HASA'S MIESION T PLANET EARTH

SRF Design Review

Keys Botzum

kbotzum@eos.hitc.com

17 April 1996

KB2-1

Server Request Framework
(SRF) Overview

* Driving Requirements

e SRF Issues Status

* SRF Context

* SRF Software Design
* high level pictures & capability description
object model
outline of class usage
event trace
detailed pseudo-code

706-CD-003-001 Day 3 Book B KB2-2

SRF Driving Requirements

SRF Provides
« aframework for constructing ECS Servers and Client/Server APIs
« acommon implementation of asynchronous request processing
Evolutionary Features
* encapsulation of communication technology
- eases transition to other technologies (e.g., CORBA)
- allows multiple communication protocols
Release B Status
* reusing Release A SRF design & implementation

See 305-CD-028-002 Section 4.5.2

706-CD-003-001 Day 3 Book B

KB2-3

SRF Issues Status

Infrastructure Review Concerns
» performance

- we don’t expect significant overhead (discussed at Infrastructure
Review)

- will measure performance using SRF implementation
* layering cost vs. saved code

- some performance cost, but we estimate 2-3 thousand lines of code
saved per “typical” ECS server

common dispatching/prioritizing infrastructure
common recovery infrastructure
common coding model

 CDS naming

- SRF clients no longer register in CDS (change to CSS Message
Passing layer)

706-CD-003-001 Day 3 Book B KB2-4

SRF Context

 SRF provides client & server functionality

» Clients will use SRF if the corresponding server provides an SRF
interface

» Servers that will support SRF interfaces
- Advertising Server
- DIM/LIM Servers
- Ingest
- Gateway

706-CD-003-001 Day 3 Book B KB2-5

SRF Stack

Application
SRF
Message Passing
DCE/OODCE

Operating System

 SRF provides an interface to the application developer
* builds on Message Passing layer & DCE/OODCE

706-CD-003-001 Day 3 Book B KB2-6

SRF Capabilities

Encapsulates common requirements
« for asynchronous request processing
« for authorization
« for priority based scheduling of requests
Provides an extensible request dispatcher object for server construction
* base class implements priority based dispatching
» extensible for other dispatching policies (e.g., resource utilization)
Provides Client & Server objects for request creation/submission

Provides Bi-directional Client & Server objects for asynchronous request
tracking and control

Accessible through 5 common classes
« additional capabilities added through sub-types

Hides implementation details
e communications, authorization, threads, etc.

706-CD-003-001 Day 3 Book B KB2-7

Software Design: logical view

Client

RequestServer_C

Create Request

AsynchRequest _C

¢

operation on Request

AsynchRequest _C

status about Request

operation on Request

AsynchRequest _C

¢

status about Request

operation on Request

706-CD-003-001 Day 3 Book B

status about Request

>

Server

RequestServer_S

Creates

AsynchRequest_S

| AsynchRequest_S

| AsynchRequest_S

RequestDispatcher

Tracks

KB2-8

Object Model

The following object models will be reviewed:

Model Name Document Reference
RelB_SRF 305-CD-028-002, Section 4.5.2
RelB_SRFMessage 305-CD-028-002, Section 4.5.2

simplified object models included since they are easier to follow.

706-CD-003-001 Day 3 Book B

KB2-9

Object Model: SRF

+ public .
- private EcMhMsgReceiver EcMhRequestDispatcher
V virtual - new in this class myUR . ServerList mygequesgst et
- . myR~equestserverLis myRequestServerLis
v virtual - overrides parent i
p V+ Rece!veMngAcceptance <> V+ RegisterRequestServer
V+ ReceiveMsg v+ AddRequest
+ GetUR V+ RequestCompleted
V+ RequestCanceled
lj - DispatchNextRequest
- StartUp
- Shutdown
®
EcSrAsynchRequest_C EcSrRequestServer_C EcSrRequestServer S EcSrAsynchRequest_S
myServerUr myServerUr mySubmitTime
myUR myUR myStartTime
v+ ReceiveMsg V+ Connect v+ ReceiveMsg myglr?cﬁnﬂme
v+ ReceiveMsgRAcceptance V+ Disconnect v+ ReceiveMsgRAcceptance miState y myRequestList
V+ Complete V+ Connect myUser
V+ StateChange V+ Disconnect .
V+ Cancel v+ Rece!veMsg
V+ Status v+ ReceiveMsgRAcceptancg
. V+ Complete
+ ChangePriority V+ StateChange
V+ Cancel
A A 1: V+ Status
+ GetPriority
+ Set Priority
V+ CheckPoint
V+ Restore
V+ Execute
SleepAsynchRequest_C SleepRequestServer_C SleepRequestServer_S SleepAsynchRequest_S$
+ TimelntervaINotificatior' + Sleep + Sleep + TimelntervalNotification
+ ReceiveMsg v+ ReceiveMsgRAcceptance | v+ Execute

706-CD-003-001 Day 3 Book B KB2-10

Class Detalls

EcSrRequestServer C
e client-side server class - abstracts the connection to the server

constructed with a server UR
includes methods for Connected(), Disconnect(), Connect(), getServerUR()
server developer specializes by adding new methods for operations

constructs message obj (EcUtStreamable) w/ values

calls SendMsgRAcceptance w/ server UR, msg, and response ptr

blocks until server response

response contains the EcSrAsynchRequest SUR to the EcSrRequestServer_S
return server UR

further specialized by client writer to handle client specific functionality

- typically constructing EcSrAsynchRequest_C of correct type

706-CD-003-001 Day 3 Book B KB2-11

Class Detalls

EcSrRequestServer S

» server-side server class - abstracts the connection to the server
constructed with server gueue name & request dispatcher pointer
includes implementations of Connect() & Disconnect()
server developer must specialize ReceiveMsgRAcceptance()

- dispatches EcUtStreamable based on type

- if type not recognized, call parent method
- return EcUtStreamable (response message)

server developer adds new methods for server specific operations

- create AsynchRequest_S object and add to dispatch list
- obtain UR from AsynchRequest_S object and return

706-CD-003-001 Day 3 Book B

KB2-12

Class Detalls

EcSrAsynchRequest C

client-side Request class - represents the currently active request
constructed by server and sent to client

constructor takes ErSrAsynchRequest_S (learns request UR from this)
includes implementations of Cancel(), ChangePriority(), Status()

server developer must specialize ReceiveMsg() method
- dispatches EcUtStreamable based on type
- if type not recognized, call parent method

server developer adds new methods for server specific operations

need to provide implementations of StateChange() and Complete() callbacks
- typically done by client writer

client developer will specialize methods that handle callbacks for client specific
functionality

- e.g, update display based on status of request

706-CD-003-001 Day 3 Book B KB2-13

Class Detalls

EcSrAsynchRequest S

server-side Request class - represents the currently active request
constructor should be specialized to take arguments relevant to request
includes implementations of Complete(), and Status()

server developer must write CheckPoint(), Restore(), and Execute()

Execute()
- implements the actual request processing
- called by SRF once when request is dispatched from queue
- when done, call complete()

server developer adds new methods for server specific operations
server developer must specialize ReceiveMsg() method if new methods added

706-CD-003-001 Day 3 Book B KB2-14

Class Detalls

EcSrRequestDispatcher
» server-only object that handles the list of all requests
» dispatches requests (in a new thread) based on priority
- calls object->Execute() to execute a request
* requests are managed via
- AddRequest(EcSrAsynchRequest*)
- RemoveRequest(EcSrAsynchRequest?*)

- RequestCompleted(EcSrAsynchRequest*)
- RequestCancelled(EcSrAsynchRequest*)

* includes implementations of
- ShutDown(), CheckPoint(), Restore()

706-CD-003-001 Day 3 Book B

KB2-15

Object Model: SRF Message

EcUrProvider EcUtStreamable
A\ /
EcMhMsgReceiver

Key Feature

» all MsgReceiver’s are
- UR providers
identified by URs for sending/receiving messages
- streamable objects
can be sent as messages or stored persistently

706-CD-003-001 Day 3 Book B KB2-16

Class Detalls

EcUtStreamable
e class which can flatten/unflatten itself to/from a stream

« automatically generated from *.inp files
MESSAGE MsglintervalNotif
CLASS_ID TestMsglintervalNotification IN EcSrClassID.h
ATTRIB EcTint Timelnterval

706-CD-003-001 Day 3 Book B KB2-17

SRF Specialization

SRF

Server
Writer

Client
Writer

Client Side

Server Side

RequestServer_C

AsynchRequest_C

RequestServer_C

AsynchRequest_S

RequestDispatcher

sRequestServer_C

sAsynchRequest_C

RequestServer_S

sAsynchRequest_S

sRequestDispatcher

RequestMethods

ReceiveMsg

RequestMethods

ReceiveMsgRAcceptancd

RequestMethods

Execute()
RequestMethods

DispatchNextRequest

csRequestServer_C

csAsynchRequest_C

RequestMethods

Callbacks

706-CD-003-001 Day 3 Book B

KB2-18

Dynamic Model

Two simplified event traces follow. They show the client & server
viewpoints of SRF.

- blue vertical bars represent objects created by application developers
- black vertical bars represent objects that are part of SRF

- black lines represent method calls or function calls

- pink lines represent returns (e.g, returning control to the caller)

These event traces are for a hypothetical server that provides a “sleep”
service.

» the client makes a sleep() request
e the server notifies the client at each notification interval

706-CD-003-001 Day 3 Book B KB2-19

SRF Scenario

mySleep Sleep Sleep EcMh mvSlee
myApp RequestServer_C RequestServer_C RequestMsg MsgHandler AsynchyRequ%st_C AsynchRequest_SUR
sendMsgRAcceptance tO Server
-
return
ctor
. . return
Client Side S —
| Time gap before receiving a reply | from server
B
ReceiveMsg
Timelnter] alNotification
-

Time gap before receiving a reply |
| L | [|

706-CD-003-001 Day 3 Book B Single Object KB2-20

Client Trace Highlights

Preconditions
* SRF was initialized

» client constructed mySleepRequestServer C already and is connected to the
server

Steps
» client application calls sleep() method
mySleepRequestServer_C::sleep() calls parent sleep() method

SleepRequestServer_C::sleepl()
- constructs sleep message
- sends with acceptance (will wait for server response)
- the SRF Mh layer sends the message to the server
- later, server replies (the message is a AsynchRequest_SUR)
- Mh layer constructs AsynchRequest_SUR object
mySleepRequestServer C constructs mySleepAsynchRequest C from SUR

client application gets pointer to mySleepAsynchRequest_C object

706-CD-003-001 Day 3 Book B KB2-21

Client Trace Highlights

When the timer expires on the server
» client receives IntervalNotif message
« SRF Mh layer calls ReceiveMsg on mySleepAsynchRequest_C object

» SleepAsynchRequest_C::ReceiveMsg
- dispatches to correct method based on message type

- client app writer could specialize SleepAsynchRequest_C to do something application
specific

e repeat until done

Eventually, complete() method will be called on client object

706-CD-003-001 Day 3 Book B KB2-22

SRF Scenario

EcMh Sleep SleepAsynch EcSr Timerinterval
MsgHandler RequestServer_S Request_S RequestDispatcher ReplyMsg

from client

ReceiveMsg

Server Side

st(SleepAsynchRequest_S)
-

to client
Time gap before being dispatched
execute
ctor
to client > sendMsgRAck
-«
return
return

706-CD-003-001 Day 3 Book B KB2-23

Server Trace Highlights

Preconditions
 SRF was initialized
» server constructed SleepRequestServer S
» client has already connected to server

Steps
e server receives sleep message from client
« SRF Mh layer dispatches to SleepRequestServer_S object
o SleepRequestServer_S::ReceiveMsgRAcceptance
- dispatches to sleep() method based on message type
construct SleepAsynchRequest_S & adds to Request queue

returns AsynchRequest _SUR (as EcUtStreamable) to SRF Mh layer
message is sent to client

706-CD-003-001 Day 3 Book B KB2-24

Server Trace Highlights

When SRF dispatches the SleepAsynchRequest
 RequestDispatcher calls SleepAsynchRequest->Execute()
» Execute()
- constructs a InvervalNotif message
- sends it via sendMsgRAck (waits for reply)
- repeats previous step multiple times
- eventually completes (returns control to RequestDispatcher)

706-CD-003-001 Day 3 Book B KB2-25

Client Trace Pseudo-Code

//called by client application
ny Sl eepRequest Server _C.: Sl eep(...)

{
AsynchRequest SUR * SUR;
Sl eepRequest Server:: Sleep(..., UR
a = new nySl eepAsynchRequest _C(UR)
return a;

}

Sl eepRequest Server _C.:Sleep(int tinme, int notiflnt, SUR*& UR)
{
sl eepMsg n(tinme, notiflnt);
/'l Use gl obal SRF nessage handler to send
t heHandl er - >SendMsgRAccept ance(Get Server UR(), /1 UR of Request Server S
myUR,
m
UR) ;

706-CD-003-001 Day 3 Book B KB2-26

Client Trace Pseudo-Code (2)

/1 SRF internals

/lcalled as theHandl er by clients

MsgHandl er: : SendMsgRAccept ance(MsgRecei ver UR& t o,
MsgRecei ver UR& repl yTo,
Ut St r eamabl e& nsg,
Ut St reamabl e*& accept MsQ)

/'l create a pendi ng nessage object that will handl e the nessage &
/'l 1t’s response.
Pendi ngMsg m

m SendMsgRAccept ance(to, replyTo, nsg, acceptMsg);
}

706-CD-003-001 Day 3 Book B KB2-27

Client Trace Pseudo-Code (3)

/1 Send nessage, wait for response

Pendi ngMsg: : SendMsgRAccept ance(MsgRecei ver UR& t o,
MsgRecei ver UR& repl yTo,
Ut St r eamabl e& nsg,
Ut St reamabl e*& accept MsQ)

MsgEnvel ope env(to,
Provi deUR() , /I'my UR, used for the call back
replyTo,
nsg)

...flatten envel ope....

...send using EcMp* cl asses. ..

/I now wait for callback. the response nessage will go to this

/l object (via ReceiveMsg). The ack will be handl ed by Handl eAck() nethod
myCond. Wi t ()

accept Msg = nyStreanabl eSt or e;

706-CD-003-001 Day 3 Book B KB2-28

Client Trace Pseudo-Code (4)

/1 Called by nessage passing |ayer on recei pt of nessage
Pendi ngMsg: : Recei veMsg(Ut St r eamabl e& newiessage, Cientlnfo& info)

{
}

/1 Called by nessage passing |ayer to ack nessages
Pendi ngMsg: : Handl eAck(..., EcTBool ean fail edFl ag)

{

nySt r eamabl eSt ore = newiMessage

if (failedFlag) {
nmyMsgSt at e. Set Fai | ed() ;
}

myCond. Signal () //wake up the waiting nethod
}

706-CD-003-001 Day 3 Book B KB2-29

Client Trace Pseudo-Code (5)

//called when call back occurs
Sl eepAsynchServer C.: Recei veMsg(U Streamabl e& nsg,
Cientlnfo& info)

{
I f (meg. Getd assID() == Interval NotiflD) {
/1 Call appropriate nethod. Since virtual, could have been
/loverriden by client witer
Timel nterval Notification(nsg. GetTinelnterval ());
return;
}
/ lunknown, | et SRF handl e
EcSr AsynchRequest C. : Recei veMsg(nsg, info);
}

/lclient witer wote this nethod
myAsynchRequest C.: Ti nelnterval Notification()

{
}

...do sonething client specific...

706-CD-003-001 Day 3 Book B KB2-30

SRF/PF Issues

SRF clients are really servers (in the DCE sense)

« PF unmanaged server is too heavy
- includes FTP, principal name, keytab, CDS name, etc
- need to create lightweight PF server for SRF
 SRF Security
- clients normally inherit identity from user
- servers normally use keytab (as in PF unmanaged server)

- this is a problem for an SRF client
needs to use user’s identity, not identity from keytab file

* these (minor) issues are currently being addressed w/ Release A

706-CD-003-001 Day 3 Book B

KB2-31

