
170-WP-003-001

The HDF-EOS Swath Concept

White Paper

White Paper—Not intended for
formal review or government approval.

December 1995

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

David Wynne / B. Fortner \s\

Doug Ilg

David Wynne

Brand Fortner

EOSDIS Core System Project

SUBMITTED BY

Larry Klein \s\

Larry Klein

EOSDIS Core System Project

12/20/95

Date

12/20/95

Date

Hughes Applied Information Systems

Upper Marlboro, Maryland

This page intentionally left blank.

White Paper 170-WP-003-001

Abstract

This document is a preliminary release of a design document for the storage of EOS Swath data
in the hierarchical data format (HDF), for the Earth Observing System (EOS), Version 1 and
later. We talk about what our thoughts are on using HDF to store swath type data, and
concentrate on establishing the organization and structure of the geolocation information. We
also show how we plan to use metadata to describe relationships between data and geolocation,
and what instrument independent services we can expect to perform on these HDF-EOS Swaths.

Note

This document is being made available even in preliminary form because of the high level of
interest in HDF-EOS efforts, and to give people the chance to comment on and to change our
direction of HDF-EOS, long before decisions are burned into silicon, so to speak.

Credits

This document was created with material from Doug Ilg (Hughes STX), Ted Meyer (National
Aeronautics and Space Administration (NASA)), and Larry Klein, Brand Fortner, David Wynne
(Applied Research Corporation). Comments and suggestions should be sent to:

Brand Fortner
Applied Research Corporation
1616A McCormick Dr.
Landover, MD 20785
USA

Email: bfortner@eos.hitc.com
Phone: (301) 925-0779
Fax: (301) 925-0321

Keywords: HDF-EOS, Swath, Data Formats, PVL, ODL, Standard Data Products, Disk Formats,
Browse, Arrays

White Paper iii 170-WP-003-001

This page intentionally left blank.

White Paper iv 170-WP-003-001

Contents

Abstract

1. Introduction

1.1 Purpose ...1-1

2. The HDF-EOS Swath Concept

2.1 What is an HDF-EOS Swath? ..2-1

2.2 The Components of a Swath ..2-4

2.3 Defining a Swath..2-4

2.3.1 Defining Geolocation ...2-5

2.3.3 Defining the Relationship to Geolocation..2-6

2.4 Swath Configuration File ...2-8

2.4.1 Defining Dimensions ...2-9

2.4.2 Defining Parameters...2-9

2.4.3 Defining Relationships from Data to Geolocation..2-10

2.4.4 Defining Metadata...2-10

2.5 An Example Swath..2-11

2.6 Discussion on HDF-Related Items..2-13

Appendix A. Swath “Attributes”

Figures

2-1 Physical view of a simple swath a time-ordered series of scan lines.............................2-1

2-2 Data view of a swath a time-ordered series of scalars and arrays..................................2-2

2-3 Geolocation Table with 1D Geolocation Information Included2-5

2-4 Geolocation Array containing Latitude and Longitude planes2-6

2-5	 Conceptual View of Example Swath, with 3D Array, Time/Geolocation Array,

and Geolocation Table ..2-11

White Paper v 170-WP-003-001

Tables

2-1 Dimension definitions for a generic scanning instrument ...2-2

2-2 Dimension definitions for a generic profiling instrument..2-3

2-3 Dimension definitions for a generic scanning-profiling instrument2-3

2-4 Possible Components of a Swath Structure ...2-4

2-5 Components of Example Swath ..2-12

White Paper vi 170-WP-003-001

1. Introduction

1.1 Purpose

This discussion paper introduces our current thoughts on storing time-ordered data in an HDF-
EOS file. Below is a discussion about what is meant by ‘time-ordered’, and how this type of data
can be stored and organized as an HDF-EOS structure. This structure is called a “swath” because
most EOS swath data fits naturally into this structure. However, other time-ordered data, such as
profiles, also fit into an HDF-EOS Swath structure, so it is important not to take the term too
literally.

Important Notes:

1)	 This paper is oriented toward implementation in the “C” programming language. The
Fortran-literate reader is cautioned that dimension ordering is row-major in C (last
dimension varying fastest), whereas Fortran uses column-major ordering (first dimension
varying fastest). Therefore, Fortran programmers should use dimensions in the reverse
order to that shown in this document.

2)	 The main purpose of this document is to aid the HDF-EOS team in solidifying their ideas
about the internal design of the swath structure and to provide the basis for the
development of an API for swath data. It is not intended to be used as a product design
tool. However, due to time constraints on some instrument teams, it is likely that some
coding will need to begin well before the emergence of a convenient programming
interface. We ask that Instrument teams with tight time constraints keep in close contact
with the HDF-EOS team, to ensure design compatibility.

1.2 Review and Approval

This White Paper is an informal document approved at the Office Manager level. It does not
require formal Government review or approval; however, it is submitted with the intent that
review and comments will be forthcoming.

Questions regarding technical information contained within this Paper should be addressed to:

Brand Fortner, (email address: bfortner@eos.hitc.com).

Questions concerning the distribution should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Corporation

1616 McCormick Drive

Upper Marlboro, Maryland 20774-5372

White Paper 1-1 170-WP-003-001

This page intentionally left blank.

White Paper 1-2 170-WP-003-001

2. The HDF-EOS Swath Concept

2.1 What is an HDF-EOS Swath?

The Swath concept for HDF-EOS is based on a typical satellite swath, where an instrument takes
a series of scans perpendicular to the ground track of the satellite as it moves along that ground
track. Figure 2-1 below shows this traditional physical view of a prototypical swath.1

Scan Lines

Alo
ng

Tra
ck

Cross Track

Satellite

Figure 2-1. Physical view of a simple swath:
a time-ordered series of scan lines

The HDF-EOS data view of a swath is one where the data is ordered by time or a time-like
variable (e.g., scan line counter). The data stored for every time entry can consist of time,
geolocation (latitude, longitude), scalar values, 1D arrays of values (scan lines or profiles), or 2D
arrays of values (multiple channel scan lines). A conceptual example is shown in Figure 2-2.

1 Please remember that the use of this view as a prototype does not preclude storing other types of swaths in this

data model (such as profiles).

White Paper 2-1 170-WP-003-001

Time Lat Long Param1 Param2 ScanLine Data

Track

CrossTrack

Figure 2-2. Data view of a swath:
a time-ordered series of scalars and arrays

In this figure, each Time value has associated with it a Latitude and Longitude, two scalar values
(Param1, Param2), and a 1D array containing ScanLine Data. Conceptually, each named item
can be considered as a separate array. For example, in the figure above Time would be a 1D
array, as would Lat, Long, Param1, and Param2. The ScanLine Data would be a 2D array. The
final step in assembling the data view is to combine all the data objects that have the same
dimensions.

The concepts of ‘Track’ and ‘Cross-Track’ dimensions are fundamental to this swath discussion.
The ‘Track’ dimension (sometimes refered to as ‘along track’) is defined as the dimension where
time or a time-like variable increases monotonically. The ‘Cross-Track’ dimension, if used,
defines an on-ground dimension perpendicular to the Track dimension.

These two dimensions are fundamental because our geolocation services will depend on knowing
which array dimensions correspond to ‘Track’ and ‘Cross-Track’. We also define ‘detector’,
‘band’, ‘channel’, and ‘parameter’ conceptual dimensions, but since these dimensions are not
used for geolocation services, it is not as important to standardize their usage.

Table 2-1 shows the available conceptual dimensions for scanning instruments. Table 2-2 shows
the same information for profiling instruments, and Table 2-3 shows the same information for a
combination scanning-profiling instrument, such as TRMM PR. A quick comparison of
Tables 2-1 and 2-2 will demonstrate the remarkable similarity between scanning and profiling
instruments in the context of the data view.

Table 2-1. Dimension definitions for a generic scanning instrument
Dimension Description Comments

Track Parallel to the ground track of the satellite Required; must be the first declared
dimension*

Cross-Track Perpendicular to the ground track of the satellite and
parallel to the surface of the Earth

Required; ordering is unimportant

Detector Number of foot prints per dwell Optional; ordering is unimportant

Band or
Channel

Generally used for lower level data that has not been
processed into science parameters

Optional; ordering is unimportant; Band
and Parameter are mutually exclusive

Parameter No physical mapping; generally used for higher level
data that has been processed into science parameters

Optional; ordering is unimportant; Band
and Parameter are mutually exclusive

* “C” dimension order is assumed. In Fortran, the last declared dimension must be used.

White Paper 2-2 170-WP-003-001

Table 2-2. Dimension definitions for a generic profiling instrument
Dimension Description Comments

Track Parallel to the ground track of the satellite Required; must be the first declared
dimension

Profile Perpendicular to the ground track of the satellite and
“vertical” with respect to the Earth

Required; ordering is unimportant;
equivalent to atmospheric level

Detector Number of foot prints per dwell Optional; ordering is unimportant

Band or
Channel

Generally used for lower level data that has not been
processed into science parameters

Optional; ordering is unimportant; Band
and Parameter are mutually exclusive

Parameter No physical mapping; generally used for higher level
data that has been processed into science parameters

Optional; ordering is unimportant; Band
and Parameter are mutually exclusive

* “C” dimension order is assumed. In Fortran, the last declared dimension must be used.

Table 2-3. Dimension definitions for a generic scanning-profiling instrument
Dimension Description Comments

Track Parallel to the ground track of the satellite Required; must be the first declared
dimension*

CrossTrack Perpendicular to the ground track of the satellite and
parallel to the surface of the Earth

Required; ordering is unimportant

Profile Perpendicular to the ground track of the satellite and
“vertical” with respect to the Earth

Required; ordering is unimportant;
equivalent to atmospheric level

Detector Number of foot prints per dwell Optional; ordering is unimportant

Band or
Channel

Generally used for lower level data that has not been
processed into science parameters

Optional; ordering is unimportant; Band
and Parameter are mutually exclusive

Parameter No physical mapping; generally used for higher level
data that has been processed into science parameters

Optional; ordering is unimportant; Band
and Parameter are mutually exclusive

* “C” dimension order is assumed. In Fortran, the last declared dimension must be used.

To apply these concepts to a particular instrument, the producer must determine the appropriate
dimensions to use and arrange them in an acceptable order (see comments in Tables 2-1, 2-2 and
2-3). The names of the dimensions are meant only as points of reference. The actual names of the
dimensions assigned within a swath structure are defined by the data producer.

For multidimensional arrays stored in the swath, the first dimension of the array must always be
the ‘Track’ dimension. This limitation makes it possible to append data to swaths after file
creation. This is because HDF allows the first dimension of an array to be appended to (the
“unlimited” dimension, in HDF/netCDF speak). No case is known within EOS for which data
must be appended along any other dimension.

White Paper 2-3 170-WP-003-001

2.2 The Components of a Swath

A single swath structure can contain any number of Tables (1D arrays stored as HDF Vdatas)
and Multidimensional Arrays (stored as HDF SDSs). There is however one type of information
that is special: geolocation information.

In a swath, geolocation information can be stored as a table, as a series of arrays, or as a
combination of a table and arrays. For example, you may want to store Latitude and Longitude
for every grid location (two 2D arrays, one for Latitude, one for Longitude), and also a Time
value for every scanline (one 1D table). We require that every swath contain some geolocation
component. The data itself can be stored in tables or multidimensional arrays in the swath.
Again, the only limitation is that the first dimension (or the only dimension, in the case of a
table) is the Track dimension.

These possible components are also summarized in Table 2-4. A particular swath may have
multiple instances (or no instances) of any of these different components, except the geolocation
objects: there cannot be more than one geolocation table and there should be a minimum of
geolocation arrays in a single swath (having one table and a few arrays is okay).

This limitation is because the definition of a swath assumes that there is only a single geolocation
structure (which may consist of a table, a set of arrays, or both) that is referenced by all of the
data tables and arrays in the Swath structure. If a particular EOS granule requires supporting
multiple geolocation objects, then the data should be stored as separate Swath structures, one per
geolocation object.

Table 2-4. Possible Components of a Swath Structure
Component Type Dim. Comments Storage

Geolocation Table 1D Time, Scan Number, Track Counter Table (Vdata)

Geolocation Array 2D Latitude, Longitude, etc. Array (SDS)

Data Table 1D Scalar values per Track entry Table (Vdata)

2D Data Array (scanner) 2D Scan Lines per Track entry 2D Array (SDS)

2D Data Array (profiler) 2D Profiles per Track entry 2D Array (SDS)

3D Data Array (scanner) 3D Multiple Scan Lines per Track entry 3D Array (SDS)

3D Data Array (profiler) 3D Multiple Profiles per Track entry 3D Array (SDS)

2.3 Defining a Swath

The reason for creating a swath structure is to be able to provide services on the swath that are
instrument independent. For example, subsetting and subsampling by geolocation could be
provided on data stored in a swath structure, independent of the instrument and product which
that data represents.

White Paper 2-4 170-WP-003-001

Of course, the same services could be provided on the data even if it is not stored according to
the swath conventions. However, the code to supply those services would have to be custom
written for every instrument product.

These services all revolve around geolocation information (time, latitude, longitude, etc.). The
primary considerations for the swath structure, therefore, concern these variables, what their
format is, their dimensionality, and what the relationship is between other data arrays and the
geolocation table and/or array(s).

There are two components to establishing a swath structure:

1. defining the geolocation information, and

2. defining the relationships between data and geolocation.

Each of these is discussed in turn below.

2.3.1 Defining Geolocation

There are four specific geolocation parameters which will be recognized and supported by the
swath data interface: Time, Latitude, Longitude, and Colatitude. Some combination of these
parameters must exist in a swath structure for the interface to be able to perform services on the
data, such as geolocation-based subsetting and subsampling. A minimally serviceable swath
structure will contain only Time, whereas a fully serviceable swath will have Time, Longitude,
and either Latitude or Colatitude.

In Figure 2-3 we show a geolocation table (1D Vdata) that contains Time, Latitude, and
Longitude columns for geolocation information per scan line. Note how the separate columns are
combined into the same Vdata.

Time LatitudeLongitude

Track

Figure 2-3. Geolocation Table with 1D Geolocation Information Included

For cases where geolocation exists for every Track, Cross-Track location, then the Time,
Latitude, and Longitude arrays should be two-dimensional. In Figure 2-4 we show two 2D arrays
of Latitude and Longitude, which for convenience have been combined into a single 3D array.
We will discuss this combining of 2D arrays in more detail in a later section. For now, consider it
something that we do behind the scenes, which should have no effect on the conceptual
understanding of the geolocation information.

White Paper 2-5 170-WP-003-001

Track

Cross Track Longitude

Latitude

Figure 2-4. Geolocation Array containing Latitude and Longitude planes

2.3.3 Defining the Relationship to Geolocation

The next step is to match up the data elements with the geolocation parameters. This is done by
mapping dimensions of the data elements to the ‘Track’ and ‘Cross-Track’ dimensions of the
geolocation parameters. The mapping of data to geolocation is described in a block of PVL text
in an attribute named “SwathStructure”2 that is associated with the swath data structure itself.
We will describe the contents of the “SwathStructure” attribute in more detail in the next section
on Swath Configuration files.

For example, suppose you had two 2D arrays, one a geolocation array (containing say Latitude),
the other a data array (containing say Temperature). The following PVL segment defines these
two arrays and their dimensions (again, we will discuss the details of this code in the next
section):

PVL Code Example: group = "Dimension";
object = "GeoTrack";

Size = 1200;
end_object = "GeoTrack";

object = "GeoCrossTrack";
Size = 200;

end_object = "GeoCrossTrack";

object = "DataX";
Size = 600;

end_object = "DataX";

2 Actually, this is only half right. HDF only supports attributes on SDSs and whole files, so swath attributes need to

be simulated. The method for constructing a swath attribute will be discussed later in this document.

Geolocation Array

White Paper 2-6 170-WP-003-001

object = "DataY";
Size = 200;

end_object = DataY;
end_group = "Dimension";

group = "GeoParameter";
object = "Latitude";

DataType = float32;
DimList = "GeoTrack, GeoCrossTrack";

end_object = "Latitude";

object = "Temperature";
DataType = float32;
DimList = "DataX, DataY";

end_object = "Temperature";
end_group = "GeoParameter";

Now the next step is to define the relationships between the data array and the geolocation array.
We do that by another PVL entry of DimensionMap. The PVL code below shows a template for
this entry.

PVL Template: group = "DimensionMap";
object = <map name>;

DataDimension = <dimension name>;
GeoDimension = <dimension name>;
Offset = <value>;
Increment = <value>;

end_object = <map name>;
.
.
.

end_group = "DimensionMap";

A DimensionMap entry is interpreted as follows:

• DataDimension is the name of the dimension of the data object being mapped.

• GeoDimension is the name of the dimension the geolocation object being mapped to.

•	 Offset is the offset into the data array along DataDimension where the first geolocation
value applies. A negative value indicates that the offset is applied to GeoDimension
instead, which is useful in cases where the geolocation object is larger than the data
object.

•	 Increment is the increment along DataDimension for which there is geolocation data in
the Geolocation object. A negative value indicates that the increment is applied along
GeoDimension3 , which is useful in cases where the geolocation object is larger than the
data object.

3A value of -n is actually meant to indicate a stride of 1/n. The negative value is used in order to avoid the rounding

error and interpretation issues inherent in floating point values.

White Paper 2-7 170-WP-003-001

So for example of two arrays, we would need the following two DimensionMap entries:

PVL Code Example: group = "DimensionMap";
object = "Map1";

DataDimension = "DataX";
GeoDimension = "GeoTrack";
Offset = 0;
Increment = -2;

end_object = "Map1";

object = "Map2";
DataDimension = "DataY";
GeoDimension = "GeoCrossTrack";
Offset = 0;
Increment = 1;

end_object = "Map2";
end_group = "DimensionMap";

In the example PVL code above, a Increment of -2 in the first DimensionMap means that the
Latitude array advances two entries (along the GeoTrack dimension) for every one entry of the
Temperature array. Note that the negative is used to designate that the geolocation array is larger
than the data array. In the second DimensonMap, a Increment of 1 means that the DataY and
GeoCrossTrack dimensions are the same size, and map one-to-one.

In cases where a data object and a geolocation object share the same dimension, the relationship
can be assumed to be a one-to-one mapping, and there is no need to explicitly define it with a
DimensionMap entry.

2.4 Swath Configuration File

To simplify the creation and definition of swath structures, we have developed a text-based
configuration language. The language is based on PVL, with some special-purpose keywords
added to handle the specifics of defining a swath structure. The Data Producer needs to create
this configuration file as part of the process of defining the HDF-EOS file.

Defining a swath configuration file consists of the following steps:

• defining the necessary dimensions,

• defining the individual data and geolocation parameters,

•	 defining the relationships between the dimensions of the data and the dimensions of the
geolocation parameters,

• and defining the metadata for the swath.

White Paper 2-8 170-WP-003-001

The configuration script for a swath begins with the statement object=swath; and ends with a
corresponding end_object; statement. Note that most of the contents of the “SwathStructure”
discussed above will be inherited from this Swath Configuration File4.

2.4.1 Defining Dimensions

Dimensions are defined using the following syntax:

PVL Code: group = "Dimension";
object = <dimension name>;

Size = <dimension size>;
Type = <dimension type>;

end_object = <dimension name>;
end_group = "Dimension";

where <dimension name> is the name chosen for the dimension, and <dimension size> is the
number of entries in that dimension. The Type field is optional and can be any of the following:
int8, int16, int32, uint8, uint16, uint32, float32, or float64. If the Type field is omitted, the type is
assumed to be int32.

2.4.2 Defining Parameters

There are two different types of parameters which the swath will accommodate: data parameters
(DataParameter) and geolocation parameters (GeoParameter). Data parameters are defined using
the following syntax:

PVL Code: group = "DataParameter";
object = <parameter name>;

DataType = <parameter data type>;
TrackDim = <dimension name>;
CrossTrackDim = <dimension name>;
DimList = <dimension names>;

end_object = <parameter name>;
.
.
.

end_group = "DataParameter";

and, geolocation parameters are defined using the following syntax:

PVL Code: group = "GeoParameter";
object = <parameter name>;

DataType = <parameter data type>;
TrackDim = <dimension name>;
CrossTrackDim = <dimension name>;

4However, some of the entries in “SwathStructure” will be created by the HDF-EOS library, not by the human data

producer. We will discuss this in more detail in a separate paper on HDF-EOS structural metadata.

White Paper 2-9 170-WP-003-001

DimList = <dimension names>;
end_object = <parameter name>;

.

.

.
end_group = "GeoParameter";

where <parameter data type> is one of (uint8, uint16, uint32, int8, int16, int32, float32, float64),
and DimList is a comma-separated list of the names of the dimensions. Each dimension must be
previously defined, and the order in which they appear in the parameter definition is taken as the
order of the dimensions of the array as they would be declared in a C program.

2.4.3 Defining Relationships from Data to Geolocation

As we discussed in Section 2.3, relationships between data dimensions and geolocation
dimensions are defined using the following syntax:

PVL Code: group = "Dimension Map";
object = <map name>;

DataDimension = <dimension name>;
GeoDimension = <dimension name>;
Offset = <dimension name>;
Increment = <dimension size>;

end_object = <map name>;
.
.
.

end_group = "Dimension Map";

where DataDimension specifies a dimension used for defining data arrays or tables,
GeoDimension specifies that there should be one DimensionMap entry for the Track dimension
and CrossTrack dimension (where applicable) dimensions of each data parameter to the
corresponding dimension of each geolocation parameter. As mentioned earlier, there is no need
for a DimensionMap in cases where a dimension is shared between a data and geolocation
parameter.

2.4.4 Defining Metadata

You can also include additional PVL statements within the swath definition which are not
required by the interface. These fields may be attached to specific parameters by including them
in the definitions of those parameters. Fields which are not associated with any particular
parameter or data object will be stored as general metadata for the swath.

All of the general metadata fields will be collected into a swath attribute named SwathMetadata,
as we discussed previously. The SwathMetadata attribute will preserve the association of the
individual metadata fields with particular parameters through the use of PVL grouping structures.

White Paper 2-10 170-WP-003-001

2.5 An Example Swath

We will now walk through an example swath to illustrate the concepts discussed in this paper.
Consider Figure 2-5, which is a representation of a swath consisting of a 3D data array, a series
of 2D geolocation arrays, and a single 1D geolocation table.

10

Longitude

Scan Lines

Tra
ck

Cross Track

1000

3D Data Array

1000

60
0

Geolocation Array

Sca
nL

 in e

Geo
l o c

ati
o n

Satellite

60
0

Latitude

Figure 2-5. Conceptual View of Example Swath, with 3D Array,
Time/Geolocation Array, and Geolocation Table

The components are listed in Table 2-5. Note one strange thing: we have always talked about
geolocation arrays such as Latitude and Longitude being 2D arrays, with dimensions of ‘Track’
and ‘Cross-Track’. So what is this 3D Geolocation array?

The answer is that for efficiency reasons, our HDF-EOS subroutine library will combine 2D
arrays into 3D arrays where possible (when the dimension sizes, number type, and number of
dimensions all match). Usually, this combining will happen behind the scene, and neither the
program creating the HDF-EOS file or the program or person reading the HDF-EOS file need to
know about this, as long as everyone uses our HDF-EOS subroutines.

White Paper 2-11 170-WP-003-001

Table 2-5. Components of Example Swath
Component Dim. Size Comments

Data 3D 600× 1000× 10 Track Dim. always first

Geolocation Array 3D 600× 1000× 2 Lat. and Long. combined

Geolocation Table 1D 600 Several Columns

The Swath Configuration file for this example swath may look something like the following. For
this example, the 3D data array is named Temperature, and the single column in the geolocation
table is named Time. Note that the configuration file does not specify the fact that Latitude and
Longitude will be combined; that happens automatically. Note also that the SwathStructure
attribute that will actually be stored in the data file will contain most of the contents of the
configuration file, but will also include additional entries related to this combining of arrays. Our
HDF-EOS routines will generate those additional entries.

PVL Code Example: group = "Dimension";
object = "GeoTrack";

Size = 600;
end_object = "GeoTrack";

object = "GeoCrossTrack";

Size = 1000;

end_object = "GeoCrossTrack";

object = "DataX";

Size = 600;

end_object = "DataX";

object = "DataY";

Size = 1000;

end_object = "DataY";

object = "Band"; /* the 3rd dim. of the data array */

Size = 10;

end_object = "Band";

end_group = "Dimension";

group = "GeoParameter";

object = "Latitude";

DataType = float32;

DimList = "GeoTrack, GeoCrossTrack";

end_object = "Latitude";

object = "Longitude";

DataType = float32;

DimList = "GeoTrack, GeoCrossTrack";

end_object = "Longitude";

object = "Time";
 /* the geolocation table */

White Paper 2-12 170-WP-003-001

DataType = float32;

DimList = "GeoTrack";

end_object = "Time";

end_object = "GeoParameter";

group = "DataParameter";

object = "Temperature";

DataType = float32;

DimList = "DataX, DataY, Band";

end_object = "Temperature";

end_group = "DataPrarmeter";

group = "DimensionMap";

object = "Map1";

DataDimension = "DataX";

GeoDimension = "GeoTrack";

Offset = 0;

Increment = 1;

end_object = "Map1";

object = "Map2";

DataDimension = "DataY";

GeoDimension = "GeoCrossTrack";

Offset = 0;

Increment = 1;

end_object = "Map2";

end_group = "DimensionMap";

2.6 Discussion on HDF-Related Items

As mentioned previously, our HDF-EOS routines will try as much as possible to combine arrays
and tables for efficiency. In this section we go into a bit more detail about why and how we do
this.

First, when evaluating a component for inclusion in an HDF file, you (or our library) needs to
know the following information about that component

•	 Dimensionality - Is the component only associated with the ‘Track’ dimension, or with
both the ‘Track’ and ‘Cross-Track’? (In HDF SDSs, this property is referred to as the
rank of an SDS.)

•	 Size(s) - How many values are there along each dimension of the parameter? (In HDF
SDSs, these are referred to as dimension sizes or dimsizes.)

•	 Data type - Is the value a 32-bit integer? a 16-bit integer? a 32-bit floating-point? etc.
(HDF refers to this as the numbertype.)

The dimensionality of each parameter determines which HDF data object will be used to store it.
One-dimensional parameters will be stored in Vdatas, while 2-dimensional parameters will be
stored in SDSs. This distinction is made because of the comparative ease with which multiple
parameters can be accommodated in a Vdata as opposed to an SDS and the lack of multiple
dimensions in Vdatas.

White Paper 2-13 170-WP-003-001

An example of a one-dimensional geolocation parameter is a time value that is recorded once for
each scan or profile, as shown in Figure 2-4. An example of a two-dimensional geolocation
parameter is a latitude value which has been computed for every third pixel of each scan line of a
scanning instrument, as shown in Figure 2-5.

If there are two or more components that share dimensionality, size, and datatype, then our
routines can combine them into arrays or tables of higher dimensionality. We need to do this for
efficiency: an HDF file with thousands of components is very inefficient, whereas one with just a
small number of arrays of high dimensionality can be accessed very efficiently.

For example, geolocations components are always either 1D or 2D. 1D geolocation components
are always associated with the ‘Track’ dimension, whereas 2D geolocation components are
always associated with both the ‘Track’ and ‘Cross-Track’ dimensions. If two geolocation
components have the same dimensionality (2D, for example), have the same size (600 by 1000,
for example), and the same number type (float32, for example), then we can combine them into a
larger component (a 3D array of size 600 by 1000 by 2, for example).

Note, however, that although arrays that are combined must be of the same number type, this
limitation is not imposed on 1D tables. An HDF table (implemented with a Vdata) can have
columns of data of differing number types. Note that the same considerations for array and table
combination apply to the data components also.

In the HDF-EOS library, the combination of components happens any time the same dimension
are used to describe two parameters and their types permit it. If this is not the desired behavior,
users are advised to “force” the issue by defining separate dimensions for the offending
parameters.

White Paper 2-14 170-WP-003-001

Appendix A. Swath “Attributes”

As mentioned earlier in this paper, there may be cases where individual swath data structures
(which are implemented as Vgroups) will need to have attributes attached to them, such as
SwathMetadata, SwathStructure or other producer-defined attributes. In such cases, it will be
necessary for producers to create their own attribute structures which emulate HDF attributes
(since Vgroups do not currently support attributes). This section describes how that is done.

In HDF, attributes are implemented as a very specific type of Vdata. The name of the Vdata must
be the attribute name and its class must be “Attr0.0”, and it must have one field named
“VALUES” (case is significant). The number type of the field must be set appropriately for the
data to be stored (SwathMetadata and SwathStructure attributes must be of the type
DFNT_CHAR8).

For character attributes, the VALUES field must be declared with an order equal to the number of
characters to be stored. For numeric attributes, multiple values may be stored as successive
records in the Vdata. The completed Vdata must be a member object of the Vgroup representing
the swath structure.

vdata_id = VSattach(file_id, -1, "w");

VSsetname(vdata_id, "SwathMetadata");

VSsetclass(vdata_id, "Attr0.0");

VSfdefine(vdata_id, "VALUES", DFNT_CHAR8, 38);

VSsetfields(vdata_id, "VALUES");

VSwrite(vdata_id, buffer, 1, FULL_INTERLACE);

Vinsert(vgroup_id, vdata_id);

VSdetach(vdata_id);

Name: "SwathMetadata"
Class:

<VALUES>

Temperature = 27.4;
PixelType = CLOUD;

Order:
Type:

"Attr0.0"

38
DFNT_CHAR8

Figure A-1. A Character Attribute

White Paper �A-1 170-WP-003-001

The code required to create a character attribute and the resultant Vdata are shown in
Figure A-1. The same information is shown for a numeric attribute in Figure A-2. Both figures
assume the use of the C language and the presence of an open file with ID file_id and an open
Vgroup representing the swath structure with ID vgroup_id.

vdata_id = VSattach(file_id, -1, "w");

VSsetname(vdata_id, "MyAttribute");

VSsetclass(vdata_id, "Attr0.0");

VSfdefine(vdata_id, "VALUES", DFNT_FLOAT32, 1);

VSsetfields(vdata_id, "VALUES");

VSwrite(vdata_id, buffer, 3, FULL_INTERLACE);

Vinsert(vgroup_id, vdata_id);

VSdetach(vdata_id);

Figure A-2. A Numeric Attribute

Name: "MyAttribute"
Class: "Attr0.0"

<VALUES>
Order: 1

Type: DFNT_FLOAT32

84.2

-0.4
12.7

White Paper �A-2 170-WP-003-001

	1. Introduction
	1.1 Purpose
	1.2 Review and Approval

	2. The HDF-EOS Swath Concept
	2.1 What is an HDF-EOS Swath?
	2.2 The Components of a Swath
	2.3 Defining a Swath
	2.3.1 Defining Geolocation
	2.3.3 Defining the Relationship to Geolocation

	2.4 Swath Configuration File
	2.4.1 Defining Dimensions
	2.4.2 Defining Parameters
	2.4.3 Defining Relationships from Data to Geolocation
	2.4.4 Defining Metadata

	2.5 An Example Swath
	2.6 Discussion of HDF-Related Items

	List of Figures

