6. MCI - Management Software CSCI

The Management Software Cl consists of the Mode Management Service, Fault Management
Service, the Performance Management Service, the Security Management Service, the
Accountability Management Service, the Physical Configuration Management Service, the Report
Service, the Billing and Accounting Service, the Management DBMS, the Trouble Ticketing
Service, the Management Data Access Service, the Management Database, the User Comment
Survey Tool, and Backup and Restore Management. The Management Software CI context is
provided in Figure 6-1.

MLCI MACI MCI
SW Distribution Mode
Management Management
License Fault ;
Manaocement
Management =)
il ==
Change Request g
l\llan::gnmnnf Report
Generation
Inventory/ Management
Logistics/
Maintenance Security -
Management ' ' "" ' Management ' '
Management Agent Services I Accountability Common Management ||
SW Change Maragement Services (HPOV)
Manacaman i
> ‘ ‘A“‘ 4 Physical
Baseline Configuration
Management Management J 1| Enterprise Framework ||
Trouble (TIVOLI)
Training Ticketing
Management
Management
BataAEe€esS
Billing / Backup and
Policies & A\;vvullt;lls Restare
Procedures Management User Comment
Management DRMS Survey.

Figure 6-1. Management Software Cl Context

6-1

305-CD-029-002

6.1 Mode Management

6.1.1 Mode Management Overview

Mode Management addresses the planning, initiation, execution, monitoring, and control of
various system activities. These activities include operations, testing, and training. Each unique
activity is classified as a mode. Mode Management enables the execution of multiple modes such
that each mode functions without interfering with the other and each mode maintains data integrity
throughout it's execution. For example, testing a data server application within the same system
that is supporting operational activities. The test version of the data server must not interfere/
interact with the operational version of the data server. Inaddition, it will only see and have access
to interface components that have been specifically set up and initiated under the same test mode.

The mode management design does not limit the number of concurrently executing modes,
however, performance considerations need to be addressed prior to the initiation of an additional
mode. It will support multiple test and training mode instances, but due to data persistence issues
there can only be one operational mode of execution at any given time. Once an application has
been initiated within a given mode, it will remain in that mode for the life of the process.

The site Resource Manager will have a view of all the components supporting each mode. This
view is provided through HP OpenView and can be configured to display all of the components
from every mode on one window or to display the components associated with each mode in
separate windows. Software components will be duplicated, and hardware resources will be
isolated whenever possible to support an additional mode. However, there will be shared
resources, both hardware and software, that require special consideration to enable mode
management support.

Section 6.1 focuses on the detailed design for the Mode Management Service (MMS) within MSS.
Mode Management compliance within each subsystem is addressed in the subsystem's associated
detailed design specification. However, a brief synopsis of the mode management design from a
system perspective is provided in the paragraph 6.1.1.1 to enhance the reader's overall
understanding of the MMS design. The Mode Management Service design overview is provided
in section 6.1.1.2, followed by the Object and Dynamic models.

6.1.1.1 Mode Management within ECS Context

Mode Management, from a system perspective, consists of procedural activities and infrastructure
control. The procedural aspects of mode management address mode planning, resource allocation,
and system configuration activities. Infrastructure control ensures the software subsystems will
recognize the different modes of execution and that data integrity and process distinction will be
maintained within each mode.

6.1.1.1.1 Procedural Activities

The procedural activities that are required to support a mode of execution are as follows:
1. Obtain and read the test/training/simulation/etc. plan from the plan originator.
2. Obtain a unique mode identifier from the Resource Manager.

3. Determine the scope of the new activity. Will the test be inter-DAAC or intra-DAAC?
What services/components are involved? etc..

6-2 305-CD-029-002

4. Determine whether the addition of the new mode will impact the performance of any other
simultaneously executing modes. If so, how can this impact be minimized.

Coordinate M&O personnel required for the support of the additional mode.

Use the Resource planning tool to identify and allocate the necessary hardware and
software resources required to support the additional mode.

7. Notify the SMC of the intended plan. If the new mode involves multiple DAACS, the SMC
may become involved in the planning process.

8. Configure the directory namespace (i.e. Cell Directory Structure (CDS)) for the new mode
based on the mode identifier. This activity may not be required if the CDS had been
previously configured using the same mode identifier.

9. Create an HPOV map in support of the new mode. (This activity may not be required if an
HPOV map had been previously configured for the same mode).

10. Establish a new HPOV session and load mode specific map into HP OpenView.

11. Identify support data sets, test software, control files, and test procedures necessary for the
execution of the new mode.

12. Establish directory partitions within the file system and databases based on the mode
identifier.

13. Load support data sets, configuration files, control files (drivers), and test software into
mode established partitions.

14. Initiate Mode Management Service from within the HP OpenView management
environment.

15. Activate new Mode within system using Mode Management Service.
16. After mode completion backup mode associated output data sets
17. Deactivate mode using the MMS and return system to a pre configured state.

6.1.1.1.2 Infrastructure Control

The System Infrastructure will ensure data integrity between modes and provide process
distinction and separation where feasible. In the case of COTS, where running multiple instances
of the executable may not be possible, a single application will be required to handle requests from
multiple modes. These shared resources require special consideration to ensure integrity between
modes. These capabilities will be provided as part of the system infrastructure which have been
designed to accommodate mode management.

Infrastructure control is based on the mode identifier. The DCE CDS and all data partitioning will
be based on this identifier. These entities will be pre configured, as part of the procedural activities
required to support a mode, to accept mode specific requests. Applications are hard coded with a
mode attribute variable where mode specific requests are required. The application obtains the
mode identifier at startup which it will use for all subsequent mode specific interprocess
communications and data /O requests.

The mode identifier specifications are as follows:
* Maximum of six (6) characters

6-3 305-CD-029-002

* Alpha-numeric including the underscore character
* Must not start with an underscore character
» Characters are case sensitive
Examples are "ops", "ts1", "ts2", "trl", "shared"
Mode Identifier Guidelines:
» The "ops" mode identifier is mandatory for all operational (production) mode activities.

* The "shared" mode identifier is only used internally to designate a common CDS
namespace registration point for mode independent applications.

6.1.1.1.2.1 Data Integrity

Data integrity must be maintained between each software mode. For example, operational
processes can never read from test/training data sets and test/training data can never be written to
operational data sets. All data required to support an additional mode will be duplicated. It will
be partitioned by using separate volumes or by a hierarchical directory structure within the same
volume such that all reading/writing of data will be segregated between software modes. All data
required to support a given mode must be clearly defined, segregated, and duplicated prior to the
initiation of the new activity. The segregation of the data will be based on the mode identifier.

For data storage in the UNIX environment, the data will be segregated on the same (or different)
disk volume(s) in a hierarchical directory structure based on the mode identifier. The applications
will access the data using the mode identifier as part of the directory path.

For data storage within a DBMS, the data will be segregated using a separate database or tape
group. Applications accessing the DBMS will pass the mode identifier to the DBMS interface
class which will access the corresponding mode specific database.

6.1.1.1.2.2 Process Distinction and Separation

Process distinction and separation for custom developed applications is accomplished via DCE.
The Process Framework (PF) will ensure mode specific process communication by registering
each server application into the DCE CDS namespace within the appropriate mode hierarchy.

When a server starts up, it registers itself in the CDS directory structure via the PF. Each entry in
the CDS is uniquely identified by the server name and it's UUID. If CDS is given the UUID, it
will return the rest of the name that is actually registered. Part of the administration for DCE is to
setup the CDS directory structure. This is where the group, location, and mode combinations will
be initially set up. This way, when registration in CDS occurs, it is known where to place the name.
One function of setting up a new mode will be to manually add a new path to the CDS directory
structure for the given activity. All applications will then automatically register to this new path
based on the mode identifier obtained at startup. The mode identifier will be passed from the
Management Framework (HP OpenView) to the remote executable startup scripts as a command
line argument. The startup script will set the mode as an environment variable, which is necessary
for assigning a mode specific UUID required for ACL management, and then also pass it in as a
command line argument to the application's main. Once an application has been initiated within
a given mode, it remains in that mode for the life of the process. When clients do server lookup
calls, they will only see and find the servers running within the mode they are executing.

6-4 305-CD-029-002

Some applications like the Management Data Access (MDA), Subagent, and virtually all COTS
products will be mode independent, i.e. a single instantiation of the application will support
multiple modes. When mode specific interfacing or data /O is required the mode identifier will
be passed into the application. For example the MDA, which is mode independent, processes
events and routes them to the management database. For mode management support it will extract
the mode attribute from the event class and then use this to route the event to the mode specific
management database via the DBMS interface class. Mode independent applications will register
under the "shared" hierarchical directory structure within the CDS namespace. If an event is
generated by a mode independent application, the MDA will copy to all active management
database(s) independent of mode. This will ensure the autonomy of each mode specific
management database.

6.1.1.2 MSS Mode Management Service

The Mode Management Service (MMS) within MSS provides mode initiation, monitoring, and
controlling capabilities. These capabilities are provided by HP OpenView with custom code
extensions. The MMS is a custom developed application which will interface with HP OpenView
via HP's oww APIs and with the agents via HP's ovsnmp API's. A high level overview of this
interface is presented in Figure 6.1.1. Communication to and from HP OpenView (and therefore
the MMS) is via SNMP protocol. SNMP Gets are sent directly to the remote agent while SNMP
Traps and Sets are routed through the local Deputy Agent. The Deputy Agent is used to
encapsulate the SNMP call into a more reliable RPC call for transport to/from the remote host.

Through the use of Agents, each process can be controlled and monitored from within HP
OpenView. The MMS will incorporate the mode management user interface directly into the HP
OpenView GUI, providing methods to activate and deactivate a mode. In addition it provides a
mode specific user interface for accessing CSS life-cycle control (suspend, resume, and shutdown).
Monitoring capabilities are provided as standard functionality within HP OpenView and will be
enhanced to reflect mode specific status propagation of software system, subsystem, application,
program, and process level entities. Hardware is mode independent so it's status will be reflected
within every mode in which it is configured.

HP OpenView will support multiple modes through the use of separate HPOV sessions. A new
session can be brought up on the same host or on separate hosts. Figure 6.1.2 shows a multi-session
view of how HP OpenView can be configured on separate hosts to support multiple modes. Every
session can load one and only one map. The map can have any number of submaps defined that
will decompose the basic high level map representation. Each mode will have it's mode specific
map (and associated submaps) predefined to recognize and support the hardware and software
components that are supporting the given mode. Submap context will be determined based on the
mode identifier.

6-5 305-CD-029-002

HP OpenView Windows (ovw)

ovwWAPI's

Mode Management
Service (MMS)
Application
main()

snmpAPI's ot
ets

p= Managed host

ovsnmpopen()

snmp over UDP

MsAgDeputy

snmp packaged in RPC's over TCP/IP

T Traps and Sets p Man aged host

Figure 6.1-1. Mode Management Service Interface Overview Diagram

The MMS, initiated from within HP OpenView, is an event driven application. It will initialize the
ovw and ovsnmp API calls, register the MMS callbacks, and then enter a main event loop. This
functionality is similar to X-windows processing. Then when an action occurs, such as an operator
selecting "activate mode™ from the HP OpenView GUI, an event is triggered and the applicable
callback is executed. The objects detailed in the MMS Object diagram are instantiated from within
the callback operations. The MMS incorporates the following callback operations (more detail is
provided in paragraph 6.1.1.4):

» ovwActivateMode()

» prompt operator for new mode identifier

» prompt operator for simulation time if non-ops mode is entered
* add new mode identifier to active mode list

» issue ovsnmp API call to Deputy Agent to activate the new mode. (Detailed information
is provided on this in the dynamic model).

» ovwDeactivateMode()
* Ensure all executables within mode are inactive

6-6 305-CD-029-002

Management Management
Console Console

- OVwSessionld = ops:0 OVwSessionld = ts1:0 -
MIII_I=3|
/ IRTTTCTCCMTTNTIS

Management Station socket NFS
T~ z /

\ OVde
daemon

map
database

socket

NFS

N\

object
database

Figure 6.1-2. HP OpenView Multi-Session View Diagram

* issue ovsnmp API call to Deputy Agent to deactivate the selected mode.
* remove deactivated mode from active mode list
* ovwShutdownExec()

* decompose system/subsystem level ovw objects into application/program/process level
objects.

» issue ovsnmp API call to Deputy Agent to shutdown executable.
* ovwSuspendExec()

» decompose system/subsystem level ovw objects into application/program/process level
objects.

» issue ovsnmp API call to Deputy Agent to suspend executable.
* ovwResumeExec()

» decompose system/subsystem level ovw objects into application/program/process level
objects.

* issue ovsnmp API call to Deputy Agent to resume executable.

When a new mode is activated, the subagent's MsAgDiscoverer class will add the new mode
identifier to it's valid modes list. Since all applications and executables require an associated
configuration file in the subagent's configuration directory, the MsAgDiscoverer class uses this list
to determine the configuration directory trees to span when it searches for installed applications.

6-7 305-CD-029-002

When the new mode is added, it issues a DiscoverNow() call and searches each mode's
configuration tree. When new applications are discovered (and they will be since the executables
that support the new mode are now recognized by the subagent), the subagent will issue an SNMP
trap to HP OpenView to add the new object to the ovw database. Every application and executable
is represented internally within HP Openview as an object. This object contains all of the
executable's associated attributes based on the information contained in it's corresponding
configuration file. The object's mode (i.e. executable's mode) that was passed back from the
subagent that discovered it, is also stored in the object database. HP OpenView objects are
represented as symbols on the HP OpenView maps/submaps. When it receives the snmp trap to
add the new object it will add it's corresponding symbol to the appropriate submap within the
applicable mode's session. The symbol will be in an inactive state since the actual executable has
not been started yet. It has merely registered within the management framework. This action
occurs for all the applications/executables that are in support of the new mode. From this state the
operator can start the applications/executables as part of the normal HP OpenView startup process.

In summary, the Mode Management Service will:
» Incorporate Mode Management Service functionality into the HP OpenView GUI.
» Support independent displays for each different mode of execution.
» Provide methods for activating and deactivating the system to a given mode.

» Enable startup/shutdown/suspend/resume activities for each process by utilizing CSS
provided life cycle services.

* Provide the capability to enter a simulated time value for any non-ops mode if required.
» Enable application/program/process level monitoring within each mode.

6.1.1.3 Mode Management COTS

HP OpenView Network Node Manager (NNM) has been selected as the ECS Management
Framework. This COTS product inherently provides the capabilities for fault and performance
management of TCP/IP networks (SNMP devices). Mode Capabilities will be added via a custom
Mode Management Service application. In the Object Model, Section 6.1.6, HP OpenView
Network Node Manager is represented by the object labeled ManagementFramework. This
product provides capabilities and features to allow customization for mode management of the
ECS network. This customization, represented by MsMmMode, MsMmModelnit,
MsMmModeTerm, MsMmCtrl, MsMmSuspend, MsMmResume, and MsMmShutdown in the
Object Model, includes the following tasks:

» creation of maps and submaps to include the separation into different maps of the processes
associated with a particular mode of execution

» add discovered managed objects to the appropriate submaps to graphically represent the
topology of the ECS network

» change and propagate status of managed object based on faults/events
» control the life-cycle services (startup/shutdown/suspend/resume)

» seamlessly incorporate Mode Management Service functionality into the HP OpenView
GUIL.

6-8 305-CD-029-002

» support independent displays for each different mode of execution.

* methods for activating and deactivating the system to a given mode.

» capability to enter a simulated time value for any none "ops" mode if required.
» application/program/process level monitoring within each mode.
 definition of monitoring criteria

» definition of thresholds on attribute values

» definition of notification mechanisms

 definition of forwarding criteria

The product also provides application programming interfaces (APIs) and an extensible graphical
user interface to allow its capabilities to be extended, through custom development, for the mode
management of non-SNMP entities such as ECS applications. This custom development is
illustrated in the appropriate sections of the object model.

6.1.1.4 MMS Main Loop and Callbacks
The PDL for the MMS, event driven, main loop as well as for the MMS callbacks is as follows:
Basic Main Loop Structure:

main(argc, argv)

mainEventLoop(....)

}
Callback Structure:

OVwActivateMode()

{
/ instantiate a mode init object
MsMmModelnit newMode;

/I call member function to tell agent to activate this new mode
newMode.ActivateMode();

}

OVwDeactivateMode()

{
[/l instantiate a mode term object with the mode to deactivate
MsMmModeTerm killMode(RWCString mode);

/I call member function to see if valid and tell agent to deactivate mode
killMode.DeactivatMode();

6-9 305-CD-029-002

OVwSuspendExec(ovwObject *objectptr)

{
/I create an application level object pointer if needed
ovwObject *appObject;
EcTint seconds;
/I obtain number of seconds until suspend
ovwAPIGUI(“Enter Number of seconds until suspend: “, &seconds);
/I system and subsystem level ovwODbjects need to be broken
/I down into application level objects.
if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”)
{
traverse down system or subsystem object tree, then
for each (appObject = objectptr->application level object) do
{
/I create a suspend object for each application level ovw object
MsMmSuspend suspendObj(appObject->nTblID, appObject->rowIndex,
appObject->hostID, appObject->seconds);
Il issue suspend to agent
suspendObj.supendExec();
}
}
else
{
/I create a suspend object for the (app, prog, or process level) ovw object
MsMmSuspend suspendObj(objectptr->nTblID, objectptr->rowIndex,
objectptr->hostID, objectptr->seconds);
Il issue suspend to agent
suspendObj.supendExec();
}
}
OVwShutdownExec(ovwObject *objectptr)
{

I create an application level object pointer if needed
ovwObject *appObject;
EcTint seconds;

/I obtain number of seconds until shutdown
ovwAPIGUI(“Enter Number of seconds until shutdown: “, &seconds);

/I system and subsystem level ovwObjects need to be broken
/I down into application level objects.
if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”)
{
traverse down system or subsystem object tree, then
for each (appObject = objectptr->application level object) do
{
/I create a shutdown object for each application level ovw object
MsMmShutdown shutdownObj(appObject->nThblID, appObject->rowindex,

6-10 305-CD-029-002

appObject->hostID, appObject->seconds);
I issue shutdown to agent
shutdownObj.shutdownExec();

}
}
else
{
/I create a shutdown object for the (app, prog, or process level) ovw object
MsMmShutdown shutdownObj(objectptr->nTblID, objectptr->rowindex,
objectptr->hostID, objectptr->seconds);
/I issue shutdown to agent
shutdownObj.shutdownExec();
}
}
OVwResumeExec(ovwObject *objectptr)
{
/I create an application level object pointer if needed
ovwObiject *appObject;
/I system and subsystem level ovwObjects need to be broken
/l down into application level objects.
if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”)
{
traverse down system or subsystem object tree, then
for each (appObject = objectptr->application level object) do
{
/I create a resume object for each application level ovw object
MsMmResume resumeObj(appObject->nTblID, appObject->rowindex,
appObject->hostID);
[l issue resume to agent
resumeObj.resumeExec();
}
}
else
{
/I create a resume object for the (app, prog, or process level) ovw object
MsMmResume resumeObj(objectptr->nTblID, objectptr->rowindex,
objectptr->hostID);
I/ issue resume to agent
resumeObj.resumeExec();
}
}

6.1.2 Mode Management Context

The Mode Management Service provides a means to initiate/terminate modes of execution, and to
monitor and control various CSCI components as managed resources. The managed resources
include SDPS, FOS, CSMS services.

The Management Agent, Master Agent, and Server Objects co-resident with the managed objects
provide/enable the monitoring and control of any process within each mode. The Mode
Management Service context diagram is shown in Figure 6.1-3.

6-11 305-CD-029-002

Simtime Simtime

l<¢———— Mode Request———— ————— Mode Request —— >
Process Control Process Control
SDPS FOS
Current Mode Current Mode
Operational Status perational Status
Fault ———ault Notification -
Management
Service o
Active Mgdes Mogémélgq% est
<—Resource Status
Process Control 2]
Mode Management Service Set Mode CSMS
(HPOV with custom
code) Current Mode
perational Status
—Performance Statistic:
Performance
Management
Service
Active Modes
< Resource Status

SNM PRM(e:ssage SNMP Message
Request Life-Cycle SeNiCEife—CygePIC:unction

V

css
Communications
Infrastructure

Other
ECS Sites

Figure 6.1-3. Mode Management Context Diagram

6.1.3 Mode Management Object Model
The Mode Management object model is shown in Figure 6.1-4.

6-12

305-CD-029-002

€T-9

¢00-6¢0-dd-S0€

MsMmMode

MsMmCtrl

= _tliD : EcTin
- _rowindex : E
- _hostiD : EcT

it
cTint
host

- _objectlD : OvwObjectiD

MsMmCtrl(EcTint tblID, EcTint rowIndex, EcThost hostlD, OvwObjectID object|D)

MsMmModelnit

MsMmResume

_simTime : RWTime

IR IR

+

PromptSimTime() : EcTInt
GetSimTime() :
MsMmModelnit()
~MsMmModelnit()
PromptMode() : EcTInt
ActivateMode() : EcTint

ValidateMode(RWCString mode) : EcTIt

MsMmResume(EcTint toID, EcTint rowindex, EcThost hostD: OvwOblectlD objectlD :
objec(ltg))

| MsAgDeputy | |

= _mode : RWCStiing T
+ ~MsMmCtrl()
+ MsMmMode(RWCString mode) + GetThlID() : EcTint
+ ~MsMmMode() + GetRowlIndex() : EcTint
+ GetMode() : RWCString + GetHostiD() : ECTHost
- UpdateActiveModeList(RWCString mode, EcTint action) : EcTint + GetObjectiD() : OWObjectiD
MsMmSuspend
MsMmModeTerm ~_seconds : RWTime
MsMmSuspend(EcTint tblID, EcTint rowindex, EcThost hostID, RWTime seconds, MsMnCtrl(EcTint thlID, EcTint rowindex, EcThost hostID, OvwObjectl|
+ MsMmModeTerm(RWCString mode) OvwObjectiD object!D : MSMmCHri(EcTint thilD, ECTint rowindex, EcThost hostiD,
+ ~MsMmModeTerm() OvwObjectiD objectiD))
WTime - CheckObjectStatus() : EcTInt + ~MsMmSuspend()
+ DeactiveMode() : EcTVoid + GetSeconds() : RWTime
+ SuspendExec() : EcTVoid
MsMmShutdown
MsMmShutdown(EcTint thliD, EcTint rowIndex, EcThost hostiD, RWTime seconds,
OvwObjectID objectID : MsMmCtrl(EcTint tbliD, EcTint rowindex, EcThost hostiD,
OvwObjectD objectiD))
+ ~MsMmShutdown()
+ GetSeconds() : RWTime
+ ShutdownExec() : EcTVoid
COoTS
(HPOV) Offpage
with with
Offpage Offpage
MsAgAgent

Figure 6.1-4. Mode Management Object Model Diagram

6.1.3.1

ManagementFramework Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is HP OpenView Network Node Manager, a COTS product. This product
provides the management framework with the underlying management services for the
management of SNMP-based network devices. It also provides the necessary integration
points and services for the integration of management applications. Since this class is all
COTS, it will not be described in detail here. The reader is referred to the documentation
set of HP OpenView Network Node Manager for further details on the product.

Attributes:

None

Operations:

None

Associations:

The ManagementFramework class has associations with the following classes:

Class: MsAgAgent communicateswith
Class: MsAgDeputy communicateswith

6.1.3.2 MsAgAgent Class

Att

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This managed object class is the master (SNMP) agent on the host. It listens to port 161 to
receive SNMP requests from management applications. It also sends SNMP traps to
management applications when certain events occur. MSS requires this master agent be
extensible to support subagents. The agent performs authentication and authorization
validations on incoming requests. If the requested MIB variables are in MIB Il, it performs
the functions requested. If the MIB variables are not in MIB Il but in registered MIB
extensions, it passes the request to the subagent which supports that particular MIB
extension.

ributes;

6-14 305-CD-029-002

None
Operations:

None
Associations:

The MsAgAgent class has associations with the following classes:
Class: ManagementFramework communicateswith

6.1.3.3 MsAgDeputy Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This object is used both by the management applications and by the subagent. The
management applications can send Set requests to the subagent through this object. The
subagent can send event notifications to this object so an SNMP trap can be emitted to
management framework.

Attributes:
None

Operations:
None

Associations:

The MsAgDeputy class has associations with the following classes:
Class: ManagementFramework communicateswith

6.1.3.4 MsMmCitrl Class

Parent Class:Not Applicable
Public:No

Distributed Object:No
Purpose and Description:
__thliD

6-15 305-CD-029-002

Attributes:

_hostID - The ID of the host where the process is running.
Data Type:EcThost

Privilege:Private

Default Value:

_objectID - The object ID in the HP Open View database.
Data Type:OvwObjectID

Privilege:Private

Default Value:

_rowlndex - The row index of the process table. Used by the MsAgTbIMgr to access the
table.

Data Type:EcTInt

Privilege:Private

Default Value:

_tblID - The process/application/program table 1D.
Data Type:EcTInt

Privilege:Private

Default Value:

Operations:

GetHostI D - Accessor function to get the _hostID attribute.
Arguments:

Return Type:EcTHost

Privilege:Public

PDL:/K{

[lreturn (_hostID);

I}

GetObjectI D - Accessor function to get the _objectlID attribute.
Arguments:

Return Type:OvwODbjectID

Privilege:Public

PDL:/{

[Ireturn (_objectID);

I}

GetRowl ndex - Accessor function to get the _rowlindex attribute.

Arguments:
Return Type:EcTint

6-16 305-CD-029-002

Privilege:Public
PDL:/

[lreturn (_rowlndex);
I}

GetThblID - Accessor function to get the _tblID attribute.
Arguments:

Return Type:EcTint

Privilege:Public

PDL:/K

[lreturn (_tblID);

I}

MsMmCtrl - No description

Arguments:EcTint tblID, EcTint rowIndex, EcThost hostID, OvwObjectID objectID
Return Type:Void

Privilege:Public

PDL: /1 {

I}

~MsMmCitrl - The destructor for the class.
Arguments:

Return Type:Void

Privilege:Public

PDL: /I {

I}

Associations:

The MsMmCitrl class has associations with the following classes:
None

6.1.3.5 MsMmMode Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:
_mode

Attributes:

6-17 305-CD-029-002

_mode- The mode of a process such as ops, tsl, ts2, ...
Data Type:RWCString

Privilege:Private

Default Value:

Operations:

GetMode - Accessor function to get the mode attribute.
Arguments:

Return Type:RWCString

Privilege:Public

PDL: /1 {

Il return (_mode);

I}

MsMmMode- The default constructor for the class. Accepts the mode attribute.
Arguments:RWCString mode

Return Type:Void

Privilege:Public

PDL: /1 {

/I _mode = mode;

Iy

UpdateActiveM odeL ist - Write a new mode to (or delete a mode from) Active mode file.
Arguments:RWCString mode, EcTint action
Return Type:EcTInt

Privilege:Private

PDL: /1 {

I lock_file();

/I if (‘action == ADD)

/I write new mode to the file

Il else

/[remove mode from file

I/l unlock_file();

I}

~MsMmMode- The destructor for the class.
Arguments:

Return Type:Void

Privilege:Public

PDL:/{

I}

6-18 305-CD-029-002

Associations:

The MsMmMode class has associations with the following classes:
None

6.1.3.6 MsMmModelnit Class

Parent Class:MsMmMode
Public:No

Distributed Object:No
Purpose and Description:

Attributes:

_simTime- The simulation time for test mode.
Data Type:RWTime

Privilege:Private

Default Value:

Operations:

ActivateM ode - Add the new mode to active mode file.
Arguments:

Return Type:EcTInt

Privilege:Public

PDL: /1 {

/[RWCString mode;

/I RWCString sim_time;

I

/l mode = MsMmMode::GetMode();

I

/[sim_time = GetSimTime();

I

/I MsMmMode::UpdateActiveModeL.ist (mode , ADD);
I

/I SnmpAPIActivateMode (mode, sim_time);

I}

GetSmTime- Accessor function to get the simulation time for non-ops modes.
Arguments:

Return Type:RWTime

Privilege:Public

PDL: /I {

[lreturn (_simTime);

6-19 305-CD-029-002

'}

MsMmM odel nit - The default constructor.
Arguments:

Return Type:Void

Privilege:Public

PDL:

PromptMode - Get the mode for the process and validate it. Update the ::mode attribute.
Arguments:

Return Type:EcTInt

Privilege:Private

PDL:/K

[IRWCString mode;

/[EcTInt mode_status = -1;

I

[IOVWAPIGUI ("Enter desired mode™);
I

/lif (' ValidateMode (mode))

1{

[IMsMmMode::_mode = mode;
/Imode_status = 0;

I}

[Ireturn (mode_status);

I}

PromptSimTime - Get the simulation time for the test mode, validate it, and update the
_simTime attribute.

Arguments:

Return Type:EcTInt

Privilege:Private

PDL:/ {

[IRWCString sim_time;

/[sim_time = OVWAPIGUI ("Enter desired simulation time of mode")
[fif ('sim_time.isValid())

/l_simTime = sim_time;

I}

ValidateMode - Validate the requested mode by consulting the MMS Current modes file.
Arguments:RWCString mode

Return Type:EcTInt

Privilege:Private

PDL: /1 {

/'lock file

I

6-20 305-CD-029-002

/I traverse the MMS current mode file to make sure that
/I name entered is not in use.

Il

/I unlock file

/I return (-1 or0)

I}

~MsMmM odel nit - The destructor for the class.
Arguments:

Return Type:Void

Privilege:Public

PDL: /1 {

I}

Associations:

The MsMmModelnit class has associations with the following classes:
ManagementFramework (Aggregation)

6.1.3.7 MsMmModeTerm Class

Parent Class:MsMmMode
Public:No
Distributed Object:No

Purpose and Description:
**

Attributes:
All Attributes inherited from parent class
Operations:

CheckObjectStatus - Checks the object status in the HP Open View database.
Arguments:

Return Type:EcTInt

Privilege:Private

PDL:/I{

[IRWCString mode;

/Imode = GetMode (); /* current mode */

/[for every object in OVW object DB (ovwdbAPIs)
1{

//if (object.mode == mode) then

/[if (object.mode.status != INACTIVE) then

6-21 305-CD-029-002

//add object to inactive_list

I}

1

/fif (inactive_list 1= NULL)

11{

/lovwAPIGUI ("unable to deactivate mode, mode contains active
/I processes. The following processes must be

/I first shutdown")

[lreturn (-1);/* NOTE: this should be EcUtStatus */
1

[Ireturn (0);

I}

DeactiveM ode - Deactivate the mode and update the active mode list.
Arguments:

Return Type:EcTVoid

Privilege:Public

PDL:/I {

[IRWCString mode;

/1if (CheckObjectStatus() == 0) /* ensure all executables within

/I the mode are terminated */

1{

/Imode = GetMode ();

/[following function calls MsAgDiscoverer::DeactivateMode() which
/lremoves the mode from agent's internal table and issues a
//discoverNow operation to update the status

I

/[snmpAPIDeactivateMode (mode);

I

[IMsMmMode::UpdateActiveModeL.ist (mode, REMOVE)

I

I}

I}

MsMmModeTerm - The default constructor which accepts the mode that needs to be
terminated.

Arguments:RWCString mode

Return Type:Void

Privilege:Public

PDL: /1 {

[IMsMmMode::_mode = mode;

I}

~MsMmModeTerm - The destructor for the class.

6-22 305-CD-029-002

Arguments:
Return Type:Void
Privilege:Public
PDL: /I {

I}

Associations:

The MsMmModeTerm class has associations with the following classes:
ManagementFramework (Aggregation)

6.1.3.8 MsMmResume Class

Parent Class:MsMmCirl
Public:No

Distributed Object:No
Purpose and Description:

**

Attributes:
All Attributes inherited from parent class
Operations:

MsMmResume -

Arguments:EcTint tblID, EcTint rowIndex, EcThost hostID, OvwODbjectID objectID :
MsMnCitrl(EcTint tblID, EcTint rowlIndex, EcThost hostID, OvwObjectID objectID)
Return Type:Void

Privilege:Public

PDL://{

I}

Associations;

The MsMmResume class has associations with the following classes:
ManagementFramework (Aggregation)

6.1.3.9 MsMmShutdown Class

Parent Class:MsMmCirl
Public:No

Distributed Object:No
Purpose and Description:

6-23 305-CD-029-002

_seconds
Attributes:

All Attributes inherited from parent class
Operations:

GetSeconds - Accessor function to get the number of seconds.
Arguments:

Return Type:RWTime

Privilege:Public

PDL:/K

/lreturn (_seconds);

I}

MsM mShutdown

Arguments:EcTint tblID, EcTint rowlndex, EcThost hostID, RWTime seconds,
OvwObijectID objectID : MsMmCtrl(EcTint tblID, EcTint rowlndex, EcThost hostID,
OvwODbjectID objectID)

ShutdownExec - This function initiates the mode based shutdown procedure.
Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: /1 {

/I The following function will call the DeputyGate::SuspendExec(...) operation
[ISnmpAPISuspend (GetTblID (), GetRowlndex (), GetHost (), GetSeconds());
I}

~MsMmShutdown - The destructor for the class.
Arguments:

Return Type:Void

Privilege:Public

PDL: /1 {

I}

Associations;

The MsMmShutdown class has associations with the following classes:
ManagementFramework (Aggregation)

6-24 305-CD-029-002

6.1.3.10 MsMmSuspend Class

Parent Class:MsMmCirl
Public:No

Distributed Object:No
Purpose and Description:
_seconds

Attributes:

_seconds- This attribute represents the number of seconds required to suspend the process.
Data Type:RWTime

Privilege:Private

Default Value:

Operations:

GetSeconds - Accessor function to obtian the number of seconds.
Arguments:

Return Type:RWTime

Privilege:Public

PDL:/K

[lreturn (_seconds);

I}

MsM mSuspend

Arguments:EcTint tblID, EcTint rowlndex, EcThost hostID, RWTime seconds,
OvwObjectID objectID : MsMmCtrl(EcTint tblID, EcTint rowlndex, EcThost hostID,
OvwObjectID objectID)

SuspendExec - Starts the suspend procedure by calling the SnmpAPISuspend and the
DeputyGate suspend operations.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: /I {

/[The following function will call the DeputyGate::SuspendExec(...) operation
SnmpAPISuspend (GetTblID (), GetRowIndex (), GetHost (), GetSeconds());

I}

~MsMmSuspend - The destructor for the class.
Arguments:

Return Type:Void

Privilege:Public

6-25 305-CD-029-002

PDL: // {
'}

Associations;

The MsMmSuspend class has associations with the following classes:
ManagementFramework (Aggregation)

6.1.4 Mode Management Dynamic Model

6.1.4.1 Mode Management by an ECS Application

This scenario traces the events associated activating a new mode within the system. This action
causes the subagent to discover the new applications that have been designated to support the
mode. It notifies HP OpenView of these new applications and HP OpenView will register their
associated symbols (icons) on their mode specific submaps. The scenario is depicted in
Figure 6.1-5.

6.1.4.1.1 Beginning Assumptions

The system has been configured for the new mode (refer to paragraph 6.1.1.1.1 for the procedural
activities required). The MMS has been initiated and is waiting in the main event loop for an
operator action.

6.1.4.1.2 Interfaces with Other Subsystems and Segments

CSS - at the application level the CSS services ensure proper mode specific CDS Directory
namespace registration.

6.1.4.1.3 Stimulus
An operator selects Activate Mode from the HP OpenView GUI.

6.1.4.1.4 Participating Classes From the Object Model

HPOV (ManagementFramework)
MsMmModelnit

MsMmMode

MsAgDeputy

6.1.4.1.5 Beginning System, Segment and Subsystem State(s)

The MMS has been initiated and is waiting in the main event loop for an operator action. The mode
entered is a non-ops mode. This is reflected in the fact that a simulation time is prompted for. All
inputs are valid and the mode identifier entered is unique.

6-26 305-CD-029-002

L2-9

¢00-6¢0-dd-S0€

Mode Initiation

HPOV ovw (GUI)

Operator MsMmModelnit \ioMmMode CurrentModesFlle MsAgDeputy MsAgDiscoverer ActiveModesTable EcAgConfig
|- Select Activate Mode S>> ctor >
l<€— Prompt for mode —|
— Enter New Mode —>>f
Validate Mode —>>{ -
Verify mgde does
not gxist >
ctor—>>
——
set mode
l<€— Prompt for simTime —|
set simTime
Add mode to
I—current mode >>|
list
|— ovsnmpAPI(ActivateMode(mode| <simTime>)) —>> ActivateMode(mode, <simTime>) RPC
Add mode to
— active modes file =
DiscoverNow() —— >~
Refer to the Agent Btartup Event Trace|for more detail
on icon registration and normal_execptable startup

< Register mode specjfic executable with HPOV

Figure 6.1-5. MMS Mode Activation Event Trace

6.1.4.1.6 Ending State

The system has been initialized for the given mode and all of the mode specific applications are
registered within the applicable HP OpenView Session. The symbols that represent the mode's
executables are present on the submap in an inactive state.

6.1.4.1.7 Scenario Description
This description describes the accompanying event trace.

6.1.5

An operator selects "Activate Mode" from the HP Openview GUI ManagementFramework
which triggers the ActivateMode callback.

MsMmModelnit is instantiated and prompts the operator (PromptMode operation) to enter
a mode identifier via the HP Openview GUI ManagementFramework.

MsMmModelnit validates the mode identifier by checking to make sure the mode is unique
and is not currently active via the ValidateMode operation.

MsMmModelnit instantiates the MsMmMode object and sets the mode identifier attribute
within the MsMmMode constructor.

MsMmModelnit prompts the operator to enter a simulation time via the PromptSimTime
operation.

MsMmModelnit sets the simTime attribute.

MsMmMode adds the new mode identifier to the active modes file via the
UpdateActiveModeL.ist operation .

MsMmModelnit issues an ovsnmpAPI call to send a ActiveMode command to the
MsAgDeputy.

MsAgDeputy bundles the snmp call within an RPC and sends it to the MsAgDiscoverer

MsAgDiscoverer adds the mode identifier to it's active mode list and then issues a
DiscoverNow operation to look for newly installed applications. Since it will now search
the new configuration directory established in support of the newly activated mode, it will
generate an snmp trap event to HPOV ManagementFramework to register the new
applications/executables. Details from this point on are contained in the Agent event trace
diagrams.

Mode Management Structure

Table 6.1-2 lists the components of Mode Management Service.

Table 6.1-2. Mode Management Components (1 of 2)

Component Name COTS/Custom
MsMmMode Custom (C++ code)
HPOV (Management COTS + custom (ovwAPIs,
Framework) ovsnmpAPIs, scripts, callbacks)
MsMmModelnit Custom (C++ code)
MsMmModeTerm Custom (C++ code)

6-28 305-CD-029-002

Table 6.1-2. Mode Management Components (2 of 2)

Component Name COTS/Custom
MsAgDeputy C/C++ code p/o Management
Agent Services

MsAgAgent COTS

MsMmCitrl Custom (C++ code)
MsMmSuspend Custom (C++ code)
MsMmResume Custom (C++ code)
MsMmShutdown Custom (C++ code)

6.1.6 Mode Management Management and Operation

6.1.6.1 System Management Strategy

The Mode Management Service is based on HP OpenView NNM, which generates notifications
when it detects partial failures of its managed components. Components of HP OpenView may be
individually restarted. In the case of a total failure, the managed component may be restarted. All
error messages are logged to the local log file. In the case of a hardware failure of the MSS server,
a hot standby with dual-attached disks for a quick failover will be provided.

6.1.6.2 Operator Interfaces

The Operator Interface to Mode Management is the graphical user interface provided by HP
OpenView Network Node Manager.

6.2 Accountability Management

6.2.1 Accountability Management Overview

The Accountability Management Service provides the capabilities of User Registration, User
Account/Profile Maintenance, the generation of reports from audit trails, and Request Tracking
(includes near real-time reporting of request states as well as non-near real-time reporting of
request resource utilization).

ECS provides for two generic classes of users: guest users and registered users. Guest users are
users that have not formally registered to become registered users. Registered users are those guest
users that have submitted requests for a registered user account, and have had accounts created for
them, based on an approval process. Registered users are allowed access to services and products
beyond those available to guest users.

Guest users are provided the capability to submit a request for a registered user account, which is
captured into a database of pending requests. Operators may access this database of pending
requests in the process of user registration, in order to create a registered user account from a list
of pending requests.

User registration provides the operators the capability to create accounts against requests submitted
by guest users wishing to become authorized ECS users.

User Account/Profile Maintenance includes providing the operator the means to maintain the
created accounts and the user profile information. The user profile contains information about the

6-29 305-CD-029-002

user. This includes the name of the user, a user identification code, the user's primary DAAC, the
organizational affiliation, investigating group (such as an instrument team) affiliation (if any), the
project the user is affiliated with, the name of the PI of the project, the mailing address of the user,
the shipping address to which data needs to be sent, media preferences for orders, the user's
telephone number and the user's electronic mail address (if any). The system provides the
capabilities for the modification and maintenance of accounts with user profiles.

User Account/Profile Maintenance also includes making the user profile available to the various
subsystems, such as the Data Server subsystem and the Billing and Accounting Application
Service, information such as the user's electronic mail address and the shipping address, which are
used for the distribution of data products ordered.

The Audit Trail capability provides the means to verify the integrity of the system. This comprises
the generation of a user audit trail and a security audit trail with data collected from a variety of
sources.

Request Tracking provides the operator the capability to see the status of any of the trackable types
of user requests in near real-time. Trackable types of user requests include: Product Orders, Ingest
Requests, User Requests, and Operator Requests. Request tracking information is provided to this
service by the ECS applications which perform processing on the above specified request types.
In addition to tracking the state of the requests in near real-time, this service also collects resource
utilization on each request and stores the information in a database for cost analysis reports. The
resource utilization is reported back to the request tracking database after the request has completed
processing. The ECS applications report tracking information via the Request Tracking Key
Mechanism. In addition, Request Tracking provides a cost account reporting mechanism which
will generate various reports on the resource utilization cost of the requests which were tracked.

The Request Tracking Key Mechanism is intended for use by the developers of ECS applications
to report request status changes back to a central database to be displayed to an operator in near
real-time. The mechanism is also used to report resource cost that was collected during the life of
the request. The cost data is sent from the ECS application after the request has completed
processing and the utilization data used for cost accounting. The mechanism also accounts for
spawning of requests. When an ECS application creates one or more sub-requests for a request, a
parent-child type of relationship is established in the mechanism so that the spawned requests can
be tracked independently of each other and the operator will be able to get request state information
for the entire tree of requests in near real-time.

6.2.2 Accountability Management Context

The Accountability Management Service, as shown in the external interface context diagram,
interfaces with other subsystems in order to provide access to User Profiles as well as to receive
updates to request tracking information. The interface to the SMC provides the capability for the
Accountability Application Service to send summary accountability data and reports to the SMC.
The Management Database provides access to the management data for the purpose of generating
reports. The Management Agent Service interfaces with the Accountability Management Service
for the purpose to sending management commands, such as a shutdown command, and for events
and faults that are reported by this service. The Accountability Management context diagram is
shown in Figure 6.2-1.

6-30 305-CD-029-002

Accty Data Requests Summary Data and Reports

SMC Accountability
Management Database Request for data Management Service|
A Data
?—f%or S
his System
Site
Accountabilit}/
Managemen
Service
\
user profile request,
I Management Commands— | request tracking updates
Management Agent Other Subsystems
ervices
Faults and events profile information 5

6.2.3

Figure 6.2-1. Accountability Management Context Diagram

Accountability Management Object Model

The overview of the Accountability Management Service's object model is shown in Figure 6.2-2.

The det
6.2.3.1

ails of the classes shown in the overview are found in Figure 6.2-3 through Figure 6.2-7.

EcAgEvent Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

The EcAgEvent defines a distributed object. It provides the capability to dispatch events
for orderly and prompt resolution should events occur. The SNMP protocol provides the
capability to send traps from agent to SNMP manager. But, the traps are not secure and not
reliable. The solution to these problems are using DCE RPC as the transport mechanism for
security reasons and sending the traps from MSS Server to the management framework
locally. The COTS HP OpenView guarantees the delivery of traps local on one host by
using IPC as opposed to UDP. The ECS applications, the EcAgProxy agent, and the
MsAgMonitor of the MsAgSubagent can send event notifications to the MsAgSubagent.
The MsAgSubagent logs every event into MSS log file. Then, if the severity of the event
equals to or is higher than the infoLevel variable, it sends this event notification further to
the MsAgDeputy on the MSS Server which in turn convert the event to an SNMP trap and
send it locally to the management framework.

6-31 305-CD-029-002

g9

¢00-6¢0-dd-S0€

senvice
] [Public]
VsAcReport
= EH
I
| manage:
uses uses manages i
MsAcAuditTrail
pISTR 0B
] L J uses manages
B process non-state change ordpr events
uses
| [External] [Public] [DISTR OBJ]
MsAcRegUserDB ‘MsAcUsrRequesthgr MsAcUserAuditTrail
process ndhstate change sub-order events
{Extemal
manages manages
mansges =
-] MsAcTrackingDB ” dat
VeAcUsRequest rovide cost dat
* =
=
VisAcRegUser
N (External) (Public
manages
xchanges data with
VoAU Reque uses EcRequest
] [Public)
MSACDCEAGEt
MsAcTrackingMgr A
T
price for cancelled -
Ecorder] Ecsenvice W DisTROBI
EcPriceTableB EcSubOrder
Foagevert
pubic pubic]
MsAcUsrProfile [Externall [Public] L
| {Exernal Pebtcl Public] publcl
VAcUsiResUsageP
_ [Bxternal) [Public]
DISTR 0By
update tracking info generates generates ! |
generates
VsACUSProfieP
-] [Public]
NeAcAdress VsAcUsiName
| ososy - [oswoss B [DISTR p83)
m ! EcOrderEvent
[External] [Public] [External) [Public] EcSubOrderEvent
Puc]
B {Public] [Public]
=

MsAcUsrNameP
MsAcAddressP

Figure 6.2-2. Accountability Management Object Model Overview

esroton: RS

€e-9

¢00-6¢0-dd-S0€

. z
[y e
- sl
S
T o B
3 Sancgaang: eeing o o S
: mmmyu] demiSoend: s
- : e
- : P
: T
 pmEmene
{ B
| ammeR e
| EERameT,
e
e e
v 1 o _
rocess nonstate change order evers | * GoCosAceRoporWCSing MYDAAC, RWSing growpd, WCSviog vores Ve
— =
oo parenia mnmq
e — e
Ty e Eer
Py ety B s -
e S] sy
e ng Fanati: SorfomeL s ey o o A e merboes —
niiies, Foceuy medaTypeL MediaL s + CecSonice)
T mems ey e
e e S R e
L s e — - e
pemass R B R e .
I e L o ot
== - e e R
e [me—— :
e —— :
I T : e
s L M——— :
[DISTR 0BY) +_ProcessSubOrserEven{RWCStmg eventDescription) M H
EchequestEvent Pubic] i Examal poiel
i cnans e N " RemeveOmenst)
l,",;ﬂ‘,ﬁ',‘;{[m ‘Em,"m : < RerieveRoqestsi)
o onn e
= gmm
e e ool
-— . D e,
e B) R o e T e Ecvrme * Updatereauesiecod()
e 4 ROV S—
poross psmons oo
— T EE oo
e, - s
S e S e e — o o
iy ganaamat s Gnsomat e T RS oA £ Lo mehl. TR Sorven)
v i]
et ECTLony it PGl ProcesOrieEieng
oo o LT e LD ceru srpoteTime : &cTTme el
g e R e R S e e
RS e ERTEE SRR
FiaaType. o mCount. G SmpomeTie)
e Bejlobi
R s

i)

s wackng v upte kg

Figure 6.2-3. Accountability Management Object Model Detail 1

MsAcRegUser

[DISTR 0BJ]
MsAcUsrProfileMgr

]
MsAcUsProfileP

T SR
AU Proflem EWDBRea:
Aol A eh)

Inserter&

+ operator<<(RWDBUpdater&, MsAcUsrPr Updaters.
+ operator<<(RWDBInserter&, MsACUSPr i

[External]

fevemal pusic
[orcrreciaa |
manhges
]
Ao

moe’

egeceve
 prlegels oA
- accountNumber - title
T o i
- altShipAddr - middlelnit
- shipAddr - firstName
 aing
T R e
- Pl + SetTille(RWCString)
 Bijecmiame 1 S
 atiaion - : X
T e : .
 oencaitn oA :

o e AwCSg e
 Fomdac I eV 1 Wsadseiamey
T b :

T | ERE, {exemal pubie
- accountBalance 2 Zip: RWC:
- * bore Rt
R B e
M '+ MsAcAddress()
: ;SI%S! + ~MsAcAddress()

ring) + SetStreetl(const RWCSHrirg)Tnt
M + GetStreet1()const RWCStllng
M + SetStreet2(const R\ Uiy Tint
M + GetStreet2()const RWCString
+ + SetCity(const RWCStringTint |
* + GetCity() const RWCString
+ + tCountr it
+ + GetCountrtyf)const RWCString|
+ + SeiZip(const RWCSIringETInt
+ + GetZip(} const RWCString
+ SetMalAddICity(RWCString) P el o T
+ + GetPhone()const RWCString
+ + SelFax(const RWCSInBETint
: + GetFax(y const RWCString
: 0 (Exema pubic
: o const RuDate)
b e e
! Semeadcsing
i e
1 Seiimatsing
b=y
+ GetAccountNumber()
+ 5 xP\Fweramemwcsmnq)
pa= i -
+ exP\Mlddlelnn[RWCSmng)
T e RS
+ exP\LaslName(RWCSnmg)
T e v
+ SetPITile(RWCSting) + MsACUsrNameP(RWDBReaders)
+ GeiPITile) + operator<<(RWDBInserterg, MSACUSINanfRAIDBIn
+ Setbroeciiame(Rwsting) $ Updee{eWDBUpeee, RUCSiing RUCSIng W Cating, REEont)
+ GetProject! + ~MsAcUsrNameP(
1SS sy
b el
1 SRR wcsiing A
T s
b —
1 Sheared
! Snmmmicom)
+ etTe\Num(RWCSmHQ]
S
+ -s!HomeDAAC{RWCSVmWF
+ ~-exMa\IAﬂﬂress(RWCSmng) ™1
b=
+ :»e&ma\\aﬂﬂress(kwcsnmg] MSACAQdressP
v
:)
M + Update(RWDBUpdater, RWCString,
e WCSting) + upevalur<<1RWDE\nsensv&MsAcAddressP"
D b oo
1 Shvet 1 VisAchddrossp(RWDBReaderd)
D=y + MsAcAddressP(const MsAcAddress&)
1 D
1 Sseniacsung
+ Userld()
SRS metecrvoin
+ MsUserProfile(EcTVoid)
+ GetAccountBalance@icTLong accountBalar
: aecafod
+ (RWCString)
:)
i pbe
3 Ricsing)
: o
: Ricsiing
+ GetAltShipAddrCity()
+ EtAMshlwAdde"eeZ(RWCS"mE)
At
+ sxAAsn-wAamsueell(chsmnu)
: o
+ (RWCString)
:)
i pbe
3 Rifesting
:)
: el
: csing
: rwcsiing)
s 20
: .
i 10
+ String)
+ GetBillAddrFax
+ SetBillAddrPhone(RWCString)
+ GetBilAddrPhone()
+ SeBllAdICoUTy(RWCStng)
T SR
g
T i
b L —
! Sootnaasin
by
D Bt
+ tl()
: icsung
+ % ddrCountry()
+ (RWCString)

pusil

Figure 6.2-4. Accountability Management Object Model Detail 2

6-34

305-CD-029-002

Ge-9

¢00-6¢0-dd-S0€

MsAcRegUserMgr

manages

MsAcRegUser

name

MsAcDCEAcct

principal RWCString
group: RWCString
organizationRWCString
password RWCString

[

MSACDCEAGCI()
~MsACDCEAcct()

CreatePrincipal(RWCString usei)|
CreateAccount(RWCString usefkci]y
DeletePrincipal(RWCString useic)]|
DeleteAccount(RWCString useBc])\
UpdatePrincipal(RWCString usegtd]
UpdateAccount(RWCString usegej|
GetPrincipal(RWCString useEdy Vol
GetAccount(RWCString useBd) Vo

Void
foid
Void
oid
Void
Void
d
d

userlD
userld: RWCString

DeleteRegUser()
CreateRegUser()
UpdateRegUser()
MsAcRegUser()

~MsAcRegUser()
SetUserld(RWCString usefgIVojd
GetUserld(RWCString &usefidINMoid
GetProfile(RWCString useriTVold
SetProfile(RWCString useriTVold
GetResUsage(RWCString useBd[Void
SetResUsage(RWCString useBdfVoid
GetDCEACCH(RWCString useBd Yoid

SetDCEACC(RWCString useHd) Yoid

[

MsAcUsrProfile

[External]

MsAcUsrResUsage

cpuLimit EcTint
cpuUsage EcTint
memoryLimitECTInt
memoryUsageEcTint
diskLimit EcTInt
diskUsage EcTint
networkLimitEcTint
networkUsageEcTint
dataLimit EcTInt
dataUsage EcTint
orderLimit EcTInt
orderUsageEcTint

MsAcUsrResUsage()
~MsAcUsrResUsage()
GetCpuLimit(cpuLimiBcTVoid
SetCpuLimit(cpuLimiBeTInt
GetCpuUsage(cpuUsaggyTVoid
SetCpuUsage(cpuUsaggpTint
GetMemoryLimit(memoryLirEie)rVoid
SetMemoryLimit(memoryLireTint
Ge[MemoryUsage(memoryUs@ewmd
SetMemoryUsage(memoryUsageyInt
GetDiskLimit(diskLimEcTVoid
SetDiskLimit(diskLimEcTInt
GetDiskUsage(diskUsagey TVoid
SetDiskUsage(diskUsaggg TInt
GetNetwrokLimit(networkLirBil Void
SetNetworkLimit(networkLireT Int
GetNetworkUsage(networkUsage) Void
SetNetwrokUsage(networkUsageT Int
GetDataLimit(dataLimE:TVoid
SEtDa[aLumn(daxaUmml nt

TVoid

MsAcUsrResUsageP

FE—_—

MsAcUsiResUsageP(RWDBReader&)
MsAcUsrResUsageP(const MsAcUsrResUsage&
g&)

MsAcUsrResUsageP(const RWCStri

operator<<(RWDBInsertorg, MsACUSI ResUsdaBinserterd
operator<<(RWDBUpdater&, MsAcUsrResUsdf@Updater&

~MsAcUsrResUsageP()

Figure 6.2-5. Accountability Management Object Model Detail 3

e

T

tal
SetDalaUsage(dataUsagé)Tln(
GetOrderLimit(orderLimy TVoid
SetOrderLimit(orderLim@ETInt
GetOrderUsage(orderUsad@TVoid
SetOrderUsage(orderUsagTInt

SetResUsage(EcTInt cpuLimit, cpuUsage, memoryLimit, memoryUsage, diskLimit|

diskUsage, n
Gameslisago(EoTint AcpuLimi, Bcpullsage, memoryLimit, &memorytisage, &
&diskUsage.)

skLimit,

[Public]

manages

= [DISTR 083)
VisAcUsrRequesihgr

MsAcUserRequestMgrt)EcTVoid
~MsAcUserRequestMgr()EcTVoid
CreateUserRequest(RWCString userReqiBcTVhid
DeleteUserRequest(RWCString userRegi@cTVAid
UpdateUserRequesi(RWCSting userRegidicT\oid
RetrieveUserRequest(RWCString userReq|cT{/oid
RetrieveUserRequestList)EcTVoid

MsAcUsrRequest

s FWCSTg e T
© UserReqid: RWCSing

processDate
requestDale
expirationDate
mediaPref
accountNumber
billAddr
shipAddr
mailAddr

Pl
projectName

afflation
researchFiled
organization
= emailAddr
telNum
MsAcUstRequestP homeDAAC

+ MsAcUsRequestP) | usrRequestid

* MsAcUstRequestP) GetSTas(RWCSITG UserReqiaECTVOd

SetStatus(RWCString userReq{dcTVoid
GetUserRequesi(MsAcUserRequesgEcTVoid
SetUserRequesi(MsAcUserRedquesEcTVoid
GetUserRequesiid(RWCString userReaicVoid
SetUerRequestid(RWCString userReqldicToid

SetOperatolWCSIng)
Getoperator
SeproessDatsuuCSng)
GetProcessDatel
SeReaesbale(RWCSITng)
GetRequestDate()
‘SetStatus(RWCString)
GetStatus()
SEBIAIER(RICSD)
GetbilladdrFax)
SeBIAsdPIone(FWCSing)
GetBillAddrPhone(
SetBilAddiCountry(RWCString)
GetillAddrCounty
SeBiadizp(wCSng)
GetBillAddrZi
SeBIASMRWCS g
GeilAddrState()
SeasdciyCsunD
GetBilladdrCi
Sett El\\AﬂmSneelZ[RWCSmng)
GetillAddrStreet2()
SetBilAddrSreetl(RWCSting)
Getilladdrstreet1
SeshpAddEaICSIn)
GerShipAd:
Setshi pAdlehone(RWCSmng)
GetShipAddrPhor
Se\smpAddlCuunlry(RWCS\nng)
GetShipAddrCe
SexsmpAderwp(chSmngy
GerShipAdd
SRS AWCSing)
GetShipAddrState()
Se!SNDAddrCIMRWCSmHG)
GetShipAdar
sexshnpAddrsueexz(chsumg)
GetShipAddrStre
setsmpAaarsueeu(chsmnu)
erShipAddrSiree
SexMan\AddvFax(RWCSvmg)
GetMailAdrF
SetMm\Adehuneqchsmng;
GetMailAddrPhon
Se!MaﬂAddeuumry(RWCSmng)
GetMailAddCountry)
SeiValAdarZpRWCSting)
GetMailAddrZif
SetMaiAddrState(RWCSring)
GetMailAddrState()
SetMailAddrCity(RWCSting)
GetMailAddCi
SemabadsieeCSing
GetMailAddrStres
SemalAdSTeetRWCSting)
GetMailAddrSreet1()
SeiExpirationDate(const RWDate)
GetExpirationDate()
SetMediaPrel(RWCSting)
Getvediaprel(
SelAchntNumher(RWCSmng)
tAccountumber
Se!P\Flvs!NamE(RWCSmng)
GetPIFirsiName()
se\P\Mmme\mt(chsmng)
Semaden
ame(RWCSmng)
Gapiian
Se(PmHe(RWCSmng)
GetPTile
Sethlec!NamE(RWCS"mm
GetPro
Se!Sponsm(RWCSumg)
GetSpor
Se'A”lhaﬂon(RWCSmnq)
Getaiiatio
SeResearnFCS Y
GetRes 1d)
SetOrganzaton{RWCSIing
GetOrganization()
‘SetTelNum(RWCString)
TelNum()
SetHomeDAAC(RWCString)
GetromeDAAC(
‘SetMailAddress(RWCString)
GetMailAddress()
SeEmailaddress(RWCSring)
GetEmailAdcressi

Se!useleﬂlelml(RwCSmnm
GetUserMiddelni
Se\usuLas\Name(RWCSmng)
GetUserLastNam
Se!Useanle(RWCSlvmgy
GetUser
SelUsARequesﬂd(RwCsLnng)
GetUsrReq

—MsAcuszequesm
MsAcUsrRequest()

[External] [Public]

Figure 6.2-6. Accountability Management Object Model Detail 4

6-36 305-CD-029-002

LE-9

¢00-6¢0-dd-S0€

MsAcReport
"~ reporid

& MsAcReport()

~MsAcReport()
+ GenerateReport(EcTint reportid)

[Public]

process non-state ch

[Public]

]
EcSubOrder

Cli process non-statechange orcerevents
VsAckanager
1 - -
MsAcRegUserMgr + -MsAcManager() H -l
T ia
- ise: + GenerateAduitTrail(EcTVoid EcOrder
+ NisAcReqUserMgrEeTVoid T WsAcHanager0 -
+ CreateRegUser(const RWCSUing&Tint + -MsAcManagerUi()
+ DeleteRegUser(const RWCStringgTint + GeneraleReport
+ UpdateRegUser(MsAcRegUserE} Tint + DisplayPendingRequest{EcTInt guestUsdEoid
+ NoifyUser() EcTVoid + DisplayPendingRequestLis€cTVoid
+ PrintUserinfor EcTVoid + RetrievePendingRequstList id
MsAcRegUser + RetrieveRegUser(const RWCStringd3AcRegpiser* + DeletePendingRequest(EcTint guestUseBe]\oid
+ RetrieveRegUserList(RWSlistCollectableB&} ot + ApproveRequest(RWCString regUsef Voi
RenveneaUsertitg 1 DReslseterr et |
RetneveRegUser(* DisplayReqUserLis(RWCSting regUsefa Vi
j0——manages—{ BetreveRequser) T Rt e T o
DeleteRegUser() + DeleteRegUser(RWCSiring regUsefidVoid
fasbtuiberrat | % DplayProfieOECTVod
* GenerateAudiTrat(EcTVoid mankges
uses + GenerateReport(EcTinT Repordi@TVoid =l
+ SendSummanDataToSMCRCTVO Voo
mansges -
+ -MsAcAuditTrail()
* GenerateAudiTrai)
uses
uses
- [DISTR O8]
VeAcUSProteNar
-l
TR o pisTR o
+ ~MSAcUserProfieMgr) L] DISTROBY ohges VAcUserAudiTrai
+ Remeverrfe(fCSng uryTvod VsAcUsRequestgr
: jasiname, TrsiName, - —
3 Relievebrole(~WSHing sesnmNumBETvo * St
+ RetrieveProfileList(EcTVoid uses
* nsertProfieq EcTVoid
+ UpdateProfile() EcTVoid [External]
* DeleteprofieQEcTVo
+ ReplicateProfileToSMCEcTVoid
{Extermal Pubi
= manages
VisAcRegUseDB
T RWCSHINga, RWCSTing8, RWCSIng&, RWCSITga)
& AishcReguserp
+ Initialize(RWCSiring&, RWCStrings. RWCString&, RWCString&, RWCStThGg)
+ Close() EcTVoid il
+ Insiance(: MsAGReqUserDB&
4 CreateRegUser(RWCSUngEXTint MeAcUsiRequest
+ GeRegUser(RWCSingaisAcRegUSerP 1
% UpdateRegUser(sACRegUSerPESTInt T
+ DelseRegUSCrRWCSIng Tt
+ AddUserProfile(MsAcUsrProfilePEATInt
+ DoltUserPrfie(@HCS GBIt {Externai public]
+ rofile(MACUSTProfiigggTInt .
+ GetUserProfile(RWCString8)sAcUsrProfile* [External] [Public]
+ GetProfileList(RWSListCollectable€&jTVoid
+ ProfleExsts(RWCStngcTint
: SIS (RWCSTnG@ETin I
+ ResourceDatatxists(RWCSIoRHTint
VSACTrackgMgr

Figure 6.2-7. Accountability Management Object Model Detail 5

inge sub-order events

[Pubiic]

[Public]

Attributes:
None

Operations:
None

Associations:

The EcAgEvent class has associations with the following classes:
None

6.2.3.2 EcOrder Class

Parent Class:EcRequest
Public:Yes

Distributed Object:No
Purpose and Description:

This is a public class which is used by ECS applications to collect resource utilizations
associated with an order type of request. The class is also used by the application to report
the state of the order when the order state changes. Objects in this class should remain until
the application has finished processing the associated order request. An order type of
request is the top most root of a hierarchy of sub-classes and services that is associated with
a Product Data Order request from an ECS user.

Attributes:

distList - The distribution list for the product.
Data Type:DistListType

Privilege:Private

Default Value:

estimatedPrice - The price which was reported to the ECS user and the price which is to
be decremented from the avaliable balance of the user.

Data Type:EcTLong

Privilege:Private

Default Value:

homeDAAC - The site at which the user is registered, who placed the product order.
Data Type:RWCString

Privilege:Private

Default Value:

6-38 305-CD-029-002

orderUR - This is the UR for the order which is reported back to the ECS user. This is
stored in the tracking database so that the order tracking information can be retrieved by the
Order UR.

Data Type:ECTUR

Privilege:Private

Default Value:

shipAddress- Mailing address that the products produced/retrieved for the order are to be
shipped.

Data Type:RWCString

Privilege:Private

Default Value:

shipMethod - The method of shipment - how the product(s) are to be sent to the requesting
user.

Data Type:RWCString

Privilege:Private

Default Value:

shipToName - The name to which the products are to be addressed.
Data Type:RWCString

Privilege:Private

Default Value:

userld - The unique ECS user identification of the user who placed the order.
Data Type:RWCString

Privilege:Private

Default Value:

Operations:

EcOrder - The constructor for the class. The order related information is initialized and
the information, including the starting state, are send to the request tracking server. In
addition, the resource utilization counters are initialized to zero.

Arguments:RWCString description, enum type, enum state, ECTUR orderUR, RWCString
userld, RWCString homeDAAC, RWCString shipAddress, RWCString shipToName,
RWCString shipMethod, DiskListType distList, EcTLong estimatedPrice

Return Type:Void

Privilege:Public

PDL: No PDL

~EcOrder - Default destructor for the class. The collected resource utilization and the

final state of the order are sent to the request tracking server.
Arguments:

6-39 305-CD-029-002

Return Type:Void
Privilege:Public
PDL: No PDL

Associations:

The EcOrder class has associations with the following classes:
Class: EcOrderEvent generates
Class: EcPfManagedServer processnon-statechangeorderevents

6.2.3.3 EcOrderEvent Class

Parent Class:EcRequestEvent

Public:Yes

Distributed Object:Yes

Purpose and Description:

This is a public, distributed object whose purpose is to report information collected about
an order type of request. An order type of request is the root of a request hierarchy structure
that was generated based on a Product Order request from an ECS user. Obijects of this
class are created with the information to be reported and processed (sent to the request
tracking server) and then destroyed. These objects only need to stay around long enough
for the event to be processed.

Attributes:

distList - The distribution list for the product.
Data Type:DistListType

Privilege:Private

Default Value:

estimatedPrice - The price which was reported to the ECS user and the price which is to
be decremented from the avaliable balance of the user.

Data Type:EcTLong

Privilege:Private

Default Value:

homeDAAC - The site at which the user is registered, who placed the product order.
Data Type:RWCString

Privilege:Private

Default Value:

orderUR - This is the UR for the order which is reported back to the ECS user. This is

stored in the tracking database so that the order tracking information can be retrieved by the
Order UR.

6-40 305-CD-029-002

Data Type:ECTUR
Privilege:Private
Default Value:

shipAddress- Mailing address that the products produced/retrieved for the order are to be
shipped.

Data Type:RWCString

Privilege:Private

Default Value:

shipMethod - The method of shipment - how the product(s) are to be sent to the requesting
user.

Data Type:RWCString

Privilege:Private

Default Value:

shipToName - The name to which the products are to be addressed.
Data Type:RWCString

Privilege:Private

Default Value:

userld - The unique ECS user identification of the user who placed the order.
Data Type:RWCString

Privilege:Private

Default Value:

Operations:

EcOrderEvent - Constructor for the class. The information to be reported to the request
tracking server is initialized.

Arguments:EcTLong itemID, RWString description, requestType type, requestStateType
state, ECTTime timeStateUpdated, requestCost rCost, ECTUR orderUR, RWString userld,
RWString homeDAAC, distList, EcTLong estimatedPrice

PDL: No PDL

ProcessOrder Event - This method takes the information which was set in the class and
sends the information to the request tracking server.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

~EcOrderEvent - Default constructor for the class. This method cleans up the order event
object by removing any memory allocated for the attributes.

6-41 305-CD-029-002

Arguments:
Return Type:Void
Privilege:Public
PDL: No PDL

Associations:

The EcOrderEvent class has associations with the following classes:
Class: EcOrder generates

6.2.3.4 EcPfManagedServer Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is the container class that starts up the event Manager, table Manager, monitor, port
monitor, discoverer, subagent configuration, static buffer, and the deputy gate. This class
also starts a thread that triggers scheduled events (i.e. polling ECS application's
performance metrics).

Attributes:
None

Operations:
None

Associations:

The EcPfManagedServer class has associations with the following classes:
Class: EcOrder processnon-statechangeorderevents
Class: EcService processnon-statechangeserviceevents
Class: EcSubOrder processnon-statechangesub-orderevents

6.2.3.5 EcPriceTableB Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This class represents a public and distributed class that holds the prices of every billable
item in the ECS inventory of products and services. Price of hard media and standard

6-42 305-CD-029-002

shipping costs are also maintained in this table.
Attributes:

None
Operations:

None

Associations:

The EcPriceTableB class has associations with the following classes:
Class: MsAcTrackingMgr providepriceforcancelledrequests

6.2.3.6 EcRequest Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is an abstract class which represents all types of requests which are tracked in the ECS
system. This class contains the attributes and operations which are common to all of the
request types. The objects which are created from the sub-classes are used to track resource
utilization of the associated system request types as well as to maintain and report the
current state of the associated system request to the request tracking server.

Attributes:

activeTime- This is a resource utilization counter which contains the approximate amount
of real-time that the request has been actively processed.

Data Type:EcTTime

Privilege:Private

Default Value:

cpuUtilAtM ethodStart - This attribute is set to the current value of the cpu counter of the
system when resource utilization collection is started. This value is then used to calculate
the amount of cpu which was used during the collection period.

Data Type:EcTLong

Privilege:Private

Default Value:

cpuUtilization - The running total amount of cpu processing which has been used while
processing this request.

Data Type:EcTLong

Privilege:Private

6-43 305-CD-029-002

Default Value:

description - A textual description of the request.
Data Type:RWCString

Privilege:Private

Default Value:

diskUtilization - The running total amount of disk utilization which has been used while
processing this request.

Data Type:EcTLong

Privilege:Private

Default Value:

idleTime- This is a resource utilization counter which contains the approximate amount
of real-time that the request has been idle.

Data Type:EcTTime

Privilege:Private

Default Value:

ioUtilAtM ethodStart - This attribute is set to the current value of the 1/0 utilization
counter of the system when resource utilization collection is started. This value is then used
to calculate the amount of I/O utilization which was used during the collection period.
Data Type:EcTLong

Privilege:Private

Default Value:

ioUtilization - The running total amount of 1/O utilization which has been used while
processing this request.

Data Type:EcTLong

Privilege:Private

Default Value:

lastEventI D - This is the event identification of the last event that was reported to the MSS
event logging capability. This event ID allows an operator to browse through the event log
chain for the request in order to show the history of state changes as well as to see any other
signifigant events associated with this request.

Data Type:EcTLong

Privilege:Private

Default Value:

requestDate - The date/time at which the request started to be processed.
Data Type:EcTTime

Privilege:Private

Default Value:

6-44 305-CD-029-002

requestID - A unique identification of the request.
Data Type:EcTLong

Privilege:Private

Default Value:

requestStartTime - The date/time at which the request started to be processed.
Data Type:EcTTime

Privilege:Private

Default Value:

state- This is the current state of the request.
Data Type:enum

Privilege:Private

Default Value:

timeOfL astStateUpdate - This is the time at which the current state was changed.
Data Type:EcTTime

Privilege:Private

Default Value:

type- The type of the request being processed.
Data Type:enum

Privilege:Private

Default Value:

Operations:

EcRequest - This is the constructor for the object. This method sets the attributes of the
request object to the passed values and initializes the resource utilization totals to zero.
Arguments:RWCString description, enum type, enum state

Return Type:Void

Privilege:Public

PDL: No PDL

GetDiskUtilization - Returns the current value of the disk utilization attribute.
Arguments:

Return Type:EcTLong

Privilege:Public

PDL: No PDL

GetRequestI D - Returns the value of the request ID attribute.
Arguments:

Return Type:EcTLong

Privilege:Public

6-45 305-CD-029-002

PDL: No PDL

GetState - Returns the current value of the request state attribute.
Arguments:

Return Type:trackingStateType

Privilege:Public

PDL: No PDL

ProcessEvent - No description
Arguments:RWCString eventDescription
PDL: No PDL

SetDiskUtilization -
Arguments:diskUtilization
Return Type:EcTVoid
Privilege:Public

PDL: No PDL

SetState - This method sets the current value of the request state attribute to the passed
value.

Arguments:state

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetState - This method sets the current value of the request state attribute to the passed
value.

Arguments:trackingState Type newState

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

StartCollecting - This method reads from the system the current values of particular
resource counters and stores them in attributes. This method should be called at the
beginning of a method which processes the request associated with this object.
Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

StopCollecting - This method reads from the system the current values of particular
resource counters and subtracts from them the associated values stored in the attributes.
The resulting value will be added to the running total utilization attribute. This method
should be called at the end of a method which processes the request associated with this
object.

6-46 305-CD-029-002

Arguments:

Return Type:EcTVoid
Privilege:Public

PDL: No PDL

~EcRequest - This is the default destructor of the object. This method cleans up any
memory which was allocated to attributes within this object.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Associations;

The EcRequest class has associations with the following classes:
None

6.2.3.7 EcRequestEvent Class

Parent Class:EcAgEvent

Public:Yes

Distributed Object:Yes

Purpose and Description:

This is an abstract class which represents all types of requests event objects which are used
to report information collected about a request. This class contains the attributes and
operations which are common to all of the request event types. The objects which are
created from the sub-classes are used to report resource utilization of the associated system
request types as well as to report the current state of the associated system request to the
request tracking server.

Attributes:

activeTime- This is a resource utilization counter which contains the approximate amount
of real-time that the request has been actively processed.

Data Type:EcTTime

Privilege:Private

Default Value:

cpuUtilization - The running total amount of cpu processing which has been used while
processing this request.

Data Type:EcTLong

Privilege:Private

Default Value:

6-47 305-CD-029-002

description - A textual description of the request.
Data Type:RWCString

Privilege:Private

Default Value:

diskUtilization - The running total amount of disk utilization which has been used while
processing this request.

Data Type:EcTLong

Privilege:Private

Default Value:

ioUtilization - The running total amount of 1/O utilization which has been used while
processing this request.

Data Type:EcTLong

Privilege:Private

Default Value:

requestiD - A unique identification of the request.
Data Type:EcTLong

Privilege:Private

Default Value:

requestStartTime- The date/time at which the request started to be processed.
Data Type:EcTTime

Privilege:Private

Default Value:

seepTime- This is a resource utilization counter which contains the approximate amount
of real-time that the request has not been actively processed.

Data Type:EcTTime

Privilege:Private

Default Value:

state- This is the current state of the request.
Data Type:enum

Privilege:Private

Default Value:

timeOfL astStateUpdate - This is the time at which the current state was changed.
Data Type:EcTTime

Privilege:Private

Default Value:

totalTime - This is the total amount of real-time which was required to process the request.
Data Type:EcTTime

6-48 305-CD-029-002

Privilege:Private
Default Value:

type- The type of the request being processed.
Data Type:enum

Privilege:Private

Default Value:

Operations:

EcRequest - No description

Arguments:EcTLong, requestlD, RWCString descrip, enum type, EcTTime timeOfLast,
EcTLong cpuUtil, EcTLong ioUtil, EcTLong diskUtil, EcTTime rgStart, ECT Time SleepT,
EcTTime activeT, EcTTime totalTime

PDL: No PDL

~EcRequest - No description
Arguments:
PDL: No PDL

Associations;

The EcRequestEvent class has associations with the following classes:
None

6.2.3.8 EcService Class

Parent Class:EcRequest
Public:Yes

Distributed Object:No
Purpose and Description:

This is a public class which is used by ECS applications to collect resource utilizations
associated with service type of request. The class is also used by the application to report
the state of the service when the service state changes. Objects in this class should remain
until the application has finished processing the associated service request. A service type
of request is a request which is not associated with retrieving a specific product, a service
could be spawned from a sub-order type of request if the ECS application spawns a set of
processing which does not result in product. a service type of request could be the root of
a service request hierarchy for tracking ECS requests which are not Product Orders.

Attributes:

homeDAAC - The site at which the user is registered, who placed the product order.
Data Type:RWCString

6-49 305-CD-029-002

Privilege:Private
Default Value:

parentld - This is the request ID of the service or sub-order type of request which spawned
this service type of request.

Data Type:EcTLong

Privilege:Private

Default Value:

serviceUR - This is the UR for the service which is reported back to the ECS user. This is
stored in the tracking database so that the service tracking information can be retrieved by
the Service UR. This attribute is only used if the service is the root of the service hierarchy.
Data Type:ECTUR

Privilege:Private

Default Value:

userld - The unique ECS user identification of the user who placed the service. This
attribute is only used if the service is the root of the service hierarchy.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

EcService - The constructor for the class. The service related information is initialized
and the information, including the starting state, are send to the request tracking server. In
addition, the resource utilization counters are initialized to zero.

Arguments:RWCString description, enum type, enum state, EcTLong parentID,
RWCString userld, ECTUR serviceUR, RWCString homeDAAC

Return Type:Void

Privilege:Public

PDL: No PDL

~EcService - Default destructor for the class. The collected resource utilization and the
final state of the service are sent to the request tracking server.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Associations:

The EcService class has associations with the following classes:
Class: EcServiceEvent generates

6-50 305-CD-029-002

Class: EcPfManagedServer processnon-statechangeserviceevents
EcOrder (Aggregation)
EcSubOrder (Aggregation)

6.2.3.9 EcServiceEvent Class

Parent Class:EcRequestEvent

Public:Yes

Distributed Object:Yes

Purpose and Description:

This is a public, distributed object whose purpose is to report inform

Attributes:

homeDAAC - The site at which the user is registered, who placed the product order or
service.

Data Type:RWCString

Privilege:Private

Default Value:

parentld - This is the request ID of the service or sub-order type of request which spawned
this service type of request.

Data Type:EcTLong

Privilege:Private

Default Value:

serviceUR - This is the UR for the service which is reported back to the ECS user. This is
stored in the tracking database so that the service tracking information can be retrieved by
the Service UR. This attribute is only used if the service is the root of the service hierarchy.
Data Type:ECTUR

Privilege:Private

Default Value:

Operations:

EcOrderEvent - Constructor for the class. The information to be reported to the request
tracking server is initialized.

Arguments:EcTLong itemID, RWString description, requestType type, requestStateType
state, EcTTime timeStateUpdated, requestCost rCost, RWString userld, RWString
homeDAAC, EcTLong parentld, ECTUR serviceUR

PDL: No PDL

ProcessOrder Event - This method takes the information which was set in the class and
sends the information to the request tracking server.

6-51 305-CD-029-002

Arguments:
PDL: No PDL

~EcOrderEvent - Default constructor for the class. This method cleans up the service
event object by removing any memory allocated for the attributes.

Arguments:

PDL: No PDL

Associations:

The EcServiceEvent class has associations with the following classes:
Class: EcService generates

6.2.3.10 EcSubOrder Class

Parent Class:EcRequest
Public:Yes

Distributed Object:No
Purpose and Description:

This is a public class which is used by ECS applications to collect resource utilizations
associated with sub-order type of request. The class is also used by the application to report
the state of the sub-order when the sub-order state changes. Obijects in this class should
remain until the application has finished processing the associated sub-order request. A
sub-order type of request is a child of a hierarchy of sub-orders and services that is
associated with a Product Data Order request from an ECS user. At the top of this hierarchy
is an order type of request.

Attributes:

archiveUtilization - This attribute contains the total amount of achive utilization which
has been collected for this sub-order.

Data Type:EcTLong

Privilege:Private

Default Value:

granualFormatList - This attribute is a list of granual formats. There is one format list
entry for each granual which is associated with this sub-order.

Data Type:GranFormatListType

Privilege:Private

Default Value:

granualList - This attribute is a list of granual identifications which are associated with

this sub-order.
Data Type:GranListType

6-52 305-CD-029-002

Privilege:Private
Default Value:

granualMediaList - This attribute is a list of media types. There is one media type list
entry for each granual which is associated with this sub-order.

Data Type:GranMediaListType

Privilege:Private

Default Value:

granualSizeL ist - This attribute is a list of granual sizes.
Data Type:GranSizeListType

Privilege:Private

Default Value:

lastEventld - This is the event identification of the last event that was reported to the MSS
event logging capability for this sub-order. This event ID allows the operator to browse
through the event log chain for the sub-order in order to show the history of state changes
as well as to see any other signifigant events associated with this sub-order.

mediaCountList - This attribute contains a list of media counts. A sub-order could have
more than one type of media being produced from it. This attribute contains the total
number of pieces of media which have been produced of each media type.

Data Type:RWCollectionList(EcTLong)

Privilege:Private

Default Value:

mediaTypelList - This attribute contains a list of media types. A sub-order could have
more than one tyep of media being produced from it.

Data Type:MediaListType

Privilege:Private

Default Value:

numGranuals - This attribute contains the number of data granuals which will be
produced/retrieved as part of the processing of this sub-order.

Data Type:EcTLong

Privilege:Private

Default Value:

parentlD - This is the unique request ID of the order or sub-order which spawned the sub-
order associated with this object.

Data Type:EcTLong

Privilege:Private

Default Value:

shipDateTime - This is the actual date and time when the products associated with this

6-53 305-CD-029-002

request were prepared for shipment.
Data Type:EcTTime
Privilege:Private

Default Value:

Operations:

EcRequestTracker - No description
Arguments:
PDL: No PDL

GetGranuallnfo - This method returns the detailed information for a requested granual.
Arguments:EcTLong granualld, enum &granMedia, RWCString &granFormat, EcTLong
&granSize

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

GetGranualList - This method returns the list of granual IDs associated with this sub-
order.

Arguments:GranListType &granualList

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

GetMediaCount - This method returns the number of media that have been used when
producing the data associated with this sub-order.

Arguments:

Return Type:EcTLong

Privilege:Public

PDL: No PDL

SetGranualSize - This sets the size of a particular granual associated with this sub-order.
Arguments:EcTLong granualld, EcTLong granualSize

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetMediaCount - This method sets the number of media that have been used when
producing the data associated with this sub-order.

Arguments:EcTInt mediaCount

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

6-54 305-CD-029-002

~EcRequestTracker - No description
Arguments:
PDL: No PDL

Associations:

The EcSubOrder class has associations with the following classes:
Class: EcSubOrderEvent generates
Class: EcPfManagedServer processnon-statechangesub-orderevents
EcOrder (Aggregation)
EcSubOrder (Aggregation)

6.2.3.11 EcSubOrderEvent Class

Parent Class:EcRequestEvent

Public:Yes

Distributed Object:Yes

Purpose and Description:

This is a public, distributed object whose purpose is to report information collected about
a sub-order type of request. A sub-order type of request is a child of a hierarchy of sub-
orders and services that is associated with a Product Data Order request from an ECS user.
At the top of this hierarchy is an order type of request. Objects of this class are created with
the information to be reported and processed (sent to the request tracking server) and then
destroyed. These objects only need to stay around long enough for the event to be
processed.

Attributes:

archiveUtilization - This attribute contains the total amount of achive utilization which
has been collected for this sub-order.

Data Type:EcTLong

Privilege:Private

Default Value:

granualFormatList - This attribute is a list of granual formats. There is one format list
entry for each granual which is associated with this sub-order.

Data Type:GranFormatListType

Privilege:Private

Default Value:

granualList - This attribute is a list of granual identifications which are associated with

this sub-order.
Data Type:GranListType

6-55 305-CD-029-002

Privilege:Private
Default Value:

granualMediaList - This attribute is a list of media types. There is one media type list
entry for each granual which is associated with this sub-order.

Data Type:GranMediaListType

Privilege:Private

Default Value:

granualSizeL ist - This attribute is a list of granual sizes.
Data Type:GranSizeListType

Privilege:Private

Default Value:

mediaCountList - This attribute contains a list of media counts. A sub-order could have
more than one type of media being produced from it. This attribute contains the total
number of pieces of media which have been produced of each media type.

Data Type:RWCollectionList(EcTLong)

Privilege:Private

Default Value:

mediaTypeList - This attribute contains a list of media types. A sub-order could have
more than one tyep of media being produced from it.

Data Type:MediaListType

Privilege:Private

Default Value:

numGranuals - This attribute contains the number of data granuals which will be
produced/retrieved as part of the processing of this sub-order.

Data Type:EcTLong

Privilege:Private

Default Value:

parentlD - This is the unique request ID of the order or sub-order which spawned the sub-
order associated with this object.

Data Type:EcTLong

Privilege:Private

Default Value:

shipDateTime - This is the actual date and time when the products associated with this
request were prepared for shipment.

Data Type:EcTTime

Privilege:Private

Default Value:

6-56 305-CD-029-002

userld - The unique user Identification of the ECS user who submitted the original Product
Order request.

Operations:

EcSubOrderEvent - Constructor for the class. The information to be reported to the
request tracking server is initialized.

Arguments:EcTLong itemID, RWString description, requestType type, requestStateType
state, EcCTTime timeStateUpdated, requestCost rCost, long parentlD, granListType
granualList, granListSizeType granualSizeList, mType mediaType, long mediaCount, date
shipDateTime

PDL: No PDL

ProcessSubOrder Event - This method takes the information which was set in the class
and sends the information to the request tracking server.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

~EcSubOrderEvent - Default constructor for the class. This method cleans up the sub-
order event object by removing any memory allocated for the attributes.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Associations:

The EcSubOrderEvent class has associations with the following classes:
Class: EcSubOrder generates

6.2.3.12 MsAcAddress Class

Parent Class:Not Applicable
Public:Yes

Distributed Object:No
Purpose and Description:

Attributes:
city

Data Type:RWCString
Privilege:Private

6-57 305-CD-029-002

Default Value:

country

Data Type:RWCString
Privilege:Private
Default Value:

fax

Data Type:RWCString
Privilege:Private
Default Value:

phone

Data Type:RWCString
Privilege:Private
Default Value:

State

Data Type:RWCString
Privilege:Private
Default Value:

Streetl

Data Type:RWCString
Privilege:Private
Default Value:

street2

Data Type:RWCString
Privilege:Private
Default Value:

zip

Data Type:RWCString
Privilege:Private
Default Value:

Operations:

GetCity

Arguments:

Return Type:const RWCString
Privilege:Public

6-58

305-CD-029-002

GetCountrty

Arguments:

Return Type:const RWCString
Privilege:Public

GetFax

Arguments:

Return Type:const RWCString
Privilege:Public

GetPhone

Arguments:

Return Type:const RWCString
Privilege:Public

GetStreetl

Arguments:

Return Type:const RWCString
Privilege:Public

GetStreet?2

Arguments:

Return Type:const RWCString
Privilege:Public

GetZip

Arguments:

Return Type:const RWCString
Privilege:Public

MsAcAddress
Arguments:
Return Type:Void
Privilege:Public

SetCity

Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

SetCountry
Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

6-59

305-CD-029-002

SetFax

Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

SetPhone

Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

SetStreetl

Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

SetStreet2

Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

SetZip

Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

~MsAcAddress
Arguments:

Return Type:Void
Privilege:Public

Associations;

The MsAcAddress class has associations with the following classes:
MsAcUsrProfile (Aggregation)

6.2.3.13 MsAcAddressP Class
Parent Class:MsAcAddress

Attributes:

All Attributes inherited from parent class

6-60 305-CD-029-002

Operations:

MsAcAddressP
Arguments:RWDBReader&
Return Type:Void
Privilege:Public

MsAcAddressP
Arguments:const MsAcAddress&
Return Type:Void
Privilege:Public

Update

Arguments:RWDBUpdater, RWCString, ...
Return Type:Void

Privilege:Public

operator <<

Arguments:RWDBInserter& MsAcAddressP&
Return Type:Void

Privilege:Public

~MsAcAddressP
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcAddressP class has associations with the following classes:
None

6.2.3.14 MsAcAuditTrail Class
Parent Class:Not Applicable

Attributes:
None

Operations:
GenerateAuditTrail

Arguments:

6-61 305-CD-029-002

Return Type:Void
Privilege:Public

MsAcAuditTralil
Arguments:
Return Type:Void
Privilege:Public

~MsAcAuditTrail
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcAuditTrail class has associations with the following classes:
Class: MsAcManager manages

6.2.3.15 MsAcCostAcctReport Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the reports generated to provide detailed and summary cost account
information.

Attributes:
None
Operations:

GenCostAcctReport - This method generates cost accounting reports based on the
resource utilization information first collected by the MsAcTrackingMgr class and
organized into cost accounts by the MsBaCostAcctB class. The type(s) of resources
reported is included in the Resourceld parameter passed to this method which include but
are not limited to I/O utilization, CPU utilization, disk utilization, archive costs, media
costs and fixed costs.

Arguments:RWCString myDAAC, RWString groupld, RWCString userld, RWCString
Resourceld

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

6-62 305-CD-029-002

MsAcCostAcctReport - This method generates cost accounting reports based on the
resource utilization information collected by the MsAcTrackingMgr. The type(s) of
resources reported is included in the Resourceld parameter passed to this method which
include but are not limited to 1/0O utilization, CPU utilization, disk utilization, archive costs,
media costs and fixed costs.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Print - This method represents printing of detailed and summary account information in
the following formats: hardcopy, in response to on-line queries, to extract data files or to
disk.

Arguments:RWCString reportld, RWCString destinationID, RWCString reportFormat
Return Type:EcTVoid

Privilege:Public

PDL: No PDL

~MsAcCostAcctReport - This method represents the constructor for this class.
Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Associations:

The MsAcCostAcctReport class has associations with the following classes:
Class: MsAcTrackingDB providecostdata
Class: MsAcTrackingUI requestcostreport
6.2.3.16 MsAcDCEAcct Class
Parent Class:Not Applicable

Attributes:

group

Data Type:RWCString
Privilege:Private
Default Value:

or ganization
Data Type:RWCString

6-63 305-CD-029-002

Privilege:Private
Default Value:

password

Data Type:RWCString
Privilege:Private
Default Value:

principal

Data Type:RWCString
Privilege:Private
Default Value:

Operations:

CreateAccount
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

CreatePrincipal
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

DeleteAccount
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

DeletePrincipal
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

GetAccount
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

GetPrincipal
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

6-64 305-CD-029-002

MsAcDCEAcct
Arguments:
Return Type:Void
Privilege:Public

UpdateAccount
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

UpdatePrincipal
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

~M sAcDCEAcct
Arguments:
Return Type:Void
Privilege:Public

Associations;

The MsAcDCEAcct class has associations with the following classes:
MsAcRegUser (Aggregation)

6.2.3.17 MsAcManager Class
Parent Class:EcPfManagedServer

Attributes:
All Attributes inherited from parent class
Operations:

GenerateAduitTrail
Arguments:

Return Type:EcTVoid
Privilege:Public

GenerateReport

Arguments:
Return Type:EcTVoid

6-65

305-CD-029-002

Privilege:Public

M sAcM anager
Arguments:
Return Type:Void
Privilege:Public

SendSummaryDataT oSM C
Arguments:

Return Type:EcTVoid
Privilege:Public

~M sAcM anager
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcManager class has associations with the following classes:
Class: MsAcManagerUl communicatewith
Class: MsAcAuditTrail manages
Class: MsAcRegUserMgr manages
Class: MsAcReport manages
Class: MsAcUsrProfileMgr manages
Class: MsAcUsrRequestMgr manages

6.2.3.18 MsAcManagerUI Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class provides the user interface to allow an operator to view peinding requests for
registered accounts, create a registered user account from an entry in the pending requests
list.

Attributes:
None

Operations:

6-66 305-CD-029-002

ApproveRequest
Arguments:RWCString regUserld
Return Type:EcTVoid
Privilege:Public

DeletePendingRequest
Arguments:EcTInt guestUserld
Return Type:EcTVoid
Privilege:Public

DeleteRegUser
Arguments:RWCString regUserld
Return Type:EcTVoid
Privilege:Public

DisplayPendingRequest
Arguments:EcTInt guestUserld
Return Type:EcTVoid
Privilege:Public

DisplayPendingRequestL ist
Arguments:

Return Type:EcTVoid
Privilege:Public

DisplayRegUser
Arguments:EcTInt guestUserld
Return Type:EcTVoid
Privilege:Public

DisplayRegUser List
Arguments:RWCString regUserld
Return Type:EcTVoid
Privilege:Public

DsiplayProfile
Arguments:

Return Type:EcTVoid
Privilege:Public

GenerateAuditTrail
Arguments:

Return Type:EcTVoid
Privilege:Public

6-67

305-CD-029-002

GenerateReport
Arguments:

Return Type:EcTVoid
Privilege:Public

GenerateReport
Arguments:EcTInT Repordid
Return Type:EcTVoid
Privilege:Public

M sAcM anager Ul
Arguments:
Return Type:Void
Privilege:Public

RetrievePendingRequstL ist
Arguments:

Return Type:EcTVoid
Privilege:Public

RetrieveRegUserList
Arguments:

Return Type:EcTVoid
Privilege:Public

SendSummaryDataT oSM C
Arguments:

Return Type:EcTVoid
Privilege:Public

~M sAcM anager Ul
Arguments:

Return Type:Void
Privilege:Public

Associations:

Class: MsAcRegUserMgr

The MsAcManagerUI class has associations with the following classes:

Class: MsAcManager communicatewith

Class: MsAcUsrProfileMgr uses

Class: MsAcUsrRequest uses

Class: MsAcUsrRequestMgr uses

6-68

305-CD-029-002

6.2.3.19 MsAcRegUser Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents a registered user in the system. This class is an aggregation of a
principal and a user profile. The class MsAcPrincipal represents a DCE principal, and is
accessed by means of CSS provided APIs.

Attributes:

userid

Data Type:RWCString
Privilege:Private
Default Value:

Operations:

GetDCEAcct
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

GetProfile
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

GetResUsage
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

GetUserld
Arguments:RWCString &userld
Return Type:EcTVoid
Privilege:Public

M sAcRegUser
Arguments:
Return Type:Void
Privilege:Public

6-69 305-CD-029-002

SetDCEAcct
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

SetProfile
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

SetResUsage
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

SetUserld
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

~M sAcRegUser
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcRegUser class has associations with the following classes:
Class: MsAcRegUserMgr manages

6.2.3.20 MsAcRegUserDB Class
Parent Class:Not Applicable

Attributes:
None
Operations:

AddUserProfile
Arguments:MsAcUsrProfileP&
Return Type:EcTInt
Privilege:Public

6-70

305-CD-029-002

Close

Arguments:

Return Type:EcTVoid
Privilege:Public

CreateRegUser
Arguments:RWCString&
Return Type:EcTInt
Privilege:Public

DeleteRegUser
Arguments:RWCString&
Return Type:EcTInt
Privilege:Public

DeleteUser Profile
Arguments:RWCString&
Return Type:EcTInt
Privilege:Public

GetProfileList
Arguments:RWSL.istCollectables&
Return Type:EcTVoid
Privilege:Public

GetRegUser
Arguments:RWCString&
Return Type:MsAcRegUserP*
Privilege:Public

GetUser Profile
Arguments:RWCString&
Return Type:MsAcUsrProfile*
Privilege:Public

Initialize

Arguments:RWCString&, RWCString&, RWCString&, RWCString&, RWCString&
Return Type:EcTVoid

Privilege:Public

I nstance

Arguments:

Return Type:MsAcRegUserDB&
Privilege:Public

6-71 305-CD-029-002

M sAcRegUser DB

Arguments:RWCString&, RWCString&, RWCString&, RWCString&, RWCString&
Return Type:Void

Privilege:Public

ProfileExists
Arguments:RWCString&
Return Type:EcTInt
Privilege:Public

RegUser Exists
Arguments:RWCString&
Return Type:EcTInt
Privilege:Public

Resour ceDataExists
Arguments:RWCString&
Return Type:EcTInt
Privilege:Public

UpdateRegUser
Arguments:MsAcRegUserP&
Return Type:EcTInt
Privilege:Public

UpdateUser Profile
Arguments:MsAcUsrProfile&
Return Type:EcTInt
Privilege:Public

~M sAcRegUser DB
Arguments:

Return Type:Void
Privilege:Public

Associations:
The MsAcRegUserDB class has associations with the following classes:
MsAcRegUserMgr (Aggregation)

6.2.3.21 MsAcRegUserMgr Class

Parent Class:Not Applicable
Public:No

Distributed Object:No
Purpose and Description:

6-72 305-CD-029-002

This class represents a registered user in the system. This class is an aggregation of a
principal and a user profile. The class MsAcPrincipal represents a DCE principal, and is
accessed by means of CSS provided APIs.

Attributes:
None
Operations:

CreateRegUser
Arguments:

DeleteRegUser
Arguments:

M sAcRegUser M gr
Arguments:

Return Type:EcTVoid
Privilege:Public

NotifyUser
Arguments:

Return Type:EcTVoid
Privilege:Public

PrintUserInfor
Arguments:

Return Type:EcTVoid
Privilege:Public

RetrieveRegUser
Arguments:

RetrieveRegUserList
Arguments:

UpdateRegUser
Arguments:

~M sAcRegUserMgr

Arguments:
Return Type:EcTVoid

6-73 305-CD-029-002

Privilege:Public
Associations:

The MsAcRegUserMgr class has associations with the following classes:
Class: MsAcManagerUl
Class: MsAcManager manages
Class: MsAcRegUser manages
Class: MsAcUsrProfileMgr uses

6.2.3.22 MsAcReport Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents accountability reports that are generated by this service. These reports
are generated from the data in the management database.

Attributes:

reportld

Data Type:
Privilege:Private
Default Value:

Operations:

GenerateReport
Arguments:EcTInt reportld
Return Type:Void
Privilege:Public

MsAcReport
Arguments:
Return Type:Void
Privilege:Public

~M sAcReport
Arguments:
Return Type:Void
Privilege:Public

6-74 305-CD-029-002

Associations:

The MsAcReport class has associations with the following classes:
Class: MsAcManager manages

6.2.3.23 MsAcTrackingDB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This is the interface class to the request tracking database. This class provides operations
that maintain the data in the database. The methods provide access to retrieve, update, and
query the request tracking information.

Attributes:
None
Operations:

RetrieveOrderList - This method will retrieve a list of orders from the database according
to the specified query.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

RetrieveOrderRecord - This method will retrieve the specified order record from the
request tracking database.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

RetrieveRequestList - This method will retrieve a list of sub-orders from the database
according to the specified query.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

RetrieveRequestRecord - This method will retrieve the specified sub-order record from
the request tracking database.

6-75 305-CD-029-002

Arguments:
Return Type:Void
Privilege:Public
PDL: No PDL

RetrieveServiceList - This method will retrieve a list of services from the database
according to the specified query.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

RetrieveServiceRecord - This method will retrieve the specified service record from the
request tracking database.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

UpdateOrder Record - This method will update the specified order record in the database
with the specified information. This method will also be used to create a new order record
in the database.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

UpdateRequestRecord - This method will update the specified sub-order record in the
database with the specified information. This method will also be used to create a new sub-
order record in the database.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

UpdateServiceRecord - This method will update the specified service record in the
database with the specified information. This method will also be used to create a new
service record in the database.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Associations:
The MsAcTrackingDB class has associations with the following classes:

6-76 305-CD-029-002

Class: MsAcTrackingMgr exchangesdatawith
Class: MsAcCostAcctReport providecostdata

6.2.3.24 MsAcTrackingMgr Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the manager class that collects order, request and service resource
utilization statistics and status for ECS processes. This object is the interface that the
request tracking event reporting objects (EcRequestEvent and its subclasses) as well as
other ECS applications have to the request tracking database. The database will have near-
real time status information about the requests as well as the final resource utilization of
each request.

Attributes:
None
Operations:

CreateRequestitem - This method adds a sub-order type of request to request tracking.
This method is called when a new sub-order tracking object has been created. The
information received will be used to create a new entry in the request tracking database.
Arguments:requestStruct

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

CreateServiceltem - This method adds a service type of request to request tracking. This
method is called when a new service tracking object has been created. The information
received will be used to create a new entry in the request tracking database.
Arguments:serviceStruct

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

GetOrderInfo - This returns the detailed information for an order-type of request based
on the passed request ID.

Arguments:itemID

Return Type:orderStruct

Privilege:Public

PDL: No PDL

6-77 305-CD-029-002

GetOrderInfoByUR - This returns the detailed information for an order-type of request
based on the passed order UR.

Arguments:orderUR

Return Type:orderStruct

Privilege:Public

PDL: No PDL

GetOrdersBySite- This method returns a list of order-type request IDs which were run at
the specified site.

Arguments:siteld

Return Type:Void

Privilege:Public

PDL: No PDL

GetOrdersByUser - This method returns a list of order-type request IDs which were
requested by the specified user.

Arguments:userlD

Return Type:itemIDList

Privilege:Public

PDL: No PDL

GetRequestinfo - This method returns the detailed information for a sub-order type of
request based on the passed request ID.

Arguments:itemID

Return Type:requestStruct

Privilege:Public

PDL: No PDL

GetRequestinfo - This method returns the detailed information for a sub-order type of
request based on the passed request ID.

Arguments:orderStruct

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

GetRequestsBySite- This method returns a list of sub-order type request IDs which were
processed by the specified site.

Arguments:siteld

Return Type:Void

Privilege:Public

PDL: No PDL

GetServicelnfo- This method returns the detailed information for a service type of request
based on the passed request ID.

6-78 305-CD-029-002

Arguments:itemID

Return Type:serviceStruct
Privilege:Public

PDL: No PDL

GetServicelnfoByUR - This method returns the detailed information for a service type of
request based on the passed request UR.

Arguments:serviceUR

Return Type:serviceStruct

Privilege:Public

PDL: No PDL

GetServicesBySite - This method returns a list of service type request IDs which were
processed by the specified site.

Arguments:siteld

Return Type:Void

Privilege:Public

PDL: No PDL

GetServicesByUser - This method returns a list of service type of request IDs which were
requested by the specified user.

Arguments:useriD

Return Type:itemIDList

Privilege:Public

PDL: No PDL

GetTrackableltemByParent - This method returns a list of request 1Ds which are the
children requests for the specified request.

Arguments:itemID

Return Type:itemIDList

Privilege:Public

PDL: No PDL

UpdateltemStatus- This method sets the state of the specified request to the passed state.
Arguments:itemID, state

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

UpdateOrder Cost - This method sets the resource utilization data of the specified order
type of request to the passed values.

Arguments:itemID, orderCost

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

6-79 305-CD-029-002

UpdateRequestCost - This method sets the resource utilization data of the specified sub-
order type of request to the passed values.

Arguments:itemID, requestCost

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

UpdateServiceCost - This method sets the resource utilization data of the specified
service type of request to the passed values.

Arguments:itemID, serviceCost

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

Associations;

The MsAcTrackingMgr class has associations with the following classes:
Class: MsAcTrackingDB exchangesdatawith
Class: EcPriceTableB providepriceforcancelledrequests
Class: MsAcUsrProfile updateaccountbalance
Class: MsAcUsrProfileMgr updatesuserprofile
Class: MsAcTrackingUI uses

6.2.3.25 MsAcTrackingUI Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is the user interface to the request tracking server. This class receives input from
the operator and based on that input, will perform the action (with such actions as sorting
a list) or will issue requests to the MsAcTrackingMgr to request data to be displayed.

Attributes:

detailScreenCmd - This attribute contains the command entered by the operator from the
screen which displays the detail of a request.

Data Type:enum

Privilege:Private

Default Value:

menuScreenCmd - This attribute contains the command entered by the operator from the
screen which displays a list of requests.

6-80 305-CD-029-002

Data Type:enum
Privilege:Private
Default Value:

reportiD

requestldQuery - This attribute contains the unique request ID which is being asked for.
Data Type:EcTLong

Privilege:Private

Default Value:

searchString - This is a search string that can be input by the user to perform searches.
Data Type:RWCString

Privilege:Private

Default Value:

shipScreenCmd - This attribute contains the command entered by the operator from the
screen which displays the shipping information for an order type of request.

Data Type:enum

Privilege:Private

Default Value:

sortBy - This attribute is used to specify how a list displayed to the operator is to be sorted.
Data Type:enum

Privilege:Private

Default Value:

userldQuery - This attribute stores the ECS user identification which is used to query for
Orders or root-level services which have been initiated by the user.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

DisplayltemsFor Site - This method displays to the user a list of orders, sub-orders, and
services which have been or are being processed at this site.

Arguments:RWCString siteName, StateListType stateList

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayOrderByUR - This method displays to the operator the detailed information of the
order specified by UR.

6-81 305-CD-029-002

Arguments:EcTUR orderUR
Return Type:EcTVoid
Privilege:Public

PDL: No PDL

DisplayOrderInfo - This method displays to the operator the detailed information of the
order specified by the passed request ID.

Arguments:EcTLong itemld

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayOrdersByUser - This method displays to the operator a list of orders, sub-orders,
and services which have been initiated by the specified user.

Arguments:RWCString userld

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayOrdersFor Site- This method displays to the user a list of orders which have been
or are being processed at this site.

Arguments:RWCString siteName, StateListType stateList

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayRequestinfo- This method displays to the operator the detailed information of the
sub-order specified by the passed request ID.

Arguments:EcTLong itemld

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayRequestsFor Site- This method displays to the user a list of sub-orders which have
been or are being processed at this site.

Arguments:RWCString siteName, StateListType stateList

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayRqgstServByOrder - This method displays to the user a list of sub-orders and
services which are subparts of the specified order.

Arguments:EcTLong itemld

Return Type:EcTVoid

Privilege:Public

6-82 305-CD-029-002

PDL: No PDL

DisplayRqgstServByRqst - This method displays to the user a list of sub-orders and
services which are subparts of the specified sub-order.

Arguments:EcTLong itemld

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayRqstServByServ - This method displays to the user a list of services which are
subparts of the specified service.

Arguments:EcTLong itemld

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayServiceByUR - This method displays to the operator the detailed information of
the service specified by the passed request ID.

Arguments:ECTUR serviceUR

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayServiceByUser - This method displays to the operator the detailed information of
the service specified by the passed service UR.

Arguments:RWCString userld

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayServiceFor Site - This method displays to the user a list of root-level services
which have been or are being processed at this site.

Arguments:RWCString siteName, StateListType stateList

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayServicel nfo - This method displays to the operator the detailed information of the
service specified by the passed request ID.

Arguments:EcTLong itemld

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

6-83 305-CD-029-002

Associations:

The MsAcTrackingUI class has associations with the following classes:
Class: MsAcCostAcctReport requestcostreport
Class: MsAcTrackingMgr uses

6.2.3.26 MsAcUserAuditTrail Class
Parent Class:MsAcAuditTrail

Attributes:
All Attributes inherited from parent class
Operations:

MsAcUser AuditTrail
Arguments:

Return Type:Void
Privilege:Public

~MsAcUser AuditTrail
Arguments:

Return Type:Void
Privilege:Public

Associations;

The MsAcUserAuditTrail class has associations with the following classes:
None

6.2.3.27 MsAcUsrName Class

Parent Class:Not Applicable
Public:Yes

Distributed Object:No
Purpose and Description:

Attributes:

firstName

Data Type:
Privilege:Private
Default Value:

6-84 305-CD-029-002

lastName

Data Type:
Privilege:Private
Default Value:

middlel nit

Data Type:
Privilege:Private
Default Value:

title

Data Type:
Privilege:Private
Default Value:

Operations:

GetFirstName
Arguments:
Return Type:Void
Privilege:Public

GetLastName
Arguments:
Return Type:Void
Privilege:Public

GetMiddlel nit
Arguments:
Return Type:Void
Privilege:Public

GetTitle
Arguments:
Return Type:Void
Privilege:Public

MsAcUserName
Arguments:
Return Type:Void
Privilege:Public

SetFirstName

6-85 305-CD-029-002

Arguments:RWCString
Return Type:Void
Privilege:Public

SetL astName
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMiddlelnit
Arguments:RWCString
Return Type:Void
Privilege:Public

SetTitle
Arguments:RWCString
Return Type:Void
Privilege:Public

~M sAcUser Name
Arguments:

Return Type:Void
Privilege:Public

Associations;

The MsAcUsrName class has associations with the following classes:
MsAcUsrProfile (Aggregation)

6.2.3.28 MsAcUsrNameP Class
Parent Class:MsAcUsrName

Attributes:
All Attributes inherited from parent class
Operations:

MsAcUsr NameP
Arguments:MsAcUsrName&
Return Type:Void
Privilege:Public

6-86

305-CD-029-002

MsAcUsr NameP
Arguments:RWDBReader&
Return Type:Void
Privilege:Public

oper ator<<

Arguments:RWDBInserter&, MsAcUsrNameP&
Return Type:RWDBInserter&

Privilege:Public

update

Arguments:RWDBUpdater&, RWCString, RWCString, RWCString, RWCString
Return Type:EcTVoid

Privilege:Public

~MsAcUsr NameP
Arguments:

Return Type:Void
Privilege:Public

Associations:

The MsAcUsrNameP class has associations with the following classes:
None

6.2.3.29 MsAcUsrProfile Class

Parent Class:Not Applicable
Public:Yes

Distributed Object:No
Purpose and Description:

Attributes:

PI

Data Type:
Privilege:Private
Default Value:

accountBalance
Data Type:
Privilege:Private
Default Value:

6-87 305-CD-029-002

accountNumber
Data Type:
Privilege:Private
Default Value:

affiliation

Data Type:
Privilege:Private
Default Value:

altMailAddr
Data Type:
Privilege:Private
Default Value:

altShipAddr
Data Type:
Privilege:Private
Default Value:

billAddr

Data Type:
Privilege:Private
Default Value:

creationDate
Data Type:
Privilege:Private
Default Value:

emailAddr

Data Type:
Privilege:Private
Default Value:

expirationDate
Data Type:
Privilege:Private
Default Value:

homeDAAC
Data Type:
Privilege:Private
Default Value:

6-88

305-CD-029-002

mailAddr

Data Type:
Privilege:Private
Default Value:

mediaPr ef

Data Type:
Privilege:Private
Default Value:

organization
Data Type:
Privilege:Private
Default Value:

privilegel evel
Data Type:
Privilege:Private
Default Value:

projectName
Data Type:
Privilege:Private
Default Value:

resear chFiled
Data Type:
Privilege:Private
Default Value:

shipAddr

Data Type:
Privilege:Private
Default Value:

sponsor
Data Type:
Privilege:Private
Default Value:

telNum

Data Type:
Privilege:Private
Default Value:

6-89

305-CD-029-002

userid

Data Type:
Privilege:Private
Default Value:

user Name

Data Type:
Privilege:Private
Default Value:

Operations:

GetAccountBalance

Arguments:

Return Type:EcTLong accountBalance
Privilege:Public

GetAccountNumber
Arguments:

Return Type:Void
Privilege:Public

GetAffiliation
Arguments:
Return Type:Void
Privilege:Public

GetAltMailAddr City
Arguments:

Return Type:Void
Privilege:Public

GetAltMailAddr Fax
Arguments:

Return Type:Void
Privilege:Public

GetAltMailAddr Phone
Arguments:

Return Type:Void
Privilege:Public

GetAltMailAddr State
Arguments:

6-90 305-CD-029-002

Return Type:Void
Privilege:Public

GetAltMailAddr Streetl
Arguments:

Return Type:Void
Privilege:Public

GetAltMailAddr Street?2
Arguments:

Return Type:Void
Privilege:Public

GetAltMailAddrZip
Arguments:

Return Type:Void
Privilege:Public

GetAltMailCountry
Arguments:

Return Type:Void
Privilege:Public

GetAltShipAddrCity
Arguments:

Return Type:Void
Privilege:Public

GetAltShipAddr Fax
Arguments:

Return Type:Void
Privilege:Public

GetAltShipAddrPhone
Arguments:

Return Type:Void
Privilege:Public

GetAltShipAddr State
Arguments:

Return Type:Void
Privilege:Public

GetAltShipAddr Stree2
Arguments:

6-91

305-CD-029-002

Return Type:Void
Privilege:Public

GetAltShipAddr Streetl
Arguments:

Return Type:Void
Privilege:Public

GetAltShipAddrZip
Arguments:

Return Type:Void
Privilege:Public

GetAltShipCountry
Arguments:

Return Type:Void
Privilege:Public

GetAltShipState
Arguments:
Return Type:Void
Privilege:Public

GetBillAddr City
Arguments:
Return Type:Void
Privilege:Public

GetBillAddr Country
Arguments:

Return Type:Void
Privilege:Public

GetBillAddr Fax
Arguments:
Return Type:Void
Privilege:Public

GetBillAddrPhone
Arguments:

Return Type:Void
Privilege:Public

GetBillAddr State
Arguments:

6-92

305-CD-029-002

Return Type:Void
Privilege:Public

GetBillAddr Streetl
Arguments:

Return Type:Void
Privilege:Public

GetBillAddr Street2
Arguments:

Return Type:Void
Privilege:Public

GetBillAddrZip
Arguments:
Return Type:Void
Privilege:Public

GetCreationDate
Arguments:
Return Type:Void
Privilege:Public

GetEmailAddress
Arguments:

Return Type:Void
Privilege:Public

GetExpirationDate
Arguments:

Return Type:Void
Privilege:Public

GetHomeDAAC
Arguments:
Return Type:Void
Privilege:Public

GetMailAddr City
Arguments:

Return Type:Void
Privilege:Public

GetMailAddr Country
Arguments:

6-93

305-CD-029-002

Return Type:Void
Privilege:Public

GetMailAddr Fax
Arguments:
Return Type:Void
Privilege:Public

GetMailAddrPhone
Arguments:

Return Type:Void
Privilege:Public

GetMailAddr State
Arguments:

Return Type:Void
Privilege:Public

GetMailAddr Streetl
Arguments:

Return Type:Void
Privilege:Public

GetMailAddr Street2
Arguments:

Return Type:Void
Privilege:Public

GetMailAddrZip
Arguments:
Return Type:Void
Privilege:Public

GetMailAddress
Arguments:
Return Type:Void
Privilege:Public

GetM ediaPr ef
Arguments:
Return Type:Void
Privilege:Public

GetOrganization
Arguments:

6-94

305-CD-029-002

Return Type:Void
Privilege:Public

GetPIFirstName
Arguments:
Return Type:Void
Privilege:Public

GetPlLastName
Arguments:
Return Type:Void
Privilege:Public

GetPIMiddlel nit
Arguments:
Return Type:Void
Privilege:Public

GetPITitle
Arguments:
Return Type:Void
Privilege:Public

GetPrivilegel evel
Arguments:

Return Type:Void
Privilege:Public

GetProjectName
Arguments:
Return Type:Void
Privilege:Public

GetResear chField
Arguments:

Return Type:Void
Privilege:Public

GetShipAddrCity
Arguments:

Return Type:Void
Privilege:Public

GetShipAddrCountry
Arguments:

6-95

305-CD-029-002

Return Type:Void
Privilege:Public

GetShipAddr Fax
Arguments:
Return Type:Void
Privilege:Public

GetShipAddrPhone
Arguments:

Return Type:Void
Privilege:Public

GetShipAddr State
Arguments:

Return Type:Void
Privilege:Public

GetShipAddr Streetl
Arguments:

Return Type:Void
Privilege:Public

GetShipAddr Street?2
Arguments:

Return Type:Void
Privilege:Public

GetShipAddrZip
Arguments:
Return Type:Void
Privilege:Public

GetSponsor
Arguments:
Return Type:Void
Privilege:Public

GetTelNum
Arguments:
Return Type:Void
Privilege:Public

GetUser FirstName
Arguments:

6-96

305-CD-029-002

Return Type:Void
Privilege:Public

GetUserld
Arguments:
Return Type:Void
Privilege:Public

GetUserLastName
Arguments:

Return Type:Void
Privilege:Public

GetUser Middlel nit
Arguments:

Return Type:Void
Privilege:Public

GetUser Title
Arguments:
Return Type:Void
Privilege:Public

MsUser Profile
Arguments:EcTVoid
Return Type:Void
Privilege:Public

SetAccountBalance
Arguments:EcTLong newBalance
Return Type:EcTVoid
Privilege:Public

SetAccountNumber
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAffiliation
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltM ailAddr City
Arguments:RWCString

6-97

305-CD-029-002

Return Type:Void
Privilege:Public

SetAltM ailAddr Fax
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltM ailAddr Phone
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltM ailAddr State
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltMailAddr Street1
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltM ailAddr Street2
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltMailAddr Zip
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltMailCountry
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipAddr City
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipAddr Fax
Arguments:RWCString

6-98

305-CD-029-002

Return Type:Void
Privilege:Public

SetAltShipAddrPhone
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipAddr State
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipAddr Stree2
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipAddr Streetl
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipAddrZip
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipCountry
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipState
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddrCountry
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddr Fax
Arguments:RWCString

6-99

305-CD-029-002

Return Type:Void
Privilege:Public

SetBillAddrPhone
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddr State
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddr Streetl
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddr Zip
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddtCity
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddtStreet2
Arguments:RWCString
Return Type:Void
Privilege:Public

SetCreationDate
Arguments:const RWDate
Return Type:Void
Privilege:Public

SetEmailaddress
Arguments:RWCString
Return Type:Void
Privilege:Public

SetExpirationDate
Arguments:const RWDate

6-100

305-CD-029-002

Return Type:Void
Privilege:Public

SetHomeDAAC
Arguments:RWCString
Return Type:Void
Privilege:Public

SetM ailAddr City
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMailAddr Country
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMailAddr Fax
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMailAddrPhone
Arguments:RWCString
Return Type:Void
Privilege:Public

SetM ailAddr State
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMailAddr Streetl
Arguments:RWCString
Return Type:Void
Privilege:Public

SetM ailAddr Street2
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMailAddrZip
Arguments:RWCString

6-101

305-CD-029-002

Return Type:Void
Privilege:Public

SetMailAddress
Arguments:RWCString
Return Type:Void
Privilege:Public

SetM ediaPr ef
Arguments:RWCString
Return Type:Void
Privilege:Public

SetOrganization
Arguments:RWCString
Return Type:Void
Privilege:Public

SetPIFirstName
Arguments:RWCString
Return Type:Void
Privilege:Public

SetPILastName
Arguments:RWCString
Return Type:Void
Privilege:Public

SetPIMiddlel nit
Arguments:RWCString
Return Type:Void
Privilege:Public

SetPITitle
Arguments:RWCString
Return Type:Void
Privilege:Public

SetPrivilegel evel
Arguments:RWCString
Return Type:Void
Privilege:Public

SetProjectName
Arguments:RWCString

6-102

305-CD-029-002

Return Type:Void
Privilege:Public

SetResear chField
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddr City
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddr Country
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddr Fax
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddrPhone
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddr State
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddr Streetl
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddr Street2
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddrZip
Arguments:RWCString

6-103

305-CD-029-002

Return Type:Void
Privilege:Public

SetSponsor
Arguments:RWCString
Return Type:Void
Privilege:Public

SetTelNum
Arguments:RWCString
Return Type:Void
Privilege:Public

SetUser FirstName
Arguments:RWCString
Return Type:Void
Privilege:Public

SetUserld
Arguments:RWCString
Return Type:Void
Privilege:Public

SetUserLastName
Arguments:RWCString
Return Type:Void
Privilege:Public

SetUser Middlel nit
Arguments:RWCString
Return Type:Void
Privilege:Public

SetUser Title
Arguments:RWCString
Return Type:Void
Privilege:Public

~MsUser Profile
Arguments:EcTVoid
Return Type:Void
Privilege:Public

6-104

305-CD-029-002

Associations:

The MsAcUsrProfile class has associations with the following classes:
Class: MsAcUsrProfileMgr manages
Class: MsAcTrackingMgr updateaccountbalance
MsAcRegUser (Aggregation)

6.2.3.30 MsAcUsrProfileMgr Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This class represents the User Profile Manager class that governs the update and
maintenance of information in the MsAcUsrProfile class. An ECS science user's available
balance will be retrieved using this class and be debited by the amount of each data product
request received by MSS.

Attributes:
None
Operations:

DeleteProfile
Arguments:

Return Type:EcTVoid
Privilege:Public

InsertProfile
Arguments:

Return Type:EcTVoid
Privilege:Public

MsAcUser ProfileM gr
Arguments:

Return Type:Void
Privilege:Public

ReplicateProfileToSMC
Arguments:

Return Type:EcTVoid
Privilege:Public

6-105 305-CD-029-002

RetrieveProfile
Arguments:RWCString userld
Return Type:EcTVoid
Privilege:Public

RetrieveProfile

Arguments:RWCString lastname, firstName, middlelnital
Return Type:EcTVoid

Privilege:Public

RetrieveProfile
Arguments:RWCString accountNumber
Return Type:EcTVoid

Privilege:Public

RetrieveProfileList
Arguments:

Return Type:EcTVoid
Privilege:Public

UpdateProfile
Arguments:

Return Type:EcTVoid
Privilege:Public

~M SAcUser ProfileM gr
Arguments:

Return Type:Void
Privilege:Public

Associations;

The MsAcUsrProfileMgr class has associations with the following classes:
Class: MsAcManager manages
Class: MsAcUsrProfile manages
Class: MsAcTrackingMgr updatesuserprofile
Class: MsAcManagerUI uses
Class: MsAcRegUserMgr uses

6.2.3.31 MsAcUsrProfileP Class
Parent Class:MsAcUsrProfile

Attributes:

6-106 305-CD-029-002

All Attributes inherited from parent class

Operations:

MsAcUsr ProfileP
Arguments:const RWCString&
Return Type:Void
Privilege:Public

MsAcUsr ProfileP
Arguments:RWDBReader&
Return Type:Void
Privilege:Public

MsAcUsr ProfileP
Arguments:MsAcUsrProfile&
Return Type:Void
Privilege:Public

operator <<

Arguments:RWDBUpdater&, MsAcUsrProfileP&

Return Type:RWDBUpdater&
Privilege:Public

operator <<

Arguments:RWDBInserter&, MsAcUsrProfileP&

Return Type:RWDBInserter&
Privilege:Public

Associations;

The MsAcUsrProfileP class has associations with the following classes:

None

6.2.3.32 MsAcUsrRequest Class

Parent Class:Not Applicable
Public:Yes

Distributed Object:No
Purpose and Description:

Attributes:

6-107

305-CD-029-002

Pl
accountNumber
affiliation
billAddr
emailAddr
expirationDate
homeDAAC
mailAddr
mediaPr ef

oper ator
organization
processDate
projectName
requestDate
resear chFiled
shipAddr
sponsor

status

Data Type:RWCString
Privilege:Private
Default Value:
telNum

user Name

usrRequestid

6-108

305-CD-029-002

Operations:

GetAccountNumber
Arguments:

GetAffiliation
Arguments:

GetBillAddrCity
Arguments:

GetBillAddr Country
Arguments:

GetBillAddr Fax
Arguments:

GetBillAddrPhone
Arguments:

GetBillAddr State
Arguments:

GetBillAddr Streetl
Arguments:

GetBillAddr Street2
Arguments:

GetBillAddrZip
Arguments:

GetEmailAddress
Arguments:

GetExpirationDate
Arguments:

GetHomeDAAC
Arguments:

GetMailAddr City
Arguments:

6-109 305-CD-029-002

GetMailAddr Country
Arguments:

GetMailAddr Fax
Arguments:

GetMailAddrPhone
Arguments:

GetMailAddr State
Arguments:

GetMailAddr Streetl
Arguments:

GetMailAddr Street2
Arguments:

GetMailAddrZip
Arguments:

GetMailAddress
Arguments:

GetM ediaPr ef
Arguments:

GetOperator
Arguments:

GetOrganization
Arguments:

GetPIFirstName
Arguments:

GetPlLastName
Arguments:

GetPIMiddlel nit
Arguments:

GetPITitle
Arguments:

6-110

305-CD-029-002

GetProcessDate
Arguments:

GetProjectName
Arguments:

GetRequestDate
Arguments:

GetResear chField
Arguments:

GetShipAddr City
Arguments:

GetShipAddrCountry
Arguments:

GetShipAddr Fax
Arguments:

GetShipAddrPhone
Arguments:

GetShipAddr State
Arguments:

GetShipAddr Streetl
Arguments:

GetShipAddr Street2
Arguments:

GetShipAddrZip
Arguments:

GetSponsor
Arguments:

GetStatus
Arguments:

GetTelNum
Arguments:

6-111

305-CD-029-002

GetUser FirstName
Arguments:

GetUserLastName
Arguments:

GetUserMiddlel nit
Arguments:

GetUser Title
Arguments:

GetUsrRequestid
Arguments:

MsAcUsr Request
Arguments:

SetAccountNumber
Arguments:RWCString

SetAffiliation
Arguments:RWCString

SetBillAddr Country
Arguments:RWCString

SetBillAddr Fax
Arguments:RWCString

SetBillAddrPhone
Arguments:RWCString

SetBillAddr State
Arguments:RWCString

SetBillAddr Streetl
Arguments:RWCString

SetBillAddrZip
Arguments:RWCString

SetBillAddtCity
Arguments:RWCString

6-112

305-CD-029-002

SetBillAddtStreet2
Arguments:RWCString

SetEmailaddress
Arguments:RWCString

SetExpirationDate
Arguments:const RWDate

SetHomeDAAC
Arguments:RWCString

SetM ailAddr City
Arguments:RWCString

SetMailAddr Country
Arguments:RWCString

SetMailAddr Fax
Arguments:RWCString

SetMailAddr Phone
Arguments:RWCString

SetM ailAddr State
Arguments:RWCString

SetMailAddr Streetl
Arguments:RWCString

SetMailAddr Street2
Arguments:RWCString

SetMailAddrZip
Arguments:RWCString

SetMailAddress
Arguments:RWCString

SetM ediaPr ef
Arguments:RWCString

SetOperator
Arguments:RWCString

6-113

305-CD-029-002

SetOrganization
Arguments:RWCString

SetPIFirstName
Arguments:RWCString

SetPlLastName
Arguments:RWCString

SetPIMiddlelnit
Arguments:RWCString

SetPITitle
Arguments:RWCString

SetProcessDate
Arguments:RWCString

SetProjectName
Arguments:RWCString

SetRequestDate
Arguments:RWCString

SetResear chField
Arguments:RWCString

SetShipAddr City
Arguments:RWCString

SetShipAddr Country
Arguments:RWCString

SetShipAddr Fax
Arguments:RWCString

SetShipAddrPhone
Arguments:RWCString

SetShipAddr State
Arguments:RWCString

SetShipAddr Streetl
Arguments:RWCString

6-114

305-CD-029-002

SetShipAddr Street2
Arguments:RWCString

SetShipAddrZip
Arguments:RWCString

SetSponsor
Arguments:RWCString

SetStatus
Arguments:RWCString

SetTelNum
Arguments:RWCString

SetUser FirstName
Arguments:RWCString

SetUserLastName
Arguments:RWCString

SetUser Middlel nit
Arguments:RWCString

SetUserTitle
Arguments:RWCString

SetUstRequest!d
Arguments:RWCString

~MsAcUsr Request
Arguments:

Associations;

The MsAcUsrRequest class has associations with the following classes:
Class: MsAcUsrRequestMgr manages
Class: MsAcManagerUl uses

6.2.3.33 MsAcUsrRequestMgr Class

Parent Class:Not Applicable
Public:No
Distributed Object:Yes

6-115 305-CD-029-002

Purpose and Description:
Attributes:

None
Operations:

CreateUser Request
Arguments:RWCString userReqld
Return Type:EcTVoid
Privilege:Public

DeleteUser Request
Arguments:RWCString userReqld
Return Type:EcTVoid
Privilege:Public

M sAcUser RequestM gr
Arguments:

Return Type:EcTVoid
Privilege:Public

RetrieveUser Request
Arguments:RWCString userReqld
Return Type:EcTVoid
Privilege:Public

RetrieveUser RequestList
Arguments:

Return Type:EcTVoid
Privilege:Public

UpdateUser Request
Arguments:RWCString userReqld
Return Type:EcTVoid
Privilege:Public

~M sAcUser RequestM gr
Arguments:

Return Type:EcTVoid
Privilege:Public

6-116 305-CD-029-002

Associations:

The MsAcUsrRequestMgr class has associations with the following classes:
Class: MsAcManager manages
Class: MsAcUsrRequest manages
Class: MsAcManagerUI uses

6.2.3.34 MsAcUsrRequestP Class
Parent Class:MsAcUsrRequest

Attributes:
All Attributes inherited from parent class
Operations:

MsAcUsr RequestP
Arguments:

Return Type:Void
Privilege:Public

~M sAcUsr RequestP
Arguments:

Return Type:Void
Privilege:Public

Associations:

The MsAcUsrRequestP class has associations with the following classes:
None

6.2.3.35 MsAcUsrResUsage Class

Parent Class:Not Applicable
Public:No

Distributed Object:No
Purpose and Description:

Attributes:

cpulLimit
Data Type:EcTInt
Privilege:Private

6-117 305-CD-029-002

Default Value:

cpuUsage

Data Type:EcTInt
Privilege:Private
Default Value:

dataLimit

Data Type:EcTInt
Privilege:Private
Default Value:

dataUsage

Data Type:EcTInt
Privilege:Private
Default Value:

diskLimit

Data Type:EcTInt
Privilege:Private
Default Value:

diskUsage

Data Type:EcTInt
Privilege:Private
Default Value:

memoryL imit
Data Type:EcTInt
Privilege:Private
Default Value:

memoryUsage
Data Type:EcTInt
Privilege:Private
Default Value:

networkLimit
Data Type:EcTInt
Privilege:Private
Default Value:

networ kUsage
Data Type:EcTInt
Privilege:Private

6-118

305-CD-029-002

Default Value:

orderLimit

Data Type:EcTInt
Privilege:Private
Default Value:

orderUsage

Data Type:EcTInt
Privilege:Private
Default Value:

Operations:

GetCpuLimit
Arguments:cpuLimit
Return Type:EcTVoid
Privilege:Public

GetCpuUsage
Arguments:cpuUsage
Return Type:EcTVoid
Privilege:Public

GetDataL imit
Arguments:dataLimit
Return Type:EcTVoid
Privilege:Public

GetDataUsage
Arguments:dataUsage
Return Type:EcTVoid
Privilege:Public

GetDiskLimit
Arguments:diskLimit
Return Type:EcTVoid
Privilege:Public

GetDiskUsage
Arguments:diskUsage
Return Type:EcTVoid
Privilege:Public

6-119 305-CD-029-002

GetMemoryLimit
Arguments:memoryLimit
Return Type:EcTVoid
Privilege:Public

GetM emoryUsage
Arguments:memoryUsage
Return Type:EcTVoid
Privilege:Public

GetNetwor kUsage
Arguments:networkUsage
Return Type:EcTVoid
Privilege:Public

GetNetwrokL imit
Arguments:networkLimit
Return Type:EcTVoid
Privilege:Public

GetOrderLimit
Arguments:orderLimit
Return Type:EcTVoid
Privilege:Public

GetOrderUsage
Arguments:orderUsage
Return Type:EcTVoid
Privilege:Public

MsAcUsrResUsage
Arguments:

Return Type:Void
Privilege:Public

SetCpuLimit
Arguments:cpuLimit
Return Type:EcTInt
Privilege:Public

SetCpuUsage
Arguments:cpuUsage
Return Type:EcTInt
Privilege:Public

6-120

305-CD-029-002

SetDatal imit
Arguments:dataLimit
Return Type:EcTInt
Privilege:Public

SetDataUsage
Arguments:dataUsage
Return Type:EcTInt
Privilege:Public

SetDiskL imit
Arguments:diskLimit
Return Type:EcTInt
Privilege:Public

SetDiskUsage
Arguments:diskUsage
Return Type:EcTInt
Privilege:Public

SetM emoryL imit
Arguments:memoryLimit
Return Type:EcTInt
Privilege:Public

SetM emoryUsage
Arguments:memoryUsage
Return Type:EcTInt
Privilege:Public

SetNetworkL imit
Arguments:networkLimit
Return Type:EcTInt
Privilege:Public

SetNetwr okUsage
Arguments:networkUsage
Return Type:EcTInt
Privilege:Public

SetOrderLimit
Arguments:orderLimit
Return Type:EcTInt
Privilege:Public

6-121

305-CD-029-002

SetOrderUsage
Arguments:orderUsage
Return Type:EcTInt
Privilege:Public

~MsAcUsrResUsage
Arguments:

Return Type:Void
Privilege:Public

Associations:

The MsAcUsrResUsage class has associations with the following classes:
MsAcRegUser (Aggregation)

6.2.3.36 MsAcUsrResUsageP Class
Parent Class:MsAcUsrResUsage

Attributes:
All Attributes inherited from parent class
Operations:

M sAcUsr ResUsageP
Arguments:RWDBReader&
Return Type:Void
Privilege:Public

MsAcUsr ResUsageP
Arguments:const MsAcUsrResUsage&
Return Type:Void

Privilege:Public

M sAcUsr ResUsageP
Arguments:const RWCString&
Return Type:Void
Privilege:Public

operator <<

Arguments:RWDBInserter&, MsAcUsrResUsageP&
Return Type:RWDBInserter&

Privilege:Public

6-122

305-CD-029-002

operator <<

Arguments:RWDBUpdater&, MsAcUsrResUsageP&
Return Type:RWDBUpdater&

Privilege:Public

~MsAcUsr ResUsageP
Arguments:

Return Type:Void
Privilege:Public

Associations:

The MsAcUsrResUsageP class has associations with the following classes:
None

6.2.4 Accountability Management Dynamic Model

6.2.4.1 Retrieving a User's Email Address

This scenario traces the events associated with an ECS Application retrieving a User Profile. It is
depicted in Figure 6.2-8.

MsAcUsrProfileMgr MsAcUsrProfileMgr

ECSApplication MsAcUserProfile (client side) (server side) MsAcRegUserMgr MsAcRegUserDB
tor: >>
tor >>

RetrieveProfile[user|D}—— >

I —RetrieveProfile(userID)}>>
—RetrieveRegUser(}—>>{

< send profile ——GetUserProfile(}—=>

information

populate MsAcUserProfilp
w/profile information

H‘
——GetEmailAddr()}——=
dtor- >
dtor >>

Figure 6.2-8. Retrieving a User's Email Address

6.2.4.1.1 Beginning Assumptions
None.

6.2.4.1.2 Interfaces with Other Subsystems and Segments
An ECS application that needs to retrieve a User Profile for the Email Address

6-123 305-CD-029-002

6.2.4.1.3 Stimulus
An ECS application initiates a call to retrieve the User Profile for a registered user.

6.2.4.1.4 Participating Classes From the Object Model
MsAcUserProfile,

MsAcUsrProfileMgr,

MsAcRegUserMgr,

MsAcRegUserDB

6.2.4.1.5 Beginning System, Segment and Subsystem State(s)
The system, segment and the subsystem are in a normal, steady state.

6.2.4.1.6 Ending State

The calling ECS application retrieves the Email address, and the system, segment and subsystem
are in a normal steady state.

6.2.4.1.7 Scenario Description

An ECS application creates an instance of MsAcUserProfile (a public class exported by the
Accountability Application Service) and creates an instance of MsAcUsrProfileMgr (a public,
distributed class). The ECS application then asks MsAcUsrProfileMgr to populate the
MsAcUserProfile object with the RetrieveProfile method.

The MsAcUsrProfileMgr in the ECS application requests the profile information from the
MsAcUsrProfileMgr which is residing in the Accountability Management server. The profile
information is retrieved through the registered user manager object (MsAcRegUserMgr) who gets
the information from the registered user database interface object (MsAcRegUserDB).

The information is passed back to the MsAcUsrProfileMgr object who populates the
MsAcUserProfile object with the information. The ECS application is then returned control from
its method call and the application calls the GetEmailAddr method to get the e-mail address. After
the ECS application has gotten all the information it needs from the user profile, the
MsAcUserProfile and MsAcUsrProfileMgr objects are deleted.

6.2.4.1 Request Tracking Overview

This scenario shows how the ECS application will use the Request Tracking key mechanism to
report request state changes in near real-time and collect and report resource utilization for a
Request. This scenario describes how a Product Order type of request would be processed. Ingest
Request, User Request, and Operator Request types would be processed in a similar fashion, except
the classes EcService and EcServiceEvent would be used. The scenario is depicted in
Figure 6.2-9.

The following scenarios show the details of the overview scenario:
1. Creation of an order - Figure 6.2.10.
2. Collection of resource utilization for an order - Figure 6.2.11.

6-124 305-CD-029-002

3. Updating the state of an order. This state reporting occurs in near real-time so that the
operator can view the current state of the requests in the system. - Figure 6.2.12.

Spawning a sub-order from an order - Figure 6.2.13.

Collection of resource utilization for a sub-order - Figure 6.2.14.
Cancellation of a sub-order - Figure 6.2.15.

Completion of processing on the order - Figure 6.2.16.

N oo o &

6.2.4.1.1 Beginning Assumptions
None.

6.2.4.1.2 Interfaces with Other Subsystems and Segments

ECS Applicationl and ECS Application2 - these could be any ECS applications which process any
part of an ECS Request Type.

Request Tracking Server - this is the part of the Accountability Management CI (in the
Management Subsystem) which receives and stores the Request Tracking information in the
management database and displays the information to User Services personnel as requested.

6.2.4.1.3 Stimulus
An ECS User submits a request for an ECS product.

6.2.4.1.4 Participating Classes From the Object Model
EcOrder

EcSubOrder

The classes of the Request Tracking Server

6.2.4.1.5 Beginning System, Segment and Subsystem State(s)
The system, segment and the subsystem are in a normal, steady state.

6.2.4.1.6 Ending State
The system, segment and the subsystem are in a normal, steady state.

6.2.4.1.7 Scenario Description
1. ECS Applicationl receives a Product Order type of request.
2. ECS Applicationl constructs an EcOrder object. This object will stay around as long as
this application is processing the associated product order.

3. EcOrder sends the information about the order (received when the object was created) to
the Request Tracking Server to be stored in the management database which can then be
displayed to the operator, providing a near real-time list of requests in the system.

4. As the order changes state during its processing, that state change is reported to EcOrder.
EcOrder immediately sends the state change information to the Request Tracking Server at
the MSS server. This allows the operator to see the current state of the request in near real-
time.

6-125 305-CD-029-002

9¢T-9

¢00-6¢0-dd-S0€

ECS
Applicationl

Receive a product |

order

ECS
Application2 EcOrder EcSubOrder

Com

ctqr. >
Ord
L Start Collecting Relsource Utilization———>
Process the
[order :I
Report Resouilce Utilization
——and Order Stdte Changes >
Order
Spawn A Sub Order For
[~ App2 to Process
ctqr. >

Continue to

Process Order

Report Resou

br information

Request Tracking
Server

State Changes.

| Start Collecting Rejsource Utilization—— >

Process the

sub-order

Report Resouijce Utilization
[~ _and Sub-Order ptate Change‘s—>

e Utilization

——and Order Stte Changes >
Order
plete Processing on f)rder
dtqr- >>
Complgte Processing on SuT—Order ——Final Order State and

dtqr- >

Sub-Order informatior———>

Sub-Order State Changes——>>

State Changes

Final Sub-Order State and

Figure 6.2-9. Request Tracking Overview

['otal Order Resource UtilizatieA——>>

—Total Sub-Order Resource Utilization =]

>>

LZ1-9

¢00-6¢0-dd-S0€

ECS.
Application

MSS
SubAgent

MsAcTrackingMgr

EcOrder EcOrderEvent EcPfManagedServer — EcAgManager
Cctor———>>
———ctor———>>
- PfProcessEyent(}——M—>>
L —ProcessEvent()}—>>
Standard
Event

Logging

| —ProcessOrderEvent(}—>>]
CreateOrderltem()

——dtor——>>

MsAcUserProfile

CreateOrderRecord]|

availableBalang

ctor——>>
L Retrievel

GetAvailable
— Balance() —=>]

. .
e -= estimatedPrice o

SetAvailable
— Balance() —>1

L UpdateH

rofile(}——>

order

rofile(}——M >

MsAcUsrProfileMgr

Figure 6.2-10. Request Tracking-Creating An Order

MsAcTrackingDB

ECS
Application EcOrder

start of a method which is
processing a product order

StartCollecting() ——=>

initialize resource counters
to values read from the system

<]

berform processing on the
order inside this method

GetDiskUtilization() ——>>

]

add disk utilization collected
by thg ECS App to retrieved amount

< |

SetDiskUtilization() ——=>

L StopCollecting() ——>>

read resource status from
the system and subtract the
initialized resource counters.
Add this to the order's resource
utilization.

I
end of the method

' >>

Figure 6.2-11. Request Tracking-Collecting Resource Utilization For An Order

6-128 305-CD-029-002

6¢T-9

¢00-6¢0-dd-S0€

ECS
Application

EcOrder EcPfManagedServer EcAgManager EcOrderEvent
SetState() —>
ctor >>
— PfProcessEvent() >~
— ProcessEvent() —>
Staridard
Logping
RrocessOrderEvent >
dtor >>

MSS
SubAgent MsAcTrackingMgr MsAcTrackingDB

Updatel

pmStatus() ——>>

— RetrieveOrderRec() —>

—— UpdateOrderRec —=>

Figure 6.2-12. Request Tracking-Update The State of An Order

0€T-9

¢00-6¢0-dd-S0€

ECS
Application

EcSubOrder EcPfManagedServer EcAgManager

ctor (...orderld...) —>>
PfProcessEvent() ——M ——>>

L—ProcessEvent() —>

MSS
SubAgent
Standard
L Event
Logging
L CreateRequestlterp(...parentld...)—=

MsAcTrackingMgr MsAcTrackingDB

RetrieveOrderRec(...parentld...)——>>

]

bpulate request record
with info from order
record

.

- CreateRequestRecord() ——>

Figure 6.2-13. Request Tracking-Spawning A Sub-Order From An Order

ECS
Application EcSubOrder

I
start of a method which is
processing a sub-part of a
product order

%— StartCollecting() ——=>

!
initialize resource counters
to values read from the system

<

<

perform processing on sub-order
while inside this method

E

—— GetDiskUtilization() —=>

adgl disk utilization collected
by the ECS App to retrieved amount

—— SetDiskUtilization() —=>

—— GetMediaCount() —>>

dd or subtract from

r trigved media count

—— SetMediaCount() —>>

[StopCollecting() ——>>

|
read resource status from the system
and subtract the initialized resource
counters. Add this to the order's
resource utilization.

< |

I
end of the method

>

Figure 6.2-14. Request Tracking-Collecting Resource Utilization For A Sub-Order

6-131 305-CD-029-002

CeT-9

¢00-6¢0-dd-S0€

ECS MSS . y
Application EcSubOrder EcPfManagedServer EcAgManager EcOrderEvent SubAgent MsAcTrackingMgr MsAcUserProfile MsAcUsrProfileMgr
| —SetState(cancel)}—>
ctor- >
| PfProcessEvent)—>~
| ProcessEvent)—s}
Standgrd
Even| >>
Logairjg
L PropessSubOrderEventg————— >
UpdafeltemStatus(capcel)
dtor-
etrieveRequestRecprdg—— 5

availableBalan
pri

MsAcTrackingDB

I ctor—>]

Retrievd

Profile() >

GetAvailable
— Balance() —>]

ProvidePrices(ct
ca

te -= estimatedPri
e of cancelled ite

e |

SetAvailable
— Balance() >

Update!

ncell

e of order +
hs

Profileq) >

UpdateRequestRef(

ncelled resources,

d granuals)

Figure 6.2-15. Request Tracking-Canceling A Sub-Order

EcPriceTable

€eT-9

¢00-6¢0-dd-S0€

ECS
Application

MSS
SubAgent MsAcTrackingMgr

Event H

EcOrder EcPfManagedServer EcAgManager EcOrderEvent
dtor ——>>;
ctor >>
— PfProcessEvent() —>>

—— ProcessEvent() —>>
Standarfl
Loggin
ProcessOrderEvent() >
dtor >>

Updat:

Updat]

OrderState() ——>>

pOrderCost() —— >

MsAcTrackingDB

RetrieveOrderRec() ——>>

UpdateOrderRec() ——>>

Figure 6.2-16. Request Tracking-Finished Processing Of An Order

4. Inside each method which ECS Applicationl executes to process the order, a call is made
to the start utilization collection method in EcOrder. At the end of the method, a call is
made to EcOrder to stop collecting utilization data. This will enable EcOrder to
automatically collect process-related utilization data associated with the request. This
process is represented by the Start Collecting Resource Utilization event.

5. ECS Applicationl performs appropriate processing on the Product Order.

6. During the processing, as ECS Applicationl uses resources outside of process-related
utilization, ECS Applicationl reports the resources used to the EcOrder object. In addition,
if the state of the Product Order request changes, those state changes are reported to
EcOrder. EcOrder reports the state change to the Request Tracking Server at the MSS
server to provide near real-time request status to the operator. The resource utilization
(cost) is stored with the EcOrder object until the request has completed processing. This
process is represented by the Report Resource Utilization and Order State Changes event.

7. State changes are reported to the Request Tracking Server at the MSS server by EcOrder,
but resource utilization is collected and only reported at the end of the life of the order.

8. During the processing of the Product Order, ECS Application finds that it must spawn a
sub-part of this Product Order and have another application (ECS Application2) process the
sub-part.

9. When the sub-request of the Product Order is received by ECS Application2, the
application creates a EcSubOrder object. As part of this creation, the ID of EcOrder is
passed - which will enable the Request Tracking Server to relate the sub-order with its
associated order.

10. EcSubOrder sends the information about the sub-request back to the Request Tracking
Server at the MSS server

11. ECS Applicationl and ECS Application2 then continue processing each of their parts of
the Product Order independently. The state changes and cost information are reported and
collected for each part independently as described above. The state changes are
immediately sent to the Request Tracking Server at the MSS server to provide near real-
time state tracking of requests and the resource utilization (cost) is stored with the
EcSubOrder object until the request has completed processing.

12. When an application is finished processing their part of the Product Order, the application
destroys the EcOrder or EcSubOrder. This causes the final state of the request as well as
the total resource utilization of the request part to be reported back to the Request Tracking
Server at the MSS server.

6.2.5 Accountability Management Structure
Table 6.2-1 lists the components of the Accountability Management Service.

6-134 305-CD-029-002

Table 6.2-1. Accountability Management Components

Component Name COTS/Custom
Accountability Manager Custom
User Account User Interface Custom
User Account User Interface Custom
Account Creation Management Custom
User Profile Access Custom
Request Tracking Management Custom
Request Tracking Collection Custom

6.2.5.1 Accountability Manager CSC
Purpose and Description

The Accountability Manager CSC manages the operation of the service and provides the audit trail
reporting functionality. This class inherits from EcPfManagedServer to provide the management
framework for the service.

6.2.5.2 User Account User Interface
Purpose and Description

This CSC provides the graphical user interface for the operator to perform user account
management.

6.2.5.3 User Account Management CSC
Purpose and Description

This CSC performs the account management functions on the registered user accounts based on
inputs from the User Account User Interface. This includes account creation, deletion, and
modification.

6.2.5.4 Account Creation Management CSC
Purpose and Description

This CSC receives user registration requests and keeps the requests as pending user accounts in a
database until the User Account User Interface approves the pending account or deletes the
pending account.

6.2.5.5 User Profile Access CSC
Purpose and Description

This CSC provides the server side functionality of the public class exported by Accountability
Management Service. This class responds to requests from the client (imported into ECS
applications) and provides the user profile requested in response to the call.

6-135 305-CD-029-002

6.2.5.6 Request Tracking Management CSC
Purpose and Description

This CSC manages the request tracking information. The class receives request tracking
information from the Request Tracking Collection CSC and updates the request tracking
information in the database. This CSC also includes a user interface to the tracking database which
enables the operator to see the state of requests executing or completed executing in the ECS
system in near real-time and allows the operator to generate and output cost accounting type reports
from the resource utilization data which is collected for each request.

6.2.5.6 Request Tracking Collection CSC
Purpose and Description

This CSC provides the Request Tracking Key Mechanism for ECS Applications to report request
status changes back to a central database to be displayed to an operator in near real-time. This
CSC contains the classes which the applications use to collect resource utilization. The classes are
designed to support a hierarchy of requests and to allow each request in the hierarchy to be tracked
independently. The Request Tracking Management CSC at the MSS server receives the state
changes and the resource utilization for the requests to provide near real-time state tracking and off
line resource cost reporting.

6.2.6 Accountability Management and Operation

6.2.6.1 System Management Strategy

The Accountability Management Service utilizes the public class exported by the process
framework, represented by EcPfManagedServer. These classes facilitate the management of the
service.

6.2.6.2 Operator Interfaces

The Accountability Management Service provides two graphical user interfaces. One user
interface provides the operator the capability to view and delete pending user requests; to create
registered user accounts from (approved) pending requests; and to modify and delete registered
user accounts. The other user interface provides the operator the capability to view the current
status of the requests (limited to those types mentioned in the overview) that are being or have been
processed by the ECS system.

6.2.6.3 Reports

The Accountability Management Service provides the following predefined reports:

User Characterization report -- provides a summary of the types and number of ECS users
System Access Profile report -- provides a summary of the types and number of ECS accesses

Utilization of User Services Personnel Accountability report -- provides a summary of the types
and number of user services contacts with ECS users

Using the Report Generation CSC associated with the Management Database, M&O staff will be
able to generate a diverse range of reports such as user audit, data audit, and request tracking.

6-136 305-CD-029-002

6.3 Billing and Accounting

6.3.1 Billing and Accounting Overview

ECS operations are supported by integrated and automated billing and accounting functions. The
Enterprise Monitoring and Coordination (EMC) Billing and Accounting Application Service
(BAAS) provides the mechanisms for ECS to price user data orders, invoice users for data and
media, and meet ECS' needs to track and to provide financial data.

One of the BAAS' primary functions is to provide bill-back capabilities. The billing and invoicing
functionality allows ECS to gather and track information on science user data orders, and to cost
these orders based on different resources (e.g., disk utilization, CPU, media, connect time) or
standard product ordered using pricing algorithms associated with each one. Policy will determine
what prices are applied. A standard pricing policy for ECS products across sites is assumed.

The Data Processing Subsystem (DPS) and Data Server Subsystem (DSS) will provide the BAAS
with accounting and resource data for science user orders which have been fulfilled so that the data
may be priced. For purposes of estimating the price of a new product request, pricing algorithms
maintained in pricing tables in BAAS will be made available to the DSS.

The billing and invoicing functionality allows ECS to inform accounts of their activity during a
particular billing cycle and of the charges associated with such activity.

Policy may dictate that no charges be applied to any account, or to particular accounts; or that
certain accounts be measured on resources consumed (e.g., number of tapes, number of images)
rather than dollars. In such cases, the accounts would not receive a bill invoice but a statement of
account does not anticipate payment. An account also would receive a statement of account instead
of a bill invoice when the account has funds credited to it in advance of purchases of data. As
charges are incurred by the account, these are deducted (debited) from the existing credits. The
statements of account would show activity and balance remaining. An account's balance status
also will be available for on-line consulting via the Client Subsystem (CLYS).

Science user payments (made in the form of checks or purchase orders) will be credited to the
appropriate accounts and forwarded to a designated NASA Financial Management Office (FMO)
for processing and deposit. To track all financial data information gathered on science users there
will be accounts set up and maintained by the BAAS. Science User's product orders and collected
payments will be tracked by the BAAS COTS Accounts Receivables module. A current contract
to purchase consumables resides with EDS, which precludes the need for the BAAS to report on
payables until this contract ends.

The BAAS COTS will provide the following major functions: Billing and Invoicing, Accounts
Receivable, Accounts Payable (dormant until the third party contract to purchase consumables
ends), and General Ledger Reporting. A custom piece will be developed to provide cost
accounting information gathered by the Accountability portion of MSS. The COTS will be capable
of supporting the information tracking of 17,000 user accounts that are current accounts and are
accessible on-line (not archived or historical). The Billing and Accounting Application package
supports a minimum of 500 uniquely priced items or products. As part of the BAAS, it will provide
an interface to other ECS Subsystems and Services to provide access to information such as pricing
estimates and account balance data maintained within the Billing and Accounting Application
package. The price estimate and account balance data supplied by the BAAS as part of a response

6-137 305-CD-029-002

to a query (from DSS or CLS) will reflect the same pricing and invoicing options as would be
presented to a client M&O user directly accessing the BAAS COTS Package. The interface to the
COTS package can be accessed either through a Microsoft Windows client or a Unix server
interface. Only registered users of the BAAS COTS will be able to access sensitive billing
information. Access will be strictly controlled by the COTS, with only certain M&O user services
personnel able to access those functions that have been explicitly granted to them. In addition, the
COTS package is also capable of interfacing with the ECS Sybase Management Database directly.

6.3.2 Billing and Accounting Context

The Billing and Accounting Application Service (BAAS), as shown in the context diagram on
figure 6.3-1, depends on other subsystems for the information it needs to price data orders, invoice
the correct accounts, and to track financial data. Accounts are set up in the BAAS using User
Profile Information received from the Accountability Management Service. Resource, data
product, and accounting information are received from other subsystems, such as DSS, to which
the BAAS provides information contained on pricing tables to be used in price estimation. The
BAAS will be able to accept accounting data that may originate from DAAC unique accounting
requirements. At the end of a billing cycle, statements are generated to be sent to the science user
accounts. If payments are due from the science users, these payments are received at the SMC for
posting to the appropriate account. Science user payments could be purchase orders as well. All
science user payments are forwarded to the SMC to be recorded into the BAAS COTS and to be
deposited in Federal Treasury accounts in accordance with GAO and OMB regulations and
guidelines. In the case of overpayments, or if an account requests the return of funds already
credited to it, refunds will be requested from the BAAS COTS. The CLS will be able to request
and access account status information. Payment for consumable items provided by vendors will
be issued by the agent authorized by the EDS contract which is out of scope of the BAAS, and so
is not shown in the accompanying context diagram.

6.3.3 Billing and Accounting Object Model
The Object Model for the Billing and Accounting Application Service is shown on Figure 6.3-2.

6.3.3.1 EcAgCOTSManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

this abstract class embodies the characteristics and functionality of a manager object
responsible for managing a single COTS process. It encapsulates all MSS management
application functions into a single class. The COTS proxy agent developer is responsible
for inheriting from this class and specializing it towards the COTS process to manage.

Attributes:

None

6-138 305-CD-029-002

<< refunds, credit adjustment

User

Science User Payments,

Science << bill invoices

Request for Refunds

Accountability
Mgmt
Service

accounting data:
resource utilization

——User Profile Data

DSS =

standard
Price
Tables

initiate
Accounting
Activities

M&O
Staff

Process Refunds

accounting data:
resource utilization

deposits, st Financial

NASA

Institutions

DAAC
Unique
Acct'ng

Systems

balance status

accounting data:
resource utilization

current account > CLS

request for account
balance status

DPS

Figure 6.3-1. Billing and Accounting Context Diagram

Operations:
None

Associations;

The ECAgCOTSManager class has associations with the following classes:

None

6.3.3.2 EcPfManagedServer Class
Parent Class:Not Applicable

Public:Yes
Distributed Object:No

Purpose and Description:

This is the container class that starts up the event Manager, table Manager, monitor, port
monitor, discoverer, subagent configuration, static buffer, and the deputy gate. This class
also starts a thread that triggers scheduled events (i.e. polling ECS application's

performance metrics).

6-139

305-CD-029-002

ov1-9

¢00-6¢0-dd-S0€

[DISTR OBJ]

EcPriceTableB

myExprsShipPric&cCurrency
myStdrdShipPric&cCurrency
my8mmTapePric&cCurrency
my4mmTapePric&cCurrency
- myCDPrice EcCurrency

- myServicePriceEcCurrency
- myProductdPric&EcCurrency

EcPriceTableB()()
~EcPriceTableB()()
+ ProvidePrices(RWCString userlD; RWCString requestID, GIParamet

[External]

e
EcPfManagedServer

eriist)
[Public]

MsBaPriceTableB

ECAgCOTSManager

[Public]

accessedBy
JAN

MsBaBAASManagerB

accessLevelEcTint = 0
- MOStaffld RWCString = None

~MaBaBAASManagerB()

MsBaBAASManagerB(RWCString BAASActivityList)
PrepareReports(RWCString repoEtd)Void
MonitorAccounts(RWCString accouatid)/oid
UpdateAccounts(RWCString accountldList, RWCString batchlid)
ProcessPmt(RWCString accountld, EcCurrency pmtAmt)
MaintainPricingTables(RWCString PriceTableld, RWCString MOSt

++ o+

|————etrieveOrderinformatien

Offpage
MsAcTrackingMgr

ffid)

&OActivities

maintainTableEntries

MsBaPrice TableB()()
~MsBaPriceTableB()()

urrency

lemIdDescrip, iceElemValu

+ H&?gsgg&ﬁOPalf:EE@WCSmr&g@ég%ﬁl&glﬁléﬁwcsmng PriceElemldDescripE @WM0i8tring
Sﬁgg&teFiHBeElemIdé?&?%ﬁl‘ggﬁncﬁlemld Re\{\ICStrlng homeDAAC, RWCString

update

sBaManager’
— BAASACtvity[dRWCString
+ MsBaManagerUIB()

+ ~MsBaManagerUIB()
+ initiateBAASactivity(RWCString BAASActitzieyflaif

[DISTR
MsAcUsrProfileMgr

lable balance.

[External]

Figure 6.3-2. Billing and Accounting Object Model

Attributes:
None

Operations:
None

Associations:

The EcPfManagedServer class has associations with the following classes:
None

6.3.3.3 EcPriceTableB Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This class represents a public and distributed class that holds the prices of every billable
item in the ECS inventory of products and services. Price of hard media and standard
shipping costs are also maintained in this table.

Attributes:

my4mmT apePrice- This attribute represents the price charged for an 4mm tape that is part
of an order for an ECS data product request.

Data Type:EcCurrency

Privilege:Private

Default Value:

my8mmT apePrice- This attribute represents the price charged for an 8mm tape that is part
of an order for an ECS data product request.

Data Type:EcCurrency

Privilege:Private

Default Value:

myCDPrice - This attribute represents the price charged for one Compact Disc (CD) that
will be used to store data that is part of an order for an ECS data product request.

Data Type:EcCurrency

Privilege:Private

Default Value:

myExprsShipPrice - This attribute represents the price charged for shipping an ECS data

6-141 305-CD-029-002

product request by the express mail method contained in the user's profile information.
Data Type:EcCurrency

Privilege:Private

Default Value:

myProductdPrice - This attribute represents the price charged for a chargeable and
identifiable ECS data product. The format and content of existing DAACs pricing lists of
products, media and services will be incorporated into the structure of the EcPriceTableB
as much as possible. Identifying products by a granule Id, size of granule and other price
related factors will also be considered by the ECS system with the actual price guidelines
for such attributes determined by an EOSDIS Pricing Policy committee.

Data Type:EcCurrency

Privilege:Private

Default Value:

myServicePrice - This attribute represents the price charged for a service (such as dataset
subsetting) that is required in the process of fufilling an order for an ECS data product
request.

Data Type:EcCurrency

Privilege:Private

Default Value:

myStdrdShipPrice - This attribute represents the price charged for shipping an ECS data
product request by the normal mail method contained in the user's profile information.
Data Type:EcCurrency

Privilege:Private

Default Value:

Operations:

EcPriceTableB
Arguments:

ProvidePrices - This method represents the summation of all the parameters in a user's
request for a data product request including shipping charges. The global parameter list,
GlParameterList passed in will contain the price element IDs corresponding to the type of
product, type of service(s) required to satisfy the request, the type and number of media,
and shipping method. This method will reference standard price entries for each of these
parameters and arrive at a total price for the given request.

Arguments:RWCString userlD; RWCString requestlD, GIParameterL.ist

Return Type:Void

Privilege:Public

~EcPriceTableB

6-142 305-CD-029-002

Arguments:

Associations:
The EcPriceTableB class has associations with the following classes:
None

6.3.3.4 MsAcTrackingMgr Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the manager class that collects order, request and service resource
utilization statistics and status for ECS processes. This object is the interface that the
request tracking event reporting objects (EcRequestEvent and its subclasses) as well as
other ECS applications have to the request tracking database. The database will have near-
real time status information about the requests as well as the final resource utilization of
each request.

Attributes:
None

Operations:
None

Associations:

The MsAcTrackingMgr class has associations with the following classes:
Class: MsBaBAASManagerB retrieveOrderInformation

6.3.3.5 MsAcUsrProfileMgr Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This class represents the User Profile Manager class that governs the update and
maintenance of information in the MsAcUsrProfile class. An ECS science user's available
balance will be retrieved using this class and be debited by the amount of each data product
request received by MSS.

Attributes:

6-143 305-CD-029-002

None
Operations:

None
Associations:

The MsAcUsrProfileMgr class has associations with the following classes:
Class: MsBaBAASManagerB updateavailablebalance

6.3.3.6 MsBaBAASB-COTS Class

Parent Class:EcCAgCOTSManager

Public:No

Distributed Object:No

Purpose and Description:

This class represents the COTS that provides bill-back capablities for data purchased from
ECS by science users. The Billing and Accounting Application Service (BAAS) COTS will
provide the following major functions: Billing and Invoicing, Accounting: Accounts
Receivable, Acccounts Payable (deferred), General Ledger, Reporting, which will be
consistent with generally accepted accounting principles and standards for the Federal
Government where appropriate including General Accounting Office (GAO) standards
Title 2 (Accounting), Title 3 (Audit), OMB Circular A-127 on Financial Management
Systems and the Federal Financial Management System Requirements issued by the Joint
Financial Management Improvement Program (JFMIP).

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The MsBaBAASB-COTS class has associations with the following classes:
Class: MsBaBAASManagerB accessedBy

6.3.3.7 MsBaBAASManagerB Class

Parent Class:EcPfManagedServer
Public:No

6-144 305-CD-029-002

Distributed Object:No

Purpose and Description:

This class manages all processes for the Billing and Accounting Application Service
(BAAS) that includes controlling the COTS, updating the Standard Price table, initiate and
the retrieval of accounting data from the ECS Management Database via the
MsAcTrackingMgr class and the adjusting of user profile balances via the
MsAcUsrProfileMgr class. In addition, the initiation and generation of reports by the
COTS is controlled by this class.

Attributes:

MOStaffld - This attribute represents a unique Id associated with a member of the
Maintenance and Operations (M&O) staff. Combined with accessLevel attribute, these
attributes will provide the proper authorization levels to both the BAAS COTS package and
the BAAS Cost Accounting function contained in the MsBaCostAcctB class.

Data Type:RWCString

Privilege:Private

Default Value:None

accessL evel - This attribute represents the current access level the user of this class has,
which will determine which of the management activities will be permitted by the user
associated with an MOStaffID.

Data Type:EcTint

Privilege:Private

Default Value:0

Operations:

MaintainPricingTables - This method represents the update and maintenance functions
associated with an instance of the EcPriceTableB, that will be invoked as
MsBaPriceTableB. Two methods contained in the MsBaPriceTableB will allow M&O
staff members to add, change or delete entries in the ECS-wide price tables as new product
and service charges are determined. This method manages that process.
Arguments:RWCString PriceTableld, RWCString MOStaffld

Return Type:Void

Privilege:Public

Monitor Accounts - This method represents the monitoring of accounts in the BAAS
COTS. Monitoring includes but is not limited to verifying account balances, requesting the
aging of accounts information through the COTS package, and other information that does
not result in changing of information either in the COTS accounting database or the ECS
Management Database.

Arguments:RWCString accountld

Return Type:EcTVoid

6-145 305-CD-029-002

Privilege:Public

MsBaBAASM anager B - This method represents the constructor for this class.
Arguments:RWCString BAASActivityList

Return Type:Void

Privilege:Public

PrepareReports - This method represents the initiation, generation, retrieval or
transmission of reports that are created by the BAAS COTS.

Arguments:RWCString reportld

Return Type:EcTVoid

Privilege:Public

ProcessPmt - This method represents the initiation of the depositing of funds collected
from ECS Science Users for payment on their accounts. Monies collected will be tracked
by the COTS package and will be forwarded to the designated NASA Financial
Management Office (FMO) which will then deposit these payments into the appropriate
U.S. Treasury accounts. The Credit Management component of the COTS Accounts
Receivables module will have the capability to set up credit accounts which can be
configured to not only grant credit approval and determine credit worthiness for ECS
registered users, but perform credit approval automatically based on the amount of credit
available in a Science User's account and the outstanding balance applied to a given order.
This method will also be considered to be "overloaded” and be able to initiate refund
requests from the FMO as well as track payments received. The COTS will have the
capability to handle a variety of electronic funds transfer formats and electronic data
interchanges (EDI) to ensure monies collected are deposited and transferred between
government accounts in a timely fashion, if the FMO wishes to use these COTS
capabilities.

Arguments:RWCString accountld, EcCurrency pmtAmt

Return Type:Void

Privilege:Public

UpdateAccounts - This method represents the updating of accounts in the BAAS COTS.
Updating includes but is not limited to processing batches of shipped data product requests
received from an ECS Data Center (DAAC), credit or debit memos, and other information
that does result in the changing of information either in the COTS accounting database or
the ECS Management Database. The COTS package will have the capability to execute
SQL statements directly on a SYBASE database such as the ECS Management Database.
Arguments:RWCString accountldList, RWCString batchld

Return Type:Void

Privilege:Public

~MaBaBAASM anager B - This method represents the destructor of this class.

Arguments:
Return Type:Void

6-146 305-CD-029-002

Privilege:Public

Associations:
The MsBaBAASManagerB class has associations with the following classes:

6.3.3.8

Class: MsBaBAASB-COTS accessedByYy

Class: MsBaManagerUIB initiateM&OActivities
Class: MsBaPriceTableB maintainTableEntries
Class: MsAcTrackingMgr retrieveOrderinformation
Class: MsAcUsrProfileMgr updateavailablebalance

MsBaManagerUIB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the user interface used to initiate BAAS activities that include
accessing the COTS, the price table update function, retrieve order information and report
generation.

Attributes:

BAASActivityld - This attribute represents which function of the BAAS will be selected
by the user interface class. The range of BAAS activities that may be requested includes,
but will not be limited to: enter test mode, invoke manager class for authorization, update
MsBaPriceTable, invoke MsAcTrackingMgr to retrieve order and request information,
invoke the cost accounting function, invoke the COTS package, invoke the custom
report function, or terminate selected activity.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

MsBaM anager UI B - This method represents the constructor for this class.
Arguments:

Return Type:Void

Privilege:Public

initiateBAASactivity - This method represents which function of the BAAS will be
selected by the user interface class. The range of BAAS activities that may be requested,
identified by BAASActivityld includes, but will not be limited to: entertestmode, invoke
manager class for authorization, update MsBaPriceTable, invoke MsAcTrackingMgr to
retrieve order and request information, invoke the cost accounting function, invoke

6-147 305-CD-029-002

the COTS package, invoke the report function, terminate selected activity
Arguments:RWCString BAASActivityld

Return Type:EcTint

Privilege:Public

~M sBaM anager UI B - This method represents the destructor for this class.
Arguments:

Return Type:Void

Privilege:Public

Associations:
The MsBaManagerUIB class has associations with the following classes:
Class: MsBaBAASManagerB initiateM&OActivities

6.3.3.9 MsBaPriceTableB Class

Parent Class:EcPriceTableB

Public:No

Distributed Object:No

Purpose and Description:

This class inherits all the attributes from the public EcPriceTable class but adds methods to
update the current prices in the table and to provide the capability to create new table entries
via the MsBaBAASManagerB class.

Attributes:
All Attributes inherited from parent class
Operations:

GeneratePriceElemid

This method represents the capability for M&O staff members to generat a unique price element
ID to be added to the instance of the standard price table. A price element can be either a data
granule , a type of media, shipping method, file size or service type. Arguments:RWCString
PriceElemld, RWCString homeDAAC, RWCString PriceElemldDescrip, EcCurrency
PriceElemValue

MsBaPriceTableB
Arguments:

UpdateStdPrices - This method represents the capability for M&O staff members to update the
standard price table, which MsBaPriceTableB inherits all the attributes from, mapping each of the
EcPriceTableB attributes to an indentifiable price element ID, followed by a description of that
price element and further identified by which ECS Data Center (i.e. DAAC) caused the entry to be

6-148 305-CD-029-002

placed in the table. The method will either add, change or delete the entry. The BAAS COTS
package will use the same information contained in the standard price table when generating bill
invoices for ECS accounts.

Arguments:RWCString PriceElemld, = RWCString PriceElemldDescrip, = RWCString
updateAction, EcCurrency PriceElemValue

Return Type:EcTVold

Privilege:Public

~MsBaPriceTableB
Arguments:

Associations:
The MsBaPriceTableB class has associations with the following classes:
Class: MsBaBAASManagerB maintainTableEntries

6.3.4 Billing and Accounting Dynamic Model

6.3.4.1 Billing and Invoicing a Science User

In this scenario, the science user will be billed and invoiced for requesting ECS data products or
services. This scenario traces the events associated with gathering the cost information, generating
statements, and posting the charges to the appropriate account. The scenario is depicted in
Figure 6.3-3.

6.3.4.1.1 Beginning Assumptions

A valid Science User with an account in good standing has already generated a request. Details of
the request, showing the products shipped and the price estimate, will have been captured by the
methods described in the MSS Accountability class MsAcTrackingMagr.

6.3.4.1.2 Interfaces with Other Subsystems and Segments

DSS and DPS will provide data product order information which MsAcTrackingMgr will be able
to store and retrieve from the ECS Management Database.

6.3.4.1.3 Stimulus

The Science User has submitted a request that initiates a product or service to be generated. Upon
completion of the request, details on products shipped traceable to a user will be stored in the ECS
Management Database area.

6.3.4.1.4 Participating Classes From the Object Model
MsAcUsrProfile

MsAcUsrProfileMgr

MsAcTrackingMgr

MsBaManagerUIB
MsBaBAASManagerB

6-149 305-CD-029-002

EcPriceTableB
MsBaBAASB-COTS
Billing Clerk(Actor)
Science User (Actor)

6.3.4.1.5 Beginning System, Segment and Subsystem State(s)

The system can be in normal operational mode, or it may be in training mode. The mode will be
taken into consideration when the cost resource data details on the request are gathered for pricing.
Requests performed under training mode will not be priced.

6.3.4.1.6 Ending State

The Science User is sent a statement detailing the charges incurred as a result of the activities
performed to fulfill a request.

6.3.4.1.7 Scenario Description

These steps describes the accompanying event trace diagram.

1)

2)

3)

4)
5)

6)

7)

A Billing Clerk (Actor) requests that the user interface for the BAAS select Update
Accounts as an option to execute.

The user interface class, MsBaManagerUIB, requests the MsBaManagerB controlling class
to allow the current M&O user of the BAAS to update ECS accounts with new order
information. The MsBaManagerB class will check the user's accessLevel to determine if
access to the accounts is permitted by this M&O user (Billing Clerk Actor).

MsBaManagerB class will determine which order(s) for the Science User identified by
userld exist to be processed. These orders will be retrieved by invoking the
MsAcTrackingMgr public method GetOrdersByUser(userld).

The MsBaManagerB object will then request through the public method GetRequestinfo of
the MsAcTrackingMgr class, all requests tied to the order that have been shipped.

The MsAcTrackingMgr will then search for and return all requests tied to the original
Science User's order that have shipped.

MsBaManagerB invokes the EcPriceTableB public method, ProvidePrices given the list of
requestlds and a global parameter list (GlIParameterList) supplied by the information
retrieved by MsAcTrackingMgr to price the total amount of the requests that have been
shipped. The GlParameterList will contain the data product(s) ordered, the type and
number of media used to fulfill the order, any services used to complete an order (i.e.
subsetting), the shipping method and the userld associated with the shipped data product
request(s). The price table information retrieved should match the price estimates provided
to the science user when the original order was placed.

MsBaBAASManagerB provides the MsBaBAASB-COTS package with the order/request
information for the current Science User and instructs the COTS to update this account.

6-150 305-CD-029-002

TGT-9

¢00-6¢0-dd-S0€

Billing A
ScienceUser

ScienceUser

Billing Clerk

MsAcUsrProfile

initiated

MsAcUsrProfileMgr

MsAcTrackingMgr

AASactivity(RWCStrifjg BAASactivityld="Up

Hate_Acct)— >

< GetOrdersB;
l<——GetRequestinfo

I 1
etrieve all requests in the ol
or a given userld that shipg

<

MsBaManagerUIB

UpdateAccountsﬁaccountIdList,
— batchlid)

>
User(RWCString userld)}——

orderStruct.State="shipped)——

der
ed

GetAccol

SetAccoy

UpdateH

rofile(availableAccountBalg

MsBaBAASManagerB

ProvidePrices(userld

rkquestld, GIParameterLis¥]

EcPriceTableB

distributeStatemert(reportld)

UpdateAccounts(agcountldList
P batcr(ﬂd >
RetrieveProfile(userld)

ntBalance(accountBalance)
ntBalance(accountBalance)
Ince)

< PrepareReporfs(reportld}
l<—InitiateBAASActivity }——

Figure 6.3-3. Billing and Invoicing a Science User Event Trace

MsBaBAASB-COTS

8) MsBaBAASB-COTS updates the user's appropriate accounts receivable by the amount of
the price of the fulfilled request. Normally, a batch of fulfilled requests that could be from
multiple ECS user accounts would be processed at a time, but for this scenario only one
Science User's account will be shown to be updated and billed.

9) Asthe BAAS COTS updates the Science User's account, the MsBaBAASB-COTS has the
ability to retrieve the Science User's profile information, through the public method
RetriveProfile from the MsAcUsrProfileMgr class. This information will be used to
prepare an accurate statement that will be sent to the account holder of record at the end of
the billing cycle.

10) MsBaBAASB-COTS then retrieves and debit the Science User's available balance to take
into account the fulfilled order that was being processed. The methods GetAccountBalance
and SetAccountBalance from MsAcUsrProfile can be accessed by the MsBaBAASB-
COTS which can interface with the ECS Sybase Management Database directly.

11) MsBaBAASManagerB takes the accountBalance computed by the MsBaBAASB-COTS
and updates the Science User's information through the method UpdateProfile from the
MsAcUsrProfileMgr class.

12) Each individual data request priced by MsBaBAASB-COTS provides input to the Billing
and Invoicing function of the COTS, which will generate statements on a monthly basis,
invoking the MsBaBAASManagerB class method PrepareReports. These statements will
be distributed to the accounts, which will reflect all data order activity during the monthly
billing cycle. For the purposes of this scenario, a statement will be considered a type of
report.

13) MsBaBAASManagerB notifies the MsBaManagerUIB class that a report (statement) has
been generated which can be mailed to the Science User.

14) An M&O staff member (Billing Clerk) accessing the MsBaManagerUIB interface class,
distributes the statement to the appropriate Science User's account.

14a) If the user's account is a type of pre-paid account, the statement issued will show the
current activity on the account for the past billing cycle.

14b) For non pre-paid accounts, the statement sent will be an actual bill for the services
and products provided during this period plus any previous balance not paid. An
actual bill will be generated in this case by the MsBaBAASB-COTS.

6.3.4.2 Receiving and Posting Science User Payments to Accounts Scenario
This scenario traces the events associated with receiving payments from a Science User and to
process these payments to the proper account. The scenario is depicted in event trace diagram in
Figure 6.3-4.

6.3.4.2.1 Beginning Assumptions

Assume the user's account does not have any amounts already credited to it (i.e. is not a pre-paid
account) and that the user has received a billing invoice for purchases during the past billing cycle.

6-152 305-CD-029-002

Receiving and Posting
Science User Pmts

€a1-9

¢00-6¢0-dd-S0€

NASA
. . Financial
ScienceUser Accountant MsAcUsrProfileMgr BilingClerk ~MsBaManagerUIB MsBaManagerB MsBaBAASB-COTS Institution
_ SenpPayment(pmtAmt, acclld) ——M—>>
Group paymetjts
Pc]-sr}irr?gclj?}r:]ts into batche:
to ECS <
Account select
—ReviewPmt—=>|
Batch
—ProcessPmt(batchld)—
ProcessPmtBatch
— (batchiD) =
FwdPmtBatgh(batchld) >
<< UpdateProfile(accopntBalance(s))
Thread 2:
Pre-Paid
Accounts sendPyrchaseOrder(pmtAmt, userld)—— >
3seIectProces
urchaseOrder —ProcessPmt(batchld)—
RecordPurchaseOrdegs
(batchld)
forwardPurchasgOrders(batchid) >
<< UpdateProfile(accopntBalance(s))
Thread 3: —
Refund
Request select
— Review —>>)
Accounts ——MonitorAccounts()—>> RetrieveAccount
- Recgiva les() —=>
RequestRefund(acct{d, refundAmt) — >~
ApgdroveRefund(acctlgl, refundAmt) >> SendR (efundd
L Request(acctld,
refundAmt) —>
< DistfibuteRefund(acct|d, checkld, refundAmt) RefondNotificat W Tetundn
<—RefundNotificatiof(acctld, refundAmt)—
<< JpdateProfile(accpuntBalance) (

Figure 6.3-4. Receiving and Posting Science User Payments Event Trace

6.3.4.2.2 Interfaces with Other Subsystems and Segments

External interfaces with financial institutions will be required to eventually deposit payments to a
U.S. Treasury account. This will performed by the BAAS COTS functionality that is capable of
supporting a variety of lockbox and Electronic Data Interchange (EDI) interfaces to accept
payments at the banking institution that has been configured to accept ECS payments and accept
electronic transfers.

6.3.4.2.3 Stimulus

A Science User has sent a payment to cover the outstanding balance on their account for ECS
products or services ordered during the past billing period.

6.3.4.2.4 Participating Classes From the Object Model

Science User (Actor)
Billing Clerk (Actor)
MsAcUsrProfileMgr
MsBaManagerU1B
MsBaBAASManagerB
MsBaBAASB-COTS
Accountant (Actor)
Financial Institution (Actor)

6.3.4.2.5 Beginning System, Segment and Subsystem State(s)

The system is in a normal operational mode.

6.3.4.2.6 Ending State

The Science User's account is credited the proper amount and the payment is received at the
financial institution's lockbox . A lockbox can be either electronic or a physical post office box
established by a financial institution for receipt of payments to an agency or organization such as
ECS. An alternate thread would involve overpayment by the Science User, triggering a refund
check to be eventually sent to the Science User.

6.3.4.2.7 Scenario Description

Thread 1:

The following steps describe the accompanying event trace for receiving and posting Science User
Payments to the proper account.

1) The Science User mails a check to the SMC; the check is received by a Billing Clerk at the
SMC and the clerk r groups the checks into a batch of payments to be processed by the
BAAS COTS.

2) The Billing Clerk will review the batch of checks received, which represents Science User
payments received during a given time period, and then prepares an Accounts Receivable

6-154 305-CD-029-002

3)

4)

batch report. Upon input of the batch entries, the payments will be credited to the
appropriate accounts receivables, represented by the COTS class MsBaBAASB-COTS
method ProcessPmtBatch.

The Billing Clerk then sends the checks to a NASA designated financial institution that
will deposit the payments into a Federal Treasury account.

Once the accounts reflect the payments received in the Accounts Receivable batch report,
the MsBaManagerB class invokes the MsAcUsrProfileMgr method, UpdateProfile to
adjust the accountBalance(s) affected in the LockBox Report of payments.

Thread 2: Pre-paid accounts, where funds are available in advance of purchases

1)

2)

3)

4)

The Science User sends a purchase order to the SMC; the purchase order is received by a
Billing Clerk, which invokes the COTS package through the MsBaManagerUIB user
interface class.

The SMC Billing Clerk will take purchase orders received during a given time period, and
prepare an Accounts Receivable batch report. Upon input of the batch entry, amounts on
the purchase orders will be credited to the appropriate accounts using the method
RecordPurchaseOrders, contained in the MsBaBAASB-COTS class. As the Science
User(s) of the account purchases ECS products, charges will be deducted from the
account's existing balance.

The Billing Clerk will then forward the batch of purchase orders to the financial institution
that has been set up to accept funds collected for deposit to a U.S. Treasury account.

Once the accounts reflect the purchase order amount(s), the MsBaManagerB class invokes
the MsAcUsrProfileMgr method, UpdateProfile to adjust the accountBalance(s) affected in
the list of purchase order "payments”.

Thread 3: Overpayment of a Science User's account, triggering a refund request

1)

2)

3)

The Science user sends a payment that exceeds the balance due; a Billing Clerk recognizes
the overage in the account when the accounts are balanced at the end of a reporting period
and invokes the RequestRefund method in the MsBaBAASB-COTS class.

The Billing Clerk, forwards a refund request for the proper amount to another actor, an
M&O staff member, such as an Accountant to approve the request.

The refund request is approved by the Accountant and the MsBaBAASB-COTS packages
generates a refund request that is forwarded to a NASA designated financial institution.

4) The NASA designated financial institution receives the refund request and distributes a

5)

6.3.5

refund check to the Science User.

Once the refund check has been issued, the MsBaManagerB class invokes the
MsAcUsrProfileMgr method, UpdateProfile to adjust the accountBalance(s) by the amount
of the refund check issued.

Billing and Accounting Structure

Table 6.3-2 lists the components of the Billing and Accounting Application Service.

6-155 305-CD-029-002

Table 6.3-2. Billing and Accounting Components

Component Name COTS/Custom
Billing and Accounting Service COTS/Custom
BAAS Manager Custom
Price Table Custom (C++ code and scripts)

6.3.5.1 Billing and Accounting Service CSC
Purpose and Description

The Billing and Accounting Service CSC provides the COTS package and the Operator Interface
which allows operators at both the SMC and the DAACSs to review account statues, input billing
information, perform account queries, balance accounts, and generate statements and reports by the
COTS package.

Mapping to objects implemented by this component
MsBaBAASB - COTS Billing and Accounting Package
MsBaManagerUIB

initiateBAASActivity - C++ code

6.3.5.2 Billing and Accounting Application Service (BAAS) Manager CSC
Purpose and Description

This class category provides services such as the startup and shutdown of the Billing and
Accounting Application Service and other BAAS activities that related to the running of the COTS
package. Such activities include both the manual and automatic processes that will update
accounts, issue requests for refunds, and forward payments from ECS users to a NASA designated
financial institution for deposit to a U.S. Treasury account. Other operations are inherited from the
external class, ECAQCOTSManager.

Mapping to objects implemented by this component
EcAgCOTSManager

MsBaBAASManagerB

MaintainPricingTables - Scripts and C++ code
UpdateAccounts - Scripts and C++ code
MonitorAccounts - Scripts and C++ code
PrepareReports - Scripts and C++ code
ProcessPmt - Scripts and C++ code

6.3.5.3 Pricing Table CSC
Purpose and Description

6-156 305-CD-029-002

This CSC provides a distributed object class to provide pricing information to external subsystems.
It also provides the means to maintain the table that will be maintained in the ECS Management
SYBASE database.

Mapping to objects implemented by this component
EcPriceTableB

ProvidePrices - C++

MsBaPriceTable

pdateStdPrices - C++

GeneratePriceElement - C++

6.3.6 Billing and Accounting Management and Operation

6.3.6.1 System Management Strategy
The Billing and Accounting Application Service is based on COTS product to be determined.

6.3.6.2 Operator Interfaces

The Operator Interface to Billing and Accounting is the graphical user interface provided by the
COTS product to be selected. The human interface will be predominately through a Microsoft
Windows client interface, with the capability to access a Unix server interface as well.

6.3.6.3 Reports
The following predefined Billing and Accounting reports will be provided by the BAAS COTS:

Chart of Accounts - list of all ledger accounts in the ECS. This report can be used to locate a
specific account within a ledger account.

Invoices - shows invoices received by M & O Staff for a given period
Purchase Orders - will show purchase orders initiated by M & O Staff.

Summary Reports - summarizes billing and accounting activity for a given reporting period (day,
month, fiscal year, year-to-date)

Inventory Receiving Reports - to track consumable items ordered from vendors that can be used
during the invoice reconciliation process (dormant until the third party contract to supply
consumables ends).

Other accounting statistics will be reportable via ad hoc reports provided by COTS product and the
report generation capability associated with the custom portion of the Billing and Accounting
Application Service and the MSS accountability CSCI.

Further information on billing and accounting reports is available in the Release B Overview
Design Specification (305-CD-020-002).

6-157 305-CD-029-002

6.4 Report Generation Service

6.4.1 Report Generation Service Overview

The Report Generation Service provides M&O staff with access to management information
across all areas of the ECS enterprise and DAAC operations. The service is implemented through
the collective reporting capabilities offered by the MSS Report Writer associated with the
management database, the report generation capabilities of specialized MSS management
applications, and the management reporting capabilities provided by other ECS application
subsystems. The service provides for the generation of both routine and adhoc reports and queries.
Adhoc reports and queries are supported through the COTS reporting/query tools associated with
the management database and through management application-specific COTS tools. An HTML-
based user interface supports convenient browse access to routinely generated reports by non-
specialists.

The Report Generation Service is for the exclusive use of ECS/DAAC management and M&O staff
responsible for monitoring system performance, workload, capacity utilization, security,
reliability, accountability, and user satisfaction. Access to all reporting tools is restricted to
registered M&O personnel. The Report Generation Service provides for the generation of a range
of standard management reports. A standard report, also referred to as a canned report, is one for
which a template specifying format and content has been previously defined and saved. These
standard reports are maintained by M&O database specialists. Standard reports can be run
automatically on a periodic basis (e.g., daily, monthly, quarterly) based on setup parameters
associated with the report. ECS management and M&O personnel can access these reports for
viewing from their desktop through the HTML-based user interface. Optionally, they can apply
time and domain scope to the standard reports to generate adhoc reports. Data underlying reports
can be saved in text format for import into an analysis tool such as a spreadsheet.

In support of the data specialist on the M&O staff, the Report Generation Service provides a
workbench for use in constructing adhoc reports/queries and for maintaining the complement of
standard management report templates. This workbench consists of a report writer COTS package
associated with the management RDBMS and a statistical analysis COTS package providing tools
for analyzing performance trends.

Report Generation Services are accessible only by M&O personnel. In general, the default scope
of reports at the SMC include all of the ECS enterprise whereas the scope at an LSM is the local
management domain.

Management reports fall in the following major categories:

Performance/Compliance - these reports are designed to reveal short and long term trends in
system operation relative to relevant benchmark requirement or performance goal. An example is
a report trending production operations adherence to schedule comparing planned versus actual
product generation completion times. Another example would be the average turnaround time to
resolve trouble tickets. A third example is the reliability of system components using outage times
obtained from the system fault management application.

Workload - these reports are designed to reveal short and long term trends in the system workload
such as the number of products generated and the number of problem reports submitted to the User
Services group.

6-158 305-CD-029-002

Resource Utilization - these reports are designed to reveal short and long term trends in the
utilization of resources for correlation with workload. These reports include resources such as
CPU/disk utilization in hosts, network utilization, as well as personnel resources such as User
Services. These reports present utilization at the host-site level and across sites.

User Satisfaction - these reports depict short and long term trends in the degree of satisfaction with
ECS products and services from the external user standpoint.

Profiles/Characterizations - these reports provide finer insight into diverse areas such as product
generation workload, fault occurrences, user service activities, and the like by showing the
distribution of basic measured elements in these areas according to subtypes. An example is the
volume distribution of product types generated over a specified interval.

Accountability - these reports provide an audit/trace of significant events associated with users and
their access of system resources and services, security, data integrity, fault management, billing
and accounting, and configuration management.

Section 6.4.2 itemizes specific reporting areas.

6.4.2 Report Generation Context
Figure 6.4.1 is the context diagram for the Report Generation Service.

The Report Generation service interfaces with the user (ECS management and M&O staff
personnel) for report generation requests, with system management agent services for lifecycle
commands, status reporting and event logging, and with the User Profile support within MSS
accountability to validate a requester is a member of the M&O staff.

Management Agent

M&O S Services
Staff

ReportGenerationRequests Status and
Events
This System
Commands
Reports
MSS_Report_Generation Data Query
M&O
—— User
Profile
M&O
User V
Profile
Request
ManagementDatabase

ManagementData
Accountability <

Figure 6.4-1. Report Generation Context Diagram

6-159 305-CD-029-002

6.4.3 Report Generation Object Model
The Report Generation object model is shown in Figure 6.4-2.

6.4.3.1 CGI_Vars Class
Parent Class:RWHashDictionary

Attributes:
All Attributes inherited from parent class
Operations:

CGIl _Vars
Arguments:
Return Type:Void
Privilege:Public

L oadEnvironmentVariables
Arguments:

Return Type:Void
Privilege:Private

L oadGetElements
Arguments:

Return Type:Void
Privilege:Private

L oadPostElements
Arguments:

Return Type:Void
Privilege:Private

get

Arguments:char * szName
Return Type:CGI_Element *
Privilege:Public

get

Arguments:RWCString &rsName
Return Type:CGI_Element *
Privilege:Public

6-160 305-CD-029-002

T91-9

¢00-6¢0-dd-S0€

Offpage

~TMPL_Element()
name() char *

EcPfManagedServer off [DISTR OBJ]
MsRgManagerB page EcAgProxy
_ RWCollectable
[Public] ~ modeB EcTint modeB
+ MsRgManageEcTint .
+ ~MsRgManageid [Public]
+ Startup() EcTint
+ Shutdown()void
manLges [PERSISTENT CLASS]
MsRgStandMgmtRepB
[DIS‘@f%g MsRgRepGenSchedulerB - e |- RepTWleRWCSting | MsRgProxyB MsRgProxyB
7 — - hedt - ReportIDECTint
EcAcProfileMgr TimeNextChecRWCString Replnvocationinfo mode mode
handles [+ MsRgRepGenSchediefint - Periodic RWBoolean + Startup EcTint + Startup() ECTint
T [PUb"C}reql\L/JIES[+ ~MsRgRepGenScheduted - SchedIntvlEcTint + Shutdown()EcTint + Shutdown{)EcTint
populates or M&O - TimofDayToGeRWTime
6 user profile - /DtTmLastRepoRWDate
| © page 1 accesses/
MsAcUserProfile MsRgUIMgrB |_updates™[+ MsRgStandMgmiRe; int
- - + ~MsRgStandMgmtRepis{jl
- metrics EcTint + InslertNewRe%GcTint
+ DeleteReport@cTint
+ Main(void)EcTint ! manages
- ProcessLogin(CGI_Vars *CGI_Data, EcTChar Esdligerld) + GenerateReporcTint
- ProcessAdhoc(CGI_Vars *CGI_Data, EcTCharEBsZugerld) manages
provide M&O | - UpdateCatalog(CGI_Vars *CGI_Data, EcTCharEsZuerld) g
user profile™ - ProcessBrowse(CGI_Vars *CGI_Data, EcTCharEszluserld)
L oy
- ~MsRg grBYpi re i
geneeatiion generation
accédsses
pregenerated
FepOMts ottoage coTs Offpage COTS Offpage
MsRgPeriodicReport8 | i MsRgRepWriterB MsRgTrendAnalysisB
| g p .l_sgerée}:lrated gRep! Offpage
L RWCollectable
Og&e'ns accesses |
variables accesses
from Offpage Offppge
hasfy"éiable RWHashDictionary Management RDBMS
ields
in HTML
_ doc
inserted
TMPL_Element
- prsNameRWCString *
| - prsValue RWCString **
- rsDirectValu®kRWCString
TMPL_Vars CGl_vars - szValue char **
+ CGI_Vars() + TMPL_Element
+ TMPL_Vars() = —
+ insert(RWCollectable * pEleiR#Qollectable * + get(char * szName€GI_Element * + TMPL_Element(char : szName, char **s;NeﬂValue)
) * . s LoadGetElementy(pid + TMPL_Element(char * szName, RWCString **prsNewValue)
* P{ggg:szﬁ;erajgf':sifg;\?;}hgsggfggrﬁséoU Ut,u (t:)har szMaitker = "##) + get(RWCString &rsNa@€)_Element * + TMPL_Element(RWCString &sNewName, char **szNewValue)
i pet(RWCStrin &rsNaffM)’L Element * P - LoadPostElementy(pid + TMPL_Element(RWCString &rsNewName, RWCString **prsNewYalue)
g 9 — - LoadEnvironmentVariabMsig + TMPL_Element(char *szName, RWCString *prsNewValue)
+ TMPL_Element(RWCString &rsNewName, RWCString *prsNew\alue)
+
+
+

uses.

value() Char *

Figure 6.4-2. Report Generation Object Model

Associations:

The CGI_Vars class has associations with the following classes:
Class: MsRgUIMQgrB obtainsqueryvariablesfrom

6.4.3.2 EcAcProfileMgr Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This is a public class (and a distributed object) that is exported by this service. Other
subsystems use this class in order to retrieve the user profile for a specified user.

Attributes:
None

Operations:
None

Associations:

The EcAcProfileMgr class has associations with the following classes:
Class: MsRgUIMgrB handlesrequestforM&OQOuserprofile
Class: MsAcUserProfile populates

6.4.3.3 EcAgProxy Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This object class is primarily for COTS' manageability. It includes the MSS
instrumentation class library to enable the manageability of the COTS product. The front-
end of this object is the MSS instrumentation code. The back-end of it is the interface to the
COTS. It is unique to every COTS. In security management, the logs of COTS are
monitored by this object. If an security event occurs, this object has to detect the incident
and send out an event notification to the MsAgSubagent.

Attributes:

6-162 305-CD-029-002

modeB - This attribute contains the mode in which the application is executing under. It
identifies functional activity(operational, testing, training).

Operations:
None
Associations:

The EcAgProxy class has associations with the following classes:
None

6.4.3.4 EcPfManagedServer Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is the container class that starts up the event Manager, table Manager, monitor, port
monitor, discoverer, subagent configuration, static buffer, and the deputy gate. This class
also starts a thread that triggers scheduled events (i.e. polling ECS application's
performance metrics).

Attributes:
None

Operations:
None

Associations:

The EcPfManagedServer class has associations with the following classes:
None

6.4.3.5 ManagementRDBMS Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the Management Data Relational Database (a COTS package).

6-163 305-CD-029-002

Attributes:
None

Operations:
None

Associations:

The ManagementRDBMS class has associations with the following classes:
Class: MsRgRepWriterB accesses
Class: MsRgTrendAnalysisB accesses
6.4.3.6 MsAcUserProfile Class
Parent Class:Not Applicable

Attributes:
None

Operations:
None

Associations:

The MsAcUserProfile class has associations with the following classes:
Class: EcAcProfileMgr populates
Class: MsRgUIMgrB provideM&Ouserprofile

6.4.3.7 MsRgManagerB Class

Parent Class:EcPfManagedServer

Public:No

Distributed Object:No

Purpose and Description:

MsRgManager provides the interface between the Managed Process Framework and the
report generation scheduler. It allow the report generator to be controlled and monitored
by from the system management position.

6-164 305-CD-029-002

Attributes:

modeB

Data Type:EcTint
Privilege:Private
Default Value:

Operations:

MsRgManager - Class constructor.
Arguments:

Return Type:EcTint
Privilege:Public

Shutdown - Shutdown the report scheduler.
Arguments:

Return Type:void

Privilege:Public

Startup - Startup the report scheduler.
Arguments:

Return Type:EcTint

Privilege:Public

~MsRgManager - Class destructor.
Arguments:

Return Type:void

Privilege:Public

Associations:
The MsRgManagerB class has associations with the following classes:
Class: MsRgRepGenSchedulerB manages

6.4.3.8 MsRgPeriodicReportB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class contains browsable periodic (daily,weekly,etc) report output automatically
generated per the standard report schedule.

Attributes:

6-165 305-CD-029-002

None
Operations:

None

Associations:

The MsRgPeriodicReportB class has associations with the following classes:
Class: MsRgUIMgrB accessespregeneratedreports

Class: MsRgRepWriterB isgeneratedby

6.4.3.9 MsRgProxyB Class

Parent Class:EcCAgProxy

Public:No

Distributed Object:No

Purpose and Description:

This class provides the interface between the ECS Management Agent Services and the
COTS report writer (MsRgReportWriter object) allowing ECS to issue lifecycle commands
to the COTS and receive processing events and status.

Attributes:

mode

Operations:

Shutdown - This method shuts down the report writer.
Arguments:

Return Type:EcTint

Privilege:Public

Startup - This method starts up the report writer.
Arguments:

Return Type:EcTint

Privilege:Public

Associations:
The MsRgProxyB class has associations with the following classes:
Class: MsRgTrendAnalysisB manages

6.4.3.10 MsRgRepGenSchedulerB Class

Parent Class:Not Applicable
Public:No

6-166 305-CD-029-002

Distributed Object:No

Purpose and Description:

MsRgRepGenScheduler initiates the generation of routine periodic standard reports based
on scheduling information and generation methods provided in the MsRgStandMgmtRep
catolog object.

Attributes:

TimeNextCheck - Time interval in hours to wait before checking for generation of a
periodic report.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

MsRgRepGenScheduler - Class constructor.
Arguments:

Return Type:EcTint

Privilege:Public

~M sRgRepGenScheduler - Class destructor.
Arguments:

Return Type:void

Privilege:Public

Associations:

The MsRgRepGenSchedulerB class has associations with the following classes:
Class: MsRgManagerB manages

Class: MsRgStandMgmtRepB schedules

6.4.3.11 MsRgRepWriterB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is the COTS report writer product associated with the management DBMS.

Attributes:

None

6-167 305-CD-029-002

Operations:

None

Associations:

The MsRgRepWriterB class has associations with the following classes:
Class: ManagementRDBMS accesses

Class: MsRgPeriodicReportB isgeneratedby

Class: MsRgStandMgmtRepB requestsreportgeneratiion

6.4.3.12 MsRgStandMgmtRepB Class

Parent Class:RWCollectable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class represents a registered ECS standard report. A standard report is one for which
a report template defining the format and data type content has been prebuilt and saved
using a management reporting tool. A subset of standard ECS reports are generated
according to a defined schedule which is characterized in this class (e.g., daily/weekly/etc).
Other reports are generated strictly on an ad-hoc basis per user request.

Attributes:

/IDtTmLastReport - This is the data/time at which the last generation of this report was
performed.

Data Type:RWDate

Privilege:Private

Default Value:

Periodic - This flag is set to indicate a report which is to be produced on a periodic basis.
Data Type:RWBoolean

Privilege:Private

Default Value:

Replnvocationl nfo - This attribute provides information on invoking the associated COTS
report writer to generate the report.

RepTitle - Report Title attribute.
Data Type:RWCString
Privilege:Private

Default Value:

ReportID - A unique report identification code for this report.
Data Type:EcTint

6-168 305-CD-029-002

Privilege:Private
Default Value:

SchedIntvl - The interval in days between generations of this report.
Data Type:EcTint

Privilege:Private

Default Value:

TimofDayToGen - Time of day to initiate generation of a periodic report.
Data Type:RWTime

Privilege:Private

Default Value:

Operations:

DeleteReport - This method deletes an existing report entry in the standard management
report catalog.

Arguments:

Return Type:EcTint

Privilege:Public

GenerateReport - This method generates the report invoking the associated management
reporting tool.

Arguments:

Return Type:EcTint

Privilege:Public

InsertNewRep - This method inserts a new report in the catalog of standard management
reports.

Arguments:

Return Type:EcTint

Privilege:Public

MsRgStandM gmtRepB - Constructor for this class.
Arguments:

Return Type:EcTint

Privilege:Public

~MsRgStandM gmtRepB - Destructor for the class.
Arguments:

Return Type:void

Privilege:Public

Associations:

6-169 305-CD-029-002

The MsRgStandMgmtRepB class has associations with the following classes:
Class: MsRgUIMgrB accesses/updates

Class: MsRgRepWriterB requestsreportgeneratiion

Class: MsRgTrendAnalysisB requestsreportgeneration

Class: MsRgRepGenSchedulerB schedules

6.4.3.13 MsRgTrendAnalysisB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The MsPmTrendAnalysis class generates trend data for a specified parameter over a
specified time period.

Attributes:
None
Operations:

None

Associations:

The MsRgTrendAnalysisB class has associations with the following classes:
Class: ManagementRDBMS accesses

Class: MsRgProxyB manages

Class: MsRgStandMgmtRepB requestsreportgeneration

6.4.3.14 MsRgUIMgrB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This is the gateway interface between the M&O HTML client and the Report Generation
service.

Attributes:

metrics

Data Type:EcTint
Privilege:Private
Default Value:

6-170 305-CD-029-002

Operations:

Main
Arguments:void
Return Type:EcTint
Privilege:Public

MsRgUIMgrB - Class constructor.
Arguments:

Return Type:EcTint
Privilege:Public

ProcessAdhoc - This method processes an M&O user's request for an adhoc management
report.

Arguments:CGI_Vars *CGI_Data, EcTChar *szUserld

Return Type:EcTint

Privilege:Private

ProcessBrowse

Arguments:CGI_Vars *CGI_Data, EcTChar *szUserld
Return Type:EcTint

Privilege:Private

ProcessL ogin

Arguments:CGI_Vars *CGI_Data, EcTChar *szUserld
Return Type:EcTint

Privilege:Private

UpdateCatalog -

Arguments:CGI_Vars *CGI_Data, EcTChar *szUserld
Return Type:EcTint

Privilege:Private

~M sRgUIMgrB - Class destructor.
Arguments:

Return Type:void

Privilege:Private

Associations:

The MsRgUIMgrB class has associations with the following classes:
Class: MsRgStandMgmtRepB accesses/updates

Class: MsRgPeriodicReportB accessespregeneratedreports

Class: EcAcProfileMgr handlesrequestforM&Ouserprofile

Class: TMPL_Vars hasvariablefieldsinHTMLdocinserted

6-171 305-CD-029-002

Class: CGI_Vars obtainsqueryvariablesfrom
Class: MsAcUserProfile provideM&OQOuserprofile

6.4.3.15 RWCollectable Class
Parent Class:Not Applicable

Attributes:
None

Operations:
None

Associations:

The RWCollectable class has associations with the following classes:
None

6.4.3.16 RWHashDictionary Class
Parent Class:Not Applicable

Attributes:
None
Operations:
None

Associations;

The RWHashDictionary class has associations with the following classes:

None

6.4.3.17 TMPL_Element Class
Parent Class:RW<Collectable

Attributes:

6-172

305-CD-029-002

prsName

Data Type:RWCString *
Privilege:Private

Default Value:

prsvValue

Data Type:RWCString **
Privilege:Private

Default Value:

rsDirectValue

Data Type:RWCString
Privilege:Private
Default Value:

szValue

Data Type:char **
Privilege:Private
Default Value:

Operations:

TMPL_Element

Arguments:char * szName, char **szNewValue
Return Type:Void

Privilege:Public

TMPL_Element

Arguments:char * szName, RWCString **prsNewValue
Return Type:Void

Privilege:Public

TMPL_Element

Arguments:RWCString &rsNewName, char **szNewValue
Return Type:Void

Privilege:Public

TMPL_Element

Arguments:RWCString &rsNewName, RWCString **prsNewValue
Return Type:Void

Privilege:Public

TMPL_Element
Arguments:char *szName, RWCString *prsNewValue

6-173 305-CD-029-002

Return Type:Void
Privilege:Public

TMPL_Element

Arguments:RWCString &rsNewName, RWCString *prsNewValue
Return Type:Void

Privilege:Public

TMPL_Element
Arguments:
Return Type:Void
Privilege:Public

name
Arguments:

Return Type:char *
Privilege:Public

value

Arguments:

Return Type:Char *
Privilege:Public

~TMPL_Element
Arguments:
Return Type:Void
Privilege:Public

Associations:

The TMPL_Element class has associations with the following classes:
Class: TMPL_Vars uses

6.4.3.18 TMPL_Vars Class

Parent Class:RWHashDictionary

Public:No

Distributed Object:No

Purpose and Description:

The MsTtEntry class models a request for action on a particular problem and the
subsequent actions performed on it. This class encapsulates the common definition of a
trouble ticket configured in the ECS implementation of the Remedy Action Request
System

6-174 305-CD-029-002

Attributes:
All Attributes inherited from parent class
Operations:

TMPL _Vars
Arguments:
Return Type:Void
Privilege:Public

get
Arguments:RWCString &rsName
Return Type:TMPL_Element *
Privilege:Private

insert

Arguments:RWCollectable * pElement
Return Type:RWCollectable *
Privilege:Public

process

Arguments:istream &stlnput, ostream &stOuput, char *szMarker = '##'
Return Type:void

Privilege:Public

process

Arguments:char * szFileName, ostream &stOuput
Return Type:void

Privilege:Public

Associations:

The TMPL_Vars class has associations with the following classes:
Class: MsRgUIMgrB hasvariablefieldsinHTMLdocinserted
Class: TMPL_Element uses

6.4.4 Report Generation Dynamic Model

6.4.4.1 Requestto Browse a Report

This scenario traces the processing events associated with a user request through the Report
Generation HTML interface to browse a standard management report. Figure 6.4-3 contains the
scenario event trace diagram.

6-175 305-CD-029-002

Scenario: M&O user selects pregenerated standard report for browsing
from HTML UI.

M&O
Staff

hits SUBMIT
on login
page

menu

hits SUBMIT on

—>

report selection
< P —]

MsRgUIMgrB

EcAcRofileMgr

ctor()

get user profile

<<— user profile

>

%

MsRgPeriodicReportB

report selection
page

HTML
<<—— formatted

report

ctor

lequested report

Figure 6.4-3. Request to Browse a Management Report

6.4.4.1.1 Beginning Assumptions

None

6.4.4.1.2
None.

6.4.4.1.3 Stimulus

Interfaces with Other Subsystems and Segments

User logs in and selects a management report for browsing.

6.4.4.1.4 Participating Classes From the Object Model

MsRgUIMgrB
MsRgPeriodicReportB

6-176

305-CD-029-002

6.4.4.1.5 Beginning System, Segment and Subsystem State(s)
The system, segment and the subsystem are in a normal operational state.

6.4.4.1.6 Ending State
The requested report is displayed at the user's terminal through an HTML browser.

6.4.4.1.7 Scenario Description

1. A member of the M&O staff at the SMC or LSM brings up the Management Reports home
page from a desktop HTML browser, enters login information and hits the SUBMIT button.

2. The reporting gateway object, MSRgUIMQgrB, receives the login request, validates the user
is a registered member of the M&O staff through the EcAcProfileMgr class, and returns the
Report Selection page.

3. The M&O user selects a particular report from the report selection list and hits the SUBMIT
button.

4. The MsRgUIMgrB gateway class receives the selection request, obtains the indicated pre
generated report from the MsRgPeriodicReportB container class, and returns it to the user.

6.4.4.2 Request to Generate an Adhoc Report

This scenario traces the events associated with a user request through the Report Generation
HTML interface to generate an adhoc report using a standard management report template but
specifying a particular time range/domain scope. Figure 6.4-4 contains the scenario event trace
diagram.

6.4.4.2.1 Beginning Assumptions
None.

6.4.4.2.2 Interfaces with Other Subsystems and Segments
None.

6.4.4.2.3 Stimulus
User selects a management report for browsing.

6.4.4.2.4 Participating Classes From the Object Model
MsRgUIB

MsRgStandardMgmtRepB

MsRgRepWriterB

6.4.4.2.5 Beginning System, Segment and Subsystem State(s)
The system, segment and the subsystem are in a normal operational state.

6-177 305-CD-029-002

Scenario: M&O user requests adhoc report

M&O

Staff MsRgUIMgrB MsRgStandMgmtRepB MsRgRepWriterB
hits SUBMIT for
adhoc report >
CTOR()
GenerateReport(
adhocParams) >

CTOR >>

submit adhoc generation ——>
<<—— adhoc report page

Figure 6.4-4. Request to Generate an Adhoc Report

6.4.4.2.6 Ending State
The requested report is displayed at the user's terminal through the web browser.

6.4.4.2.7 Scenario Description

1. A member of the M&O staff who has already logged in through the Management Reports
page, selects a standard report from the Report Selection page, enters a start/end time, and
hits the SUBMIT button.

2. The MsRgUIMgrB class receives the report request with the specified report ID and adhoc
time scope and, through the MsRgStandMgmtRepB class, submits a request to the
MsRgRepWriterB class to generate the report but with the user specified time scope
applied.

The MsRgRepWriterB COTS report writer generates the report.

5. MsRgUIMgrB receives indication of report completion from the MsRgStandMgmtRepB
generate report method and formats the report for return to the requesting user.

6-178 305-CD-029-002

6.4.4.3 Request to Add a New Report to the Service

This scenario traces the events associated with an M&O database specialist creating a new report
be browsed

and adding it to the complement of standard periodically generated reports which can
through the web interface. Figure 6.4-5 contains the scenario event trace diagram.
Scenario: M&O data specialist creates a new standard report.
M&O
Data)
Specialist MsRgRepWriterB MsRgUIMgrB EcAcProfileMgr MsRgStandMgmtRepB
—— report template ——>>
hits Maintenarjce option on S
reporting page
ctor() >>
request M&O
data specialist ——>>
profile
<< profile
l<<————————— return Mairftenance page
new report identification params create catalog entry fron user params =~ —— >
Insert new rgport >>
l<————— confirm new|report included

Figure 6.4-5. Request to Add a New Report to the Service

6.4.4.3.1 Beginning Assumptions
None.

6.4.4.3.2 Interfaces with Other Subsystems and Segments
None.

6.4.4.3.3 Stimulus

User selects a management report template and enters a particular time/domain scope.

6.4.4.3.4 Participating Classes From the Object Model
MsRgWebUIB

MsRgUIMgrB

MsRgPeriodicReportB

MsRgRepWriterB

6-179 305-CD-029-002

MsRgStandMgmtRepB

6.4.4.3.5 Beginning System, Segment and Subsystem State(s)

The system, segment and the subsystem are in a normal operational state. The M&O data specialist
has already logged in to the Report Writer COTS tool and the Management Reports home page.

6.4.4.3.6 Ending State

The new report title is added to the complement of standard reports. It can be viewed through the
web browser interface.

6.4.4.3.7 Scenario Description

1. The M&O database specialist creates a new report using the MsRgRepWriterB COTS class
and saves it as a report template.

2. The M&O database specialist then selects the Maintenance option on the Management
Reports main menu.

3. The MsRgUIMgrB reporting gateway class authenticates that the user is an M&O data
specialist with privilege to update the standard report catalog and returns the maintenance
page.

4. The specialist enters the title of the newly created report, the resource name of the report

template, and optional scheduling parameters if the report is to be automatically generated
on a periodic basis. The specialist then hits the SUBMIT button on the page.

5. The MsRgUIMgrB gateway builds a new RgStandMgmtRepB entry from the user's
parameters and inserts it in the catalog of standard reports. A confirmation is then sent back
to the M&O data specialist that the report has been added.

6.4.5 Report Generation Service Structure

Table 6.4-1 lists the components of the Report Generation Service.
Table 6.4-1. Report Generation Service Components

Component Name COTS/Custom
Report Generation Manager Custom (C++ code)
Report Generator COTS
Report Generation Proxy Agent Custom (C++ code)

6.4.5.1 Report Generation Manager CSC
Purpose and Description

This CSC provides the custom software support for interfacing with the ECS managed process
framework, for supporting M&O user interactions through an HTML interface, for maintaining a
catalog of standard management reports, and for automatically generating selected reports on a
periodic basis.

Mapping to objects implemented by this component
MsRgManagerB

6-180 305-CD-029-002

MsRgUIMgrB
MsRgRepGenSchedulerB
MsRgStandMgmtRepB

6.4.5.2 Report Generator CSC
Purpose and Description

This COTS component is the report writer accompaniment to the Management DBMS. It supports
the generation of reports and report templates as well as adhoc queries.

Mapping to object implemented by this component
MsRgRepWriterB

6.4.5.3 Report Generator Proxy Agent
Purpose and Description

This proxy (exported by the Management Agent Services) facilitates the management (startup and
shutdown) of Report Generation, and the logging of events.

Mapping to objects implemented by this component
MsRgProxyB

6.4.6 Report Generation Management and Operation

6.4.6.1 System Management Strategy

The Report Generation Service utilizes the public class exported by the Management Agent
Services, represented by MsRgProxyB for management of the Report Writer COTS package and
the EcPfManagedServer, part of the ECS process framework for management of the custom report
generation software. These classes facilitate the management of the overall service.

6.4.6.2 Operator Interfaces

The Report Generation Service provides an HTML based web interface allowing users to browse
automatically generated periodic reports and to generate limited adhoc reports. This interface also
allows an M&O Database specialist to add/delete/update the catalog of standard management
reports.

The Report Generation Service provides the COTS unique user interface provided by the report
writers to generate adhoc queries against the management database and to create/modify standard
report templates.

6.4.6.3 Reports
Table 6.4-2 lists the management reports provided by the Release B Report Generation Service.

6-181 305-CD-029-002

Table 6.4-2 Release B Management Reports (1 of 2)
Report Title

Enhancement Proposal Status Report

Routine Data Production Performance Detail Report

Routine Data Production Performance Summary Report

User-Requested Data Production Performance Detail Report

User-Requested Data Production Performance Summary Report

Ground Operations Activity Performance Detail Report

Ground Operations Activity Performance Summary Report

Product Generation Status Detail Report

Product Generation Status Summary Report

Resource Performance Report

CPU Load Report

Interface Traffic Report

Ethernet Traffic Report

SNMP Traffic Report

SNMP Operations Report

Site Host Resource Utilization Report

SMC Host Resource Utilization Report

Disk Space Report

User Service Performance Report

Data Distribution Performance Report

Media Distribution Profile Report

Data Orders Tracking Summary Report

Data Products Tracking Summary Report

Returned Product Summary Report

Fault Management Report

Trouble Status Report

Ethernet Errors Report

SNMP Errors Report

SNMP Errors Report

SNMP Authentication Failures Report

SNMP Event Log Report

Site Host Errors Report

EMC Host Errors Report

Ground Resource Availability Audit Report

Data Accountability Audit Report

Pending Service Request Audit Report

6-182

305-CD-029-002

Table 6.4-2 Release B Management Reports (2 of 2)
Report Title

User Activity Audit Report

Security Audit Report

User Characterization Report

System Access Profile Report

Utilization of User Services Personnel Summary Report

Storage Management Activity Report

Storage Management Inventory Update Report

Ingest History Report

Ingest Error Report

Processing Log Report

Production and Data Processing Request Status Report

Planning Workload Processing Turn-around Report

Planning Management Report

Account Authorization Report

Service Cost Schedule Report
Standard Product Cost Schedule Report
Accounts Payable Report

Accounts Receivable Report

Functional Allocation Report

Configuration Status Report

System Information Report
SNMP Event Notification Report
Indentured Level of Assembly List Report

Document Configuration Status Report

System Configuration Tracking Report

Maintenance Schedule Report

Training Program Report

Inventory Status Report

Security Compromise Report

Security Compromise Statistics Report

Virus Detection Report

6.5 Fault Management

6.5.1 Fault Management Overview

The Fault Management Application Service provides the capability to detect, diagnose, isolate and
recover from faults that occur in the managed objects within ECS. The entities or managed objects
in ECS that need to be monitored for faults include network devices (such as hosts, hubs and

6-183 305-CD-029-002

routers), systems software (databases and middleware such as DCE) and applications (such as the
Planning Subsystem and the Data Server Subsystem). Fault Management encompasses activities
such as the ability to trace faults through the system, to execute diagnostic tests, and to initiate
corrective or recovery actions upon the isolation of errors in order to correct the faults. The
detection of faults involves the identification of an unacceptable change in the state of a managed
object. The diagnosis and isolation of a fault involves the determination of the cause of the fault
from the correlation of recorded symptom using HP Openview and Tivoli and where necessary,
through the use of diagnostic tests. The recovery from a fault condition involves the initiation of a
corrective action in order to restore the system to normal operational status.

The Fault Management Application Service has two instances: at each of the DAACs and at the
SMC. The Fault Management Application Service resident at each DAAC collects and operates on
fault data local to the site. Summaries of this data are sent periodically to the SMC. The SMC Fault
Management Application Service operates on these summaries of fault data collected system-wide
by Fault Management Application Service at the various DAACS in order to perform system-wide
fault trends analysis.

The Fault Management Application Service at each DAAC provides the capability to generate
notifications of fault conditions and alert indicators in the event of defined thresholds being
exceeded. It provides diagnostic information and the diagnostic tests that facilitate the isolation,
location and the identification of the cause of the faults local to the DAAC. It further provides the
mechanisms for the generation of notifications upon the detection of faults, and the mechanisms
for the definition of automated actions to be executed in response to the occurrence of well-defined
faults or events. The DAAC Fault Management Application Service, provides the mechanism to
generate reports based on information in its database. The Fault Management Application Service
at each site, sends summary data periodically to the SMC for trends analysis.

Since a fault is an unacceptable change in the state of a managed object, it follows that the Fault
Management Application Service provides for the detection of changes in the state of managed
objects in order to be able to distinguish the unacceptable changes that constitute faults from
acceptable changes. The Fault Management Application Service, therefore, provides the
capabilities for real-time configuration management to include the startup, shutdown and
discovery of ECS applications. Further, since the service maintains the status of resources, it
provides the capability to provide the status of these resources, such as processors and associated
disks, upon requests from subsystems such as the Planning Subsystem.

The SMC Fault Management Application Service provides the mechanism to receive notifications
of fault conditions from the Fault Management Services at the DAACSs. This is expected to
facilitate the coordination of the isolation, diagnosis and the resolution of multi-site and system-
wide faults, disruptions, and security events such as break-in attempts. This may, in some cases,
include coordination with external providers for the analysis and recovery from fault conditions.
The SMC Fault Management Application Service provides the mechanism to generate reports
based on the information it collects and receives from the various Fault Management Application
Services at the DAACs.

Faults in hardware devices are detected and reported through the use of a combination of the
industry standard Simple Network Management Protocol traps and IP status polling. Faults in
software are reported by the Management Agent Services. ECS applications may report faults to

6-184 305-CD-029-002

the Fault Management Application Service through the use of a public class within the ECS
Process Framework and the Management Agent Service. Management Agent Services is
described in detail in the section four. The Overview Design Specification (305-CD-020-001)
provides the context and the criteria for ECS applications to use the Process Framework to report
their faults. Table 6.5-1 provides a representative sample of the faults and events detected and
reported by the Fault Management Application Service for different managed objects in the
system. The list of faults/events and the managed objects is not all-inclusive. The Fault
Management Application Service provides for the notification of any type of event associated with
a managed object through the public classes exported by the Management Agent Services and the
Process Framework.

Table 6.5-1. Examples of Faults and Events Reported by ECS Managed Objects
(1 0of2)
Managed Object Fault/Event
Standard SNMP Traps Link Down
Link Up

Authentication Failure

Network Device Node Added
Node Down

Node Unknown
Node Up
Node Deleted

Node Marginal

Interface Card Interface Added

Interface Disconnected

Interface Marginal

Interface Deleted

Interface Down

Interface Unknown

Interface Up

Interface Unmanaged

Disk drive Disk drive on-line

Disk drive off-line

Disk drive warning

Disk drive unknown state

Printer Printer printing

Printer warming

Printer idle

6-185 305-CD-029-002

Table 6.5-1. Examples of Faults and Events Reported by ECS Managed Objects

(2 0f2)
Managed Object Fault/Event

Tape drive Tape drive on-line

Tape drive off-line

ECS Application Application missing

Application failed

Application startup

Application discovered

Application shutdown
Cold Startup

Warm Startup

ECS Database Database up

Database down

Database update error

Database access error

Database lock table full

Database media failure

6.5.1.1 Fault Management COTS

HP OpenView Network Node Manager has been selected as the Enterprise Management
Framework. This COTS product inherently provides the capabilities for fault and configuration
management of TCP/IP networks (SNMP devices). In the Object Model, Figure 6.5-2, HP
OpenView Network Node Manager is represented by the object labeled ManagementFramework.
Sentry and The Enterprise Console from Tivoli have been selected to perform rules based fault
correlation. The Enterprise Console receives events from HP Openview and Sentry agents and
performs event correlation using a configurable set of rules. The HP OpenView Network Node
Manager provides capabilities and features to allow customization for fault and for the
configuration management of the network. This customization, represented as MsFIConfig in the
Object Model, includes the following tasks:

discovery of IP-addressable devices on the network
creation maps and submaps

add discovered managed objects to the appropriate submaps to graphically represent the
topology of the network

change and propagate status of managed object based on faults/events
definition faults to detect

definition of monitoring criteria

definition of thresholds on attribute values

6-186 305-CD-029-002

» definition of notification mechanisms

 definition of forwarding criteria

» definition of automatic actions to be executed in response to specific faults
» association recovery actions with faults

» configuring the event log browser for browsing of fault/events

The product also provides application programming interfaces (APIs) and an extensible graphical
user interface to allow its capabilities to be extended, through custom development, for the fault
and configuration management of non-SNMP entities such as ECS applications. This custom
development, with PDL, is discussed in the appropriate sections of the object model.

6.5.2 Fault Management Context

The Fault Management Application Service, as shown in the context diagram, interfaces with ECS
managed objects (via Management Agent Services), and with systems external to ECS, namely
EBNET, SDPF, TRMM, NOLAN, NOAA, NSI, PSCN and local campus networks. The managed
objects, as described in the previous section, comprise hardware resources (such as routers, hosts
and hubs), systems software (including databases and middleware) and ECS applications (such as
the Data Server, the Planning subsystem). The information exchanged across these interfaces, as
shown in the diagram, is described here.

The Management Agents co-resident with the managed object classes provide notifications of
faults with diagnostic information to the Fault Management Application Service. The Performance
Management Application Service sends notifications of conditions of degradation of performance
to the Fault Management Application Service. The Security Management Application Service
sends notifications of security events to the Fault Management Application Service.

The external systems provide fault notifications, fault status, estimated down time of resources due
to the fault, results of fault analysis, fault resolution information, and summary fault and
performance information. Figure 6.5-1 contains the Fault Management context diagram.

6.5.3 Fault Management Object Model

Figure 6.5-2, the Object Model for Fault Management depicts the major classes and their
associations with one another. These are described below:

6.5.3.1 EcDAAC Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This public class provides methods to respond to requests from other subsystems for the
status of resources (processors and their associated disks).

Attributes:

None

6-187 305-CD-029-002

88T-9

¢00-6¢0-dd-S0€

Performance Management
Application Service

Thresholds Exceeded
(via HP OpenView Common Management Services)

Summary Reports

Tivoli

SR oplcaton ST

Site
Security Alerts

{Via Management Agent Services Application

Managed Objects

Fault Notifications

(Via Management Agent Services)

is System

Fault Management

SMC
Fau't Mana%ement

Fault Notifications

s> Application Service

Fault
Reci ver?/
oordination
ne &

via g%

ervice

Faufi

Fault Recovery

L__ Fault Analysis. Information .
Fault Recovery Corrdination (via Email & ph?n P

auItJ\lolific tions

ult |\lotific tions
nalysis.Information

)

External Systems

oordination (via Email & phone)

Figure 6.5-1. Fault Management Context Diagram

68T-9

¢00-6¢0-dd-S0€

[DISTRIBUTED imported _[MAE}ISTR OBJ]
ISAgSubAgent
pEventMgr
commuﬂi‘cates pMonitor
MSFIEXISys MsFISMC wi pTbiMgr
pSugAgentCfg
DepGate
+ SendMail(char* destination) + SendSummaryData() is used by EPorpIMonilor
+ MSFIExtSys() + MsFISMC() use pDiscoverer
+ ~MSsFIExtSys() + ~MsFISMC() pBuffer
pThread
custom MsAgSubAgent()
~MsAgSubAgent()
MsFIManager SchdThreadExec(pthread_addr_t pThread,
is used by [Public]
¥ MsFIManager()
is managed by + ~MsF 0
+ ShutdownECSApplication(char* hostname, char* AppName)
custom
[DISTRIBUTED] custom
EcDAAC
+ ECDAAC() uses sFlAction
+ ~EcDAAC()
+ Get_CPU_List(char* Filter)
+ Get_Disk List(char* CPU_ID) T M0,
+ GetApplList(char* AppName) N ; . - .
Pusi configured QT A P RS T
Offpage 2 + EC StartupTrap(char* host * applicationN j
MsFIConfig ManagementFramewor} app%ggonﬁls¥gnégmm%%r. Tt CoUntOTRacors, Char var ﬁ\'dlmst
is maintained + * * icati i
Epcp?{égg%ﬁgggnwpeﬁaﬁ%gﬁr hostname, char* applicationName, ir|
+ ECSTapeUpTrap(char* hostname, int time, char* deviceld)
+ ECSTapeDownTrap(char* hostname, int time, char* deviceld)
initiates + ECSDiskUpTrap(char* hostname, int time, char* deviceld)
P + ECSDiskDownTrap(char* hostname, int time, char* deviceld)
u rocesses + ECSprinterUpTrap(char* hostname, int time, char* deviceld)
IsRunBy + ECSprinterDownTrap(char* hostname, int time, char* deviceld)
+ ECSProce sMissin%Tra g:har* hostname, char* applicationName, |i
applicationinstanceNumber)
VETTa + ECSPI Fail har* h har* applicationName, i
STrap apcp |cer\%%en?rsnstaa'necdengpn%e8 ostname, char* applicationName, i
- agentAddr String CcoTS
- enterpriseld Integer MsFEITest
- genericTrapldintgger _
- - specificTrapldintgger - testld: String
CqTS Givglke - time:time e (o e
MaFIFauleCorrelation - varBindList String untest(char* tes
+ MsTrap|
+ ~MsTrap()

Figure 6.5-2. Fault Management Object Model

custom

SoftwareTrap

COoTs

Offpage

+ SoftwareTrap()

+ ~SoftwareTrap()

t

Operations:

EcDAAC - This method represents the constructor of the class.
Arguments:

Return Type:Void

Privilege:Public

GetAppList - This method returns a list of application classes (dependent) given an
application class name as input.

Arguments:char* AppName

Return Type:Void

Privilege:Public

Get_CPU_List - This method takes a filter as an argument, and returns a list of hosts
matching the filter criteria.

Arguments:char* Filter

Return Type:Void

Privilege:Public

Get_Disk_List - This method returns a list of disks attached to a specified processor. The
processor is specified by the argument CPU_ID.

Arguments:char* CPU_ID

Return Type:Void

Privilege:Public

~EcDAAC - This method represents the destructor of the class.
Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcDAAC class has associations with the following classes:
Class: MsFIManager ismanagedby

6.5.3.2 HardwareTrap Class

Parent Class:MsTrap

Public:No

Distributed Object:No

Purpose and Description:

This class represents traps received from hardware devices. There are 5 standard traps
defined, in addition to which there are enterprise traps defined by the vendor of the routers
and hubs that will be deployed in ECS. These are COTS provided.

6-190 305-CD-029-002

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The HardwareTrap class has associations with the following classes:
None

6.5.3.3 MaFlFauleCorrelation Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

MsFIFaultCorrecation is a COTS product from Tivoli. It consists of the Enterprise Console
and Sentry components. It communicates with HP Openview via a COTS adaptor and with
agents supplied by Sentry. It performs rules based fault correlation of fault event.

Attributes:
None

Operations:
None

Associations:

The MaFIFauleCorrelation class has associations with the following classes:
Class: ManagementFramework uses

6.5.3.4 ManagementFramework Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is HP OpenView Network Node Manager, a COTS product. This product

6-191 305-CD-029-002

provides the management framework with the underlying management services for the
management of SNMP-based network devices. It also provides the necessary integration
points and services for the integration of management applications. Since this class is all
COTS, it will not be described in detail here. The reader is referred to the documentation
set of HP OpenView Network Node Manager for further details on the product.

Attributes:
None

Operations:
None

Associations:

The ManagementFramework class has associations with the following classes:
Class: MsFITest ISRunBy
Class: MsTrap Processes
Class: MsAgSubAgent communicateswith
Class: MsFIlAction initiates
Class: MsFIConfig ismaintainedby
Class: MaFIFauleCorrelation uses
Class: MsFIManager uses

6.5.3.5 MsAgSubAgent Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This managed object class supports SNMP MIB extensions. It receives requests from the
master agent. Based on Get or Set requests, it performs the retrieval or set functions onto
resource or resource managers using available API. This object will instantiate another
object MsAgMonitor to perform local polling on resources on the host.

Attributes:

pBuffer - This attribute represents a pointer to a StaticBuffer.
pDepGate - This attribute represents a pointer to a deputy gate.

pDiscoverer - This attribute represents a pointer to a discoverer.

6-192 305-CD-029-002

pEventMgr - This attribute represents a pointer to an event manager.

pMonitor - This attribute represents a pointer to a monitor.

pPortMonitor - This attribute represents a pointer to a port monitor.
pSugAgentCfg - This attribute represents a pointer to the subagent configuration.
pTbIMgr - This attribute represents a pointer to a table manager.

pThread - This attribute represents a pointer to a thread.
Operations:

MsAgSubAgent - This method represents the constructor of the object.
Arguments:

SchdThreadExec - This method spawns a DCE thread.
Arguments:pthread_addr_t pThread

~MsAgSubAgent - This method represents the destructor of the object.
Arguments:

Associations:

The MsAgSubAgent class has associations with the following classes:
Class: ManagementFramework communicateswith

6.5.3.6 MsFIAction Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The class MsFIAction provides the capabilities to process events generated from external
stimuli. This processing may include the issuing of notifications to an operator via the
Graphical User Interface using the services of HP OpenView NNM, or the launching of
automated actions in response to the received notifications, based on the configuration
information set up. The methods in this class are executed in response to receiving traps.
The traps received and processed are listed below against with the managed objects they
correspond to:

Network devices (provided by HP OpenView) - OV_node_up, OV_node_down
Communication links (provided by HP OpenView) - OV _link_up, OV _link_down

6-193 305-CD-029-002

Interface cards (provided by HP OpenView) - OV _IF_up, OV_IF_down
Tape drives (ECS-specific) - ECS_tape_up, ECS_tape_down)
Disk drives (ECS-specific) - ECS_disk_up, ECS_disk_down
Printers (ECS-specific) - ECS_printer_up, ECS_printer_down

ECS applications (ECS-specific) - ECS_application_startup, ECS_application_shutdown,
ECS_application_discovery , ECS_application_missing, ECS_application_failed

Attributes:
None
Operations:

ECSAppDiscoveryTrap - This method is executed when a discovery trap is received. A
discovery trap is received when the agent sends a trap after discovering an application on
an ECS managed host. The method does the following: Based on the parameters received,
a selection name is constructed using the hostname, application name, and the instance
number The submap for the host is located

Case: Instance number =0 This indicates that the software exists on the host, but there are
no instances running An entry is created in the Object database, and a symbol (icon) is
created on the submap corresponding to the host, based on the selection name The color of
the icon is put into a state to indicate that it is not running

Case: Instance number > 0 This indicates the discovery of an instance of the application
The Object database is searched for an occurrence of instance. If not found, a submap for
the new application instance is created For each process in the var bind list: create an
object for each process in the var bind list, set the shutdown UUID for the process, assign
the object a selection name based on the naming convention, create a symbol corresponding
to the process object, put the symbol on the appropriate submap, set the process symbol
to a normal state .

Arguments:char* hostname, char* applicationName, int applicationinstanceNumber, int
countOfRecords, char* varBindList

Return Type:Void

Privilege:Public

ECSAppShutdownTrap - This method, executed in response to receiving a
ShutdownTrap, processes the variable bindings of the Trap, updates the attributes of the
appropriate managed object in the Object database, uses the methods provided by the
ManagementFramework (HPOV) in order to remove the iconic representation of the
physical ECS Application on the graphical user interface. This method does the following:
A selection name is constructed from the hostname, the application name, and the instance
number. The Object database is searched to locate the Object and the submap

6-194 305-CD-029-002

corresponding to this application . The symbols corresponding to each component process
are located and deleted. the objects corresponding to each component process are located
and deleted If this is the only instance of the application, the instance number is set to zero,
else the object and symbol corresponding to the application are deleted

Arguments:char* hostname, char* applicationName, int applicationinstanceNumber
Return Type:Void

Privilege:Public

ECSAppStartupTrap - This method, executed in response to receiving a StartupTrap,
processes the variable bindings of the Trap, updates the attributes of the appropriate
managed object in the HPOV Object and Map databases, uses the methods provided by the
HPOV in order to display an iconic representation of the physical ECS Application on the
graphical user interface. A startup trap is sent to the HP OpenView when an application
completes the startup process. The varbinds included as part of the trap include the
application name, application instance, count of the processes info (include the pid, the
process name, and the UUID of the shutdown method). This method performs the
following: - constructs the selection name for the application instance by concatenating the
hostname, application name, and the instance number. - locates the submap for the host
specified by the hostname - parses the var bind list for the components of the application -
(the var bind list contains sequences of : the process name, process id, and the UUID of the
shutdown interface for each process belonging to the application) - for each component
process in the var BindList: it creates a selection name, creates an object for the process
in the Object database , stores its selection name, shutdown UUID in the Object database
, creates a sybmol for the process on the parent application submap, sets the state of the
symbol to normal

Arguments:char* hostname, char* applicationName, int applicationinstanceNumber, int
countOfRecords, char* varBindList

Return Type:Void

Privilege:Public

ECSDiskDownTrap - This method constructs a selection name for the managed object,
locates it in the Object database, updates its status, and writes a record for RMA purposes
via LogEvent in MsEvent_c

Arguments:char* hostname, int time, char* deviceld

Return Type:Void

Privilege:Public

ECSDiskUpTrap - This method constructs a selection name for the managed object,
locates it in the Object database, updates its status, and writes a record for RMA purposes
via LogEvent in MsEvent_c

Arguments:char* hostname, int time, char* deviceld

Return Type:Void

Privilege:Public

ECSProcessFailedTrap - This method constructs a selection name for the managed

6-195 305-CD-029-002

object, locates it in the Object database, updates its status, and writes a record for RMA
purposes via LogEvent in MsEvent_c

Arguments:char* hostname, char* applicationName, int applicationinstanceNumber
Return Type:Void

Privilege:Public

ECSProcessMissingTrap - This method constructs a selection name for the managed
object, locates it in the Object database, updates its status, and writes a record for RMA
purposes via LogEvent in MsEvent_c

Arguments:char* hostname, char* applicationName, int applicationinstanceNumber
Return Type:Void

Privilege:Public

ECSTapeDownTrap - This method constructs a selection name for the managed object,
locates it in the Object database, updates its status, and writes a record for RMA purposes
via LogEvent in MsEvent_c

Arguments:char* hostname, int time, char* deviceld

Return Type:Void

Privilege:Public

ECSTapeUpTrap - This method constructs a selection name for the managed object,
locates it in the Object database, updates its status, and writes a record for RMA purposes
via LogEvent in MsEvent_c

Arguments:char* hostname, int time, char* deviceld

Return Type:Void

Privilege:Public

ECSprinter DownTrap - This method constructs a selection name for the managed object,
locates it in the Object database, updates its status, and writes a record for RMA purposes
via LogEvent in MsEvent_c

Arguments:char* hostname, int time, char* deviceld

Return Type:Void

Privilege:Public

ECSprinterUpTrap - This method constructs a selection name for the managed object,
locates it in the Object database, updates its status, and writes a record for RMA purposes
via LogEvent in MsEvent_c

Arguments:char* hostname, int time, char* deviceld

Return Type:Void

Privilege:Public

MsFIAction - This method represents the constructor of the class.
Arguments:

Return Type:Void

Privilege:Public

6-196 305-CD-029-002

~MsFIAction - This method represents the destructor of the class.
Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsFIAction class has associations with the following classes:
Class: ManagementFramework initiates

6.5.3.7 MsFIConfig Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the capability of the ManagementFramework (HPOV NNM) to
maintain a mapping between traps (or events) and the Actions to be executed in response
to their occourance. The capability for the definition of the configured informationis made
available by the ManagementFramework via the graphical user interface to the operator.
The reader is referred to the documentation set of HP OpenView Network Node Manager
for further details on this capability.

Attributes:
None

Operations:
None

Associations:

The MsFIConfig class has associations with the following classes:
Class: ManagementFramework ismaintainedby

6.5.3.8 MsFIExtSys Class

Parent Class:Not Applicable
Public:No

Distributed Object:No
Purpose and Description:

6-197 305-CD-029-002

This class represents the interface to external systems such as NSI.
Attributes:

None
Operations:

MsFIExtSys
Arguments:
Return Type:Void
Privilege:Public

SendMail - This method sends a mail message to the external system as specified by the
destination field.

Arguments:char* destination

Return Type:Void

Privilege:Public

~M sFIExtSys - This is the destructor for this class.
Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsFIExtSys class has associations with the following classes:
Class: MsFIManager isusedby

6.5.3.9 MsFIManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class provides the necessary functionality to perform the real-time configuration
management functions of the discovery, startup and shutdown of ECS applications (such
as the Science Data Server or the Data Processing Service). It also provides the
functionality to dispatch real-time notifications to ECS Applications via the Management
Agent Services. These functions are initiated by external stimuli (operator actions) at the
user interface, which is provided by HP OpenView NNM.

Attributes:

6-198 305-CD-029-002

None
Operations:

MsFIM anager - This method represents the constructor of the class.
Arguments:

Return Type:Void

Privilege:Public

ShutdownECSApplication - This method creates an instance of ECAgManager (the class
exported by the Management Agent Services, and is a proxy to the application) and invokes
the Shutdown method. This effects a graceful shutdown of the application. As an
application is shut down gracefully, the application emits a shutdown trap to the Fault
Management Application Service in response to which the application instance is
deregeistered.

Arguments:char* hostname, char* AppName

Return Type:Void

Privilege:Public

~MsFIM anager - This method represents the destructor of the class.
Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsFIManager class has associations with the following classes:
Class: ECDAAC ismanagedby
Class: MsFIExtSys isusedby
Class: MsFISMC isusedby
Class: ManagementFramework uses

6.5.3.10 MsFISMC Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the interafce between the Fault Management Application Service at a
site and the Fault Management Application Service at the SMC.

Attributes:

6-199 305-CD-029-002

None
Operations:

MsFISM C - This is the default constructor for this class.
Arguments:

Return Type:Void

Privilege:Public

SendSummaryData - This method sends summary data from the site to the SMC.
Arguments:

Return Type:Void

Privilege:Public

~MsFISM C - This is the destructor for this class.
Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsFISMC class has associations with the following classes:
Class: MsFIManager isusedby

6.5.3.11 MsFITest Class
Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class represents Diagnostic Tests, as available from vendors.

Attributes:

testld - This identifies the test to be executed.
Data Type:String

Privilege:Private

Default Value:

Operations:

6-200 305-CD-029-002

RunTest - This method runs the specified test.
Arguments:char™ testld

Associations;

The MsFITest class has associations with the following classes:
Class: ManagementFramework ISRunBy

6.5.3.12 MsTrap Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

MsTrap represent changes in the state of managed objects (COTS and custom). These
changes may be acceptable changes in state (normal events), or they may represent
unacceptable changes in state (faults) of managed objects. Traps are generated by
Management Agent Services and are received by the ManagementFramework (HPOV
NNM), which determines the appropriate MsFIAction to be executed based on the
configuration information represented by MsFIConfig. Traps for COTS products are
defined by the vendors of the COTS products (such as routers), whereas Traps unique to
ECS (for ECS Applications) are defined in the ECS Application MIB. These include
special Traps such as DiscoveryTraps, StartupTraps and ShutdownTraps. These are
discussed in the section on the MsFIAction class.

Attributes:

agentAddr - This attribute specifies the IP address of the managed object where the trap
originated.

Data Type:String

Privilege:Private

Default Value:

enterpriseld - This attribute specifies the ECS enterprise identification ID. This is
represented in dot notation.

Data Type:Integer

Privilege:Private

Default Value:

genericTrapld - This attribute specifies the generic trap id (0-4 for standard traps, 6 for
enterprise specific traps)

Data Type:Integer

Privilege:Private

Default Value:

6-201 305-CD-029-002

specificTrapld - This attribute specifies the specific Id of the enterprise-specific traps
(discussed in the MsFIlAction Class)

Data Type:Integer

Privilege:Private

Default Value:

time - his attribute specifies the time, in seconds, since a reference data in the past at the
managed object when the trap was generated.

Data Type:time

Privilege:Private

Default Value:

varBindList - This attribute specifies a list of the varuable bindings sent with the trap.
Data Type:String

Privilege:Private

Default Value:

Operations:

MsTrap - This is the default constructor for this class.
Arguments:

Return Type:Void

Privilege:Public

~MsTrap - This is the destructor for this class.
Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsTrap class has associations with the following classes:
Class: ManagementFramework Processes

6.5.3.13 SoftwareTrap Class

Parent Class:MsTrap

Public:No

Distributed Object:No

Purpose and Description:

This class represents traps generated by the Managemenet Agent Services for faults events
detected in ECS applications, or faults reported by ECS applications.

6-202 305-CD-029-002

Attributes:
All Attributes inherited from parent class
Operations:

Softwar eTrap - This method represents the constructor of the class.
Arguments:

Return Type:Void

Privilege:Public

~Softwar eTrap - This method represents the destructor of the class.
Arguments:

Return Type:Void

Privilege:Public

Associations:

The SoftwareTrap class has associations with the following classes:
None

6.5.4 Fault Management Dynamic Model

6.5.4.1 Fault Notification by an ECS Application

This scenario traces the events associated with the Data Server reporting a fault as a result of
calling another application. As a result of receiving this fault report, a notification is then sent to
the Ingest Server which is dependent on the Data Server for its operations. The scenario is depicted
in Figure 6.5-3.

6.5.4.1.1 Beginning Assumptions
None.

6.5.4.1.2 Interfaces with Other Subsystems and Segments
Management Agent Services

6.5.4.1.3 Stimulus

An ECS application (the Data Server) generates a Fault notification as the result of a call to another
application which ends with a fatal error status.

6-203 305-CD-029-002

¥0cZ-9

¢00-6¢0-dd-S0€

Calling Object CalledObject MsAg
I CTOR(}——>>

etMyld() >

etMyld() >

LpgEvent(} >
—Call()}———>

CTOR() >

GetMyld() >

L SetParentld——>>

L LogEvent(start)}——>>

| LogEvent(end)——>

Lbgevent(}. >>

Event MsFIFaultAnalysis

I SnmpTrap(}—>>|

Figure 6.5-3. Fault Notification by an ECS Application Event Trace

I—sendnotificatior—>>]

HPOV

| ReportECSProcessFailedTrap>>

MsFlAction

Notification(}

EcDAAC

M&OStaff

|—GetApplList(char* AppName)— >

A

[TOR

EcAgManager

Action|

Request)

6.5.4.1.4 Participating Classes From the Object Model
CallingObject (An ECS Application - Data Server)

CalledObject (Another ECS Application that the Ingest Server calls)
EcAgEvent

HPOV (HP OpenView Network Node Manager)

MsFIAction

EcDAAC

M&O Staff

EcAgManager

6.5.4.1.5 Beginning System, Segment and Subsystem State(s)

The configuration is set up to execute a specified action based upon the Ingest Server reporting the
specific type of fault used in this scenario. This action locates the Ingest Server and sends it a
notification of the fault since the Ingest Server depends on the well-being of the Data Server.

6.5.4.1.6 Ending State

The M&O Staff are notified via the icons corresponding to the Data Server changing color, and the
Ingest Server is sent a notification of the fault. The state of the object corresponding to the Data
Server has changed to critical as a result of the fault.

6.5.4.1.7 Scenario Description
This description describes the accompanying event trace.

The Data Server (CallingObject) calls another application (CalledObject). The call returns and
reports a fatal error. The Data Server instantiates ECAgEvent, sets the attributes and logs the event
via LogEvent. ECAgEvent logs the event to the MSS History Logfile, and generates a fault
notification via an SNMP trap. HP OpenView, upon receipt of the trap, based on configuration
information established, invokes the appropriate method MsFIAction. This method retrieves the
Application instance (EcAgManager - the managed object proxy of the Data Server) and changes
its state. This causes a notification to be sent to the M&O Staff. The MsFIAction method then
invokes method GetAppList on ECDAAC, which retrieves the list of its dependents. From this list,
it determines which application it needs to send a notification to (Ingest Server in this case),
instantiates a proxy to the Ingest Server application (EcCAgManager - a public class exported by the
Management Agent Services), and invokes ActionRequest on the proxy. This method sends the
notification to the Ingest Server application.

6.5.5 Fault Management Structure
Table 6.5-2 lists the components of the Fault Management Application Service.

6-205 305-CD-029-002

Table 6.5-2. Fault Management Components

Component Name COTS/Custom
MsFIManager Custom (C++ code)
HPOV COTS
MsFIConfig Configuration of COTS (HPQOV)
MsFIlAction Custom (C++ code and scripts)
MsManager C++ code imported from Management Agent Services
EcDAAC External C++ Class category
MsFITest Vendor-provided diagnostic tests

6.5.5.1 Network Management Framework CSC
Purpose and Description

The Network Management Framework provides the framework for network management . It
provides the integration points for management applications. In order to provide network and
system management solutions using the framework, some amount of customization and
configuration is necessary. This will involve the loading of MIBs, discovering and customizing the
user interface (the visual displays), the association of faults with automated actions, where
necessary.

Mapping to objects implemented by this component
ManagementFramework - HP Openview COTS
MsFIConfig

HP OpenView Network Node Manager

6.5.5.2 System Management Framework CSC
Purpose and Description

The System Management Framework provides the framework for system management . It consist
of Tivoli COTS products: Enterprise Console, Courier, Sentry and application and event adapters.

Courier provides ECS wide software management and distribution capabilities including remote
instillation of software from a central location. Sentry provides performance monitoring of ECS
host and client software. It collects both Tivoli defined and user defined performance metrics and
provides for the setting of thresholds to generate alerts to the management system. The Enterprise
Console consists of a graphical GUI to view and control the ECS enterprise. It performs rules
based fault correlation and response to events received from HP Openview and Sentry.

6.5.5.3 Diagnostic Tests CSC

Purpose and Description

These diagnostic tests, meant for fault isolation and diagnosis will be tests as provided by vendors.
Mapping to objects implemented by this component

MsFITest

6-206 305-CD-029-002

6.5.5.4 Application Management CSC
Purpose and Description

The Application Management component of real-time configuration management has to do with
the discovery, startup or shutdown of ECS applications.

Mapping to objects implemented by this component
MsFIManager
DiscoverECSApplications - C++ code
StartupECS Applications - C++ code
ShutdownECSApplications - C++ code

6.5.5.5 Automatic Actions CSC
Purpose and Description

Automatic actions are actions that are initiated in response to a well known event. These well
known event include the discovery of an ECS Application, the notification of an application
starting up or shutting down gracefully, the correlation of faults, automatic responses to well
known faults.

Mapping to objects implemented by this component
MsFIAction
ECSAppDiscoveryTrap - C++ code
ECSAppStartupTrap - C++ code
ECSAppShutdownTrap - C++ code
Scripts:
ECSTapeUpTrap
ECSTapeDownTrap
ECSDiskUpTrap
ECSDiskDownTrap
ECSPrinterUpTrap
ECSPrinterDownTrap
ECSProcessMissingTrap
ECSProcessFailedTrap
MsFIFaultCorrelation - COTS (Tivoli)

6.5.5.6 Resource Class Category CSC
Purpose and Description

The Resource Class Category encapsulates the proxy objects that the Management Framework
maintains. This class category provides services such as the status of a processor, or the status of
its associated disks.

6-207 305-CD-029-002

Mapping to objects implemented by this component
EcDAAC

GetCPULiIst - C++ code

GetDiskList(CPUID) - C++ code

6.5.6 Fault Management Management and Operation

6.5.6.1 System Management Strategy

The Fault Management Application Service is based on HP OpenView NNM, which generates
notifications when it detects partial failures of its components. Components of HP OpenView may
be individually restarted. In the case of a total failure, it may be restarted. All error messages are
logged to the local log file. In the case of a hardware failure of the MSS server, the CSS server will
provide a backup platform to run MSS management software.

6.5.6.2 Operator Interfaces

The Operator Interface to Fault Management is the graphical user interface provided by HP
OpenView Network Node Manager.

6.5.6.3 Reports
The following predefined Fault Management reports will be provided:

FDDI Interface utilization report - graphical depiction of the utilization of an FDDI interface on
operator-selected interface.

Ethernet Errors report -- graphical depiction of real-time ethernet errors on operator-selected
node(s).
SNMP Protocol Errors report - graphical depiction of real-time SNMP errors on operator-selected
node(s).

SNMP Authentication Failures report - tabular list of management systems that have caused an
SNMP authentication failure on the selected node(s).

SNMP Events Log - tabular listing of all SNMP events reported to HP OpenView for the selected
node(s).

Site Host Errors report - tabular listing of the count of various host errors over an operator-specified
period of time for each host at the site.

EMC Host Errors report - tabular listing of the count of various host errors over an operator-
specified period of time for each site.

Other fault management statistics will be reportable via ad hoc reports provided by HP OpenView
and the report generation capability associated with the management RDBMS.

Further information on fault management reports is available in the Release B Overview Design
Specification (305-CD-020-002).

6-208 305-CD-029-002

6.6 Performance Management

6.6.1 Performance Management Overview

The Performance Management Application Service provides the capability to continuously gather
statistical and historical data on the operational states of applications, operating system resources
and network components, to analyze the data collected by comparing with established criteria,
adjust measurement criteria or initiate other corrective actions as necessary in order to ensure an
optimal utilization of resources. The service allows for the benchmarking and trends analysis of
network component performance, in addition to collecting performance data on scientific
algorithms. The Performance Management Application Service has two instances: one at each of
the DAACSs and one at the SMC. The site Performance Management Application Service collects
and processes performance data local to the site.

Site performance management data is periodically summarized and sent to the SMC for analysis
by the SMC Performance Management Application. The SMC Performance Management
Application Service, which has capabilities similar to those of the site Performance Application
Services, operates on performance data collected system-wide by the various site Performance
Management Application Services in order to evaluate system-level performance and system-wide
trends. In addition, the SMC Performance Management Application Service is also capable of
connecting directly to each of the DAACS as required to monitor the performance of site elements.

For Release B, the Performance Management Application Service will consist mainly of two
COTS applications, HP OpenView and Tivoli/EC . Table 6.6-1 provides an indication of
responsibility between HP OpenView and Tivoli for providing performance management of the
various ECS managed objects.

Table 6.6-1. Performance Manager by Managed Object Table

Managed Object Performance Manager

Hosts HP OpenView

Routers HP OpenView

Hubs HP OpenView

Gateways HP OpenView

FDDI links HP OpenView

Ethernet links HP OpenView

ECS Applications Tivoli & HP Openview
Operating systems Tivoli

File systems Tivoli

HP OpenView provides operators to specify, for each managed object, the following information:

» Performance attributes to be collected. Management information bases (MIBs) are used to
define attributes that can be collected from various managed objects. Each performance
attribute that can be measured has an associated object identifier (oid) specified in a MIB.
HP OpenView collects data for each oid that has been specified for a particular managed
object.

6-209 305-CD-029-002

» Frequency of performance attribute data collection. This value can be set differently for
each attribute associated with a managed object.

» Threshold(s) which indicate degraded performance condition(s) (one or more can be set for
each oid on each managed object). For each threshold set, a corresponding rearm value can
also be set. Once the threshold is exceeded, the performance attribute must then fall below
the rearm value before the performance degradation is cleared. This prevents the generation
of multiple degradation alerts in the case where the performance attribute value is
fluctuating around the threshold value.

» Performance attributes to be logged. HP OpenView logs only that data specified by the
operator. For each oid on each managed object, performance management can take one of
three forms:

1. attribute not monitored
2. attribute monitored but not logged
3. attribute monitored and logged

HP OpenView can monitor any performance management attributes that are included in MIBs
supported by ECS management agents. The following tables, Table 6.6-2 through 6.6-4, provide a
representative sample of the performance attributes that are monitored using HP OpenView for
different types of managed objects. These attributes are not inclusive. The operator always has the
capability to collect information on additional supported attributes or to stop collecting information
on listed attributes.

Table 6.6-2. Host Performance Metrics Table

Attribute type Attribute Description

Interfaces Status of each interface

No. of octets received on each interface

No. of octets sent out on each interface

SNMP No. of SNMP messages received

No. of SNMP messages sent
Devices Status of each host device (unknown, running, warning, testing, or down)
Processor Avg. percentage of time over the last minute that the processor was not idle
SW Run No. of total centi-seconds of CPU allocated to each running process

Total amount of real system memory allocated to each running process

6-210 305-CD-029-002

Table 6.6-3. Router Performance Metrics Table

Attribute type Attribute Description
Interfaces Status of each interface

No. of octets received on each interface

No. of octets sent out on each interface

SNMP No. of SNMP messages received

No. of SNMP messages sent

Local system group CPU busy percentage in the last 5 second period

Average CPU busy percentage over the last minute

Local interface group Five minute average of input bits per second on each interface

Five minute average of output bits per second on each interface

Table 6.6-4. Hub Performance Metrics Table

Attribute type Attribute Description
Interfaces Status of each interface

No. of octets received on each interface

No. of octets sent out on each interface

SNMP No. of SNMP messages received

No. of SNMP messages sent

The COTS Performance Application, Tivoli, provides similar monitoring capabilities for
applications and operating systems. The following tables, Table 6.6-5 through 6.6-9, provide a
representative sample of the performance attributes that will be monitored using the Tivoli COTS
product. These attributes are not inclusive. Tivoli allows the collection of user defined metrics
returned by user provided scripts and programs. The operator will have the capability to collect
information on additional supported attributes or to stop collecting information on listed attributes.

6-211 305-CD-029-002

Table 6.6-5. Global System Performance Metrics Table (1 of 2)

Attribute type Attribute Description

Summary metrics CPU use during interval (percentage of total and seconds

Number and rate of physical disk I/Os

Maximum percent full of all disk filesets

CPU metrics System CPU use during interval (percent of total and seconds)

User CPU use during interval (percent of total and seconds)

CPU idle time during interval (percent of total and seconds)

Rate of system procedure calls during interval

Disk metrics Number of disk drives configured on the system

Average utilization of busiest disk during interval

Number and rate of physical disk reads during interval

Number and rate of physical disk writes during interval

Number and rate of physical disk transfers during interval

Number and rate of disk reads by file system during interval

Number and rate of disk writes by file system during interval

Number and rate of disk reads for memory management during interval

Number and rate of disk writes for memory management during interval

Networking Number of configured LAN interfaces

Number and rate of network file system requests during interval

Rate of LAN errors per minute

Rate of LAN collisions per minute

Memory use Main memory use (percent of total)

Swap space use on disk (percentage of total)

Number and rate memory page faults during interval

Number of process swaps during interval

Percent of virtual memory currently in active use

Process queue depths (load | Number of processes in run queue during interval
factors)

Number of processes waiting for disk during interval

Number of processes waiting for memory during interval

Number of processes currently in sleep state during interval

Number of processes waiting for some other reason during interval

User/process metrics Number of user sessions during interval

Number of processes alive during interval

6-212 305-CD-029-002

Table 6.6-5. Global System Performance Metrics Table (2 of 2)

Attribute type Attribute Description

Number of processes active during interval

Number of processes started during interval

Number of processes that completed during interval

Average run time of completing process during interval (in secs)

LAN metrics (per LAN intfc) | Number and rate of arriving LAN packets during interval

Number and rate of outbound LAN packets during interval

Number and rate of LAN errors during interval

Number and rate of LAN collisions during interval

Individual disk drive metrics | Number and rate of file system reads during interval

Number and rate of file system writes during interval

Disk utilization during interval (percent of total)

Table 6.6-6. Application Performance Metrics Table

Attribute type Attribute Description

Summary metrics Application's CPU use during interval (percent of total and in secs)

Number and rate of physical disk transfers during interval

Process count metrics Average number of processes in application

Average number of active processes in application

Number of application processes that completed during interval

Run time of completing application processes (in secs)

Average process priority in application

Standard deviation of process priorities

CPU metrics CPU use for user processes during interval (percent of total and secs)

CPU use for system processing (percent of total and secs)

Disk metrics Number and rate of logical disk reads during interval

Number and rate of logical disk writes during interval

Number and rate of physical disk reads during interval

Number and rate of physical disk writes during interval

Memory metrics Main memory use (percent of total)

Swap space use on disk (percent of total)

6-213 305-CD-029-002

Table 6.6-7. Process Performance Metrics Table

Attribute type Attribute Description

Process identification metrics Process identification number

Application number

Program name

Logon user name

Logon device name or number

Parent and group identification numbers

Execution priority/scheduling queue

Last reason for stopping execution

Summary metrics CPU use during interval (percent of total and secs)

Number and rate of physical disk transfers during
interval

Total time process ran

CPU metrics CPU use for system processing (percent of total and
secs)
CPU use for user processing (percent of total and
secs)

Disk metrics Number and rate of logical disk reads during interval

Number and rate of logical disk writes during interval

Memory metrics Resident set size (Kbytes)

Size of test+data+stack memory (Kbytes)

Number of page faults to memory

Number of page faults to disk

Overall process lifetime metrics Number and rate of logical disk transfers by process

Number of terminal transactions by process

Average terminal think time overall (in secs)

Average terminal response to prompt time overall (in
secs)

Number of user transactions by process

Average user think time overall (in secs)

6-214 305-CD-029-002

Table 6.6-8. Disk Performance Metrics Table
Attribute type Attribute Description

Disk metrics Number of disk devices configured

Disk utilization during interval

Rate and number of file system reads

Rate and number of file system writes

Table 6.6-9. Disk Performance Metrics Table
Attribute type Attribute Description

System configuration metrics Operating system version

Number of processors in the system

Number of disk devices and their device IDs

Number of LAN devices

Main memory size (total and available to users)

Swapping space allocated

In addition, the performance management application service must also monitor ECS-specific
metrics for ECS applications. This information will be collected by management agent services
and stored in a history log. The operator will be given an interface to the management agent for
performance management reasons to set polling intervals and application thresholds. The operator
can access this ECS-specific data by browsing the logs or by generating reports from the
management RDBMS. A sample of the ECS-specific performance metrics is provided in Table
6.6-10. These attributes are not inclusive. The operator will have the capability to collect
information on additional supported attributes or to stop collecting information on listed attributes.

Table 6.6-10. ECS-Specific Performance Metrics Table
Attribute Type Attribute Description

Processing performance CPU utilization for each PGE

memory utilization for each PGE

disk space utilization for each PGE

Storage management performance |total staged data volume (in GB)

6.6.2 Performance Management Context

The performance management context diagram is shown in Figure 6.6-1. The Performance
Management Application Service has interfaces with the following other services:

* Management Agent Services - The Performance Management Application Service has two
basic interfaces with the Management Agent Services. The first allows the performance
management application to query the management agent for performance data on a

6-215 305-CD-029-002

managed object and receive the data from the agent. The second interface allows the agent
to monitor and control the COTS Performance Application. This allows the Fault
Management Application Service to monitor the COTS Performance Application and send
it startup and shutdown commands.

* Management RDBMS - The Performance Management Application Service has an
interface with the management RDBMS to generate performance reports.

» External Systems - The Performance Management Application Service has an interface
with external systems to exchange performance data. This data will be sent as processed
data via an e-mail interface.

» Fault Management Application Service - The Performance Management Application
Service has an interface with the Fault Management Application Service to send event
notifications whenever thresholds are exceeded.

» SMC Performance Management Application Service - The site Performance Management
Application Service has an interface with the SMC Performance Management Application
service to provide site performance information in several ways. First, the site will
periodically generate summary reports on a prearranged basis. These reports will be in the
form of database records that can be combined with other site reports to form an ECS-wide
summary of performance. Second, the SMC can send a request for a site performance data.
This can be in the form of a log file or a report. If it is a log file, the site will simply send a
copy of the requested log file. If it is a report, the site will then generate the report and send
it to the SMC, again in database format. Third, the SMC can remotely log onto the site HP
OpenView application to gather specific real-time performance information.

6.6.3 Performance Management Object Model
The performance management object model is shown in Figure 6.6-2.

6.6.3.1 EcAgProxy Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This object class is primarily for COTS' manageability. It includes the MSS
instrumentation class library to enable the manageability of the COTS product. The front-
end of this object is the MSS instrumentation code. The back-end of it is the interface to the
COTS. It is unique to every COTS. In security management, the logs of COTS are
monitored by this object. If an security event occurs, this object has to detect the incident
and send out an event notification to the MsAgSubagent.

Attributes:

modeB - This attribute contains the mode in which the application is executing under. It
identifies functional activity(operational, testing, training).

6-216 305-CD-029-002

LT¢-9

¢00-6¢0-dd-S0€

Management Agent Services

Performance Data

{via HP OpenView & Tivol)

Management Requests

Polls for Performance data
Event Data

Management Responses

Management Database

Performance Data

External Systems

< Performance Data

Threshold exceeded notifications
(via HP OpenView & Tivoli) >

Fault Management
Application Service

This System

Site
Application Service

Performance Data Requests
) (via e-mail) .
Site HP OpenView Login

Summary Reports
. Log Files
Site HP OpenView Access

SMC Performance
Management
Application Service

(via e-mail)

(via e-mail)

Figure 6.6-1. Performance Management Context Diagram

custom

custom
MsPmSMC MsPmManager
——s used by——
+ | SendSummaryData(filename) + GenerateReport(reportName, startTime, endTime)
uses
custom
MsPmEXxtSys
+ SendMail(destination, filename) [DISTR.G¥Ein
EcAgProxy
modeB
[Public]
configured COTS
uses cusfom
MsPmConfig MsPmProxy

- MO : String

+ GetTime(attributeObjectld) : gr;!tﬂo‘gggbo

+ GetThreshold(attributeObjectid) P

+ SetTime(attributeObjectld)

+ SetThreshold(attributeObjectld) manages CoTS

is used by M, Offpage
EnterpriseFramework
use:
configured COTS COTS (HPOV) CcoTS configured COTS
- Offpage
MsPmList MsPmTest ManagementFramework generates
- attributeObjectID String is run by
attributePollingIntervalTim + RunTest(testName)
attributeThreshold Integer
GetNext() e S
sSPmEven
1er: - oid : String
- threshold: Intgger
set thresholds and polling intervals mode

custom

[DISTR OBJ]

MsAgSubAgent

pEventMgr
- pMonitor: MsAgMonitor*
pTbiMgr: MsAgTbIMgr*
pSugAgentCfg
pDepGate
- pPortMonitor. MsAgPortMonitor*
pDiscoverer. MsAgDiscoverer*
pBuffer
pThread

+

MsAgSubAgent()
~MsAgSubAgent()
SchdThreadExec(pthread_addr_t pThreadti¢ pthread_addr_t

[Public]

+

Figure 6.6-2. Performance Management Object Model

6-218 305-CD-029-002

Operations:
None
Associations:

The EcAgProxy class has associations with the following classes:
None

6.6.3.2 EnterpriseFramework Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

EnterpriseFramework is the Tivoli COTS product the performs enterprise wide services:
System Administraton (Tivoli/Admin), Software distribution (Tivoli/Courier),
performance monitoring (Tivoli/Sentry) and fault correlation (Tivoli/Enterprise Console).
The framework also acts as the integrated desktop for Maintenance and Operations,
integrating other administrative functions such as Sybase database administration, system
backup/restore, and DCE Cell administration.

Attributes:
None

Operations:
None

Associations:

The EnterpriseFramework class has associations with the following classes:
Class: MsPmEvent generates
Class: MsPmProxy manages
Class: MsPmManager uses

6.6.3.3 ManagementFramework Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is HP OpenView Network Node Manager, a COTS product. This product

6-219 305-CD-029-002

provides the management framework with the underlying management services for the
management of SNMP-based network devices. It also provides the necessary integration
points and services for the integration of management applications. Since this class is all
COTS, it will not be described in detail here. The reader is referred to the documentation
set of HP OpenView Network Node Manager for further details on the product.

Attributes:
None

Operations:
None

Associations:

The ManagementFramework class has associations with the following classes:
Class: MsPmEvent generates
Class: MsPmTest isrunby
Class: MsPmConfig isusedby
Class: MsAgSubAgent setthresholdsandpollingintervals
Class: MsPmManager uses

6.6.3.4 MsAgSubAgent Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This managed object class supports SNMP MIB extensions. It receives requests from the
master agent. Based on Get or Set requests, it performs the retrieval or set functions onto
resource or resource managers using available API. This object will instantiate another
object MsAgMonitor to perform local polling on resources on the host.

Attributes:

pBuffer - This attribute represents a pointer to a StaticBuffer.
pDepGate - This attribute represents a pointer to a deputy gate.
pDiscoverer - This attribute represents a pointer to a discoverer.

Data Type:MsAgDiscoverer*
Privilege:Private

6-220 305-CD-029-002

Default Value:
pEventMgr - This attribute represents a pointer to an event manager.

pMonitor - This attribute represents a pointer to a monitor.
Data Type:MsAgMonitor*

Privilege:Private

Default Value:

pPortMonitor - This attribute represents a pointer to a port monitor.
Data Type:MsAgPortMonitor*

Privilege:Private

Default Value:

pSugAgentCfg - This attribute represents a pointer to the subagent configuration.

pTbIMgr - This attribute represents a pointer to a table manager.
Data Type:MsAgTbIMgr*

Privilege:Private

Default Value:

pThread - This attribute represents a pointer to a thread.
Operations:

MsAgSubAgent - This method represents the constructor of the object.
Arguments:

Return Type:Void

Privilege:Public

SchdThreadExec - This method spawns a DCE thread.
Arguments:pthread_addr_t pThread

Return Type:static pthread_addr_t

Privilege:Private

~MsAgSubAgent - This method represents the destructor of the object.
Arguments:

Return Type:Void
Privilege:Public

Associations:

6-221 305-CD-029-002

The MsAgSubAgent class has associations with the following classes:
Class: MsAgSubAgent
Class: ManagementFramework setthresholdsandpollingintervals

6.6.3.5 MsPmConfig Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class provides configuration information to the Management Framework. It is used by
the the ManagementFramework to store thresholds and performance measurement
intervals for performance metrics. This class is implemented by configuring the
ManagementFramework COTS package.

Attributes:

MO - This is a string that identifies the managed object.
Data Type:String

Privilege:Private

Default Value:

Operations:

GetThreshold - This method retrieves the threshold value(s) that have been set for the
specified attribute for this managed object. This method is implemented by HP OpenView.
Arguments:attributeObjectld

Return Type:Void

Privilege:Public

GetTime - This method retrieves the time interval at which the specified attribute is to be
polled for this managed object. This method is provided by HP OpenView.
Arguments:attributeObjectld

Return Type:Void

Privilege:Public

SetThreshold - This method sets the threshold value(s) for the specified attribute of this
managed object. Whenever the ManagementFramework retrieves managed object attribute
values, it will compare those values against these thresholds to determine whether a
performance degradation has occurred. This method is implemented by HP OpenView to
allow operator input of threshold value(s).

Arguments:attributeObjectld

Return Type:Void

Privilege:Public

6-222 305-CD-029-002

SetTime- This method sets the time interval at which the ManagementFramework will poll
this managed object to obtain the value of the specified attribute. The method is provided
by HP OpenView to allow the operator to set or modify the time interval.
Arguments:attributeObjectld

Return Type:Void

Privilege:Public

Associations:

The MsPmConfig class has associations with the following classes:
Class: ManagementFramework isusedby

6.6.3.6 MsPmEvent Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class defines the event that is generated by the ManagementFramework or the
MsPmApplManager whenever a measured attribute value exceeds a configured threshold.
The generated event is forwarded to the fault management element of the
ManagementFramework. This class is implemented by configuring the
ManagementFramework and MsPmApplManager COTS packages.

Attributes:

mode - Defines the mode of the process that caused the event: Operational, test, simulation

oid - This attribute specifies the object identification of the attribute for which a threshold
value has been exceeded.

Data Type:String

Privilege:Private

Default Value:

threshold - This attribute specifies an integer representing the threshold level (severity)
that has been exceeded.

Data Type:Integer

Privilege:Private

Default Value:

Operations:

6-223 305-CD-029-002

None
Associations:

The MsPmEvent class has associations with the following classes:
Class: EnterpriseFramework generates
Class: ManagementFramework generates

6.6.3.7 MsPmExtSys Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class provides the interface for the MsPmManager to send performance management
information, reports, and notifications to external systems via e-mail.

Attributes:
None
Operations:

SendMail - This operation generates an electronic mail message to send the performance
information stored in filename to the specified destination.

Arguments:destination, filename

Return Type:Void

Privilege:Public

Associations:

The MsPmEXxtSys class has associations with the following classes:
Class: MsPmManager uses

6.6.3.8 MsPmList Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class stores configuration information. It is implemented by configuring the
ManagementFramework COTS package.

6-224 305-CD-029-002

Attributes:

attributeObjectI D - This represents a specific performance parameter as a sequence of
integers to correspond to the location ofthe parameter in the MIB tree structure.

Data Type:String

Privilege:Private

Default Value:

attributePollinglnterval - This attribute specifies the time interval with which the
ManagementFramework should poll the managed object for this attribute.

Data Type:Time

Privilege:Private

Default Value:

attributeThreshold - This attribute specifies the value which, if exceeded, should result in
an alert being generated.

Data Type:Integer

Privilege:Private

Default Value:

Operations:

GetNext - This operation gets the next attribute in the list for the same MO.
Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsPmList class has associations with the following classes:
MsPmConfig (Aggregation)

6.6.3.9 MsPmManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class provides the capability for generating and sending performance management
reports to external systems and the SMC. This class is implemented via scripts.

Attributes:

6-225 305-CD-029-002

None
Operations:

GenerateReport - This method generates the specified predefined report from the
management database from data collected on the time periods indicated.
Arguments:reportName, startTime, endTime

Return Type:Void

Privilege:Public

Associations:

The MsPmManager class has associations with the following classes:
Class: MsPmSMC isusedby
Class: EnterpriseFramework uses
Class: ManagementFramework uses
Class: MsPmEXxtSys uses

6.6.3.10 MsPmProxy Class

Parent Class:EcCAgProxy

Public:No

Distributed Object:No

Purpose and Description:

This class is a specialization of the EcCAgProxy class. It provides the capability for the
monitoring and management of MsPmApplManager. This class is implemented by
customizing C++ code developed under management agent services.

Attributes:
All Attributes inherited from parent class
Operations:

ShutdownCb - This method shuts down the performance management COTS product by
executing a vendor-provided shutdown script. It is a specialization of the class provided by
management agent services.

Arguments:

Return Type:Void

Privilege:Public

StartupCb - This method starts the performance management COTS product using a
vendor-provided script. It is a specialization of the class provided by management agent

6-226 305-CD-029-002

Services.
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsPmProxy class has associations with the following classes:
Class: EnterpriseFramework manages

6.6.3.11 MsPmSMC Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class sends summary performance data to the SMC via e-mail. This data is in the form
of a standard summary report generated by the MsPmManager from information logged in
the management database.

Attributes:
None
Operations:

SendSummaryData - This operation sends the specified file to the SMC.
Arguments:filename

Return Type:Void

Privilege:Public

Associations:

The MsPmSMC class has associations with the following classes:
Class: MsPmManager isusedby

6.6.3.12 MsPmTest Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the tests that may be run to gather information on the performance of
managed objects. These tests are COTS products. This class is implemented by the

6-227 305-CD-029-002

ManagementFramework COTS package.
Attributes:

None
Operations:

RunTest - This method runs the specified performance test. For Release A, these tests are
as provided by COTS vendors.

Arguments:testName

Return Type:Void

Privilege:Public

Associations:

The MsPmTest class has associations with the following classes:
Class: ManagementFramework isrunby

6.6.4 Performance Management Dynamic Model

6.6.4.1 Degradation of Performance Alert
The degradation of performance alert scenario is depicted in Figure 6.6-3.

MsPmList MsPmConfig ManagementFramework MsAgAgent

<<———— GetConfig

<Z——— GetTime

<<—— GetThreshold

Get >

<<——— GetResponse

<<— SendAlert J

Figure 6.6-3. Degradation of Performance Alert

6-228 305-CD-029-002

6.6.4.1.1 Beginning Assumptions
Performance thresholds have been stored for system managed objects.

6.6.4.1.2 Interfaces with Other Subsystems and Segments

An event is reported to the fault management element of the ManagementFramework to signal that
the measured attribute has exceeded the set threshold.

6.6.4.1.3 Stimulus
A measured managed object attribute exceeds the set threshold.

6.6.4.1.4 Participating Classes From the Object Model
ManagementFramework

MsPmConfig

MsPmL.ist

6.6.4.1.5 Beginning System, Segment and Subsystem State(s)
The performance management system is in the normal operational state.

6.6.4.1.6 Ending State

A performance degradation event is sent to the fault management element of the
ManagementFramework and the performance management system is in the normal operational
state.

6.6.4.1.7 Scenario Description

The ManagementFramework sends a GetConfig command to MsPmConfig for a specified
managed object. For the attributes which are to be measured for the specified managed object,
MsPmConfig sends commands to MsPmList to retrieve the time intervals at which the specified
managed object is to be polled for the performance attributes, and the threshold values for which,
if the values are exceeded, the ManagementFramework shall send an alert to the fault management
component of the ManagementFramework. The time interval and threshold information is then
sent to the ManagementFramework. When the time interval has elapsed, the
ManagementFramework sends a Get command to the management agent responsible for managing
the managed object. The Agent sends an AgentRequestResponse to the MsManager_S to extract
the data from the managed object. The MsManager_S provides the Agent with the attribute value
in a GetResponse, which the Agent then forwards to the ManagementFramework. The
ManagementFramework compares the attribute value against the threshold value that was obtained
from MsPmConfig. The ManagementFramework identifies that a threshold value has been
exceeded, the constructs an alert to be sent to the fault management element of the
ManagementFramework, sets the appropriate parameters to identify the cause of the fault
(managed object name, attributeObjectld, measured attribute value), and sends the fault to the
Fault management element.

6-229 305-CD-029-002

6.6.4.2 Providing Performance Summary to SMC

In this scenario, the performance manager generates a daily summary of the site performance and
forwards the summary to the SMC and to an external user. The providing performance summary
to SMC scenario is shown in Figure 6.6-4.

MsPmManager Management RDBMS MsPmSMC MsPmEXxtSys

——— GenerateReport ——>>

SendSymmaryData >>

SendMail >

Figure 6.6-4. Providing Performance Summary to SMC

6.6.4.2.1 Beginning Assumptions
None.

6.6.4.2.2 Interfaces with Other Subsystems and Segments

Interface with management data access service to retrieve performance data. Interface with the
SMC performance management component. Interface with an external system.

6.6.4.2.3 Stimulus
A daily site performance report is required to be delivered to the SMC and to an external system.

6.6.4.2.4 Participating Classes From the Object Model
MsPmEXtSys

MsPmManager

MsPmSMC

6.6.4.2.5 Beginning System, Segment and Subsystem State(s)
The system is operating in the normal operational mode.

6.6.4.2.6 Ending State

The system is operating in the normal operational mode with the performance data sent to the SMC
and the external system.

6.6.4.2.7 Scenario Description

The MsPmManager contains a script that uses MDA to create a standard daily report. A
GenerateReport command is issued from the MsPmManager, specifying the name of the standard
daily report script. The script extracts the specified data from MDA and arranges it in the report

6-230 305-CD-029-002

format. The report can then be saved to a file by the MsPmManager. The MsPmManager then
issues a SendSummaryData command, specifying the name of the recently saved report file,
causing the summary data report to be sent electronically to the SMC. The MsPmManager then
issues a SendMail command, specifying the electronic address of the external system and the file
name of the recently saved report file. This causes the summary data report to be sent to the external
system.

6.6.5 Performance Management Structure
Table 6.6-11 identifies the components of the Performance Management Application Service.

Table 6.6-11. Performance Management Components

Element Implementation
(COTS/Custom)

ManagementFramework COTS
MsPmApplManager COTS
MsPmConfig Configuration
MsPmEvent Configuration
MsPmEXxtSys Script
MsPmList Configuration
MsPmManager Script
MsPmSMC Custom
MsPmTest COTS
MsPmCallbacks Custom
MsPmProxy Custom

6.6.5.1 Performance Manager CSC
Purpose and Description

This CSC provides the basis for Enterprise Management (network and systems management). It
provides the integration points for management applications. In order to provide network and
system management solutions using the framework, some amount of customization and
configuration is necessary. This will involve the loading of MIBs, discovering and customizing the
user interface (the visual displays), the setting of thresholds and polling intervals for managed
object attributes, where necessary.

Mapping to objects implemented by this component
ManagementFramework

MsPmApplManager

MsPmConfig

MsPmEvent

MsPmList

6-231 305-CD-029-002

6.6.5.2 Report Generation and Distribution CSC
Purpose and Description

The application performance manager provides the performance data gathering and analysis
functions.

Mapping to objects implemented by this component
ManagementFramework
MsPmEXtSys
SendMail
MsPmManager
GenerateReport - scripts
GenerateAdHocReport
MsPmSMC
SendSummaryData

6.6.5.3 Performance Test CSC
Purpose and Description

The Test CSC provides the capability for benchmark testing of ECS managed objects. Tests
implemented in Release A will be as provided by COTS.

Mapping to objects implemented by this component
ManagementFramework
MsPmTest

6.6.5.4 Performance Management Proxy CSC

Purpose and Description

This CSC provides the interface for the management of the MsPmApplManager.
Mapping to objects implemented by this component

MsPmCallBacks

MsPmProxy

Candidate Products

Custom - C++ code

6.6.6 Performance Management Management and Operation

6.6.6.1 System Management Strategy

The MsPmApplManager utilizes the MSS Management Agent Services for its management. The
class MsPmProxy provides for the startup, shutdown, and monitoring of MsPmApplManager from
a management application (Fault Management Service).

6-232 305-CD-029-002

Since the ManagementFramework Performance Management service is integrated with the Fault
Management service under HP OpenView, there will be no management service to receive an
event message if the performance management service fails. Therefore, the
ManagementFramework will log all reportable detected errors to a file for post processing.

6.6.6.2 Operator Interfaces

All operator interfaces will be through HP OpenView or through a COTS performance
management package.

6.6.6.3 Reports
The following predefined performance management reports are available:

Interface Traffic Statistics report -- graphical representation of packet statistics (in real time) for
operator-specified node(s)

SNMP Traffic report -- graphical representation of incoming and outgoing SNMP packets (in real
time) for operator-specified node(s).

SNMP Operations report -- graphical representation (in real time) of the number of SNMP
operations requested of and performed by the SNMP agent on the selected node(s).

Site Host Resource Utilization report -- tabular listing of statistics (minimum, average, and
maximum) for various host performance metrics on each host at the site.

EMC Host Resource Utilization report -- tabular listing of statistics (minimum, average, and
maximum) for various host performance metrics on each host at each specified site

Disk Space report -- Text-based report that lists the available file system space on the operator-
specified node.

Additional performance reports will be provided on an ad hoc basis.

Further information on performance management reports is available in the Release A Overview
Design Specification (305-CD-004-001).

6.7 Physical Configuration Management Service

6.7.1 Physical Configuration Management Service Overview

The Physical Configuration Management Service (PCMS) provides the capability to track,
manage, and control all the physical elements in the network. It integrates graphics with data to
create a complete electronic model of the physical infrastructure of the network. It provides tools
to locate physical proximity of down nodes, place newly discovered nodes, and manage circuit
changes. It supports a variety of network administration applications including inventory, billing,
and troubleshooting. It has mechanisms to track everything from maintenance data, network
protocol data to software registration. In addition, it provides integration support to several Trouble
Ticket applications.

The Physical Configuration Management Service is provided by the COTS package
MountainView by Accugraph. The MountainView package is responsible for transforming the
logical network management environment into a physical one. It has a graphics module to create
new drawings or to import existing facility drawings to set up a physical layout of the network. It

6-233 305-CD-029-002

has a database module that can link to a Structured Query Language (SQL) relational database to
perform advanced graphical database functions. The database can be used to associate non-
graphical data with individual graphical elements in the network drawings. For example, a
distressed device can be located in the database and the associated drawing automatically loaded.
Once loaded, the device will appear on the physical map with its current status. The MountainView
package is capable of attaching symbols in the drawings with the database. Once the attachment is
created, changes made to the drawings will be updated to the database by executing a drawing-to-
database update function. The reverse is also true.

The MountainView package has a standard link definition to the SNMP MIB standard. This link
provides direct population of physical network component information into the database. The
acquisition of network component data can be accomplished in two general manners. The first
involves application extensions that link the MountainView package directly into the logical
network management platform. This allows dynamic network data to be loaded into the database
automatically. The second is through the MountainView user interface. This allows the upload of
information on request by executing a command function. This is useful in the area of problem
resolution by requesting information on a troubled device.

6.7.2 Physical Configuration Management Service Context
The physical configuration management service context diagram is shown in Figure 6.7-1.

Management Agent

Services
This System
events
management
commands
Physical Configuration

Management Service

Figure 6.7-1. Physical Configuration Management Service Context Diagram

6-234 305-CD-029-002

6.7.3 Physical Configuration Management Service Object Model

The Physical Configuration Management Object Model, Figure 6.7-2, indicates the classes in the
Physical Configuration Management Service, the associations among them, their attributes and
their operations. The classes central to the service are the PhysicalConfigurationManager,
NetworkManager, and MsPcProxy.

[DISTHOEH

EcAgProxy

[Public]

MsPcProxy

StartupCB()
ShutdownCB()
MonitorLog()
MsPcProxy()
~MsPcProxy()

+ o+ o+ o+ o+

manages

COTS

PhysicalConfigurationManager

RscID : Integer
RscLocation : String
RscType : String
RscName : String
RscModel : String
RscPurchaseDate : Date
RsclnstallationDate : Date
RscProtocol : String
RscManufacturer : String
RscSerialNumber : String
RscStatus : String

accesses produces
offfafd S GHpdge
NetworkManager Report

Figure 6.7-2. Physical Configuration Management Service Object Model

6-235 305-CD-029-002

6.7.3.1 EcAgProxy Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This object class is primarily for COTS' manageability. It includes the MSS
instrumentation class library to enable the manageability of the COTS product. The front-
end of this object is the MSS instrumentation code. The back-end of it is the interface to the
COTS. It is unique to every COTS. In security management, the logs of COTS are
monitored by this object. If an security event occurs, this object has to detect the incident
and send out an event notification to the MsAgSubagent.

Attributes:
None

Operations:
None

Associations:

The EcAgProxy class has associations with the following classes:
None

6.7.3.2 MsPcProxy Class

Parent Class:EcAgProxy

Public:No

Distributed Object:No

Purpose and Description:

The Physical Configuration Proxy Agent class provides the interface to the Management
Agent Services. It allows the Physical Configuration Manager software to be remotely
monitored and managed.

Attributes:
All Attributes inherited from parent class

Operations:

6-236 305-CD-029-002

MonitorL og - This monitors the log file for errors and sends approppriate information to
the MSS event page and event log file. This is the mechanism employed by the Physical
Configuration Manager Services for managing errors.

Arguments:

Return Type:Void

Privilege:Public

M sPcProxy - This method represents the constructor for the object.
Arguments:

Return Type:Void

Privilege:Public

ShutdownCB - This method initiates the shutdown of the Physical Configuration Manager
software.

Arguments:

Return Type:Void

Privilege:Public

StartupCB - This method initiates the startup of the Physical Configuration Manager
software.

Arguments:

Return Type:Void

Privilege:Public

~M sPcProxy - This method represents the destructor for the object.
Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsPcProxy class has associations with the following classes:
Class: PhysicalConfigurationManager manages

6.7.3.3 NetworkManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The NetworkManager class is responsible for the logical management of the network. The
Physical Configuration Manager has application extensions to read network component
information directly from the Network Manager class and load it into the database, or a
command can be executed at the request of the user to extract the information. This allows

6-237 305-CD-029-002

dynamic network data to be acquired and processed.
Attributes:

None
Operations:

None
Associations:

The NetworkManager class has associations with the following classes:
Class: PhysicalConfigurationManager accesses

6.7.3.4 PhysicalConfigurationManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The Physical Configuration Manager class is responsible for transforming logical network
management into a physical one. It provides a variety of tools and mechanisms to collect,
maintain, and control information concerning the physical components of the network.

Attributes:

RsclD - the unique ID assigned to each resource
Data Type:Integer

Privilege:Private

Default Value:

RsclnstallationDate - the installation date of the resource
Data Type:Date

Privilege:Private

Default Value:

RscL ocation - the location of the resource
Data Type:String

Privilege:Private

Default Value:

RscM anufacturer - the manufacturer of the resource

6-238 305-CD-029-002

Data Type:String
Privilege:Private
Default Value:

RscModd - the model of the resource
Data Type:String

Privilege:Private

Default Value:

RscName - the name of the resource
Data Type:String

Privilege:Private

Default Value:

RscProtocol - the protocol of the resource
Data Type:String

Privilege:Private

Default Value:

RscPurchaseDate - the purchase date of the resource
Data Type:Date

Privilege:Private

Default Value:

RscSerialNumber - the serial number of the resource
Data Type:String

Privilege:Private

Default Value:

RscStatus - the status of the resource. This will be either be up, down, marginal, managed
or unmanaged

Data Type:String

Privilege:Private

Default Value:

RscType - the type of the resource
Data Type:String

Privilege:Private

Default Value:

Operations:

None

6-239 305-CD-029-002

Associations:

The PhysicalConfigurationManager class has associations with the following classes:
Class: NetworkManager accesses
Class: MsPcProxy manages
Class: Report produces

6.7.3.5 Report Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

To format and produce a variety of ad-hoc and canned reports.

Attributes:
None

Operations:
None

Associations:

The Report class has associations with the following classes:
Class: PhysicalConfigurationManager produces

6.7.4 Physical Configuration Management Service Dynamic Model

The following scenarios demonstrate typical Physical Configuration Management Service
functions relating to the physical configuration management of the network.

6.7.4.1 Add A New Node Scenario
This scenario is depicted in Figure 6.7-3.

6.7.4.1.1 Beginning Assumptions
The network is operating normally.

6.7.4.1.2 Interfaces with Other Subsystems and Segments
None.

6.7.4.1.3 Stimulus
A new node is added to the network.

6-240 305-CD-029-002

User PhysicalConfigurationManager NetworkManager

<<——NewNodelnfo

AddNodelnfo———>>

——AddNodeSymbol——=>

SetUpLinks ———=>

Figure 6.7-3. Add A New Node

6.7.4.1.4 Participating Classes From the Object Model
NetworkManager

6.7.4.1.5 Beginning System, Segment and Subsystem State(s)
The Physical Configuration Manager and the Network Manager are operating normally.

6.7.4.1.6 Ending State
All the relevant information concerning the new node becomes part of the system.

6.7.4.1.7 Scenario Description

After a new node is added to the network, certain attribute data associated with the node is gathered
automatically by the network manager software and added to the database. Any additional
information is entered manually and the network physical map is updated to include the new node
symbol. Links are set up to attach the new node symbol with the appropriate information fields in
the database.

6.7.4.2 Move An Existing Node Scenario
This scenario is depicted in Figure 6.7-4.

6.7.4.2.1 Beginning Assumptions
The network is operating normally.

6.7.4.2.2 Interfaces with Other Subsystems and Segments
None.

6-241 305-CD-029-002

User PhysicalConfigurationManager NetworkManager

<<——NewLocationInfo

——MoveNodeSymbol——>>

Figure 6.7-4. Move An Existing Node

6.7.4.2.3 Stimulus
An existing node is moved to a new location in the network.

6.7.4.2.4 Participating Classes From the Object Model
NetworkManager

6.7.4.2.5 Beginning System, Segment and Subsystem State(s)
The Physical Configuration Manager and the Network Manager are operating normally.

6.7.4.2.6 Ending State
The information concerning the new location is configured into the system.

6.7.4.2.7 Scenario Description

After an existing node is moved to a new location in the network, the attribute data associated with
the node is reassigned automatically by the network management software and reflected in the
database. The node symbol on the network map is moved to the new location with all its database
links preserved.

6.7.4.3 Delete An Existing Node Scenario
This scenario is depicted in Figure 6.7-5.

6.7.4.3.1 Beginning Assumptions
The network is operating normally.

6-242 305-CD-029-002

User PhysicalConfigurationManager NetworkManager

<<—RemoveNodelnfo—

——RemoveNodelnfo——=>

—RemoveNodeSymbol—=

RemoveLinks——=>

Figure 6.7-5. Delete An Existing Node

6.7.4.3.2 Interfaces with Other Subsystems and Segments
None.

6.7.4.3.3 Stimulus
An existing node is deleted from the network.

6.7.4.3.4 Participating Classes From the Object Model
NetworkManager

6.7.4.3.5 Beginning System, Segment and Subsystem State(s)
The Physical Configuration Manager and the Network Manager are operating normally.

6.7.4.3.6 Ending State
The node symbol and information related to the deleted node are removed from the system.

6.7.4.3.7 Scenario Description

After an existing node is deleted from the network, the attribute data associated with the node is
removed automatically by the network management software and reflected in the database. The
node symbol on the network map is removed with all its database links deleted.

6.7.5 Physical Configuration Management Service Structure
Table 6.7-1 lists the components of the Physical Configuration Management Service.

6-243 305-CD-029-002

Table 6.7-1. Physical Configuration Management Service Components

Component Name COTS/Custom
Physical Configuration Manager COTS
Network Manager COTS
Physical Configuration Proxy Agent Custom

6.7.5.1 Physical Configuration Manager CSC
Purpose and Description

The Physical Configuration Manager CSC is the COTS product MountainView. It is the
configuration management tool that integrates logical network management with physical network
management to provide a complete automated network management platform. It provides a variety
of services related to the physical infrastructure of the network and means for displaying, tracking,
and reporting on the location and status of the various physical components of the system.

Mapping to objects implemented by this component
None.

Candidate products

MountainView

6.7.5.2 Network Manager CSC
Purpose and Description

The Network Manager CSC is the COTS product HP OpenView. This product provides the
management framework with the underlying management services for the management of SNMP-
based network devices. It also provides the necessary integration points and services for the
integration of the MountainView application. Since this isa COTS product, it will not be described
in detail here. The reader is referred to the documentation set of HP OpenView for further details
on the product.

Mapping to objects implemented by this component
None.

Candidate products

HP OpenView

6.7.5.3 Physical Configuration Proxy Agent CSC
Purpose and Description

The Physical Configuration Proxy Agent CSC provides the interface with the Management Agent
Services. It allows for remote startup and shutdown of the Physical Configuration Manager
software. It also monitors the log file for errors and sends appropriate messages to the MSS agent
event page and event log file. This is the mechanism employed by the Physical Configuration
Management Service for managing errors.

Mapping to objects implemented by this component

6-244 305-CD-029-002

None.
CSU: Customization of Proxy Agent

6.7.6 Physical Configuration Management Service Management and Operation

6.7.6.1 System Management Strategy

The Physical Configuration Management utilizes the MSS Management Agent Services for its
administration. The Physical Configuration Proxy Agent allows the remote startup, shutdown, and
administration of the Physical Configuration Manager software via the Management Framework.

6.7.6.2 Operator Interfaces

The operator interface is a Motif-like GUI multi-windowing environment. It includes user
definable function buttons and a hierarchical command menu. It supports user definable window
and settings tailored to context sensitive working environment.

6.7.6.3 Reports
Reports are available for the following types of data:
* inventory data
* network protocol data
» software registration data
* SNMP profile data
* network trap data
* maintenance data
* connectivity data

The above reports are examples of stock reports provided by the Physical Configuration
Management Service. Addition reports can be generated by combining or selecting from the
different types of data available. Examples:

Hardware Inventory Report - A report containing information such as type, model, serial number,
etc., for all the network components.

Software Inventory Report - A report containing information such as title, version number,
installation date, etc., for all the software packages installed on different network devices.

6.8 Security Management

6.8.1 Security Management Overview

The Security Management Application Service provides for the management of the security
mechanisms that are used to protect and control access to ECS resources. It provides the rules and
the implementation for authentication procedures, the maintenance of authorization facilities, the
maintenance of security logs, intrusion detection and recovery procedures. The mechanisms used
to provide security in ECS comprise three distinct parts: network security, distributed
communications security, and host-based security.

6-245 305-CD-029-002

Network security management involves the management of routing tables used for address-based
filtering (network authorization). This is implemented through router COTS configuration files
through which access control rules are specified.

Distributed communications security addresses communications between software entities such as
clients and servers employing mechanisms such as Kerberos/DCE for real-time authentication
exchange. The management of distributed communications security involves the management of
the authentication database (the DCE registry database) and the authorization database (DCE
Access Control List Managers). This is managed through the use of Hewlett Packard's acctmgr
tool. The acctmgr tool is a COTS product that provides a Motif-based capability to administer the
DCE security registry (authentication database), and the access controls on cell resources
(authorization database). The acctmgr is part of HP's DCE Core Services.

Host-based security management addresses the control of access to and the protection of these
mechanisms, in addition to the management of compliance to established security policy (e.g.
password usage guidelines), and intrusion detection (e.g. break-ins). Access control to network
services is implemented through TCP wrappers, a public domain tool. Compliance management is
implemented through public domain products npasswd, crack, and SATAN. Intrusion detection is
implemented through the public domain product Tripwire, and custom development.

The Security Management Application Service has two instances, the site and the SMC Security
Management Application Services. The site Security Management Application Service manages
security databases local to it, manages compliance to security directives and guidelines established
and disseminated by the SMC, performs intrusion detection checks in order to maintain the
integrity of ECS resources, provides the capability to analyze security audit trails, and provides the
mechanisms to generate reports for such these activities. The SMC Security Management
Application Service is responsible for establishing and disseminating security guidelines to the
sites, disseminating security advisories received from external systems (security agencies such as
CERT and NIST) to the sites, receiving security reports from the sites, and receiving notifications
of and coordinating the recovery from detected security breaches at the sites and external systems.

6.8.2 Security Management Context

The Security Management Application Service, as shown in the context diagram, Figure 6.8-1,
interfaces with the SMC, the Fault Management Application Service, the Management Database
and with systems external to ECS, namely NSI, IP, NCC, ASTER GDS, MMO, and NOLAN. The
information exchanged across these interfaces, as shown in the diagram, is described here.

Notifications of security events and summary data are forwarded by the Security Management
Application Service to the SMC, while coordination for recovery and security advisories are
received from the SMC. The interface to the Fault Management Application Service (via the
Management Agent Service) allows for the Security Management Application Service to send
security event notifications, fault events, and receive startup and shutdown commands. The
interface to the Management Database provides access to the management data for the purpose of
report generation.

The external systems and the Security Management Application Service exchange notifications of
security breaches and recovery coordination information.

6-246 305-CD-029-002

L¥Z-9

¢00-6¢0-dd-S0€

Management Data
Access Service

l<<———Requests for security audit trails

Security Events

Responses

Security audit trails

Management Agent
Services

commands

l<€«——responses and faults—/

External Systems

Security Breach Notifications
Recovery Coordination

Recovery Coordination
ecurity Breach Notification

Summary Data —— >
Intrusion Notifications

Recovery Coordination

Security Advisories

SMC
Security Management
Application Service

This System

Site
Security Management
Application Service

L Security event notifications——— >~

Fault Management
Application Service

Figure 6.8-1. Security Management Context Diagram

6.8.3 Security Management Object Model

The AuthenticationDB and the AuthorizationDB represent the authentication and the authorization
databases respectively. The authentication database contains records for Principals. Principals may
be users, clients, or servers. Each principal has an identification and a password, and may belong
to one or more groups. The M&O staff may create, modify, and delete principal information. These
are capabilities provided by COTS products (operating system-based authentication, DCE
authentication database (rgy_edit)). HP's DCE Cell Administration Tools are a collection of GUI
tools that provide the capability for DCE Cell Management, to include the management of the
authentication database (Registry database) for the management of DCE principals.

Principals attempt to access security-managed resources. These resources comprise data and
services. Access to these resources is controlled by entries in the authorization database. The
Authorization databases control access to the access control lists and allows M&O staff to update
these access control lists in order to control access by Principals of security-managed resources.
These authorization capabilities are provided by the operating system access control lists, router
configuration databases, configuration files of TCP wrappers, and DCE acl_edit (all of which are
COTS products). HP's accntmgr tool, as mentioned above, is a COTS product that provides the
capability for the management of Access Control Lists associated with cell resources.

Security Tests are run on a scheduled basis, and on-demand at the request of the site M&O staff,
in order to audit the implementation of the security mechanisms. MsScManager is the controller
class for the Security Management Application Service. It provides the capability to run a test
(MsScTest) on demand. There are two kinds of security tests: ComplianceTests and
IntrusionDetectionTests. ComplianceTests comprise tests that audit passwords for criteria such as
being easily-guessable or the incorrect length, tests that check for file system integrity, the presence
of world-readable and world-writable directories. IntrusionDetectionTests comprise tests that
check for evidence of break-ins and break-in attempts.

Notifications of security events, security data and security reports are sent to the SMC. The security
data forwarded from the various sites allows the Security Management Service to correlate events
at different sites. Notifications of security breaches are sent to the SMC (and external systems such
as NSI, CERT and the NASIRC), while security advisories are received from them in addition to
the coordination of recovery from security events.

The security management object model is shown in Figure 6.8-2.

6-248 305-CD-029-002

6v¢-9

¢00-6¢0-dd-S0€

EcExtSysIFB

+ + o+ o+

Send(char* destination)
Listen()
EcExtSysIFB()

Offpage

EcPfManagedServer

[Public]

MsScSMC

MsScSMC()
SendSummaryData(char* filename)
SendMail(char* filename)

+ + + +

~EcExtSysIFB()

[Public]
/\

Offpage

CsEmMailRelA

exchange notifications with

|—exchange notifications with———

~MsScSMC()

exchange notifications with

(6 TS MsScManager
page
MsScReport | s generated by— | + MsScManager()

+ GenerateReport(char* Reportld)
+ RunTest(char* hostname, char* testid)

. + ~MsScManager()

is generated by

|oftpagoTs
MsScTest

(DCE, 0S) T
coTs _ OffR
MsAuthenticationDB
(TCP WRAPPERS, ROUTER-BASEBfiGLeDCE, OS) GHpaSe
MsScAuthorizationDB HPDCEAccntMgr
A manages manages
COTS CcoTS c
Siddge Offpage Offpage COTS |Offpage COTS COoTS | Offgage BfFage &33ge
ComplianceTest IntrusionDetectionTest RouterACLs OSACL DCEACL_EDIT DCERGY_EDIT oS
(CRACK,COPS,SATAN) (TRIPWIRE, TCP Wrappers) Offpage
TCPWrapperConfig

Figure 6.8-2. Security Management Object Model

6.8.3.1 ComplianceTest Class

Parent Class:MsScTest

Public:No

Distributed Object:No

Purpose and Description:

This class represents a security test that checks for the compliance to established security
policy. These tests are implemented through public domain products crack, COPS and
SATAN. Crack checks for the adherence to established policy for passwords by attempting
to guess passwords. COPS and SATAN generate analysis of the security mechanisms of
specified hosts. Since these represent COTS products, these will not be described in detail
here. The reader is referred to the appropriate COTS documentation.

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The ComplianceTest class has associations with the following classes:
None

6.8.3.2 CsEmMailRelA Class
Parent Class:ECExtSysIFB

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The CsEmMailRelA class has associations with the following classes:
Class: MsScManager exchangenotificationswith

6-250 305-CD-029-002

6.8.3.3 DCEACL_EDIT Class

Parent Class:MsScAuthorizationDB

Public:No

Distributed Object:No

Purpose and Description:

This class represents the ACL_EDIT utility provided by DCE for the purpose of managing
ACLs associated with DCE servers. Since this is a COTS product (DCE), it will not be
described in detail here. The reader is referred to the DCE documentation set for details.

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The DCEACL_EDIT class has associations with the following classes:
Class: HPDCEAccntMgr manages

6.8.3.4 DCERGY_EDIT Class

Parent Class:MsAuthenticationDB

Public:No

Distributed Object:No

Purpose and Description:

This class represents the DCE utility RGY_EDIT used for the management of DCE
principals in the DCE Registry database (authentication database). Since this is a COTS
product, it will not be described in detail here. The reader is referred to the DCE
documentation set for details.

Attributes:
All Attributes inherited from parent class
Operations:

All Operations inherited from parent class

6-251 305-CD-029-002

Associations:

The DCERGY_EDIT class has associations with the following classes:
Class: HPDCEAccntMgr manages

6.8.3.5 ECExtSysIFB Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class represents the interface to external systems such as NSI.

Attributes:
None
Operations:

EcExtSysl FB - This is the default constructor for this class.
Arguments:

Return Type:Void

Privilege:Public

Listen - This method listens for an SNMP trap or a TCP socket, from an external
subsystem.

Arguments:

Return Type:Void

Privilege:Public

Send - This method sends a mail message to the external system as specified by the
destination field.

Arguments:char* destination

Return Type:Void

Privilege:Public

~ECcExtSysIFB - This is the destructor for this class.
Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcExtSysIFB class has associations with the following classes:
Class: MsScManager exchangenotificationswith

6-252 305-CD-029-002

6.8.3.6 EcPfManagedServer Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is the container class that starts up the event Manager, table Manager, monitor, port
monitor, discoverer, subagent configuration, static buffer, and the deputy gate. This class
also starts a thread that triggers scheduled events (i.e. polling ECS application's
performance metrics).

Attributes:
None

Operations:
None

Associations:

The EcPfManagedServer class has associations with the following classes:
None

6.8.3.7 HPDCEAccntMgr Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the COTS product acctmgr which is one of the DCE Cell Management
GUI Tools that come with the DCE Core Service from Hewlet Packard. This product
provides the capability to manage the DCE authentication database (the Registry) and
access control for cell resources (authorization). It is through this interface that an ECS
Registered user will be assigned to security groups that will define what information and
services the user is authorized to access. Since this is a COTS product, it will not be
described in detail here. The reader is referred to the documentation set of the product.

Attributes:
None

Operations:

6-253 305-CD-029-002

None
Associations:

The HPDCEAccntMgr class has associations with the following classes:
Class: DCEACL_EDIT manages
Class: DCERGY_EDIT manages

6.8.3.8 IntrusionDetectionTest Class

Parent Class:MsScTest

Public:No

Distributed Object:No

Purpose and Description:

This class represents a security test that checks for intrusions. Tripwire is a public domain
product that tests for the integrity of a file system by generating checksums of files and
comparing them with a previously generated database of checksums. The configuration of
this product involves establishing the database of file signatures, and establishing a
schedule for the execution of the tests, and the capability for the execution of the tests on-
demand. TCP wrappers is a public domain product that monitors and controls access to
network services on a host. The configuration of this product involves the specification of
access rules for network services, configuring the logging of access attempts. Since these
represent COTS products, they will not be described in detail here. The reader is referred
to the appropriate COTS documentation set.

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The IntrusionDetectionTest class has associations with the following classes:
None

6.8.3.9 MsAuthenticationDB Class

Parent Class:Not Applicable
Public:No

Distributed Object:No
Purpose and Description:

6-254 305-CD-029-002

This class represents the authentication databases that provide authentication for principals.
This functionality is provided by COTS products.

Attributes:
None
Operations:

None

Associations:

The MsAuthenticationDB class has associations with the following classes:
None

6.8.3.10 MsScAuthorizationDB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the authorization databases that provide access control for resources.
This functionality is provided by COTS products (router configuration files, operating
system access control lists, TCP wrapper configuration files, and DCE ACLS). Since these
are provided by COTS, they will not be described in detail here. The reader is referred to
the appropriate documentation set for details.

Attributes:
None
Operations:

None

Associations:

The MsScAuthorizationDB class has associations with the following classes:
None

6.8.3.11 MsScManager Class

Parent Class:EcPfManagedServer

Public:No

Distributed Object:No

Purpose and Description:

This class provides the capability for the M&O Staff to generate security reports, and to run

6-255 305-CD-029-002

initiate the execution of security tests.
Attributes:

All Attributes inherited from parent class
Operations:

GenerateReport
Arguments:char* Reportld
Return Type:Void
Privilege:Public

MsScM anager - This is the default constructor for this class.
Arguments:

Return Type:Void

Privilege:Public

RunTest - This method runs the specified security test on the specified host.
Arguments:char* hostname, char* testid

Return Type:Void

Privilege:Public

~MsScManager - This is the destructor for this class.
Arguments:

Return Type:Void

Privilege:Public

Associations;

The MsScManager class has associations with the following classes:
Class: CsEmMailRelA exchangenotificationswith
Class: ECExtSysIFB exchangenotificationswith
Class: MsScSMC exchangenatificationswith
Class: MsScReport isgeneratedby

6.8.3.12 MsScReport Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the reports generated by the COTS and from the security data stored

6-256 305-CD-029-002

in the management database.
Attributes:

None
Operations:

None
Associations:

The MsScReport class has associations with the following classes:
Class: MsScManager isgeneratedby
Class: MsScTest isgeneratedby

6.8.3.13 MsScSMC Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the interface between the site Security Management Service and the
SMC. It provides the capability to send a report, or a an electronic mail message to the
SMC.

Attributes:
None
Operations:

MsScSM C - This is the default constructor for this class.
Arguments:

Return Type:Void

Privilege:Public

SendMail - This method sends a file containing security data, specified by filename, to the
SMC.

Arguments:char* filename

Return Type:Void

Privilege:Public

6-257 305-CD-029-002

SendSummaryData - This method sends a report containing security data, specified by
filename, to the SMC.

Arguments:char* filename

Return Type:Void

Privilege:Public

~MsScSM C - This is the destructor for this class.
Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsScSMC class has associations with the following classes:
Class: MsScManager exchangenotificationswith
6.8.3.14 MsScTest Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the Compliance Management and Intrusion Detection tests that may
be run. These tests are COTS products, and will not be described in detail here. The reader
is referred to the documentation set of the COTS.

Attributes:
None

Operations:
None

Associations:

The MsScTest class has associations with the following classes:
Class: MsScReport isgeneratedby

6.8.3.15 OS Class

Parent Class:MsAuthenticationDB
Public:No
Distributed Object:No

6-258 305-CD-029-002

Purpose and Description:

This class represents the authentication database provided by the operating system. Since
this is provided by COTS, it will not be described in detail here. The reader is referred to
the appropriate documentation for details.

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The OS class has associations with the following classes:
None

6.8.3.16 OSACL Class

Parent Class:MsScAuthorizationDB

Public:No

Distributed Object:No

Purpose and Description:

This class represents access controls provided by an operating system for host resources.
Since this represents COTS, it will not be described in detail here. The reader is referred to
the appropriate documentation for details.

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The OSACL class has associations with the following classes:
None

6-259 305-CD-029-002

6.8.3.17 RouterACLs Class

Parent Class:MsScAuthorizationDB

Public:No

Distributed Object:No

Purpose and Description:

This class represents router access control lists, used to filter incoming and outgoing
packets based on the access control rules rules specified. This isa COTS product, and will
not be described in detail here. The reader is referred to the appropriate documentation for
details.

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The RouterACLs class has associations with the following classes:
None

6.8.3.18 TCPWrapperConfig Class

Parent Class:MsScAuthorizationDB

Public:No

Distributed Object:No

Purpose and Description:

This class represents the configuration files of TCP Wrappers used to control access to
network services on a host. This control is established through access rules specified for the
various network services. This is the customization of the COTS required. Since this
functionality is provided by COTS, it will not be described in detail here. The reader is
referred to the appropriate COTS documentation for details.

Attributes:
All Attributes inherited from parent class

Operations:

6-260 305-CD-029-002

All Operations inherited from parent class
Associations:

The TCPWrapperConfig class has associations with the following classes:
Non

6.8.4 Security Management Dynamic Model

6.8.4.1 Executing a Compliance Test
This scenario is depicted in Figure 6.8-3.

6.8.4.1.1 Beginning Assumptions
None.

6.8.4.1.2 Interfaces with Other Subsystems and Segments
Management Agent Services

M&O_Staff MsScManager MsAgSubAgent ComplianceTest EcAgEvent Report

— RunTest() —>
— RunTest(CrackPwd) —>>

Execute() ——>>

LogEvent() ————>=4

CTOR() >
LogEvent() —————>>

Figure 6.8-3. Executing a Compliance Test

6.8.4.1.3 Stimulus
An operator initiates the execution of a password guessing test (a compliance test).

6.8.4.1.4 Participating Classes From the Object Model
MsScManager

ComplianceTest

EcAgEvent

Report

6.8.4.1.5 Beginning System, Segment and Subsystem State(s)
The system, segment and subsystem are in a steady state.

6-261 305-CD-029-002

6.8.4.1.6 Ending State
The system, segment and subsystem are in a steady state.

6.8.4.1.7 Scenario Description

In response to operator-provided stimulus, the RunTest method is invoked for the run of a test to
determine the compliance of passwords on the host to established policy. This causes the
compliance test to be instantiated on the remote host specified, by way of the Management Agent
Services. Upon instantiation, a message is logged to indicate the start of the test to the MSS History
Log (via EcCAgEvent) on the remote host. The test generates a report which is written to a well-
known directory, and another event is written to the MSS History Log to indicate the completion
of the test.

6.8.4.2 Reporting a Security Intrusion
This scenario is depicted in Figure 6.8-4.

ECS Application EcAgEvent MsAgEvent HPOV
CTOR()) — =
—— LogEvent) ——>>
- SendEvent() >
trap ——=>>

Figure 6.8-4. Reporting a Security Intrusion
6.8.4.2.1 Beginning Assumptions
None.

6.8.4.2.2 Interfaces with Other Subsystems and Segments
Management Agent Services

6.8.4.2.3 Stimulus
An application receives a request from an unauthorized client.

6-262 305-CD-029-002

6.8.4.2.4 Participating Classes From the Object Model

An ECS application
EcAgEvent
MsAgEvent

UuUID

ManagementFramework (HPOV)

6.8.4.2.5 Beginning System, Segment and Subsystem State(s)
The system, segment and subsystem are in a steady state.

6.8.4.2.6 Ending State

The system, segment and subsystem are in a steady state.

6.8.4.2.7 Scenario Description

An ECS application receives a request from a client for a service. The authorization check
performed by the application fails since the client is not authorized to access the requested service.
This unauthorized access is a security violation that needs to be reported. The ECS Application
sends an alert via ECAgEvent. ECAgEvent logs the event to the MSS History Log, and forwards a
real-time notification to MsAgEvent which generates an SNMP trap and sends it to the

Management Framework (HP OpenView NNM).

6.8.5 Security Management Structure
Table 6.8-1 lists the components of the Security Management Application Service.

Table 6.8-1. Security Management Components

Component Name

COTS/Custom

MsScManager Custom(C++ code)
MsScSMC Custom
MsScExtSys Custom
MsScReport Custom

Authentication Databases

COTS (Operating system, DCE Registry database)
HP's accntmgr tool is selected for the management of the DCE
Registry database.

Authorization Databases

COTS (Operating system, DCE Access Control Lists, router
configuration files, TCP wrapper access control configuration files).
HP's accntmgr tool is selected for the management of DCE ACLs.

ComplianceTest

COTS (SATAN, Crack, COPS)

IntrusionDetectionTest

COTS (Tripwire, TCP Wrappers)

6.8.5.1 Security Manager CSC

Purpose and Description

6-263 305-CD-029-002

The security manager provides the capability for the M&O staff to initiate security tests and the
generation of reports.

6.8.5.2 Security Databases CSC (COTS)
Purpose and Description

The security databases include the Authentication and the Authorization databases, which provide
for the management of user accounts and their access privileges respectively. These are all COTS
products.

Candidate products

Operating System Password Files

DCE Registry Database

Router Configuration Files

TCP Wrappers configuration files
Operating System Access Control Lists
DCE Access Control Lists

6.8.5.3 Tests CSC (COTS)
Purpose and Description

These tests comprise compliance management tests and intrusion detection tests. Compliance tests
permit the verification of adherence to an established security policy. These tests are all COTS.

Candidate products
CRACK, COPS, SATAN, TRIPWIRE

6.8.5.4 DCE Cell Management CSC

Purpose and Description

This class provides the capability to manage DCE services including security services.
Candidate products

HP's accntmgr tool

6.8.6 Security Management Management and Operation

6.8.6.1 System Management Strategy

The Security Management Service Management Strategy utilizes the ECS Process Framework for
its management.

6.8.6.2 Operator Interfaces

The public domain security products have command line interfaces. Some products have a
graphical user interface as well. These interfaces will be available to the operator. The HP's
accntmgr tool has both interfaces.

6-264 305-CD-029-002

6.8.6.3 Reports
The following predefined security management reports will be available:

Security Compromise report -- table listing details for all detected security violations or attempted
intrusions.

Security Compromise Statistics report -- table of statistics summarizing security violations or
attempted intrusions over an operator-specified time period.

Other security management reports will be generated on an ad hoc basis.
6.9 Trouble Ticketing

6.9.1 Trouble Ticketing Overview

The Trouble Ticketing Service (TTS) provides the DAACs a common environment and means of
classifying, tracking, and reporting problem occurrence and resolution to both ECS users and
support staff members. TTS's core functionality is provided by the Remedy Action Request
System, a COTS product. Through the configuration of this product, TTS will:

» provide a graphical user interface for support staff members to access all TTS services
 include a definition of the common trouble ticket entry format

» store trouble tickets

 retrieve trouble tickets through a wide variety of criteria (ad-hoc queries)

* provide the ability to “forward” problems from one DAAC to another (or DAAC to SMC)
» produce stock and common reports

* interface with the common e-mail environment to provide automatic notification to users
and support staff members

» offer an application programming interface through which applications could submit
trouble tickets

* provide summary information to the SMC from each DAAC to allow trend reports
regarding trouble tickets.

» define a consistent “life-cycle” for trouble tickets (through a set of standard status codes
and escalation and action rule definition)

» allow each DAAC of degree a customization through definition of further escalation and
action rules.

Escalation rules are simply time activated events which execute on trouble tickets which meet a set
of specified criteria. Actions which can be taken include notification (of either a user or support
staff member), writing to a log file, setting a field value on the trouble ticket, or even running a
custom written process. Qualifications can be expressed on any trouble ticket data TTS tracks.
Examples of custom escalation rules might include:

» ifa“High” priority trouble ticket stays in “Assigned” for more than 48 hours without being
moved to “Solution Proposed”, re-notify the assigned support staff member

* ifa“Low” priority trouble ticket is not moved to “Closed” within 14 days, raise the priority
to “Medium” and re-notify the assigned support staff member.

6-265 305-CD-029-002

Active links are similar to escalation rules with the exception that they are defined to take place on
a specified action rather than at a given time. Examples of custom active links which can be defined
by a particular DAAC include:

» ifahigh priority trouble ticket is closed with a particular resolution code, notify a specified
member of the support staff (perhaps a manager).

In addition to the functionality provided by Remedy, TTS will utilize a set of custom HTML
documents to provide users with the ability to submit new trouble tickets and query the current
status of any of their previous entries. Access to TTS through this technique will provide users an
easy method for reporting problems in an environment with which most are already familiar.
Additionally, as another means of trouble ticket entry, the TTS will provide a textual e-mail
template through which automated entry of trouble tickets is also possible. Finally, support staff
members are able to enter trouble tickets through the Remedy provided interface for problem
received via other methods (e.g. phone calls).

In addition to tracking Trouble Tickets, the Remedy ARS will also function as the User Contact
Log. Remedy will be configured to have a separate schema that will contain the entries that User
Services personnel enter for each contact that they receive from a user. The User Contact Log will
also allow a trouble ticket to be initiated from a log entry with the push of a button - the trouble
ticket will be populated with information from the contact log.

6.9.2 Trouble Ticketing Context

The Trouble Ticketing Service context diagram is shown in Figure 6.9-1. TTS receives
management requests, (e.g. start up, shutdown) from the Management Agent. Once the requests
are completed, an event is logged through the Management Agent. To aid in the submission of
trouble tickets, TTS requests and receives user profile information to populate submitter
information in the HTML interface. The Trouble Ticketing Service receives updates and ticket
submissions and sends notifications and displays to the Support Staff operators. The ECS users
can submit Trouble Tickets and receive displays of Trouble Ticket status and e-mail notifications
of status changes.

6.9.3 Trouble Ticketing Object Model
Figure 6.9-2 represents the classes which model the Trouble Ticketing Service.

6-266 305-CD-029-002

Support Staff

Trouble Ticket notifications,
Trouble Ticket System displays

Trouble Ticket submissions,
Trouble Ticket updates

Trouble Ticket submissions

This System

Trouble Ticketing Service

Trouble Ticket notifications,
Trouble Ticket displays

Y

ECS Registered User

Figure 6.9-1.

Mangement Agent

A

Mangement Requests

event data

Request for User Profile Information

User Profile Information

Accountability

Trouble Ticketing Context Diagram

6-267

305-CD-029-002

89¢-9

¢00-6¢0-dd-S0€

Offpage
ECAgCOTSManager

Offpage
CsEmMailRelA

send TT submit e-mail

MSTtEntry

entryld RWCSTring
prob\emLongDescrqﬂmSmng
problemShortDescripRWCString

Accountability

Offpage
MsAcUsrProfile .

provides web inteface

e
MsTlEnlryLlsl

Hoibeer)

_ resolutionLoBWCString
* status EcTint
* submitterEmARWCString
WS TiServiceRequestor bmits to remedly AR . i Sting
ool ARConToTSTracT -
Contral ARCORTTOTSTruct - submmemanawcsmng
- - SoTETECTCar enya e) ~ submitterPharRWCString
Xy * Retrievel st(const EcTChar * Subiiterid, MsTlEnlryEle idryList) -
T _____Offpage s e S + -elProb\emLongDesc(conslEcTChar* newp:
T ~M5Tllr9rg<§/)() manag MsTtManager T R) 3 SetProblemShorbesciconst o1 Char * newProbiem
d by + 1t new: oid
+ Shutdown(- Entry * Eyjoid ! .
+ Startup() + MsTtServiceRequestor(ECTChar * userlD, ECTChar * senfer) M EcT(E:nTC*‘B’ Seeioty]
M |
+ A Eerehar Y
(COTS - Remedy Action Request System) : ey FeTChar
yid@
)
+ EctChar *
+ neghst EctChar *
M st EciChar *
M nt
+ EcTint
Offpage M Desogst EctChar *
populate from Remedy RWSTSiCollectables T ol ongbeeolt Eetchar
+ MsTtEntry()

tes and reack

MsTtHTMLMenu

MsTtl rrcl(EcTChar *szEri

[External] [Public]

Populates

MsAcUsrProfileMgr

uest user profile fr

display on'Web

creates and populates

page

MsTtHTMLItems

displays items on Web page

provides HTML interface

[External] [Public]

Accountability

Request user profile from

MsTtSubmitTroubleTicket(CGI_Vars CGIDat

MsTtShowDetailedTroubleTicket(CGI_Vars
MsTtError(EcTChar *

- CheckNetscape(CGI_Vars *

mamg ECTTn
MsTt howSubmllPa e(CGI Vars * CGIData, ECTCEUT‘BKUSE
- MsTtListTroubleTicket(CGI_Vars CGIData, Ec’

- szErBd3g)
- MsTtReadConfi EcTChar*szServerUser EcTChar *BzMathNgme)
CEDE)

]

ita, ECTCRarm™) d)
TChEl:TlmU erl
CGIData, EcTEbatfitbzUserld)

displays items on Web page

Offpage
RWHashDictionary

provides HTML interface

CGI_Vars

TVMPL_Vars

T
M

\ec'able *

get(RW

+ prog
+ process| char * szFileName, csltream
- it

m &stinput, ostream &stOuput, c)har *satdriter = ‘##)
uput)
String &rsNafMPL_E

gel s (;zNamBB Elenfent *
get{RWCString &rsNED@) |

LoadGetElementypid
LoadPostElementg@id
LoadEnvironmentVariab¥esf)

B

on Web

creates Web page elements

Offpage
RWCollectable

TMPL_Element

[g
prsValueRWCString **
rsDirectValuBWCString
szValuechar **

TMPL_Element()

TMPL_Element(char * szName, char **szNewValue;

TMPL_Element(char * szName, RWCString "prsNewVaIue‘

TMPL_Element(RWCString &sNewName, char **szNewVajue)

TMPL_Element(RWCString &rsNewName, RWCString **prgNewValue)

TMPL_Element(char *szName RWCString *prsNewValue)
lement(RWCSri . RWCString *pr

~TMPL _ Elemen it()

name() char

value(j Char *

B

Figure 6.9-2. Trouble Ticketing Object Model

6.9.3.1 CGI_Vars Class
Parent Class:RWHashDictionary

Attributes:
All Attributes inherited from parent class
Operations:

CGIl _Vars
Arguments:
Return Type:Void
Privilege:Public

L oadEnvironmentVariables
Arguments:

Return Type:Void
Privilege:Private

L oadGetElements
Arguments:

Return Type:Void
Privilege:Private

L oadPostElements
Arguments:

Return Type:Void
Privilege:Private

get

Arguments:char * szName
Return Type:CGI_Element *
Privilege:Public

get
Arguments:RWCString &rsName

Return Type:CGI_Element *
Privilege:Public

Associations:

6-269 305-CD-029-002

The CGI_Vars class has associations with the following classes:
Class: MsTtHTMLItems providesHTML.interface
Class: MsTtHTMLMenu providesHTMLinterface

6.9.3.2 CsEmMailRelA Class
Parent Class:Not Applicable

Attributes:
None

Operations:
None

Associations:

The CsEmMailRelA class has associations with the following classes:
Class: MsTtServiceRequestor sendT Tsubmite-mail

6.9.3.3 EcAgCOTSManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

this abstract class embodies the characteristics and functionality of a manager object
responsible for managing a single COTS process. It encapsulates all MSS management
application functions into a single class. The COTS proxy agent developer is responsible
for inheriting from this class and specializing it towards the COTS process to manage.

Attributes:
None
Operations:
None

Associations:

6-270 305-CD-029-002

The ECAgCOTSManager class has associations with the following classes:
None
6.9.3.4 MsAcUsrProfile Class

Parent Class:Not Applicable
Public:Yes

Distributed Object:No
Purpose and Description:

Attributes:
None

Operations:
None

Associations:

The MsAcUsrProfile class has associations with the following classes:
Class: MsTtHTMLItems Createsandreads
Class: MsAcUsrProfileMgr Populates
Class: MsTtHTMLMenu createsandreads

6.9.3.5 MsAcUsrProfileMgr Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This class represents the User Profile Manager class that governs the update and
maintenance of information in the MsAcUsrProfile class. An ECS science user's available
balance will be retrieved using this class and be debited by the amount of each data product
request received by MSS.

Attributes:
None
Operations:

None

6-271 305-CD-029-002

Associations:

The MsAcUsrProfileMgr class has associations with the following classes:
Class: MsAcUsrProfile Populates
Class: MsTtHTMLItems Requestuserprofilefrom
Class: MsTtHTMLMenu requestuserprofilefrom

6.9.3.6 MsTtEntry Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The MsTtEntry class models a request for action (Trouble Ticket) on a particular problem
and the subsequent actions performed on it. This class contains the fields which are
accessible to a user through the Web interface. This class will contain a trouble ticket
object to be submitted to the Remedy Action Request System or a trouble ticket object
retrieved from Remedy to be dislplayed to the user through the Web interface.

Attributes:

entryld - The unique identifier of a TT (generated by Remedy Action Request, has unique
prefix for each DAAC)

Data Type:RWCString

Privilege:Private

Default Value:

problemL ongDescription - A detailed description of the problem reported in the TT.
Data Type:RWCString

Privilege:Private

Default Value:

problemShortDescription - A brief (1 line) description of the problem reported in the TT.
Data Type:RWCString

Privilege:Private

Default Value:

resolutionLog - A running diary of the resolution process for the TT.
Data Type:RWCString

Privilege:Private

Default Value:

status - The current status of the TT, valid values are : New : indicates the trouble ticket

has just been submitted by a user, Assigned : indicates the trouble ticket has been assigned
to a member of the support staff, Solution Proposed : indicates the trouble ticket has been

6-272 305-CD-029-002

proposed a solution, Implement Solution : indicates the proposed solution of the trouble
ticket has been approved to implement, Solution Implemented : indicates the proposed
solution of the trouble ticket has been implemented, Closed : indicates the trouble ticket has
been closed, Forwarded : indicates the trouble ticket has been forwarded to another site
Work Around : indicates the trouble ticket has been temporarily addressed Not Repeatable
- indicates the trouble ticket problem is not repeatable.

Data Type:EcTInt

Privilege:Private

Default Value:

submitterEmail - The e-mail address of the TT submitter.
Data Type:RWCString

Privilege:Private

Default Value:

submitterid - User Id of the TT submitter.
Data Type:RWCString

Privilege:Private

Default Value:

submitterImpact - Indicator of the impact of the problem reported in the TT as seen by
the submitter.

Data Type:EcTInt

Privilege:Private

Default Value:

submitterName - the name of the submitter
Data Type:RWCString

Privilege:Private

Default Value:

submitter Phone - the phone number of the submitter
Data Type:RWCString

Privilege:Private

Default Value:

Operations:

GetEntryld - This function is a simple get method for getting the unique entry ID of the
TT.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

6-273 305-CD-029-002

GetProblemL ongDesc - This function is a simple get method for getting the long problem
description of the TT.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

GetProblemShortDesc - This function is a simple get method for getting the short
problem description of the TT.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

GetResolutionLog - This function is a simple get method for getting the resolution log of
the TT.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

GetStatus- This function is a simple get method for getting the status of the TT.
Arguments:

Return Type:EcTInt

Privilege:Public

PDL: No PDL

GetSubmitterEmail - This function is a simple get method for getting the Email address
of the TT submitter.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

GetSubmitterld - This function is a simple get method for getting the user ID of the TT
submitter.

Arguments:

PDL: No PDL

GetSubmitterlmpact - This function is a simple get method for getting the submitter
impact of the TT.

Arguments:

Return Type:EcTInt

Privilege:Public

6-274 305-CD-029-002

PDL: No PDL

GetSubmitterName- This function is a simple get method for getting the name of the TT
submitter.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

GetSubmitter Phone- This function is a simple get method for getting the phone number
of the TT submitter.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

MsTtEntry - This is the constructor for the class.
Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

SetEntryld - This function is a simple set method for setting the entry ID of the TT. If the
passed string exceeds the maximum length allowed, an exception is thrown.
Arguments:const ECTChar * newSubmitterld

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetProblemLongDesc - This function is a simple set method for setting the problem long
description of the TT. If the passed string exceeds the maximum length allowed, an
exception is thrown.

Arguments:const EcTChar * newProblemLongDesc

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetProblemShortDesc - This function is a simple set method for setting the problem short
description of the TT. If the passed string exceeds the maximum length allowed, an
exception is thrown.

Arguments:const ECTChar * newProblemShortDesc

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

6-275 305-CD-029-002

SetStatus - This function is a simple set method for setting the status of the TT. If the
passed string exceeds the maximum length allowed, an exception is thrown.
Arguments:EcTInt newStatus

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetSubmitter Email - This function is a simple set method for setting the submitter email
of the TT. If the passed string exceeds the maximum length allowed, an exception is
thrown.

Arguments:const ECTChar * SetSubmitterEmail

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetSubmitterid - This function is a simple set method for setting the submitter id of the
TT. If the passed string exceeds the maximum length allowed, an exception is thrown.
Arguments:const EcTChar * newSubmitterld

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetSubmitterImpact - This function is a simple set method for setting the submitter
impact of the TT. If the passed string exceeds the maximum length allowed, an exception
is thrown.

Arguments:EcTInt newSubmitterImpact

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetSubmitterName - This function is a simple set method for setting the submitter name
of the TT. If the passed string exceeds the maximum length allowed, an exception is
thrown.

Arguments:const ECTChar * newSubmitterName

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetSubmitter Phone - This function is a simple set method for setting the phone number
of the TT submitter. If the passed string exceeds the maximum length allowed, an
exception is thrown.

Arguments:const EcTChar * newSubmitterPhone

Return Type:EcTVoid

Privilege:Public

6-276 305-CD-029-002

PDL: No PDL
Associations:

The MsTtEntry class has associations with the following classes:
Class: MsTtHTMLItems createsandpopulates
Class: MsTtServiceRequestor submitstoremedyARS

6.9.3.7 MsTtEntryList Class
Parent Class:RWSlistCollectables
Public:No
Distributed Object:No
Purpose and Description:
This class represents a linked list of trouble ticket entries. All attributes and functions are
inherited from its parent class. This class was created for possible future extensibility.

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The MsTtEntryList class has associations with the following classes:
Class: MsTtHTMLItems displayonWebpage
Class: MsTtServiceRequestor populatefromRemedy
MsTtEntry (Aggregation)

6.9.3.8 MsTtHTMLItems Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
The MsTtHTMLItems class is a manager class which manages the HTML interface
provided to the users to allow them to create or query the status of their trouble tickets.

Attributes:

6-277 305-CD-029-002

None
Operations:

CheckNetscape - This routine checks to see if the user is using Netscape.
Arguments:CGIl_Vars * cgiData

Return Type:EcTInt

Privilege:Private

PDL: No PDL

MsTtError - This routine displays a Web page to the user indicating an error which
occurred during the processing.

Arguments:EcTChar * szErrMsg

Return Type:EcTinT

Privilege:Private

PDL: No PDL

MsTtListTroubleTicket - This routine retrieves the list of TTs submitted by the user via
MsTtServiceRequetor and displays a Web page containing that list to the user.
Arguments:CGI_Vars CGIData, EcTChar * szUserld

Return Type:EcTInt

Privilege:Private

PDL: No PDL

MsTtReadConfig - This routine reads the configuration file.
Arguments:EcTChar * szServerUser, EcTChar * szMachName
Return Type:EcTInt

Privilege:Private

PDL: No PDL

MsTtShowDetailedTroubleTicket - This routine retrieves the TT, via
MsTtServiceRequestor, that the user selected from the list and displays the TT to the user
on a Web page.

Arguments:CGI_Vars CGlData, EcTChar * szUserld

Return Type:EcTInt

Privilege:Private

PDL: No PDL

MsTtShowSubmitPage - This routine displays the TT submit form to the user, filling in
information about the user retrieved from their user profile.

Arguments:CGI_Vars * CGlData, EcTChar *szUserld

Return Type:EcTInt

Privilege:Private

PDL: No PDL

6-278 305-CD-029-002

MsTtSubmitTroubleTicket - This routine takes the information from the TT submit page
that the user entered, builds a TT object from the information, and submits the TT via
MsTtServiceRequestor.

Arguments:CGI_Vars CGIData, EcTChar * szUserld

Return Type:EcTInt

Privilege:Private

PDL: No PDL

main - This routine receives HTML input from the user selecting options on the Web page
and calls the appropriate routines to perform the actions.

Arguments:

Return Type:EcTInt

Privilege:Public

PDL: No PDL

Associations:

The MsTtHTMLItems class has associations with the following classes:
Class: MsAcUsrProfile Createsandreads
Class: MsAcUsrProfileMgr Requestuserprofilefrom
Class: TMPL_Element createsWebpageelements
Class: MsTtEntry createsandpopulates
Class: MsTtEntryList displayonWebpage
Class: TMPL_Vars displaysitemsonWebpage
Class: CGIl_Vars providesHTMLinterface
Class: MsTtServiceRequestor provideswebinteface

6.9.3.9 MsTtHTMLMenu Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class manages the initial HTML Web page that presents the options that the user can
performon TTs.

Attributes:
None

Operations:

6-279 305-CD-029-002

MsTtError - This routine displays an error message in a Web page to the user.
Arguments:EcTChar *szErrMsg

Return Type:EcTInt

Privilege:Private

PDL: No PDL

main - This routine verifies that the user is registered in ECS and displays the TT menu
Web page. If the user is not registered or any error occurs, an error Web page is displayed.
Arguments:

Return Type:EcTInt

Privilege:Public

PDL: No PDL

Associations:

The MsTtHTMLMenu class has associations with the following classes:
Class: MsAcUsrProfile createsandreads
Class: TMPL_Vars displaysitemsonWebpage
Class: CGI_Vars providesHTMLinterface
Class: MsAcUsrProfileMgr requestuserprofilefrom

6.9.3.10 MsTtManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The MsTtManager class represents the Remedy Action Request System, a COTS product.
This product provides the core functionality for tracking, classifying, and reporting
problem occurrence and resolution. Since this class is purely COTS, it will not be
described in detail here. For detailed product information, the reader is directed to the
Remedy Action Request System documentation set.

Attributes:
None
Operations:
None

Associations:

6-280 305-CD-029-002

The MsTtManager class has associations with the following classes:
Class: MsTtServiceRequestor accessedby
Class: MsTtProxy manages

6.9.3.11 MsTtProxy Class

Parent Class:EcCAgCOTSManager

Public:No

Distributed Object:No

Purpose and Description:

The MsTtProxy class provides the interface to the Management Agent Services. It allows
the MsTtManager (Remedy) software to be remotely monitored and managed. The
methods on this class are the callbacks provided as specific implemtation of the MSS
lifecycle calls.

Attributes:
All Attributes inherited from parent class
Operations:

MsTtProxy - default constructor
Arguments:

Return Type:Void
Privilege:Public

PDL: No PDL

Shutdown - This method will shutdown the MsTtManager (Remedy) software.
Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Startup - This method will startup the MsTtManager (Remedy) software.
Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

~MsTtProxy - default destructor
Arguments:

Return Type:Void
Privilege:Public

6-281 305-CD-029-002

PDL: No PDL
Associations:

The MsTtProxy class has associations with the following classes:
Class: MsTtManager manages

6.9.3.12 MsTtServiceRequestor Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:

The MsTtServiceRequestor class is responsible for processing requests from
MsTtHTMLItems (the user interface) and fullfilling them using the functionality provided
by the MsTtManager (Remedy).

Attributes:

control - Remedy AR Control Structure
Data Type:ARControlStruct
Privilege:Private

Default Value:

Operations:

MsTtServiceRequestor - This function serves as the constructor of the
MsTtServiceRequestor class. It establishes a connection with the specified Remedy Action
Request System server.

Arguments:EcTChar * userID, EcTChar * server

Return Type:Void

Privilege:Public

PDL: No PDL

PrintStatusList - This function is meant for development level debugging only. It will
give a formatted printout of a linked list of Remedy status structures.
Arguments:requestARStatusList * statusList

Return Type:EcTVoid

Privilege:Private

PDL: No PDL

PrintStatusStruct - This function is meant for development level debugging only. It will

give a formatted printout of a single Remedy status structure.
Arguments:requestARStatusStruct * statusStruct

6-282 305-CD-029-002

Return Type:EcTVoid
Privilege:Private
PDL: No PDL

Retrieve- The function retrieves a single entry from the Remedy Action Request System
based on the entry ID that is passed.

Arguments:const EcTChar * entryld, MsTtEntry * entry

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

RetrievelList - This function retrieves a linked list of entries for a particular user from the
Remedy action Request System.

Arguments:const EcTChar * submitterld, MsTtEntryList * entryList

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

Submit - This function submits the passed entry on to the Remedy Action Request System.
Arguments:MsTtEntry * entry

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SubmitEMail - This function builds a formated e-mail message from the information in
the TT and sends the message to the Remedy Action Request system via e-mail.
Arguments:MsTtEntry * entry

Return Type:EcTVoid

Privilege:Private

PDL: No PDL

Associations:

The MsTtServiceRequestor class has associations with the following classes:
Class: MsTtManager accessedby
Class: MsTtEntryL.ist populatefromRemedy
Class: MsTtHTMLItems provideswebinteface
Class: CsSEmMailRelA send T Tsubmite-mail
Class: MsTtEntry submitstoremedyARS

6.9.3.13 RWHCollectable Class
Parent Class:Not Applicable

6-283 305-CD-029-002

Attributes:
None

Operations:
None

Associations:

The RWCollectable class has associations with the following classes:
None

6.9.3.14 RWHashDictionary Class
Parent Class:Not Applicable

Attributes:
None
Operations:
None

Associations:

The RWHashDictionary class has associations with the following classes:

None

6.9.3.15 RWSlIlistCollectables Class
Parent Class:Not Applicable

Attributes:
None
Operations:

None

6-284

305-CD-029-002

Associations:

The RWSlistCollectables class has associations with the following classes:
None

6.9.3.16 TMPL_Element Class
Parent Class:RWCollectable

Attributes:

prsName

Data Type:RWCString *
Privilege:Private

Default Value:

prsvValue

Data Type:RWCString **
Privilege:Private

Default Value:

rsDirectValue

Data Type:RWCString
Privilege:Private
Default Value:

szValue

Data Type:char **
Privilege:Private
Default Value:

Operations:

TMPL_Element

Arguments:char * szName, char **szNewValue
Return Type:Void

Privilege:Public

TMPL_Element

Arguments:char * szName, RWCString **prsNewValue
Return Type:Void

Privilege:Public

TMPL_Element

6-285 305-CD-029-002

Arguments:RWCString &rsNewName, char **szNewValue
Return Type:Void
Privilege:Public

TMPL_Element

Arguments:RWCString &rsNewName, RWCString **prsNewValue
Return Type:Void

Privilege:Public

TMPL_Element

Arguments:char *szName, RWCString *prsNewValue
Return Type:Void

Privilege:Public

TMPL_Element

Arguments:RWCString &rsNewName, RWCString *prsNewValue
Return Type:Void

Privilege:Public

TMPL_Element
Arguments:
Return Type:Void
Privilege:Public

name

Arguments:

Return Type:char *
Privilege:Public

value

Arguments:

Return Type:Char *
Privilege:Public

~TMPL_Element
Arguments:
Return Type:Void
Privilege:Public

Associations:

The TMPL_Element class has associations with the following classes:
Class: MsTtHTMLItems createsWebpageelements
Class: TMPL_Vars displaysonWebpage

6-286 305-CD-029-002

6.9.3.17 TMPL_Vars Class

Parent Class:RWHashDictionary

Public:No

Distributed Object:No

Purpose and Description:

The MsTtEntry class models a request for action on a particular problem and the
subsequent actions performed on it. This class encapsulates the common definition of a
trouble ticket configured in the ECS implementation of the Remedy Action Request
System

Attributes:
All Attributes inherited from parent class
Operations:

TMPL_Vars
Arguments:
Return Type:Void
Privilege:Public

get

Arguments:RWCString &rsName
Return Type:TMPL_Element *
Privilege:Private

insert

Arguments:RWCollectable * pElement
Return Type:RWCollectable *
Privilege:Public

process

Arguments:istream &stlnput, ostream &stOuput, char *szMarker = "##'
Return Type:void

Privilege:Public

process
Arguments:char * szFileName, ostream &stOuput

Return Type:void
Privilege:Public

Associations;

6-287 305-CD-029-002

The TMPL_Vars class has associations with the following classes:
Class: MsTtHTMLItems displaysitemsonWebpage

Class: MsTtHTMLMenu displaysitemsonWebpage

Class: TMPL_Element displaysonWebpage

6.9.4 Trouble Ticketing Dynamic Model

The following scenarios demonstrate typical TTS interaction as it relates to both users and support
staff members.

6.9.4.1 User Submits a Trouble Ticket

This scenario represents the typical sequence of events and interactions for a user submitting a new
trouble ticket into the system. The scenario is shown in Figure 6.9-3.

6.9.4.1.1 Beginning Assumptions
none

6.9.4.1.2 Interfaces with Other Subsystems and Segments
MsAcUsrProfile
MsAcProfileMgr

6.9.4.1.3 Stimulus
A user encounters a problem.

6.9.4.1.4 Participating Classes From the Object Model
MsTtHTMLItems

MsAcUsrProfile

MsAcProfileMgr

TMPL_Vars

MsTtServiceRequestor

MsTtManager

MsTtEntry

6.9.4.1.5 Beginning System, Segment and Subsystem State(s)
The MsTtManager is in normal operational state.

6.9.4.1.6 Ending State
A new trouble ticket is created. The MsTtManager is in normal operational state.

6-288 305-CD-029-002

68¢-9

¢00-6¢0-dd-S0€

User

<<

<<

Figure 6.9-3. User Submits Trouble Ticket

MsTtHTMLItems MsAcUsrProfile EcAcProfileMgr TMPL_Vars MsTtEntry MsTtServiceRequestor MsTtManager SupportStaffMember
——Hit the Submit Button——>>
L MsAcUsrProfile()}>>]
RetrieyeProfile(}—mM8 ———>4
inseft() - insert fields into HTML fgrm—— >~
process() - display the form4—— 59
Display blank TT w/usgr profile info
—Enter Ticket Info and hit submit—>>
L MsAcUsrProfile()>>
RetriepeProfile()—mM ———>
| GetFirstName() >
SetSubmllt.t.en lame() >
Submit(). >
éetSubmitterName()
Display Confirmation Page —ARCreateEntry()—>>
<<—— i
W/llgrouble Ticket Entry Id otifySupportStaffMembeps,
Send E-mall to Submit

6.9.4.1.7 Scenario Description

A user of the system encounters a problem. This problem may be with either hardware or software.
The user then invokes the Web interface to the Trouble Tickets via the MsTtHTMLItems class. The
user indicates that a new trouble ticket is to be created. The MsTtHTMLItems retrieves information
about the user from the user profile database (MsAcUsrProfile, MsAcProfileMgr) and populates
the Trouble Ticket form. MsTtHTMLItems displays the initialized trouble ticket form. Next, the
user proceeds to enter into the form, the information pertaining to the particular problem. When
complete, the user indicates that the trouble ticket is to be submitted.

The MsTtHTMLItems again retrieves the user profile information populates a MsttEntry object
and submits the trouble ticket entry to MsTtServiceRequestor. Retrieving the user detail
information, the MsTtServiceRequestor submits the Trouble Ticket to the MsTtManager for entry
into the Remedy System. The manager creates a new trouble ticket with a unique entry id.
Additionally, the MsTtManager notifies the support staff member responsible for assigning trouble
tickets that a new one has entered the system.

The entry id and confirmation of the successful transaction are returned to the MsTtEntry,
MsTtServiceRequestor and finally the MsTtHTMLItems . The MsTtHTMLItems indicates a
successful trouble ticket submission to user.

6.9.4.2 User Submits a Trouble Ticket When Remedy is Down

This scenario is much like the previous, except in this scenario, the Remedy Action Request
System is not currently running. The scenario is shown in Figure 6.9-4.

6.9.4.2.1 Beginning Assumptions
none

6.9.4.2.2 Interfaces with Other Subsystems and Segments
MsAcUsrProfile
MsAcProfileMgr

6.9.4.2.3 Stimulus
A user encounters a problem.

6.9.4.2.4 Participating Classes From the Object Model
MsTtHTMLItems

MsAcUsrProfile

MsAcProfileMgr

TMPL_Vars

MsTtServiceRequestor

MsTtManager

MsTtEntry

CsEmMailRelA

6-290 305-CD-029-002

16¢-9

¢00-6¢0-dd-S0€

User

MsTtHTMLItems

——Hit the Submit Buttor———=>

-MsAcUsrProfile (3>

- Retrig

ins

MsAcUsrProfile

eProfile}——— >

() - insert fields into HTML

ocess() - display the forny

<<

—Enter Ticket Info and hit submit—>]

Display blank TT w/u

L-MsAcUsrProfile(>>

- Retrig

GetFirstName())>

EcAcProfileMgr

er profile infe-

eProfile—— >

SetSubmitter

< Display Confirmation Pa

e
w/o Trouble Ticket Entry%a

Send E-m4il to Submitter

TMPL_Vars MsTtEntry MsTtServiceRequestor MsTtManager CsEmMailRelA
orm——>>
>
Name()
Submit() >
&etSubmirterName
ARCreateEntn
[failure returneyé)_>
mitEMail()
to >>1
——SendENail(}———>>
%MailSubmission_
Is Queued
[Remedy comes up
<——
——NotifySuppor{StaffMember——>

Figure 6.9-4. User Submits Trouble Ticket When Remedy is Down

SupportStaffMember

6.9.4.2.5 Beginning System, Segment and Subsystem State(s)
The MsTtManager is not operational.

6.9.4.2.6 Ending State
A new trouble ticket is created. The MsTtManager is back in normal operational state.

6.9.4.2.7 Scenario Description
The following portion is just the same as the above scenario:

A user of the system encounters a problem. This problem may be with either hardware or software.
The user then invokes the Web interface to the Trouble Tickets via the MsTtHTMLItems class. The
user indicates that a new trouble ticket is to be created. The MsTtHTML Items retrieves information
about the user from the user profile database (MsAcUsrProfile, MsAcProfileMgr) and populates
the Trouble Ticket form. MsTtHTMLItems displays the initialized trouble ticket form. Next, the
user proceeds to enter into the form, the information pertaining to the particular problem. When
complete, the user indicates that the trouble ticket is to be submitted.

The MsTtHTMLItems again retrieves the user profile information populates a MsTtEntry object
and submits the trouble ticket entry to MsTtServiceRequestor. Retrieving the user detail
information, the MsTtServiceRequestor submits the Trouble Ticket to the MsTtManager for entry
into the Remedy System.

Here is where the scenario changes from the previous:

The MsTtServiceRequestor receives a failure indication when trying to access MsTtManager.
MsTtServiceRequestor creates a CsSEmMailRel A object and uses the object to create a formatted
e-mail message addressed to the MsTtManager (Remedy ARS). MsTtServiceRequestor tells
CsEmMailRelA to send the e-mail. A confirmation page is displayed to the user indicating that
the Trouble Ticketing system is down, but the new Trouble Ticket will be submitted as soon as it
becomes available.

At some later time, MsTtManager (Remedy) comes back up. Remedy will read its incoming mail
and create a Trouble Ticket with a unique entry id. The MsTtManger notifies the originating user
and the support staff member responsible for assigning new trouble tickets of the new trouble
ticket.

6.9.4.3 A Trouble Ticket is Worked

This scenario represents the typical sequence of events and interactions for a trouble ticket to be
worked after it has entered the system. This scenario is shown in Figure 6.9-5.

6-292 305-CD-029-002

€6¢-9

¢00-6¢0-dd-S0€

User

OpsSupervisor

Notj

< NotifyOpsSupervisor—]
L AssignTroubleTicket—>>

fyUser

MsTtManager

MedifyTroubIeTicketAssignme.nl|

<<
L NotifyAssigned Technician——>]

Notj

fyUser

< UpdateTroubleTicket——]

ModifyTroubIeTicketDetaﬂ‘
<<

BetStatusToSolutionProposedAndAddSolutis
AadifyTroubIeTicketDetaiIAndSta.LuT

<<
< GetReportsOfSolutionPr:

< UpdateTTStatusTo "Implen|

—ModifyTTStatu.s—‘
<<

ldpdateTTStatusTo "Solution Implemented]
< GetReportsOf "Implement

< UpdateTTStatusTo "Close" and

U.pdateAndCIoseThe'l'J|
<<

Technician

TroubleTicket

—DetermineSoluti

posedHs— |

ent Solutiop |

—ExecuteTheSqutitI

Bolution" FFs—— |

m

IAddReasonCode——]

ReviewBoard

ExamineSqutionAndApprcuj
<<

,aminelmplementationAndApprcTe

<<

Figure 6.9-5. A Trouble Ticket is Worked

6.9.4.3.1 Beginning Assumptions
none

6.9.4.3.2 Interfaces with Other Subsystems and Segments
none

6.9.4.3.3 Stimulus
A new trouble ticket enters the system.

6.9.4.3.4 Participating Classes From the Object Model
MsTtManager

6.9.4.3.5 Beginning System, Segment and Subsystem State(s)
The MsTtManager is in normal operational state.

6.9.4.3.6 Ending State
A trouble ticket is closed. The MsTtManager is in normal operational state.

6.9.4.3.7 Scenario Description

The support staff member responsible for assigning trouble tickets (Ops Supervisor) receives
notification that a new trouble ticket has entered the system. On examining the detail information,
the support staff member assigns the trouble ticket to a Technician. The trouble ticket status is then
updated to reflect the assignment and the assignee is notified (via e-mail). Additionally
(configurable at each site), the submitter of the trouble ticket is sent an e-mail indicating that their
trouble ticket has been assigned.

Assessing the trouble ticket, the Technician forms a plan to resolve the issue. Adding this
information to the trouble ticket, it is then updated.

When the issue has been resolved, the assignee updates the trouble ticket with any subsequent
information regarding the solution and changes the status to "Solution Proposed.” The Trouble
Ticket Review Board will examine the solution and its potential impact on the system. If the
solution is approved, the trouble ticket status is changed to "Implement Solution." The assigned
Technician executes the solution and sets the trouble ticket status to "Solution Implemented." The
Review Board examines the implemented solution and after finding it acceptable, sets the status to
"Closed" while assigning it a closing code (e.g. Bug-Fix, Hardware-Replaced, etc.). The trouble
ticket is modified and the user sent a final e-mail message.

6.9.4.4 A Trouble Ticket is Escalated

This scenario represents the typical sequence of events which occur when a trouble ticket is
escalated. The scenario is shown in Figure 6.9-6.

6.9.4.4.1Beginning Assumptions
none

6-294 305-CD-029-002

SupportStaffMember MsTtManager

EscalationRuleTimerExp

<
TroubleRulelsEscalated
<
GetQualifiedTickets
<<

—ModifyTroubIeTicketPriority—‘

<

<<—NotifySupportStaffMember—

Figure 6.9-6. A Trouble Ticket is Escalated

6.9.4.4.2 Interfaces with Other Subsystems and Segments
none

6.9.4.4.3 Stimulus
A defined escalation rule is hit for a trouble ticket.

6.9.4.4.4 Participating Classes From the Object Model
MsTtManager

6.9.4.4.5 Beginning System, Segment and Subsystem State(s)
The MsTtManager is in normal operational state.

6.9.4.4.6 Ending State
A trouble ticket is escalated. The MsTtManager is in normal operational state.

6.9.4.4.7 Scenario Description

At a specified time interval, an escalation rule is executed. This escalation rule defines a time based
rule for taking some action on trouble tickets which meets a particular criteria. An example which
would fit this scenario would be a rule to notify a support staff member if a trouble ticket has gone

unassigned for more than 24 hours.

6-295 305-CD-029-002

For those trouble tickets which qualify, the specified action is taken. This action may include any
combination of notifications or updates to the trouble ticket itself. An example could include
raising the priority of a trouble ticket if it has not been resolved within a given time period.

6.9.45 A Trouble Ticket is Forwarded

This scenario represents the typical sequence of events which occur when a trouble ticket is
forwarded from a DAAC to the SMC. The scenario is shown in Figure 6.9-7.

6.9.4.5.1 Beginning Assumptions
none

6.9.4.5.2 Interfaces with Other Subsystems and Segments
none

6.9.4.5.3 Stimulus
A user reports a problem to a DAAC via a trouble ticket.

6.9.4.5.4 Participating Classes From the Object Model
MsTtManager

6.9.4.5.5 Beginning System, Segment and Subsystem State(s)
The MsTtManager at both the DAAC and the SMC is normal operational state.

6.9.4.5.6 Ending State

The user is notified of closure of the trouble ticket. The MsTtManager is in normal operational
state.

6.9.4.5.7 Scenario Description

A user ata DAAC reports a problem. When the support staff member assigned to this trouble ticket
examines the detail of the problem, it is traced back to a problem at the SMC (for example a
malfunctioning router). The support staff member at the DAAC indicates that the trouble ticket is
to be forwarded to the SMC for work.

From here, the MsTtManager will submit a new trouble ticket with the identical problem detail
information to the SMC. The submitter information on this trouble ticket will correspond to the
support staff member forwarding the trouble ticket. Additionally, the trouble ticket will indicate
that it originated from the particular DAAC. After the successful entry of forwarded trouble ticket,
the original will be updated to reflect the new, related, trouble ticket entry id. This information
allows the support staff member at the originating DAAC to check the status of the new trouble
ticket at any time.

At the SMC, the new trouble ticket is assigned, worked, and eventually closed as would any other.
When the trouble ticket is closed, the support staff member at the originating DAAC will receive
notification, via e-mail, of that event. At this point, the original trouble ticket can be updated and
closed. When this ticket is closed, the originating user will be notified of the resolution of their
problem.

6-296 305-CD-029-002

L6¢-9

¢00-6¢0-dd-S0€

SubmitTroubleTicket

MsTtManager
(DAAC Instance)

<< NotifyOfAssignedTroubleTicket——

—DetermineProblemIsAtSM

>>

“

L RequestForward——>~

SupportStaffMember
(SMC Instance)

——CloseTroubleTicket———>

NotifySupportStaffMember

ForwardTrouh
<< ReturnE|
ModifyTroubIeTicke(|
<<

leTicket >>

MsTtManager
(SMC Instance)

—CreateTroubIeTicke(—|
<<

htrylD.

< TroubleTicketAssigned——]

——CloseTroubleTicket———>

ModifyTroubIeTicket|
<<

| —UpdateTroubleTicket—,

<<

Technician
User (DAAC Instance)
<<
<<
<<

NotifyUser

Figure 6.9-7. A Trouble Ticket is Forwarded

6.9.5Trouble Ticketing Structure

Table 6.9-1. Trouble Ticketing Components

Component Name COTS/Custom
Trouble Ticketing Management Services COTS (Remedy Action Request System)
Trouble Ticketing HTML Menu Custom
Trouble Ticketing HTML Submission/List Custom
Trouble Ticketing Proxy Agent Custom

6.9.5.1 Trouble Ticketing Management Services CSC
Purpose and Description

This CSC provides the core functionality of the trouble ticketing services. It is implemented by the
Remedy Action Request System software package. It allows for the entry, modification,
administration, and reporting of trouble tickets.

6.9.5.2 Trouble Ticketing HTML Menu CSC
Purpose and Description

This CSC provides an HTML Web Page to registered ECS users that lists the actions which can be
performed on the Trouble Ticketing system through the Web interface. These actions include
submitting a new Trouble Ticket and listing trouble tickets previously opened by the user.

6.9.5.3 Trouble Ticketing HTML Submission/List CSC
Purpose and Description

This CSC provides the interface between the users (those who submit trouble tickets) and the
MsTtManger. It provides a common interface to submit and query the status of a user's trouble
tickets. The functionality listed will be implemented as HTML documents. In addition, this CSC
provides the interface between the MsTtManager (Remedy) and the MsTtHTMLItems. It
translates requests from the HTTPD server and fulfills them using the MsTtManager API
functions.

6.9.5.4 Trouble Ticketing Proxy Agent CSC

Purpose and Description

This CSC provides the interface with the Management Agent Services. It allows for remote
administration and monitoring of the Remedy software package.

6.9.6 Trouble Ticketing Management and Operation

6.9.6.1 System Management Strategy

The Trouble Ticketing Service Management Strategy utilizes the MSS Management Agent model
for its administration. The MsTtProxy will allow the remote startup and shutdown of the Trouble
Ticketing Service via the Management Framework.

6-298 305-CD-029-002

6.9.6.2 Operator Interfaces
The Trouble Ticketing Service provides two user interfaces:

MsTtManager (Remedy Action Request System) - This Motif GUI provides access to all of the
functionality supplied by the software package. This functionality includes trouble ticket entry,
modification, rule definition, administration and reporting. It is through this interface that support
staff members will access TTS.

MsTtHTMLMenu/MsTtHTMLItems - This set of HTML documents provide the primary interface
for users to submit and query trouble tickets.

6.9.6.3 Reports

Trouble Ticket Status Report - This reports indicates the status of a set of trouble tickets based on
a particular criteria (e.g. by date range, assigned-user, status...).

Trouble Ticket Resource Report - This report indicates by resource the number and type of
problems encountered by affected resource.

Trouble Ticket User Report - This report indicates by submitter the number and type of trouble
tickets in the system.

Trouble Ticket Statistics Report - This report indicates for a a particular criteria statistical
information such as mean time to close.

Trouble Ticket Status Report (SMC) - This report provide a summary of the number of tickets by
status and priority across all DAACS.

The above reports are meant to be examples of stock reports provided by the Trouble Ticketing
Service. TTS allows for both extensive customization of the above reports and creation of new
ones. The reporting capabilities include the ability to display not only data contained in the
database but also statistical and correlation functions on that data. These custom reports can be
defined and saved by individual support staff members or made available globally.

6.10 Management Data Access

6.10.1 Management Data Access Overview

The Management Data Access (MDA) Service is responsible for centralizing, processing and
providing access to the information which is logged into the management data log file on each
managed host from various sources via the MSS Management Agent Services. This log data
includes performance, security, fault, accountability, and other ECS application event information.

One of MDA's primary functions is to centralize the log file data at each DAAC. It accomplishes
this by transferring the individual management data log files from each managed host, to the MSS
server, by one of three means. The transfer will occur as established by a predefined and
configurable schedule (time interval or absolute time), by a log size threshold exceeded event, or
on command by the M&O staff. The management log files for each managed host maintain a
common collection of log file records without regard to the mode of the event. Log file records are
transferred to the appropriate mode-identified management database (established upon inception
of the mode), based on the event's mode identifier. The MsMdProcessEvent class handles the
filtering of log file records, ensuring that they are transferred to the appropriate management

6-299 305-CD-029-002

database. Non-mode specific log file records will be logged to all mode specific management
databases. The log files are processed and retained for a period of time before being transferred by
MDA to the ECS Data Archives. MDA's graphical user interface allows the viewing and updating
of all of its schedule configuration parameters.

MDA's graphical user interface also provides the user access to the contents of this log data.
Provided a host, time period, and selection filter information, MDA will retrieve the requested data
and display it using its log file browser. Once displayed, options are given for sorting, additional
filtering, and saving of the data. Additionally, an event chaining capability is provided to enable
the user to select an event and retrieve a list of its ancestor events(transactions). Each event
contains a TransactionID and a ParentTransactionID field to enable a parent-child transaction
linking. Event chaining will link the specified event to its ancestor transaction events for the time
period specified. It should be noted that while this access is typically used to access DAAC (or
SMC/EQC) local log files, it also provides the capability to browse the log data located across sites.

For the purposes of longer term analysis and reporting, MDA will process the management data
log files, loading selected information to the Management RDBMS. The data MDA loads will be
configurable and shall include:

» Counter Metrics - maintains a count of the number of times a particular event occurred over
the time period

» Duration Metrics - locates the start and ending time for a particular “transaction” and
calculates the duration

» Summation/Average Metrics - maintains a sum or average of a value for a particular event
type over the time period.

» Detail Events - for a particular event type, loads the detail of each of these events to the
database.

6.10.2 Management Data Access Context

The Management Data Access context diagram is shown in Figure 6.10-1. MDA receives
management requests, (e.g. start up, shutdown) from the Management Agent. Once the requests
are completed an event is logged through the Management Agent. Additionally, MDA and the
Management Agent communicate in order to set the maximum file size for the management log
file. MDA utilizes the CSS file transfer mechanism and ECS Data Archives for log file archival.

6.10.3 Management Data Access Object Model
The Object Model for the Management Data Access Service is shown in Figure 6.10-2.

6.10.3.1 CsFtFTPRelA Class

Parent Class:Not Applicable
Public:No

Distributed Object:No

Purpose and Description:

This class is imported from CSS

6-300 305-CD-029-002

CSss
Management
DataBase
File transfers
File transfer requests
This System
event data log fles———>> ECS Data
M " Archives
- anagemen -
metric data Data Access log files
management responses event data management requests
log file parameters log file parameter requests
—>>
Management
Agent
>>

Figure 6.10-1. Management Data Access Context Diagram
Attributes:
None
Operations:
None
Associations:

The CsFtFTPRelA class has associations with the following classes:
Class: MsMdManager uses

6-301 305-CD-029-002

¢0€-9

¢00-6¢0-dd-S0€

EEpe—y

Contiaione ot aonEny)
ot

[T

T SO W e o

GetLogF S
oS NAGC e
i e oo

B T e——r—

i) N

e RS

gt W
ProcessLogFIeNCStg, FUCStiNG)
[

v

GG

e
+ myvchveLoadTine < RWServecr
EETT——

¢ vudCoriguaton)
oty EcTvan)
+ mosen s iervos

+ GeEyRWCSIIG RWColkcatie

1 ittty EeTvos
+ tiasiesus poce

+ sneCusvres) EcTvon

L aecustivao Eervois

¢ secus(RwFies) EcTvos

+ rosoreGusEwIRIg) < EcTvod

T
oV

e PSCas
s —

myorgnale: - RSisCotecabies
Rwsie

myerarine Rt

st asgposto

eNaogo

GeCurenus) RWSIsColecablsa
o) Ecagrosn
ostonet) - RWCSitnga
LenComg T

eenarinal

st

" Tt
RWSISCotectaias RWCSrno)

frvergtiion

Eetva

Eerveig

T

e CoEy

mySieLm - Rager
AT RS

)
NedComuaanEny(RHCS OS]
R ——

Procasgmn(

o

(g om 551

isTRom)
B

(mporea tom HSSgeT i)

s WCSL
myoe <RACSagh

=

uachodes) - WS
Cremmo s oS
NhweLogFIeNCStg, RUTS

sung)

RotiowAhRdLagFIe(RICS T, RWTme, AWTIe, RWCSIiG)

e
© senOmE i) SETvod

ey WeTAGE D

- [
myTinesiap W Tine
miCagory < EcTie

sy et
mpogo et
P et

o]
MM oSG o)
MsMuEmanw(MsH« e
TAEerOsta, WeAGPerEves)
ST T e
semaremne. e

o) o
poreunt) - NshgporEws
0 RuTes

ConporeToEveniEeTIn, €T, EcTins) ecn
PaCKCHGEN O - RuSoolean

marages
e

)

dAEgeLogF L)

IS US(RICSIS, NENdAgErogL o) ecrvon

ik e ——— eerves

GevostsqrHCSn RvColecasie:

RemousLagEny RHCStGA, MelGAgyetaL ok

GelLogEr PGS g, AWTIne, RTine)

)
A=

[

myriis

e

TG W
TSz R

myConpressan :RwCing

myFTimesamp WD

o

e

+ cosarma) me

- GenTine) AWTIne

+ Goconpressing :RcSung
« Goviecoyd) sy
+ Gerka) :mwCsiog

+ Corksas) :Rwneoe

- GoFTmesanp) - AWDate
- braysoesig Aspace
+ saecusurien) :ectvod
- Gy TV
+ N iceos
. o) e

usmmwma,mmmwmmsnm»
NeiAgargaiL oW Te, R

Figure 6.10-2. Management Data Access Object Model

DT NG
e eLoaTne - AWColecusieTne
yeEry T RWColecanTme

e
ey T——
WeScheduoLst)
GemenoaLoadtme)
pipeiiing

concane

Updmenhve T WGl e, Moot 51
Ut LcasTmeItdScheclery, VsdContouratentt)

e

=
mNeEnTine - RWCHlscabaTine

S

>
NeNdScraieEny(RWCStag, RWColkcaeTme)

884
g

compareToRWCotegab) - EcTin
0 rucsung
GemexgnyTne) - RWClecabRTIne

6.10.3.2 EcAgEvent Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

The EcAgEvent defines a distributed object. It provides the capability to dispatch events
for orderly and prompt resolution should events occur. The SNMP protocol provides the
capability to send traps from agent to SNMP manager. But, the traps are not secure and not
reliable. The solution to these problems are using DCE RPC as the transport mechanism for
security reasons and sending the traps from MSS Server to the management framework
locally. The COTS HP OpenView guarantees the delivery of traps local on one host by
using IPC as opposed to UDP. The ECS applications, the EcAgProxy agent, and the
MsAgMonitor of the MsAgSubagent can send event notifications to the MsAgSubagent.
The MsAgSubagent logs every event into MSS log file. Then, if the severity of the event
equals to or is higher than the infoLevel variable, it sends this event notification further to
the MsAgDeputy on the MSS Server which in turn convert the event to an SNMP trap and
send it locally to the management framework.

Attributes:
None

Operations:
None

Associations:

The EcAgEvent class has associations with the following classes:
Class: MsMdManager communicateswith

6.10.3.3 ManagementRDBMS Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the Management Data Relational Database (a COTS package).

Attributes:

None

6-303 305-CD-029-002

Operations:
None
Associations:

The ManagementRDBMS class has associations with the following classes:
Class: MsMdProcessEvent isloadedby

6.10.3.4 MsMdAggregateLogEntry Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents an aggregate of the log file data for a single managed host over a given
time period. The data is held in these files until it is processed for the Management
RDBMS and archived.

Attributes:

myCompression - This attribute represents the flag to indicate if files have been
compresssed prior to archival.

Data Type:RWCString

Privilege:Private

Default Value:

myDirectoryld - This attribute represents the path and address of the directory where the
files are located.

Data Type:RWCString

Privilege:Private

Default Value:

myEndTime - This attribute represents the end of the time period covered by the
aggregate.

Data Type:RWTime

Privilege:Private

Default Value:

myFileld - This attribute represents the name of the files that are to archived (repeat for
each file to be archived).

Data Type:RWCString

Privilege:Private

Default Value:

6-304 305-CD-029-002

myFileSize - This attribute represents the size of the individual file to be archived, in bytes.
Data Type:RWinteger

Privilege:Private

Default Value:

myFileTimeStamp - This attribute represents the date and time the file was created.
Data Type:RWDate

Privilege:Private

Default Value:

myStartTime- This attribute represents the starting time of the time period covered by the
aggregate.

Data Type:RWTime

Privilege:Private

Default Value:

myT otalFileCount - This attribute represents the total number of files to be archived.
Data Type:RWInteger

Privilege:Private

Default Value:

myT otalFileSize - This attribute represents the sum of the file sizes in bytes.
Data Type:RWinteger

Privilege:Private

Default Value:

Operations:

GetCompression - This operation returns whether the file is compressed or not.
Arguments:

Return Type:RWCString

Privilege:Public

GetDirectoryld - This operation returns the string value of the directory ID.
Arguments:

Return Type:RWCString

Privilege:Public

GetEndTime - This operation returns the ending time.
Arguments:

Return Type:RWTime

Privilege:Public

6-305 305-CD-029-002

GetFileld - This operation returns the value of the file ID.
Arguments:

Return Type:RWCString

Privilege:Public

GetFileSize - This operation returns the size of the file.
Arguments:

Return Type:RWInteger

Privilege:Public

GetFileTimeStamp - This operation returns the file time stamp.
Arguments:

Return Type:RWDate

Privilege:Public

GetStartTime - This operation returns the starting time.
Arguments:

Return Type:RWTime

Privilege:Public

MsMdAggregatelL ogEntry - This operation serves as the copy constructor for the
MsMdAggregateLogEntry.

Arguments:MsMdAggregateLogEntry&

Return Type:Void

Privilege:Public

MsMdAggregatel ogentry - This operation serves as the default constructor for the
MsMdAggregateLogEntry class.

Arguments:

Return Type:Void

Privilege:Public

MsMdAggregatel ogEntry - This operation is a set constructor.
Arguments:RWTime,RWTime,RWCString, RWCString, RWCString, RW!Integer,
RWDate

Return Type:Void

Privilege:Public

MsMdAggregatel ogEntry - This operation serves as a constructor which accepts start
and end time parameters.

Arguments:RWTime, RWTime

Return Type:Void

Privilege:Public

binaryStoreSize - This operation returns the number of bytes used by the virtual operation

6-306 305-CD-029-002

saveGuts(RWFile&) to store an object.
Arguments:

Return Type:RWspace
Privilege:Public

isEqual - This operation returns TRUE if the collectable object matches the starting time.
Arguments:RWCollectable*

Return Type:RWBoolean

Privilege:Public

restoreGuts- This operation reads an object's state from a binary file, using class RWFile,
replacing the previous state.

Arguments:RWFile&

Return Type:EcTVoid

Privilege:Public

restoreGuts - This operation reads an object's state from a virtual stream using class
RWFile, replacing the previous state.

Arguments:RWvistream&

Return Type:EcTVoid

Privilege:Public

saveGuts - This operation writes an object's state to a binary file, using class RWFile.
Arguments:RWFile&

Return Type:EcTVoid

Privilege:Public

saveGuts - This operation writes an object's state to a virtual stream using class RWFile.
Arguments:RWvostream&

Return Type:EcTVoid

Privilege:Public

~M sMdAggregatel ogEntry - This operation serves as the default destructor for the
MsMdAggregateLogEntry class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdAggregateLogEntry class has associations with the following classes:
MsMdAggregateLogFileList (Aggregation)

6-307 305-CD-029-002

6.10.3.5 MsMdAggregateLogFileList Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents a list aggregate log files for the hosts at a single DAAC.

Attributes:
None
Operations:

GetHostList - This operation gets the host log.
Arguments:RWCString&

Return Type:RWCollectable*

Privilege:Public

GetL ogEntry - This operation gets the log entry.
Arguments:RWCString&, RWTime, RWTime
Return Type:MsMdAggregateLogEntry*
Privilege:Public

InsertHostList - This operation inserts the new log entry for the new host.
Arguments:RWCString&, MsMdAggregateL ogEntry*

Return Type:EcTVoid

Privilege:Public

MsMdAggregatel ogFileList
Arguments:

Return Type:Void
Privilege:Public

Removel ogEntry - This operation removes the log entry from the found host log.
Arguments:RWCString&, MsMdAggregateL ogEntry*

Return Type:EcTVoid

Privilege:Public

UpdateHostList - This operation updates the log entry by adding a log entry to the found
host log.

Arguments:RWCString&, MsMdAggregateLogEntry*

Return Type:EcTVoid

Privilege:Public

6-308 305-CD-029-002

~MsMdAggregatel ogFilelList
Arguments:

Return Type:Void
Privilege:Public

Associations:

The MsMdAggregateLogFileList class has associations with the following classes:
Class: MsMdManager manages

6.10.3.6 MsMdArchiveLog Class
Parent Class:Not Applicable

Attributes:
None

Operations:
None

Associations:

The MsMdArchiveLog class has associations with the following classes:
Class: MsMdProcessEvent uses

6.10.3.7 MsMdConfigurationEntry Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the configuration parameters for a single managed MSS host logfile.

Attributes:

myAbsoluteTimeList - the list of absolute time at whcih the log file is to be transferred to
the MSS Server.

Data Type:RWSortedVector

Privilege:Private

Default Value:

6-309 305-CD-029-002

myHostName - the name of the host to which this entry applies
Data Type:RWCString

Privilege:Private

Default Value:

mylnterval - the interval in minutes the log file is to be transfered
Data Type:RWInteger

Privilege:Private

Default Value:

mySizeL imit - the size threshold at which the log file is to be transfered
Data Type:RWinteger

Privilege:Private

Default Value:

Operations:

GetAbsoluteTimel ist - This operation returns the absoluteTimeL.ist.
Arguments:

Return Type:RWSortedVector

Privilege:Public

GetHostName - This operation returns the hostName.
Arguments:

Return Type:RWCString

Privilege:Public

Getlnterval - This operation returns the interval.
Arguments:

Return Type:RWInteger

Privilege:Public

GetSizeL imit - This operation returns the sizeLimit.
Arguments:

Return Type:RWInteger

Privilege:Public

GetSortBy
Arguments:
Return Type:Void
Privilege:Public

GetSortOrder
Arguments:

6-310 305-CD-029-002

Return Type:Void
Privilege:Public

GetTimeStamp
Arguments:
Return Type:Void
Privilege:Public

MsMdConfigurationEntry - constructor with only host name defined.
Arguments:RWCString&

Return Type:Void

Privilege:Public

MsMdConfigurationEntry - copy constructor.
Arguments:MsMdConfigurationEntry&

Return Type:Void

Privilege:Public

MsMdConfigurationEntry - default constructor.
Arguments:

Return Type:Void

Privilege:Public

ProcessEvent
Arguments:
Return Type:Void
Privilege:Public

binaryStoreSize- This operation returns the number of bytes used by the virtual function
saveGutes(RWFile&) to store an object.

Arguments:

Return Type:RWSpace

Privilege:Public

compareTo

Arguments:RWCollectable*

Return Type:Void

Privilege:Public

isEqual - This operation will return TRUE if collectable object "matches” given objects.
Arguments:RWCollectable*

Return Type:RWBoolean

Privilege:Public

restoreGuts- This operation reads an object's state from a binary file, using class RWFile,

6-311 305-CD-029-002

replacing the previous state.
Arguments:RWFile&
Return Type:EcTVoid
Privilege:Public

restoreGuts - his operation reads an object's state from a virtual stream.
Arguments:RWvistream&

Return Type:EcTVoid

Privilege:Public

saveGuts - This operation writes an object's state to a binary file, using class RWFile.
Arguments:RWFile&

Return Type:EcTVoid

Privilege:Public

saveGuts - This operation writes an object's state to a virtual stream.
Arguments:RWvostream&

Return Type:EcTVoid

Privilege:Public

~MsMdConfigurationEntry - destructor.
Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdConfigurationEntry class has associations with the following classes:
MsMdConfigurationList (Aggregation)

6.10.3.8 MsMdConfigurationList Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the configuration of the MsMdManager.

Attributes:

myArchivelnterval - the interval when the log files are to be transferred to the
Management Database.

Data Type:RWinteger

Privilege:Public

6-312 305-CD-029-002

Default Value:

myAr chiveLoadTime - the time of day the aggregate log files should be processed and
load to ECS Data Archive.

Data Type:RWSortedVector

Privilege:Public

Default Value:

myDBI nterval - the interval when the log files are to be transferred.
Data Type:RWInteger

Privilege:Public

Default Value:

myDBL oadTime

Data Type:RWSortedVector
Privilege:Public

Default Value:

myM ssServer Size - the size limit of the MSS Server.
Data Type:RWinteger

Privilege:Public

Default Value:

Operations:

GetEntry - This operation will get a MsMdConfigurationEntry for a given host name.
Arguments:RWCStrintg&

Return Type:RWCollectable*

Privilege:Public

InsertEntry - This operation will add a MsMdConfigurationEntry to the current
configuration list.

Arguments:MsMdConfigurationEntry*

Return Type:EcTVoid

Privilege:Public

MsMdConfigurationList - default constructor.
Arguments:

Return Type:Void

Privilege:Public

RemoveEntry - This operation will remove a MsMdConfigurationEntry from the

current configuration list.
Arguments:RWCString&

6-313 305-CD-029-002

Return Type:EcTVoid
Privilege:Public

UpdateEntry - This operation will change a MsMdConfigurationEntry to the current
configuration.

Arguments:MsMdConfigurationEntry*

Return Type:EcTVoid

Privilege:Public

binaryStoreSize - This operation returns the number of bytes used by the virtual function
saveGutes(RWFile&) to store an object.

Arguments:

Return Type:RWspace

Privilege:Public

restoreGuts - This operation reads an object's state from a binary file, using class RWFile,
replacing the previous state.

Arguments:RWFile&

Return Type:EcTVoid

Privilege:Public

restoreGuts - This operation reads an object’s state from a virtual stream.
Arguments:RWvistream&

Return Type:EcTVoid

Privilege:Public

saveGuts - This operation writes an object's state to a binary file, using class RWFile.
Arguments:RWFile&

Return Type:EcTVoid

Privilege:Public

saveGuts - This operation writes an object's state to a virtual stream.
Arguments:RWvostream&

Return Type:EcTVoid

Privilege:Public

~MsMdConfigurationList - destructor.
Arguments:

Return Type:Void
Privilege:Public

Associations:

6-314 305-CD-029-002

The MsMdConfigurationList class has associations with the following classes:
Class: MsMdManager manages

6.10.3.9 MsMdEventField Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents a description of an event. It also recognizes the different types of
events and their filtered conditions.

Attributes:

myAppl D - This attribute represents the application ID.
Data Type:EcTInt

Privilege:Private

Default Value:

myCategory - This attribute represents the category of the event.
Data Type:EcTInt

Privilege:Private

Default Value:

myCsci - This attribute represents the CSCI of the event.
Data Type:EcTInt

Privilege:Private

Default Value:

myEndTime - This attribute represents the end time.
Data Type:RWTime

Privilege:Private

Default Value:

myEventType - This attribute is an enumerated type for events.
Data Type:MsTAgEventDelimiter

Privilege:Private

Default Value:

myGenEvent - This attribute defines a general event.
Data Type:EcAgEvent

Privilege:Private

Default Value:

myM ode - This attribute represents the mode of the event.

6-315 305-CD-029-002

Data Type:RWCString
Privilege:Private
Default Value:

myPer fEvent - This attribute represents a performance event.
Data Type:MsAgPerfEvent

Privilege:Private

Default Value:

myProcl D - This attribute represents the process ID.
Data Type:EcTInt

Privilege:Private

Default Value:

myProgl D - This attribute represents the program ID.
Data Type:EcTInt

Privilege:Private

Default Value:

mySeverity - This attribute represents the event severity level.
Data Type:EcTInt

Privilege:Private

Default Value:

mySortBy - This attribute represents the value decides sorting.
Data Type:EcTInt

Privilege:Private

Default Value:

mySortOrder - This attribute represents a value that determines sorting order.
Data Type:EcTInt

Privilege:Private

Default Value:

myStartTime - This attribute represents the start time.
Data Type:RWTime

Privilege:Private

Default Value:

mySubSys - This attribute represents the subsystem of the event.
Data Type:EcTInt

Privilege:Private

Default Value:

myTimeStamp - This attribute represents the time stamp of the event.

6-316 305-CD-029-002

Data Type:RWTime
Privilege:Private
Default Value:

myType- This attribute represents the type of the event.
Data Type:EcTInt

Privilege:Private

Default Value:

Operations:

Compar eT oEvent - This operation compares two event attributes and sorts them.
Arguments:EcTInt&, EcTInt&, EcTInt&

Return Type:EcTInt

Privilege:Public

DisplayEvent - This operation displays an event.
Arguments:

Return Type:EcTVoid

Privilege:Public

GetEventType - This operation returns the event type.
Arguments:

Return Type:MsTAgEventDelimiter&
Privilege:Public

GetGenEvent - This operation returns the general event.
Arguments:

Return Type:EcAgEvent&

Privilege:Public

GetPerfEvent - This operation returns the performance event.
Arguments:

Return Type:MsAgPerfEvent&

Privilege:Public

GetSortBy - This operation returns the sort by field specified.
Arguments:

Return Type:EcTInt&

Privilege:Public

GetSortOrder - The operation returns the sort order.

Arguments:
Return Type:EcTInt&

6-317 305-CD-029-002

Privilege:Public

GetTimeStamp - This operation returns the time stamp.
Arguments:

Return Type:RWTime&

Privilege:Public

MatchEvent - This operation matches an event.
Arguments:MsMdEventField&

Return Type:RWBoolean

Privilege:Public

MsMdEventField - This operation serves as the default constructor for the
MsMdEventField

Arguments:

Return Type:Void

Privilege:Public

MsMdEventField - This operation serves as the copy constructor for the MsMdEventField
class.

Arguments:MsMdEventField&

Return Type:Void

Privilege:Public

MsMdEventField - This operation serves as the general event constructor for
MsMdEventField class.

Arguments:MsTAgEventDelimiter&, ECAgEvent&

Return Type:Void

Privilege:Public

MsMdEventField - This operation serves as the performance event constructor.
Arguments:MsTAgEventDelimiter&. MsAgPerfEvent&

Return Type:Void

Privilege:Public

ParentChildM atch - This operation compares the transactionID of the current event to the
parentTransactiolD of the event to be chained. A boolean value is returned to indicate
whether or not a match exists.

Arguments:MsMdEventField&

Return Type:RwBoolean

Privilege:Public

SetSortCondition - This operation sets the sorting condition.

Arguments:EcTInt, EcTInt
Return Type:EcTVoid

6-318 305-CD-029-002

Privilege:Public

SetTimeRange - This operation sets the start and stop time.
Arguments:RWTime&, RWTime&

Return Type:EcTVoid

Privilege:Public

compareT o - This operation compares two events and sorts them.
Arguments:RWCollectable*

Return Type:EcTInt

Privilege:Public

isEqual - This operation returns TRUE if collectable object "matches” the given objects.
Arguments:RWCollectable*

Return Type:EcTInt

Privilege:Public

isEqual Event - This operation returns true if event matches given objects.
Arguments:MsMdEventField*, EcTInt

Return Type:RWBoolean

Privilege:Public

~MsMdEventField - this operation serves as the default destructor for the
MsMdEventField class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdEventField class has associations with the following classes:
MsMdEventL.ist (Aggregation)

6.10.3.10 MsMdEventList Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This operation represents the collection of conditional events for metrics that are to be
loaded to the ManagementRDBMS.

Attributes:

6-319 305-CD-029-002

None
Operations:

Insert - This operation inserts an event into an event list.
Arguments:MsMdEventField*

Return Type:EcTVoid

Privilege:Public

MsMdEventList - This operation serves as the default constructor for the MsMdEventL.ist
class.

Arguments:

Return Type:Void

Privilege:Public

~MsMdEventList - This operation serves as the default destructor for the MsMdEventL.ist
class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdEventList class has associations with the following classes:
Class: MsMdLogBrowser
Class: MsMdProcessEvent
Class: MsMdManager manages

6.10.3.11 MsMdLogBrowser Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents a collection of conditional events for metrics that are to be loaded to
the ManagementRDBMS.

Attributes:

myCondition - This attribute is the filter condition for an event.
Data Type:MsMdEventField

Privilege:Private

Default Value:

6-320 305-CD-029-002

myCurrentList - This attribute represents the top of the stack.
Data Type:RWSlistCollectables

Privilege:Private

Default Value:

myEndTime - This attribute represents the end time of the data being browsed.
Data Type:RWTime

Privilege:Private

Default Value:

myEventCount - This attribute represents the total number of events.
Data Type:EcTInt

Privilege:Private

Default Value:

myHostInfo - This attribute contains information about the host.
Data Type:EcAgHostInfo

Privilege:Private

Default Value:

myM ode - This attribute represents the event's mode. It is used for filtering or sorting.
Data Type:RWCString

Privilege:Private

Default Value:

myOriginalList - This attribute represents the original event list.
Data Type:RWSlistCollectables

Privilege:Private

Default Value:

myParentTransactionl D - This attribute represents the ParentTransactionID of the event
which is being chained.

Data Type:RWCString

Privilege:Private

Default Value:

myPreviousL ist - This attribute represents the previous event list.
Data Type:RWSlistCollectables

Privilege:Private

Default Value:

mySortByL ist - This attribute defines the event field to be sorted.
Data Type:RWSlistCollectables

Privilege:Private

Default Value:

6-321 305-CD-029-002

mySortOrderList

Data Type:RWSlistCollectables
Privilege:Private

Default Value:

myStartTime - This attribute is the start time of the data being browsed.
Data Type:RWTime

Privilege:Private

Default Value:

Operations:

Chain - This operation will traverse a list of events to determine if a parent-child
relationship exists. If a match exists, the event is inserted into a list of chained events, and
a retraversal occurs to seek additional ancestral transaction events. When no parent-child
match is found, the operation halts.

Arguments:

Return Type:EcTVoid

Privilege:Public

Filter - This operation filters the event list based on user defined criteria.
Arguments:

Return Type:EcTVoid

Privilege:Public

GetCondition - This operation returns the event condition.
Arguments:

Return Type:MsMdEventField&

Privilege:Public

GetCurrentList - This operation returns the top of a stack.
Arguments:

Return Type:RWSlistCollectables&

Privilege:Public

GetEndTime - This operation returns the end time.
Arguments:

Return Type:RWTime&

Privilege:Public

GetEventCount - This operation returns the number of events in the list.

Arguments:
Return Type:EcTInt&

6-322 305-CD-029-002

Privilege:Public

GetHostInfo - This operation returns the host information.
Arguments:

Return Type:EcAgHostInfo&

Privilege:Public

GetHostName - This operation returns the host name.
Arguments:

Return Type:RWCString&

Privilege:Public

GetM ode - This operation will return the events of a given mode.
Arguments:RWSlistCollectables, RWCString

Return Type:EcTVoid

Privilege:Public

GetStartTime - This operation returns the start time.
Arguments:

Return Type:RWTime&

Privilege:Public

MsMdL ogBrowser - This operation serves as the constructor for the MsMdLogBrowser
class.

Arguments:

Return Type:Void

Privilege:Public

MsMdLogBrowser - This operation serves as the copy constructor for the
MsMdLogBrowser class.

Arguments:MsMdLogBrowser&

Return Type:Void

Privilege:Public

SetEventList - This operation returns an event list.
Arguments:

Return Type:EcTVoid

Privilege:Public

SetFilter - This operation sets filtering attributes.
Arguments:MsMdEventField&

Return Type:EcTVoid

Privilege:Public

SetSort - This operation sets sorting attributes.

6-323 305-CD-029-002

Arguments:RWSlistCollectables, RWSlistCollectables
Return Type:EcTVoid
Privilege:Public

SetTime - This operation sets the starting time attribute.
Arguments:MsMdEventField*, RWSlistCollectables
Return Type:EcTVoid

Privilege:Public

Sort - This operation sorts the event list.
Arguments:RWSlistCollectables, RWSlistCollectables, MsMdEventL.ist
Return Type:EcTVoid

Privilege:Public

SortList

Arguments:

Return Type:EcTVoid
Privilege:Public

pHostinfo - This operation returns host information such as cell name, hostname, IP
address, OS name, OS major version, OS minor version, Os rev, and OS maint level.
Arguments:

Return Type:EcTVoid

Privilege:Public

pList - This operation displays the events in a list.
Arguments:MsMdEventList*

Return Type:EcTVoid

Privilege:Public

~MsMdLogBrowser - this operation serves as the default destructor for the
MsMdLogBrowser class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdLogBrowser class has associations with the following classes:
Class: MsMdEventList
Class: MsMdUserInterface

6-324 305-CD-029-002

6.10.3.12 MsMdManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class encapsulates the functionality required to centralize and process the ECS log
files.

Attributes:
None
Operations:

FTPLogFile

Arguments:MsMdAggregateLogFileList*, CsFtFTPRelA*, RWCString&, RWCString&,
RWCString&, RWCString

Return Type:Void

Privilege:Public

FindNextL cadCall

Arguments:MsMdScheduleList*, MsMdConfigurationList*,
MsMdAggregatedLogFileList*

Return Type:EcTVoid

Privilege:Public

GetL ogFileData

Arguments:RWCString, RWTime, RWTime, RWCString
Return Type:Void

Privilege:Public

GetL ogFileM axSize
Arguments:RWCString
Return Type:Void
Privilege:Public

MsMdManager - default constructor.
Arguments:

Return Type:Void

Privilege:Public

ProcessL ogFile
Arguments:RWCString, RWCString

6-325 305-CD-029-002

Return Type:Void
Privilege:Public

Transfer LogFile- This operaton transfers all the log files from a managed host to the MSS
Server at a given pacific time, appending it to the correct MsMdAggregateLogFile.
Arguments:MsMdScheduleList*, MsMdConfigurationList*,
MsMdAggregatedLogFileList*

Return Type:EcTVoid

Privilege:Public

~MsM dM anager
Arguments:
Return Type:Void
Privilege:Public

Associations;

The MsMdManager class has associations with the following classes:
Class:
Class:
Class:
Class:
Class:
Class:
Class:
Class:

MsMdProcessEvent
MsMdUserInterface accesses
EcAgEvent communicateswith
MsMdAggregateLogFileList manages
MsMdConfigurationList manages
MsMdEventList manages
MsMdSchedule manages
CsFtFTPRelA uses

6.10.3.13 MsMdProcessEvent Class
Parent Class:Not Applicable

Attributes:

myDBs

Data Type:RWCString&
Privilege:Private

Default Value:

myM odes

Data Type:RWCString&
Privilege:Private

Default Value:

6-326

305-CD-029-002

Operations:

Archivel ogFile
Arguments:RWCString, RWTime, RWTime, RWCString

GetActiveM odes
Arguments:

Return Type:RWString*
Privilege:Public

OpenMgmtDBs
Arguments:RWCString&, RWCString&
Return Type:EcTVoid

Privilege:Public

ProcessEvent
Arguments:EcCAgEvent&
Return Type:EcTVoid
Privilege:Public

RetrieveArchivedL ogFile
Arguments:RWCString, RWTime, RWTime, RWCString

Associations:

The MsMdProcessEvent class has associations with the following classes:
Class: MsMdEventL.ist
Class: MsMdManager
Class: ManagementRDBMS isloadedby
Class: MsMdArchivelLog uses

6.10.3.14 MsMdSchedule Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the current schedule for MSS logfile transfers.

Attributes:

myNextAr chivel oadTime - the list of time at which the log file is to be transferred to the
ECS Data Archive.
Data Type:RWCollectableTime

6-327 305-CD-029-002

Privilege:Private
Default Value:

myNextDBL ocadTime - the list of time at which the log file is to be transferred to the
Management Data Base.

Data Type:RWCollectableTime

Privilege:Private

Default Value:

myNextEntryL oadTime - the list of time at which the log file is to be transferred to the
MSS Server.

Data Type:RWCollectableTime

Privilege:Private

Default Value:

Operations:

GetNextArchivel oadTime - This operation will update a scheduled time of loading to the
ECS Data Archive.

Arguments:

Return Type:RWCollectableTime

Privilege:Public

GetNextDBL oadTime - This operation will update a scheduled time of loading to the
Management Data Base.

Arguments:

Return Type:RWCollectableTime

Privilege:Public

GetNextEntryL oadTime - This operation will return a scheduled time of loading to the
MSS Server.

Arguments:

Return Type:RWCollectableTime

Privilege:Public

InsertEntry - This operation will add a MsMdConfigurationEntry to the current
configuration list.

Arguments:MsMdScheduleEntry*

Return Type:EcTVoid

Privilege:Public

MsMdSchedulelist - This operation serves as the default constructor.

Arguments:
Return Type:Void

6-328 305-CD-029-002

Privilege:Public

MsMdScheduleList - This operation serves as the copy constructor.
Arguments:MsMdScheduleList&

Return Type:Void

Privilege:Public

RemoveEntry - This operation will remove a MsMdConfigurationEntry from the
current configuration list.

Arguments:MsMdScheduleEntry*

Return Type:EcTVoid

Privilege:Public

UpdateArchivel oadTime - This operation will update a scheduled time of loading to the
ECS Data Archive.

Arguments:RWCollectableTime&, MsMdConfigurationList*

Return Type:EcTVoid

Privilege:Public

UpdateDBLoadTime - This operation will update a scheduled time of loading to the
Management Data base.

Arguments:RWCollectableTime&, MsMdConfigurationList*

Return Type:EcTVoid

Privilege:Public

UpdateEntryL oadTime - This operation will update a next scheduled time for a host.
Arguments:MsMdScheduleEntry*, MsMdConfigurationList*

Return Type:EcTVoid

Privilege:Public

UpdateTime - This operation will return an updated time.
Arguments:RWSortedVector&, RWCollectableTime&, RWinteger&
Return Type:RWCollectableTime

Privilege:Public

~M sMdScheduleList - This operation serves as the default destructor.
Arguments:

Return Type:Void
Privilege:Public

Associations:

The MsMdSchedule class has associations with the following classes:
Class: MsMdManager manages

6-329 305-CD-029-002

6.10.3.15 MsMdScheduleEntry Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the schedule entry for a single managed MSS host logfile.

Attributes:

myHostName - This attribute represents the hostname to which the schedule entry applies.
Data Type:RWCString

Privilege:Private

Default Value:

myNextEntryTime - the next scheduled time for this log file to be transferred.
Data Type:RWCollectableTime

Privilege:Private

Default Value:

Operations:

GetHostName - This operation will return the name of the host.
Arguments:

Return Type:RWCString

Privilege:Public

GetNextEntryTime - This operation will return the next time of the applied host.
Arguments:

Return Type:RWCollectableTime

Privilege:Public

MsMdScheduleEntry - this operation serves as the constructor for the
MsMdScheduleEntry class..

Arguments:RWCSting, RWCollectableTime

Return Type:Void

Privilege:Public

MsMdScheduleEntry - This operation serves as the constructor with only the time.
Arguments:RWCollectableTime&

Return Type:Void

Privilege:Public

MsMdScheduleEntry - This operation serves as the default constructor for the

6-330 305-CD-029-002

MsMdScheduleEntry class.
Arguments:

Return Type:Void
Privilege:Public

MsMsScheduleEntry - This operation serves as the copy constructor for the
MsMdScheduleEntry class.

Arguments:MsMdScheduleEntry&

Return Type:Void

Privilege:Public

compar eTo - This operation compare two times to sort the time in a collection.
Arguments:RWCollectable*

Return Type:EcTInt

Privilege:Public

~MsMdScheduleEntry - This operation serves as the default destructor for the
MsMdScheduleEntry class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdScheduleEntry class has associations with the following classes:
MsMdSchedule (Aggregation)

6.10.3.16 MsMdUserInterface Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the user interface to the Management Data Access Services. From this
interface, MSS logfile data can be browsed, sorted, and filtered. Additionally this interface
provides the functionality to update the MDA configuration parameters.

Attributes:
None

Operations:

6-331 305-CD-029-002

Browsel ogFileData - This allows a user to retrieve and browse data based on the current
filter.
Arguments:
Return Type:Void
Privilege:Public
PDL:MsMdUserInferface::BrowseLogFileData ()
{

/ obtain values from user interface

Host = ::GetHostName

StartDate = ::GetStartDate

StopDate = ::GetStopDate

/I display data to user screen
::Display (MsMdManager::GetLogFileData (HostName, StartDate, StopData)

¥

DisplayConfiguration - This method provides the ability to edit the current configuration
parameters for MDA.
Arguments:
Return Type:Void
Privilege:Public
PDL:MsMdUserlInterface::DisplayConfiguration ()
{
Il get each Configuration item
Configltem = MsMdConfigurationList::GetNextEntry (NULL)
while (Configltem is a ligal item) {

/I display the configuration item to the screen
::Display (Configltem)

Configltem = MsMdConfigurationList::GetNextEntry (Configltem)
¥

/I if the user wants to modify a configuration item, then call
on modify: call MsMdUserlnterface::EditConfiguration (SelectedConfiguration)

¥

DisplaySchedule - This method displays the current schedule for log file transfers.
Arguments:
Return Type:Void
Privilege:Public
PDL:MsMdUSerInferface::DisplaySchedule ()
{
// retrieve all the schefule entries
ScheduleEntry = MsMdSchedule::GetNextEntry (NULL)

6-332 305-CD-029-002

while (ScheduleEntry is legal entry) {

/I display the schedule entry
::DisplayScheduleEntry (ScheduleEntry)

ScheduleEntry = MsMdSchedule::GetNextEntry (ScheduleEntry)
}

¥

EditConfiguration - This operation allows the configuration of log transfers.
Arguments:MsMdConfigurationEntry

Return Type:Void

Privilege:Public

MsMdUserlInterface - This operation represents the default constructor for the class
MsMdUserInterface.
Arguments:

SetChainTransl D - This operation allows an event transactionID to be entered via the user
interface for the purpose of event chaining.
Arguments:childID

SetFilter - This operation allows a user to set a filter.
Arguments:filter

Return Type:Void

Privilege:Public

SortL ogFile -
Arguments:sortMethod
Return Type:Void
Privilege:Public

~MsMdUserinterface - This operation represents the default constructor for the
MsMdUserInterface class.

Arguments:

Return Type:Void

Privilege:Public

Associations;

The MsMdUserInterface class has associations with the following classes:
Class: MsMdLogBrowser
Class: MsMdManager accesses

6-333 305-CD-029-002

6.10.4 Management Data Access Dynamic Model

6.10.4.1 User Browses Logfile Data
Figure 6.10-3 contains the event trace diagram for the browse log scenario.

6.10.4.1.1 Beginning Assumptions
None.

6.10.4.1.2 Interfaces with Other Subsystems and Segments
CSS (via CsFtFTPRelA)

6.10.4.1.3 Stimulus
The user requests to browse log file data from the MDA user interface.

6.10.4.1.4 Participating Classes From the Object Model
MsMdUserInterface

MsMdManager

MsMdAggregateLogFileList

MsMdAggregateLogEntry

CsFtFTPRelA

MsMdArchivelLog

6.10.4.1.5 Beginning System, Segment and Subsystem State(s)
The system, segment and the subsystem are in a normal, steady state.

6.10.4.1.6 Ending State
The user is provided the log file browser and the requested data.

6.10.4.1.7 Scenario Description

From the MDA user interface, a user requests to browse log file data. This request specifies a time
period, host name and filter. The MsMdManager examines the request criteria to calculate the
location of the data. In this scenario, the time period specified is assumed to be large enough to
require that data be extracted from: the ECS Data Archives, MSS server, and a managed host. It
should be noted that this situation is unlikely, and is demonstrated in this scenario purely to
illustrate the method for retrieving data from all sources.

To retrieve the data from archive, a request is made to the ECS Data Archives. When the data has
been returned, the required filter is applied to the data. Next the data from the managed host is
transferred to the MSS server. This data is appended to the MsMdAggregateLogFile for the
particular host. Finally, the same MsMdAggregateLogFile is read and the proper data filtered out.
The union of this data and that retrieved from the archives is returned to the MDA user interface.

At this point the interface allows the user to request additional sorting and filtering on the retrieved
data.

6-334 305-CD-029-002

GeE-9

¢00-6¢0-dd-S0€

User MsMdUserlInterface MsMdManager

| BrowselogFileDatag—>

| SortLogFileQ———

SetFilterQ

| GetLogFileData(RWCString, RWTime, RWTime)s]
| GetlLogEntry(RWCString& RWTime, RWTime)—>>
restoreGuts(RWFile&)

MsMdAggregateLogFileList MSMdAggregateLogENtry csptrTpRelA

TransferLogFile(MsMdScheduleLidt*,MsMdConfigurationList

RetrieveArchivedLogFile(RWCString, RWTime,

ReturnData

A

Figure 6.10-3. User Browses Log File Data

RWTime)

MsMdArchiveLog

6.10.5 Management Data Access Dynamic Model

6.10.5.1 User Chains Events
Figure 6.10-4 contains the event trace diagram for the User Chains Logfile Data scenario.

6.10.5.1.1 Beginning Assumptions
None.

6.10.5.1.2 Interfaces with Other Subsystems and Segments
CSS (via CsFtFTPRelA)

6.10.5.1.3 Stimulus
The user requests to chain log file data from the MDA user interface.

6.10.5.1.4 Participating Classes From the Object Model
MsMdUserInterface

MsMdManager

MsMdAggregateLogFileList

MsMdAggregateLogEntry

MsMdLogBrowser

CsFtFTPRelA

MsMdArchivelLog

6.10.5.1.5 Beginning System, Segment and Subsystem State(s)
The system, segment and the subsystem are in a normal, steady state.

6.10.5.1.6 Ending State
The user is provided the log file browser and the requested data.

6.10.5.1.7 Scenario Description

From the MDA user interface, a user requests to browse log file data. This request specifies a time
period, host name and filter. The MsMdManager examines the request criteria to calculate the
location of the data. In this scenario, the time period specified is assumed to be large enough to
require that data be extracted from: the ECS Data Archives, MSS server, and a managed host. It
should be noted that this situation is unlikely, and is demonstrated in this scenario purely to
illustrate the method for retrieving data from all sources.

To retrieve the data from archive, a request is made to the ECS Data Archives. When the data has
been returned, the required filter is applied to the data. Next the data from the managed host is
transferred to the MSS server. This data is appended to the MsMdAggregateLogFile for the
particular host. Finally, the same MsMdAggregateLogFile is read and the proper data filtered out.
The union of this data and that retrieved from the archives is returned to the MDA user interface.

6-336 305-CD-029-002

LEE-9

¢00-6¢0-dd-S0€

User MsMdLogBrowser

BrowseLogFileDatag)

MsMdUserlInterface

I SetChain

| Getl ogFileData()RWCString, RWTime, RWTime)}— >~

|—GetLogEntry(RWCSTtring, RWTime,RWTime)—

MsMdManager MsMdAggregateLogFileList MsMdAggregateLogEntry

restoreGuts(RWFile&.

TransferLogFile(Schedulelst*, MsMdConfigurationListt..)

CsFtFTPRelA

Return Data

RetrieveArchiveHLogFile(RWCString, RWTime, RWT|

MsMdArchiveLog

ransID(RWStringy—— 59
l«——ChainEvents(}

Figure 6.10-4. User Chains Logfile Data

At this point the interface allows the user to chain events by inputting an event TransactionID. The
event chain sequence is computed and returned to the user interface.

6.10.6 Management Data Access Dynamic Model

6.10.6.1 MSS Logfileis Processed
Figure 6.10-5 contains the event trace diagram for the Process Logfile scenario..

6.10.6.1.1 Beginning Assumptions
None.

6.10.6.1.2 Interfaces with Other Subsystems and Segments
CSS (via CsFtFTPRelA)

6.10.6.1.3 Stimulus
An MSS logfile requires processing and transfer to the management database.

6.10.6.1.4 Participating Classes From the Object Model
MsMdManager

MsMdAggregateLogFileL.ist

MsMdAggregateLogEntry

MsMdEventL.ist

CsFtFTPRelA

MsMdArchivelLog

ManagementRDBMS

6.10.6.1.5 Beginning System, Segment and Subsystem State(s)
The system, segment and the subsystem are in a normal, steady state.

6.10.6.1.6 Ending State
The MSS logfile on a managed host is processed and transferred to the management database..

6.10.6.1.7 Scenario Description

An MSS logfile is scheduled to be processed and transferred to the management database. The
MsMdManager utilizes the MsMdAggregateLogfileList to determine location of the data. The
MsMdManager then initiates the processing by retrieving the logfile data. Once the data has been
retrieved, MsMdProcessEvent determines the active modes of the managed host from which the
processing is occurring by reading that host's active mode-configuration file. This information is
then used by MsMdProcessEvent to open the appropriate management databases (a management
database will exist for each active mode). MsMdProcessEvent will process, then transfer the
logfile records to their appropriate management database according to the event's mode. When all
of the logfile records have been transferred, the open management databases will be closed.

6-338 305-CD-029-002

6€€-9

¢00-6¢0-dd-S0€

MsMdManager MsMdProcessEvent MsMdAggregateLogEntry CsFtFTPRelA

L GetlogEntry(|

WCString&, RWTime, RWTimg)— 5

ProcessLogFile(RWCStrirjg&)-

<< lodffile records returned.

GetActiveModes(RWCString&)-

Current Mode File

QpenMgmtDBS(RWCString&, RWCStri

ManagementRDBMS

ProcessEvent(EcAgEvent&.)

Figure 6.10-5. Process Logfile Scenario

At this point, the remote logfile has been transferred to the MDA, logfile records processed, and
the records written to the management database. The MsMdManager is then ready to process other
remote logfiles, as necessary.

6.10.7 Management Data Access Structure

Table 6.10-1. Management Data Access Components

Component Name COTS/Custom
Management Data Access Services Custom
Management Data Access User Interface Custom

6.10.7.1 Management Data Access Services CSC
Purpose and Description

The Management Data Access Services CSC provides the ability to centralize and retrieve
management log file data. Additionally it is responsible for accumulating metrics and loading them
to the Management RDBMS.

Mapping to objects implemented by this component
MsMdManager (C++ code)
MsMdConfigurationList (C++ code)
MsMdConfigurationEntry (C++ code)
MsMdSchedule (C++ code)
MsMdScheduleEntry (C++ code)
MsMdAggregateLogFileList (C++ code)
MsMdAggregateLogEntry (C++ code)
MsMdEventList (C++ code)
MsMdEventField (C++ code)
MsMdProcessEvent (C++ code)
MsMdLogBrowser (C++ code)

6.10.7.2 Management Data Access User Interface CSC
Purpose and Description

The Management Data Access User Interface CSC provides the user interface functionality which
allow the users to configure MDA and to browse, sort, and filter log file data.

Mapping to objects implemented by this component
MsMdUserInterface (C++ code / X-Windows design)

6-340 305-CD-029-002

6.10.8 Management Data Access Management and Operation

6.10.8.1 System Management Strategy

The Management Data Access Service will utilize the MSS Management framework for reporting
fault and performance data, as well as lifecycle services. The EcCAgManager class will be imported
in order to provide this functionality. Example event data this application will log includes:

» start/end of an MDA user interface

» start/end of a browse request

» start/end of a scheduled log file transfer

» MDA Service faults (transfer errors, DCE errors, etc.)

6.10.8.2 Operator Interfaces

The Management Data Access Service will provide the MsMdUserInterface class as its graphical
user interface. This interface will allow log file data to be browsed, filtered, sorted, chained and
saved. Additionally, this interface will provide the ability to view and change the configuration of
MDA parameters including scheduling, processing and database load times.

6.10.8.3 Reports
The Management Data Access Service does not provide reports.

6.11 Management DBMS and Database

6.11.1 Overview

A COTS Database Management System (DBMS), for which Sybase has been selected, provides
the data storage and retrieval functions a database that is designed to store all ECS management
data. This repository is used by management applications to share management data. Additionally,
from this central repository the M&O Staff will use to perform ad hoc statistical analysis and
generate ad hoc reports to satisfy the ECS report generation requirements. A COTS Report
Generation product will provide the user interface procedures that construct queries in Sybase
SQL format, compute query based results, and format reports for printing and display.

6.11.2 Implementation

The Management Database architecture is an implementation of the ANSI Three-Schema
Architecture. The Internal schema is implemented using the—a—client/server paradigm. The
programming interface to the Management DBMS is provided by the vendor to create, modify, and
update the management data tables and fields. This programming interface is Structured Query
Language (SQL)-2 compliant. The human/programming interface to the Report Generator is
provided by the vendor to generate standard and/or ad hoc reports. The human interface is Motif
compliant.

6-341 305-CD-029-002

6.12 User Comment Survey

6.12.1User Comment Survey Overview

The User Comment Survey is a server which manages the user comment surveys which are made
available to any user who wishes to provide comments and suggestions about the ECS system.

The surveys are organized by categories. A category may represent a capability of the ECS system.
For each category there is a survey which is a list of questions and one general comment field. The
user can enter an answer for any or all of the questions and the user may enter any general comment
in the comment field. The User Comment Survey server stores all responses in a database which
can be accessed to generate reports.

When a survey is used by a register ECS user, the user's existing responses to the survey will be
retrieved from the database and displayed to the user. The user can then modify his responses, but
whatever is in the survey response area when the user exits the survey will replace what is currently
stored in the database.

If a guest user accesses the survey, his previous responses are not filled in to the survey and when
responses are entered for the survey, new entries are made in the database for the responses.

6.12.2User Comment Survey Context

The User Comment Survey Service, as shown in the context diagram, Figure 6.12-1, interfaces
with the Client and the Management Agent. The information exchanged across these interfaces, as
shown in the diagram, is described here.

The Client Subsystem requests the comment survey information to display the survey categories,
the survey questions and the user's current answers in response to the user's actions. The User
Comment Survey server provides the requested information. The Client Subsystem also sends
updated answers and comments to the User Comment Survey server to be updated in the database.

The User Comment Survey server performs management requests received from the Management
Agent, such as startup and shutdown and sends performance information as well as error
information to the Management Agent.

6.12.3User Comment Survey Object Model

The MsCsSurveyMgr class is the manager class for the server and that class performs most of the
significant functions. The MsCsSurveyMgr class receives and responds to inputs received from
the Client Subsystem. The MsCsSurveyMgr is also considered an interface class to the Sybase
Database which is where the comment survey data is stored.

The server is managed by the ECS Process Framework (EcPfManagedServer) which provides the
communication framework as well as the interface to the Management Agent. As part of the server
startup, the McCsProcessingTimeMetric performance metric is registered with the framework so
that the Management Agent can request and set the value of the metric. The MsCsTimer is the class
which provides the server the mechanism for collecting the processing time.

The User Comment Survey object model is shown in Figure 6.12-2.

6-342 305-CD-029-002

Mangement Agent

A

Mangement Requests

event data

This System

User Comment Survey

Survey Answers and Comments,
Survey Requests,
Answer Requests

Survey,

Survey Answers/Comments

Client

Figure 6.12-1. User Comment Survey Context Diagram
6.12.3.1 EcAgPerfMetric Class
Parent Class:Not Applicable
Public:No
Distributed Object:No

Purpose and Description:
This metric contains performance data.

Attributes:
None
Operations:

None

6-343 305-CD-029-002

vveE-9

¢00-6¢0-dd-S0€

Offpage

RWDBManager

Offpage
RWDBTable

Offpage

RWDBSelector

Offpage
EcPfManagedServer

[Public]

JAN

MsCsSurveyMgr

Offpage

RWDBResult

db : RWDBDatabase
answerSetMuteXDCEPthreadMutex
nextAnswerSetidEcTLongInt

Offpage

RWDBMemTable

Offpage

RWDBReader

Offpage

RWDBConnection

EcCsSurveyM d% RWCStrln dbType, RWCString& dbServer, RWCString& dbUse
RWCString& assword, WCStnng& dbName)
RetrieveCategories(MsTCsCategoryList **categoryList, EcTLongIntEeTioo6gbfe)
RetrleveSurv’e\stTCsUserld userld, EcTLonglnt categoryld, MsTdsSuroaglist
**surveyList, MsTCsComment comment, EcTLonglInt *errorCode)

Offpage
EcAgPerfMetric

JAN

MsCsProcessingTimeMetric

update

UpdateSurvey(MsTCsUserld userld, EcTLo_l%lnt categoryld MsTESoagl
**surveyList, sTCsComment comment, Ec ongint errorCode)
RetrieveComment(RWDBConnection& connection, EcTLonglInt category|d, B¢INos
userld, EcTLongInt answerSetld, RWCString& commem)

Userld

UpdateComment(RWDBConnection& connection, EcTLonglInt categoryld, E&STNGstlserld

userld, EcTLongInt answerSetld, RWCString& comment)
PopulateNextAnswerSet(RWDBConnection& connection, MsTCsUserld usereeBéd
categoryID)

IsGuest(MsTCsUserld use&d)lBoolean

ReadConfigFile(EcTChar *MsTCsConfig&EBpolean

idongInt

Offpage

RWDBDeleter

Offpage

RWDBSchema

Offpage

RWDBInserter

determine time routine executed

MsCsTimer

- startTime struct timeval
- endTime struct timeval
-tz :struct timezon

+

EcCsTimer()
GetMicroSecs(EcTLongint

+

Figure 6.12-2. User Comment Survey Object Model

procTime EcTLonglInt
procTimeMuteXDCEPthreadMutex

++

GetProcTime(EcTLongInt
SetProcTime(EcTLongInt newTqu)\/oid

Associations:

The EcAgPerfMetric class has associations with the following classes:
None

6.12.3.2 EcPfManagedServer Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is the container class that starts up the event Manager, table Manager, monitor, port
monitor, discoverer, subagent configuration, static buffer, and the deputy gate. This class
also starts a thread that triggers scheduled events (i.e. polling ECS application's
performance metrics).

Attributes:
None

Operations:
None

Associations:

The EcPfManagedServer class has associations with the following classes:
None

6.12.3.3 MsCsProcessingTimeMetric Class

Parent Class:EcAgPerfMetric

Public:No

Distributed Object:No

Purpose and Description:

This is a performance collecting metric reporting class. This class uses the performance
data collecting metric key mechanism. This class will be registered with the ECS Process
Framework which enables the Management Agent to get the value of the metric and to set
the value of the metric. The metric is the amount of real-time that this process executes.

Attributes:

procTime - This is the metric value which can be set or retrieved. This process sets the
value as it executes and the Management Agent will read this value.

6-345 305-CD-029-002

Data Type:EcTLongInt
Privilege:Private
Default Value:

procTimeMutex - This attribute is used to lock the metric value while it is being read and
written to, in order to prevent the Management Agent from accessing the value when this
process is accessing the value.

Data Type:DCEPthreadMutex

Privilege:Private

Default Value:

Operations:

GetProcTime- Returns the current value of the performance metric.
Arguments:

Return Type:EcTLongInt

Privilege:Public

PDL: No PDL

SetProcTime
Arguments:EcTLongInt newTime
Return Type:EcTVoid
Privilege:Public

Associations:

The MsCsProcessingTimeMetric class has associations with the following classes:
Class: MsCsSurveyMgr update

6.12.3.4 MsCsSurveyMgr Class

Parent Class:EcPfManagedServer

Public:No

Distributed Object:No

Purpose and Description:

This is the Manager class for this process. This class is responsible for taking all of the
inputs to the process and performing the necessary actions. This class also acts as an
interface class for the Sybase database which stores the user survey results. This class
provides methods to read and update the user survey categories, surveys, and comments.

Attributes:

answer SetM utex - Mutex to protect the next answer set 1D.
Data Type:DCEPthreadMutex

6-346 305-CD-029-002

Privilege:Private
Default Value:

db - The survey database.
Data Type:RWDBDatabase
Privilege:Private

Default Value:

nextAnswer Setld - The next available answer set ID (for guest survey).
Data Type:EcTLongInt

Privilege:Private

Default Value:

Operations:

EcCsSurveyMgr - This is the constructor for this class. This class initializes the
connection to the specified Sybase database.

Arguments:RWCString& dbType, RWCString& dbServer, RWCString& dbUser,
RWCString& dbPassword, RWCString& dbName

Return Type:Void

Privilege:Public

PDL: No PDL

IsGuest - This method determines if the passed user ID represents a guest in the system.
Arguments:MsTCsUserld userld

Return Type:EcTBoolean

Privilege:Private

PDL: No PDL

PopulateNextAnswer Set - This method retrieves and populates to the nextAnswerSetld
attribute, the next available answerSetld.

Arguments:RWDBConnection& connection, MsTCsUserld userld, EcTLonglnt
categorylD

Return Type:EcTVoid

Privilege:Private

PDL: No PDL

ReadConfigFile- This method reads the configuration parameters from the configuration
file.

Arguments:EcTChar *MsTCsConfigRec

Return Type:EcTBoolean

Privilege:Private

PDL: No PDL

6-347 305-CD-029-002

RetrieveCategories - This method retrieves the descriptions and icons for all available
survey categories.

Arguments:MsTCsCategoryList **categoryList, EcTLongInt *errorCode

Return Type:EcTLongint

Privilege:Public

PDL: No PDL

RetrieveComment - This method is used internally to obtain the current comment for a
category and user.

Arguments:RWDBConnection& connection, EcTLongint categoryld, MsTCsUserld
userld, EcTLonglInt answerSetld, RWCString& comment

Return Type:EcTVoid

Privilege:Private

PDL: No PDL

RetrieveSurvey - Based on a user id and category, this method returns a structure
containing all the elements of a survey, including questions, current answers and the
comment for the category. For a guest user, the answers returned will always be zero.
Arguments:MsTCsUserld userld, EcTLongint categoryld, = MsTcsSurveyL.ist
**surveyList, MsTCsComment comment, EcTLonglInt *errorCode

Return Type:EcTLongInt

Privilege:Public

PDL: No PDL

UpdateComment - This method is used internally to update the current comment for a
category and user.

Arguments:RWDBConnection& connection, EcTLongInt categoryld, MsTCsUserld
userld, EcTLongInt answerSetld, RWCString& comment

Return Type:EcTVoid

Privilege:Private

PDL: No PDL

UpdateSurvey - Based on a user id and category, this method updates this given survey
answers for the appropriate criteria. For a guest user, a new set of answers is created. For
registered users, the old answers and comments are overwritten.
Arguments:MsTCsUserld userld, EcTLongIint categoryld, = MsTCsSurveyL.ist
**surveyList, MsTCsComment comment, EcTLonglInt *errorCode

Return Type:EcTLongInt

Privilege:Public

PDL: No PDL

Associations:

6-348 305-CD-029-002

The MsCsSurveyMgr class has associations with the following classes:
Class: RWDBConnection
Class: RWDBDeleter
Class: RWDBInserter
Class: RWDBManager
Class: RWDBMemTable
Class: RWDBReader
Class: RWDBResult
Class: RWDBSchema
Class: RWDBSelector
Class: RWDBTable
Class: MsCsTimer determinetimeroutineexecuted
Class: MsCsProcessingTimeMetric update

6.12.3.5 MsCsTimer Class

Parent Class:Not Applicable
Public:No

Distributed Object:No
Purpose and Description:

This class is used to collect the amount of time (real-time, not CPU) that this process
spends executing. In each method of this process, an object of this class is constructed and
at the end of the method, the GetMicroSecs method is called. This results in the duration
that the method was executed.

Attributes:

endTime - This attribute is set to the current time when the process temporarily stops
processing.

Data Type:struct timeval

Privilege:Private

Default Value:

startTime- This attribute is set to the current time when this class is constructed.
Data Type:struct timeval

Privilege:Private

Default Value:

tz - A default timezone which is used when the current time is recorded at the beginning
and the end of processing.

Data Type:struct timezone

Privilege:Private

Default Value:

6-349 305-CD-029-002

Operations:

EcCsTimer - The default constructor of this class. The current time is recorded when the
object is constructed.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

GetMicroSecs- This method gets the current time of day and subtracts that value from the
time recorded when the class was constructed. This results in the amount of real-time that
was expended since the class was constructed.

Arguments:

Return Type:EcTLongint

Privilege:Public

PDL: No PDL

Associations:

The MsCsTimer class has associations with the following classes:
Class: MsCsSurveyMgr determinetimeroutineexecuted

6.12.3.6 RWDBConnection Class
Parent Class:Not Applicable

Attributes:
None

Operations:
None

Associations:

The RWDBConnection class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.7 RWDBDeleter Class
Parent Class:Not Applicable

6-350 305-CD-029-002

Attributes:
None
Operations:
None

Associations:

The RWDBDeleter class has associations with the following classes:

Class: MsCsSurveyMgr

6.12.3.8 RWDBInserter Class
Parent Class:Not Applicable

Attributes:
None
Operations:
None

Associations:

The RWDBInserter class has associations with the following classes:

Class: MsCsSurveyMgr

6.12.3.9 RWDBManager Class
Parent Class:Not Applicable

Attributes:
None
Operations:

None

6-351

305-CD-029-002

Associations:

The RWDBManager class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.10 RWDBMemTable Class
Parent Class:Not Applicable

Attributes:
None
Operations:
None

Associations:

The RWDBMemTable class has associations with the following classes:

Class: MsCsSurveyMgr

6.12.3.11 RWDBReader Class
Parent Class:Not Applicable

Attributes:
None

Operations:
None

Associations:

The RWDBReader class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.12 RWDBResult Class
Parent Class:Not Applicable

6-352

305-CD-029-002

Attributes:
None

Operations:
None

Associations:

The RWDBResult class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.13 RWDBSchema Class
Parent Class:Not Applicable

Attributes:
None
Operations:
None

Associations:

The RWDBSchema class has associations with the following classes:

Class: MsCsSurveyMgr

6.12.3.14 RWDBSelector Class
Parent Class:Not Applicable

Attributes:
None
Operations:

None

6-353

305-CD-029-002

Associations:

The RWDBSelector class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.15 RWDBTable Class
Parent Class:Not Applicable
Attributes:
None
Operations:
None

Associations:

The RWDBTable class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.4 User Comment Survey Dynamic Model

6.12.4.1 User Fills Out A Survey
This scenario is depicted in Figure 6.13-3.

6.12.4.1.1 Beginning Assumptions
None.

6.12.4.1.2 Interfaces with Other Subsystems and Segments
Client

6.12.4.1.3Stimulus

A user selects the user survey tool to update or enter answers to survey questions for a survey or
enter a comment for a survey.

6.12.4.1.4Participating Classes From the Object Model
MsCsSurveyMgr

6.12.4.1.5Beginning System, Segment and Subsystem State(s)
The system, segment and subsystem are in a steady state.

6-354 305-CD-029-002

User CLS MsCsSurveyMgr

Select The User Survey Tool —>>

RetrieveCategories() ———— >
IsGuest() |
<<
retrieve category list
from DB
<<
l<——— Display Survey Categories
Select a Survey Category ———>>
RetrieveSurvey() ———— >
IsGuest() |
<<
retrieve survey and answers
B (if not guest) from DB
<<

RetrieveComment()

[(if not guest) _‘
<<

Display Survey with Previous Answers
<< (if any) Filled In

Update Survey Answers and/or >
Comment and Exit the Tool

UpdateSurvey() ——— >

IsGuest()
<<
—— update answers in the DB ——
<<

UpdateComment()

in the DB

<<

Figure 6.12-3. User Fills Out A Survey

6.12.4.1.6Ending State
The system, segment and subsystem are in a steady state.

6.12.4.1.7Scenario Description

When the user starts the User Comment Survey tool, the client subsystem issues a request for the
survey categories from MsCsSurveyMgr. MsCsSurveyMgr checks to see if the user is a guest user
and performs guest user unique initialization. The survey categories are retrieved from the
Database and returned to CLS to be displayed to the user.

6-355 305-CD-029-002

When the user selects a survey category to display, CLS issues a request for the survey from
MsCsSurveyMgr. MsCsSurveyMgr again checks to see if the user is a guest user. The survey
questions are retrieved from the database. If the user is not a guest, the user's current survey
responses and the user's current comment are retrieved from the Database. The questions, answers,
and comment are returned to CLS to be displayed to the user.

The user will then update or add their responses to the survey questions and will also update the
comment field of the survey. When the user exits the survey, CLS sends the answers and comment
to MsCsSurveyMgr. MsCsSurveyMgr replaces the user's current responses with the received
responses and replaces the comment field if the user is not a guest. For guest users, new entries are
made in the database to store the answers and comment.

6.12.5 User Comment Survey Structure
Table 6.12-1 lists the components of the User Comment Survey Service.

Table 6.12-1. User Comment Survey Components

Component Name COTS/Custom
MsCsSurveyMgr Custom(C++ code)
MsCsTimer Custom(C++ code)
MsCsProcessingTimeMetric | Custom(C++ code)

6.12.5.1 Survey Manager CSC
Purpose and Description
The survey manager CSC includes all of the classes for this CI.

6.12.6User Comment Survey Management and Operation

6.12.6.1 System Management Strategy

The User Comment Survey Management Strategy utilizes the MSS Management Agent Services
and the ECS Process Framework (EcPfManagedServer) for its management.

6.12.6.2 Operator Interfaces
The Client Subsystem is providing the user interface for this server.

6.12.6.3 Reports
The following predefined User Comment Survey reports will be available:

Survey Answers By User -- report which lists the answers stored for a specified user for a specified
survey.

Survey Answers By Question -- report which lists all of the answers for a particular survey
question.

Survey Answers By Category -- report which lists all of the answers for all questions for a
particular category.

Comments by User -- report which lists all of the comments a user had (for each category).

6-356 305-CD-029-002

Comments by Category -- report which lists all of the comments from all of the users for a specified
category.

Other user comment survey reports will be generated on an ad hoc basis.
6.13 Enterprise Framework Management Service

6.13.1 Enterprise Framework Management Overview

The Enterprise Framework Management Service is collection of system administration tools which
are integrated using the Tivoli Management Environment. The Enterprise Framework
Management tools provide the operator the ability to administer the underlying framework of the
ECS system.

The Enterprise Framework Management Service consists of the following administrative
capabilities: Software Distribution (described in detail in Software Distribution Management,
Section 5.7 of this document - 305-CD-029-002), Event Monitoring (described in detail in Fault
Management, Section 6.5 of this document - 305-CD-029-002), and System Administration.

System Administration consists of the tools required to administer the underlying system
framework of ECS. System Administration consists of Unix Administration, Database
Administration, DCE Cell Administration, and System Backup.

Unix Administration will be performed using the Tivoli Admin product. Tivoli Admin is a tool
which provides a Graphical User Interface for the administration of a distributed heterogeneous
Unix system. Tivoli Admin manages the following resources: Unix Host, NIS Maps, Host
Namespace, Unix Users, Unix Groups.

Database Administration will be performed for the Sybase DBMS using the ESSM Tivoli Plus
Module. ESSM is an extension to Tivoli's administrative toolset that provides a Graphical User
Interface for Sybase Database Administration. ESSM provides the subset of Sybase DBA
capabilities which are necessary to perform on a regular basis.

DCE Cell Administration will be performed by Hewlett Packard's DCE Cell Management tools
that are provided as part of HP's DCE Core Services. The HP tool set includes the following: CDS
Browser to administer the Cell Directory Service, acctmgr to administer the DCE Security Server,
DCE Cell Configurator (integrated with HP's SAM tool) to administer the DCE cell configuration,
and CellMon to monitor the status of the DCE Cell. The HP DCE Administration tool set is not
integrated with Tivoli, but Tivoli will be used to provide an integrated desktop which will present
icons representing the tools to the operator. The operator will be able to launch the DCE tools from
the Tivoli desktop.

In support of site-wide ECS backup, the DAAC configuration at EDC includes Legatto's
Networker software for network storage management. It provides a suite of integrated tools for
backup and recovery, archive and retrieval, hierarchical storage management, on-line database
backup and system management tool integration. It works on multi-platform networks, is motif-
based with on-line help, supports concurrent device support for parallel backup and recovery using
up to 16 storage devices. Both scheduled and ad-hoc backups, recoveries and other data
management services can be performed by authorized users.

6-357 305-CD-029-002

Site-wide system backup will be performed by Legato Systems, Inc's NetWorker product.
NetWorker provides a suite of integrated tools for backup and recovery, archive and retrieval,
hierarchical storage management and on-line database backup. The product supports multi-
platform networks, contains a motif-based GUI with on-line help, and supports concurrent device
support for parallel backup and recovery using up to 16 storage devices. Both scheduled and ad-
hoc backups, recoveries and other data management services can be performed by authorized
users. NetWorker software consists of two components: a client portion, which runs on the
systems to be backed up, and a server portion, which is the system to which the backup devices are
connected. The client portions will send the data to be backed up to the server portion which then
writes the data out to disk.

6.13.2 Enterprise Framework Management Context

The Enterprise Framework Management Service, as shown in the context diagram, Figure 6.13-1,
interfaces with . The information exchanged across these interfaces, as shown in the diagram, is
described here.

Mangement Agent

[\

Support Staff

N

DCE Servers

\

Mangement Requests
event data

Framework Management Commands
Administrative Commands

This System

inistration Results, Status———

Framework Management Displays
Notifications

nterprise Framewol
Management

/ Recovered Fil

A—T"

ftware Distributiors———————————>> ECS On-Line Storage Disks
——Administration Results, St

Administrative Commands Sygtem Backup Data
Admirfistrative Commands

Administration Results, Status

ECS Unix Operating Systems System Backup Tape Stacker

Sybase DBMS

Figure 6.13-1. Enterprise Framework Context Diagram

6-358 305-CD-029-002

The Enterprise Framework receives commands from the support staff, implements the commands
on the selected systems or servers and displays the results back to the support staff. In addition,
unsolicited notifications are also sent to the support staff. The Enterprise Framework interfaces
with the objects which are being managed. This includes the Unix Operating Systems running on
all of the ECS machines, the Sysbase DBMS servers running on the ECS machines, the DCE
Servers (Security and CDS), and the hardware including on-line storage disks for software
distributions and the tape stacker for files to be backed up and files to be recovered.

Portions of the Enterprise Framework Management Service perform management requests
received from the Management Agent, such as startup and shutdown.

6.13.3 Enterprise Framework Management Object Model

The object model shows three different hierarchical trees. The primary hierarchy represents the
breakdown of the EnterpriseFramework into its parts. At the first level of the
EnterpriseFramework hierarchy, the Enterprise Framework consists of MsEfSorftwareDistribution
for delivering software or other files to all ECS computers, MsEfEventMonitoring for receiving
and correlating fault messages, and MsEfSystemAdmin which represents the collection of system
administration tools for ECS. MsEfSystemAdmin consists of MsEfUnixAdmin for the
administration of all of the Unix systems in ECS, MsEfDatabaseAdmin for the administration of
all of the Sybase DBMSs in the ECS system, and MsEfSystemBackup for performing backup and
recover actions on the ECS system.

The second hierarchy in the model represents the underlying distributed framework for the Tivoli
product (MsTfTivoliFramework). This framework is what allows Tivoli products and products
integrated into Tivoli to administer our distributed heterogeneous system. The Tivoli framework
provides a CORBA compliant object and message passing mechanism which is used by all Tivoli
products. The Tivoli Framework consists of one Tivoli Server (MsEfTivoliServer) and one Tivoli
Client (MsEfTivoliClient) at each ECS machine.

The third hierarchy consists of the proxy agents to the ECS Management Agent which are used to
allow those portions of the COTS products which are always running to be started up and shutdown
as part of the entire ECS system.

The Enterprise Framework Management Service object model is shown in Figure 6.13-2.

6.13.3.1 EcAgCOTSManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

this abstract class embodies the characteristics and functionality of a manager object
responsible for managing a single COTS process. It encapsulates all MSS management
application functions into a single class. The COTS proxy agent developer is responsible
for inheriting from this class and specializing it towards the COTS process to manage.

6-359 305-CD-029-002

09¢€-9

¢00-6¢0-dd-S0€

Offpage

EnterpriseFramework

COoTS | Offpage

COTs

Offpage

Offpage

MsEfSoftwareDistribution

provide distributed framework

COoTs

MsEfEventMonitoring

MsEfSystemAdmin

Tivoli Courier

rovide distributed framework—— |
Offpage

MsTfTivoliFramework

Tivoli Manggement Framework

provide distributed framework

Tivoli Enterprise Console

COTS Offpage

L provide distributed framework— |

MsEfUnixAdmin

coTs Offpage

MsEfTivoliServer

TMR Server

manages

Tivoli Admin
COTs Offpage
MsEfTivoliClient Offpage
EcAgCOTSManager
TMR dlient
manages

COTS Offpage

MsEfDatabaseAdmin

ESSM Tivoli Plus Module

MsEfTivoliServerProxy

MsEfTivoliAgentProxy

MsEfNetworkerProxy

COoTS Offpage

COoTS Offpage

MsEfDceAdmin

MsEfSystemBackup

HP CDS Browser
HP acctmgr
HP CellMon
HP DCE Cell Configurator

manage:

NetWorkegr

MsEfTivoliServerProxy()
~MsEfTivoliServerProxy()
Startup() : EcTVoid
Shutdown() : EcTVoid

+ + + +

+ + + +

MsEfTivoliAgentProxy()
~MsEfTivoliAgentProxy()
Startup() : EcTVoid
Shutdown() : EcTVoid

+ + + +

MsEfNetworkerProxy()
~MsEfNetworkerProxy()
Startup() : EcTVoid
Shutdown() : EcTVoid

Figure 6.13-2. Enterprise Framework Management Service Object Model

Attributes:
None

Operations:
None

Associations:

The ECAgCOTSManager class has associations with the following classes:
None

6.13.3.2 EnterpriseFramework Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

EnterpriseFramework is the Tivoli COTS product the performs enterprise wide services:
System Administraton (Tivoli/Admin), Software distribution (Tivoli/Courier),
performance monitoring (Tivoli/Sentry) and fault correlation (Tivoli/Enterprise Console).
The framework also acts as the integrated desktop for Maintenance and Operations,
integrating other administrative functions such as Sybase database administration, system
backup/restore, and DCE Cell administration.

Attributes:
None

Operations:
None

Associations:

The EnterpriseFramework class has associations with the following classes:
None

6.13.3.3 MsEfDatabaseAdmin Class

Parent Class:MsEfSystemAdmin
Public:No

6-361 305-CD-029-002

Distributed Object:No

Purpose and Description:

This class represents the ESSM Tivoli Plus COTS module. This product extends the Tivoli
product by providing a Database Administration for Sybase databases. The product
contains the subset of database administration features that are perfomred on a regular
basis. The product runs on top of the Tivoli Framework which allows the administration
tool to be run from the Tivoli desktop when the desktop is launched from any machine in
ECS.

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The MsEfDatabaseAdmin class has associations with the following classes:
Class: MsTfTivoliFramework providedistributedframework

6.13.3.4 MsEfDceAdmin Class

Parent Class:MsEfSystemAdmin

Public:No

Distributed Object:No

Purpose and Description:

This class represents the collection of DCE administration tools which are provided in

Hewlett Packard's DCE Core Services product. The tools include: CDS Browser to

administer the CDS Server, acctmgr to administer the Security Server, DCE Cell

Configurator to administer the DCE cell configuration, and CellMon to monitor the status

of the DCE Cell. While these tools are not integrated with the Tivoli product, the Tivoli

desktop will be set up to allow the operator to launch the tools from the integrated desktop.

Attributes:
All Attributes inherited from parent class
Operations:

All Operations inherited from parent class

6-362 305-CD-029-002

Associations:

The MsEfDceAdmin class has associations with the following classes:
None

6.13.3.5 MsEfEventMonitoring Class

Parent Class:EnterpriseFramework

Public:No

Distributed Object:No

Purpose and Description:

This class represents the Tivoli/TEC (Tivoli Enterprise Console) COTS product. This
product provides a Graphical User Interface fault reporting and fault correlation. Tivoli/
TEC runs on top of the Tivoli Framework which allows the product to perform its functions
on all of the machines in the network at the same time and from the same interface.

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The MsEfEventMonitoring class has associations with the following classes:
Class: MsTfTivoliFramework providedistributedframework

6.13.3.6 MsEfNetworkerProxy Class
Parent Class:ECAgCOTSManager
Public:No
Distributed Object:No
Purpose and Description:
This is a proxy for the NetWorker Server which provides the interface to the ECS
framework for the COTS product. This class interfaces with the management agent for
startup and shutdown commands.

Attributes:

All Attributes inherited from parent class

6-363 305-CD-029-002

Operations:

MsEfNetworker Proxy - This is the default constructor for the class. The startup and
shutdown routines are registered.

Arguments:

Return Type:Void

Privilege:Public

Shutdown - This method performs a normal shutdown for the NetWorker server.
Arguments:

Return Type:EcTVoid

Privilege:Public

Startup - This method starts up the NetWorker server processes.
Arguments:

Return Type:EcTVoid

Privilege:Public

~MsEfNetworkerProxy - This is the default destructor for the class. Any resources
allocated to the object will be returned to the system.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsEfNetworkerProxy class has associations with the following classes:
Class: MsEfSystemBackup manages

6.13.3.7 MsEfSoftwareDistribution Class

Parent Class:EnterpriseFramework

Public:No

Distributed Object:No

Purpose and Description:

This class represents the Tivoli/Courier COTS product. This product provides software
and file distribution capabilities across the ECS hererogenous network. Tivoli/Courier runs
on top of the Tivoli Framework which allows the product to perform the software and file
distribution on all of the machines in the network at the same time and from the same
interface.

Attributes:

6-364 305-CD-029-002

All Attributes inherited from parent class
Operations:
All Operations inherited from parent class

Associations:

The MsEfSoftwareDistribution class has associations with the following classes:
Class: MsTfTivoliFramework providedistributedframework

6.13.3.8 MsEfSystemAdmin Class

Parent Class:EnterpriseFramework

Public:No

Distributed Object:No

Purpose and Description:

This is an abstract class that consists of the collection of tools which are used to perform

system administration functions.
Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The MsEfSystemAdmin class has associations with the following classes:
None

6.13.3.9 MsEfSystemBackup Class

Parent Class:MsEfSystemAdmin

Public:No

Distributed Object:No

Purpose and Description:

This class represents the system backup and restore COTS product NetWorker, by Legato.
While this tool is not integrated with the Tivoli product, the Tivoli desktop will be set up
to allow the operator to launch the tool from the integrated desktop.

6-365 305-CD-029-002

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The MsEfSystemBackup class has associations with the following classes:
Class: MsEfNetworkerProxy manages

6.13.3.10 MsEfTivoliAgentProxy Class

Parent Class:ECAgCOTSManager

Public:No

Distributed Object:No

Purpose and Description:

This is a proxy for the Tivoli Agent which provides the interface to the ECS framework for
the COTS product. This class interfaces with the management agent for startup and
shutdown commands.

Attributes:
All Attributes inherited from parent class
Operations:

MsEfTivoliAgentProxy - This is the default constructor for the class. The startup and
shutdown routines are registered.

Arguments:

Return Type:Void

Privilege:Public

Shutdown - This method performs a normal shutdown for the Tivoli agent.
Arguments:

Return Type:EcTVoid

Privilege:Public

Startup - This method starts up the Tivoli Agent processes.

Arguments:
Return Type:EcTVoid

6-366 305-CD-029-002

Privilege:Public

~MsEfTivoliAgentProxy - This is the default destructor for the class. Any resources
allocated to the object will be returned to the system.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsEfTivoliAgentProxy class has associations with the following classes:
Class: MsEfTivoliClient manages

6.13.3.11 MsEfTivoliClient Class
Parent Class:MsTfTivoliFramework
Public:No
Distributed Object:No
Purpose and Description:
This class represents the agent portion of Tivoli's framework. Tivoli uses the framework
to provide system administration across the distributed heterogenous network. There is one
copy of the agent running on every machine in the Tivoli Management Environment (in
ECS each site will be one Tivoli Management Environment).

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The MsEfTivoliClient class has associations with the following classes:
Class: MsEfTivoliAgentProxy manages

6.13.3.12 MsEfTivoliServer Class

Parent Class:MsTfTivoliFramework

Public:No

Distributed Object:No

Purpose and Description:

This class represents the server portion of Tivoli's framework. Tivoli uses the framework

6-367 305-CD-029-002

to provide system administration across the distributed heterogenous network. There is
only one copy of the server running in the Tivoli Management Environment (which
corresponds to one per site in ECS).

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The MsEfTivoliServer class has associations with the following classes:
Class: MsEfTivoliServerProxy manages

6.13.3.13 MsEfTivoliServerProxy Class

Parent Class:ECAgCOTSManager

Public:No

Distributed Object:No

Purpose and Description:

This is a proxy for the Tivoli Server which provides the interface to the ECS framework for

the COTS product. This class interfaces with the management agent for startup and
shutdown commands.

Attributes:
All Attributes inherited from parent class

Operations:

MsEfTivoliServer Proxy - This is the default constructor for the class. The startup and
shutdown routines are registered.

Arguments:

Return Type:Void

Privilege:Public

Shutdown - This method performs a normal shutdown for the Tivoli server.
Arguments:

Return Type:EcTVoid

Privilege:Public

6-368 305-CD-029-002

Startup - This method starts up the Tivoli Server processes.
Arguments:

Return Type:EcTVoid

Privilege:Public

~MsEfTivoliServerProxy - This is the default destructor for the class. Any resources
allocated to the object will be returned to the system.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsEfTivoliServerProxy class has associations with the following classes:
Class: MsEfTivoliServer manages

6.13.3.14 MsEfUnixAdmin Class

Parent Class:MsEfSystemAdmin

Public:No

Distributed Object:No

Purpose and Description:

This class represents the Tivoli/Admin COTS product. This product provides a Graphical
User Interface to Unix system administration tasks. Tivoli/Admin runs on top of the Tivoli
Framework which allows the product to perform Unix administration on all of the machines
in the network at the same time and from the same interface. For example, Tivoli/Admin
will allow an operator to add a new user account to multiple Unix Machines and/or multiple
NIS domains with one action.

Attributes:

All Attributes inherited from parent class
Operations:

All Operations inherited from parent class
Associations:

The MsEfUnixAdmin class has associations with the following classes:
Class: MsTfTivoliFramework providedistributedframework

6-369 305-CD-029-002

6.13.3.15 MsTfTivoliFramework Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents Tivoli's distributed framework. Tivoli uses the framework to provide
system administration across the distributed heterogenous network. The framework is used
by all components of Tivoli to pass Tivoli objects around the system while performing their
processing.

Attributes:
None

Operations:
None

Associations:

The MsTfTivoliFramework class has associations with the following classes:
Class: MsEfDatabaseAdmin providedistributedframework
Class: MsEfEventMonitoring providedistributedframework
Class: MsEfSoftwareDistribution providedistributedframework
Class: MsEfUnixAdmin providedistributedframework

6.13.4Enterprise Framework Management Dynamic Model

Enterprise Framework Management Service is a collection of tools which enable the operator to
perform administration functions on the ECS system. The tools are all COTS products which
operate independently, so the dynamic model is not applicable to this CSC.

6.13.5Enterprise Framework Management Structure
Table 6.13-1 lists the components of the Enterprise Framework Management Service.

Table 6.13-1. Enterprise Framework Management Service Components (1 of 2)

Object Class Name COTS/Custom
EnterpriseFramework Abstract Class
MsEfSoftwareDistribution COTS (Tivoli Courier)
MsEfEventMonitoring COTS (Tivoli Enterprise Console)
MsEfSystemAdmin Abstract Class
MsEfUnixAdmin COTS (Tivoli Admin)

6-370 305-CD-029-002

Table 6.13-1. Enterprise Framework Management Service Components (2 of 2)

Object Class Name COTS/Custom
MsEfDatabaseAdmin COTS (ESSM Tivoli Plus Module)
MsEfDceAdmin COTS (HP DCE Administration Tools)
MsEfSystemBackup COTS (Legato Systems, Inc's NetWorker)
MsEfTivoliFramework COTS (Tivoli Management Framework)
MsEfTivoliServer COTS (Tivoli Server)

MsEfTivoliClient COTS (Tivoli Client)
MsEfTivoliServerProxy Custom
MsEfTivoliAgentProxy Custom
MsEfNetworkerProxy Custom

6.13.5.1 Software Distribution CSC
Purpose and Description

This CSC manages the distribution of new and updated software to the ECS system. A detailed
description of this functionality is contained in Software Distribution Management, Section 5.7 of
this document - 305-CD-029-002.

6.13.5.2 Event Monitoring CSC
Purpose and Description

This CSC receives and displays to the operator significant events which occur in the system and
provides some automatic correlation of events and automatic recovery from fault events. A
detailed description of this functionality is contained in Fault Management, Section 6.5 of this
document - 305-CD-029-002.

6.13.5.3 System Administration CSC
Purpose and Description

This CSC contains the tools which are used to manage the underlying framework for the ECS
system. These tools include Unix Administration tools, DCE Cell Administration tools, DBMS
Administration tools, and Backup/Restore Administration tools. This CSC also includes the
Backup/Restore client/server software and the associated management of the server.

6.13.5.4 Tivoli Framework CSC
Purpose and Description

This CSC is the underlying framework for the Tivoli product. This CSC consists of a Tivoli server
and many Tivoli clients. This framework provides the distributed environment that enables the
Tivoli tools to administer across the heterogeneous Unix system transparently to the operator. This
CSC also consists of the custom developed components to manage the startup and shutdown of the
Tivoli environment within the ECS infrastructure.

6-371 305-CD-029-002

6.13.6 Enterprise Framework Management Service Management and Operation

6.13.6.1 System Management Strategy

The Management Strategy for this CSC utilizes the MSS Management Agent Services
(EcAgCOTSManager) for its management.

6.13.6.2 Operator Interfaces

The operator interface for this CSC is provided by the individual COTS products. The Tivoli
Desktop will be used to present an integrated desktop environment for the operators. From the
desktop, the operator will be able to access Tivoli functions directly and the operator will be able
to launch the other COTS GUIs from icons on the desktop. The Tivoli Desktop also provides a
mechanism to limit each operator's view into the management toolset. The Tivoli Administrator
operator will setup each operator's desktop and assign operators privileges that will limit what tools
the operator can access.

6.13.6.3 Reports

This CSC is a collection of COTS products. The reports which are available are documented in
the vendor documentation for each product.

6-372 305-CD-029-002

	6. MCI - Management Software CSCI
	Figure 6-1. Management Software CI Context
	6.1 Mode Management
	6.1.1 Mode Management Overview
	Figure 6.1-1. Mode Management Service Interface Ov...
	Figure 6.1-2. HP OpenView Multi-Session View Diagr...

	6.1.2 Mode Management Context
	Figure 6.1-3. Mode Management Context Diagram

	6.1.3 Mode Management Object Model
	Figure 6.1-4. Mode Management Object Model Diagram...

	6.1.4 Mode Management Dynamic Model
	Figure 6.1-5. MMS Mode Activation Event Trace

	6.1.5 Mode Management Structure
	6.1.6 Mode Management Management and Operation

	6.2 Accountability Management
	6.2.1 Accountability Management Overview
	6.2.2 Accountability Management Context
	Figure 6.2-1. Accountability Management Context Di...

	6.2.3 Accountability Management Object Model
	Figure 6.2-2. Accountability Management Object Mod...
	Figure 6.2-3. Accountability Management Object Mod...
	Figure 6.2-4. Accountability Management Object Mod...
	Figure 6.2-5. Accountability Management Object Mod...
	Figure 6.2-6. Accountability Management Object Mod...
	Figure 6.2-7. Accountability Management Object Mod...

	6.2.4 Accountability Management Dynamic Model
	Figure 6.2-8. Retrieving a User's Email Address
	Figure 6.2-9. Request Tracking Overview
	Figure 6.2-10. Request Tracking-Creating An Order
	Figure 6.2-11. Request Tracking-Collecting Resourc...
	Figure 6.2-12. Request Tracking-Update The State o...
	Figure 6.2-13. Request Tracking-Spawning A Sub-Ord...
	Figure 6.2-14. Request Tracking-Collecting Resourc...
	Figure 6.2-15. Request Tracking-Canceling A Sub-Or...
	Figure 6.2-16. Request Tracking-Finished Processin...

	6.2.5 Accountability Management Structure
	6.2.6 Accountability Management and Operation

	6.3 Billing and Accounting
	6.3.1 Billing and Accounting Overview
	6.3.2 Billing and Accounting Context
	6.3.3 Billing and Accounting Object Model
	Figure 6.3-1. Billing and Accounting Context Diagr...
	Figure 6.3-2. Billing and Accounting Object Model

	6.3.4 Billing and Accounting Dynamic Model
	Figure 6.3-3. Billing and Invoicing a Science User...
	Figure 6.3-4. Receiving and Posting Science User P...

	6.3.5 Billing and Accounting Structure
	6.3.6 Billing and Accounting Management and Operat...

	6.4 Report Generation Service
	6.4.1 Report Generation Service Overview
	6.4.2 Report Generation Context
	Figure 6.4-1. Report Generation Context Diagram

	6.4.3 Report Generation Object Model
	Figure 6.4-2. Report Generation Object Model

	6.4.4 Report Generation Dynamic Model
	Figure 6.4-3. Request to Browse a Management Repor...
	Figure 6.4-4. Request to Generate an Adhoc Report
	Figure 6.4-5. Request to Add a New Report to the S...

	6.4.5 Report Generation Service Structure
	6.4.6 Report Generation Management and Operation

	6.5 Fault Management
	6.5.1 Fault Management Overview
	6.5.2 Fault Management Context
	6.5.3 Fault Management Object Model
	Figure 6.5-1. Fault Management Context Diagram
	Figure 6.5-2. Fault Management Object Model

	6.5.4 Fault Management Dynamic Model
	Figure 6.5-3. Fault Notification by an ECS Applica...

	6.5.5 Fault Management Structure
	6.5.6 Fault Management Management and Operation

	6.6 Performance Management
	6.6.1 Performance Management Overview
	6.6.2 Performance Management Context
	6.6.3 Performance Management Object Model
	Figure 6.6-1. Performance Management Context Diagr...
	Figure 6.6-2. Performance Management Object Model

	6.6.4 Performance Management Dynamic Model
	Figure 6.6-3. Degradation of Performance Alert
	Figure 6.6-4. Providing Performance Summary to SMC...

	6.6.5 Performance Management Structure
	6.6.6 Performance Management Management and Operat...

	6.7 Physical Configuration Management Service
	6.7.1 Physical Configuration Management Service Ov...
	6.7.2 Physical Configuration Management Service Co...
	Figure 6.7-1. Physical Configuration Management Se...

	6.7.3 Physical Configuration Management Service Ob...
	Figure 6.7-2. Physical Configuration Management Se...

	6.7.4 Physical Configuration Management Service Dy...
	Figure 6.7-3. Add A New Node
	Figure 6.7-4. Move An Existing Node
	Figure 6.7-5. Delete An Existing Node

	6.7.5 Physical Configuration Management Service St...
	6.7.6 Physical Configuration Management Service Ma...

	6.8 Security Management
	6.8.1 Security Management Overview
	6.8.2 Security Management Context
	Figure 6.8-1. Security Management Context Diagram

	6.8.3 Security Management Object Model
	Figure 6.8-2. Security Management Object Model

	6.8.4 Security Management Dynamic Model
	Figure 6.8-3. Executing a Compliance Test
	Figure 6.8-4. Reporting a Security Intrusion

	6.8.5 Security Management Structure
	6.8.6 Security Management Management and Operation...

	6.9 Trouble Ticketing
	6.9.1 Trouble Ticketing Overview
	6.9.2 Trouble Ticketing Context
	6.9.3 Trouble Ticketing Object Model
	Figure 6.9-1. Trouble Ticketing Context Diagram
	Figure 6.9-2. Trouble Ticketing Object Model

	6.9.4 Trouble Ticketing Dynamic Model
	Figure 6.9-3. User Submits Trouble Ticket
	Figure 6.9-4. User Submits Trouble Ticket When Rem...
	Figure 6.9-5. A Trouble Ticket is Worked
	Figure 6.9-6. A Trouble Ticket is Escalated
	Figure 6.9-7. A Trouble Ticket is Forwarded

	6.9.5 Trouble Ticketing Structure
	6.9.6 Trouble Ticketing Management and Operation

	6.10 Management Data Access
	6.10.1 Management Data Access Overview
	6.10.2 Management Data Access Context
	6.10.3 Management Data Access Object Model
	Figure 6.10-1. Management Data Access Context Diag...
	Figure 6.10-2. Management Data Access Object Model...

	6.10.4 Management Data Access Dynamic Model
	Figure 6.10-3. User Browses Log File Data

	6.10.5 Management Data Access Dynamic Model
	Figure 6.10-4. User Chains Logfile Data

	6.10.6 Management Data Access Dynamic Model
	Figure 6.10-5. Process Logfile Scenario

	6.10.7 Management Data Access Structure
	6.10.8 Management Data Access Management and Opera...

	6.11 Management DBMS and Database
	6.11.1 Overview
	6.11.2 Implementation

	6.12 User Comment Survey
	6.12.1 User Comment Survey Overview
	6.12.2 User Comment Survey Context
	6.12.3 User Comment Survey Object Model
	Figure 6.12-1. User Comment Survey Context Diagram...
	Figure 6.12-2. User Comment Survey Object Model

	6.12.4 User Comment Survey Dynamic Model
	Figure 6.12-3. User Fills Out A Survey

	6.12.5 User Comment Survey Structure
	6.12.6 User Comment Survey Management and Operatio...

	6.13 Enterprise Framework Management Service
	6.13.1 Enterprise Framework Management Overview
	6.13.2 Enterprise Framework Management Context
	Figure 6.13-1. Enterprise Framework Context Diagra...

	6.13.3 Enterprise Framework Management Object Mode...
	Figure 6.13-2. Enterprise Framework Management Ser...

	6.13.4 Enterprise Framework Management Dynamic Mod...
	6.13.5 Enterprise Framework Management Structure
	6.13.6 Enterprise Framework Management Service Man...

