status
update
request

Process:

OrderStatusUpdate Port

Class:

OrderServiceImpl

Process:

EcDmEwoc

Class:

OrderFulfillmentPortBindin
gImpl

The EWOC returns
UpdateStatus with information
regarding the success of
request status update

 4-71 305-EED-001, Rev. 02

Table 4.4-4. EWOC CSCI Process Interface Events (3 of 3)
Event Event

Frequency
Interface Initiated By Event Description

Login and logout One every
polling cycle

Process:

AuthenticationService

Class:

AuthenticationServicePortImpl

Process:

EcDmEwoc

Class:

CloseRequestHandlerImpl

The EWOC tries to login to
ECHO’s Authentication
Service and receive a security
token.

Return Submit
Acknowledgement

One per
product
request

Process:

OrderFulfillment Port

Class:

OrderFulfillmentProtBindingIm
pl

Process:

EcDmEwoc

Class:

OrderFulfillmentPortBindin
gImpl

The EWOC returns
SubmitAcknowledgement
which contains the information
regarding the success of
order submission from the
ECHO.

Close Provider
Order

One every
polling cycle

Process:

OrderProcessingService

Class:

OrderProcessingServicePortI
mpl

Process:

EcDmEwoc

Class:

CloseRequestHandlerImpl

The EWOC tries to update the
status of order at ECHO for
orders that are in terminal
states.

4.4.1.6 ECHO WSDL Order Component CSCI Data Stores

The EWOC CSCI calls OMS stored procedures to access OMS DB. The EWOC will have an
OMS database interface only; it will not have an interface with the MSS database. The creation
of MSS order and request objects will be handled through OMS stored procedure calls. Table
4.4-5 provides descriptions of the data stores shown in the EWOC CSCI architecture diagram.

Table 4.4-5. ECHO WSDL Order Component CSCI Data Stores
Data Store Type Functionality

OMS DB PostgreS
QL

OMS Database is designed to store the persistent information of user
request, processing mode configuration, media configuration, staging
policy configuration, Ftp Push policy configuration, request aging
configuration, and request cleanup configuration.

4.4.2 Data Management Subsystem Hardware

The primary components of the Data Management Subsystem include one hardware CI, Data
Management Hardware CI (DMGHW). The general-purpose workstations are standalone hosts
without fail-over capability. In the event of a host failure, any of the available workstations
could be used to support end user DAAC maintenance.

 4-72 305-EED-001, Rev. 02

4.4.2.1 Data Management Hardware CI (DMGHW) Description

The DMGHW CI includes Linux workstations. In the EBIS Document 920-TDx-001 (Hardware
Design Diagram) provides descriptions of the HWCI, and document 920-TDx-002 (Hardware-
Software Map) provides site-specific hardware/software mapping. These workstations are used
as end user workstations in maintenance of each of the respective DAAC sites.

 4-73 305-EED-001, Rev. 02

4.5 Order Manager Subsystem Overview

The Order Manager subsystem (OMS) manages all orders placed through ECHO via Reverb, the
Spatial Subscription Server, and the EPD Server (i.e., external subsetter request and S4PM).

Once a request comes into the OMS subsystem, the server validates the request. Upon successful
validation, the server stages the order in the Data Pool storage area. For Ftp Pull requests, links
are created from the FtpPull directory to the staged files in the Data Pool storage. For Ftp Push
requests, the Order Manager Server directly distributes the data. Upon successful shipment,
OMS sends a Distribution Notice to the end user. An order is considered shipped as soon as the
request status is updated to “Shipped”. For an FtpPull order, the request status is updated to
“Shipped” after the order is staged and file links are made in the Data Pool storage; for an
FtpPush order, request status is “Shipped” after the Order Manager Server finishes pushing all
the data associated with the order to its destination.

Special orders such as HEG and External Subsetter orders require further processing by the HEG
service or the External Subsetter. For HEG orders, the Order Manager creates HEG requests per
granule based on the processing instructions in the original HEG order. The HEG requests are
submitted to the HEG service through the DataAccess. The HEG service processes the HEG
requests and returns the final output to the Order Manager Server which then distributes the final
output to the end user. For External Subsetter Orders, the External Subsetter creates output
granules which are then associated with the Order by the EPD Server. These output granules are
later distributed by the Order Manager Server. The Order Manager Subsystem also includes a
database that stores all order information persistently as soon as an order is received by ECS and
before its receipt is acknowledged. This allows operators to resubmit an order if it encounters
errors downstream, and allows the Order Management Service to perform some up front checks
on the order and generate an operator intervention for the operator to handle the error conditions.

Order Manager Subsystem Context

Figure 4.5-1 is the Order Manager Subsystem context diagram. The diagram shows the events
sent to the Order Manager Subsystem and the events the Order Manager Subsystem sends to
other subsystems. Table 4.5-1 provides descriptions of the interface events shown in the Order
Manager Subsystem context diagram.

 4-74 305-EED-001, Rev. 02

Figure 4.5-1. Order Manager Subsystem Context Diagram

Table 4.5-1. Order Manager Subsystem Interface Events (1 of 2)
Event Interface Event Description

Insert Distribution
Requests

The OMS receives Distribution Requests from the Spatial Subscription Server
(SSS), the EPD Server (External Product Dispatcher), and DataAccess.

Insert Staging
Actions

The OMS submits DPL insert actions to the DPL Subsystem.

Suspend/Resume,
Cancel, Alter and
Retrieve Requests

The Operator suspends, resumes, cancels, alters and retrieves requests from
the OMS (OMS DB).

Suspend/Resume
Resources

The Operator suspends and resumes dispatching to all or selected resources.

 4-75 305-EED-001, Rev. 02

Table 4.5-1. Order Manager Subsystem Interface Events (2 of 2)
Event Interface Event Description

Send Email
Notification

The OMS sends email notification to the requesting user when a request is
altered, canceled or shipped or when a request enters operator intervention, or
when an alert or intervention is generated.

Submit HEG
Request

The OMS submits HEG requests to the HEG Service via DataAccess.

Order Manager Subsystem Structure

 The Order Manager Subsystem consists of two CSCIs: the OMSRV and the OM GUI
(described in the 609 document). The Order Manager Server (EcOmOrderManager) is a
software configuration item. The Order Manager Server receives product distribution
requests and submits them to the appropriate ECS component based upon the media type
specified for the request. The OMS server stages granules associated with a request in the
DPL storage area and then distributes the data via electronic media (i.e., Ftp Push, Ftp
Pull, SCP). For special orders such as HEG Orders, the Order Manager creates HEG
requests based on processing instructions and submits the HEG requests to the HEG
service. The output of a HEG request is distributed to the end user. Similar to HEG
Orders, output granules associated with an External Subsetter request are distributed to
the end user after being processed by the external subsetter. Order Manager Subsystem
information is stored persistently in a relational Database Management System (DBMS).
The Order Manager GUI (OMGUI) is used to monitor and control the operations of the
Order Manager Server. In addition, the OMGUI is used to respond to Operator
Intervention Requests generated by the Order Manager Server.

Use of COTS in the Order Manager Subsystem

 RogueWave’s Tools.h++

The Tools.h++ class libraries are used by the OMS to provide basic functions and objects
such as strings and collections. These libraries must be installed with the OMS software
for any of the OMS processes to run.

 PostgreSQL libpq

The PostgreSQL libpq provides access between OMS custom code and the PostgreSQL
Server DBMS.

 PostgreSQL Server

The PostgreSQL server provides access for OMS to insert, update and delete Distribution
Requests, OMS configurations, and Operator Interventions. The PostgreSQL Server
must be running during operations for the OMS to process Product Distribution Requests.

 4-76 305-EED-001, Rev. 02

4.5.1 Order Manager Subsystem Software Description

4.5.1.1 Order Manager Server CSCI Functional Overview

The Order Manager Server (OMSRV) CSCI executes as a process and interacts with the Order
Manager Database and the Data Pool System (DPL) Database. The Spatial Subscription Server
(SSS), EWOC, DataAccess, and the EPD Server submit distribution requests to the OMS. These
requests are all validated. Upon successful validation, the server stages the granules in a request
in the DPL storage area. Electronic Ftp push media requests are directly pushed to the end user.
Note that Order Manager Server dispatches HEG requests to the HEG service for processing
before being distributed to the end user. For invalid requests, an Operator Intervention is
generated. DAAC OPS personnel can use the Order Manager GUI to correct and resubmit the
request. In response to an intervention, the Operator can also generate an email message, which
is sent to the user by the Order Manager Server. The Order Manager Server also generates an
alert and sends an email to a pre-configured email address when it detects internal or external
resource failure. While a resource is suspended, the OMS Server halts dispatching of the requests
that are utilizing the suspended resource.

4.5.1.2 Order Manager Server CSCI Context

Figure 4.5-2 is the Order Manager Server CSCI context diagram. The diagram shows the events
sent to the Order Manager Server CSCI and the events the Order Manager Server CSCI sends to
other CSCIs. Table 4.5-2 provides descriptions of the interface events shown in the Order
Manager Server CSCI context diagrams.

 4-77 305-EED-001, Rev. 02

Figure 4.5-2. Order Manager Server CSCI Context Diagram

Table 4.5-2. Order Manager Server CSCI Interface Events (1 of 2)
Event Interface Event Description

Send Distribution
Notification

The OMSRV CSCI sends distribution notifications to the end-users.

Send
Intervention/Alert
Generation Email

The OMSRV CSCI sends intervention/alert generation email to the end-users.

Receive Email User receives a status email sent by the OMSRV CSCI when request is put into
Operator Intervention, is shipped or failed.

 4-78 305-EED-001, Rev. 02

Table 4.5-2. Order Manager Server CSCI Interface Events (2 of 2)
Event Interface Event Description

Insert Product
Distribution Request

The NBSRV CSCI, SCLI CSCI, and DMS CSCI insert product distribution
requests into the PostgreSQL Server (OMS) to be queued for processing
by the OMSRV CSCI.

Insert Media
Distribution Request

The DPL Web GUI inserts media distribution request into the PostgreSQL
Server (OMS).

Update Product
Distribution Request

The OMSRV CSCI updates product distribution requests in the PostgreSQL
Server (OMS).

Create Operator
Intervention

The OMSRV CSCI creates new Operator Intervention for request failures in
the PostgreSQL Server (OMS).

Create Alert The OMSRV CSCI creates an alert for resource failures and stores the alert
in the PostgreSQL Server (OMS).

Submit granule
staging request

The OMSRV CSCI submits a request to stage a granule to the PostgreSQL
Server (DPL storage in the OMS), which in turn calls DPL stored procedures
to insert an action into the DPL DB.

Fetch Distribution
Request

The OMSRV CSCI retrieves information associated with a product
distribution request from the PostgreSQL Server (OM).

Fetch Configuration
Info

The OMSRV CSCI retrieves the OMSRV Configuration information from the
PostgreSQL Server.

Fetch Email Info The OMSRV CSCI retrieves information related to an operator intervention
required to generate an email notification from the PostgreSQL Server.

Fetch actions of
Request changes

The OMSRV CSCI retrieves actions regarding request changes, such as,
request priority change, cancel request, suspend request, and update
request ftppush parameters from the PostgreSQL Server.

Fetch actions of
notification

The OMSRV CSCI retrieves actions regarding granule staged and DPL file
system modified notification from the PostgreSQL Server.

FtpPush Requests The OMSRV CSCI Ftp Pushes a request to the end-user.

Submit HEG
Request

The OMSRV CSCI submits HEG requests to the HEG Services for
processing.

Suspend/Resume,
Cancel, Alter and
Retrieve Request

The Operator suspends, resumes, cancels, alters and retrieves requests
from the PostgreSQL Server (OMS DB).

Suspend/Resume
Resources

The OMSRV CSCI suspends or resumes dispatching to all or selected
resources in the PostgreSQL Server.

Update, Insert,
Delete Record

The PostgreSQL Server performs update, insert, and delete database
operations to the DB and DB.

Retrieve Record The PostgreSQL Server performs retrieval database operations to/from the
DB and DB.

4.5.1.3 Order Manager Server CSCI Architecture

Figure 4.5-3 is the Order Manager Server (OMSRV) CSCI architecture diagram. The diagram
shows the events sent to the OMSRV CSCI processes and the events the OMSRV CSCI
processes send to other processes.

The OM Server CSCI consists of one process. This process is the EcOmOrderManager process.

 4-79 305-EED-001, Rev. 02

Figure 4.5-3. Order Manager Server CSCI Architecture Diagram

4.5.1.4 Order Manager Server CSCI Process Description

Table 4.5-3 provides descriptions of the processes shown in the OMSRV CSCI architecture
diagram.

Table 4.5-3. OMSRV CSCI Process
Process Type Hardware

CI
COTS/

Developed
Functionality

EcOmOrderManager Server OMSHW Developed The Order Manager Server prepares the request
data in the DPL storage for distribution. FTP Push
requests are directly pushed to the end user. Note
that HEG and external subsetter requests are first
dispatched to the HEG service or subsetter for
processing. The processed output is then
distributed to the end user. Order Manager Server
sends a Distribution Notification to the end-user on
completing an order.

 4-80 305-EED-001, Rev. 02

EMD Baseline Information System (EBIS) Document 920-TDx-001 (Hardware Design
Diagram) provides descriptions of the HWCI, and document 920-TDx-002 (Hardware-Software
Map) provides site-specific hardware/software mapping.

4.5.1.5 Order Manager Server CSCI Interface Description

Table 4.5-4 provides descriptions of the interface events shown in the Order Manager Server
(OMSRV) CSCI architecture diagram.

Table 4.5-4. Order Manager Server CSCI Process Interface Events (1 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Insert Product
Distribution
Request

One per
service
request

Process:

PostgreSQL
Server (COTS)

Process:

EWOC, EPD

Script:

EcNbActionDriver.pl

EWOC, EPD and
EcNbActionDriver.pl (SSS)
insert product distribution
request into OMS DB.

Submit Heg
Request

One or more
per Service
Request

Process:

DataAccess

Process:

EcOmOrderManager

Class:

OmSrDataAccessJob

The EcOmOrderManager
submits HEG requests to the
HEG service.

Send
acceptance
email

One per
email
notification
request

Process:

Sendmail

(COTS)

Process:

EcOmOrderManager

Class:

The EcOmOrderManager
sends email notification to the
DPL Web GUI end-users upon
receipt of the request.

Send
Intervention/
Alert Generation
email

One per
email
notification
request

Process:

Sendmail

(COTS)

Process:

EcOmOrderManager

Class:

The EcOmOrderManager
sends intervention/ alert
generation email to a
configured user email account.

Receive Email One per
email
notification

End User:

specified in
request

Process:

Sendmail (COTS)

The User receives email sent
by the EcOmOrderManager.

Send email
notification

One per
email
notification
request

Process:

Sendmail

(COTS)

Process:

EcOmOrderManager

Class:

OmSrEmailRequest

The EcOmOrderManager
sends email notifications to the
end-users.

 4-81 305-EED-001, Rev. 02

Table 4.5-4. Order Manager Server CSCI Process Interface Events (2 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Fetch
configuration
info

One per
startup

Process:

PostgreSQL
Server

(COTS)

Process:

EcOmOrderManager

Library:

PostgreSQL libpq

Class:

OmSrDbInterface

The EcOmOrderManager
retrieves configuration
information from the
PostgreSQL Server (OMS
database).

Fetch
Distribution
Request

One per
configurable
interval

Process:

PostgreSQL
Server

(COTS)

Process:

EcOmOrderManager

Library:

PostgreSQL libpq

Classes:

OmSrDbInterface,

OmSrDistributionRequest

The EcOmOrderManager
retrieves information
associated with a product
distribution request from the
database.

Fetch actions
of request
changes

One per
configurable
interval

Process:

PostgreSQL
Server

(COTS)

Process:

EcOmOrderManager

Library:

PostgreSQL libpq

Classes:

OmSrDbInterface,

OmSrDistributionRequest

The EcOmOrderManager
retrieves actions regarding
request changes, such as,
request priority change,
cancel request, suspend
request, and update request
Ftp Push parameters.

Fetch actions
of notification

One per
configurable
interval

Process:

PostgreSQL
Server

(COTS)

Process:

EcOmOrderManager

Library:

PostgreSQL libpq

Classes:

OmSrDbInterface,

OmSrDistributionRequest

The EcOmOrderManager
retrieves actions regarding
granule staged, and DPL file
system modified notification.

Fetch email
info

One per
configurable
interval

Process:

PostgreSQL
Server

(COTS)

Process:

EcOmOrderManager

Library:

PostgreSQL libpq

Classes:

OmSrDbInterface,

OmSrDistributionRequest,

OmSrEmailRequest

The EcOmOrderManager
retrieves information related to
an operator intervention
required to generate an email
notification from the
PostgreSQL Server (OMS).

 4-82 305-EED-001, Rev. 02

Table 4.5-4. Order Manager Server CSCI Process Interface Events (3 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Update
Product
Distribution
Request

One per
request

Process:

PostgreSQL
Server

(COTS)

Process:

EcOmOrderManager

Library:

PostgreSQL libpq

Classes:

OmSrDbInterface,

OmSrDistributionRequest

The EcOmOrderManager
updates existing product
distribution requests in the
PostgreSQL Server (OMS).

Create
Operator
Intervention

One per
request

Process:

PostgreSQL
Server

(COTS)

Process:

EcOmOrderManager

Library:

PostgreSQL libpq

Class:

OmSrDbInterface

The EcOmOrderManager
creates a new Operator
Intervention request in the
PostgreSQL Server (OMS).

Create Alert One per
resource

Process:

PostgreSQL Server

(COTS)

Process:

EcOmOrderManager

Library:

PostgreSQL libpq

Class:

OmSrDbInterface

The EcOmOrderManager
creates an alert related to a
resource failure such as Ftp
Push Destination, Archive,
and DPL File System failure to
store in the PostgreSQL
Server.

Insert Product
Distribution
Request

One per
service
request

Process:

PostgreSQL Server

(COTS)

Process:

EWOC

EPD

EcOmCLI

Script:

EcNbActionDriver.pl

Library:

OmClientlib

Classes:

OmSrDbInterface

EWOC, EPDm the
EcNbActionDriver, the
EcOmSCLI, and the DPL Web
Access GUI insert product
distribution requests into the
PostgreSQL Server (OMS).

Insert/Update/
Delete/Retriev
e Record

One per
request

Database:

OMS DB, DPL DB

(COTS)

Process:

PostgreSQL Server

(COTS)

The PostgreSQL server
performs database operations
(inserts, updates, deletions
and retrievals) to the OMS DB
and DPL DB

Ftppush
request

One per file Process:

Ftpd (COTS)

Process:

EcOmOrderManager

The EcOmOrderManager Ftp
Pushes request data to the
end-user.

Click on
Screen

One per click Scripts:

OMS GUI scripts.

Operator

The Operator clicks on the
screen to select the action.

 4-83 305-EED-001, Rev. 02

Table 4.5-4. Order Manager Server CSCI Process Interface Events (4 of 4)
Event Event

Frequency
Interface Initiated By Event Description

Suspend/
Resume,
Cancel, Alter
and Retrieve
Requests

One per
click

Process:

PostgreSQL
Server

(COTS)

Script:

OMS GUI script

The OMS GUI scripts send
suspend/resume, cancel, alter
and retrieve request
commands to the PostgreSQL
Server.

Suspend/
Resume
Resource

One per
click

Process:

PostgreSQL
Server

(COTS)

Script:

OMS GUI script

The OMS GUI scripts send
suspend/resume resource
commands to the PostgreSQL
Server.

4.5.1.6 Data Stores

There are data stores associated with the Order Manager Server. They are the OMS DB, DPL
DB. Table 4.5-5 provides a description of these data stores.

Table 4.5-5. CSCI Data Stores
Data Store Type Description

OMS PostgreS
QL

The ECS database is designed to store the persistent information
of user request, processing mode configuration, media
configuration, staging policy configuration, Ftp Push policy
configuration, request aging configuration, and request cleanup
configuration.

AIM PostgreS
QL

The ECS database implements the large majority of the
persistent data requirements for the DPL subsystem which
supports Large online cache of the majority of ECS data at each
DAAC and avoids tape access to ECS archive.

 4-84 305-EED-001, Rev. 02

4.6 Communications Subsystem Overview

The Communications Subsystem (CSS) provides the capability to:

 Transfer information internal to the Earth Observing System Data and Information
System (EOSDIS) Evolution and Development (EED)

 Transfer information between the EED sites

 Provide connections between the ECS users and service providers

 Manage the ECS communications functions

Communications Subsystem Context Diagram

Table 4.6-1 provides descriptions of the interface events shown in the CSS context diagrams.
NOTE: In Table 4.6-1 Request Communications Support is shown as a single event to simplify
the table and provide a list of services available from CSS to the other CSMS subsystems.

Table 4.6-1. Communications Subsystem (CSS) Interface Events
Event Interface Event Description

Request
Communications
Support (RCS)

The CSS provides a library of services available to each CSMS subsystem.
The subsystem services required to perform specific assignments are
requested from the CSS. These services include:
 CCS Middleware Support
 Database Connection Services
 Fault Handling Services
 Mode Information

Export Location
Information

The OMS, DMS send physical and logical server location information to the
CSS for data location.

Communications Subsystem Structure

Note: The CSS logical names used in this document do not exactly match the physical
names in the directory structure where the software is maintained. Therefore, after the
logical name of each Computer Software Component (CSC) in parentheses, there is a
physical directory structure name where the software is found. For example, the DCCI
CSCI software can be found under the directory structure Distributed Object Framework
(DOF) and the Server Request Framework software can be found under the directory
structure /ecs/formal/common/CSCI_SRF.

The CSS is composed of one CSCI, the Distributed Computing Configuration Item (DCCI, the
software is found in directory DOF) and one HWCI. The CSS software is used to provide
communication functions, processing capability, and storage.

 4-85 305-EED-001, Rev. 02

Use of COTS in the Communications Subsystem

Note: The following RogueWave Libraries are currently delivered with custom code as
static libraries. A separate installation of dynamic libraries is no longer required.

 RogueWave’s Tools.h++

The Tools.h++ class libraries provide basic functions and objects such as strings and
collections.

 RogueWave’s DBTools.h++

The DBTools.h++ C++ class libraries provide interaction, in an object-oriented manner,
to the Sybase ASE database SQL server. The DBTools provide a buffer between the CSS
processes and the relational database used.

 RogueWave’s Net.h++

The Net.h++ C++ class libraries, which provide functions and templates that facilitate
writing applications, which communicate with other applications.

Other COTS products include:

 PostgreSQL RDBMS

The PostgreSQL RDBMS provides persistent data storage for most EOSDIS components.

 CCS Middleware

CSS middleware is no longer actively used by the servers but is built in to the binaries.
Instead, the servers use direct host/port sockets to communicate with other servers.

 UNIX Network Services

UNIX Network Services contain DNS, NFS, E-mail service, FTP, and TCP/IP
capabilities.

Error Handling and processing

EcUtStatus is a class used throughout the ECS custom code for general error reporting. It is
almost always used as a return value for functions and allows detailed error codes to be passed
back up function stacks.

When an error occurs, the error is logged into the applications log (ALOG). The
Communications Subsystem (CSS) and System Management Subsystem (MSS) have two main
mechanisms to handle the error:

1. Return an error status

2. Throw an exception.

 4-86 305-EED-001, Rev. 02

The CSS uses the following classes for error handling and processing:

The EcUtStatus class is used to describe the operational status of many functions. The values
most often reported are "failed" and "ok." But depending upon the application, detailed values
could be set and sent. Please refer to the definition of this class (located in
/ecs/formal/COMMON/CSCI_Util/src/Logging/EcUtStatus.h) for all possible values.

The RWCString is used to store some status value returned by applications.

Integer is used to return some error status by applications. This is used specifically between
client and server communications.

4.6.1 The Distributed Computing Configuration Item Software Description

The DCCI CSCI (the software is found in directory DOF) consists mainly of COTS software and
hardware providing servers, gateways, and software library services to other CSMS CSCIs. The
CSCI is composed of 17 computer software components (CSCs) briefly described here followed
by a description of the HWCI.

The CSCI is composed of 17 computer software components (CSCs) briefly described here as
processes followed by a description of the HWCI.

The remote file access group provides the capability to transfer and manage files using the
following five functions: FTP, FTP Notification, Bulk Data Server (BDS), Network File System
(NFS), and Filecopy.

1. The NFS (no physical directory) provides a distributed file sharing system among
computers. NFS consists of a number of components, including a mounting protocol and
server, a file locking protocol and server, and daemons that coordinate basic file service.
A server exports (or shares) a filesystem when it makes the filesystem available for use
by other machines in the network. An NFS client must explicitly mount a filesystem
before using it.

2. The Filecopy utility (the software is found in directory
/ecs/formal/common/CSCI_Util/src/CopyProg) copies files from a specified source
location to a specified destination location with options available for data compression.
The DPL CSCI uses the Filecopy utility to transfer large files.

3. Virtual Terminal (no physical directory) provides the capability for the Operations staff
on an ECS platform to remotely log onto another ECS machine.

4. Cryptographic Management Interface (CMI, the software is found in directory
/ecs/formal/CSS/DOF/src/AUTHN) provides processes a means for obtaining random
passwords and gaining access to Sybase.

6. The Infrastructure Library provides a set of services including the following.

 Process Framework (PF) (the software is located in directory
/ecs/formal/CSS/DOF/src/PF/pf): The PF is a software library of services, which
provides a flexible mechanism (encapsulation) for the ECS Client and Server

 4-87 305-EED-001, Rev. 02

applications to transparently include specific ECS infrastructure features from the
library of services. (Library services include: process configuration and initialization,
mode management and event handling, life cycle services (server start-up and shut-
down), and set-up of security parameters.) The PF process is the encapsulation of an
object with ECS infrastructure features and therefore the encapsulated object is fully
equipped with the attributes needed to perform the activities assigned to it. The PF
was developed for the ECS custom developed applications and is not meant for use
by any COTS software applications. The PF ensures design and implementation
consistency between the ECS Client and Server applications through encapsulation of
the implementation details of the ECS infrastructure services. Encapsulation therefore
removes, for example, the task of each programmer repeatedly writing common
initialization code. The PF is built by first developing a process classification for the
EED project from the client/server perspective. Then the required capabilities are
allocated for each respective process level and type. PF-based ECS applications use
Process Framework to read in their configuration information at startup. PF-based
servers use Process Framework to initialize themselves as a CCS Middleware server
and put it in a listen state to begin to accept requests from appropriate clients.

 Universal References (the software is found in directory /ecs/formal/
COMMON/CSCI_UR/src/UR/framework): Universal References (URs) provide
applications and users a system wide mechanism for referencing ECS data and
service objects. Manipulating logical entities represented at run time as C++ objects
in virtual memory performs ECS functions. Users and applications require references
to the logical entities beyond the effective computational time to keep the objects in
memory. Therefore, applications and users are given URs to these objects. Once an
UR is made for an object, the object can be disposed of and later reconstituted from
the UR. URs take up a small fraction of the space to keep in memory and can be
externalized into an ASCII string, which an end user can manage. URs have the
capability of re-accessing and/or reconstituting the object into memory as needed.
Therefore, the object does not have to remain in memory, and can if appropriate, be
written to a secondary storage system, like a database. While the UR mechanism
guarantees reliable data externalization and internalization, the content of each type
of UR is application specific. Only the object (this is referred to as the "UR
Provider") that initially provides the UR is allowed to access and understand its
content. URs are strongly typed to enforce appropriate access control to internal data
both at compile time and during run time. Since URs are typed and have object
specific data in them, separate UR object classes exist for each UR Provider class
referred to. All of these UR classes use the mechanisms provided by the UR
framework.

 Event Logging (the software is found in directoryLOGGING): Event logging is the
capability of recording events into files and provides a convenient way to generate
and report detailed events. All ECS CSCIs use event and error logging as an audit
trail for all transactions that occur during the ECS data processing and distributing.

 4-88 305-EED-001, Rev. 02

 CSS software is executed on multiple hardware hosts throughout the ECS system to
provide communication functions, processing capability, and storage. The software
and hardware relationships are discussed in the CSS Hardware CI description.

4.6.1.1 CCS Middleware Support Group Description

CSS middleware is no longer actively used by the servers but is built in to the binaries. Instead,
the servers use direct host/port sockets to communicate with other servers

4.6.1.2 Virtual Terminal Description

4.6.1.2.1 Virtual Terminal Functional Overview

The Virtual Terminal (VT) effectively hides the terminal characteristics and data handling
conventions from both the server host and Operations staff, and enables the Operations staff to
remotely log on to other ECS machines. The CSS provides the secure shell server (sshd2) on
available systems and common capability support for the ECS remote terminal service.

4.6.1.2.2 Virtual Terminal Context

The CSS provides the secure shell (sshd2) remote access to the ECS systems. SSH is distributed
as a third party remote server access service. The SSH service provides users with access to the
ECS character-based user interface (CHUI) search and order tool. Figure 4.6-1 is the Virtual
Terminal context diagram and Table 4.6-2 provides the descriptions of the interface events
shown in the Virtual Terminal context diagram.

Terminal Session Requests

Terminal Session Replies

Terminal Session Requests

ECS Users

ECS Character–based
User Interface (CHUI)
search and order tool
(Web Access; SSH)

Secure
Shell

Server
(SSH)

Terminal Session Replies

Figure 4.6-1. Virtual Terminal Context Diagram

 4-89 305-EED-001, Rev. 02

Table 4.6-2. Virtual Terminal Interface Events
Event Interface Event Description

Terminal Session Requests

(Web access)

ECS users request a connection to a specified host via SSH.

Terminal Session Requests

(ECS Users)

ECS users request a telnet session with a specified ECS host.

Terminal Session Replies
(from SSH to ECS or other
remote users)

The SSH Server residing on the ECS host responds to the terminal
session requests and interacts via the successful connection.

4.6.1.2.3 Virtual Terminal Architecture

Figure 4.6-2 is the Virtual Terminal architecture diagram. The diagram shows the event traffic
between the Remote Terminal Session with ECS Users and SSH with remote users.

SSH Internet
Service

SSH Session Request

Terminal Session Request

SSH

(Remote Users)

Terminal
Session
Replies

SSH Session Replies Terminal
Session
Request

Terminal Session Replies

sshd2
SSH

(ECS Users)

Figure 4.6-2. Virtual Terminal Architecture Diagram

4.6.1.2.4 Virtual Terminal Process Descriptions

Table 4.6-3 provides the descriptions of the processes shown in the Virtual terminal architecture
diagram.

 4-90 305-EED-001, Rev. 02

Table 4.6-3. Virtual Terminal Processes
Process Type Hardware

CI
COTS/

Developed
Functionality

SSH

(Remote Users)

Client CSSHW COTS Provides the dial-up terminal session
as requested on the client-side via
remote service.

SSH

(ECS Users)

Client CSSHW COTS Provides the user interface to a
remote system using the SSH
protocol.

(Internet Service) Server/Client CSSHW COTS Enables users to interact with the
host through a remote service.

sshd2 Server CSSHW COTS Function provides servers
supporting SSH with virtual terminal
protocol.

EBIS Document 920-TDx-001 (Hardware Design Diagram) provides descriptions of the HWCI,
and document 920-TDx-002 (Hardware-Software Map) provides site-specific hardware/software
mapping.

4.6.1.2.5 Virtual Terminal Process Interface Descriptions

Table 4.6-4 provides the descriptions of the interface events shown in the Virtual Terminal
architecture diagram.

Table 4.6-4. Virtual Terminal Process Interface Events
Event Event

Frequency
Interface Initiated by Event Description

SSHSessi
on
Request

One per
connection
request

Process:

sshd2 (dial-up
service)

Process:

SSH (COTS –
remote users)

Any ECS user requiring a logon to another
machine from the current machine. Users
request to establish connection to a
specified host via SSH.

SSH
Session
Replies

One per
session
reply

Process:

SSH (remote
service)

Process:

sshd2 (remote
service)

The SSH Server service provides users a
remote session to request a terminal
session to the secure shell client.

Terminal
Session
Request
(SSH)

One per
request to
establish a
session

Process:

sshd2

Process:

sshd2 (remote
service)

Either the user or the client application
service requests to establish a session
with the specified host.

Terminal
Session
Replies
(SSH)

One per
connection
request

Process:

SSH (ECS users)

Process:

sshd2

The Host Virtual Terminal Process, sshd2,
responds to the connection requests and
establishes or maintains the sessions.

 4-91 305-EED-001, Rev. 02

4.6.1.2.6 Virtual Terminal Data Stores

Data stores are not applicable for the Virtual Terminal.

4.6.1.3 Cryptographic Management Interface Software Description

4.6.1.3.1 Cryptographic Management Interface Functional Overview

The Cryptographic Management Interface (CMI) classes provide the requesting process with a
server account and a randomly generated password so the server can access security required
services (i.e., Sybase ASE). These passwords (and optionally login names) are generated
dynamically based on a psuedo-random number used as the seed for the password.

4.6.1.3.2 Cryptographic Management Interface Context

Figure 4.6-3 is the Cryptographic Management Interface context diagram. Servers (PF or non-
PF) use the CMI with a need for access to security required services. Table 4.6-5 provides
descriptions of the interface events shown in the Cryptographic Management Interface context
diagram.

EcCMIFile.cmi

Text and special
characters

CMI
Password Seed

Server Account and
random password

EMD Applications

Figure 4.6-3. Cryptographic Management Interface Context Diagram

Table 4.6-5. Cryptographic Management Interface Events
Event Interface Event Description

Password seed The ECS applications request an account and provide a
password seed to CMI.

Server account and random
password

Account with random passwords created for the server is passed
back to the server.

Text and special characters Text and special characters read from a file for password
generation.

 4-92 305-EED-001, Rev. 02

4.6.1.3.3 Cryptographic Management Interface Architecture

Figure 4.6-4 is the Cryptographic Management Interface (CMI) architecture diagram. The
diagram shows the event traffic between the CMI process and the ECS applications that interact
with CMI for database connections.

EcCMIFile.cmi

Text and special
characters

CMI
Password Seed

Server Account and
random password

EMD Applications

Figure 4.6-4. Cryptographic Management Interface Architecture Diagram

4.6.1.3.4 Cryptographic Management Interface Process Descriptions

Table 4.6-6 provides descriptions of the processes shown in the Cryptographic Management
Interface context diagram.

Table 4.6-6. Cryptographic Management Interface Processes
Process Type Hardware

CI
COTS/

Developed
Functionality

ECS
Process
Names

Server CSSHW Developed Requests account with random password for
access to security required services.

CMI Other CSSHW Developed A server account and randomly generated
password are returned to the requesting server.

EBIS Document 920-TDx-001 (Hardware Design Diagram) provides descriptions of the HWCI,
and document 920-TDx-002 (Hardware-Software Map) provides site-specific hardware/software
mapping.

 4-93 305-EED-001, Rev. 02

4.6.1.3.5 Cryptographic Management Interface Process Interface Descriptions

Table 4.6-7 provides the descriptions of the interface events shown in the Cryptographic
Management Interface architecture diagram.

Table 4.6-7. Cryptographic Management Interface Process Interface Events
Event Event

Frequency
Interface Initiated by Event Description

Password
seed

One per
password
seed

Process:

CMI

Library:

EcSeCmi

Class:

EcSeCmi

DCCI Process:

EcCsRegistry

The server provides a
unique number as a seed
for generating a password
to the ECS Applications.

Server
Account
and
random
password

One per
account
and
password

DCCI Process:

EcCsRegistry

Process:

CMI

Library:

EcSeCmi

Class:

EcSeCmi

CMI generates a random
password for the account
based on the seed.

4.6.1.3.6 Cryptographic Management Interface Data Stores

Table 4.6-8 provides descriptions of the data store shown in the Cryptographic Management
Interface architecture diagram.

Table 4.6-8. Cryptographic Management Interface Data Stores
Data Store Type Functionality

EcCMIFile.cmi File This is a flat file of textual and special characters used by the CMI
password generation algorithm to create passwords.

4.6.1.4 Domain Name Server Software Description

4.6.1.4.1 Domain Name Server Functional Overview

Domain Name Server (DNS) performs name-to-address and address-to-name resolution between
hosts within the local administrative domain and across domain boundaries. DNS is COTS
software implemented as server by running a daemon called “in.named.” Servers running the
in.named daemon are referred to as name servers.

The server is implemented through a resolver instead of a daemon from the client side. The
function of in.named is to resolve user queries for device names or addresses (DNS requires the
address of at least one name server to be in the file /etc/resolv.conf). The name server, when

 4-94 305-EED-001, Rev. 02

queried for a name or an address, returns the answer to the query or a referral to another name
server to query for the answers.

Each domain uses at least two kinds of DNS servers (primary and secondary) to maintain the
name and address data corresponding to the domain. The primary server keeps the master copy
of the data when it starts up in the “in.named,” daemon and delegates authority to other servers
both inside and outside of its domain. A secondary server maintains a copy of the name and
address data for the domain. When secondary server boots in.named, it requests the data for a
given domain from the primary server. The secondary server then checks with the primary server
periodically and requests updates to the daemon data so the secondary server is kept up to date
with the primary.

DNS namespace is hierarchically organized, with nested domains, like directories. The DNS
namespace consists of a tree of domains. Figure 4.6-5 is an Internet domain hierarchy diagram.
The top-level domains are edu, arpa, com, gov, net, and for simplicity, not showing org, mil, and
int, at the root level. The second level domain is nasa for gov. The third level domain is ecs for
the EED project for nasa.gov.

edu arpa com gov net

the root level

top level domains

ibm hitc nasa second level domains

enterprise ecs third level domains
and individual hosts

dss2

Figure 4.6-5. Domains Hierarchy Diagram

The fourth level domains in the EED project include domains of DAACs: gsfcb, gsfcmo, and etc.
Figure 4.6-6 is the hierarchy diagram of the fourth level domains in the EED project. The DAAC
and M&O domains are part of the overall DNS. The top-level domain is ecs.nasa.gov and the
two lower level domains for the DAACs, for example, gsfcb.ecs.nasa.gov and
gsfcmo.ecs.nasa.gov for the GSFC DAAC. The former is for the production network and the
latter are for the GSFC M&O network.

 4-95 305-EED-001, Rev. 02

ecs

gsfcb gsfcmo larcb larcmo edcb edcmo nsidcb nsidcmo vatc

nasa

gov

.

The fourth level domains in the ECS project

Figure 4.6-6. DNS Domains of the EED Project Diagram

Figure 4.6-7 is the ECS topology domain diagram.

EDC

ecs.nasa.gov

VATC

ecs.nasa.gov

DAAC User

VATC

vatc.ecs.nasa.gov

LaRC

larcb.ecs.nasa.gov

edcmo.ecs.nasa.gov

edcb.ecs.nasa.gov

NSIDC

nsidcb.ecs.nasa.gov

nsidcmo.ecs.nasa.gov

larcmo.ecs.nasa.gov

Figure 4.6-7. ECS Topology Domains Diagram

4.6.1.4.2 Domain Name Server Context

Figure 4.6-8 is the Domain Name Server context diagram.

 4-96 305-EED-001, Rev. 02

Domain
Name
Server
User

Domain Name

Request
Name

Request

 Resolver
 (COTS)

/etc/resolv.conf

Device
Address

Name server name

Device names,
Device addresses

Figure 4.6-8. Domain Name Server Context Diagram

4.6.1.4.3 Domain Name Server Architecture

The Domain Name Server architecture diagram is the same as the context diagram and is not
duplicated here. When the DNS client has a request for data, it searches the servers listed in the
/etc/resolv.conf file in the order the servers were added to the file. When the first server does not
contain the information of interest for the client, the second server in the list is searched and the
search continues until the information is found.

4.6.1.4.4 Domain Name Server Process Descriptions

Table 4.6-9 provides descriptions of the Domain Name Server processes shown in the Domain
Name Server context diagram.

Table 4.6-9. Domain Name Server Process
Process Type Hardware

CI
COTS/

Developed
Functionality

resolver Client CSSHW COTS Searches data store of device names
and device addresses for information
requested in the Domain Name Request.
First entry in the file /etc/resolv.conf is
used as the place to start searching.

EBIS Document 920-TDx-001 (Hardware Design Diagram) provides descriptions of the HWCI,
and document 920-TDx-002 (Hardware-Software Map) provides site-specific hardware/software
mapping.

4.6.1.4.5 Domain Name Server Process Interface Descriptions

Table 4.6-10 provides descriptions of the interface events shown in the Domain Name Server
architecture diagram.

 4-97 305-EED-001, Rev. 02

Table 4.6-10. Domain Name Server Process Interface Events
Event Event

Frequency
Interface Initiated by Event Description

Request
Domain
Name

One per
user
request

COTS Software:
resolver

User A DNS user requests data.

Name
server
name

One per
search
directory
change

Data Store COTS Software:
resolver

The resolver retrieves the pathname for
the directory to search for the user
requested data from the /etc/resolv.conf
database table. New file names are added
to the list in the order they are stored.

Device
Address

One per
resolved
address

COTS Software:
resolver

COTS Software:
name server

Returns the resolved address to the
domain name requester via the Resolver.

Request
Name

One per
domain
name
request

COTS Software:
name server

COTS Software:
resolver

The resolver retrieves the domain name
(device name and address) for the name
server from an internal file used by the
COTS software.

4.6.1.4.6 Domain Name Server Data Stores

Table 4.6-11 provides descriptions of the data store shown in the Domain Name Server
architecture diagram.

Table 4.6-11. Domain Name Server Data Stores
Data Store Type Functionality

/etc/resolv.conf Other Stores the primary and secondary server names.

4.6.1.5 Infrastructure Libraries Group Description

4.6.1.5.1 Infrastructure Libraries Group Functional Overview

The Infrastructure Library Group (ILG) is a library of reusable software frameworks and
infrastructures used by ECS servers configured as a distributed client-server system.
Table 4.6-12 provides descriptions of the infrastructures in the ILG.

Table 4.6-12. Infrastructure Libraries (1 of 2)
Library Description

Process Framework (PF) The PF is a software library of services, which provides a flexible
mechanism (encapsulation) for the ECS client and server applications to
transparently include specific ECS infrastructure features from the library
of services, such as mode management, error and event logging, life-cycle
services, and the CCS Middleware Naming Service.

 4-98 305-EED-001, Rev. 02

Table 4.6-12. Infrastructure Libraries (2 of 2)
Library Description

Server Request
Framework (SRF)

The SRF infrastructure provides the standard for ECS synchronous and
asynchronous communications between ECS applications. SRF is used to
provide the client-server communications between the DPL INGEST
Request Manager and Granule Server. SRF provides enhanced CCS
Middleware call message passing and persistent storage as a CSS
support capability with the described features available by subsystem
request.

Universal References (UR) A Universal Reference provider object from C++ objects generates UR
during their run time in virtual memory. The UR is a representation of the
original object. URs can be transformed from an object to an ASCII
representation and again returned to an object. URs are objects the users
and applications use with full capabilities. Once the UR is obtained, the
original object can be discarded and later reconstituted and used. URs can
refer to objects local or remote to an address space. Therefore, the object
does not have to remain in memory, and can, as appropriate, be written to
a secondary storage system like a database.

Error/Event Logging Event/Error logging is the capability of recording events into files and
provides a convenient way to generate and report detailed events. All ECS
CSCIs use event and error logging as an audit trail for all transactions
(requests for data or services) that occur during the ECS data processing
and distributing.

Message Passing (MP) Message Passing provides peer-to-peer asynchronous communications
service, which notifies clients of specific event triggers. This service is
provided upon subsystem request by the CSS. It is an alternative means
of communication.

ServerUR Provides unique identification (universal reference) for data and service
objects in the ECS. The Server Locator is a class that enables servers to
register their location without referring to its physical location and be
uniquely identified and located in the ECS. Client applications use the
Server Locator to find any registered server. The Server Locator is used in
ECS in any client-server CCS Middleware-based communication.

Fault Handling (FH) The Failure Recovery Framework provides a general-purpose fault
recovery routine enabling client applications to reconnect with servers
after the initial connection is lost. This is accomplished through the CCS
Naming Service, through which the Failure Recovery Framework can
determine whether a server is listening. The Failure Recovery
Framework provides a default and configurable amount of retries and
duration between retries. This fault recovery takes effect for each attempt
by the client to communicate with the server for all applications that
employ the Failure Recovery Framework.

DBWrapper directory The DBWrapper directory is the DBMS Interface Infrastructure Library
used by ECS applications to connect to the Sybase ASEs. Sybase ASEs
operate by ECS defined guidelines for mode management, thread safety,
error handling, error recovery, security, configuration management, and
performance of database connections.

 4-99 305-EED-001, Rev. 02

4.6.1.5.2 Infrastructure Libraries Group Context

A context diagram is not applicable to the Infrastructure Libraries Group.

4.6.1.5.3 Infrastructure Libraries Group Architecture

An architecture diagram is not applicable to the Infrastructure Libraries Group.

4.6.1.5.4 Infrastructure Libraries Group Process Descriptions

Descriptions of the individual processes in the Infrastructure Libraries Group are not applicable.

4.6.1.5.5 Infrastructure Libraries Group Interface Descriptions

Table 4.6-13 provides descriptions of the interfaces the Infrastructure Libraries Group.

Table 4.6-13. Infrastructure Libraries Group Interfaces (1 of 3)
Library Interface Initiated by Library Description

Process
Framework (PF)

Library:

EcPf

Classes:

EcPfManagedServer,
EcPfClient

EcCsRegistry,

DPL Servers

OMS

The PF is a software library of
services, which provides a flexible
mechanism (encapsulation) for the
ECS client and server applications
to transparently include specific
ECS infrastructure features from
the library of services. Features
and services include:

 Mode management

 Error and event logging

 Life-cycle services

 CCS Naming Service

 4-100 305-EED-001, Rev. 02

Table 4.6-13. Infrastructure Libraries Group Interfaces (2 of 3)
Library Interface Initiated by Library Description

Universal
References
(UR)

Library (Common):

EcUr

Object Origination A Universal Reference provider
object from C++ objects generates
UR during their run time in virtual
memory. The UR is a
representation of the original
object. URs can be transformed
from an object to an ASCII
representation and again returned
to an object. URs are objects the
users and applications use with
full capabilities. Once the UR is
obtained, the original object can
be discarded and later
reconstituted and used. URs can
refer to objects local or remote to
an address space. Therefore, the
object does not have to remain in
memory, and can, as appropriate,
be written to a secondary storage
system like a database.

Error/Event
Logging

Library:

event

Class:

EcLgErrorMsg

DPL Servers

OMS

Event/Error logging is the
capability of recording events into
files and provides a convenient
way to generate and report
detailed events. All ECS CSCIs
use event and error logging as an
audit trail for all transactions
(requests for data or services) that
occur during the ECS data
processing and distributing.

ServerUR Library (Common):

EcUr

Class:

EcUrServerUR

Processes:

EcOmOrderManager

DPL Servers

Classes:

EcNsServiceLoc

DSS Libraries:

DsBt,

DsDe1,

DsGe

Provides unique identification
(universal reference) for data and
service objects in the ECS. The
Server Locator is a class that
enables servers to register their
location without referring to its
physical location and be uniquely
identified and located in the ECS.
Client applications use the Server
Locator to find any registered
server. The Server Locator is used
in ECS in any client-server CCS
Middleware-based
communication.

 4-101 305-EED-001, Rev. 02

Table 4.6-13. Infrastructure Libraries Group Interfaces (3 of 3)
Library Interface Initiated by Library Description

Fault Handling
(FH)

Library:

EcFh

Class:

EcFhExecutor

EcOmOrderManager

DPL Servers

The Failure Recovery Framework
provides a general-purpose fault
recovery routine enabling client
applications to reconnect with
servers after the initial connection
is lost. This is accomplished
through the CCS Naming Service,
through which the Failure
Recovery Framework can
determine whether a server is
listening. The Failure Recovery
Framework provides a default and
configurable amount of retries and
duration between retries. This
fault recovery takes effect for each
attempt by the client to
communicate with the server for
all applications that employ the
Failure Recovery Framework.

4.6.1.5.6 Infrastructure Library Group Data Stores

Data Stores are not applicable for the Infrastructure Library Group.

4.6.2 The Distributed Computing Configuration Item Context

Figure 4.6-9 is the Distributed Computing Configuration Item (DCCI) CSCI context diagrams.
The diagrams show the events sent to the DCCI CSCI and the events the DCCI CSCI sends to
other CSCIs. Table 4.6-14 provides descriptions of the interface events shown in the DCCI CSCI
context diagrams.

 4-102 305-EED-001, Rev. 02

DCCI CSCI

DPL INGEST

RCS - Query Registry,

Export Location Information,

Filesystem Request

Return Configuration
Parameters,
Import Location Information

OMS
Export Location
Information

Note:
RCS = Request Communications Support.

Figure 4.6-9. Distributed Computing Configuration Item (DCCI) CSCI
Context Diagram

Table 4.6-14. Distributed Computing Configuration Item (DCCI) CSCI Interface
Events (1 of 2)

Event Interface Event Description

Filesystem Request The NFS clients request ECS files or directories via an established mount point.
The NFS Server makes the storage device(s) and its data accessible for use by
the clients.

Submit Subscription The DPL CSCI submits a subscription request to the DCCI CSCI using the
advertisement subscribing to an insert event for an ESDT.

Password Seed The DPL CSCI requests an account and provides a password seed to the CMI.

Notify of Subscription The DCCI CSCI sends notification (via message passing) to the DPL CSCI
when the subscribed event occurs.

Server Account and
random password

An account with random passwords, created for the server, is passed back to
the server in the DPL CSCI from the DCCI CSCI.

Password Seed The DPL CSCI requests an account and provides a password seed to the CMI.

Server Account and
random password

An account with random passwords, created for the server, is passed back to
the server in the DPL CSCI from the DCCI CSCI.

 4-103 305-EED-001, Rev. 02

Table 4.6-14. Distributed Computing Configuration Item (DCCI) CSCI Interface
Events (2 of 2)

Event Interface Event Description

Request
Communications
Support

The DCCI CSCI provides a library of services available to the DPL INGEST
CSCI. The CSCI services required to perform specific assignments are
requested from the DCCI CSCI. These services include:
 Database Connection Services
 File Transfer Services
 Network & Distributed File Services
 Bulk Data Transfer Services
 File Copying Services
 Name/Address Services
 Password Services
 Server Request Framework (SRF)
 Universal Reference (UR)
 Error/Event Logging
 Message Passing
 Fault Handling Services
 Mode Information

4.6.3 Distributed Computing Configuration Item Architecture

An architecture diagram is not applicable for the DCCI CSCI. However, Table 4.6-15 shows the
mapping between CSMS CSCIs and CSS CSCs.

Table 4.6-15. CSMS CSCI to CSS CSC Mappings
CSMS CSCI CSS CSC Process Used CSS Libraries Used

DPL INGEST E-Mail Parser
Gateway Server

 FTP

 NFS

 EcCsEmailParser

 ftp_popen

 NFS Client

 PF

 ServerUR

 Error Logging

 Event Logging

 UR

 Fault Handling Services

 Server Request
Framework (SRF)

4.6.4 Distributed Computing Configuration Item Process Descriptions

Process descriptions are not applicable for the DCCI CSCI.

4.6.5 Distributed Computing Configuration Item Process Interface Descriptions

Process interface descriptions are not applicable for the DCCI CSCI.

 4-104 305-EED-001, Rev. 02

4.6.6 Distributed Computing Configuration Item Data Stores

Data stores are not applicable for the DCCI CSCI.

4.6.7 Communications Subsystem Hardware CI Description

Document 920-TDx-001 (HW Design Diagram) provides descriptions of the Distributed
Computing Configuration HWCI and document 920-TDx-002 (Hardware-Software Map)
provides site-specific hardware/software mapping.

Three DCCI software programs run on this host including the Domain Name Server (DNS),
Network Information Services (NIS), and Mail Server. DNS enables host names to be
distinguished based on their host name and IP address relationship. NIS is a service that stores
information that users, workstations, and applications must have to communicate across the
network. This information includes machine addresses, user names, passwords, and network
access permissions. The Mail Server provides standard electronic mail capability.

The CSS Server is a stand-alone host and intrinsically does not have fail-over capability. DNS
and Distributed Time Service (DTS) are loaded on multiple hosts designated as secondary. Any
one of these hosts can operate as primary servers for the DNS or DTS services in the event of
non-recoverable hardware failure of the primary host.

 4-105 305-EED-001, Rev. 02

4.7 Internetworking Subsystem (ISS) Overview

The Internetworking Subsystem (ISS) contains one hardware configuration item (HWCI), the
Internetworking HWCI. INCI provides internetworking services based on protocols and
standards corresponding to the lower four layers of the OSI reference model as described below.

Transport Protocols

EED provides IP-based connection-oriented and connectionless transport services. The
connection-oriented service is implemented using TCP, while User Datagram Protocol (UDP) is
used for connectionless transport. Higher layer applications use one or the other based on such
requirements as performance and reliability.

Transmission Control Protocol (TCP), specified in RFC 793, is a connection-oriented,
end-to-end reliable protocol designed to fit into a layered hierarchy of protocols to support
multi-network applications. It provides for reliable inter-process communication between pairs
of processes in host computers attached to networks within and outside EED. Because TCP
assumes it may obtain potentially unreliable datagram service from the lower level protocols, it
involves additional overhead due to the implementation of re-transmission and acknowledgment
processes.

The UDP, specified in RFC 768, provides a procedure for application programs to send messages
to other programs with minimal overhead. The protocol is transaction oriented and delivery of
data is not guaranteed, since there is no acknowledgment process or re-transmission mechanism.
Therefore, applications requiring ordered and reliable delivery of data would use TCP.

Network Layer Protocols

The network layer provides the functional and procedural means to transparently exchange
network data units between transport entities over network connections, both for
connection-mode and connectionless-mode communications. It relieves the transport layer from
concern of all routing and relay operations associated with network connections.

The Internet protocol (IP) Version 4, specified in RFC 791, is the EED supported network
protocol, based on its dominance in industry usage and wide community support. As part of IP
support, ICMP and ARP are also supported.

Physical/Datalink Protocols

Physical and data-link protocols describe the procedural and functional means of accessing a
particular network topology. For the DAAC networks, the data-link/physical protocol is
10/100/1000 Mbps Ethernet with LP DAAC recently adding 10Gbps Ethernet to their network.

 4-106 305-EED-001, Rev. 02

4.7.1 Internetworking Subsystem Description

4.7.1.1 DAAC LAN Architecture

This section provides an overview of the DAAC network architecture. Information on DAAC
specific implementation level detailed designs can be found in Section 4.7.1.4.

The generic architecture for DAAC Local Area Networks (LANs) is illustrated in Figure 4.7-1.
The topology consists of a Production Network, and a SAN LAN Network. The Juniper
SRX650 protects the production network at NSIDC. The general network layout is displayed in
the diagram below.

Note that not all sites have the complete complement of hardware and subsystems shown in
Figure 4.7-1. For instance EDC and LaRC do not have EED managed routers or firewalls, their
networks are protected by local perimeter campus firewalls at their site locations. There are
2Gbsec Etherchannels interconnecting Cat6506 core switches and the IBM BladeCenter switches
in EDC and LaRC.

Figure 4.7-1. DAAC Networks: Generic Architecture Diagram

The Production Network consists of a Catalyst 6506 multi-port Ethernet Switch. All servers,
workstations, printers, and the BladeCenter chassis are connected to individual switch ports.

 4-107 305-EED-001, Rev. 02

The SAN LAN Network consists of a Catalyst 3560 multi-port Ethernet Switch. This network is
used for the StorNext file system MetaData and to manage the storage arrays. All servers which
use the StorNext file system and storage arrays are connected to this network. The servers in the
BladeCenter chassis connect via the two internal Cisco Gigabit Ethernet Blade modules to both
the Production and the SAN LAN Ethernet switches.

4.7.1.2 DAAC Addressing and Routing Architecture

Most of the devices connected to the Production Network are assigned Class C address space
with the exception that LaRC, uses a /23 subnet for production network NSIDC devices
connected to the Production Network and all devices that are connected to the SAN LAN are
assigned private addresses as specified in RFC 1918 (as of 02/96). Documents that list IP
address assignments to all hosts and network attached devices are listed in Table 4.7-1. All
external EED address space (except for addresses used on the SAN LAN Ethernet networks) is
provided from address blocks designated by NISN.

The internal routing between EDN, PVC, VATC and WebRail DMZ is performed via static
routes on Juniper SRX650 Firewall. Site to Site IPsec VPN is the main gateway connecting
EED networks to GSFC. The IP addresses assigned to all of the networks are from EOS
RFC1918 IP address blocks. There is an outbound and inbound block on both sites of the tunnel.
EED IPsec firewall and EISOC firewall. The tunnel is running over a 10 Mb/sec TLS link.
There are no split tunnels allowed so all network connections appear to the outside world to
come from GSFC. The Remote Access for telecom/mobile workers is provided via NASA EOS
SSL Client VPN. User authentication is performed using Code700 key fobs.

4.7.1.3 Network-based Security Architecture

The network architecture provides a strong level of security by implementing stateful firewalls at
the DAACs. The firewalls block incoming network traffic unless there is a rule specifically
allowing the traffic to pass into the DAACs. Note: that in addition to network-based security;
EED has implemented other security measures, such as two-factor authentication, secure shell
(SSH) and host access lists (ACLs), which are discussed in the CSS sections of this document.

4.7.1.4 Internetworking Subsystem Detailed Design

The ISS implementation level detailed design is documented in the documents listed in
Table 4.7-1. Document 920-TDx-001 (HW Design Diagram) provides descriptions of the ISS
HWCI and document 920-TDx-002 (Hardware-Software Map) provides site-specific
hardware/software mapping.

All of the documents are under configuration control and can be obtained from EED
Configuration Management (CM). The documents are not on line for security reasons.
Therefore special authorization is needed for their release.

 4-108 305-EED-001, Rev. 02

Table 4.7-1. Internetworking Subsystem Baseline Documentation List
Document Name EDC LaRC NSIDC

Hardware/Network
Diagram

921-TDE-002 921-TDL-002 921-TDN-002

Host IP Address
Assignment Table

921-TDE-003 921-TDL-003 921-TDN-003

Network Hardware IP
Address Assignment

921-TDE-004 921-TDL-004 921-TDN-004

4.7.2 Internetworking Hardware HWCI (INCI)

This HWCI provides the networking hardware for internal and external DAAC connectivity.
The HWCI includes Ethernet switches and cabling; routers and cabling; and network test
equipment. Each network hardware device is discussed in detail below.

The DAAC LANs contain three types of COTS hardware: Firewall, Ethernet switches, and
Routers. All hosts in the DAACs are attached to Ethernet switches. The Routers are used to
provide access to external networks (NISN, Abilene, and Campus nets). Table 4.7-2 provides a
list of networking hardware used in EED networks.

The following descriptions of Network Hardware devices are provided as illustrative detail. All
details of the hardware configuration should be verified with the appropriate Hardware/Network
documents listed in Table 4.7-1.

Table 4.7-2. Networking Hardware for EED Networks
Networking Hardware Vendor

Firewall Juniper SRX650

Router (EED Router) Cisco 7200

Ethernet Switch Catalyst 3560G

Ethernet Switch Catalyst 6506

Ethernet Switch Catalyst 2924

Ethernet Cables 10baseT, 100baseT, or 1000baseT connection to servers,
workstations, printers, PCs, and x-terms

4.7.2.1 EED Ethernet Switch

The EED Ethernet switch is the Cisco Catalyst 6506 with multiple 10/100/1000 Mbps ports and
powerful packet engines. The switch has a switching fabric of 32Gbps. It forms the core of the
EED Production network by interconnecting all servers, workstations, printers, PCs, and Sun
Ray terminals. The switch has redundant power supply and fan units. It also has redundant
packet engines. All modules are hot swappable.

 4-109 305-EED-001, Rev. 02

4.7.2.2 EED Router

The EED Router is a Cisco 7200 series router running Cisco’s Internetwork Operating System
(IOS). The router has three 1000 Mbps Ethernet ports. The EED Router is only used at NSIDC
and it provides connectivity to EED sites and the Internet via its interfaces with NISN and the
local campus network.

The ECS Router has redundant power supply and fan units.

For support purposes, the PVC and VATC also have 7200 routers which interface with EBnet at
GSFC.

4.7.2.3 SAN LAN Ethernet Switch

The EED SAN LAN Ethernet switch is a Cisco Catalyst 3560G switch capable of supporting up
to 48 10/100/1000 Mbps ports.

4.7.2.4 Firewall

The EED Firewall is a Juniper SRX650 Services Gateway. It is a stateful type firewall, which is
capable of supporting several 1 Gbps Ethernet interfaces with 7Gbps total throughput The
firewall has a special software build version to accommodate the large FTP traffic.

At EDC and LaRC, the layer three Cisco Catalyst 6506 switches interface directly with the
Campus firewalls. The Campus routers provide all external network connectivity.

 4-110 305-EED-001, Rev. 02

4.8 EED General Process Failure Recovery Concepts

During Earth Observing System Data and Information System (EOSDIS) Evolution and
Development (EED) processing, client or server failures can occur. These failures cause certain
recovery events to take place within the EED. To understand the General Process Failure
Recovery of the EED processes, several key concepts must be described. These failure recovery
concepts are:

1) Client-Server Rebinding

2) Database Reconnecting

3) Request Identification

4) Request Responsibility

5) Queues

6) Request Responses

7) Duplicate Request Detection

8) Server Crash and Restart

9) Client Crash and Restart

These concepts compose the general philosophy of the EED process failure recovery. The
General Process is performed as a “process chain” to service requests for data or other services
(e.g., order tracking or data retrieval from another processing system) via the client/server
architecture. A brief description of each of the key concepts for General Process Failure
Recovery follows.

4.8.1 Client-Server Rebinding

EED performs communication between client and server through the database. A client will
insert information concerning its request into the database and the server will poll the database to
pick up new requests. This allows for persistent client/server messaging that is inherently fault
tolerant. The exceptions to this are the EcDlQuickServer, HegServer, and EcDlFtpService, as
well as the Data Access components (such as EGI and HegService) which communicate with
clients using sockets and HTTP connections. If a client of any of these services is unable to
connect, it should suspend the resource associated with that service after a configurable number
of retries.

4.8.2 Database Reconnecting

Communication with the PostgreSQL database relies on standard libraries specific to each
programming language. A Perl program should use the perl DBI module interface, a Java
process should use a JDBC interface. A custom class that wraps the PostgresSQL libpq client
library, EcCmDb is used for C++ code. In each of these cases the calling program should

 4-111 305-EED-001, Rev. 02

attempt a connection for a configurable number of times, waiting for a configurable amount of
time between each connection attempt.

EED applications that require the establishment of a large number of connections should
implement a connection pool that allows them to reuse connections. EED applications should
handle deadlock errors with a configurable retry. If the request to the database succeeds before
the retries are exhausted, the application continues normally and completes the transaction in
progress when the Database fault occurred.

However, operations should be aware of the following facts:

 Not all EED applications are able to use the EED database interface code

 Not all EED applications are able to use database transactions and automatic re-
connection in the manner described.

4.8.3 Request Identification

EED identifies requests with primary keys stored in the database. The use of RPC ID is restricted
to a small set of OMS clients including the acquire script which is called by the MISR Order
Tool. These clients generate a unique identifier for each type of request that requires fault-
handling provisions.

Many kinds of requests do not pose recovery issues and thus, do not employ request identifiers.

4.8.4 Request Responsibility

The responsibility for the handling of recoverable requests by a server is given in the EED by
determining if the request is synchronous or asynchronous.

Synchronous Requests

On a synchronous request, the application submitting the request is waiting for a
response. Regardless of how the request is handled downstream, whether it succeeded or
failed depends on the response the waiting application gets back. From its perspective,
the request is not complete until it receives a response.

Therefore, if an EED application initializes a request and submits it synchronously, it has
the responsibility for getting the request completed. This means if the request does not
complete, for example, because the connection is lost to the server to which the request is
submitted, the application needs to submit it again.

EED examples of synchronous interfaces include the Quick Server and Ftp Service.

Asynchronous Requests

When an application sends an asynchronous request, the receiving server is responsible
for completing the request once it accepts the request. For example, the server may need
to save the request (perhaps in a queue in a database) before sending an acknowledgment
to the originating application. Of course, the server (Server A), can eventually complete

 4-112 305-EED-001, Rev. 02

processing the request and pass it on to another server (Server B), also asynchronously.
Once Server B accepts the request, it is responsible for seeing it to completion.

EED examples of asynchronous interfaces include the Order Manager Server and its
component servers.

Note: Some servers, for instance the Data Access ESI Gateway Interface (EGI), are
capable of handling both synchronous and asynchronous requests depending on the way
the client decides to invoke the request.

4.8.5 Queues

The reason queues are mentioned here is because they represent an important aspect of recovery.
If a server uses queues to defer work until later, it needs to be concerned about what happens to
the queue if the server crashes. The recovery rules in the request responsibility section state:

 If the server queues up synchronous requests, the client application is responsible for
recovering the synchronous requests.

 If the server queues up asynchronous requests after accepting them, it is responsible for
the asynchronous requests, which means, if a queue contains asynchronous requests, the
server must make sure it can recover the queue in case of a crash.

Instead, a server handling asynchronous requests must keep a queue in a safe place so it can be
recovered in case of a restart (such a restart that recovers the current requests is called a "warm
start"). If a warm start takes place with asynchronous requests, the sending application does not
even notice there was a problem. The processing gets completed eventually.

Note, however, that queued synchronous requests require special consideration: If a warm start
takes place and some of the queued requests are synchronous, the sending application is
generally aware of the failure (it had to rebind, See Client-server Rebinding Section). Since it
did not receive a response, it re-submits the request. The server must recognize the request as a
re-submission and either ignore it or - if it already completed by the time the re-submission is
received - return the completion status as a response to this request. Moreover, servers that
might handle a large number of concurrent synchronous requests have to be able to deal with a
sudden spike of request submissions following a warm start, as their clients re-submit these
requests.

A warm start can cause a problem; for instance, one of the active requests may be the reason the
server crashed. This could result in a warm restart loop: each time the warm start is attempted
the server crashes again because of the request. In such a case, operations can use a cold start to
empty the queue of all requests (at the expense of having to recover queued asynchronous
requests that were lost manually).

4.8.6 Request Responses

Servers have the responsibility to classify a response appropriately. Client applications have the
responsibility to process a response appropriately, depending on its type.

 4-113 305-EED-001, Rev. 02

Client applications can pass the response on to the calling application (e.g., success, warning, or
fatal error); or retry (retry error). At the beginning of a request chain, there may be a user or
operator (if this is a user or operator submitted request). In this case, the error is passed back to
the user/operator for action where possible.

Where this is not possible (e.g., system generated requests, or if a data order runs into an error
after it was already accepted and the user/operator is no longer connected), errors are logged.
They are brought to the attention of the DAAC operations staff for action if there is a
corresponding server GUI for the operator. However, not all EED servers are associated with an
operator GUI. In these cases, operators need to monitor the server logs for errors on a regular
basis.

Failure events are classified as having any of three severity levels:

 Fatal errors,
 Retry errors and
 Warnings

Fatal errors are returned when a request cannot be serviced, even with operator intervention. For
example, if a request is made to distribute data via FTP to a non-existent host, the request is
failed with a fatal error.

Retry errors can be recovered from and such errors should be returned back to the client only
when the server cannot recover from the error automatically. Retry errors may also necessitate
operator assistance for recovery purposes, such as in the case of a tape left in a device that must
be manually removed.

Warnings are provided where operations can proceed without interruption, but where an
unexpected circumstance was detected. For example, if a client requests a file to be removed,
and the file does not exist, there is no error, per se, but a warning is generated to caution the
client the file to be removed did not exist in the first place.

The situation where a server does not return a response represents a special case. It can occur, for
example, when an application calls a server and the server crashes before it can send a response
or there is a communication error that prevents a response within a reasonable time. The situation
is important because now the client application does not really know what happened to the
request:

a. Did it reach the server?

b. Did the server start the request but not complete it?

c. Did the server complete the request with an error but was not able to send the error
response?

d. Did the server process it successfully?

The EED recovery policy is that in such situations, the client application should either re-submit
the request or if it is possible, return an appropriate error to the user/operator who submitted the
request (to avoid leaving them with a hanging GUI while EED goes through endless retries).

 4-114 305-EED-001, Rev. 02

Note that if the request did reach the server, the server now sees the request twice (i.e., this has
become a duplicate request). Therefore, there need to be provisions to handle duplicate requests
gracefully.

Table 4.8-1 summarizes the five categories of request responses, and the specific requirements
for the application or server currently responsible for the request. EED servers have been
directed to classify their responses accordingly.

Table 4.8-1. Request Responses
Request Response Response Description

Success The server sends back a message to acknowledge the
successful completion of the request to the client. The
request is considered complete.

Warning This is provided where operations proceed without
interruption, but where an unexpected circumstance is
detected. The calling application needs to determine
whether to alert the user or operator of the situation.

Error, retry the request This can happen if the server encountered a temporary
error condition, such as a media error on output. The
request can be "retried" and the application responsible for
the request should re-submit it after a suitable wait time.
However, if the request does not succeed after a
(configurable) number of retries, it should be considered
"failed." If a GUI supports the application, the request may
be suspended (if it makes sense to alert the operations staff
to remedy the situation).

Error, cannot retry the request This can happen if the server encounters an error condition
that is sure to re-occur if the same request is submitted
again. Examples might be a syntax error in the request
(indicating some internal software problem), or an attempt
to retrieve a non-existent granule. The request is
considered "failed." The server responsible for the request
sends back a failure notification. If a GUI supports the
application, the request may be suspended (if it makes
sense to get the operations staff involved at this point), but
the operations staff may or may not be able to help.

No response returned by server This can happen, for example, if the server to which the
request was submitted crashes before a response or an
acknowledgment is returned. In this case, the client can
make no assumptions about the request. The client
responsible for the request should send the request again
or retry the request.

Transient errors such as network errors are always retry errors. In general, clients and servers
that experience transient, retry errors can first attempt to recover by retrying the operation
automatically. One special case of this is “rebinding”. Rebinding refers to the process by which

 4-115 305-EED-001, Rev. 02

a client automatically attempts to re-establish communications with a socket server in the event
communications are disrupted. This disruption may be caused by transient network failure, or by
the server being brought down or crashing. In any case, the client automatically attempts to
reconnect to the server for a configurable period of time on a client-by-client basis.

EED processes that encounter an error or receive an error from a server request may either pass
the error back to a higher-level client or present it to the operator for operator intervention. The
fault handling policies are detailed in Table 4.8-2.

Table 4.8-2. Fault Handling Policies (1 of 2)
CI Client Processes Fault Handling Policy

DPLINGEST EcDlInPollingService Retry errors: Errors are retried a configurable number
of times for resources, then the resource is
suspended. Examples of retriable errors are
connection failures and timeouts for file transfers.

Fatal errors: Resources are suspended immediately
for non-transient errors. Examples of non-transient
errors are host address does not exist, and login to
host failed.

 EcDlInProcessingService Retry errors: Errors are retried a configurable number
of times for resources, then the resource is
suspended. Examples of retrable errors are
connection failures and timeouts for quick server
operations such as checksum and band extraction.

Fatal errors: Resources are suspended immediately
for non-transient errors. Examples of non-transient
errors are quick server not running and failures to
login to a transfer host.

 EcDlInNotificationService Retry errors: Errors are retried a configurable number
of times for resources, then the resource is
suspended. Examples of retriable errors are
connection failures and timeouts for file transfers.

Fatal errors: Resources are suspended immediately
for non-transient errors. Examples of non-transient
errors are host address does not exist, and login to
host failed.

 SSS EcNbSubscribedEventDriv
er

EcNbActionDriver

EcNbDeleteRequestDriver

EcNbRecoverDriver

All errors are logged.

Failed attempts to connect to database are retried.

Failed database queries are retried if the reason for
failure was deadlock.

 4-116 305-EED-001, Rev. 02

Table 4.8-2. Fault Handling Policies (2 of 2)
CI Client Processes Fault Handling Policy

OMS EcOmOrderManagerServer All errors are logged.

Failed attempts to connect to database are retried.

Retry errors: Errors are retried a configurable number
of times, then passed back to the calling process.

Fatal errors: Errors are logged and the request is
suspended and operator intervention is generated.

Operators then have a choice to hold, fail or resubmit
the request.

BMGT EcBmBMGT All errors are logged in one of the BMGT log files.
Errors for automatic cycles are always retried. Errors
for all other types are retried unless they occur after
generation has completed in which case they may be
considered fatal. Database errors are retried to a
configured retry limit, however serious database
errors such as a missing stored procedure will cause
a server to terminate. Repeated errors may suspend
BMGT product generation and export and raise an
alert in the operator GUI, depending on the type of
error.

DPL EcDlActionDriver Retriable errors are retried a configurable number of
times, after which the request will be failed. If the error
is associated with a resource, such as the
unavailability of a file system, the resource will be
suspended, and all requests using that resource will
also be suspended. The Action Driver will periodically
test the associated resource, and automatically
resume all affected requests once the resource
becomes available again.

Fatal errors, such as invalid granules, are failed
immediately.

All errors are logged in both application ALOG files, as
well as in the database (a request that fails as a result
of an error will have an error message recorded in the
database).

DPL DataAccess Most of the Data Access services are purely
synchronous and have no retry mechanism. Due to
their ‘on demand’ nature, most types of errors will
result in an error message being propagated all the
way back to the initiating client. In the case of an
asynchronous request to EGI, jobs within the request
will not be retried, but a failure in a single job will not
result in the entire request failing.

 4-117 305-EED-001, Rev. 02

4.8.7 Duplicate Request Detection

The above scheme for handling requests in cases of faults poses a potential problem. The request
could have been re-submitted because there was no response returned by the server. But, in fact,
the server completed the request but was unable to get the status back to the client (e.g., because
of communications problems or a machine crash). The following measures are intended to deal
with this situation:

 Trivial duplicate requests. There are many interfaces where sending a new request to
retry a service whose outcome is unknown either has no or negligible impact on the EED.
This is because many EED services have been designed with this goal in mind. In these
cases, the new request will simply replace the old and have the same end result as the
original request and no unintended consequences.

 Recognize non-trivial duplicate requests. Where executing the same request more than
once can have undesirable consequences, EED provides a mechanism for recognizing re-
submitted requests. Each request is tagged with a unique identifier (see Request
Identification Section). Upon submission of a request, the receiving server of the request
must check the identifier and recognize when it is a re-submission of a previous request it
received. For example, the server may realize the request has been completed and simply
acknowledges the successful completion.

4.8.8 Server Crash and Restart

 Server Crash

When a server crashes, the only impact on the system is that clients cannot continue to
submit requests for processing. Synchronous requests in progress result in an exception
being thrown back to the client process, which enters a rebinding failure recovery mode
(see Client-Server Rebinding section above). Attempts to submit requests while the
server is down results in the client blocking until a communications timeout has been
reached.

 Server Restart

When a server restarts, it may perform various re-synchronization activities in order to
recover from an unexpected termination. In the event of a server cold start or cold restart,
the server also cancels all outstanding requests and reclaims all associated resources.
Note that the distinction between cold start and cold restart is described in the section
above on Start Temperature. Specifics of server startup behavior are detailed in
Table 4.8-3. Unless otherwise stated, existing request queues are always retained for
warm restarts and cleared for cold starts or cold restarts.

 4-118 305-EED-001, Rev. 02

Table 4.8-3. Server Response versus Restart Temperature
CI Server(s) Special Behavior on

Warm Restart
Special Behavior on Cold

Start or Cold Restart

DPLINGEST EcDlInPollingService None. None.

DPLINGEST EcDlInProcessingService All ingest requests that
did not reach a terminal
state in the previous
processing run will be re-
queued in processing and
executed from their last
persisted state.

All ingest requests that did
not reach a terminal state in
the previous processing run
will be moved to the state
‘TERMINATED’. They will not
be re-queued.

DPLINGEST EcDlInNotificationService None. None.

SSS EcNbSubscribedEventDriver

EcNbActionDriver

EcNbDeleteRequestDriver

EcNbRecoverDriver

N/A N/A

OMS EcOmOrderManagerServer Full Recovery N/A

DPL EcDlActionDriver The Action Driver
recovers all existing
requests from the
database.

N/A

The Action Driver does not
have a cold restart capability.

DPL ESI Gateway Interface The EGI recovers all
existing requests from the
database

N/A

 Request Re-submission

Upon restarting a crashed client or server, requests are typically re-submitted. If the restarted
process was started warm, the fault recovery capabilities permit the server to resume
processing of the request from its last check-pointed state. This prevents needless repetition
of potentially time-consuming activities. Specific behavior of servers upon re-submission of
a request is detailed in Table 4.8-4. Note that a cell value of N/A means the server either has
no clients or the clients do not re-submit requests.

 4-119 305-EED-001, Rev. 02

Table 4.8-4. Server Response for Request Re-submission
CI Server(s) Behavior on Request Re-submission

DPLINGEST EcDlInPollingService

EcDlInNotificationService

N/A

DPLINGEST EcDlInProcessingService. The newly resubmitted request will have the same
requestid and continue being processed from the
last check-pointed state from the last processing run.

SSS EcNbEventDriver

EcNbActionDriver

EcNbDeleteRequestDriver

EcNbRecoverDriver

There is no resubmission of requests.
EcNbRecoverDriver monitors the SSS database for
events or actions that did not run to completion and
re-enqueues them.

OMS EcOmOrderManagerServer Incomplete requests in OMS are picked up and
processed upon restarting OMS Server. The
incomplete requests have the same requestid

DPL EcDlActionDriver N/A

The Action Driver is asynchronous, with requests
submitted via the database. Clients cannot detect
whether or not the Action Driver is executing.
However, normal operations frequently results in
duplicate requests (requests for the same granule)
from different clients, and the Action Driver is
therefore designed to handle this.

DPL ESI Gateway Interface Resubmitted requests will be processed as new
requests.

4.8.9 Client Crash and Restart

 Client Crash

When a client crashes in the EED system, fault recovery-enabled servers have several
possible responses. Servers may continue to service client requests, independent of the
client’s status. Servers may choose to suspend processing of client requests, but permit
the requests to be resumed upon client recovery. Or, servers may terminate servicing of
the client requests, canceling all work done on the requests. The behavior of each CI is
detailed in Table 4.8-5. Note that the behavior of a server in the event of a client crash
does not vary from client to client.

 4-120 305-EED-001, Rev. 02

Table 4.8-5. Server Responses to Client Failures
CI Server(s) Behavior on Client Crash

DPLINGEST EcDlInProcessingService

EcDlInNotificationService

Requests in process are serviced to completion.

EcDlInPollingService N/A

SSS EcNbSubscribedEventDriver

EcNbActionDriver

EcNbDeleteRequestDriver

EcNbRecoverDriver

Processing is database driven and not influenced by
outside processes.

OMS EcOmOrderManagerServer Requests in process are serviced to completion.

DPL EcDlActionDriver Requests in process are serviced to completion.

DPL ESI Gateway Interface Requests in process are serviced to completion

 Client Restart

Client restart behavior depends upon the type of client. For command line tools used by
operators, it is generally the responsibility of the operator to decide whether or not the
client needs to be restarted. Server processes acting as clients to other servers or
processes will generally determine how to restart processing of the request using
persisted checkpoints (for example, in the database).

Some known limitations within the EED are:

a.) Requests with many sub-requests can experience timing problems because of nested
retries or because one of the requests is suspended.

b.) Coding errors can cause unanticipated fault behavior that is different from what is
described above (and such occurrences should be reported as NCRs.)

c.) System engineers and designers may have made mistakes in classifying errors (e.g., as
fatal versus retry.)

d.) Not all EED applications use the error recovery capabilities of the EED database
interface infrastructure.

 4-121 305-EED-001, Rev. 02

4.9 Spatial Subscription Server (SSS) Subsystem Overview
The Spatial Subscription Server (SSS) subsystem is the principal means by which users can
establish standing orders for data. Users enter subscriptions for specific ESDTs using a GUI or
command line interface (CLI). A subscription may be qualified by specifying one or more
constraints on the metadata of matching granules. This includes the capability of qualifying the
subscription spatially by specifying a geographic area (rectangle) over which the data was
collected. A subscription has one or more associated actions such as data distribution, email
notification, Data Pool publication, or bundling, i.e. adding a granule to an Order Manager
bundle.

In addition to the subscription creation components, the SSS subsystem is comprised of a schema
installed in the “ecs” database, and four runtime drivers: an event driver to match subscriptions
with granule events, an action driver to execute the actions of matched subscriptions, a recovery
driver to restart stalled events or actions, and a deletion driver to clean up the database.

Spatial Subscription Server (SSS) Context

Figure 4.9-1 is the Spatial Subscription Server context diagram. Table 4.9-1 provides
descriptions of the interface events in the Spatial Subscription Server context diagram.

Enqueue
Granule Events

DPL Ingest

Return
XML file
location

 Request XML file location
Insert granule into action queue

Return Status

GUI

ESDT Maint.
(SSS CSCI)

 SSS

(OMS)

Order Manager

Register Events,
Replace Events Bundle or

Acquire

Request
Subscription

Notify of
Subscription

 Note:
 The Subscription Server GUI is shown in the
 architecture diagram EMD User/

Operations Staff

Inventory
Database

Figure 4.9-1. Spatial Subscription Server Context Diagram

 4-122 305-EED-001, Rev. 02

Table 4.9-1. Subscription Server Interface Events
Event Interface Event Description

Request XML file
location

The Inventory database contains information about new granules, including the
location of their XML metadata files. The SSS event driver queries the Inventory
database for this information.

Notify of
Subscription

The SSS CSC sends email notification to the EMD User when the subscribed
event occurs, provided that a notification action was requested in the subscription.

Request
Subscription

A subscriber (EMD user requests Operations Staff to create the subscription)
sends information (ESDT and, optionally, acceptable metadata values) with the
subscription, specifying one or more actions (e.g., acquire and/or notification) to be
taken when the subscribed event occurs.

Return status Status returned by a stored procedure to indicate whether or not the call
succeeded.

Register Events The ESDT Maintenance GUI inserts information about an Earth Science Data
Type (ESDT) into the SSS database when an ESDT is installed into the system.

Enqueue Granule
Events

DPL Ingest will enqueue new granule events via an SSS stored procedure call.

Replace Events The ESDT Maintenance GUI modifies the SSS database when an ESDT is
deleted from the system.

Bundle or Acquire SSS notifies OMS, via a stored procedure call, when a granule has matched a
subscription. If the subscription is bundled, i.e. associated with an OMS bundling
order, then the granule is inserted into the appropriate OMS bundle. If the
subscription is not bundled, then an acquire request is sent to OMS.

Insert granule into
action queue

If a subscription has an associated Data Pool action, then SSS will insert a row
into the Data Pool action queue table, indicating that the granule that matched the
subscription should be published in the Data Pool.

Send theme
validation

If a subscription’s Data Pool action is associated with a Data Pool theme, then the
Data Pool will verify that the theme exists and is enabled for insert.

4.9.1 Spatial Subscription Server Architecture

Figure 4.9-2 is the Spatial Subscription Server architecture diagram. The diagram shows the
events sent to the Spatial Subscription Server processes and the events the Subscription Server
processes send to other processes.

 4-123 305-EED-001, Rev. 02

Figure 4.9-2. Spatial Subscription Server Architecture Diagram

Table 4.9-2 provides descriptions of the processes shown in the Spatial Subscription Server
architecture diagram.

DPL

DPL
Ingest

OMS

SSS

Event
Driver

Insert DPL Delete
Driver

SSS
GUI

Action
Driver

Dequeue Event

Enqueue Event

EMD
User Manage

Subscriptions

Notify

Bundle

Acquire

Manage
Subscriptions

Recover
Driver

Restart Action

Cleanup DB

Dequeue Action

 4-124 305-EED-001, Rev. 02

Table 4.9-2. Spatial Subscription Server Processes
Process Type Hardware

CI
COTS/

Developed
Functionality

EcNbSubscribedEventDriver
(“Event Driver”)

Server OMSHW Developed The SSS event driver dequeues events
and matches them with active
subscriptions. Information about matched
subscriptions is placed in the action queue.
If a matched subscription has a Data Pool
action, the event driver inserts information
into the Data Pool database.

EcNbActionDriver (“Action
Driver”)

Server OMSHW Developed The SSS action driver dequeues matched
subscriptions and executes their
associated actions (acquire or notification).
An acquire is directed to the Order
Manager. If a subscription is bundled, then
the granule that matched it is added to that
bundle via an OMS interface.

EcNbDeleteRequestDriver
(“Delete Driver”)

Server OMSHW Developed The SSS delete driver dequeues from the
delete request queue and cleans up
database storage for the completed action
or event.

EcNbRecoverDriver
(“Recover Driver”)

Server OMSHW Developed The SSS recover driver monitors the event
and action queues for stalled
events/actions and reenqueues them so
that they will be tried again.

EcNbSubscriptionGUI
(“SSS GUI”)

GUI OMSHW Developed The SSS GUI provides an operator
interface for submitting, updating and
deleting subscriptions. It is also used for
creating OMS bundling orders and for
bundling subscriptions to bundling orders.

EMD Baseline Information System (EBIS) Document 920-TDx-001 (Hardware Design
Diagram) provides descriptions of the HWCI, and document 920-TDx-002 (Hardware-Software
Map) provides site-specific hardware/software mapping.

4.9.1.1 Subscription Server Process Interface Descriptions

Table 4.9-3 provides descriptions of the interface events shown in the Subscription Server
architecture diagram.

 4-125 305-EED-001, Rev. 02

Table 4.9-3. Spatial Subscription Server Process Interface Events (1 of 2)
Event Event

Frequency
Interface Initiated by Event Description

Enqueue
Event

Once per
granule ingest

Process:

ProcSubscribedEventEnqueue

Process:

DPL Ingest

The stored procedure is called
when a new granule is ingested
by DPL Ingest.

Dequeue
Event

Once per
event

Process:

ProcSubscribedEventDequeue

Process:

EcNbSubscribedEventDriver

An event driver instance will
dequeue up to 10 events from
the event queue at one time. It
will then process the events
sequentially by getting the
metadata for each granule and
comparing it with the list of
active subscriptions. If a
subscription matches a granule
event, information about the
match is placed into the action
queue.

Insert DPL Once per
event

Process:

TrigInsEcNbDpEventDetails

Process:

EcNbSubscribedEventDriver

When a granule event matches
one or more subscriptions, at
least one of which has an
associated Data Pool action,
the event driver will insert
information about the granule
(with subscription numbers)
into the Data Pool database. A
single insert per event is
performed by an insert trigger
on the table
EcNbDpEventDetails.

Dequeue
Action

Once per
matched
subscription

Process:

ProcActionDequeue

Process:

EcNbActionDriver

An action driver instance will
dequeue up to 10 matched
subscriptions from the action
queue at one time. It will then
process them sequentially by
getting the actions for each
subscription. If the subscription
is bundled, then the granule is
added to the current bundle for
that bundling order via a stored
procedure call to the OMS
database. Otherwise, the
action driver will initiate an
acquire of the granule or send
email notification to the user,
depending on how the
subscription was set up.

 4-126 305-EED-001, Rev. 02

Table 4.9-3. Spatial Subscription Server Process Interface Events (2 of 2)
Event Event

Frequency
Interface Initiated by Event Description

Acquire Once per
matched
subscription

Process:

OmCreateNonBundlingOrder
(OMS case)

Process:

EcNbActionDriver

If a matched subscription has an
associated acquire action, the
action driver will initiate the
acquire by a stored procedure
call to OMS.

Bundle Once per
matched
subscription

Process:

OmInsertBundleRequest

Process:

EcNbActionDriver

If a matched subscription is a
bundled subscription, the action
driver will send information about
the granule to OMS via a stored
procedure call.

Notify Once per
matched
subscription

Process:

mailx

Process:

EcNbActionDriver

If a matched subscription has an
associated notification action, the
action driver will compose an
email message and send it to the
address specified in the
subscription definition.

Restart
Action

Once per
action or event

Process:

ProcActionReEnqueue,
ProcSubscribedEventReEnque
ue

Process:

EcNbRecoverDriver

If an action or event appears to
have stalled, i.e. did not run to
completion based on evidence in
the log tables, the recover driver
will reenqueue the action or
event in its appropriate queue.

Cleanup
DB

Once per
action or event

Process:

ProcDequeueDeleteRequest,
ProcDeleteProcessedSub,
ProcDeleteProcessedEvent

Process:

EcNbDeleteRequestDriver

The delete driver will clean up
tables in the database based on
entries in the delete request
queue. Each entry in this queue
corresponds to one action or one
event.

Manage
Subscrip-
tions

Various Process:

EcNbSubscriptionGUI

Process:

EcNbSubscriptionGUI

The SSS GUI allows a user to
create, delete, edit or view
subscriptions. Or to create,
delete, edit or view bundling
orders and bundle subscriptions
to them.

4.9.1.2 Subscription Server Data Stores

Spatial Subscription Server uses a COTS software RDBMS for the storage of persistent data.
The following is a brief description of the principal types of data contained in the database:

 Attributes: includes the ESDTs for which subscriptions can be created and the metadata
attributes that can be used to qualify those subscriptions.

 Subscriptions: information about subscriptions that have been created for users, their
associated qualifying expressions, and their associated actions.

 4-127 305-EED-001, Rev. 02

 Events: information about newly arrived data granules, their metadata, and the subscriptions
that match them.

 Actions: information about actions for matched subscriptions that need to be carried out,
e.g. acquire or email notification.

 4-128 305-EED-001, Rev. 02

4.10 Data Pool Subsystem Overview
The Data Pool is a large online archive of ECS data at each DAAC. Science, metadata (in xml
format), and browse files (in jpg format) are stored in the public Data Pool.

Hidden directories in the Data Pool file systems (/datapool/<mode>/user/<fs>/.orderdata) are
used as staging areas for all granules being inserted into the Data Pool, granules whose
collections are configured hidden and for browse and processing output distributed via the Order
Management Subsystem (OMS).

The Data Pool subsystem consists of the following components and supporting utilities:

1. Data Pool Insert: inserts ECS data into the Data Pool. ECS data is copied from the
ECS archive into the Data Pool, based on an ECS granule id. The Inventory database
inventory is updated for each granule inserted in the Data Pool. Data Pool Insert
consists of six major subcomponents:

a) The Data Pool Action Driver (DPAD): a C++ executable which schedules Data
Pool insert actions based on a queue of Data Pool insert actions populated by the
Spatial Subscription Server, the Data Pool Publish Utility, Data Pool Ingest, the
Order Manager Server, or the Migration processes.

b) The Data Pool Insert Utility (NDPIU), a java executable which manages the
registration and publication of an ECS data granule into the Data Pool;

c) The Data Pool Quick Server, a C++ executable which is installed on the ECS
service hosts. The Quick Server is used by the DPAD to perform copy and
checksum operations. It is also used by DPL Ingest and OMS to perform
operations which are performed on ECS service hosts for load balancing reasons,
or which cannot be performed on the local host due to lack of data access (mount
points, etc.)

d) The band extraction utility (bandtool), a C executable invoked by the DPAD,
which extracts band information from HDF-EOS granules and stores the extracted
information in a .BandHeader file in the temp area on the ESDT file system. The
.BandHeader file is used by the NDPIU during granule registration. The bandtool
is invoked only if the granule being inserted is from a collection eligible for
conversion by the HDF-EOS to GeoTiff Conversion Tool (HEG);

e) The jpeg extraction utility (hdf2jpeg), a C executable invoked by the NDPIU,
which extracts browse images (jpeg or raster) from a browse hdfeos file on
browse publication.

2. Data Pool On-line Archive Cleanup and Validation: As of 8.1, the cleanup of ECS
granules is handled by the Inventory Deletion suite of utilities. The validation of ECS
Inventory has been grouped and built into separate scripts for performance reasons.
Additional validation against the Inventory database is added as part of the on-line
archive capability.

a) EcDlCleanupFilesOnDisk.pl: a perl utility, which reports and fixes
inconsistencies between Data Pool directories and the database, namely
orphan/phantom validation and orphan cleanup.

 4-129 305-EED-001, Rev. 02

b) EcDlCleanupGranules.pl: a perl utility, which cleans non-ECS granules from
Data Pool on-line archive and the database. It also supports “error recovery”
scenarios to remove granules that failed publishing and were left in an
unsupported state.

c) EcDlInventoryValidationTool.pl: a perl utility, which identifies discrepancies
in the AIM Inventory Database.

d) EcDlLinkCheck.ksh: a korn shell script, which provides report on invalid soft
links in Data Pool on-line archive and optionally remove them.

e) EcDlXcu.pl: a perl utility, which checks for corruption of XML files in the Data
Pool.

3. Data Pool Maintenance GUI (EcDlDpm): a perl-based web GUI that allows
DAAC operations staff to monitor Data Pool insert activity and to control the Data
Pool configuration.

4. Data Pool Access Statistics utilities: Rollup scripts - perl utilities which parse
firewall ftp and http logs (EcDlRollupWuFtpLogs.pl and EcDlRollupHttpLogs.pl) for
accesses to the Data Pool directories, and then roll up access information for storage
in the Inventory database. Maintenance Scripts – perl utilities which are used for
archiving, deleting, and backing up granule access data in the Inventory database.

5. Data Pool FTP Server: customized wu-ftp daemon, which supports ftp access to
Data Pool directories and also provides a checksum-on-download service.

6. Data Pool Update Granule Expiration utility (EcDlUpdateGranule.pl): a perl
utility, which allows operations staff to update the Data Pool expiration date and
retention priority for specified Data Pool non-ECS granules.

7. Data Pool Most Recent Insert Utility (EcDlMostRecentInsert.pl): a perl utility,
which creates files at the file system and data collection level of the Data Pool
directory structure which contain information about granules recently inserted into the
Data Pool at those levels.

8. Data Pool Collection Remapping Utility (EcDlRemap.pl): a perl utility, which
allows DAAC operations staff to remap all data in a Data Pool collection directory
from one higher level collection group directory to another.

9. Data Pool Move Collection Utility (EcDlMoveCollection.pl): a perl utility, which
allows DAAC operations staff to move a Data Pool collection from one file system to
another.

10. Data Pool Hidden Scrambler Utility (EcDlHiddenScrambler.pl): a perl utility,
which creates new names for specified hidden directories, saves these names,
renames the existing hidden directories, and updates existing FTP Pull links that point
to the previous hidden directories to point to the corresponding renamed directory.

11. Data Pool Checksum Verification Utility: A java-based stand-alone utility which
can verify the integrity of files in the Data Pool using checksums. The utility could be
set up as a background process as well as run on-demand by the DAAC operator to
verify checksum values for a particular set of files.

 4-130 305-EED-001, Rev. 02

12. Data Pool Checksum Verification Server: A C++ based stand-alone utility which
can verify the integrity of files in the Data Pool using checksums. It provides resource
management and load balancing to achieve optimal checksum throughput when the
system is under load and normal operation. It replaces “Data Pool Checksum
Verification Utility”.

13. Data Pool Restore On-line Archive From Tape Utility: A java-based stand-alone
utility which performs bulk repairs of the on-line archive, especially in the case of
serious disk errors or a loss of a Data Pool file system. It can also be used to restore
the integrity of granules which have files missing or corrupted, or missing links.

14. Data Pool Restore AIM Tape Archive From On-line Archive Utility: A java-
based stand-alone utility which provides bulk repair as well as individual science
granules in the AIM tape archive by replacing science granules with their copy from
Data Pool On-line archive.

15. Data Pool Publish Utility: A java-based utility which allows operations staff to
submit ECS insert actions for publication or registration, optionally with load control.
The utility has been enhanced to include theme option and non-ECS insert. It includes
all the capability from “Batch Insert Utility” (deprecated) and has more of its own.

16. Data Pool Unpublish Utility: A java-based utility which moves granules from the
public Data Pool on-line archive to the hidden Data Pool on-line archive.

17. Data Pool Ftp Service (EcDlFtpService): A C++ based stand-alone SOAP web
service running on the ECS service hosts. It accepts Ftp service requests, processes
the requests and sends the results back to the web service client. This service has
ability to keep the FTP connections in the pool and reuse them later. It is used by
DPL Ingest, OMS and BMGT to perform Ftp Transfer operations.

4.10.1 Data Pool Subsystem Context

Figure 4.10-1 is the Data Pool Subsystem context diagram. The diagram shows the interaction
of the Data Pool Subsystem with other EED subsystems. Table 4.10-1 provides descriptions of
the interface events shown in the Data Pool Subsystem context diagram.

 4-131 305-EED-001, Rev. 02

Figure 4.10-1. Data Pool Subsystem Context Diagram

Table 4.10-1. Data Pool Subsystem Interface Events (1 of 3)
Interface Event Interface Event Description

Send Alert Email The Data Pool Action Driver sends an alert email to a configured email
address to notify operators of problems with an ECS Service Host, an
archive file system, or a Data Pool file system.

Monitor Data Pool
Inserts

The operator uses the Data Pool Maintenance GUI to monitor the queue
of Data Pool inserts and to monitor the active insert processes.

Configure Data Pool The operator uses the Data Pool Maintenance GUI to set values of Data
Pool configuration parameters, and to define Data Pool entities such as
themes and compression algorithms.

Cleanup Data Pool The operator runs the Data Pool Cleanup utilities to clean specified
granules out of the Data Pool on-line archive, and to identify and cleanup
granules, which are orphans (on Data Pool disk but not in the database)
or phantoms (in the database but not on disk), or invalid links(soft links
point to invalid files).

Manage Collections The operator uses the Data Pool Maintenance GUI to add, remove, or
change specifications for Data Pool collections. The operator uses the
Remap Collection utility to map a collection from one collection group to
another. The operator uses the Move Collection utility to move a
collection from one file system to another.

 4-132 305-EED-001, Rev. 02

Table 4.10-1. Data Pool Subsystem Interface Events (2 of 3)
Interface Event Interface Event Description

Gather Access Statistics The operator uses the access statistics rollup scripts for the firewall ftp
and http access logs to gather statistics about end user access to data
pool files, and to store those statistics in the Inventory database.

Insert Action The operator uses the Data Pool Publish utility to insert historical data
from the ECS archive into the Data Pool.

Update Granule
Expiration

The operator uses the Update Granule Expiration utility to update the
expiration date or retention priority for one or a set of non-ECS granules.

Post Most Recent
Inserts

The operator uses the Most Recent Inserts utility to post information
about recent Data Pool Inserts to the Data Pool ftp directories.

Unpublish Granule The operator uses the Data Pool Unpublish Utility to move granules from
public Data Pool on-line archive to hidden Data Pool on-line archive.

Validate Inventory The operator uses the Data Pool Inventory Validation Utility to identify
discrepancies in the AIM Inventory Database.

Restore On-line Archive
From Tape

The operator uses the Restore On-line Archive From Tape Utility to
restore the integrity of granules to on-line archive from tape.

Restore Tape From On-
line Archive

The operator uses the Restore Tape From On-line Archive Utility to
restore the integrity of granules to tape from on-line archive.

Verify Checksum The operator uses the Data Pool Checksum Verification Server to verify
the integrity of the granules in Data Pool on-line archive.

FTP Data Pool data The end user uses the customized WU-FTP service to download Data
Pool data.

Order Data Pool data The end user orders Data Pool data for ftp and http distribution. The end
user may choose to convert, reformat, or subset the data using the HDF-
EOS to GeoTiff Conversion Tool (HEG).

Insert Action The Data Pool Ingest subsystem inserts a Data Pool insert action into the
Data Pool Insert Action Queue (DlInsertActionQueue) for granules which
are configured to be published in the Data Pool.

Insert Action The OMS subsystem inserts a Data Pool insert action into the Data Pool
Insert Action Queue (DlInsertActionQueue) for granules to be staged to
the Data Pool for ECS distribution requests.

Copy The DPL subsystem copies data from the ECS Archive to the appropriate
Data Pool file system.

Get Archive Location The DPL subsystem looks up archive location information in the Inventory
database, for granules which will be copied from the ECS archive to the
Data Pool.

Get Metadata The DPL subsystem gets metadata about ECS granules (QA, PH, etc.,)
from the Inventory database, and uses this metadata to store
corresponding metadata in the Inventory database and to create an xml
metadata file on Data Pool disk.
The DPL subsystem gets metadata path about ECS granules (SCIENCE)
from Inventory database, and uses this path to get xml files from small
archive to DataPool filesystem.

 4-133 305-EED-001, Rev. 02

Table 4.10-1. Data Pool Subsystem Interface Events (3 of 3)
Interface Event Interface Event Description

Insert Action The Spatial Subscription Server subsystem inserts Data Pool insert
actions in the Data Pool Insert Action Queue (DlInsertActionQueue) for
granules which are being inserted into the ECS inventory for which a
Data Pool insert subscription is placed. Data Pool insert subscriptions
are qualified subscriptions (unqualified Data Pool insert subscriptions
have been replaced by DPL Ingest configuration of ESDTs for public Data
Pool insert.)

4.10.2 Data Pool Hardware Context

Figure 4.10-2 is the Data Pool hardware context diagram. The diagram shows the interaction of
the Data Pool custom code and COTS (in italics) with EED hardware components.

Figure 4.10-2. Data Pool Hardware Context

4.10.3 Data Pool Insert CSCI Functional Overview

ECS granules are inserted into the Data Pool via a two-step process. The first step, registration,
involves storing basic inventory information about the granule, needed by EED custom code
applications, in the AIM Inventory Database, and copying the granule to a “hidden” directory

silo 1

Sybase
d t b

S
A
N

/datapool/<mo

/usr/ecs/<mode

silo 2

silo 3

S
A
N

SNSM
Metadata Server

x4sml01

silo 2

silo 3

x4dpl01
DPAD
DPIU

DPL Utilities

x4ftl01
ftp access to DPL

Wu-ftp

x4dbl01

x4iil01
DPL Maint. GUI

iplanet

x4msl01

ECS Service Hosts

QuickServer
Postgres
Database

/datapool/<mode>/
user/<fsn>

/stornext/
brwsfs

/stornext/
amfs<n>

WebGlis data
(via automount)

/usr/ecs/<mode>/
CUSTOM/

/stornext/snfs<n>

 4-134 305-EED-001, Rev. 02

structure (datapool/<mode>/user/<filesystem>/.orderdata) in the Data Pool. The second step,
publication, occurs only for granules which belong to collections configured to be placed in the
public Data Pool, where they are available for anonymous ftp download. During the publication
step, the granule is moved from the Data Pool hidden directory structure to the public directory
structure, where it can be accessed via anonymous ftp.

A functional overview of the two-step Data Pool Insert process for ECS granules is shown below
in two diagrams. The first diagram (Figure 4.10-3) shows the process for registration of a
granule in the Data Pool. The second diagram (Figure 4.10-4) shows the process for publication
of a granule in the Data Pool.

Figure 4.10-3. Data Pool Insert CSCI Architecture Diagram - Registration

 4-135 305-EED-001, Rev. 02

Figure 4.10-4. Data Pool Insert CSCI Architecture Diagram - Publication

There are five use cases for the Data Pool Insert process, one for each ECS process or component
which requests insertion of a granule into the Data Pool. These use cases, and their relationship
to the registration and publication steps, is shown in Table 4.10-2.

Table 4.10-2. Use Cases for Data Pool Insert (1 of 2)
Requestor Context Data Pool Insert processes

OMS Distributes granules in the Data
Pool.

Registration (events R1 – R17 in
Table 4.10-3 for data type such
as QA, PH, DAP, etc; events R1-
R12 and R15-R17 in Table 4.10-
3 for science granules).

Data Pool Ingest requests publication of a granule
in the Data Pool after the granule
has been ingested and archived

Publication (events P1 – P6 in
Table 4.10-4).

Publish Utility Queues existing ECS and non-
ECS granules for publication or
registration in Data Pool on-line
archive

Registration
Publication
(events R1-R16 in Table 4.10-3
for data type such as QA, PH,
DAP, etc; events R1-R12 and
R15-R16 in Table 4.10-3 for
science granules, and P3-P6 in
Table 4.10-4)

DPAD

NDPIU

Inventory DB

DPL Ingest

P5. Move to
public directory

P3. Invoke
Publication

P4. Publish
Registered

P1. Insert actions

P2. Get actions
P6. Update status

DPL
Disk

Temp

Hidden

Public

 4-136 305-EED-001, Rev. 02

Table 4.10-2. Use Cases for Data Pool Insert (2 of 2)
Requestor Context Data Pool Insert processes

Spatial Subscription Server queues granules for insertion into
the public Data Pool as a result
of a qualified subscription with a
Data Pool insert action

Registration
Publication
(events R1-R16 in Table 4.10-3
for data type such as QA, PH,
DAP, etc; events R1-R12 and
R15-R17 in Table 4.10-4 for
science granules, and P3-P6 in
Table 4.10-4)

Note that Data Pool Ingest also stages granules in the hidden Data Pool during granule ingest.
That process is somewhat different than the Registration process described below, in that it uses
a different invocation of the NDPIU and does not involve the DPAD. Data Pool Ingest staging
of granules in the hidden Data Pool is documented in the Data Pool Ingest chapter of this
document.

Table 4.10-3 provides a process description for each of the major custom code components of the
Data Pool insert process. Table 4.10-4 describes the interface events among the Data Pool insert
process components for registration and publication.

Table 4.10-3. Data Pool Insert CSCI Process Description (1 of 2)
Process Type Hardware

CI
COTS/

Developed

Functionality

EcDlActionDriver Server DPLHW Developed EcDlActionDriver (DPAD)is a C++
server that is responsible for
dispatching Data Pool insert actions
for ECS granules from the insert
action queue in the AIM Inventory
database (DlInsertActionQueue) as
well as performing registration or
publication of ECS granules(possibly
involving copy, checksum, band
extraction operations).

EcDlInsertUtility Java
utility

DPLHW Developed EcDlInsertUtility (NDPIU) is a java
executable that is invoked by the
EcDlActionDriver to register and
publish ECS granules in the Data
Pool. It populates AIM database, and
it moves files to hidden or public Data
Pool. One copy of the
EcDlInsertUtility is invoked for each
ECS granule to be inserted in the
Data Pool.

 4-137 305-EED-001, Rev. 02

Table 4.10-3. Data Pool Insert CSCI Process Description (2 of 2)
Process Type Hardware

CI
COTS/

Developed

Functionality

EcDlQuickServer Server ACMHW,

DIPHW,

DRPHW,

SPRHW,

MSSHW,

AITHW,

CSSHW,

DMGHW,

DPSHW,

INTHW,

DPLHW,

OMSHW

Developed The EcDlQuickServer (Service Host
Quick Server) is a C++ server which
performs CPU-intensive operations,
such as copy and checksum, on ECS
service hosts.

hdf2jpeg Utility DPLHW Developed Java utility that extracts jpgs from an
HDFEOS granule.

bandtool Utility DPLHW Developed C utility that extracts band
information from an HDFEOS
granule.

 4-138 305-EED-001, Rev. 02

Table 4.10-4. Data Pool ECS Insert CSCI Process Interface Events (1 of 4)
Event Event Frequency Interface Initiated By Event Description

R1. Insert
Action

One per granule
inserted in
Inventory which
qualifies for
existing
subscription with
Data Pool Insert
action

Database:

Inventory
(DlInsertActionQueue)

Trigger:

TrigInsEcNbDpEventDetails.
sql

When a granule is
inserted into Inventory
which matches an existing
subscription with Data
Pool Insert action, the
trigger inserts a row into
the DlInsertActionQueue
in the AIM Inventory
database with
actionSource = null.

R1. Insert
Action

One per granule in
Syn IV order
placed through
Order Manager

Database:

Inventory

Process:

OmServer

Stored Proc:

OmInsDPLAction

When a granule is ordered
in Syn IV mode via the
Order Manager, OMS
inserts a row into the
DlInsertActionQueue in
the AIM Inventory
database, with
actionSource = O.

R1. Insert
Action

One per granule in
input file for the
Publish utility.

Database:

Inventory

Utility: EcDlPublishUtility For each valid granule in
its input file, the Batch
Insert Utility inserts a row
into the
DlInsertActionQueue in
the AIM Inventory
database, with
actionSource = B or R.

R1.Insert
Action

One per granule in
input file, or on the
command line for
the Publish utility.

Database:

Inventory

Utility: EcDlPublishUtility For each valid granule in
its input file or on the
command line, the Publish
Utility inserts a row into
the DlInsertActionQueue
in the AIM Inventory
database, with
actionSource = B or R.

R2. Get
Action

Continuously, as
long as there are
actions in
DlInsertActionQue
ue with status =
null or status =
RETRY. If no
actions, once per
configured time
interval (IdleSleep
in DlConfig)

Database:

Inventory

Process: EcDlActionDriver
(DPAD)

The DPAD gets batches
of actions (with status =
null or status = RETRY)
from the
DlInsertActionQueue.

 4-139 305-EED-001, Rev. 02

Table 4.10-4. Data Pool ECS Insert CSCI Process Interface Events (2 of 4)
Event Event Frequency Interface Initiated By Event Description

R3. Get file
info

Once per file per
ECS granule to be
inserted

Database: Inventory
(EcInDb)
(AmDataFile/AmBrowseDa
taFile)

Process: EcDlActionDriver
(DPAD)

The DPAD gets file name
information for each file in
the granule from the
Inventory database.

R4. Get
volume
groups

Once per ECS
granule to be
inserted

Database: Inventory
(DsStVolumeGroup)

Process: EcDlActionDriver
(DPAD)

The DPAD gets the name
of the open volume group
for the granule’s collection
(shortname, versionid)
from the Inventory
database.

R5. Get
tape info

Once per file per
ECS granule to be
inserted

Process: Java Quick
Server

Database: COTS StorNext
metadata database

Process: EcDlActionDriver
(DPAD)

The DPAD calls the Java
Quick Server, which runs
on the StorNext (COTS)
metadata server, to
retrieve tape label
information for the granule
files, based on the volume
group information from the
Inventory database.

R6.
Update
status

Once per ECS
granule to be
inserted

Database: Inventory
(DlInsertActionQueue,
DlActiveInsertProcesses)

Process: EcDlActionDriver
(DPAD)

The DPAD updates the
status of the insert in the
AIM Inventory database.

R7.
Invoke
copy

Once per file per
ECS granule

Process: EcDlQuickServer Process: EcDlActionDriver
(DPAD)

The DPAD chooses a
QuickServer on an ECS
Service Host to perform
the file copy operation.
The Service Host is
chosen based on
availability.

R8. Copy Once per file per
ECS granule

Storage Device:

Data Pool disk (managed
by COTS StorNext
Storage Area Network)

Storage Device: ECS
Archive tape or cache
(managed by COTS
StorNext)

Process:

EcDlQuickServer

DlAdCopy

The QuickServer, running
on an ECS Service Host,
uses the DlAdCopy to
copy the science file and
its associated metadata
xml file from the ECS
Archive (tape or cache) to
the Data Pool file system
associated with the
granule’s collection.

R9.
Invoke
checksum

Once per file per
ECS granule

Process: EcDlQuickServer Process: EcDlActionDriver
(DPAD)

The DPAD chooses a
QuickServer on an ECS
Service Host to perform
the file checksum
operation. The Service
Host is chosen based on
availability.

 4-140 305-EED-001, Rev. 02

Table 4.10-4. Data Pool ECS Insert CSCI Process Interface Events (3 of 4)
Event Event Frequency Interface Initiated By Event Description

R10.
Checksum

Once per file per
ECS granule

Storage Device:

Data Pool disk (managed
by COTS StorNext
Storage Area Network)

Storage Device: ECS
Archive tape or cache
(managed by COTS
StorNext)

Process:

EcDlQuickServer

The QuickServer, running
on an ECS Service Host,
checksums the science
file and the associated
metadata xml file if
needed on the Data Pool
file system (temp
directory).

R11.
Extract
band info

Once per ECS
science granule,
where the
collection is
enabled for HEG
conversion (i.e.,
convertEnabledFl
ag is on for the
collection)

Storage Device: temp
directory in Data Pool file
system

Process:

EcDlActionDriver (DPAD)

bandtool

The DPAD uses the
bandtool utility to extract
band information from the
science granule, and
writes band information to
a temporary file in the
Data Pool file system

R12.
Invoke
registratio
n

Once per ECS
science granule

Process: EcDlInsertUtility
(NDPIU)

Process: EcDlActionDriver
(DPAD)

The DPAD invokes an
instance of the NDPIU
from a pool to perform the
granule registration.

R13. Get
metadata

Once per ECS
QA, PH, DAP and
browse granule

Database:

Inventory (EcInDb)

Process: EcDlInsertUtility
(NDPIU),

The NDPIU gets metadata
about the ECS QA, PH,
DAP, brose granule from
the Inventory database.

R14. Write
xml

Once per ECS
QA, PH, DAP and
browse granule

Storage Device: temp
directories in Data Pool
file system

Process: EcDlInsertUtility
(NDPIU)

The NDPIU writes the xml
metadata file for the
granule to the temp
directory on the Data Pool
file system.

R15.
Register

Once per ECS
granule

Database: Inventory Process: EcDlInsertUtility
(NDPIU)

The NDPIU populates
basic tables in the AIM
Inventory database with
inventory information
about the granule.

R16. Move
science
and xml to
hidden
directory

Once per data file
and xml file per
ECS granule

Storage Device: temp and
hidden directories in Data
Pool file system

Process: EcDlInsertUtility
(NDPIU)

The NDPIU moves the
science file(s) and xml file
for the granule from the
temp directory in the Data
Pool file system to the
appropriate hidden
directory (under
/.orderdata).

 4-141 305-EED-001, Rev. 02

Table 4.10-4. Data Pool ECS Insert CSCI Process Interface Events (4 of 4)
Event Event Frequency Interface Initiated By Event Description

[R17.
Update
status]

Once per insert
request

Database: Inventory Process: EcDlActionDriver
(DPAD)

The DPAD updates the
insert request status in the
DlInsertActionQueue.

[P1. Insert
action]

Once per
publication
request

Database: Inventory
(DlInsertActionQueue)

Process: Data Pool Ingest
Processing

The DPL Ingest
Processing server places
a request for granule
publication in the
DlInsertActionQueue.

[P2. Get
actions]

Continuously, as
long as there are
actions in
DlInsertActionQue
ue with status =
null or status =
RETRY. If no
actions, once per
configured time
interval (IdleSleep
in DlConfig)

Database:

Inventory

Process: EcDlActionDriver
(DPAD)

The DPAD gets batches
of actions (with status =
null or status = RETRY)
from the
DlInsertActionQueue.

P3. Invoke
publication

Once per ECS
granule to be
published in the
Data Pool

Process: EcDlInsertUtility
(NDPIU)

Process: EcDlActionDriver
(DPAD)

The DPAD invokes an
instance of the NDPIU
from a pool to perform the
granule publication.

P4.
Publish
registered
granule

Once per ECS
granule to be
published in the
Data Pool

Database: Inventory Process: EcDlInsertUtility
(NDPIU)

The NDPIU populates
additional tables in the
Inventory database with
inventory information
needed to support web
access to the granule.

P5. Move
to public
directory

Once per ECS
granule to be
published in the
Data Pool

Storage Device: hidden
and public directories in
Data Pool file system

Process: EcDlInsertUtility
(NDPIU)

The NDPIU moves the
data file(s) and xml file for
the granule from the
hidden directory in the
Data Pool file system to
the appropriate public
directory

P6.
Update
status

Once per ECS
granule to be
published in the
Data Pool

Database: Inventory Process: EcDlActionDriver
(DPAD)

The DPAD updates the
insert request status in the
DlInsertActionQueue to
the final request state, and
removes the insert
request from the
DlActiveInsertProcesses
table.

 4-142 305-EED-001, Rev. 02

4.10.4 Data Stores

There is one data store associated with the Data Pool subsystem. It is the Inventory database
(AIM DB). Table 4.10-5 provides a description of these data stores.

Table 4.10-5. Data Pool Data Stores
Data Store Type Description

Inventory DB Postgres The Inventory (AIM) database implements the
large majority of the persistent data requirements
for the Data Pool subsystem. The Inventory
database contains: a) inventory data for the Data
Pool granules b) configuration data for the Data
Pool; c) interim processing data for the Data Pool
utilities; d) data for monitoring Data Pool insert
queues and processing; e) Data Pool access
statistics; and f) information about data pool
entities such as collection groups, collections, file
systems, compression algorithms, and themes.

 4-143 305-EED-001, Rev. 02

4.11 Bulk Metadata Generation Tool Subsystem Overview

The ECS Bulk Metadata Generator Tool (BMGT) was created to support the development of
value-added providers and external search and order tools by providing them with detailed
metadata for the collections and granules archived at a DAAC. Currently, the EOS
Clearinghouse (ECHO) is the only consumer of this capability. Since ECHO and Reverb are the
primary search and order interface for ECS holdings, BMGT has a vital role in the ECS system.
BMGT automatically exports metadata to ECHO as changes occur to the ECS data. Metadata
can also be generated and exported on demand. There is currently no supported mechanism for
the export of BMGT generated metadata to value added providers other than ECHO. Value
added providers interested in this metadata should use ECHO’s client APIs to access it.

Generally, BMGT metadata export is initiated at a regular interval by a polling server in order to
export any changes to DAAC holdings in a timely manner. At the end of each interval, metadata
reflecting added, removed, or changed granules and collections in the DAAC archive is
generated in XML format. The generated products are exported to ECHO via HTTP PUT and
DELETE requests where they are ingested into the ECHO catalog. In addition to automatically
exporting metadata reflecting changes to the archive holdings, the BMGT can be manually
executed to generate metadata for specific granules and collections. The output of these
‘Manual’ exports includes the products requested by the operator. Manual exports can be used
to reconcile any discrepancies with ECHO or produce targeted sets of metadata for a particular
task.

In addition to core granule metadata, retrieved from the XML met files in the ECS XML archive,
BMGT exports additional metadata which may be useful to ECHO. This additional data
includes the visibility of the granule, the URLs (if any) to immediately download the data (as
well as metadata, Browse, and other ancillary files) from the datapool FTP/HTTP server,
insert/update times, additional spatial metadata, etc.

4.11.1 BMGT Subsystem Context

Figure 4.11-1 is the BMGT Subsystem context diagram. The diagram shows the high level
events generated between BMGT and other subsystems.

 4-144 305-EED-001, Rev. 02

BMGT
(subsystem)

Operator (via shell or GUI)

ECHO

Send HTTP request

AIM Database

Get metadata

XML Archive

Get granule metadata

Get HTTP response

-Initiate verification export
-Initiate Corrective reexport
-Pause/resume Automatic export
-Initiate Manual export
-View/set cfg parameters

ECS

Figure 4.11-1. BMGT Subsystem High Level Context Diagram

 4-145 305-EED-001, Rev. 02

Table 4.11-1 provides descriptions of the interface events in the BMGT Subsystem context
diagram.

Table 4.11-1. BMGT Subsystem High Level Interface Events
Event Interface Event Description

Initiate Corrective re-
export

The operator initiates a script, which will initiate the generation of a BMGT package
which contains the metadata for granules and collections which were queued for re-
export due to an error returned from ECHO.

Initiate Verification
export

The operator initiates a script, which will enqueue requests for the export of
verification metadata for the granules and collections specified by the operator. This
metadata will be used to verify that the metadata in ECHO’s catalog matches that in
ECS.

Pause/resume
Automatic export

The operator pauses or resumes the automatic export of metadata via the BMGT GUI.
The Automatic driver server must also be running in order to populate the export
queue.

Initiate Manual Export The operator runs a script, which will enqueue requests for the export of metadata for
the items requested by the operator i.e., based on a list of granules/collections/groups
and desired products, rather than an event time range.

Get metadata BMGT reads collection, granule, browse, and other metadata from the AIM database.

Get granule metadata BMGT reads granule/collection metadata from the XML/ODL metadata files located on
the small file archive.

Send HTTP request

BMGT sends an HTTP PUT (for an insert update) or DELETE (for a delete) request to
ECHO.

Get HTTP response BMGT receives a synchronous response to the HTTP PUT or DELETE, detailing the
result of the request, whether successful or otherwise.

View/set cfg
parameters

The operator uses the BMGT GUI to view the current values for various configuration
parameters that affect the behavior of BMGT. If the operator is logged in to the GUI
as a read/write user, he/she can modify these values. The Operator can also view the
group configuration and verification status.

4.11.2 BMGT/ECHO Interface

The interface from BMGT to ECHO (‘Send HTTP request’ in Figure 4.11-1) is a REST style
interface, meaning that all interaction is via standard HTTP requests (in this case PUT and
DELETE requests). In the case of a granule or collection insert, a PUT request is sent, the body
of which contains the granule or collection metadata. In the case of a deletion, a DELETE
request is sent with not body. The URL to which the request is made indicates the identity of the
affected resource. The interface is idempotent in that multiple inserts of the same item with the
same metadata will have the same effect as a single insert, and multiple deletions of the same
item will result in the desired effect of the item no longer existing in the system. This allows
BMGT to greatly simplify its event handling, as redundant inserts or deletions of non exported
items are legal (even if not overly efficient).

The interface from ECHO to BMGT (‘Get HTTP response’ in Figure 4.11-1) is in the form of a
synchronous response to the HTTP PUT/DELETE request. The HTTP status code as well as the

 4-146 305-EED-001, Rev. 02

contents of the response body, indicate whether the request was successful or whether it
encountered errors.

Table 4.11-2 and 4.11-3 describe the possible contents of the HTTP requests/responses which
make up the ECHO/BMGT interface. Note: all schema files referenced below can be found at
http://www.echo.nasa.gov/ingest/schemas/operations/ (unless otherwise specified)

Table 4.11-2. Request Content Types
File Type Schema Description

METC Collection.xsd (or a provider
specific ISO schema)

Collection metadata.

METG Granule.xsd (or a provider
specific ISO schema)

Granule metadata.

Table 4.11-3. Response Content Types
File Type Schema Description

Ingest
Summary
Report

EchoRestExceptions.xsd
(https://api.echo.nasa.gov/echo-
rest/wadl/bindings/EchoRestExceptions.xsd
)

Listing of errors, if any, encountered during
the fulfillment of the request.

4.11.3 ECS Events and BMGT products

In general, BMGT is run automatically on a polling interval. This interval can be any interval
desired by the DAAC, from seconds to hours, but in general it is best to be on the order of 10 to
60 minutes. At the end of each interval, BMGT will enqueue for export to ECHO (via the
interface described in 1.1.2) metadata reflecting any relevant changes to the ECS holdings since
the end of the last interval. Relevant changes include inserts, deletes, and updates to collections
and granules which are configured to be exported to ECHO. Such events cause database triggers
to be fired which record the events in database tables where they are then picked up by BMGT.
On each polling interval, BMGT will select up to a configured number of events which are not
yet enqueued for export, and enqueue the export of the current state of the affected object. If
multiple events for the same item are picked up at the same time, only a single request will be
enqueued. Since the current state (at the time of request processing) will be used to determine
the type of export (insert or delete), it does not matter what type of event caused the request to be
enqueued, or even if the events contradict one another (e.g. an insert and a deletion of the same
item). Table 4.11-4 describes the types of events which are relevant to BMGT/ECHO, and what
is exported to reflect each event during an automatic export. In a Manual or Verification BMGT
export, export requests are similarly enqueued, but for items specified by operator input rather
than by events. By default, Manual BMGT exports will export the current state of the requested
item, as automatic export does. However, it is possible to request, via command line options, the
export of inserts or deletes for only those specified items which are indeed inserted or (logically
or physically) deleted, and in special cases, to force the delete of items which would normally be
eligible for insert.

 4-147 305-EED-001, Rev. 02

Table 4.11-4. ECS Event to BMGT Product Mapping (1 of 2)
Event Type Cause/locatio

n
Products

[<FileType>
<Schema
element>]

Sample URL

GRINSERT Granule
inserted into
AIM database,
or logically
undeleted.

Granule
PUT

PUT https://api-test.echo.nasa.gov/catalog-
rest/providers/NSIDC_TS1/granules/
SC%3AMYD29P1N.006%3A6658535

GRDELETE Granule
deleted from
AIM either
logically or
physically.

Granule
DELETE

DELETE https://api-test.echo.nasa.gov/catalog-rest/
providers/NSIDC_TS1/granules
/SC%3AMYD29P1N.006%3A6658535

GRUPDAT
E

Granule core
metadata
updated in
AIM/XML file.

Granule
PUT

PUT https://api-test.echo.nasa.gov/catalog-rest/
providers/NSIDC_TS1/granules
/SC%3AMYD29P1N.006%3A6658535

GRHIDE Granule hidden
in AIM DB, and
not available for
order.

Granule
PUT

PUT https://api-
test.echo.nasa.gov/catalog-
rest/providers/NSIDC_TS1/granules
/SC%3AMYD29P1N.006%3A665853
5

GRUNHIDE Granule
unhidden in
AIM DB, and
now available
for order.

Granule
PUT

PUT https://api-test.echo.nasa.gov/catalog-rest/
providers/NSIDC_TS1/granules/
SC%3AMYD29P1N.006%3A6658535

CLINSERT Collection
inserted into
AIM DB.

Collection
PUT

PUT https://api-test.echo.nasa.gov/catalog-
rest/providers/NSIDC_TS1/datasets/MODIS%2F
Aqua%20Sea%20Ice%20Extent%
20Daily%20L3%20Global%201km%20EASE-
Grid%20Day%20V086

CLDELETE Collection
deleted from
AIM DB.

Collection
DELETE

DELETE https://api-test.echo.nasa.gov/catalog-
rest/providers/NSIDC_TS1/datasets/MODIS%2F
Aqua%20Sea%20Ice%20Extent%
20Daily%20L3%20Global%201km%20EASE-
Grid%20Day%20V086

 4-148 305-EED-001, Rev. 02

Table 4.11-4. ECS Event to BMGT Product Mapping (2 of 2)
Event Type Cause/location Products [<FileType>

<Schema element>]
Notes

CLUPDATE Collection
modified in AIM
DB.

Collection PUT

PUT https://api-test.echo.nasa.gov/catalog-
rest/providers/NSIDC_TS1/datasets/MODIS%2FAqua%
20Sea%20Ice%20Extent%20Daily%20L3%20Global%
201km%20EASE-Grid%20Day%20V086

BRINSERT Browse file
linked to
science granule
in AIM DB

No Export

BRDELETE Last link to
browse file
deleted in AIM
DB

No Export

BRLINK Science/Brows
e link added to
AIM DB.

Granule PUT (for linked
granule)

PUT https://api-test.echo.nasa.gov/catalog-rest/providers/
NSIDC_TS1/granules/
SC%3AMYD29P1N.006%3A6658535

BRUNLINK Science/Brows
e link removed
from AIM DB.

Granule PUT (for linked
granule)

PUT https://api-test.echo.nasa.gov/catalog-rest/providers/
NSIDC_TS1/granules/
SC%3AMYD29P1N.006%3A6658535

QAUPDATE QA parameters
modified in AIM
DB.

Granule PUT PUT https://api-test.echo.nasa.gov/catalog-rest/providers
/NSIDC_TS1/granules
/SC%3AMYD29P1N.006%3A6658535

GRURLINS Granule Added
to public
datapool.

Granule PUT PUT https://api-test.echo.nasa.gov/catalog-rest/providers/
NSIDC_TS1/granules/
SC%3AMYD29P1N.006%3A6658535

GRURLDEL

Granule
logically or
physically
removed from
public datapool.

Granule PUT PUT https://api-test.echo.nasa.gov/catalog-rest/providers
/NSIDC_TS1/granules/SC%3AMYD29P1N.006%3A665853
5

CLMOVED Collection
metadata
updated in DPL
DB.

Granule PUT (for all
public granules in the
collection)

PUT https://api-test.echo.nasa.gov/catalog-rest/providers/
NSIDC_TS1/granules/SC%3AMYD29P1N.006%3A6658535

 4-149 305-EED-001, Rev. 02

4.11.4 BMGT Architecture

Figure 4.11-2 displays the BMGT Architecture diagram.

Figure 4.11-2. BMGT Architecture Diagram

Dispatcher

Generator

Exporter

Generate
Product

Export
Product

Automatic

Driver

Manual

Request
products

Get/Process
Response

Response
Handler

Verification

Notification
Handler

 4-150 305-EED-001, Rev. 02

Table 4.11-5 provides descriptions of processes shown in the architecture diagram.

Table 4.11-5. BMGT Processes (1 of 2)
Process Type Hardware

CI
COTS/

Developed
Functionality

Automatic Driver Server OMSHW Developed Server process polls the AIM event
History table to find any
unexported events which are
eligible for export. Events for the
same item (collection or granule)
are consolidated. Requests are
added to the BMGT export request
table pursuant to the selected
events and the events are marked
as having been picked up.

Manual Driver Application OMSHW Developed The operator runs a script to
explicitly tell the BMGT to enqueue
export requests. The Manual start
script provides a large number of
options for generating the export
package to fit the operator’s
needs. These options include the
ability to release any corrective
export requests awaiting operator
approval.

Verification Driver Application OMSHW Developed The Operator runs a script to
request the export of full metadata
for a specified list of granules and
collections for the purpose of
verifying and reconciling any
differences between ECS and
ECHO catalogs. Alternatively, the
Operator can request the query
from ECHO of a list of granules or
collections to be compared against
the AIM holdings to determine if
there are any extra or missing
items.

 4-151 305-EED-001, Rev. 02

Table 4.11-5. BMGT Processes (2 of 2)
Process Type Hardware

CI
COTS/

Developed
Functionality

Dispatcher Server OMSHW Developed The server polls the BMGT export
request table to find any requests on
any of its logical queues awaiting
export. It then adds these requests to
one of its internal queues (adding an
activity to the BMGT export activity
table), and then works off the queues,
generating, exporting, and handling
responses for each one. NOTE:
Each of the remaining ‘server’
components actually run as parts
of the dispatcher server, but are
listed here because they each have
a logically separate function.

Generator Server OMSHW Developed Once an export activity has been
picked up off the queue for export, it
is passed to the generator, which
finds the current state of the item, and
then generates the appropriate
metadata based on the item state and
the requested export type. If the
appropriate or requested action is a
delete, then no metadata is
generated. Otherwise, the native
metadata is processed into the
appropriate format, and additional
dynamic metadata elements are
added as appropriate based on the
current configuration.

Exporter Server OMSHW Developed Once metadata is generated pursuant
to an export request, the dispatcher
calls the exporter to send that
metadata to ECHO. If the export is a
delete, an HTTP DELETE is sent with
no body. Otherwise, a PUT is sent
containing in its body the item’s
metadata. The URL to which the PUT
or DELETE is directed indicates the
item being inserted, deleted, or
updated. If the export is on behalf of
a verification request, then the
request will contain a special query
parameter which tells ECHO to
invoke special verification handling.

 4-152 305-EED-001, Rev. 02

EBIS document 920-TDx-001 (HW Design Diagram) provides descriptions of the HWCIs and
document 920-TDx-002 (Hardware-Software Map) provides site-specific hardware/software
mapping.

4.11.5 Use of COTS in the BMGT Subsystem

 JRE

The JRE constitutes the Java virtual machine and the Java platform core libraries. It
provides applications with the Java platform. Included with it is JAXP (Java API for
XML Processing), which is also used by BMGT.

 Hibernate

Hibernate provides access to the postgres database, including the ability to link java
objects to database records by way of annotations.

 JDOM

JDOM libraries allow java applications to create and edit xml documents.

 Postgres Server

The BMGT accesses the Inventory database to read inventory metadata.

 JAF / Javamail

Java Activation Framework (JAF) and Javamail provide BMGT the capability to send
email messages.

 c3p0

Used to maintain a pool of connections to the Inventory database.

 Jersey

A java library for setting up REST style web services.

 Dojo

A java script library for building dynamic web GUIs.

4.11.6 BMGT Subsystem Software Description

4.11.6.1 BMGT CSCI Functional Overview

The BMGT Dispatcher server is always running, waiting for work to do. However, metadata
generation will only be initiated when one of the Drivers enqueues export requests. There is one
driver for each BMGT cycle type (EVENT, MAN, CORR, verification [VER, SHORT, and
INCR]). Each driver is responsible for deciding which granules or collections to enqueue
requests for, as well as what type of export to request. VER, INCR, SHORT, CORR, and MAN
pre processors are actually the same executable, the Manual Driver, but are called with different

 4-153 305-EED-001, Rev. 02

options in each case. The Manual Driver is a stand-alone executable which is called
interactively by the operator, while the Automatic Driver (which enqueued EVENT requests) is a
server process which polls for new events on the inventory event queue for which to enqueue
requests.

In general, the use case for each BMGT cycle type is as follows:

Automatic - Automatic Driver is a server process configured to poll on a set interval for
new events in the AIM event table for which export requests must be enqueued. These
events are then added to the EVENT queue and marked as processed in the AIM event
table.

Manual - The operator runs the Manual Driver to explicitly request the export of
specified collections and/or granules. Requests are added to the MAN queue pursuant to
the specified options. The driver provides a large number of options for specifying the
exact items and export type to fit the operator’s needs.

Corrective - The operator runs the manual driver with the --corrective option to release
any export requests which have been blocked. Blocked requests are those which were
automatically enqueued due to errors, or those which have themselves encountered an
error which requires operator intervention.

Short - The operator runs the Manual Driver with the --short option to initiate the request
of a listing of all granules in a collection or all collections followed by the comparison of
this listing against the local database. Any discrepancies will result in the addition of
new export requests to the CORR queue.

Long Verification - The operator runs the Manual Driver with the --long option to
enqueue requests on the VER queue for the export of the specified granules and/or
collections for the purpose of full comparison with the metadata on record in ECHO.

Incremental Verification. The operator runs the Manual Driver (or it is run via a cron)
with the --incremental option to select and add to the INCR queue a set of the least
recently updated granules (and their associated collections) which have not yet been
incrementally verified in this manner since their last update. This metadata is compared
against that on record in ECHO.

Once an export request has been enqueued, it will be eligible for dequeueing by the BMGT
Dispatcher. The dispatcher will poll for requests on the queue and pass them to the Generator,
which will generate the appropriate metadata. The Dispatcher will then pass the metadata to the
Exporter which will perform an HTTP PUT or DELETE to ECHO to propagate the desired
insert, update, or delete. The HTTP response will be then be processed by the Response Handler
to determine whether the export was successful or if there were errors and then processes any
errors accordingly.

The following sections provide more detailed descriptions of the various components briefly
described above.

 4-154 305-EED-001, Rev. 02

4.11.6.2 Dispatcher

The Dispatcher is the central component of BMGT outside the database. It is responsible for
orchestrating rest of the components of the system and setting the overall pace of exports to
ECHO. On one hand, it communicates with database to look for new entries waiting to be
exported to ECHO and on the other hand it communicates with Generator, Exporter and
Response Handler which do the actual job of generating the metadata, sending it to ECHO and
finally handling the response received from ECHO. Dispatcher holds the main controls of
BMGT which are used to start, stop, suspend or resume exports to ECHO.

Figure 4.11-3 shows at a high level how the Dispatcher operates. The design of Dispatcher is
based upon the popular producer-consumer design pattern.

Figure 4.11-3. Dispatcher Using Producer-Consumer Design Pattern

Request Selectors (Producers)

Dispatcher Threads (Consumers)

Blocking Queues

Coordinator

ExportActivity Object (Queue Item)

Marker Object (Poison Object)

Dispatcher (Controller)

 4-155 305-EED-001, Rev. 02

Dispatcher Subcomponents

The Dispatcher is made up of 5 sub components:

1) Request Selector – Producer.

2) Blocking Queue

3) Dispatcher Thread- Consumer.

4) Coordinator

5) Dispatcher – Controller

The sub components are explained in detail below.

Request Selector

This component is responsible for polling the bg_export_request table in the database for entries
which are available for export to ECHO. This table is mapped to the ExportRequest data model
class, which will be the dispatcher’s interface to the table. The table will be referred to
throughout this section as the ExportRequest table. The records in the ExportRequest table can
be created by four different types of event drivers – event, manual, incremental and corrective.
Records are also added to the table when a new collection is enabled for export. A field within
this table called, ExportQueue, has six possible values – EVENT, MAN, VER, INCR, CORR &
NEW. The table can be seen as holding records for six different logical queues one
corresponding to each of these values. Each of the drivers feeds into one or more of these
queues. An instance of Request Selector, from now on referred to as a “producer”, is created
corresponding to each of the six database queues. The six producers run concurrently and can be
halted or resumed independently. The “produce” operation of the producer corresponds to
fetching records from the corresponding database queue and creating a “bucket” of
ExportActivity objects (described below), each item in the bucket corresponding to one
ExportRequest record fetched from the database. Only those records are fetched whose “Status”
field is set to “PENDING”. A status of “PENDING” indicates that the metadata for a granule or
collection corresponding to the record is recently inserted, updated, removed, enabled for export,
or that a manual or verification export has been requested by the operator, but the changes are
not yet sent to ECHO. An operator configured number of records are selected at a time. The
status of all the selected records is updated to “STARTED” once the corresponding
ExportActivity object is created.

The bg_export_activity table in the database keeps track of the current export attempt
corresponding to a record in ExportRequest table. This table is mapped to the ExportActivity
data model class, which will be the dispatcher’s interface to the table. The table will be referred
to throughout this section as the ExportActivity table. Multiple export attempts could be made
for a given entry in the ExportRequest table (for instance, if an export attempt fails and the
request must be retried). A record is added into ExportActivity for each of the requests picked
up by the dispatcher. ExportActivity has a field, called “Status”, which is changed progressively
within the Dispatcher Threads (consumers) as different components work on it until it reaches a
terminal status. The ExportActivity objects are stored in a buffer as they are created. The

 4-156 305-EED-001, Rev. 02

contents of a single database fetch which are put into the buffer will be referred to as a “bucket”
(see figure 4.11-4). Along with the ExportActivity object, producer also adds a “marker object”
at the end of the bucket. The marker object does not contain any useful data itself, but is a signal
to the consumer that the end of the bucket is reached. Note that the actual size of the bucket will
be one more than the size of the database fetch. The producer puts all the contents of the bucket
into a Blocking Queue (described next). The contents of the buffer are placed one at a time on
the Queue until the buffer is empty. The producer has three different modes based on the
operation that it is performing at any given moment. The mode when it is inserting the objects
into the queue from the buffer will be referred to here as “Inserting” mode.

Once the objects are inserted, it goes back to checking for new entries in the database queue.
This mode will be referred to as “Fetching” mode. If no entries are found, it goes into “Polling”
mode. In the Polling mode, it periodically checks the availability of new entries until they are
found.

Blocking Queue

As described above, producers put the contents of a bucket into a queue. A single queue is
associated with each producer. The queue is an Array Blocking Queue of fixed size which is
shared by producers and Dispatcher Threads (described below), also referred to here as
consumers. The producers insert data into the queue one object at a time. If the queue is full, the
producer waits on the queue until space becomes available and the object is inserted. After the
object is inserted, it tries inserting the next object in the bucket and so on until the bucket is
empty. When all the objects in the producer’s bucket are inserted into the queue, it is free to
produce a new bucket. The buckets on the queue are analogous to goods transported on a
conveyor belt in an assembly pipeline (See Figure 4.11-4). For maximum throughput, the size of
the queue will be sufficiently large so that the producer can produce a new bucket even before
the consumers can consume the contents of the entire queue. That way, consumers don’t have to
wait for the producer to produce a new bucket. Similarly, the size of the bucket will be chosen
appropriately. If the size of the bucket is too small, it leads to frequent database requests and if it
is too big, it requires more memory and it takes longer time to produce the bucket and consumers
could be waiting (if the queue is small) while the producers produce the bucket.

 4-157 305-EED-001, Rev. 02

Figure 4.11-4. Bucket on a Queue

Dispatcher Thread

Dispatcher Threads (or consumers), with the help of other components of BMGT, do the core job
of generating and exporting the metadata to ECHO and handling the response received from
ECHO. A Dispatcher Thread carries out all these operations synchronously in a single thread.
But several (a configurable number) threads will be running concurrently to speed up the exports

Each consumer object is associated with exactly one instance of Exporter, Generator and
Response Handler. The consumer passes the ExportActivity Object received from a queue and
passes it to each of the components in a sequence and updates the status field of the
ExportActivity object as it proceeds (see the figure 4.11-5). The contents of the ExportActivity
Object are modified by the components as it moves from one component to another.

Bucket

 4-158 305-EED-001, Rev. 02

Figure 4.11-5. Dispatcher Thread and the Sequence of Calls to Various
Components

1) Dispatcher Thread first sends the ExportActivity object to Generator requesting it to
generate the metadata corresponding to granule or collection associated with the
object. The status of the ExportActivity object is updated to “GENERATING”.

2) The generator generates the metadata (See Generator section) and populates the
ExportActivity with a reference to an XML object which contains the metadata (or no
metadata, if the item is deleted). The Dispatcher Thread itself is indifferent to the
actual contents to be exported or the kind of export. For example, it does not treat a
metadata INSERT any different from DELETE.

3) Once the Generator returns with the updated ExportActivity, it is sent to Exporter for
exporting to ECHO. The status of ExportActivity is updated to “EXPORTING”.

4) The Exporter sends the request to ECHO and receives the response (see Exporter
section) which is populated into the ExportActivity object.

5) The Dispatcher then submits the updated ExportActivity object to the Response
Handler for evaluating the response (See Response Handler section). The status of
ExportActivity is updated to “EVALUATING”.

Generator Exporter
Response
Handler

Database

ExportActivity

Dispatcher Thread

Generate Product Export Product Get/Process Response

1

2 4 6

Update the status
of ExportActivity

Update the status
of ExportRequest

7

5
3

 4-159 305-EED-001, Rev. 02

6) Response Handler is responsible for setting the terminal status of the Export Activity
and taking any necessary action based on the response received from ECHO. It can
for example, mark the export entry for subsequent export attempt or send notification
to the operator regarding errors or warnings which need operator’s attention.

7) After the Response Handler returns, the Dispatcher Thread updates the status of
ExportRequest objects to one of the terminal statuses if ExportRequest is completed
or to a retry status if another attempt needs to be made to process the ExportRequest
(Please see Response Handler section for the details regarding the terminal statuses).

Coordinator

Coordinator is responsible for assigning queues and associated buckets to each of the consumers.
Each bucket is consumed by one or more consumers at any given moment. The retrieval of
entries in the bucket by the consumers is synchronized on the bucket and ensures that each
consumer gets a distinct entry to process. If a consumer receives a regular ExportActivity object,
it processes in the manner described under “Dispatcher Thread”. But if a consumer receives a
marker object instead of the regular ExportActivity object, it indicates that the bucket is
consumed. Note that exactly one consumer of the bucket will receive the marker object. The
marker objects mark the boundaries of a bucket. On receiving the marker object, it signals
coordinator of the end of the bucket on the corresponding queue. Each of the consumers which
are associated with a bucket will ask the coordinator for the status of the bucket before reading
an item in the bucket in order to check if the bucket is a new bucket or is the same as they started
with. If the bucket is different, the consumer goes back to the coordinator for a new bucket to be
assigned. In summary, a consumer works on a single bucket on a queue until it is empty before
changing the bucket. The new bucket assigned could be on the same queue or a different queue.
But not all consumers which consumed a bucket exit the queue after the bucket is empty; one
consumer, the one which actually found the marker object remains with the queue (and the rest
of the consumers return to coordinator for a new bucket/queue). If the remaining consumer finds
a new regular entry, it starts working on the new bucket as a “regular consumer”, but if it does
not find any entry, it goes into a polling mode and checks periodically for a new bucket on the
queue. It also signals the coordinator that the queue is empty in the latter case. The coordinator
will now not assign the queue to any new consumer when the request for new bucket is made. If
the “polling consumer” finds a valid entry again, it signals the coordinator that the queue is non-
empty and the bucket on the queue is ready to be consumed. The coordinator can now assign
more consumers to the bucket. The “polling consumer” will switch to become a “regular
consumer” on the same queue. If all the queues are empty, all the “regular consumers” will wait
on the coordinator while each of the “polling consumers” poll.

When a consumer requests the coordinator for a new bucket on a queue, it selects the bucket
based on a “fairness policy”. Coordinator has a list of the number of consumers assigned to each
queue in the “steady flow state”. In the “steady flow state” none of the queues are empty for a
sufficiently long time. The number of consumers which are assigned to a queue in the “steady
flow state” is an operator configurable parameter. The parameters are chosen so that buckets on

 4-160 305-EED-001, Rev. 02

all the queues are consumed evenly without one queue being assigned all the consumers. If a
queue is empty though, the consumers which would have consumed a bucket on the queue in the
“steady flow state” can be now be assigned to other queues so that the consumers are not wasted
when the queue is empty. So the actual number of consumers consuming a bucket on a queue at
any given time can be more than the configured number (which would be used in the “steady
flow state”). The coordinator maintains a count of all the consumers assigned to each of the
queues at any given moment. The coordinator uses this count and the configuration parameters to
calculate the “fairness policy”. The coordinator will assign to a consumer, requesting a bucket to
work on, a bucket of the queue which is 1) non-empty and 2) has the least percentage of
consumers assigned to it compared to what it would have been assigned in the “steady flow
state”.

Dispatcher

This component is responsible for controlling the rest of the components of the Dispatcher
including start, stop, suspend and resume operations of the consumer-producer pipeline. This
sub-component will also be referred to here as “controller” in order to avoid confusion with the
top level component with the same name. Controller will have public interfaces to carry out the
operations. These interfaces can be called from within GUI so that the operator can control
Dispatcher (note, the interface to the GUI may be via signal entries to the database, rather than a
direct RPC or web service call). When the operator issues a stop request on the controller, it is
important that all the exports which are in the process are completed before stopping. In order
for this to happen, controller will first stop producers so that no more buckets are fetched and
wait for the consumers to consume all the buckets which are already created. The same will also
happen when controller is paused. But when stopped, consumers and producers will be discarded
whereas during pause, the objects will not be discarded, but wait for the controller to call
resume. If the controller goes down unexpectedly, the ExportRequest and ExportActivity tables
will have records whose status implies that the corresponding granules or collections are in the
process of being processed when they actually are not. To rectify this, on startup, Dispatcher will
check these tables for the inconsistent records and their status will be reverted back to the
original status. Note that all the export requests to ECHO are idempotent and resending a
request, which has already been sent but the status not changed due to an unexpected crash, does
not cause any inconsistency or error (besides possible messages indicating that an item has
already been deleted, which will be ignored).

It will be possible to change some of the configuration parameters even while the Dispatcher is
running like changing the bucket size or polling frequency for new Requests. These parameters
will be referred to as dynamic configuration properties, for changing other configuration
parameters, queue size for example, start of Dispatcher will be required. Each of the producers
and consumers will have their own controls which will be called by controller. The operator will
be able to incorporate the changes to dynamic configuration properties without actually
restarting Dispatcher (or BMGT), controller will do the necessary work to gracefully permeate
the new parameters to various components of Dispatcher.

 4-161 305-EED-001, Rev. 02

Other Design Issues

The Dispatcher will be implemented as a Java Daemon process with its own main method. It
will be started as part of the normal ECS mode start up process and will run continuously. The
Dispatcher will pull in the jar files containing the Generator, Exporter, and Response Handler, as
well as the data model classes (for database access).It is important to note that all the other
components referenced here, (Generator, Exporter, etc.) could be considered as part of the
Dispatcher, rather than separate top level entities. However, since they are logically separate,
they will be implemented in separate java packages (in separate jar files) and will be referred to
for all intents and purposes as separate entities. Dispatcher will also have a shutdown hook
which would allow the operator to stop Dispatcher from command line.

Figure 4.11-6. Component Dependencies

 Generator

Exporter

Response Handler

Request Selector
Dispatcher
Thread

Dispatcher
(Main)

Database

Dispatcher
Component

Single JVM

Coordinator

 4-162 305-EED-001, Rev. 02

Also, note that it is not necessary that a consumer is associated with the same triplet of Exporter,
Generator and Response Handler objects all the time. Instead, a pool of each type of objects can
be initialized and a consumer can retrieve these objects on demand using a factory method
present within these components and return it back to the pool when it is done using it. The
object can be reused by other consumers later on or it can be discarded if idle for sufficiently
long time. This corresponds to the object pool design pattern. This can lead to less memory
usage as not all the objects of each component will spend same amount of time on an
ExportActivity object and one component will be waiting while an another component works on
it. When the number of consumers is large, the system will, on an average, need less instances of
a component which takes the least amount of time doing processing among the three. And the
component which is slowest will require maximum number of instances, not greater than the
number of consumers. If it is known that a particular component is going to be the slowest, it
can as well be tightly attached to the Dispatcher Thread.

Workflow

High level diagram of Dispatcher’s interaction with the database.

Figure 4.11-7. Dispatcher Database Sequence

1. Read system configuration

2. Poll for eligible export requests.

3. Insert export activity and link to the export request. Process the activity, updating
its state as it proceeds.

bg_configuration_property bg_export_request

Dispatcher

bg_export_activity

2

3

 4-163 305-EED-001, Rev. 02

4.11.6.3 Generator

Overview

The Generator is responsible for confirming the export type of a request (correcting if
necessary), determining whether metadata generation should take place, reading and translating
metadata from the ECS archive into the appropriate format and, finally, calculating and inserting
metadata elements based on the ECS catalog record and external configuration as appropriate.

Generator can produce collection or granule metadata in one of two types, ECHO10 or
ISO/SMAP, meaning there are four distinct metadata types: Echo10Collection, Echo10Granule,
SmapCollection and SmapGranule. Information from the configuration record for the collection
associated with the activity determines the appropriate output format.

While there are no concrete plans for more metadata types, it is certainly conceivable that they
would be added at a later point, for instance, if future missions provide metadata conforming to a
different ISO profile. Designing the Generator to seamlessly handle this eventuality would be
over-engineering, and would increase the cost of implementation. However, the Generator is
designed with consideration of reducing the impact if and when such enhancements are
necessary. The generator makes use of polymorphism methodologies, for instance using abstract
classes for root metadata classes such that new classes can be written which extend these
abstractions and fairly easily plugged in to the Generator.

Architecture

The main responsibility of the Generator subsystem is to produce and populate an XML
representation of a metadata object. Before doing so, Generator must also determine the
appropriate export type for the request, and whether generation should be attempted.

Input sources required by Generator fall into four categories: configuration properties, resource
files, request information and metadata information. Configuration properties and resource files
are read only once, into the fields of a singleton object, from which representations of these data
can be safely obtained by individual Generator instances on separate threads. Information about
the context of a request (such as, say, whether the collection it refers to exists in the database
tables) is obtained either by querying the database directly via a data access object (DAO), or
from the persisted request object itself, both of which reside in the BMGT Common package.
All calls to the DAO are carried out in a single block, so that only one database session is
required.

Once the necessary information about the request is obtained, Generator decides which of five
actions to take:

a. Make no changes to the ExportActivity object

b. Change the export type to DELETE

c. Throw a GenerationException, causing Dispatcher to skip exporting this request

 4-164 305-EED-001, Rev. 02

d. Change the export type from OPEN to ADD, attempt to generate the metadata, and if
successful, populate the generatedMetadata field of the ExportActivity.

e. Attempt to generate the metadata, and if successful, populate the generatedMetadata
field of the ExportActivity (no change to export type).

The Generator will always choose the export type and execution path that matches the current
state of the specified item, even if that contradicts the type of the event which originally caused
the generation. If an item exists, and is eligible for export, its full metadata will be generated
(resulting in an insert or update to ECHO). Otherwise, a delete will be generated. There are two
exceptions to this rule. If a “full collection update” if requested as part of a manual export,
indicating that a collection needs to be completely removed and re inserted into ECHO in order
to propagate an update—or, if a “force delete” is requested when a collection is not deleted—
then the generator will return a deletion response to the caller, despite the collection not truly
being deleted.

Generator can produce collection or granule metadata in one of two formats, ECHO10 or SMAP,
meaning there are four distinct metadata types: Echo10Collection, Echo10Granule,
SmapCollection and SmapGranule. Information from the configuration record for the collection
associated with the activity determines the appropriate output format.

Native metadata formats map to output formats as follows:

Table 4.11-6. Metadata Native to Target Schema Mappings
Native metadata format: Output metadata format:
ECS ECHO 10
ISO/SMAP ISO/SMAP

When ECHO10 is the expected output format, the native metadata file must first be translated
from the ECS format into ECHO10 XML. This is done using an XSLT stylesheet and processor.
In the case of Echo10Collection, native metadata exist in ODL descriptor files, which must be
converted into ECS XML before translation. Once the ECHO10 XML has been obtained, it is
unmarshaled into a JAXB representation of the metadata type. Additional metadata items, such
as insert and update times, URLs, spatial and orbit metadata, cloud cover, browse linkages, and
other elements are obtained or calculated, then inserted into the JAXB content tree. Finally, the
completed metadata content is once again marshaled to XML.

When SMAP is the expected output format, the process is much simpler. The native metadata in
this case are also in SMAP format, but lack a few elements or values (e.g. insert and last update
times, granule URLs, DIFid). These are passed in as parameters using an XSLT stylesheet and
processor. We chose to forego the added overhead of a JAXB content model for SMAP at this
time, since the data required for insertion were so few and simple in structure.

 4-165 305-EED-001, Rev. 02

Generator Subcomponents

Generator Core

The Generator class exposes generate(ExportActivity) to the Dispatcher. This method mutates
ExportActivity, and is the access point to all of Generator’s functionality. The generate method
will follow one of three execution paths, depending on the system’s state:

Table 4.11-7. Generator Behavior
System state: Behavior of generate(ExportActivity):

ExportActivity.ExportType is
FORCE_DEL

Do nothing and return.

ExportActivity.ExportType is DEL and
collection or granule does not exist in
the database.

Do nothing and return.

ExportActivity.ExportType is DEL and
collection or granule exists in the
database.

Throw GenerationException.

ExportActivity.ExportType is OPEN,
but the collection or granule does not
exist in the database.

Set ExportActivity.ExportType to DEL and
return.

ExportActivity.ExportType is not DEL
or FORCE_DEL, but item is not
exportable.

Throw GenerationException.

ExportActivity.ExportType is OPEN
and collection or granule exists in the
database, and is exportable.

Set ExportActivity.ExportType to ADD and
attempt to generate metadata.

ExportActivity.ExportType is ADD or
anything not listed above

Attempt to generate metadata.

Metadata model

An instance of a metadata model represents a single metadata entity, either a Granule or a
Collection, providing an structure for storing and handling the XML representation (either String
or JAXB content tree), and providing behaviors needed for obtaining and calculating metadata,
as well as populating the XML representation. Note that these objects represent discrete
metadata units, not metadata generators. This better fits ECHO’s new REST API, in which there
is one metadata item per request, and represents a design departure from BMGT 8.1.

ECHO10 metadata models represent XML using a JAXB content tree. JAXB was chosen
because it provides for easy validation against an XML Schema, and its xjc Binding Compiler

 4-166 305-EED-001, Rev. 02

can be used to easily generate JAXB Java bindings from an existing XML Schema file, greatly
facilitating the possible addition of future content formats.

On instantiation, an ECHO10 metadata model object:

1. Instantiates its JAXBElement content tree.

2. Reads the native metadata file, converting contents to XML if needed (e.g. ECS
collection metadata converted from ODL format).

3. Unmarshals the native XML into the content tree.

4. Populates its content tree, using values and calculations, and drawing on event,
configuration and science data obtained via the Data Model. Code used for calculated
metadata was ported from BMGT 8.1 to the extent possible. Detailed documentation on
these calculations can be found in the file:
BE_82_01_AdditionalMetadataDescription.doc which is enclosed with this review
package.

5. Lastly, metadata models also provide a getGeneratedMetadata accessor method, used by
the Generator core to obtain the GeneratedMetadata object.

Classes (see class diagrams later in this document):

Metadata – Abstract class providing getters for common metadata properties, the
GeneratedMetadata accessor, and unmarshalling behavior

Collection – Abstract classes providing format-independent Collection behaviors; extends
Metadata

Granule – Abstract class providing format-independent Granule behaviors; extends Metadata

Concrete types – Classes representing metadata with a specific type and format. These classes
extend either Collection or Granule, and provide behaviors specific to their particular type and
format (e.g. ECSCollection converts its native metadata, the ODL descriptor file, into ECS
XML), including methods for calculating metadata and populating their content trees

GeneratedMetadata

GeneratedMetadata objects encapsulate methods for obtaining the populated, marshaled
metadata. This additional layer of encapsulation was chosen (over, say, simply passing around a
StreamWriter or String) to allow for a looser, less implementation-specific coupling between
Generator and the Data Model and Exporter.

 4-167 305-EED-001, Rev. 02

Additional Metadata Elements

Additional metadata elements which the Generator inserts into the generated XML are described
in the document: BE_82_01_AdditionalMetadataDescription.doc which is enclosed with this
review package.

4.11.6.4 Exporter

Exporter is responsible for sending granule and collection metadata received from Dispatcher to
ECHO catalog for ingest. It acts as a client to the ECHO’s RESTful Web Services and uses
HTTP PUT and DELETE to make the requests. The metadata for export are generated as
described in Generator section of the document. The Exporter will return the response received
from ECHO to the Dispatcher which in turn passes the response to the Response Handler to be
processed.

Figure 4.11-8. Components of Exporter and Their Dependencies

 Token

 Ingest Client Token Client

 Exporter

Factory

ECHO

Dispatcher

Exporter
Component

 HTTP Client

 4-168 305-EED-001, Rev. 02

Exporter Sub Components

The figure 4.11-8 shows the major sub-components of Exporter and their Dependencies. These
are:

1) Token
2) Exporter
3) HTTP Client and its sub-types
4) Factory

Each of the components is described in detail below:

Token

Each RESTful API request to ECHO needs to be authenticated before it is processed. ECHO
uses HTTPS for authentication at the protocol level. At the application level, the authentication
is doneusing a security token. Each export request to ECHO needs to have a valid security token
in its header before it can be processed. A security token is linked to an ECHO user account,
which has been granted ingest privileges via PUMP (Provider User Management Program).
ECHO provides a Restful Web Service API, distinct from the API used for ingesting metadata,
for creation and management of the Tokens. Tokens are designed as light weight objects within
ECHO and many valid tokens can be associated with a single account at any given moment.
Each token has a validity period after which it cannot be used for exports. It is also possible to
invalidate a valid token using an appropriate request.

The Token component of the Exporter will encapsulate the creation and management of Tokens
used for exports to ECHO. Each Exporter object (described next) within a Dispatcher Thread
will have its own token which will be used for all the Exports to ECHO by the Exporter object.
Hence several valid tokens associated with a single user account will be used concurrently. A
token will be created during the creation of Exporter object and will be renewed periodically.
The duration that a token will be used will be a configuration property. The token will not be
stored in persistent storage- it will be invalidated by a request to ECHO when the BMGT is shut
down and a new token will be retrieved when the Exporter is re-initialized. An “orphaned” token
caused by a system crash or other fatal system error will automatically be invalidated by ECHO
when the token expires and no special action will be taken.

Exporter

This is the primary component involved in the actual export of metadata from ECS to ECHO. An
instance of Exporter, also referred to here as an Exporter Object, will live within a single thread
inside the Dispatcher and is initialized when a new instance of the thread is created. Several
Exporter objects will be running concurrently – one inside each of the multiple threads that run
within the Dispatcher. An Exporter object is always associated with a Token and an instance of

 4-169 305-EED-001, Rev. 02

HTTP client called Ingest Client (described next). As described earlier, a Token is used for
authentication. The HTTP client is used to set the HTTP connection parameters and handle
HTTP specific issues like persistence, compression, request retries for certain types of HTTP
errors, etc.

An Exporter object accepts an ExportActivity object as the input and requires the ExportActivity
to provide an interface to read the metadata contained within it as a string. The string is read into
the body of an HTTP request. The Exporter will return the response received from ECHO to the
Dispatcher which in turn passes the response to the Response Handler to be processed. But if the
Exporter receives an error, depending on the type of error, Exporter will either pass the response
back to Dispatcher or try to handle the error itself. If the error is a user authentication error due
to invalid token, the Exporter will throw an exception which will cause Dispatcher to pause. But
if the error is caused by connectivity or protocol issues, the Ingest Client responds by attempting
to resend the request a certain number of times over a short duration of time (several tens of
seconds) until it is successful. If, however, all the attempts fail, the error is returned to
Dispatcher. The Dispatcher will immediately pause exports and bring the issue to the operator’s
attention; subsequently it will make several attempts to resume the controller automatically over
a longer duration of time (several 10s of minutes) until exports succeeds. But if the Dispatcher
resume attempts fail, it will cease auto-resume and resuming Dispatcher will now require
operator intervention.

HTTP Client and sub-types

This is the component which directly communicates with the ECHO RESTful interface. There
are two different types of HTTP Clients – a) Token Client – This is used by Token to send
requests related to management of security tokens. An instance of Token client is transient and is
created for every new request to ECHO. That is, an object of this instance is created by the
Token for every new request to ECHO that the Token object makes and is discarded after the
request is satisfied. Note that a token object might need to speak to ECHO, not just during its
creation but also to invalidate the token after it is used for a period of time or before shut
down/termination of Exporter object. b) Ingest Client– This is used by the Exporter objects to
send the Export requests to ECHO. A single instance of Ingest client is associated with an
Exporter object throughout its lifetime in a long running process. It is created during the creation
of an Exporter object and is discarded when the Exporter object is discarded.

Various HTTP connection parameters which have direct effect on the performance and
consistency of the exports are set here. These parameters will have different value depending on
the type of the HTTP Client –Token Client or Ingest Client. Some of the parameters are
discussed here:

a) Protocol – The protocol used for communication with ECHO will be specified here.
ECHO currently requires HTTPS. Using HTTPS requires that both the client and the
server trust a third party responsible for issuing digital certificates called Certification
Authority (CA). EchoHttpClient will depend on the internal java key store (cacerts)
to identify the Certification Authorities that it will trust.

 4-170 305-EED-001, Rev. 02

b) Persistence – The Ingest client reuses the HTTP connection from one request to
another in accordance with HTTP 1.1 persistence. Persistence could lead to
significant improvement in performance. The ingest client will try to reuse the
connection as long as the server does not terminate it and it will be released just
before terminating the Exporter object. If the server forcefully terminates a
connection causing a broken pipe, Ingest client will re-establish the connection. In
contrast, the Token client will not reuse the connection. The Token related requests to
ECHO are very infrequent and reusing the connection does not lead to significant
performance improvements.

c) Compression - The ECHO web services are capable of processing data transmitted
over HTTP connection using the gzip HTTP compression schema to compress the
data. HTTP compression capability of a server allows its client to request data from
(or post data to) the server in a compressed format if the client so desires. The Ingest
client will have a user configurable switch to allow the HTTP compression to be
turned on or off on demand by an operator. Depending on the size and the type of the
data, this could significantly reduce the network traffic. But, the client and the server
are left with additional processing involved in compressing and decompressing the
data. Depending on the situation, compression could lead to significant improvement
in performance. The compression will be disabled by default. Some experimentation
is required to see if turning on the switch leads to better performance. The Token
client will not use compression as the size and frequency of requests from Token
client are very low and compression would not lead to any significant improvements
in performance.

d) Request Retries –Ingest Client will be configured to retry requests to Exporter if
certain kinds of HTTP errors are received. These errors include network issues like
“Connection Timeout”, “Unknown Host” or “Connection Interrupted” and protocol
errors such as those related to SSL. For these kinds of errors, the client will be
configured to retry the request a user configured number of times and over a certain
period of time until the request succeeds. If the error persists, the error will be
returned to Exporter which in turn passes it to Dispatcher.

e) Client Identification – The “User-Agent” header of HTTP request will be set to
“BMGT Token Client” for Token client and “BMGT Ingest Client” for Ingest Client.

f) Other parameters – It will be possible to configure other parameters like connection
timeout, socket timeout, internal socket buffer used to buffer data while
sending/receiving HTTP messages, etc.

Factory

The instances of all the remaining sub-components within Exporter will be created within an
instance of Factory. It will have a public interface to create new instances of Exporter Object.
The Dispatcher will use an instance of Factory to create Exporter objects which will be used
within each of the Dispatcher Threads. An instance of a Factory is created by taking all the
Exporter configuration parameters as input. In order to change the configuration parameters of

 4-171 305-EED-001, Rev. 02

Exporter, the existing instance of Factory and all the Exporter Objects created using the instance
will be discarded and a new Factory object will be created using the changed configuration
parameters. New instances of Exporter will now be created using the new Factory Object.

Interfaces

The Exporter will have only one public overloaded function which will be invoked by
Dispatcher for export of data to ECHO. The function will accept an ExportActivity object as
input and the response received from ECHO is stored in the object itself on return. The method
has no return value, but updates the ExportActivity which was passed in.

exportMetadata(exportActivity)

Workflow

1) Acquire a new Security Token from ECHO on start-up.

2) Setup a new persistent connection or use an existing connection to ECHO for export.

3) Set the HTTP method to PUT or DELETE depending on the kind of export. Add the
appropriate HTTP header fields.

4) Compress the XML content to be exported using gzip compression schema if
compression is enabled.

5) Send the request to ECHO using the connection.

6) If received a network error, attempt to resend the request a pre-configured number of
times until successful.

7) If an error is received due to expired token, acquire a new token and go back to step
5.

8) Decompress the body of the XML response if compression is enabled.

9) Return to Dispatcher with the response.

10) Terminate the connection to ECHO if no new request for Export is received from
Dispatcher with-in a pre-configured duration of time.

4.11.6.5 Response Handler

Overview

The Response Handler is responsible for processing the responses returned from ECHO for
Export Requests. In addition, Response Handler also handles the cases where an Export Request
is skipped, requeued or canceled either due to an error or by an operator action. In the case of a

 4-172 305-EED-001, Rev. 02

nominal success response, this involves simply marking the Export Request as complete. But in
the case of an error response, the processing could be more complicated.

Figure 4.11-9 shows at a high level the various statuses of Export Request and Export Activity
objects and the pathways that exist from the creation of these objects until a terminal status is
reached. The figure also shows the “Response policy” which is used in each of the pathways.
Response Policy is the action that Response Handler takes either due to a response received from
ECHO or due to other special cases like a skipped or canceled request. In the former case, the
Response Policy for any given response from ECHO is defined in the table
Bg_Echo_Error_Policy.

 4-173 305-EED-001, Rev. 02

Response Policy is
in blue.

Not written to the
database

Pending

Started

Blocked

Warning

Canceled

SkippedSuccess

New

Generating

Exporting

Evaluating

Warning

Retry

Error

Corrected by Echo

Success

Canceled

Canceled

SUCCESS

BLOCK

REQUEUE

RETRY
RETRY_ADD_DATASET

IGNORECORRECTED

CANCEL

WARNING

ERROR

Error

SKIP

2

2

3

4

5

6

7

8

8

9

10

11

13

1

14

12

12

Figure 4.11-9. Combined Sequences of Export Request and Export Activity

Statuses

 4-174 305-EED-001, Rev. 02

Figure 4.11-9: Diagram showing the combined sequences of Export Request and Export Activity
statuses starting from the creation of an Export Request until it reaches a terminal state. The
numbered items in the figure are explained below:

1. Occurs for corrective exports of a granule or a collection either due to short form
verification errors or errors returned by ECHO for regular exports. In the later case,
Response Handler follows RETRY_ADD_DATASET response policy.

2. Occurs as a result of Configuration Errors/Fatal Errors which cause Dispatcher to
pause or stop without operator intervention. Response Handler follows REQUE
response policy in this case.

3. Occurs only for verification exports if ECHO returns verification errors. Response
Handler follows CORRECTED response policy in this case

4. Occurs when Response Handler was supposed to set the status to Retry but the
corresponding Export Request was canceled. Response Handler follows CANCEL
response policy in this case.

5. Occurs if a granule or collection is deleted after an ADD request for it is enqueued.
Response Handler follows IGNORE response policy in this case.

6. Occurs when a delete request is sent to ECHO but ECHO returns 404 indicating that
the item doesn’t exist anyway. Response Handler follows IGNORE response policy
in this case.

7. Occurs when the last export attempt is successful but there exist previous attempts
which resulted in Retry. Response Handler follows WARNING response policy in
this case.

8. Occurs when the Generator indicates that the Export Request should not be sent to
ECHO for whatever reason and should be skipped. Response Handler follows SKIP
response policy in this case.

9. This occurs as a result of certain IO errors. (e.g. SocketTimeoutException which
occurs if Exporter is able to connect to ECHO, but ECHO did not respond in timely
manner.). Response Handler follows RETRY response policy in this case.

10. This occurs as result of regular errors (instead of verification errors) returned by
ECHO which leads to the export request being either blocked or retried. In this case
Response Handler follows one of these response policies depending on the type of
error: RETRY, BLOCK & RETRY_ADD_DATASET.

11. Occurs when an Export Request is canceled by the operator after it is blocked.

12. Occurs when an Export Request is canceled by the operator during the Export
operation and before the Export Request could reach a terminal state. This is related
to 4 and 13.

13. Occurs when the Dispatcher finds that an ExportRequest is cancelled after it started
processing the Request but before actually sending it to ECHO. Response Handler
follows CANCEL response policy in this case.

 4-175 305-EED-001, Rev. 02

14. This is currently not used anywhere. But could be used if we want to set a response
returned from ECHO as an error and not retry the request. Response Handler will
follow ERROR response policy in this case.

Each of the Response policies is described below:

 BLOCK – If an error returned by ECHO cannot be automatically handled, raise an
error which will be displayed to the operator in the GUI and via an email. The Export
Request will be placed in a blocked state and can be released by the operator to be re
queued for another attempt, either by invoking a corrective export, or releasing the
request via the GUI. The Export Request could optionally be canceled via the GUI.
If the number of blocked Export Requests reaches a threshold, Dispatcher may be
halted to prevent further errors until the issue can be addressed.

 RETRY– If the export is expected to succeed on a retry, then re queue it (up to a
configurable maximum number of times. Depending on configuration, the re-queue
may be in a blocked state awaiting operator clearance (for corrective export).

 RETRY_ADD_DATASET – If the error indicates that the failure was due to another
item being missing from ECHO (e.g. granule insert failed because the associated
collection is missing). The associated item must be exported before the re-queued
original item. Depending on configuration, the re-queue may be in a blocked state
awaiting operator clearance (or corrective export).

 IGNORE – The error was spurious in nature (e.g. exporting a deletion for an item
that was already deleted). The error will be logged, but no additional attention is
needed.

 CORRECTED– For Long/Incremental Verification. The indicated mismatch was
handled by ECHO automatically. The error will be logged as a verification mismatch
and available for further investigation, but no immediate attention is needed. Any
additional issues incurred during the replacement ingest into ECHO will result in
additional errors which will be handled appropriately.

 WARNING- If ECHO responds with a success to an Export Request but there exist
previous retries which were unsuccessful, Response Handler will mark the Export
Request as a warning.

 SKIP – If generator finds that an Export Request should not be processed for any
reason, it is sent directly to Response Handler from Generator by-passing Exporter.
Response Handler will mark the Export Request as being skipped.

 REQUEUE- If any of the components within Dispatcher signal a systemic or
unknown error, it will cause Dispatcher to either pause or shutdown abnormally, i.e.
without operator intervention. In these cases the Export Requests which are being
processed when the error occurred will be re-queued.

 CANCEL – If an operator issues a cancel request on an Export Request after
Dispatcher started processing it, Response Handler can still cancel it if the Request is
not already exported to ECHO by the Exporter. Response handler will mark such a
Request as being canceled.

 4-176 305-EED-001, Rev. 02

The Response policies described above do not cover all the possible actions that Response
Handler takes due to a response received from ECHO. For certain ECHO error responses, which
indicate that the error is systemic, Response Handler pauses after sending an alert to the
operators. Some of these errors are:

 Internal Server Error (500) – When this error is received, operator will be informed
that the error indicates an issue which ECHO operations may need to be consulted on.
In these cases, the Export Request is re-queued in addition to alerting operator to
contact ECHO.

 Service Unavailable (503) – This error indicates that ECHO is down, possibly for a
scheduled maintenance. In this case Dispatcher will pause after sending an alert to the
operator. But Dispatcher will attempt to resume automatically over a period of time
defined in a configuration property. If it still fails to export to ECHO, Dispatcher will
cease to autoresume and will require operator intervention to resume.

 Unauthorized (401) – This indicates that the user is not authorized to perform that
transaction. The body of the response will contain an error message. This could
happen for example if a token becomes invalid while it is being used. This does not
occur in the normal scenario as Tokens are renewed regularly. But if it does occur,
Response Handler will send an operator alert and will cause Dispatcher to stop
immediately.

Table below summarizes all the possible HTTP error codes that ECHO could respond with and
the action taken by Response Handler in each case.

Each type of error will be mapped to a particular set of possible outcomes. For instance, an error
which indicates that a granule does not exist could either be ignored or require manual
intervention, all depending on whether the granule exists in the inventory (if not, then the non
existence of the granule in ECHO is correct).

There is one other type of special processing that the Response Handler is responsible for. When
a collection is newly enabled for granule export, or has a full update requested, all granules in
that collection must be exported. In either of these cases, the Export Request will be marked
with a specific export type. When Response Handler sees a successful response for a request of
this type, it will automatically queue all of the granules in that collection.

Some DAACs would prefer that automatic ‘corrective’ exports which BMGT determines to be
necessary to correct an error not be actually exported until an operator has had a chance to
review them, while others are fine with the process being entirely automated except when an
error requires manual intervention. For this reason, the Response Handler will be configurable
to add and re queue all events in a ‘blocked’ state requiring an operator to release. Blocked
(awaiting operator action) corrective actions will not be much different from the failed requests
awaiting manual intervention, but they will be listed separately in the GUI and it will be possible
to choose to include only one or the other in a corrective export.

 4-177 305-EED-001, Rev. 02

ECHO HTTP Response codes

Below are the possible HTTP response error codes that ECHO may send back to BMGT, along
with what each means, and what BMGT will do in response to each.

HTTP
Code

Meaning Handler Policy

400 Bad Request – This is a general error
message saying that something was
wrong with the request you sent. It could
be invalid XML or an invalid parameter or
similar. The body of the response will
contain an error message

Alert the operator with the error
message, don’t pause the exports.

401 Unauthorized – The user you are using is
not authorized to perform that transaction.
The body of the response will contain an
error message

The Response Handler will cause
the Dispatcher to halt and alert the
operator.

404 Not Found – The resource wasn’t found.
This error could be received if using a bad
URL or if retrieving a granule that doesn’t
exist

Response Handler will ignore this
error if this is a delete request.

422 Unprocessable Entity – The entity
(granule, database, token, etc) you sent
was invalid. This is mostly used during
creation or update of something.

Response Handler will handle the
response as indicated in the table
below. Dispatcher will not be
paused.

500 Internal Server Error – Something
unexpected happened. ECHO Operations
should be notified. It either constitutes a
bug in ECHO or the system is
misconfigured somehow.

Response Handler will cause the
Dispatcher to pause all the Exports
to ECHO and contact ECHO and
the operator.

503 Service Unavailable – ECHO is down
possibly for a scheduled maintenance.

Response Handler will cause
Dispatcher to pause, but Dispatcher
will attempt to resume automatically
over several 10s of minutes. If
ECHO is up and running during a
reattempt, Dispatcher resumes
normal operation, but if auto-
resume fails after all the attempts,
Dispatcher pauses and requires
operator intervention to resume.

 4-178 305-EED-001, Rev. 02

ECHO Error Messages

The table below shows the list of all known item specific error messages that ECHO will return.
ECHO does not guarantee that the text of the error messages that it returns will remain constant
over time. But each of the error messages is accompanied by a text based code which remains
constant even if the message text itself is modified. Each error message maps to a single code
though a given code could be mapped to multiple error messages. Response Handler associates a
response policy with each of these codes. Next to each item are the possible policies which
BMGT will apply in response. Note that the vast majority require manual intervention as a
result of blocked requests. This means that the list of error codes mapped explicitly to policies
can be quite short.

Table 4.11-8. ECHO Error Messages for Both Collections and Granules
HTTP
Code

ECHO Error

Code

ECHO Message Response
Policy

422 RECORD_INVALID Campaigns Short names must be
unique

BLOCK

422 RECORD_INVALID Platforms Instruments Characteristics
Names must be unique

BLOCK

422 RECORD_INVALID Online access urls must be unique

BLOCK

422 RECORD_INVALID Platforms Instruments Short names
must be unique

BLOCK

422 RECORD_INVALID Platforms Instruments Sensors
Characteristics Names must be unique

BLOCK

422 RECORD_INVALID Platforms Instruments Sensors Short
names must be unique

BLOCK

422 INVALID_XML GranuleRecord XML was invalid.
Error: Line 4 - cvc-datatype-valid.1.2.1:
'20100105T053030.550-05:00' is not a
valid value for 'dateTime'.

BLOCK

Contact ECHO

 4-179 305-EED-001, Rev. 02

Table 4.11-9. ECHO Error Messages for Both Collections and Granules (1 of 2)
HTTP
Code

ECHO Error

Code

ECHO Message Handler
Policy

422 RECORD_INVALID Additional attributes
Names must be unique

BLOCK

422 RECORD_INVALID Algorithm packages
Names must be unique

BLOCK

422 RECORD_INVALID Associated difs Entry ids
must be unique

BLOCK

422 RECORD_INVALID Collection associations
Short name and version
ids must be unique

BLOCK

422 RECORD_INVALID Csdt descriptions Primary
csdts must be unique

BLOCK

422 RECORD_INVALID Platforms Characteristics
Names must be unique

BLOCK

422 RECORD_INVALID Platforms Short names
must be unique

BLOCK

422 RECORD_INVALID Two d coordinate systems
Names must be unique

BLOCK

422 RECORD_INVALID Two d coordinate systems
Coordinate 1 Minimum
must be less than the
maximum

BLOCK

422 RECORD_INVALID Collection additional
attribute [alpha] was of
DataType? [INT], cannot
be changed to [FLOAT]

BLOCK

422 RECORD_INVALID Collection additional
attribute [alpha] is
referenced by existing
granules, cannot be
removed.

BLOCK

422 RECORD_INVALID Collection campaign
[alpha] is referenced by
existing granules, cannot
be removed.

BLOCK

422 RECORD_INVALID Collection end_date_time
[2000-07-01T12:00:00Z]
must be later than existing
Granule end_date_time
[2000-08-01T12:00:00Z]

BLOCK

 4-180 305-EED-001, Rev. 02

Table 4.11-9. ECHO Error Messages for Both Collections and Granules (2 of 2)
HTTP
Code

ECHO Error

Code

ECHO Message Handler
Policy

422 LONG_NAME_VERSION_NOT_UNIQUE LongName [xxxx] and
VersionId [xx] is already
defined by existing
DatasetId [A minimal valid
collection V 1]

BLOCK

422 SHORT_NAME_VERSION_NOT_UNIQU
E

ShortName [xxxx] and
VersionId [xx] is already
defined by existing
DatasetId? [A minimal
valid collection V 1]

BLOCK

422 DATASET_ID_NOT_MATCH DatasetId [foo] does not
match what is defined in
the xml [A minimal valid
collection V 1]

BLOCK OR

IGNORE?

Mismatch
Handled by
ECHO

422 RECORD_INVALID LastUpdate [2002-01-
01T12:00:00Z] is earlier
than LastUpdate [2002-01-
01T12:00:01Z] of the
existing DatasetRecord

BLOCK

Contact
ECHO

422 RECORD_INVALID Geometry Bounding
rectangle 1 North should
be greater than south

BLOCK

404 REST_ITEM_NOT_FOUND Unable to find dataset with
dataset_id XXXXX

IGNORE

422 NOT_ALL_GRANS_INDEXED Not all granules of the
collection are indexed
when updated request for
the collection is sent.

RETRY

Table 4.11-10. ECHO Error Messages for Granules Only (1 of 3)
HTTP
Code

ECHO Error

Code

ECHO Message Handler
Policy

422 RECORD_INVALID Additional attributes name [Attribute
Name-X] must reference an additional
attribute in the dataset

BLOCK

422 RECORD_INVALID Additional attributes Values 'pi' is not a
valid float

BLOCK

 4-181 305-EED-001, Rev. 02

Table 4.11-10. ECHO Error Messages for Granules Only (2 of 3)
HTTP
Code

ECHO Error

Code

ECHO Message Handler Policy

422 RECORD_INVALID Campaigns short name [Short
Name-250] must reference a
campaign in the dataset

BLOCK

422 DATASET_NOT_DEFINED Dataset with DatasetId [XXX] is
not defined

RETRY_ADD_DA
TASET

422 DATASET_NOT_DEFINED Dataset with ShortName [XXX]
and VersionId [XXX] is not
defined

RETRY_ADD_DA
TASET

422 RECORD_INVALID Platforms Instruments
Characteristics name [XXX] must
reference a characteristic in the
dataset

BLOCK

422 RECORD_INVALID Platforms Instruments short name
[Short Name-XX] must reference
an instrument in the dataset

BLOCK

422 RECORD_INVALID Measured parameters Parameter
names must be unique

BLOCK

422 RECORD_INVALID Platforms Instruments Operation
modes must be unique

BLOCK

422 RECORD_INVALID LastUpdate [2002-01-
01T12:00:00Z] is earlier than
LastUpdate [2002-01-
01T12:00:01Z] of the existing
GranuleRecord

BLOCK

Contact ECHO

422 RECORD_INVALID Platforms Instruments short name
[XXX] must reference an
instrument in the dataset

BLOCK

422 RECORD_INVALID Platforms Instruments
Characteristics name [XXX] must
reference a characteristic in the
dataset

BLOCK

422 RECORD_INVALID Platforms Instruments Sensors
short name [XXX] must reference
a sensor in the dataset

BLOCK

422 RECORD_INVALID The granule BeginningDateTime
is earlier than Dataset
BeginningDateTime

BLOCK

422 RECORD_INVALID The granule EndingDateTime is
later than Dataset
EndingDateTime

BLOCK

 4-182 305-EED-001, Rev. 02

Table 4.11-10. ECHO Error Messages for Granules Only (3 of 3)
HTTP
Code

ECHO Error

Code

ECHO Message Handler Policy

422 RECORD_INVALID The granule SingleDateTime is
earlier than Dataset
BeginningDateTime

BLOCK

422 RECORD_INVALID The granule SingleDateTime is
later than Dataset
EndingDateTime

BLOCK

422 RECORD_INVALID Two d coordinate system Start
coordinate 1 [-1.0] is less than the
minimum [0.0] defined in the
dataset

BLOCK

422 RECORD_INVALID Two d coordinate system Start
coordinate 1 [11.1] is greater than
the maximum [11.0] defined in the
dataset

BLOCK

422 RECORD_INVALID Two d coordinate system name
[not_defined] must reference a
two d coordinate system in the
dataset

BLOCK

422 RECORD_INVALID Geometry Gpolygon 1 has the
following Oracle spatial validation
error: ORA-13373: invalid line
segment in geodetic data
[Element <1>] [Ring <1>]

BLOCK

422 GRANULE_UR_NOT_MATCH GranuleUR [foo] does not match
what is defined in the xml
[GranuleUR100]

BLOCK OR
IGNORE?!

Mismatch
Handled by
ECHO

422 RECORD_INVALID Geometry must be provided when
the parent collection's
GranuleSpatialRepresentation is
GEODETIC

BLOCK

404 REST_ITEM_NOT_FOUND Unable to find granule with
granule_ur XXXXX

IGNORE

Architecture

The Response Handler will be a fairly simple component. It will query the database for a list of
errors which are not handled by the ‘Manual Intervention’ policy, and will instantiate a hash
table linking error messages to policies. When the Response Handler is invoked, it will look up
the error in its table, if it does not see the error, it will send an email to the operator and block the

 4-183 305-EED-001, Rev. 02

request (Manual Intervention) and otherwise will invoke the appropriate policy. Each policy
will be implemented as a class, all of which implement the same interface.

Interfaces

The Response Handler will expose 3 public methods - first one takes in an ExportActivity object
and other two take in an Exception in addition to ExportActivity object. The exceptions
correspond to unusual cases in which Export Activity needs to be set to a terminal state even
before exporting to ECHO such as skipped or canceled requests. In one case, the Exception is
caused by request specific errors and in the other case it is caused by systemic errors which lead
to paused Dispatcher.

Workflow

A high level view of the Response Handler’s interaction with the database is illustrated below.

Figure 4.11-10. Manual Export Process Database Sequence

AmGranule AmCollection

Response

Handler

bg_error_policy

bg_export_error

1a 1b 2

3

5

bg_configuration_property
4

4b

6

bg_export_activity

bg export activity

bg_export_request

bg_export_request

 4-184 305-EED-001, Rev. 02

1. Get status of the referenced inventory item
a. Granule.
b. Collection.

2. Get record for the responsible export request and activity
3. Get error handler for the specified error
4. Handle Error

c. Get notification email address
d. Add new request to queue

5. Update error record
6. Update export request (to re-queue, mark as complete, or mark as blocked awaiting manual

intervention).
e. May require adding row to export request or activity table.

4.11.6.6 Catalog Event (Automatic) Driver

The Catalog Event (or Automatic) Driver is the component responsible for driving the export of
metadata in response to normal system events. The Driver transforms events in the AIM Events
table into requests in the BMGT Export Request Queue. This driver runs as a daemon constantly
polling for new events to move over on a frequent interval. At each polling interval, the Driver
will select any new events from the AIM event queue.

As part of the selection of events, the Driver will ensure that only events which are eligible for
export are added to the queue. For instance, all events associated with a collection which is not
enabled for export will be ignored(but marked as having been analyzed and not available for
later pickup), and granule events associated with a collection which is enabled for collection
metadata export only will be ignored.

The Driver can be suspended by the operator if for any reason it is necessary to halt the
enqueuing of new export entries. This suspension (and the subsequent resumption) can be
performed via the BMGT GUI.

The ideal polling interval for the driver will depend on DAAC preferences, 0 minutes or so
should be sufficiently frequent to ensure prompt export of updates, but infrequent enough to
reduce redundant requests being enqueued for the same granule or collection.

4.11.6.7 Manual Driver

The Manual Driver allows the operator to manually initiate the export of metadata to ECHO for
any catalog items they desire. Manual Export is used in instances where the normal, automatic
export of metadata based on catalog updates is not sufficient. For example, if granules have
been updated in a way that has not triggered an update event in the AIM Events table, manual
export could be used to ensure those changes are reflected in ECHO. In short, Manual export
allows the operator to export whatever metadata they deem to be necessary in a simple and easy
manner.

 4-185 305-EED-001, Rev. 02

The Manual Driver accepts as input the following parameters:

 Metadata type: Granule, Collection, or both.

 Item list: List of Granule ids, Collection ShortName/VersionIds, and/or Collection
Group names, either on the command line or in a referenced file. These may all be
in the same command line option, with the driver smart enough to figure out what
type of item is being referenced.

 Time range: Start and/or end datetime used to select granules within a collection.
Also, an indicator of whether the datetime selection should apply to insert or last
update time.

 Scripting options: whether to override any interactive prompts and/or retry on
error or blockage(due to a concurrently running driver)

 Export Type: Special options to specify the desired type of export (e.g. insert-only
or delete-only). Also, allows the operator to request a full collection update (delete
collection and all its granules, then re export).

The Driver will be instantiated either from the GUI or from the command line. When it is run,
the input parameters will be used to populate the BMGT Export Request Queue with the
appropriate records. These requests will then be picked up by the BMGT Dispatcher, and the
appropriate metadata will be exported in the same fashion as with an automatic export. Requests
will be inserted and processed in such a way that the appropriate action is taken in ECHO. For
instance, any valid granule which is listed in operator input will result in a granule insert being
exported, but any granule ID which does not exist in the database or is logically deleted will be
exported as a delete. This is all transparent to the operator – basically, the operator tells BMGT
to export the current state of the specified items. The operator can however specify that they
would only like to enqueue items which would result in insert, or those which would result in
delete (insert-only and delete-only options).

There is one special case and exception to the above. There are cases where a modification to
Collection metadata will require a complete removal of the collection and its associated granules
from ECHO. In these cases, the manual Driver must allow an operator to request the export of a
deletion of a non deleted Collection, as well as the re export of the new collection metadata and
all granules in the collection. These situations will be marked in the export request such that the
generator will export the deletion, and then the response handler will enqueue the collection re
insert once the deletion has succeeded. Once the collection re insert has succeeded, the
Response Handler will enqueue the export of all granules in that collection.

The manual driver can also be run in ‘corrective’ mode, where it will enable and re enqueue any
‘blocked’ requests, filtered by the operator’s options (e.g. only for a particular collection).
‘blocked’ requests are those which have failed and need operator analysis before being retried.
Also, depending on the configuration, new requests enqueued in response to errors received from
ECHO may be enqueued in the ‘blocked’ state.

 4-186 305-EED-001, Rev. 02

4.11.6.8 Verification Driver

The Verification Driver is responsible for adding events to the BMGT request queue for the
purpose of verification exports. Verification exports are used to periodically and/or
systematically verify the ECS holdings against the ECHO catalog.

The Verification Driver is essentially an extension of the Manual Driver and as such, most of the
input options described in the Manual Driver section also apply to Verification (at least in Long
and Incremental modes). As in previous releases, the verification and manual drivers will be the
same software entity, but due to their different use cases and options, they are documented
separately.

There are three types of verification export, Long Form, Incremental, and Short Form.

Long Form Verification exports the full metadata of selected items to ECHO for comparison
against their current holdings. A Long Form verification would generally be performed
manually when the DAAC staff has reason to suspect a discrepancy between DAAC holdings
and the ECHO catalog (due to a bug or other error). However, Long Form verifications could
also be done on a schedule and kicked off by a cron. To initiate a Long Form Verification, an
operator specifies the items to include (by granule or collection identifier) and the type of
metadata to verify (Granule or Collection). The operator can also optionally specify an insert or
lastUpdate time range to further filter granules in any selected collections. Once the items are
selected, the Verification Driver verifies that all specified items are valid and are enabled for
export. The Driver then adds corresponding rows to the BMGT Export Request Queue for each
item. These rows are similar to normal export requests, but are flagged as verification requests.
The requests are then worked off by the Dispatcher. The only difference from normal metadata
exports is that a special HTTP header will be placed in each export by the Exporter which will
flag the export as a verification.

When ECHO receives an export with the Verification HTTP header, instead of simply ingesting
the metadata, it will first check to see if the item already exists in its catalog, and if so, do a
comparison of all elements in the metadata. If the item does not exist, or if there is a discrepancy
found, the new metadata will be ingested, replacing any current metadata for that item, and a
warning notice will be returned to BMGT indicating the nature of the discrepancy. It is also
possible that the ingest attempt results in an error as well, in which case additional ingest errors
will be returned. BMGT will process the errors using the normal Response Handler mechanism,
resulting, potentially, in events being queued for re export of catalog items. If the response
included only warnings, indicating that there was a discrepancy, but it was repaired by the ingest
attempt, then these will be logged and displayed to the operator in the GUI, but will not cause
any additional actions to be taken.

Incremental Verification is a sub-type of Long Form Verification. The only difference is in
how items are selected for inclusion in the export. Instead of the operator explicitly selecting
collections and/or granules to be verified, for an Incremental Verification the Verification Driver
automatically determines what items are eligible for verification. The intention of Incremental
Verification is to start at the granule in the system which has been unmodified for the longest
time (earliest LastUpdateTime), and then move forward from that granule, verifying each until

 4-187 305-EED-001, Rev. 02

the most recently updated granule is reached. Once the Verification has caught up to the most
recent granule, then it will continue, verifying newly updated granules shortly after they are
exported. The system can also be reset to start once again at the first granule (either for the
entire system or a particular collection). There is a configured maximum number of granules per
verification set and also a maximum number of granules per collection per set to ensure that the
verification export is kept to a reasonable volume and does not drown out the normal, automatic
export of new events. The Verification Export can be kicked off either manually, or via a cron.

Once the items for an Incremental Verification are selected, the associated requests are added to
the BMGT Export Request Queue, and the process continues in the same manner as for Long
Form Verification.

Short Form Verification is very different from the other verification types. Rather than
verifying the full metadata of each item, Short Form Verification performs a simple existence
check between the ECS and ECHO holdings. These verifications will also include Last Update
Time to help determine with a coarse granularity whether any updates have failed to be ingested
in ECHO. Last update time comparisons will, however, allow for a certain amount of difference
before flagging an error in order to account for any rounding or truncation. Also unlike the other
forms of Verification, Short Form is done via a query to ECHO rather than an export. To
perform a Short Form Verification, the operator would select the type of metadata (Granule or
Collection) to verify. For Collection metadata, a query will be made to ECHO for a list of all
collections, and this list will be compared against the list of collections configured for BMGT
export. For Granule metadata, the operator must specify additionally one or more collections.
The Driver will then query ECHO for all of the granules in the specified collection(s) and
compare it against the list in the AIM database. The size of the list of granules in a collection
could easily be in the millions, so checks will be done to avoid verifying too many collections at
once. In order to work however, an entire collection must be verified at once.

Once the listing retrieved from ECHO is compared against the list in the AIM database, any
discrepancies will be noted and added to the BMGT Export Request Queue, optionally in a
blocked state, awaiting operator approval before being exported, as per DAAC configuration.
These requests will then be processed as any other export request via the Dispatcher.

4.11.6.9 BMGT CSCI Context

BMGT consists of only one CSCI. Therefore, the Subsystem Context in Figure 4.11-1
represents the BMGT CSCI Context, and it will not be replicated here.

4.11.6.10 BMGT CSCI Process Interface Description

BMGT consists of only one CSCI. Therefore, the interface description in Table 4.11-1
represents the BMGT CSCI Process Interface, and it will not be replicated here.

4.11.6.11 Data Stores

BMGT uses AIM database as well as the StorNext XML archive to generate its products. Table
4.11-6 describes the Data Stores.

 4-188 305-EED-001, Rev. 02

Table 4.11-11. Data Store
Data Store Type Description

Inventory DB Postgres BMGT reads required Metadata info from Inventory DB.

Small file archive StorNext
file system

BMGT reads granule and collection metadata files from the XML
archive, applies XSLT stylesheets to them, and exports the resulting
XML.

4.11.6.12 BMGT GUI Functional Overview

The BMGT GUI is a JavaScript/Dojo based web GUI which will allow the operator to monitor
the generation and export of BMGT requests (Automatic, Manual, Corrective and Verification).

The GUI provides DAAC staff with the following functions:

 Display BMGT export processes that are currently queued or in progress

 Allow the operator to pause / resume exports to ECHO

 List the most recent export requests and view detailed information about them

 Cancel an export request

 List the most recently completed exports which resulted in errors and view detail
information about them.

 View and change some BMGT configuration parameters. Changing the BMGT
configuration parameters will be restricted to DAAC staff that is logged in as BMGT
administrator

 Display global alerts upon a configured number of failures

 Display the status of incremental verification on a system, group, and collection level and
reset the incremental verification of a particular collection.

 Display and remove alerts flagged by repeatedly failing BMGT exports.

4.11.6.13 ECHO Metadata Schemas

The ECHO schemas are very large and would not conveniently fit in to this document. The
latest schema currently is use in the operational ECHO environment can be found at the URLs
listed below.

4.11.6.13.1 Collection.xsd
See http://www.echo.nasa.gov/ingest/schemas/operations/Collection.xsd

4.11.6.13.2 Granule.xsd
See http://www.echo.nasa.gov/ingest/schemas/operations/Granule.xsd

4.11.6.13.3 Browse.xsd

 4-189 305-EED-001, Rev. 02

See http://www.echo.nasa.gov/ingest/schemas/operations/Browse.xsd

4.11.6.13.4 MetadataCommon.xsd

See http://www.echo.nasa.gov/ingest/schemas/operations/MetadataCommon.xsd

 4-190 305-EED-001, Rev. 02

This page intentionally left blank.

 AB-1 305-EED-001, Rev. 02

Abbreviations and Acronyms

A

ABC++ Document Generator used to provide class level detail

ACL Access Lists

ACMHW Access and Control Management Hardware (Configuration Item)

AD Advertisement

ADC Affiliated Data Center (National Oceanic and Atmospheric

 Administration only)

AGS ASTER Ground System

AIT Algorithm Integration and Test

AIM Archive Inventory Management

AITHW Algorithm Integration and Test Hardware (Configuration Item)

AI&T Algorithm Integration and Test

AITTL Algorithm Integration and Test Tools (Computer Software

 Configuration Item)

ALOG Applications Log

AM-1 See TERRA (spacecraft)

AOI Area of Interest

AOS ASTER Operations Segment

AP Algorithm Package

APC Access/Process Coordinators

API Application Program Interface

AQA Algorithm Quality Assurance

AQUA PM-1 Satellite (AIRS, AMSR-E, AMSU, CERES, HSB, MODIS)

AR Action Request

AS Administration Stations

ASCII American Standard Code for Information Interchange

ASE Adaptive Server Enterprise

 AB-2 305-EED-001, Rev. 02

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

ATM Asynchronous Transfer Mode

AURA NASA mission to study the earth’s ozone, air quality and climate (formerly the
CHEM mission)

B
BBR Browse metadata (conforming to the ECS/ECHO Metadata Inventory ICD)

BCP Bulk Copy Program

 Bulk Copy Procedure

BDS Bulk Data Server

BMGT ECS Bulk Metadata Generator Tool

BLM Baseline Manager

C

CAD Computer Aided Design

CCB Change Control Board (Raytheon Convention)

 Configuration Control Board (NASA Convention)

CBLM ClearCase Baseline Manager

CCDI ClearCase DDTS Integration

CCR Configuration Change Request

CDE Common Desktop Environment

CDR Critical Design Review

CDRL Contract Data Requirements List

CD-ROM Compact Disk - Read Only Memory

CDS Cell Directory Service

CFG Configuration File

CGI Common Gateway Interface

CHUI Character-based User Interface

CI Configuration Item

CLI Command Line Interface

CLS Client Subsystem

CM Configuration Management

 AB-3 305-EED-001, Rev. 02

CMI Cryptographic Management Interface

CMP Configuration Management Plan

CN Change Notice

CO Contracting Officer

COTS Commercial Off the Shelf (Software or Hardware)

CPF Calibration Parameter File

CPU Central Processing Unit

CRM Change Request Manager

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSMS Communications and Systems Management Segment (ECS)

CSS Communications Subsystem

D

DAAC Distributed Active Archive Center

DADS Data Archive and Distribution System

DAO Data Assimilation Office

DAP Delivered Algorithm Package

DAS Dual Attached Station

DB Database

DBMS Database Management System

DCCI Distributed Computing Configuration Item

DCN Document Change Notice

DDICT Data Dictionary (Computer Software Configuration Item)

DDR Detailed Design Review

 Data Delivery Record (same as a Product Delivery Record)

DDT DAAC Distribution Technician

DDTS Distributed Defect Tracking System (COTS)

DEM Digital Elevation Model

DESKT Desktop (Computer Software Configuration Item)

DEV Custom Developed Code

 AB-4 305-EED-001, Rev. 02

DFS Distributed File System

DID Data Item Description

DIPHW Distribution and Ingest Peripheral Hardware Configuration Item

DLL Dynamic Link Library

DLT Digital Linear Tape

DM Data Management

DMGHW Data Management Hardware (Configuration Item)

DMS Data Management Subsystem

DNS Domain Name Service

DOF Distributed Object Framework

DORRAN Distributed Ordering, Researching, Reporting, and Accounting Network (At
EDC)

DP Data Provider

DPAD DataPool Action Driver

DPL Data Pool Subsystem

DPR Data Processing Request

DPRID Data Processing Request Identifier

DPREP Data Pre-Processing

DR Data Repository

DRPHW Data Repository Hardware (Configuration Item)

DSC Development Solution for the C programming language

DSS Data Server Subsystem

DTD Document Type Definition

DTF Sony DTF Tape cartridge system (replacement for the D3 tape cartridge system)

DTS Distributed Time Service

E

EBIS EMD Baseline Information System

ECHO ECS ClearingHouse

ECN Engineering Change Notice

ECS Earth Observing System Data and Information Core System

 AB-5 305-EED-001, Rev. 02

EDC Earth Resource Observation System (EROS) Data Center

EDF ECS Development Facility

EDG EOS Data Gateway

EDHS ECS Data Handling System

EDN Expedited Data Set Notification

EDOS Earth Observing System Data and Operations System

EDR Expedited Data Set Request

EDS Expedited Data Set

EC Error conditions (in tickets)

METG/C Granule/Collection metadata

EED EOSDIS Evaluation and Development

EGS EOS Ground System

EISA Enhanced Industry Standard Architecture

E-mail Electronic Mail (also Email, e-mail, and email)

EMD EOSDIS Maintenance and Development Project

EMOS ECS Mission Operations Segment (formerly FOS)

EMSn EOSDIS Mission Support network

EOC Earth Observing System Operations Center

EOS Earth Observing System

EOSDIS Earth Observing System Data and Information System

EPD External Product Dispatcher

EROS Earth Resource Observation System

ESDIS Earth Science Data and Information System (GSFC Code 505)

ESDT Earth Science Data Type

ESRI Environmental Systems Research Institute

ETM+ Enhanced Thematic Mapper Plus (Landsat 7)

EWOC ECHO WSDL Order Component

F

FC Functional components (capabilities in tickets)

FCAPS Fault, Configuration, Accountability, Performance, and Security services

 AB-6 305-EED-001, Rev. 02

FDS Flight Dynamics System

FH Fault Handling

FLDB Fileset Location Database

F&PRS Functional and Performance Requirements Specification

FSMS File and Storage Management System

FTP File Transfer Protocol

FTPD File Transfer Protocol Daemon

G

GB gigabyte (10
9
)

Gb gigabit (109)

GCDIS Global Change Data and Information System

GCMD Global Change Master Directory (not developed by ECS)

GFE Government Furnished Equipment

GLAS Geoscience Laser Altimeter System

GSFC GODDARD Space Flight Center (NASA facility and DAAC)

GSMS Ground System Management Subsystem (ASTER)

GTWAY (ASTER) Gateway (Computer Software Configuration Item)

GUI Graphical User Interface

H

HDF Hierarchical Data Format

HDF-EOS an EOS proposed standard for a specialized HDF data format

HEG HDF-EOS To GeoTIFF

HMI Human Machine Interface

HSB Humidity Sounder for Brazil

HTML HyperText Markup Language

HTTP HyperText Transport Protocol

HW Hardware

HWCI Hardware Configuration Item

I

IAS Image Assessment System

 AB-7 305-EED-001, Rev. 02

IBM International Business Management

ICESat Ice, Cloud and Land Elevation Satellite

ICD Interface Control Document

ID User Identification (or Identifier)

IDG Infrastructure Development Group

IDL Interactive Data Language

I/F Interface

IGS International Ground Station (Landsat 7)

IHCI Internetworking hardware configuration item

IIU DSS Inventory Insert Utility

ILG Infrastructure Library Group

ILM Inventory, Logistics, Maintenance (ILM) Manager

IMS Information Management System (ECS element name)

INHCI Internetworking HWCI

I/O Input/Output

IOS Internetwork Operating System

IP InterProcess Communication

IPC Inter-Process Communication

IRD Interface Requirements Document

IRR Incremental Release Review

ISIPS ICESat Science Investigator-Led Processing System

ISO International Standards Organization

ISR ECHO Ingest Summary Report

ISS Internetworking Subsystem

I&T Integration and Test

J

JAF Java Activation Framework

JAVA Programming Language

JAXP JAVA APL for XML Processing

JDBC Java Database Connectivity

 AB-8 305-EED-001, Rev. 02

JDOM Java Document Object Model

JESS Java Earth Science Server

JEST Java Earth Science Tool

JPL Jet Propulsion Laboratory (DAAC)

JRE Java Runtime Environment

K

KFTP Kerberos File Transfer Protocol

L

L0 - L4 Level-0 through Level-4 data (ECS)

L0R Landsat Reformatted Data

LAMS Landsat 7 Archive Management System

LAN Local Area Network

LaRC Langley Research Center (DAAC)

LFS Local File System

LZ77 Lampel-Ziv coding

M

M&O Maintenance and Operations

MB Megabyte (106)

Mbps Megabits Per Second

MCF Metadata Configuration File/Metadata Control Files

MCI Management Software Configuration Item (Computer Software

 Configuration Item)

METC Collection Metadata (conforming to the ECS/ECHO Metadata Inventory ICD),
also ECSMETC

METG Granule Metadata (conforming to the ECS/ECHO Metadata Inventory ICD), also
ECSMETG

METU Update Metadata (conforming to the ECS/ECHO Metadata Inventory ICD), also
ECSMETU

MISR Multi-Imaging SpectroRadiometer

MLCI Management Logistics Configuration Item (Computer Software

 Configuration Item)

 AB-9 305-EED-001, Rev. 02

MM Mode Management

MMO Mission Management Office

MMS Mode Management Service

MOC Mission Operations Center

MOPITT Measurements of Pollution in the Troposphere

MP Message Passing

MS Mass Storage

MSCD Mirror Scan Correction Data (file)

MSS System Management Subsystem

MSSHW (System) Management (Subsystem) Hardware Configuration Item

MTA LAMS Metadata File

MTP Distribution Product Metadata File Extension (<filename>.MTP)

MTPE Mission to Planet Earth

N

NASA National Aeronautics and Space Administration

NBSRV Spatial Subscription Server

NCEP National Centers for Environmental Predictions

NCR Non-conformance Report

NESDIS National Environmental Satellite, Data, and Information Service (NOAA)

NFS Network File System

NIS Network Information Service

NISN NASA Integrated Services Network

NMC National Meteorological Center (located at National Oceanic and

 Atmospheric Administration - NOAA)

NNTP Network News Transfer Protocol

NOAA National Oceanic and Atmospheric Administration

NSI National Aeronautics and Space Administration Science Internet

NSIDC National Snow and Ice Data Center (DAAC)

 AB-10 305-EED-001, Rev. 02

O

ODL Object Description Language

OEA OGC-ECHO Adaptor

OEM Original Equipment Manufacturer

OMS Order Manager Subsystem

OMSHW Order Manager Subsystem Hardware

OMSRV Order Manager Server

OMGUI Order Manager Graphical User Interface

OOA Object oriented analysis

OOD Object oriented design

OODCE Object Oriented distributed computing environment

OPS CON Operations Concept

OS Operating System

OSI Open Systems Interconnect

P

PAN Production Acceptance Notification

PC Personal Computer

 Performance Constraints (in tickets)

PCD Payload Correction Data (file)

PCFG Process Configuration File

PDR Product Delivery Record

PDRD Product Delivery Record Discrepancy

PF Process Framework

PI Principal Investigator

PM-1 EOS Afternoon Equator Crossing Mission (See Aqua); Mission to study the land,
oceans and the earth’s radiation budget

PMPDR Physical Media Product Delivery Record

PSA Product Specific Attributes

PVC Performance Verification Center

 AB-11 305-EED-001, Rev. 02

Q

QA Quality Assurance

QDS Quick Look Data Set (Same as Expedited Data Set)

QAUU DSS Quality Assurance Update Utility

R

RAID Redundant Array of Inexpensive Disks

RAM Random Access Memory

RCS Request Communications Support

RDBMS Relational Database Management System

REL Release

RFA Remote File Access

RFC Request For Comments

RIP Routing Information Protocol

RMA Reliability, Maintainability and Availability

RMS Request Management Services

ROSE Request Oriented Scheduling Engine

RPC Remote Procedure Call

RSC Raytheon Systems Company

RTU Rights to Use

S

S4PM Simple, Scalable, Script-based Science Processor for Missions

SAGE III Stratospheric Aerosol and Gas Experiment III

SAN Storage Area Network

SAS Single Attached Station

SATAN Security Administrator Tool for Analyzing Networks

SCF Science Computing Facility

SCLI SDSRV Command Line Interface

SCP Secure Copy

SCSI Small Computer System Interface

 AB-12 305-EED-001, Rev. 02

SDE Software Development Environment

SDF Software Development Folder

SDP Science Data Processing

SDPTK Science Data Processing Toolkit

 Science Data Processing Toolkit (Computer Software Configuration Item)

SDSRV Science Data SeRVer (Computer Software Configuration Item)

SGI Silicon Graphics, Inc.

SIM Spectral Irradiance Monitor

SIPS Science Investigator-Led Processing Systems

SMC System Management Center

 System Monitoring and Coordination Center

SMP Symmetric Multi-processor

SMTP Simple Mail Transport Protocol

SNAC StorNext Archive Cash

SOAP Simple Object Access Protocol

SOLSTICE Solar Stellar Irradiance Comparison Experiment

SORCE Solar Radiation and Climate Experiment

SPARC Single Processor Architecture

SPRHW Science Processing Hardware (Configuration Item)

SQL Structured Query Language

SQS Spatial Query Server

SRF Server Request Framework

SSAP Science Software Archive Package

SSH Secure Shell

SSIT Science Software Integration and Test

SSS Spatial Subscription Server Subsystem

STK StorageTek

SW Software

Sybase (ECS) COTS database management product (ASE)

SYSLOG System Log

 AB-13 305-EED-001, Rev. 02

T

TAR Tape Archive

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TD Technical Documents

TELNET Telecommunications Network

TERRA EOS AM Mission spacecraft 1, morning equator crossing spacecraft series
-- ASTER, MISR, MODIS and MOPITT instruments; Mission to study the land,
oceans and the earth’s radiation budget

TIM Total Irradiance Monitor

TM Thematic Mapper (Landsat)

TT Trouble Ticket

TTPro TestTrack Pro

U

UDP User Datagram Protocol

UML Unified Modeling Language

UR Universal Reference

URL Universal Resource Locator

USGS U. S. Geological Survey

UUID Universal Unique Identifier

V

VT Virtual terminal

W

WAN Wide Area Network

WIST Warehouse Inventory Search Tool

WKBCH WorKBenCH (Computer Software Configuration Item)

WKSHW Working Storage Hardware Configuration Item

WRS Worldwide Reference System

WS Working Storage

WSDL Web Service Definition Language

 AB-14 305-EED-001, Rev. 02

WWW World Wide Web

X

xAR x Acquisition Request (where x is any kind of or generic acquisition request)

XBDS Bulk Data Service Protocol

XDR External Data Representation

XFS Extended File System

XML eXtensible Markup Language

XSD XML Schema

XRU DSS XML Replacement utility

XSLT XML Stylesheet Language for Transformations.

XVU DSS XML Validation Utility

