
SRF Design Review
Keys Botzum
kbotzum@eos.hitc.com

KB2-1

17 April 1996

706-CD-003-001 Day 3 Book B

KB2-2706-CD-003-001 Day 3 Book B

Server Request Framework
(SRF) Overview

• Driving Requirements

• SRF Issues Status

• SRF Context

• SRF Software Design
• high level pictures & capability description

• object model

• outline of class usage

• event trace

• detailed pseudo-code

KB2-3706-CD-003-001 Day 3 Book B

SRF Driving Requirements

SRF Provides

• a framework for constructing ECS Servers and Client/Server APIs

• a common implementation of asynchronous request processing

Evolutionary Features

• encapsulation of communication technology

- eases transition to other technologies (e.g., CORBA)

- allows multiple communication protocols

Release B Status

• reusing Release A SRF design & implementation

See 305-CD-028-002 Section 4.5.2

KB2-4706-CD-003-001 Day 3 Book B

SRF Issues Status

Infrastructure Review Concerns

• performance

- we don’t expect significant overhead (discussed at Infrastructure
Review)

- will measure performance using SRF implementation

• layering cost vs. saved code

- some performance cost, but we estimate 2-3 thousand lines of code
saved per “typical” ECS server

common dispatching/prioritizing infrastructure

common recovery infrastructure

common coding model

• CDS naming

- SRF clients no longer register in CDS (change to CSS Message
Passing layer)

KB2-5706-CD-003-001 Day 3 Book B

SRF Context

• SRF provides client & server functionality

• Clients will use SRF if the corresponding server provides an SRF
interface

• Servers that will support SRF interfaces

- Advertising Server

- DIM/LIM Servers

- Ingest

- Gateway

KB2-6706-CD-003-001 Day 3 Book B

SRF Stack

DCE/OODCE

Message Passing

SRF

Application

Operating System

• SRF provides an interface to the application developer

• builds on Message Passing layer & DCE/OODCE

KB2-7706-CD-003-001 Day 3 Book B

SRF Capabilities

Encapsulates common requirements
• for asynchronous request processing

• for authorization

• for priority based scheduling of requests

Provides an extensible request dispatcher object for server construction
• base class implements priority based dispatching

• extensible for other dispatching policies (e.g., resource utilization)

Provides Client & Server objects for request creation/submission

Provides Bi-directional Client & Server objects for asynchronous request
tracking and control

 Accessible through 5 common classes
• additional capabilities added through sub-types

 Hides implementation details
• communications, authorization, threads, etc.

KB2-8706-CD-003-001 Day 3 Book B

Software Design: logical view

RequestServer_C

AsynchRequest_C

RequestDispatcher

RequestServer_S

AsynchRequest_S

AsynchRequest_C

AsynchRequest_C

AsynchRequest_S

AsynchRequest_S

Tracks

Create Request

operation on Request

operation on Request

operation on Request

status about Request

status about Request

status about Request

Client Server

Creates

KB2-9706-CD-003-001 Day 3 Book B

Object Model

The following object models will be reviewed:

Model Name Document Reference

RelB_SRF 305-CD-028-002, Section 4.5.2

RelB_SRFMessage 305-CD-028-002, Section 4.5.2

simplified object models included since they are easier to follow.

KB2-10706-CD-003-001 Day 3 Book B

Object Model: SRF

EcMhRequestDispatcher

EcSrAsynchRequest_C EcSrRequestServer_C EcSrRequestServer_S EcSrAsynchRequest_S

myServerUr
myUR

v+ ReceiveMsg
v+ ReceiveMsgRAcceptance
V+ Complete
V+ StateChange
V+ Cancel
V+ Status
+ ChangePriority

myServerUr
myUR

V+ Connect
V+ Disconnect

v+ ReceiveMsg
v+ ReceiveMsgRAcceptance
V+ Connect
V+ Disconnect

mySubmitTime
myStartTime
myFinishTime
myPriority
myState
myUser
v+ ReceiveMsg
v+ ReceiveMsgRAcceptance
V+ Complete
V+ StateChange
V+ Cancel
V+ Status
+ GetPriority
+ Set Priority
V+ CheckPoint
V+ Restore
V+ Execute

SleepAsynchRequest_C

+ TimeIntervalNotification
v+ ReceiveMsg

SleepRequestServer_C

+ Sleep

SleepRequestServer_S

+ Sleep
v+ ReceiveMsgRAcceptance

SleepAsynchRequest_S

+ TimeIntervalNotification
v+ Execute

myRequestList
myRequestServerList
V+ RegisterRequestServer
V+ AddRequest
V+ RequestCompleted
V+ RequestCanceled
- DispatchNextRequest
- StartUp
- Shutdown

EcMhMsgReceiver

myUR

V+ ReceiveMsgRAcceptance
V+ ReceiveMsg
 + GetUR

myRequestList

myRequestServerList

+ public
- private
V virtual - new in this class
v virtual - overrides parent

KB2-11706-CD-003-001 Day 3 Book B

Class Details

EcSrRequestServer_C
• client-side server class - abstracts the connection to the server

• constructed with a server UR

• includes methods for Connected(), Disconnect(), Connect(), getServerUR()

• server developer specializes by adding new methods for operations
- constructs message obj (EcUtStreamable) w/ values

- calls SendMsgRAcceptance w/ server UR, msg, and response ptr

- blocks until server response

- response contains the EcSrAsynchRequest_SUR to the EcSrRequestServer_S

- return server UR

• further specialized by client writer to handle client specific functionality
- typically constructing EcSrAsynchRequest_C of correct type

KB2-12706-CD-003-001 Day 3 Book B

Class Details

EcSrRequestServer_S
• server-side server class - abstracts the connection to the server

• constructed with server queue name & request dispatcher pointer

• includes implementations of Connect() & Disconnect()

• server developer must specialize ReceiveMsgRAcceptance()
- dispatches EcUtStreamable based on type

- if type not recognized, call parent method

- return EcUtStreamable (response message)

• server developer adds new methods for server specific operations
- create AsynchRequest_S object and add to dispatch list

- obtain UR from AsynchRequest_S object and return

KB2-13706-CD-003-001 Day 3 Book B

Class Details

EcSrAsynchRequest_C
• client-side Request class - represents the currently active request

• constructed by server and sent to client

• constructor takes ErSrAsynchRequest_S (learns request UR from this)

• includes implementations of Cancel(), ChangePriority(), Status()

• server developer must specialize ReceiveMsg() method
- dispatches EcUtStreamable based on type

- if type not recognized, call parent method

• server developer adds new methods for server specific operations

• need to provide implementations of StateChange() and Complete() callbacks
- typically done by client writer

• client developer will specialize methods that handle callbacks for client specific
functionality

- e.g, update display based on status of request

KB2-14706-CD-003-001 Day 3 Book B

Class Details

EcSrAsynchRequest_S
• server-side Request class - represents the currently active request

• constructor should be specialized to take arguments relevant to request

• includes implementations of Complete(), and Status()

• server developer must write CheckPoint(), Restore(), and Execute()

• Execute()
- implements the actual request processing

- called by SRF once when request is dispatched from queue

- when done, call complete()

• server developer adds new methods for server specific operations

• server developer must specialize ReceiveMsg() method if new methods added

KB2-15706-CD-003-001 Day 3 Book B

Class Details

EcSrRequestDispatcher
• server-only object that handles the list of all requests

• dispatches requests (in a new thread) based on priority
- calls object->Execute() to execute a request

• requests are managed via
- AddRequest(EcSrAsynchRequest*)

- RemoveRequest(EcSrAsynchRequest*)

- RequestCompleted(EcSrAsynchRequest*)

- RequestCancelled(EcSrAsynchRequest*)

• includes implementations of
- ShutDown(), CheckPoint(), Restore()

KB2-16706-CD-003-001 Day 3 Book B

Object Model: SRF Message

Key Feature
• all MsgReceiver’s are

- UR providers

identified by URs for sending/receiving messages

- streamable objects

can be sent as messages or stored persistently

EcUrProvider EcUtStreamable

EcMhMsgReceiver

KB2-17706-CD-003-001 Day 3 Book B

Class Details

EcUtStreamable
• class which can flatten/unflatten itself to/from a stream

• automatically generated from *.inp files
MESSAGE MsgIntervalNotif

CLASS_ID TestMsgIntervalNotification IN EcSrClassID.h

ATTRIB EcTInt TimeInterval

KB2-18706-CD-003-001 Day 3 Book B

SRF Specialization

RequestServer_C

sRequestServer_C

RequestMethods

csRequestServer_C

RequestMethods

AsynchRequest_C

sAsynchRequest_C
ReceiveMsg
RequestMethods

csAsynchRequest_C

Callbacks

Client Side Server Side

SRF

Server
Writer

Client
Writer

RequestServer_C

RequestServer_S
ReceiveMsgRAcceptance
RequestMethods

AsynchRequest_S

sAsynchRequest_S
Execute()
RequestMethods

RequestDispatcher

sRequestDispatcher

DispatchNextRequest

KB2-19706-CD-003-001 Day 3 Book B

Dynamic Model

Two simplified event traces follow. They show the client & server
viewpoints of SRF.

- blue vertical bars represent objects created by application developers

- black vertical bars represent objects that are part of SRF

- black lines represent method calls or function calls

- pink lines represent returns (e.g, returning control to the caller)

These event traces are for a hypothetical server that provides a “sleep”
service.

• the client makes a sleep() request

• the server notifies the client at each notification interval

KB2-20706-CD-003-001 Day 3 Book B

SRF Scenario

Client Side

myApp mySleep
AsynchRequest_C

mySleep
RequestServer_C

Sleep
RequestMsg

EcMh
MsgHandler

Sleep

ctor

sendMsgRAcceptance

ctor
return

return

ReceiveMsg

TimeIntervalNotification

to server

return

from server

AsynchRequest_SUR

Single Object

Sleep
RequestServer_C

Sleep

ctor

Time gap before receiving a reply

Time gap before receiving a reply

KB2-21706-CD-003-001 Day 3 Book B

Client Trace Highlights

Preconditions
• SRF was initialized

• client constructed mySleepRequestServer_C already and is connected to the
server

Steps
• client application calls sleep() method

• mySleepRequestServer_C::sleep() calls parent sleep() method

• SleepRequestServer_C::sleep()
- constructs sleep message

- sends with acceptance (will wait for server response)

- the SRF Mh layer sends the message to the server

- later, server replies (the message is a AsynchRequest_SUR)

- Mh layer constructs AsynchRequest_SUR object

• mySleepRequestServer_C constructs mySleepAsynchRequest_C from SUR

• client application gets pointer to mySleepAsynchRequest_C object

KB2-22706-CD-003-001 Day 3 Book B

Client Trace Highlights

When the timer expires on the server
• client receives IntervalNotif message

• SRF Mh layer calls ReceiveMsg on mySleepAsynchRequest_C object

• SleepAsynchRequest_C::ReceiveMsg
- dispatches to correct method based on message type

- client app writer could specialize SleepAsynchRequest_C to do something application
specific

• repeat until done

Eventually, complete() method will be called on client object

KB2-23706-CD-003-001 Day 3 Book B

SRF Scenario

Server Side

SleepAsynch
Request_S

Sleep
RequestServer_S

EcMh
MsgHandler

EcSr
RequestDispatcher

Time gap before being dispatched

ReceiveMsgRAcceptance

sleep

AddRequest(SleepAsynchRequest_S)

ctor

execute

return

TimerInterval
ReplyMsg

ctor
sendMsgRAck

return

from client

to client

to client

KB2-24706-CD-003-001 Day 3 Book B

Server Trace Highlights

Preconditions
• SRF was initialized

• server constructed SleepRequestServer_S

• client has already connected to server

Steps
• server receives sleep message from client

• SRF Mh layer dispatches to SleepRequestServer_S object

• SleepRequestServer_S::ReceiveMsgRAcceptance
- dispatches to sleep() method based on message type

- construct SleepAsynchRequest_S & adds to Request queue

- returns AsynchRequest_SUR (as EcUtStreamable) to SRF Mh layer

- message is sent to client

KB2-25706-CD-003-001 Day 3 Book B

Server Trace Highlights

When SRF dispatches the SleepAsynchRequest

• RequestDispatcher calls SleepAsynchRequest->Execute()

• Execute()

- constructs a InvervalNotif message

- sends it via sendMsgRAck (waits for reply)

- repeats previous step multiple times

- eventually completes (returns control to RequestDispatcher)

KB2-26706-CD-003-001 Day 3 Book B

Client Trace Pseudo-Code

//called by client application
mySleepRequestServer_C::Sleep(...)
{
 AsynchRequest_SUR *SUR;
 SleepRequestServer::Sleep(..., UR)
 a = new mySleepAsynchRequest_C(UR)
 return a;
}

SleepRequestServer_C::Sleep(int time, int notifInt, SUR*& UR)
{
 sleepMsg m(time, notifInt);
 //Use global SRF message handler to send
 theHandler->SendMsgRAcceptance(GetServerUR(), //UR of RequestServer_S
 myUR,
 m,
 UR);
}

KB2-27706-CD-003-001 Day 3 Book B

Client Trace Pseudo-Code (2)

//SRF internals
//called as theHandler by clients
MsgHandler::SendMsgRAcceptance(MsgReceiverUR& to,
 MsgReceiverUR& replyTo,
 UtStreamable& msg,
 UtStreamable*& acceptMsg)
{
 //create a pending message object that will handle the message &
 // it’s response.
 PendingMsg m;

 m.SendMsgRAcceptance(to, replyTo, msg, acceptMsg);
}

KB2-28706-CD-003-001 Day 3 Book B

Client Trace Pseudo-Code (3)

//Send message, wait for response
PendingMsg::SendMsgRAcceptance(MsgReceiverUR& to,
 MsgReceiverUR& replyTo,
 UtStreamable& msg,
 UtStreamable*& acceptMsg)
{
 MsgEnvelope env(to,
 ProvideUR(), //my UR, used for the callback
 replyTo,
 msg)

 ...flatten envelope....
 ...send using EcMp* classes...
 //now wait for callback. the response message will go to this
 //object (via ReceiveMsg). The ack will be handled by HandleAck() method
 myCond.Wait()
 acceptMsg = myStreamableStore;
}

KB2-29706-CD-003-001 Day 3 Book B

Client Trace Pseudo-Code (4)

//Called by message passing layer on receipt of message
PendingMsg::ReceiveMsg(UtStreamable& newMessage, ClientInfo& info)
{
 myStreamableStore = newMessage;
}

//Called by message passing layer to ack messages
PendingMsg::HandleAck(..., EcTBoolean failedFlag)
{
 if (failedFlag) {
 myMsgState.SetFailed();
 }

 myCond.Signal() //wake up the waiting method
}

KB2-30706-CD-003-001 Day 3 Book B

Client Trace Pseudo-Code (5)

//called when callback occurs
SleepAsynchServer_C::ReceiveMsg(UtStreamable& msg,
 ClientInfo& info)
{
 if (msg.GetClassID() == IntervalNotifID) {
 //Call appropriate method. Since virtual, could have been
 //overriden by client writer
 TimeIntervalNotification(msg.GetTimeInterval());
 return;
 }
 //unknown, let SRF handle
 EcSrAsynchRequest_C::ReceiveMsg(msg, info);
}

//client writer wrote this method
myAsynchRequest_C::TimeIntervalNotification()
{
 ...do something client specific...
}

KB2-31706-CD-003-001 Day 3 Book B

SRF/PF Issues

SRF clients are really servers (in the DCE sense)
• PF unmanaged server is too heavy

- includes FTP, principal name, keytab, CDS name, etc

- need to create lightweight PF server for SRF

• SRF Security
- clients normally inherit identity from user

- servers normally use keytab (as in PF unmanaged server)

- this is a problem for an SRF client
needs to use user’s identity, not identity from keytab file

• these (minor) issues are currently being addressed w/ Release A

