
4. Communications Subsystem (CSS) Design

4.1 Introduction
This section gives an introduction of all the CSS services whose detailed design description is
provided in Section 4.2. Each of the individual CSS services such as Directory Naming, Security,
Message Passing, Thread, Time, etc. are described with an Overview, an Object Model, Dynamic
Models (Scenarios), and implementation details (functional model as required). Table 4.1-1
provides a road map for the CSS Design Section.

Table 4.1-1. CSS Design Section
Services Section

Object Services 4.2

Directory Naming 4.2.1

Security 4.2.2

Message Passing 4.2.3

Multicast 4.2.4

Thread 4.2.5

Time 4.2.6

LifeCycle (Initialization / Activation / Deactivation) 4.2.7

Generic Security Service API (GSSAPI) 4.2.8

Distributed 4.3

Common 4.4

Electronic Mail 4.4.1

FTP 4.4.2

DFS 4.4.3

Bulletin Board 4.4.4

Virtual Terminal 4.4.5

Event Logger 4.4.6

Bulk Data Service 4.4.7

INFRASTRUCTURE 4.5

Process Framework Service (PF) 4.5.1

Server Request Framework (SRF) 4.5.2

Subscription Service 4.5.3

Universal Reference 4.5.4

Framework Object

Services Facility

Services

The CSS in Release B is being developed on the formal track for its DCE related components,
while some new components are developed on incremental track.

4-1 305-CD-028-002

Distributed Computing Environment (DCE) from the Open Software Foundation (OSF) is a CSS
baseline COTS product for releases Ir1, A and B. DCE supports for client/server applications
development in a heterogeneous platform environment (including SUN, IBM, HP, DEC, Silicon
Graphics (SGI), Cray), and is available from multiple vendors (including HP, IBM, DEC,
Transarc, SUN, SGI). DCE provides the underlying COTS for many of the services described in
this CSS section (including directory, time, threads, security {Kerberos implementation}, and
RPCs in a unified environment. Currently missing in this package is the accommodation of C++
language class library bindings. During December Progress Review (DPR) and Segment Design
Review (SDR) preparation, ECS adopted a long-range architecture based on Common Object
Request Broker Architecture (CORBA) 2.0 ORB services, object services, and common-facility
services. At SDR, many of these services were not yet available, so ECS adopted a phased
approach: a communications infrastructure based on DCE in Release A and a migration to CORBA
2.0 in Release B. At the Preliminary Design Review (PDR), it was apparent that CORBA 2.0
releases were still in the future and thus the migration to CORBA was pushed out beyond
Release B. Release A’s communications subsystem (CSS) would encapsulate DCE so as to
simplify the change from DCE to CORBA. This strategy simultaneously recognized:

•	 DCE is today’s state-of-the-art solution for industrial-strength, vendor-independent,
distributed enterprise computing. It is a widely available, multi-vendor client/server
communications environment integrated with security and directory services.

•	 CORBA plus affiliated object and common-facility services, if successful in the market
place, can offer significant advantages over DCE to the long-term GDS Global Directory
Service (GCDIS)/UserDIS architecture. It will be an environment with multi-vendor
interoperable Object Request Brokers (ORBs) with object passing and dynamic bindings.

A key CSS CDR-A goal was thus to decide how to accomplish its DCE-to-CORBA migration. At
SDR CSS conservatively proposed a full custom solution; between SDR and PDR, CSS undertook
extensive prototyping and product studies to drive an engineering trade study to select an optimal
DCE encapsulation approach.

A COTS product, OODCE from HP was selected as the encapsulation method. OODCE provides
an object-oriented layer on top of DCE by providing a set of class libraries and an Interface
Definition Language Compiler called IDL++ to generate stub code in C++ language. With
OODCE comes the ability for the applications developer to use object orientation in their client/
server development, and use C++ class libraries. The encapsulation method also entails CSS
development of custom APIs as the interface for application developers to access OODCE and
DCE functionality. Note that each CSS service (which application developers need to interface
with) provides service specific DCE-encapsulating APIs. These custom APIs are intended to
reduce breakage when ECS inserts CORBA 2.0 or other future technology into a later release. This
custom API/OODCE/DCE combination thus forms the foundation of the CSS migration strategy
to CORBA.

Recently OSF has announced plans to incorporate into DCE an object passing method (XIDL from
DEC and the OODCE from HP) in its release 1.2 of DCE. This announcement may provide an
alternative migration path for ECS. In addition HP, DEC and IBM have announced plans to
implement CORBA 2.0 over DCE. These events reinforce the original decision to use DCE for
ECS at Release A, and help to reduce the migration costs for ECS later.

4-2 305-CD-028-002

It should be understood that a number of the mandatory CSS services are normally used only when
a client/server session is being established (find and bind from the directory service, authentication
and authorization from the security service). Thereafter client and server can agree to other
interfaces (e.g., DBMS client-to-DBMS server native protocol.

Like other subsystems, CSS depends on the MSS agent that runs in all ECS provided workstations
and servers to provide management status and event notification of the CSS servers and daemons
to MSS. In turn CSS provides MSS the CSS e-mail, ftp, event logging, and message passing
services for its processing requirements.

The CSS Implementation Summary, Table 4.1-2, takes into account the use of DCE encapsulation
(using custom APIs, OODCE and DCE). Custom code estimates for CSS to provide the required
services for Release Ir1 and A reflect the use of OODCE and reflect a lower combined line of code
(LOC) estimate than what was presented at the CSMS SDR.

Table 4.1-2. CSS Implementation (1 of 3)

Services Ir1 or
Release A

or
Release B

COTS1
(WGlue)

Custom Code
COTS2

(COTS upgrade)

CI Notes

OBJECT SERVICES

Directory/
Naming

Ir1 COTS DCCI BIND -- DNS;

Release A Custom Code DCCI GDS -- X.500

Release B COTS2 DCCI Upgrade DCE to 1.1 version

Security Ir1 COTS DCCI Authentication (reuse of
APIs from EP4).

Release A COTS + Custom Code DCCI Login Service. Remaining
Features (include
Authorization and Access
Control)

Release B COTS2+Custom Code DCCI Upgrade DCE to 1.1 version

Message
Passing

Ir1 COTS DCCI Synchronous

Release A COTS + Custom Code DCCI Asynchronous & Deferred
Synchronous.

Release B COTS2 DCCI Upgrade DCE to 1.1 version

Thread Ir1 COTS DCCI COTS within DCE &
OODCE

Release B COTS2 DCCI Upgrade DCE to 1.1 version

Time Ir1 COTS + Custom Code DCCI DCE UTS; internally
developed code required as
enhancements & glue code

CDS -- DCE

4-3 305-CD-028-002

Table 4.1-2. CSS Implementation (2 of 3)

Services Ir1 or
Release A

or
Release B

COTS1
(WGlue)

Custom Code
COTS2

(COTS upgrade)

CI Notes

Release B COTS2+Custom Code DCCI develop glue code for FOS
external time box using the
Time Provider Interface
within DCE

LifeCycle
(Initialization
/Activation)

Release A COTS + Custom Code DCCI OODCE COTS + Custom
Code required as
enhancement and glue
code.

Release B COTS2+Custom Code DCCI develop code to
communicate with mode
management/Process
Framework

DISTRIBUTED OBJECT FRAMEWORK (DOF)

DOF
Services

Ir1 COTS DCCI OODCE

Release A COTS DCCI OODCE

Release B COTS2 DCCI OODCE

COMMON FACILITY SERVICES

Electronic
Mail

Ir1 COTS + Custom Code DCCI Mail packages bundled with
the operating system, ELM
or Pine Is Not Elm (PINE)
which are available in public
domain. Custom API for
application support.

Release A Custom Code DCCI Sending messages to a
Title.

Release B COTS2 DCCI

File Access Ir1 COTS + Custom Code DCCI File Transfer -- ftp, kftp.
Custom File Transfer API.

Release A COTS + Custom Code DCCI Remote File Access.
Custom code for scheduling
file transfers.

Release B COTS2+Custom Code DCCI

DFS Release B COTS DCCI Transparent remote file
access.

Bulletin
Board (BB)

Ir1 COTS DCCI Reuse BB from EPs.

Release A COTS DCCI Based on NNTP & use
public domain packages
(rn, xrn).

4-4 305-CD-028-002

Table 4.1-2. CSS Implementation (3 of 3)

Services Ir1 or
Release A

or
Release B

COTS1
(WGlue)

Custom Code
COTS2

(COTS upgrade)

CI Notes

Release B COTS2 DCCI

Virtual
Terminal

Ir1 COTS DCCI Telnet, kTelnet, X (for
viewing graphics), Dial-Up
service.

Release B COTS2 DCCI Upgraded DCE and OS

Event
Logger

Ir1 Custom Code DCCI Reuse of APIs from EP4

Release A Custom Code DCCI Class Library

Release B COTS2 DCCI

INFRASTRUCTURE SERVICES

Process
Framework

Release B COTS2+Custom Code DCCI

Server
Request
Framework

Release B COTS2+Custom Code DCCI

Subscription
Service

Release B Custom Code DCCI

Universal
Reference

Release B Custom Code DCCI

1 COTS (W/Glue)—COTS requires some "glue" code and APIs for encapsulating OODCE
2 COTS(Upgrade DCE) ---Upgrade DCE version from 1.0.3 to 1.1 with OODCE and Operating System

upgrade also

4.2 Services Description

4.2.1 Directory/Naming Service

4.2.1.1 Overview

The Naming Service is one of the fundamental facilities needed in distributed environments to
uniquely associate a name with resources/principals along with sufficient information so they can
be identified and located by the name even if the named resource changes its physical address over
time. Naming is used primarily by service providers to register information about a service and by
clients to locate the services.

Naming may be used more generally to store and retrieve any general information that is required
to be made available about an object across a network. This information could include a server's
binding information (e.g., an ECS search program that is going to search the databases for a
specified criterion), file set locations (a file containing the forest vegetation for a specific time), an
science product type (e.g., MODIS 2B), a network resource (e.g., a printer), information about

4-5 305-CD-028-002

principals (the security namespace containing user passwords, telephone numbers). The Naming
service organizes this information in namespaces.

There are two widely known Name service specifications: ISO X.500 and the Internet's Directory
Name Service (DNS). DCE Global Directory Service (GDS) is an implementation of the X.500
specification, and BIND is an implementation of the DNS. Of the two, BIND is more widely used.
While these are standard enterprise namespaces, the interface provided for these namespaces is
different and is at a very low level for the application programmer to use. X/Open had addressed
the need for communication across namespaces with an interface called X/Open Federated Naming
(XFN) that specifies a common interface a namespace has to support. The intent of this
specification is to provide a common abstract interface that can be implemented on top of both the
DNS and X.500 as well as to provide a way for the enterprise namespaces to communicate with
each other.

CSS will provide an implementation of both the DNS and the X.500 namespaces. These
namespaces are used to connect the local namespaces with other namespaces. CSS will provide
OSF Cell Directory Service (CDS) and OSF GDS as the local namespaces. These local namespaces
are used to store server binding information. Both CDS and GDS provide a standard (X/Open)
application program interface called the XDS/XOM interface for the application programmers to
interact with them. While namespaces are primarily used to save server information by application
frameworks (like the Distributed Object Framework), they do not normally use this interface to
communicate with the namespace. A specialized, more efficient internal interface is provided for
these application frameworks by the local namespace (like the NS interface for CDS) to store and
retrieve server binding information.

Application programmers would ordinarily need to use the XDS/XOM interface in order to store
and retrieve application specific information into the namespaces but XDS/XOM interface is too
tedious and complex to use. CSS will provide an XFN like interface to store and retrieve
information in the CDS and X.500 conformant namespaces (OSF GDS is an X.500 conformant
namespace). The XFN functionality will be implemented on top of the XDS/XOM interfaces. As
such, the functionality provided here should work on other X.500 namespaces.

A new private class CsDcXds has been added which contains methods that allow for the storage
and retrieval of information into and from the CDS database. It implements the DCE XDS/XOM
application programming interfaces.

The MSS Management interface provide a way to startup and shutdown the DNS and the X.500
namespaces. The M&O staff will use this interface that invokes an API which resides in the
Distributed Object Framework to manage the startup and shutdown functionality.

The CDS and GDS consists of entries (name and attribute value pairs). These entries may be
protected through Access Control Lists (authorization). While lookup for the local principal is
done through the CDS, the lookup for foreign principals is done through GDS/DNS.

A name consists of a sequence of one or more contexts composed according to the naming
convention, and the entry name. Each entry name is associated with a set of zero or more attributes.
Each attribute in the set has a unique attribute identifier, an attribute syntax, and a set of zero or
more distinct attribute values.

4-6 305-CD-028-002

In Release B, DCE 1.1 will be used. As a result two new DCE CDS features will be available.
Cells can be nested hierarchically and cell can have multiple names (known as aliasing). These
two features should be helpful in cell management.

4.2.1.2 Context

Directory Naming is an infrastructure key mechanism and is used by ECS subsystems who need
to use a Cell Directory namespace as a database to enter or retrieve information stored in the form
of attribute-value pairs.

M&O will use an MSS application to store user profiles containing such information as a user's
telephone number and office location and retrieves it. This information is stored in the Directory
Services DBMS and is accessible through the X.500 and the DNS Namespaces. FOS Planning and
Scheduling will use the namespace to save process related information such as location and
messaging interest. Other applications may use the namespace to store and retrieve any data that
should be location independent and be visible to several applications such as a common message
queue to send messages asynchronously, or an Universal Reference (UR) of an object that an SDPS
application uses. All of this interaction with the namespace is done via the interface provided by
the CSS Naming service. Other interaction with the namespace to save and retrieve server binding
information is done via the local specialized interface. This interface will be designed and
implemented by the CIDM Subsystem.

4.2.1.3 Object Model

See Figure 4.2.1.3-1.

4.2.1.3.1 CsDcXds Class

Parent Class:Not Applicable

Attributes:

None

Operations:

CsDcXds - Default Constructor.

Arguments:

Return Type:Void

Privilege:Public

CsXdsAddAttr - Add an attribute to the entry.

Arguments:a_fullEntryName[]:EcTchar,a_eltType:EcTInt,a_attrValue[]:EcTchar

Return Type:int

Privilege:Public

CsXdsAddEntry
Arguments:a_fullEntryName[]:EcTChar,a_eltType:EcTInt,a_attributeValue[]:EcTC har

4-7 305-CD-028-002

CsXdsAddValue - Add a value to the attribute.

Arguments:a_fullEntryName[]:a_eltType:EcTInt,a_attrAddValue[]:EcTchar

Return Type:EcTInt

Privilege:Public

CsXdsDelEntry - Delete the address entry from the CDS. The call to this function will

return a '1' if it succeeded, and '0' if it failed.

Arguments:a_fullEntryname[]:EcTChar

Return Type:int

Privilege:Public

4-8 305-CD-028-002

Offpage

Directory_Naming_Service

EcDnContext

EcDnAttribute

X.500

DNS

EcDnCompositeName

EcDnValue

EcDnElement

CsDcXds

DoShutdown(a_xdsWorkspace:OM_workspace)
DoUnbind(a_session:OM_private_object)
HandleDSError(a_header:EcTChar*,a_returnCode:DS_status)
StringToXdsName(a_origString:EcTChar*,ao_xdsNameObj:OM_object*)
DumpXdsName(xdsNameObj:OM_object)
ExtractValue(a_object:OM_private_object,a_attribute:OM_string*,ao_valueList[]:Ec
TChar*, ao_totalValues:EcTInt)
SplitNamePiece(a_string:EcTChar*,ao_type:OM_string*,ao_value:EcTChar**)
NumNamePieces(a_string:EcTChar)
GetOIDType(a_number:EcTInt,ao_type:OM_string*)
CsXdsRemoveAttr(a_fullEntryName[]:EcTChar,a_eltType:EcTInt)
CsXdsRemoveValue(a_fullEntryName[]:EcTChar,a_eltType:EcTInt,a_attrRemValue[]:EcT
Char)
CsXdsAddValue(a_fullEntryName[]:a_eltType:EcTInt,a_attrAddValue[]:EcTchar)
CsXdsAddAttr(a_fullEntryName[]:EcTchar,a_eltType:EcTInt,a_attrValue[]:EcTchar)
CsXdsDelEntry(a_fullEntryname[]:EcTChar)
CsXdsListEntry(a_fullEntryName[]:EcTChar,ao_valueList[]:EcTChar*,ao_totalValues:
EcTInt)
CsXdsReadEntry(a_fullEntryName[]:EcTChar,a_eltType:EcTInt,ao_valueList[]:EcTchar
*, ao_totalValues:EcTInt)
CsXdsAddEntry(a_fullEntryName[]:EcTChar,a_eltType:EcTInt,a_attributeValue[]:EcTC
har)
~CsDcXds()
CsDcXds()

ctxLst
_composite_name
_leaf_id

DeleteValueList(a_elt:const EcDnElement&,a_attr:const
EcDnAttribute&,a_valueLst:EcDnValueList)
DeleteValue(a_elt:const EcDnElement&,a_attr:const EcDnAttribute&, a_val:const
EcDnValue&)
ModifyValue(a_elt:const EcDnElement&,a_attr:const
EcDnAttribute&,a_old_value_obj:const EcDnValue&, a_new_value_obj:const
EcDnValue&)
AddValueList(a_elt:const EcDnElement&, a_attr:const EcDnAttribute&,
a_valueLst:EcDnValueLst, exist_attr_flag:const EcTBoolean)
AddValue(a_elt:const EcDnElement&, a_attr:const EcDnAttribute&, a_val:const
EcDnValue&, exist_attr_flag:const EcTBoolean)
AddAttribute(a_elt:const EcDnElement&,a_attr:const EcDnAttribute&,
a_valueLst:const EcDnValueList, exist_attr_flag:const EcTBoolean)
ModifyAttribute(a_elt:const EcDnElement&,a_old_attr_obj:const EcDnAttribute&
a_new_attr_obj:const EcDnAttribute&,a_valueLst:const EcDnValueList)
DeleteAttribute(a_elt:const EcDnElement&,a_attr:const EcDnAttribute&)
SetLeafId(a_leaf_id:const EcEDnCtxNameType)
GetLeafId(ao_status:EcUtStatus*)
SetCompositeName(a_comp_name:const RWCString&)
GetCompositeName(ao_status:EcUtStatus*)
ListElement(ao_attrList:EcDnAttributeList)
DeleteElement()
AddElement(a_elt:const EcDnElement&)
ReadElement(a_attr:const EcDnAttribute&,ao_elt:EcDnElement**)
ReadElement(a_attribute_name:const RWCString&,ao_elt:EcDnElement**)
ListCtx(ao_CompositeLst:EcDnCompositeNameList*)
AddCtx(a_ctx:const EcDnContext&)
~EcDnCompositeName()
EcDnCompositeName()
EcDnCompositeName(a_ctx:const EcDnContext&)
EcDnCompositeName(a_string:const RWCString,a_flag:const EcEDnCtxNameType)

_attribute_name
_attribute_type

GetAttributeType(ao_status:EcUtStatus*)
GetAttributeName(ao_status:EcUtStatus*)
SetAttributeType(a_attribute_type:const EcTInt)
SetAttributeName(a_attribute_name:const RWCString&)
~EcDnAttribute()
EcDnAttribute()
EcDnAttribute(a_attribute_type:const EcTInt,a_attribute_name:const RWCString&)

_context_name
_cell_flag
_leaf_flag

~EcDnContext()
GetContextName(ao_status:EcUtStatus*)
GetCellFlag(ao_status:EcUtStatus*)
GetLeafFlag(ao_status:EcUtStatus*)
SetContextName(a_context_name:const RWCString&)
SetCellFlag(a_cell_flag:const EcEDnCellType)
SetLeafFlag(a_leaf_flag:const EcEDnCtxNameType)
EcDnContext()
EcDnContext(a_flag:const EcEDnCellType)
EcDnContext(a_str:const RWCString&,a_flag:const EcEDnCtxNameType)

_attribute_object
_valueLst

AddValue(a_comp_name:const RWCString,a_attr:const EcDnAttribute&,a_val:const
EcDnValue&)
DeleteValue(a_comp_name:const RWCString,a_attr:const EcDnAttribute&,a_val:const
EcDnValue&)
GetValueList(ao_status:EcUtStatus*)
SetValueList(a_ValueLst:const EcDnValueList&)
AddAttribute(a_comp_name:const RWCString&,a_attr:const
EcDnAttribute&,a_valueLst:EcDnValueList, exist_attr_flag:const EcTBoolean)
DeleteAttribute(a_comp_name:const RWCString&,a_attr:const EcDnAttribute&)
SetAttributeObject(a_attribute_object:const EcDnAttribute&)
GetAttributeObject(ao_status:EcUtStatus*)
~EcDnElement()
EcDnElement()
EcDnElement(a_attr:const EcDnAttribute&,a_vlst:const EcDnValueList)

_value

GetValue(ao_status:EcUtStatus*)
SetValue(a_value:const RWCString&)
~EcDnValue()
EcDnValue()
EcDnValue(a_value:const RWCString&)

Offpage

[Public]

[Public]

Offpage

[Public]

+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : OM_return_coce
+ : EcTVoid

+ : EcTVoid
+ : EcTInt
+ : EcTInt
+ : EcTInt

+ : EcTInt
+ : int
+ : int

+
+

- : EcDnContextList
- : RWCString
- : EcEDnCtxNameType

+ : EcUtStatus

+ : EcUtStatus

+ : EcUtStatus

+ : EcUtStatus

+ : EcUtStatus

+ : EcUtStatus

+ : EcUtStatus
+ : EcUtStatus
+ : EcEDnCtxNameType const
+ : EcUtStatus
+ : EcTChar* const
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+
+
+
+

- : RWCString
- : EcTInt

+ : EcTInt const
+ : EcTChar* const
+ : EcUtStatus
+ : EcUtStatus
+
+
+

- : RWCString
- : EcEDnCellType
- : EcEDnCtxNameType

+
+ : RWCString const
+ : EcEDnCellType const
+ : EcEDnCtxNameType const
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+
+
+

- : EcDnAttribute
- : EcDnValueList

+ : EcUtStatus

+ : EcUtStatus

+ : EcDnValueList const
+ : EcUtStatus
+ : EcUtStatus

+ : EcUtStatus
+ : EcUtStatus
+ : EcDnAttribute& const
+
+
+

- : RWCString

+ : EcTChar* const
+ : EcUtStatus
+
+
+

uses
uses

4-9
305-C

D
-028-002

[Public]

[Public]

Figure 4.2.1.3-1. Naming Object Model

CsXdsListEntry
Arguments:a_fullEntryName[]:EcTChar,ao_valueList[]:EcTChar*,ao_totalValues:
EcTInt

CsXdsReadEntry
Arguments:a_fullEntryName[]:EcTChar,a_eltType:EcTInt,ao_valueList[]:EcTchar *,

ao_totalValues:EcTInt

CsXdsRemoveAttr - Remove an attribute from an entry.

Arguments:a_fullEntryName[]:EcTChar,a_eltType:EcTInt

Return Type:EcTInt

Privilege:Public

CsXdsRemoveValue
Arguments:a_fullEntryName[]:EcTChar,a_eltType:EcTInt,a_attrRemValue[]:EcT Char

DoShutdown - Free the workspace.

Arguments:a_xdsWorkspace:OM_workspace

Return Type:EcTVoid

Privilege:Public

DoUnbind - Unbind the session.

Arguments:a_session:OM_private_object

Return Type:EcTVoid

Privilege:Public

DumpXdsName - Dumps a full xds name

Arguments:xdsNameObj:OM_object

Return Type:EcTVoid

Privilege:Public

ExtractValue
Arguments:a_object:OM_private_object,a_attribute:OM_string*,ao_valueList[]:Ec

TChar*, ao_totalValues:EcTInt

GetOIDType - Return the XDS/XOM OID type of te given attr.

Arguments:a_number:EcTInt,ao_type:OM_string*

Return Type:EcTInt

Privilege:Public

HandleDSError - Extracts the error number from a DS_status return code, prints it in an

error message, then terminates the program

Arguments:a_header:EcTChar*,a_returnCode:DS_status

Return Type:EcTVoid

Privilege:Public

4-10 305-CD-028-002

NumNamePieces - Returns the number of pieces in a string name.

Arguments:a_string:EcTChar

Return Type:EcTInt

Privilege:Public

SplitNamePiece - Divides a piece of a name (a_string) into its XDS attribute type and

value.

Arguments:a_string:EcTChar*,ao_type:OM_string*,ao_value:EcTChar**

Return Type:EcTVoid

Privilege:Public

StringToXdsName - Convert a string that is a DCE name to an XDS name object (class

DS_C_DS_DN)

Arguments:a_origString:EcTChar*,ao_xdsNameObj:OM_object*

Return Type:OM_return_coce

Privilege:Public

~CsDcXds - Default Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The CsDcXds class has associations with the following classes:
Directory_Naming_Service (Aggregation)

4.2.1.3.2 DNS Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Implementation of DNS

Attributes:

None

Operations:

None

4-11 305-CD-028-002

Associations:

The DNS class has associations with the following classes:
Class: Directory_Naming_Service uses

4.2.1.3.3 Directory_Naming_Service Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Directory Naming is an infrastructure key mechanism and is used by ECS subsystems who

need to use a Cell Directory namespace as a database to enter or retrieve information stored

in the form of attribute-value pairs.

Attributes:

None

Operations:

None

Associations:

The Directory_Naming_Service class has associations with the following classes:
Class: DNS uses
Class: X.500 uses

4.2.1.3.4 EcDnAttribute Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

The EcDnAttribute class will contain an attribute name, and type. It will also be referenced

by the EcDnElement class. This class will provide methods to get the attribute name and

type.

Attributes:

_attribute_name - Attribute name
Data Type:RWCString
Privilege:Private

4-12 305-CD-028-002

Default Value:

_attribute_type - Attribute type.

Data Type:EcTInt

Privilege:Private

Default Value:

Operations:

EcDnAttribute - Default Constructor

Arguments:

Return Type:Void

Privilege:Public

EcDnAttribute
Arguments:a_attribute_type:const EcTInt,a_attribute_name:const RWCString&

Return Type:Void

Privilege:Public

GetAttributeName - This operation gets the attribute name of the object.

Arguments:ao_status:EcUtStatus*

Return Type:EcTChar* const

Privilege:Public

GetAttributeType - This operation gets the attribute type of the object.

Arguments:ao_status:EcUtStatus*

Return Type:EcTInt const

Privilege:Public

SetAttributeName
Arguments:a_attribute_name:const RWCString&

Return Type:EcUtStatus

Privilege:Public

SetAttributeType
Arguments:a_attribute_type:const EcTInt

Return Type:EcUtStatus

Privilege:Public

~EcDnAttribute - Default destructor.

Arguments:

Return Type:Void

Privilege:Public

4-13 305-CD-028-002

Associations:

The EcDnAttribute class has associations with the following classes:
Directory_Naming_Service (Aggregation)

4.2.1.3.5 EcDnCompositeName Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

The EcDnCompositeName class will define a composite name, which is a nested set of

contexts in a given hierarchy concatenated together to establish a Directory Service path

name. This class will provide methods to concatenate contexts, list the contents of the

composite name in the Directory Service, (soft links, object entries), read entry names, add

elements (attribute/value list pair), read element information, and delete element.

Attributes:

_composite_name - Nested set of contexts.

Data Type:RWCString

Privilege:Private

Default Value:

_leaf_id - Leaf flag: 0 = A Context Name

Data Type:EcEDnCtxNameType

Privilege:Private

Default Value:

ctxLst - Context object.

Data Type:EcDnContextList

Privilege:Private

Default Value:

Operations:

AddAttribute

1 = An Entry Name (leaf)

Arguments:a_elt:const EcDnElement&,a_attr:const EcDnAttribute&, a_valueLst:const

EcDnValueList, exist_attr_flag:const EcTBoolean

Return Type:EcUtStatus

Privilege:Public

AddCtx
Arguments:a_ctx:const EcDnContext&

4-14 305-CD-028-002

Return Type:EcUtStatus
Privilege:Public

AddElement
Arguments:a_elt:const EcDnElement&

Return Type:EcUtStatus

Privilege:Public

AddValue - This operation adds a value to the value list.

Arguments:a_elt:const EcDnElement&, a_attr:const EcDnAttribute&, a_val:const

EcDnValue&, exist_attr_flag:const EcTBoolean

Return Type:EcUtStatus

Privilege:Public

AddValueList
Arguments:a_elt:const EcDnElement&, a_attr:const EcDnAttribute&,

a_valueLst:EcDnValueLst, exist_attr_flag:const EcTBoolean

Return Type:EcUtStatus

Privilege:Public

DeleteAttribute
Arguments:a_elt:const EcDnElement&,a_attr:const EcDnAttribute&

Return Type:EcUtStatus

Privilege:Public

DeleteElement - This method is used to delete an element (attribute, value list) from the

Directory Service.

Arguments:

Return Type:EcUtStatus

Privilege:Public

DeleteValue
Arguments:a_elt:const EcDnElement&,a_attr:const
EcDnValue&

DeleteValueList
Arguments:a_elt:const

EcDnAttribute&,a_valueLst:EcDnValueList

Return Type:EcUtStatus

Privilege:Public

EcDnCompositeName - Default Constructor.

Arguments:

Return Type:Void

Privilege:Public

EcDnAttribute&, a_val:const

EcDnElement&,a_attr:const

4-15 305-CD-028-002

EcDnCompositeName - Constructor number two. It will be used in the case in which DCE

names are stored directly into the DCE Directory Service (DNS/GDS). It takes a string

which is the full Directory Service cell name. This can be used in place of using the first

constructor and adding on to that composite name via the add_ctx method.

Arguments:a_string:const RWCString,a_flag:const EcEDnCtxNameType

Return Type:Void

Privilege:Public

EcDnCompositeName
Arguments:a_ctx:const EcDnContext&

Return Type:Void

Privilege:Public

GetCompositeName - This method is used to retrieve the composite name of the object.

Arguments:ao_status:EcUtStatus*

Return Type:EcTChar* const

Privilege:Public

GetLeafId - This method is used to retrieve the leaf id.

Arguments:ao_status:EcUtStatus*

Return Type:EcEDnCtxNameType const

Privilege:Public

ListCtx - This method is used to list the contents of the composite name in the Directory

Service (soft links, object entries). Initiates the enumeration process for the target context.

It returns a handle to a ECSRWCtxListP object (RW) used to enumerate the immediate

subordinates of the named entry.

Arguments:ao_CompositeLst:EcDnCompositeNameList*

Return Type:EcUtStatus

Privilege:Public

ListElement - This method is used to list the contents of the composite name (entry name)

in the Directory Service. Using the composite name (distinguished name) and the attribute

type, this method will return a list of attributes corresponding to the entry given.

Arguments:ao_attrList:EcDnAttributeList

Return Type:EcUtStatus

Privilege:Public

ModifyAttribute
Arguments:a_elt:const EcDnElement&,a_old_attr_obj:const EcDnAttribute&

a_new_attr_obj:const EcDnAttribute&,a_valueLst:const EcDnValueList

Return Type:EcUtStatus

Privilege:Public

4-16 305-CD-028-002

ModifyValue
Arguments:a_elt:const EcDnElement&,a_attr:const

EcDnAttribute&,a_old_value_obj:const EcDnValue&, a_new_value_obj:const

EcDnValue&

Return Type:EcUtStatus

Privilege:Public

ReadElement
Arguments:a_attr:const EcDnAttribute&,ao_elt:EcDnElement**

Return Type:EcUtStatus

Privilege:Public

ReadElement
Arguments:a_attribute_name:const RWCString&,ao_elt:EcDnElement**

Return Type:EcUtStatus

Privilege:Public

SetCompositeName
Arguments:a_comp_name:const RWCString&

Return Type:EcUtStatus

Privilege:Public

SetLeafId - This method is used to set the leaf id.

Arguments:a_leaf_id:const EcEDnCtxNameType

Return Type:EcUtStatus

Privilege:Public

~EcDnCompositeName - Default Destructor.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcDnCompositeName class has associations with the following classes:
Directory_Naming_Service (Aggregation)

4.2.1.3.6 EcDnContext Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

The EcDnContext class defines the path/set of bindings with distinct atomic names. Every

context has an associated naming convention. An EcDnContext object is passed to the

4-17 305-CD-028-002

EcDnCompositeName object in a structural form as an ordered sequence of components

Attributes:

_cell_flag - Flag:0 = global root name (/...), 1 = cell root name (/.:)

Data Type:EcEDnCellType

Privilege:Private

Default Value:

_context_name - Context name (a partial name of the distinguished name)

Data Type:RWCString

Privilege:Private

Default Value:

_leaf_flag - Flag:0 = directory path, 1 = entry path (leaf/object), 2 = Any other type.

Data Type:EcEDnCtxNameType

Privilege:Private

Default Value:

Operations:

EcDnContext - Default constructor.

Arguments:

Return Type:Void

Privilege:Public

EcDnContext - Constructor number one. This constructor will be used to define the type

of name to be used in the DCE environment (global root name or cell root name type)

Arguments:a_flag:const EcEDnCellType

Return Type:Void

Privilege:Public

EcDnContext - Constructor number two. This constructor will be used to define a context

that can be used to build the composite name.

Arguments:a_str:const RWCString&,a_flag:const EcEDnCtxNameType

Return Type:Void

Privilege:Public

GetCellFlag - This method will return the cell flag

Arguments:ao_status:EcUtStatus*

Return Type:EcEDnCellType const

Privilege:Public

GetContextName - This method will return the context name

Arguments:ao_status:EcUtStatus*

4-18 305-CD-028-002

Return Type:RWCString const

Privilege:Public

GetLeafFlag - This method will return the leaf flag

Arguments:ao_status:EcUtStatus*

Return Type:EcEDnCtxNameType const

Privilege:Public

SetCellFlag - This method will set the cell flag

Arguments:a_cell_flag:const EcEDnCellType

Return Type:EcUtStatus

Privilege:Public

SetContextName
Arguments:a_context_name:const RWCString&

Return Type:EcUtStatus

Privilege:Public

SetLeafFlag - This method will set the leaf flag

Arguments:a_leaf_flag:const EcEDnCtxNameType

Return Type:EcUtStatus

Privilege:Public

~EcDnContext - Default Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcDnContext class has associations with the following classes:
Directory_Naming_Service (Aggregation)

4.2.1.3.7 EcDnElement Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

The EcDnElement class will contain an element, which is an attribute-value list pair. It will

be referenced by the EcDnCompositeName class. This class will provide methods to add

value(s), get value list, delete value(s), modify value(s) and get the element name.

Attributes:

4-19 305-CD-028-002

_attribute_object - Attribute object.

Data Type:EcDnAttribute

Privilege:Private

Default Value:

_valueLst - RW list of value objects

Data Type:EcDnValueList

Privilege:Private

Default Value:

Operations:

AddAttribute
Arguments:a_comp_name:const RWCString&,a_attr:const
EcDnAttribute&,a_valueLst:EcDnValueList, exist_attr_flag:const EcTBoolean
Return Type:EcUtStatus
Privilege:Public

AddValue
Arguments:a_comp_name:const

EcDnValue&

Return Type:EcUtStatus

Privilege:Public

DeleteAttribute

RWCString,a_attr:const EcDnAttribute&,a_val:const

Arguments:a_comp_name:const RWCString&,a_attr:const EcDnAttribute&

Return Type:EcUtStatus

Privilege:Public

DeleteValue
Arguments:a_comp_name:const RWCString,a_attr:const EcDnAttribute&,a_val:const

EcDnValue&

Return Type:EcUtStatus

Privilege:Public

EcDnElement - Default Constructor

Arguments:

Return Type:Void

Privilege:Public

EcDnElement
Arguments:a_attr:const EcDnAttribute&,a_vlst:const EcDnValueList

Return Type:Void

Privilege:Public

4-20 305-CD-028-002

GetAttributeObject - This operation reads/gets the value list of the element set by the user

which will be used when adding the element into the Directory Name space.

Arguments:ao_status:EcUtStatus*

Return Type:EcDnAttribute& const

Privilege:Public

GetValueList - This operation reads/gets the value list of the element set by the user which

will be used by add_element() when an entry is added. This value list is in memory (a RW

list type).

Arguments:ao_status:EcUtStatus*

Return Type:EcDnValueList const

Privilege:Public

SetAttributeObject
Arguments:a_attribute_object:const EcDnAttribute&

Return Type:EcUtStatus

Privilege:Public

SetValueList
Arguments:a_ValueLst:const EcDnValueList&

Return Type:EcUtStatus

Privilege:Public

~EcDnElement - Default Destructor.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcDnElement class has associations with the following classes:
Directory_Naming_Service (Aggregation)

4.2.1.3.8 EcDnValue Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

The EcDnValue class defines a value. It will also be referenced by the EcDnElement and

EcDnAttribute class.

Attributes:

4-21 305-CD-028-002

_value - Value name
Data Type:RWCString
Privilege:Private
Default Value:

Operations:

EcDnValue - Default Constructor

Arguments:

Return Type:Void

Privilege:Public

EcDnValue
Arguments:a_value:const RWCString&

Return Type:Void

Privilege:Public

GetValue - This method will return the value.

Arguments:ao_status:EcUtStatus*

Return Type:EcTChar* const

Privilege:Public

SetValue
Arguments:a_value:const RWCString&

Return Type:EcUtStatus

Privilege:Public

~EcDnValue - Default destructor.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcDnValue class has associations with the following classes:
Directory_Naming_Service (Aggregation)

4.2.1.3.9 X.500 Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Implementation of X.500

4-22 305-CD-028-002

Attributes:

None

Operations:

None

Associations:

The X.500 class has associations with the following classes:
Class: Directory_Naming_Service uses

4.2.1.4 Functional Model

The naming service is used to construct large, enterprise-wide naming graphs. A name-to-object
association is called a 'name binding'. It is defined relative to a 'Naming Context'. A 'Naming
Context’ is an object that contains a set of name bindings in which each name is unique. 'Naming
Contexts' represent 'directories' or 'folders' and other names identify 'document' or 'file' kind of
objects.

The Context here can be thought of as a database key and the attributes are the actual information
associated with the key. Each context forms a hierarchy where each context has a parent. Each
namespace has a parent that may be another namespace maintained else where. There will be a root
context, with no parent, through which all the contexts can be accessed. Leaf contexts form as the
key to an entry in the namespace, to which information is attached. This information contains a list
of attributes, each of which contain an identifier, a syntax representing the type of the attribute, and
a list of values for that attribute. Each attribute type is identified by a unique number in the
namespace. These unique numbers will be obtained from standard bodies so that there won't be any
conflict in the unique ids used across different namespaces.

CSS Name service provides wrapper functions to map some of the XFN calls to the underlying
namespaces that are supported: CDS/GDS. These wrappers are written on top of XDS/XOM
interfaces. Since XDS/XOM are X/Open's standard interfaces to X.500 namespaces, the
functionality provided by CSS will work on other X.500 namespaces. CSS will only support
features that are supported in the underlying namespace. For example, not all namespaces support
searching in the namespace, as such, a search wrapper function will not do anything when acting
on such a namespace. Both the GDS and DNS are replicated and distributed namespaces.

CSS provides five custom classes that can be used by applications to utilize the Cell Directory
Name Space as a database. CSS divided the naming structure into two parts: a context and a list
of elements. Each element represents an attribute-value list pair.

The context class is used to define the type of name to be used in the DCE environment, it takes
either a global root name(/...) or a cell root name (/.:) A context object is passed to the Composite
Name class as an ordered sequence of components.

4-23 305-CD-028-002

The composite class allows the user to form a composite name (by means of the AddContext
operation). A composite name will represent a full path name (equivalent to a directory) or an entry
in a database (equivalent to a file). The user can perform various operations on a composite name
when the composite name is a directory such as list the contents, read entries, add and delete
elements (an attribute/value list pair) element into this directory, and get the element types that had
not been previously used.

In order to add or delete an element to the composite name, the user must first construct an element
object using the element class. The element class provides methods to add values, get value list,
delete values, modify values, and to get the element name.

The element class makes use of the value and attribute object classes. The attribute class contains
the attribute name and type, and provides methods to obtain the attribute name and type. The value
class contains a value.

Table 4.2.1.4-1 summarizes the Directory Naming Service classes which are discussed in detail in
the following subsections. Figure 4.2.1.4-1 pictorially describes the CDS entry structure.

4.2.1.5 Dynamic Model Scenarios

4.2.1.5.1 Scenario #1

4.2.1.5.1.1 Abstract

This scenario describes how to list the contents of the Directory Service.

4.2.1.5.1.2 Interfaces

Cell Directory Service

4.2.1.5.1.3 Stimulus

The user enters a series of atomic names in order to create a composite name that is in accordance
with the CDS naming conventions, and makes a request to list the contents of that directory.

4.2.1.5.1.4 Desired Response

The user will receive the contents of the composite name.

4.2.1.5.1.5 Participating Classes

EcDnContext, EcDnCompositeName.

4-24 305-CD-028-002

Table 4.2.1.4-1. Naming Service Object Responsibility Matrix
Class Name Description

EcDnContext The context class defines the path/set of bindings with distinct atomic names. Every
context has an associated naming convention. A context object is passed to the
ECSCompositeName object in a structural form as an ordered sequence of components.
It is the key part of the entry in a namespace that is used to uniquely identify it.

EcDnComposi
teName

The ECSCompositeName class will define a composite name, which is a nested set of
contexts in a given hierarchy
path name. This class provides functionality to create/modify/maintain context part of an
entry in the namespace. It will provide methods to concatenate contexts, list the contents
of the composite name in the Directory Service
names, add elements (attribute/value list pair), read element
elements.

EcDnElement The EcDnElement class will contain an element, which is an
will be referenced by the EcDnCompositeName class. This class will provide methods
to add value(s), get value list, delete value(s), modify value(s) and get the element name.

EcDnAttribute The attribute class will contain an attribute name, and type. It will also be referenced by
the ECSElement class. This class will provide methods to get the attribute name and
type.

EcDnValue The EcDnValue class will contain a value.
and EcDnAttribute class.

concatenated together to establish a Directory Service

(soft links/object entries), read entry
information, and delete

attribute-value list pair. It

It will also be referenced by the EcDnElement

4.2.1.5.1.6 Pre-conditions

The composite name must be established.

4.2.1.5.1.7 Post-conditions

This doesn't change the state of the naming database. It only retrieves information about the
composite name.

4.2.1.5.1.8 Scenario Description

Create a context root name. Define the type of name to be used in the environment, either a global
root name or cell root name. Then, create the subordinate contexts, instantiate an object of
EcDnComposite type and add the contexts to the composite name. Proceed to list the entries/
directories in that composite name, that is, using the composite name object call the method
'listCtx'.

4.2.1.5.1.9 Event Trace

4.2.1.5.2 Scenario #2

4.2.1.5.2.1 Abstract

This scenario describes how to add an element into the Directory Service.

4-25 305-CD-028-002

Element ListContext
(context or entry name)

Element List

Element 1 Element n Element 2

Element

Attribute ValueList

Figure 4.2.1.4-1. Naming Service - CDS Entry Structure

4.2.1.5.2.2 Interfaces

Cell Directory Service

4.2.1.5.2.3 Stimulus

The user defines the entry name, type and its respective attribute name, type and value. Makes a
request to add an element.

4.2.1.5.2.4 Desired Response

The user will receive an status back after calling the add operation. It will indicate success or failure
of the operation.

4.2.1.5.2.5 Participating Classes

EcDnContext, EcDnCompositeName, EcDnElement, EcDnAttribute, EcDnValue.

4.2.1.5.2.6 Pre-conditions

The entry name, its type, the attribute name, its type and value must be established.

4.2.1.5.2.7 Post-conditions

This change the state of the naming database. It adds information into the CDS.

4-26 305-CD-028-002

Application EcDnContext EcDnCompositeName

Instantiate a Context object

Instantiate a Composite Name object

Add Context to Composite Name

Instantiate another Context object

Add second Context to Composite Name

List the contents of the Composite Name

Linked list of the contents in the Composite Name & Return Status

Figure 4.2.1.5-1. Naming Scenario #1

4.2.1.5.2.8 Scenario Description

Create a context root name. Define the type of name to be used in the DCE environment, either a
global root name or cell root name. Then, create the subordinate contexts, instantiate an object of
EcDnComposite type and add the contexts to the composite name, including the entry name.
Proceed to add the element. Instantiate an attribute, instantiate an element, create and instantiate
values, add values to the element, and add element into the Directory Service. Using the composite
name object call the method 'addElement'.

4-27 305-CD-028-002

4.2.1.5.2.9 Event Trace

Application EcDnContext EcDnCompositeName EcDnElement EcDnAttribute EcDnValue

Instantiate a
Context object

Instantiate a Composite Name object

Add Context to Composite Name

Instantiate another
Context object

Add second Context to Composite Name

Instantiate a Value object

Instantiate an Attribute object

Instantiate an Element object using the Attribute object as the parameter

Using the Element object add the Value object

Add Element object using the Composite Name object

Figure 4.2.1.5-2. Naming Scenario #2

4.2.1.5.3 Scenario #3

4.2.1.5.3.1 Abstract

This scenario describes how to read an element from the Directory Service.

4.2.1.5.3.2 Interfaces

Cell Directory Service

4.2.1.5.3.3 Stimulus

The user enters a series of atomic names in order to create a composite name that is in accordance
with the CDS naming conventions, and makes a request to read the contents of an entry (i.e., a file).

4.2.1.5.3.4 Desired Response

The user will get the contents of the entry (element) read, that is, the attribute list information
pertaining to that element.

4-28 305-CD-028-002

4.2.1.5.3.5 Participating Classes

EcDnContext, EcDnCompositeName, EcDnElement, EcDnAttribute, EcDnValue.

4.2.1.5.3.6 Pre-conditions

The composite name and entry to be read must be determined.

4.2.1.5.3.7 Post-conditions

This doesn't change the state of the naming database. It only retrieves information about the entry
name. It returns a linked list of element objects (attribute/value list information).

4.2.1.5.3.8 Scenario Description

Create a context root name. Define the type of name to be used in the DCE environment, either a
global root name or cell root name. Then, create the subordinate contexts, instantiate an object of
EcDnComposite type and add the contexts to the composite name, including the entry name.
Proceed to read an element. Using the composite name object call the method 'getValueList'. This
operation will return the element information (the list of attributes and its values).

Delete the value object from the element and the element from the composite name. Deallocate any
memory used.

4.2.1.5.3.9 Event Trace

4.2.1.5.4 Scenario #4

4.2.1.5.4.1 Abstract

This scenario describes how to obtain a list of values pertaining to an element (attribute).

4.2.1.5.4.2 Interfaces

Cell Directory Service.

4.2.1.5.4.3 Stimulus

The user enters a series of atomic names in order to create a composite name that is in accordance
with the CDS naming conventions, and makes a request to list the values of an element (attribute).

4.2.1.5.4.4 Desired Response

The user will list the contents of the composite name.

4.2.1.5.4.5 Participating Classes

EcDnContext, EcDnCompositeName, EcDnElement, EcDnAttribute, EcDnValue.

4.2.1.5.4.6 Pre-conditions

The composite name and entry to be read must be determined.

4-29 305-CD-028-002

Application EcDnContext EcDnCompositeName

Instantiate a
Context object

Instantiate a Composite Name object

Add Context to Composite Name

Linked List of Element objects
Return Status and pointer to

Read Element using the Composite Name

Add second Context to Composite Name

Context object
Instantiate another

Figure 4.2.1.5-3. Naming Scenario #3

4-30 305-CD-028-002

Application EcDnContext EcDnCompositeName EcDnElement

Instantiate a
Context Object

Instantiate a Composite Name object

Add Context to Composite Name

Instantiate another
Context Object

Add second context to Composite Name

Read Element using the Composite Name

Return Status and pointer to
Linked List of Element objects

List values of an Element object

Return status and pointer to a linked list of Value objects

Figure 4.2.1.5-4. Naming Scenario #4

4.2.1.5.4.7 Post-conditions

This doesn't change the state of the naming database. It only retrieves information about the
element. It returns a linked list of value objects pertaining to the attribute/element.

4.2.1.5.4.8 Scenario Description

Create a context root name. Define the type of name to be used in the DCE environment, either a
global root name or cell root name. Then, create the subordinate contexts, instantiate an object of
EcDnComposite type and add the contexts to the composite name, including the entry name.
Given an element, specify the particular attribute to be read. Using the element name object call
the method 'getValueList'. This operation will return the a list of the attribute values.

Delete the value object from the element and the element from the composite name. Deallocate any
memory used.

4-31 305-CD-028-002

4.2.1.5.4.9 Event Trace

4.2.1.6 Implementation

Implementations of both DNS and X.500 are available. DNS/BIND is available in public domain
from the Internet at no cost. CSS will provide this public domain BIND namespace.
Implementations of X.500 are available as COTS products. GDS is one such implementation that
comes as bundled software with DCE. Since DCE (OODCE) is the chosen infrastructure, CSS will
provide GDS as the X.500 conformant namespace. Both BIND and GDS are replicated and
distributed namespaces that support local client caching. They both provide some degree of
security.

X/Open is currently developing code to support the XFN interface. Release A CSS will develop
the required XFN functionality (with the exception of search) on top of the X/Open XDS/XOM
interface for the X.500 namespaces.

Release B CSS will not add any additional functionalities to the directory/naming service. The
XFN is currently being implemented by OSF as part of a future technology offering. We do not
expect it to be available from vendors within the Release B time frame.

4.2.1.7 Service/CSCI Management and Operation

4.2.1.7.1 System Management and Strategy

DCE services are protected from a single point of failure by replicating (copying) the services and
important files to additional hosts in the network. Replication ensures that critical services and data
are available even after some failures. Distributed user applications can also include replication to
improve availability.

4.2.1.7.2 Operator Interface

The CDS Browser (a GUI interface) allows a user to view the contents and structure of the cell
namespace. The Browser can both display an overall directory structure, and show the contents of
directories. It can also be customized to display only a specific class of object names.

Since the CDS Browser is not available on all the platforms, the 'cdscp' command can be used to
view the contents of the cell namespace. 'cdscp' allows one to view selected contents of one
directory at a time. It is an interactive command, not a GUI interface. For example, to display all
objects in the directory ' /.:/common/dev/store ', the user can enter the following:

cdscp=>l obj /.:/common/dev/store/*

For more information regarding CDS Browser or the 'cdscp' command, please refer to the DCE
administration guide.

4.2.1.7.3 Reports

None.

4-32 305-CD-028-002

4.2.1.8 Frequently Asked Questions

The Frequently Asked Questions (FAQ) included in this section are taken from the FAQ posted in
the OSF Home Page by Dave Manny and others.

1)	 How are directory contents replicated? What about a master and several slaves? What is a
master and a slave?

Updating the slaves is transparent. Updating is done periodically. In addition to this, the
directory service provide a way for the system administrator to update replicas on demand,
called skulking. Portions of the naming database can be updated.

A master is the original copy/version of the directory contents. Usually the master is where
all updates and changes are done. A slave is a copy of the directory contents. Normally,
slaves only have read permission, updates are not allowed; however, some products do
allow write permissions for the slaves but the slave is still a copy of the original directory
contents. If a product allows write permission to slaves then there are a lot of
synchronization that have to go on.

2) Where do the replicas reside?

Replicas reside on different machines from the master, usually at a place nearer to the
usage. This geographical proximity enhances performance.

3) What happens when a replica is not available?

When a lookup is done, if a chosen replica is not available, the client internally does another
lookup (a retry) with another available replica.

4) What is the practical limit on the size of a DCE cell?

It is still a bit early in the product life to have substantial experience with large-scale DCE
installations. But there are some large cells in operation. Certainly it is reasonable to plan
on cells with at least thousands of nodes and perhaps tens of thousands of users.

The University of Michigan Center for Information Technology Integration has done a
study in which they added 50,000 entries to the Cell Directory and to the security registry.
Their results are reported in technical reports 93-12 and 94-1.

5) How much memory and disk space is required for DCE services?

This depends on the size of the cell, the number of users, number of services, etc. According
to a paper present by Dan Hamel of Transarc, at the Decorum conference in February 1994,
the following can be used as rough guidelines:

- Security server: 2k per principal/account; same at replicated sites

- Directory server: 10k per directory, 1k per object; same at replicated sites

- End-user machines: Each dce_login creates new credential files, which can build up.
Space usage can range from less than 1k to over 100k.

6) Is it possible for a machine to be a member of more than one DCE cell?

Not at present. A machine can only be in a single cell under DCE 1.0.3. However, it will
be possible for cells to cooperate when DCE 1.1 is deployed. See the next question.

4-33 305-CD-028-002

7) 	 Is it possible for a user in one cell to use secure services in another cell after DCE 1.1. is
deployed?

Yes. The Access Control List (ACL) contains three entry types: foreign_user,
foreign_group and foreign_other which specify the permissions available to users on other
cells. All that is required for intercell access, other than physical connectivity, is for the two
cell's security services to be configured to know about each other.

There is a command, the rgy_edit "cell" command, that must be run, once, by the cell
administrator of the two cells that wish to communicate. After that, it's all transparent.

8) What is NSedit?

It is a Project Pilgrim application. Naming services, in general are network services that
make it possible to access resources using names rather than numbers or other cryptic
forms. Some naming services also provide mechanisms through which resources can be
loaded and accessed by names without knowing their physical location in the network.
There are numerous types of name service implementations existing today that store
information about resources. An increasing number of current applications are required to
access the information from these various sources. However, each name service
implementation provides a unique method for accessing similar information.

There is no generic interface which can be used to access the various naming systems in a
portable manner. Applications must use the specific interfaces provided by each naming
system in order to access their respective namespaces. Additionally, some environments
may not support a particular type of namespace or might provide access to the same
namespace using a different interface. In such cases, users are faced with learning and using
a number of different interfaces to the various namespaces.

NSedit provides a uniform and consistent interface to the numerous name services
available in an environment. Thus applications can access the various name services using
the same interface. New naming systems can be easily added to the list of supported naming
systems.

4.2.2 Security Service

4.2.2.1 Overview

In distributed systems applications rely on services provided by servers running in different
address spaces on heterogeneous platforms. Servers and clients may communicate in RPC or other
inter-processing communications methods. Servers are independent and their main functionality is
to listen for client requests, process the request and send the results back to the clients. This
division of processing can be done for any number of reasons such as efficiency, data availability,
etc. In addition to a client invoking a request, and the server processing that request, both the client
and the server may need to use mechanisms to protect resources as well as the integrity of the data
exchanged when the client and the server communicate via RPC or other inter-process
communications methods. These mechanisms are authentication, authorization, tamper-proofing
(for data integrity), encryption (for data privacy), and auditing. While authentication should always
be used in every conversation between a client and a server, the mechanisms for authorization, data
integrity and privacy, and auditing are based on security policies of the system(s) and the

4-34 305-CD-028-002

application-specific need for those mechanisms. These concepts are explained in detail in the
CSMS requirements document (DID 304). This document explains how these mechanisms are
achieved in the current design.

Authentication is the process of verifying the validity of a principal. Authentication is usually done
at two points. Initially when users login to the ECS domain, authentication is done by a "trusted
third party" who supplies server's credentials for principals to use with application servers.

Authorization is the processing of deciding what sort of users/groups should be allowed to access
what services/resources and then allow/deny the service. In authorization, each resource is
associated with a list of permissions that should be granted to different kinds of users and different
kinds of access operations. This is used to selectively grant certain principals access to some
resources. Authorization is performed by an Access Control List (ACL) mechanism. An ACL is an
entry with information such as the name of the user/group and the permissions list associated with
them, which indicates the kind of permission/s given for the user/group. ACLs should be created
and maintained for all the application specific objects. An ACL manager library is provided. A
noticeable feature of the authorization process for the RPC communication is that it allows the
intermediary servers to operate on behalf of the initiating client while preserving both the client's
and servers' identities and access control attributes across chained RPC operations.

When data is transmitted over the network from one application to another, the integrity of the data
should be preserved. This is to make sure that the copy of the data the receiver gets is exactly the
same as the data that the sender sends. This tamper-proofing of the data may or may not be used
with methods for protecting the privacy of the data. Checksums or secure hashes are often used to
guarantee data integrity.

Encryption is the process of encoding a message into cipher text using a key. The process of
decoding the cipher text to its original form using a key is called decryption. Encryption is used to
maintain the privacy of data transmitting over the network.

Auditing is provided to reinforce the secure communications between the client and the server as
well as to protect the integrity of the distributed systems. The auditing can be incorporated into
programs to support the surveillance on the fly and the auditing also allows administrators to track
security-related events within trusted computing base.

While authentication is necessary, other features such as authorization, checksums, data privacy,
and auditing are optional. ECS application can selectively choose to use these security features
depending on their specific needs. Client and server applications using inter-process
communications mechanisms other than DCE RPCs can mutually authenticate themselves with
each other and communicate securely through use of the Extended Generic Security Service
Application Program Interface (GSSAPI).

4.2.2.2 Context

It is assumed that all ECS services (but not necessarily all clients) run in the DCE/OODCE
environment. Figure 4.2.2.2-1 depicts the different steps in the usage of this service by an
application that needs to implement security. A few examples of the usage of this service within
ECS are provided here. M&O needs to be able to create and maintain accounts for principals to
login to ECS hosts. The authentication service is used by the ECS Login service and may be used
by both the SDPS/FOS clients and servers to authenticate each other. The authorization service

4-35 305-CD-028-002

may be used by any server to protect access to a resource, such as allowing only the authorized
Principal Investigator to browse through some instrument data. Data integrity may be used by IST
sessions to make sure that the command requests received from Instrument Investigators are not
modified in transit. Encryption may not be needed by most ECS applications directly, but is used
internally by the other three security services.

4.2.2.3 Object Model

The object model (see Figure 4.2.2.3-1) indicates all the CSS provided security classes and the
COTS provided classes and their associations with each other and with an application proxy object
and application server object. Section 4.2.2.3.1 describes all the CSS provided security classes in
detail about where and how they are used. For details on COTS provided security classes please
refer to DCE reference manuals.

4.2.2.3.1 ECSAcl Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class is used to access a DCE access control list. It maintains all the information about

an ACL. The ECSAclDb stores Acl information, and makes it visible for reading through

this interface. The ECSModifyableAcl interface is used for editing ACLs. A ECSAcl is a

read-only object. In order to change a ECSAcl, it must be either replaced completely with

another ECSAcl, or converted into a ECSModifyableAcl in order to be edited through an

application interface.

Attributes:

None

Operations:

ECSAcl - This is the default constructor. It creates a ECSAcl object.

Arguments:

Return Type:Void

Privilege:Public

GetAccess - This operation returns the set of permissions that can be granted to the current

client by the ECSAcl.

Arguments:

Return Type:DCESchemaBitset

Privilege:Public

4-36 305-CD-028-002

4-37
305-C

D
-028-002

ServerProg

appClientObj

ECSSecurity

DCERefMon

appServerObj

DCEAclMgr acl_edit

rgy_edit

ECSFilePassword

ClientProg

ESO

ECSAclDb

DCEAclSchema ECSModifyableAclECSAclStorage
Manager

DCEUuid

Invokes CreateAclSchema() to define permission set

Invokes CreateAclDatabase(char *aclDbFilename,
int dbFlag) to store Acls

Invokes CreateAcl(char *objectName) to create
Acls for objects

Invokes Remote
Procedure Call

Invokes IsAuth() to check Client's Authorization
Privileges to execute the RPC in question

Manipulates/Updates ACLs

Allows/ Denies RPC
execution based on
IsAuth() response

Provides "rdacl" Interface

Create
instance of

appClientObj

Register
appClient

Authentication
info. with

RPC runtime

RPC executed and
result supplied

Creates an instance of DCERefMon
object and initialize the server preferences

Creates appSrvObject

Creates global DCEAclMgr object by using
DefineAclMgr Macro (to register "rdacl"

interface manager object with global
"theServer" object)

Provides DCERefMon object tand a
DCEUuid object to DCEAclMgr object

through DefineAclMgr Macro

Creates Cleanup thread

Creates an instance of EcsSec object. Supplies a database filename.

Registers the
DCERefMon

object with the
appSrvObject

Activate "theServer" object to Listen
to Client requests

Registers appSrvObject with the
global "theServer" object

Set the Name of the Server object
to use CDS (optional)

Set the Server Authentication information
with the RPC runtime

Creates a new
DCEAclSchema

and invokes
AddPrintstring &

SetControlPermissions

Creates new
DCEAclStorageManager
object and through this

object invoke
CreateNewDatabase

Instantiates a
DCEModifyableAcl

object

Instantiates a DCEAclDb
object and through this

object invokes CreateAcl

Returns a Modifyable Acl

Creates &
Provides

ServerKeyFile

Creates an Object uuid

Manipulates/ Updates Acls

Invokes GetDb(char *aclDbName)

Invokes GetAcl(char *objectName)

Add/ Delete Acl Entries

Uses the password in
the serverKeyFile

Figure 4.2.2.2-1. Security Service Event Flow

ESO

appClientObj

DCERefMon

EcSeSecurity

DCEAclMgr

appServerObj

acl_edit

EcSeServerKeyMgmt

rgy_edit

GUI

GUI

ECSAclStorageManager

Global DCEServer
Object

DCEAclSchema

ECSModifyableAcl

DCEUuid

ECSAclDb

ECSAcl

DCESecId

DCEObj DCEInterfaceMgr

app_1_0_ABS

DCEInterface

DCEPassword

ECSModifyableAcl()
~ECSModifyableAcl()
AddAclEntry(permissions:DCESchemaBitset acl_entry_type:sec_acl_entry_type_t
pgo_name:DCESecId*=NUL)
CommitAcl()
SetUserObj(identity:DCESecId&)
SetGroupObj(identity:DCESecId&)

ECSAclStorageManager()
~ECSAclStorageManager()
GetDb(database_name:const char*)
GetDb(manager_type:const DCEMgrType*)
CreateNewDatabase(database_name:const char* schema:const DCEAclSchema*
persistent_name:const char*=0)
DoneWithDb(:ECSAclDb*)
Register(database:ECSAclDb* num_slices:int=1)
GetManagerTypes(component_name:const char* sec_acl_type:sec_acl_type_t
size_avail:unsigned32 size_used:unsigned32* num_types:unsigned32*)
GetSchema(manager_type:DCEMgrType* index:int* manager_type_chain:DCEMgrType*)
GetDbName(manager_type:const DCEMgrType*)

_ps

DCEAclSchema(num_slice=1 num:int=0 ps:sec_acl_printstring_t*=0 tok:int=0)
~DCEAclSchema()
GetPermstring(slice:int permissions:sec_acl_permset_t)
MakeBitmap(slice:int perms:const char*)
GetPermstring(bits:const DCESchemaBitset&)
MakeBitmap(perms:const char*)
NumPrintstrings(slice:int)
GetPrintstrings(slice:int len:int ps:sec_acl_printstring_t*)
NumPrintstrings()
GetPrintstrings(len:int ps:DCESchemaPrintstring_t*)
NumSlices()
PossibleBits(slice:int)
PossibleBits()
GetTokenizeFlag()
GetControlReadPermission()
GetControlWritePermission()
AddPrintstring(ps:const DCESchemaPrintstring&)
AddPrintstring(perm:const char* help:const char* bits:DCESchemaBitset&)
SetControlPermissions(rw:const DCESchemaBitset&)
SetControlPermissions(r:const DCESchemaBitset& w:const DCESchemaBitset&)
Copy()

ECSAclDb()
~ECSAclDb()
Lookup(object_name:const char* sec_acl_type:sec_acl_type_t=sec_acl_type_object)
DeleteAcl(object_name:const char*
sec_acl_type:sec_acl_type_t=sec_acl_type_object)
CreateAcl(object_name:const char* newuser_obj:const DCESecId=NULL
newgroup_obj:const DCESecId*=NULL
sec_acl_type:sec_acl_type_t=sec_acl_type_object)
GetModifyableAcl(object_name:const char*
sec_acl_type:sec_acl_type_t=sec_acl_type_object new_acl:sec_acl_t=NULL)
GetSchema()
IsAuth(object_name:const char* desired_perms:DCESchemaBitset)
IsAuth(objecvt_name:const char* desired_perms:DCESchemaBitset identity:const
sec_id_pac_t*)
IsAuth(object_name:const char* perm_string:const char*)
GetUserObj(object_name:const char*)
GetGroupObj(object_name:const char*)
GetDbName()

ECSAcl()
~ECSAcl()
GetUserObj()
GetGroupObj()
IsAuth(desired_perms:DCESchemaBitset)
IsAuth(desired_perms:DCESchemaBitset identity:const sec_id_pac_t*)
GetAccess()
ReleaseAcl()
Slice()

_keyFilePMutex
_keyFileP
a_perstFileP

EcSeSecurity()
EcSeSecurity(a_dbName:const RWCString&)
~EcSeSecurity()
SetServerAuthInfo(a_princName:const RWCString& a_keyFileName:const RWCString&
a_authnService:EcTULongInt = rpc_c_authz_dce)
CommitAcl(a_modAcl:DCEModifyableAcl&)
CreateAndRegRefMon(ao_appSrvObj:DCEInterfaceMgr& a_protectLevel:EcTULongInt =
rpc_c_protect_level_connect a_authnService:EcTULongInt = rpc_c_authn_dce_secret
a_authzService = rpc_c_authz_dce)
CreateAclSchema(ao_status:EcUtStatus& a_numAddtnPerms:EcTInt = 0)
GetAclSchema(ao_status:EcUtStatus& a_database:DCEAclDb&)
GetAclDb(ao_status:EcTUtStatus& a_dbName:const RWCString&)
CreateAclDb(ao_status:EcUtStatus& a_dbName:const RWCString
a_schema:DCEAclSchema& a_perstFileP:const EcTChar* = 0)
AddUserAclEntry(a_userName:const RWCString& a_perms:const RWCString&
a_schema:DCEAclSchema& a_modAcl:DCEModifyableAcl& a_cellNameP:EcTChar* = 0)
AddGroupAclEntry(a_groupName:const RWCString& a_perms:const RWCString&
a_schema:DCEAclSchema& a_modAcl:DCEModifyableAcl& a_cellNameP:EcTChar* = 0)
CreateAcl(ao_status:EcUtStatus& a_objName:const RWCString& a_database:DCEAclDb&
a_schema:DCEAclSchema&)
GetModAcl(ao_status:EcUtStatus& a_objName:const RWCString& a_database:DCEAclDb&)
DeleteAcl(a_objName:const RWCString& a_database:DCEAclDb&)
IsAuthorized(ao_status:EcUtStatus& a_dbName:const RWCString& a_objName:const
RWCString& a_desiredPerms:const RWCString&)
IsNBAuthorized(ao_status:EcUtStatus& a_princName:const RWCString& a_dbName:const
RWCString& a_objName:const RWCString& a_desiredPerms:const RWCString&)

_keyFile
_pName
_passwordValidMutex
_passwordValid

EcSeServerKeyMgmt(a_pName:const RWCString& a_localKeyFile:const RWCString&)
~EcSeServerKeyMgmt()
GetPassword()
SetPasswordValid(pswdValid:EcTInt)
GetPasswordValid(status:EcUtStatus&)
invalidatePassword()

[Public]

Offpage

Offpage

[Public]

Offpage

[Public]

Offpage

Offpage

Offpage

[Public]

Offpage

[Public]

[Public]

Offpage

[Public]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[Public]

Offpage

[Public]

Offpage

[Public]

Offpage

Offpage

[Public]

Offpage

[Public]

Offpage

+
+
+ : void

+ : void
+ : void
+ : void

+
+
+ : ECSAclDb
+ : ECSAclDb
+ : ECSAclDb

+ : void
+ : void
+ : void

+ : const DCEAclSchema
+ : const char*

- : DCESchemaPrivateState&

+
+
+ : char*
+ : sec_acl_permset_t
+ : char*
+ : DCESchemaBitset
+ : int
+ : int
+ : int
+ : int
+ : int
+ : sec_acl_permset_t
+ : const DCESchemaBitset&
+ : int
+ : const DCESchemaBitset&
+ : const DCESchemaBitset&
+ : void
+ : void
+ : void
+ : void
+ : DCEAclSchema*

+
+
+ : ECSAcl*
+ : void

+ : ECSModifyableAcl*

+ : ECSModifyableAcl*

+ : const DCEAclSchema*
+ : boolean32
+ : boolean32

+ : boolean32
+ : DCESecId
+ : DCESecId
+ : char*

+
+
+ : DCESecId
+ : DCESecId
+ : boolean32
+ : boolean32
+ : DCESchemaBitset
+ : void
+ : sec_acl_t*

± : DCEPthreadMutex
± : RWCString*
± : EcTChar*

+
+
+
+ : EcUtStatus

+ : EcUtStatus
+ : EcUtStatus

+ : DCEAclSchema*
+ : const DCEAclSchema*
+ : DCEAclDb*
+ : DCEAclDb*

+ : EcUtStatus

+ : EcUtStatus

+ : DCEModifyableAcl*

+ : DCEModifyableAcl*
+ : EcUtStatus
+ : EcTInt

+ : EcTInt

± : RWCString
± : RWCString
± : DCEPthreadMutex
± : EcTInt

+
+
+ : sec_passwd_rec_t*
- : EcUtStatus
- : EcTInt
+ : EcTVoid

Invokes
CreateAclSchema(),

CreateAcl()
CreateAclDb()

Instantiates
ECSSec
Object

uses

creates

Interacts
with creates

uses

uses

uses

registers
with CDS

registers with
appSrvObject

uses

Provides appServerObj
Password in the
serverKeyFile

creates

uses "rdacl"
interface

uses

Invokes
IsAuth()

uses

Creates & Provides
serverKeyFile

4-38
305-C

D
-028-002

[Public]

[Public]

Figure 4.2.2.3-1. Security Service Object Model

GetGroupObj - This operation will return the group owner identity. The same explanation

applies as for GetUserObj().

Arguments:

Return Type:DCESecId

Privilege:Public

GetUserObj - This operation will return the user owner-identity associated with the

ECSAcl. It is a convenience routine because the information might actually be stored in the

database, in which case the ECSAcl needs to get the information from the database.

Arguments:

Return Type:DCESecId

Privilege:Public

IsAuth - This operation is the most important member function that ECSAcl provides. It

returns TRUE if the ECSAcl will grant the desired permissions to the client. It returns

FALSE if all the desired permissions can not be granted.

Arguments:desired_perms:DCESchemaBitset

Return Type:boolean32

Privilege:Public

IsAuth - This operation checks the authorization rights of a third party whose identity is

passed to the function as the second argument.

Arguments:desired_perms:DCESchemaBitset identity:const sec_id_pac_t*

Return Type:boolean32

Privilege:Public

ReleaseAcl - This operation advises the system that the ECSAcl is no longer needed. In the

implementation to be provided, a call to this function unlocks the ECSAcl so that other

clients may use it.

Arguments:

Return Type:void

Privilege:Public

Slice - This operation will return the DCE data structure sec_acl_t. It extracts just one slice

of permissions since that is all that a sec_acl_t will hold. This conversion from an ECSAcl

object to a sec_acl is needed by the 'rdacl' interface.

Arguments:

Return Type:sec_acl_t*

Privilege:Public

~ECSAcl - This is the destructor. It deletes a ECSAcl object.

Arguments:

Return Type:Void

Privilege:Public

4-39 305-CD-028-002

Associations:

The ECSAcl class has associations with the following classes:
Class: EcSeSecurity uses

4.2.2.3.2 ECSAclDb Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class defines the interface to the ACL database. The ACL databases store and retrieve

all ACLs based on an object name. ACLs can be organized and retrieved in different ways

such as by ACL type (object, default object, or default container), and according to the

permission slice. Each database is associated with only one DCEAclSchema that may

contain multiple slices. The ECSAclDb implementation must define the ACL locking

protocol and provide the mechanism to use it.

Attributes:

None

Operations:

CreateAcl - This operation will create an ECSModifyableAcl object that is brand new; that

is, there was no ECSAcl in this database corresponding to the obejct name and ECSAcl type

supplied. It creates a blank template that can be filled in and written back to the database

using the ECSModifyableAcl member functions. The owner and the group identities may

be specified here or may be filled in later by the member functions of ECSModifyableAcl.

Arguments:object_name:const char* newuser_obj:const DCESecId=NULL

newgroup_obj:const DCESecId*=NULL

sec_acl_type:sec_acl_type_t=sec_acl_type_object

Return Type:ECSModifyableAcl*

Privilege:Public

DeleteAcl - This operation will delete an ECSAcl from the database given the object name

and an optional ACL type.

Arguments:object_name:const char* sec_acl_type:sec_acl_type_t=sec_acl_type_object

Return Type:void

Privilege:Public

ECSAclDb - This is the default constructor.

Arguments:

4-40 305-CD-028-002

Return Type:Void

Privilege:Public

GetDbName - This operation will return the name of the ECSAclDb database in character

string format.

Arguments:

Return Type:char*

Privilege:Public

GetGroupObj - This operation will return a DCESecId object that represents the group

owner of the object; that is, the identity of the group that will match on the group_obj ACL

entry.

Arguments:object_name:const char*

Return Type:DCESecId

Privilege:Public

GetModifyableAcl - This operation should be called when users want to edit an Acl in an

application interface rather than through the 'rdacl' interface. It creates a

ECSModifyableAcl object containing the current existing Acl information for the specified

object in the database. The changes made to the ECSModifyableAcl are not used in

authorization decisions until they are explicitly committed back to the database.

Arguments:object_name:const char* sec_acl_type:sec_acl_type_t=sec_acl_type_object

new_acl:sec_acl_t=NULL

Return Type:ECSModifyableAcl*

Privilege:Public

GetSchema - This operation will return a pointer to the schema object that describes the

permission bits managed by this database.

Arguments:

Return Type:const DCEAclSchema*

Privilege:Public

GetUserObj - This operation returns a DCESecId object that represents the user owner of

the object; that is, the identity of the principal that will match on the user_obj ACL entry.

Arguments:object_name:const char*

Return Type:DCESecId

Privilege:Public

IsAuth - This operation make an authorization decision. It returns a TRUE if the caller has

the desired_perms and a FALSE otherwise. The caller's information is obtained from

within the implementation of this member function supplied by the DCEClientInfo object

that is obtained when the server is invoked either through the application interface or

thropugh the 'rdacl' interface.

Arguments:object_name:const char* desired_perms:DCESchemaBitset

Return Type:boolean32

4-41 305-CD-028-002

Privilege:Public

IsAuth - This operation is similar to the first form but accepts a string representation of the

permission set desired instead of a DCESchemaBitset.

Arguments:objecvt_name:const char* desired_perms:DCESchemaBitset identity:const

sec_id_pac_t*

Return Type:boolean32

Privilege:Public

IsAuth - This is similar to the first and second form except that it takes a DCE PAC

structure to identify a third party. If the requestor and that third party have the desired

permissions, it returns a TRUE. This form is needed to implement

rdacl_get_access_on_behalf.

Arguments:object_name:const char* perm_string:const char*

Return Type:boolean32

Privilege:Public

Lookup - This operation will lookup an ECSAcl in the database based on the object name

and the type of ACL. It returns a pointer to an ECSAcl. A ECSAcl is read-only and none

of the member functions can modify its state.

Arguments:object_name:const char* sec_acl_type:sec_acl_type_t=sec_acl_type_object

Return Type:ECSAcl*

Privilege:Public

~ECSAclDb - Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The ECSAclDb class has associations with the following classes:
Class: EcSeSecurity uses

4.2.2.3.3 ECSAclStorageManager Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class supports multiple ACL databases. It manages the ACL databases being used by

a server, providing registration and search services for these databases. It provides manager

type and schema information as needed by the rdacl interface. It also provides functionality

for creating a new ECSAclDb.

4-42 305-CD-028-002

Attributes:

None

Operations:

CreateNewDatabase - This operation creates a new DCEAclDb object with the given

name and associated with the given schema. The third optional parameter allows the

database implementor to provide a constructor that uses the full pathname of a persistent

datastore.

Arguments:database_name:const char* schema:const DCEAclSchema*

persistent_name:const char*=0

Return Type:ECSAclDb

Privilege:Public

DoneWithDb - This operation will indicate when done with the specified database.

Arguments::ECSAclDb*

Return Type:void

Privilege:Public

ECSAclStorageManager - This is the class default constructor. It creates an

ECSAclStorageManager object.

Arguments:

Return Type:Void

Privilege:Public

GetDb - This operation provides a database handle from the DCEAclStorageMgr by

providing the database name.

Arguments:database_name:const char*

Return Type:ECSAclDb

Privilege:Public

GetDb - This operation provides a database handle from the DCEAclStorageMgr by

providing a manager type.

Arguments:manager_type:const DCEMgrType*

Return Type:ECSAclDb

Privilege:Public

GetDbName - This operation returns the name of the database corresponding to the

manager type passed in. This is used in constructing the print string for the manager type

required by rdacl_get_printstrings.

Arguments:manager_type:const DCEMgrType*

Return Type:const char*

Privilege:Public

4-43 305-CD-028-002

GetManagerTypes - This operation will return the array of DCEMgrType corresponding

to the databases that contain the ACLs protecting the object identified by the first

parameter. It supports the implementation of rdacl_get_manager_types and

rdacl_get_manager_types_semantics.

Arguments:component_name:const char* sec_acl_type:sec_acl_type_t

size_avail:unsigned32 size_used:unsigned32* num_types:unsigned32*

Return Type:void

Privilege:Public

GetSchema - This operation is convenient for implementing the 'rdacl' interface, and can

be ignored by most users. It returns a pointer to a DCEAclSchema object for the database

identified by the first parameter, which is manager type. In this case, the manager type

identifies a particular slice of permissions.

Arguments:manager_type:DCEMgrType* index:int*

manager_type_chain:DCEMgrType*

Return Type:const DCEAclSchema

Privilege:Public

Register - This operation allows the server developer to construct an ECSAclDb and then

to register it directly with the ECSAclStorageManager object.

Arguments:database:ECSAclDb* num_slices:int=1

Return Type:void

Privilege:Public

~ECSAclStorageManager - This is the class destructor. It frees the memory occupied by

the ECSAclStorageManager object.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The ECSAclStorageManager class has associations with the following classes:
Class: EcSeSecurity uses

4.2.2.3.4 ECSModifyableAcl Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is a temporary copy of ECSAcl that can be used for editing directly by the server or

through an application-defined interface. Users of the 'rdacl' interface do not use

ECSModifyableAcl directly, but rather ECSModifyableAcl provides an alternative path for

4-44 305-CD-028-002

editing ACLs. The contents of a ECSModifyableAcl are not seen when authorization
decisions are made. The changes don't take effect until the ECSModifyableAcl is
committed back to the database, at which time the ECSModifyableAcl itself no longer
exists.

Attributes:

None

Operations:

AddAclEntry - This operation can be used to add new ACL entries, once a

ECSModifyableAcl object has been created. It takes permissions, the acl_entry_type, and

the optional pgo_name identity corresponding to the ACL entry.

Arguments:permissions:DCESchemaBitset acl_entry_type:sec_acl_entry_type_t

pgo_name:DCESecId*=NUL

Return Type:void

Privilege:Public

CommitAcl - This operation will write the ECSModifyableAcl contents into the database

and deletes the ECSModifyableAcl. When CommitAcl() completes, authorization

decisions will take the new ACL into account.

Arguments:

Return Type:void

Privilege:Public

ECSModifyableAcl - This is the class default constructor.

Arguments:

Return Type:Void

Privilege:Public

SetGroupObj - This operation will allow the caller to change the identity of the group

owner of the object protected by this ACL.

Arguments:identity:DCESecId&

Return Type:void

Privilege:Public

SetUserObj - This operation allows the caller to change the identity of the user owner of

the object protected by this ACL.

Arguments:identity:DCESecId&

Return Type:void

Privilege:Public

~ECSModifyableAcl - This is the class destructor.

4-45 305-CD-028-002

Arguments:
Return Type:Void
Privilege:Public

Associations:

The ECSModifyableAcl class has associations with the following classes:
Class: EcSeSecurity uses

4.2.2.3.5 EcSeSecurity Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is the security class. When it is required to implement security service in any

application, it is required by the application developer to instantiate an EcSeSecurity object

in the serverMain program. This class makes use of the COTS provided classes such as

DCEAclSchema, DCESchemaBitset, DCESecId, etc. and also CSS customized classes

such as ECSAcl, ECSAclDb, ECSModifyableAcl and ECSAclStorageManager. The

ECSAclStorageManager object is per DCE server. Applications can access it through the

global reference named ECSAclStorageMgr. ECSAclStorageManager class maintains a

table of known ACL databases. Each database can contain ACLs for more than one object.

ECSSecurity makes use of ECSAclStorageManager to CreateAclDatabase with the

persistent storage feature and to GetDatabaseName. Similarly ECSSecurity uses

DCEAclSchema to SetControlPermissions and AddPrintstrings to ACLS, uses ECSAclDb

to CreateAcls supplying the name of the object for which the ACL is to be created, to

GetAcl and to perform the authorization check on client's privileges to access any resource

through IsAuth function.

Attributes:

_keyFileP - This attribute identifies a file that stores the password of a dce principal (ex:

non-interactive principals such as servers).

Data Type:RWCString*

Privilege:Protected

Default Value:

_keyFilePMutex - This attribute represents the pthread Mutex for l_keyFileP class

variable.

Data Type:DCEPthreadMutex

Privilege:Protected

Default Value:

a_perstFileP - This attribute identifies a file which is used for persistent storage of Acls.

4-46 305-CD-028-002

Data Type:EcTChar*
Privilege:Protected
Default Value:

Operations:

AddGroupAclEntry - This member function will add acl entry for a given group in the

given ACL.

Arguments:a_groupName:const RWCString& a_perms:const RWCString&

a_schema:DCEAclSchema& a_modAcl:DCEModifyableAcl& a_cellNameP:EcTChar* =

0

Return Type:EcUtStatus

Privilege:Public

AddUserAclEntry - This member function will add an Acl entry for a given user in the

given ACL.

Arguments:a_userName:const RWCString& a_perms:const RWCString&

a_schema:DCEAclSchema& a_modAcl:DCEModifyableAcl& a_cellNameP:EcTChar* =

0

Return Type:EcUtStatus

Privilege:Public

CommitAcl - This method will commit any changes done to the ACLs.

Arguments:a_modAcl:DCEModifyableAcl&

Return Type:EcUtStatus

Privilege:Public

CreateAcl - This method will create an ACL for a given resource/object/service name.

Arguments:ao_status:EcUtStatus& a_objName:const RWCString&

a_database:DCEAclDb& a_schema:DCEAclSchema&

Return Type:DCEModifyableAcl*

Privilege:Public

CreateAclDb - This function will create a database for given ACL, where the ACLs can

be stored.

Arguments:ao_status:EcUtStatus& a_dbName:const RWCString

a_schema:DCEAclSchema& a_perstFileP:const EcTChar* = 0

Return Type:DCEAclDb*

Privilege:Public

CreateAclSchema - This method will create a schema with default allowable permissions

being read, write, execute, insert, delete, test, acl-control (i.e. rwxidtc) for the Acls. It also

provides an option of 25 additional permissions A-Y which can be used for any application

specific needs.

4-47 305-CD-028-002

Arguments:ao_status:EcUtStatus& a_numAddtnPerms:EcTInt = 0

Return Type:DCEAclSchema*

Privilege:Public

CreateAndRegRefMon - This function will create an instance of the DCEStdRefMon

object and register with the manager object.

Arguments:ao_appSrvObj:DCEInterfaceMgr& a_protectLevel:EcTULongInt =

rpc_c_protect_level_connect a_authnService:EcTULongInt = rpc_c_authn_dce_secret

a_authzService = rpc_c_authz_dce

Return Type:EcUtStatus

Privilege:Public

DeleteAcl - This function will delete an Acl given the object/resource name.

Arguments:a_objName:const RWCString& a_database:DCEAclDb&

Return Type:EcUtStatus

Privilege:Public

EcSeSecurity - This is the default constructor.

Arguments:

Return Type:Void

Privilege:Public

EcSeSecurity - This constructor takes database filename as an input parameter. When this

is invoked, if a database with the supplied filename already exists in

DCEAclStorageMgr(DCEAclStorageMgr maintains a list of databases, which is initially

empty), the file is used for reading, else a new database with the given name is created.

Arguments:a_dbName:const RWCString&

Return Type:Void

Privilege:Public

GetAclDb - This function will get the Acl Database where the Acl in question is stored,

which is already created by the CreateAclDb() method.

Arguments:ao_status:EcTUtStatus& a_dbName:const RWCString&

Return Type:DCEAclDb*

Privilege:Public

GetAclSchema - This function will get the AclSchema for the Acl in question, which is

already created by CreateAclSchema() method.

Arguments:ao_status:EcUtStatus& a_database:DCEAclDb&

Return Type:const DCEAclSchema*

Privilege:Public

GetModAcl - This method will get the DCEModifyableAcl object for a given object/

resource.

Arguments:ao_status:EcUtStatus& a_objName:const RWCString&

4-48 305-CD-028-002

a_database:DCEAclDb&

Return Type:DCEModifyableAcl*

Privilege:Public

IsAuthorized - This is a very important member function. It checks the authorization

privileges of a client (based on client's principal name OR the group to which he belongs

to) requesting operation/access for a given resource/service. It returns a boolean value

indicating the denial/granting of the requested permission/access.

Arguments:ao_status:EcUtStatus& a_dbName:const RWCString& a_objName:const

RWCString& a_desiredPerms:const RWCString&

Return Type:EcTInt

Privilege:Public

IsNBAuthorized - This method is the most important method in the EcSeSecurity class.

This method will perform authorization check on the caller's privileges (obtained from the

caller's principal name) and comparing it against the ACL maintained for the resource in

question) before permitting him/her to perform any kind of access to any of his requested

service/resource

Arguments:ao_status:EcUtStatus& a_princName:const RWCString& a_dbName:const

RWCString& a_objName:const RWCString& a_desiredPerms:const RWCString&

Return Type:EcTInt

Privilege:Public

SetServerAuthInfo - This member function will set the server authentication

information(i.e. authentication protocol, authorization protocol, protection levels) with the

rpc runtime.

Arguments:a_princName:const RWCString& a_keyFileName:const RWCString&

a_authnService:EcTULongInt = rpc_c_authz_dce

Return Type:EcUtStatus

Privilege:Public

~EcSeSecurity - This is the destructor. It deletes a EcSeSecurity object.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcSeSecurity class has associations with the following classes:
Class: appServerObj InstantiatesECSSecObject
Class: appServerObj InvokesCreateAclSchema(),CreateAcl()CreateAclDb()
Class: appServerObj InvokesIsAuth()
Class: DCEAclMgr uses
Class: DCEAclSchema uses
Class: DCESecId uses

4-49 305-CD-028-002

Class: ECSAcl uses

Class: ECSAclDb uses

Class: ECSAclStorageManager uses

Class: ECSModifyableAcl uses

4.2.2.3.6 EcSeServerKeyMgmt Class

Parent Class:DCEPassword

Public:Yes

Distributed Object:No

Purpose and Description:

This class is the concrete implementation of the abstract DCEPassword class using a file as

the means of retrieving the secret key. This class provides a consistent way for accessing

the password data for a particular security principal (non interactive principal - server).

Attributes:

_keyFile - This attribute represents the server keytab file where the server's password is

encoded.

Data Type:RWCString

Privilege:Protected

Default Value:

_pName - This is the principal name whose password is stored in the keytab file.

Data Type:RWCString

Privilege:Protected

Default Value:

_passwordValid - This attribute represents a flag which indicates whether a password is

valid or invalid.

Data Type:EcTInt

Privilege:Protected

Default Value:

_passwordValidMutex - This attribute represents the pthread mutex for the

_passwordValid data member.

Data Type:DCEPthreadMutex

Privilege:Protected

Default Value:

Operations:

EcSeServerKeyMgmt - This is the class constructor. It makes a copy of the supplied

principalName and keyFileName into respective class variables.

Arguments:a_pName:const RWCString& a_localKeyFile:const RWCString&

Return Type:Void

4-50 305-CD-028-002

Privilege:Public

GetPassword - This operation is the implementation of the base class pure virtual making

a dce call to retrieve the secret key of a principal from the _keyFile.

Arguments:

Return Type:sec_passwd_rec_t*

Privilege:Public

GetPasswordValid - This method will get the value of the password validity(0 or 1).

Arguments:status:EcUtStatus&

Return Type:EcTInt

Privilege:Private

SetPasswordValid - This member function will set the password validity to 0 or 1.

Arguments:pswdValid:EcTInt

Return Type:EcUtStatus

Privilege:Private

invalidatePassword - Renders a password not valid.

Arguments:

Return Type:EcTVoid

Privilege:Public

~EcSeServerKeyMgmt - This is the class destructor.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcSeServerKeyMgmt class has associations with the following classes:

Class: rgy_edit Creates&ProvidesserverKeyFile

Class: appServerObj ProvidesappServerObjPasswordintheserverKeyFile

4.2.2.3.7 DCEAclMgr Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class registers a 'rdacl' interface manager object with the global DCEServer object.

Attributes:

4-51 305-CD-028-002

None

Operations:

None

Associations:

The DCEAclMgr class has associations with the following classes:
Class: ESO
Class: appServerObj creates
Class: acl_edit uses"rdacl"interface
Class: EcSeSecurity uses

4.2.2.3.8 DCEAclSchema Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class defines the permission bits that are available and provides a printable form of

each bit and an explanatory string.

Attributes:

_ps - This attribute represents all the private state in it.

Data Type:DCESchemaPrivateState&

Privilege:Private

Default Value:

Operations:

AddPrintstring - This operation will add new print strings to a schema.

Arguments:ps:const DCESchemaPrintstring&

Return Type:void

Privilege:Public

AddPrintstring - This operation will add new print strings to a schema.

Arguments:perm:const char* help:const char* bits:DCESchemaBitset&

Return Type:void

Privilege:Public

Copy - This operation creates a copy of the DCEAclSchema.

4-52 305-CD-028-002

Arguments:

Return Type:DCEAclSchema*

Privilege:Public

DCEAclSchema - This is the class constructor. It creates a DCEAclSchema object.

Arguments:num_slice=1 num:int=0 ps:sec_acl_printstring_t*=0 tok:int=0

Return Type:Void

Privilege:Public

GetControlReadPermission - This operation will retrieve the definition of the READ

control permission for the schema.

Arguments:

Return Type:const DCESchemaBitset&

Privilege:Public

GetControlWritePermission - This operation will retrieve the definition of control

permissions in the schema that a user must have to access the ACL information.

Arguments:

Return Type:const DCESchemaBitset&

Privilege:Public

GetPermstring - This operation returns a character string representation of permissions,

either for a slice or for an entire permissions set.

Arguments:slice:int permissions:sec_acl_permset_t

Return Type:char*

Privilege:Public

GetPermstring - This operation will return a character string representation of

permissions, either for a slice or for an entire permissions set.

Arguments:bits:const DCESchemaBitset&

Return Type:char*

Privilege:Public

GetPrintstrings - This operation will fill an array ps with print string values. These are the

print strings for a particular value or for a particualar schema. len is the number of elements

in the ps array.

Arguments:slice:int len:int ps:sec_acl_printstring_t*

Return Type:int

Privilege:Public

GetPrintstrings - This operation will fill an array with print string values. These are either

the print strings for a particular slice, or for the entire schema. len is the number of elements

in the array.

Arguments:len:int ps:DCESchemaPrintstring_t*

Return Type:int

4-53 305-CD-028-002

Privilege:Public

GetTokenizeFlag - This operation will return the tokenized flag.

Arguments:

Return Type:int

Privilege:Public

MakeBitmap - This operation will return a bit string which corresponds to the character

form of permissions passed in.

Arguments:slice:int perms:const char*

Return Type:sec_acl_permset_t

Privilege:Public

MakeBitmap - This operation returns a bit string which corresponds to the character form

of permissions passed in.

Arguments:perms:const char*

Return Type:DCESchemaBitset

Privilege:Public

NumPrintstrings - This operation will return the number of print strings in the schema,

either for a particular slice or for the entire schema.

Arguments:slice:int

Return Type:int

Privilege:Public

NumPrintstrings - This operation will return the number of print strings in the schema,

either for a particular slice or for the entire schema.

Arguments:

Return Type:int

Privilege:Public

NumSlices - This operation will return the number of permission slices.

Arguments:

Return Type:int

Privilege:Public

PossibleBits - This operation will return the union of the permission bits that have been

defined for this print string.

Arguments:slice:int

Return Type:sec_acl_permset_t

Privilege:Public

PossibleBits - This operation will return the union of the permission bits that have been

defined for this print string.

Arguments:

4-54 305-CD-028-002

Return Type:const DCESchemaBitset&

Privilege:Public

SetControlPermissions - This operation will set the control bit that determines whether a

user has access to the ACL structure. It indicates the permission bit selected for write

access.

Arguments:rw:const DCESchemaBitset&

Return Type:void

Privilege:Public

SetControlPermissions - This operation will set the control bit that determines whether a

user has access to the ACL structure. It grants read access to view ACLs seperately from

granting access to modify the ACLs.

Arguments:r:const DCESchemaBitset& w:const DCESchemaBitset&

Return Type:void

Privilege:Public

~DCEAclSchema - This is the class destructor.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The DCEAclSchema class has associations with the following classes:
Class: EcSeSecurity uses

4.2.2.3.9 DCEPassword Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class supports implementation of password storage and access.

Attributes:

None

Operations:

None

4-55 305-CD-028-002

Associations:

The DCEPassword class has associations with the following classes:
None

4.2.2.3.10 DCERefMon Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:False

Purpose and Description:

This class provides an abstraction of a reference monitor that controls the client object's

access to a manager object.

Attributes:

None

Operations:

None

Associations:

The DCERefMon class has associations with the following classes:
Class: appServerObj creates
Class: ESO registerswithappSrvObject

4.2.2.3.11 DCESecId Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This utility class encapsulates the sec_id_t data type of DCE.

Attributes:

None

Operations:

4-56 305-CD-028-002

None

Associations:

The DCESecId class has associations with the following classes:
Class: EcSeSecurity uses

4.2.2.3.12 DCEUuid Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This utility class encapsulates the DCE data type uuid_t. It provides a flexible way of

dealing with the various forms of representing a UUID.

Attributes:

None

Operations:

None

Associations:

The DCEUuid class has associations with the following classes:
Class: appServerObj creates

4.2.2.3.13 acl_edit Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This is a GUI utility that is used to create and maintain access control lists (acls).

Attributes:

None

Operations:

4-57 305-CD-028-002

None

Associations:

The acl_edit class has associations with the following classes:
Class: DCEAclMgr uses"rdacl"interface

4.2.2.3.14 appClientObj Class

Parent Class:DCEInterface

Public:No

Distributed Object:No

Purpose and Description:

This is an application client/proxy object.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The appClientObj class has associations with the following classes:
Class: appServerObj Interactswith

4.2.2.3.15 appServerObj Class

Parent Class:app_1_0_ABS

Public:No

Distributed Object:No

Purpose and Description:

This is an application server object.

Attributes:

All Attributes inherited from parent class

Operations:

4-58 305-CD-028-002

All Operations inherited from parent class

Associations:

The appServerObj class has associations with the following classes:
Class: EcSeSecurity InstantiatesECSSecObject
Class: appClientObj Interactswith
Class: EcSeSecurity InvokesCreateAclSchema(),CreateAcl()CreateAclDb()
Class: EcSeSecurity InvokesIsAuth()
Class: EcSeServerKeyMgmt ProvidesappServerObjPasswordintheserverKeyFile
Class: DCEAclMgr creates
Class: DCERefMon creates
Class: DCEUuid creates
Class: ESO registerswithCDS

4.2.2.3.16 app_1_0_ABS Class

Parent Class:DCEInterfaceMgr

Parent Class:DCEObj

Public:No

Distributed Object:No

Purpose and Description:

This is the application Abstract class generated by the application IDL.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The app_1_0_ABS class has associations with the following classes:
None

4.2.2.3.17 rgy_edit Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:False

Purpose and Description:

4-59 305-CD-028-002

This is a GUI utility used to crete and maintain user accounts.

Attributes:

None

Operations:

None

Associations:

The rgy_edit class has associations with the following classes:
Class: EcSeServerKeyMgmt Creates&ProvidesserverKeyFile

4.2.2.4 Functional Model

A brief description of all the CSS customized security objects as well as the COTS provided classes
used by the CSS security objects is provided in the Table 4.2.2.4-1 below. For more information
on any of the COTS provided objects, please refer to the OODCE reference manuals.

4.2.2.5 Dynamic Model Scenarios

4.2.2.5.1 Scenario #1

Table 4.2.2.4-1. Security Object Responsibility Matrix (1 of 2)
Class Description

rgy_edit This is command line interface used to create DCE accounts for principals,
create keytab files for non-interactive principal (servers) to maintain its
password, etc.

acl_edit This is command line interface to manipulate (delete, insert, read, write, etc.)
ACLs associated with objects.

DCEObj This is a base class that stores information about the DCE interfaces
implemented by a concrete manager class.

DCEUuid This is the utility class that encapsulates the DCE data type uuid_t.

DCEInterface This is a base class that encapsulates basic functionality for client objects.

DCEInterfaceMgr This is a base class that encapsulates the functionality common to a DCE
interface manager.

ESO This is the Global Server Object. It manipulates manager objects and interacts
with the DCE subsystems.

DCERefMon This class provides an abstraction of a reference monitor that controls the
client object's access to a manager object. By deriving from this abstract base
class, various reference monitors that provide different security policies can be
implemented.

4-60 305-CD-028-002

Table 4.2.2.4-1. Security Object Responsibility Matrix (2 of 2)
Class Description

DCEAclMgr This class registers a rdacl interface manager object with the global
DCEServer(ESO) object. DefineAclMgr macro is used to construct this class.

DCESecId This is a utility class that encapsulates the sec_id_t data type.

DCEAclSchema This is a class defining the ACL permission bits and print strings.

DCESchemaBitset This class represents a set of permissions formatted according to a schema.
Since most uses of ACL will use less than 32 bits of permissions, there is an
efficient encoding of 32-bit ACLs.

ECSAcl This class is used for accessing a DCE access control list. It maintains all the
information about an ACL.

ECSAclDb This is a class for ACL database. It defines the interface to the ACL database.

ECSModifyableAcl This is a temporary copy of a ECSAcl that can be used for editing directly by
the server or through an application-defined interface.

ECSAclStorageManager This is a class that maintains a table of known ACL databases. It manages the
ACL databases being used by a server, providing registration and search
services for these databases.

EcSeServerKeyMgmt Provides an interface to the storage and access of password of principal
(usually a server) to help the principal establish it's identity during login context.

EcSeSecurity Provides higher level functionality to authenticate principals accessing
resources. These include create/update/delete ACLs, define permissions sets,
persistence to the ACL database.

4.2.2.5.1.1 Abstract

This is the entire security scenario which traces the interactions of the application (which
implements security) client and server objects with the global server object ESO, the EcSeSecurity,
EcSeServerKeyMgmt, etc. The following occurs in this scenario:

• Setting client and server authentication information with RPC runtime.

• Initialization aspects such as creating instances of different objects and registering them.

• Creation of ACLs, AclSchema and AclDatabase.

• Invoking of IsAuth to check client's Authorization Privileges.

4.2.2.5.1.2 Interfaces

CSS's EcSeSecurity and EcSeServerKeyMgmt.

4.2.2.5.1.3 Stimulus

To create and maintain access control lists(ACLs) for resources, and with the help of these ACLs
perform security check to find out if a caller is authorized to access specified resource.

4.2.2.5.1.4 Desired Response

The database server should have modifiable ACL/s for object/s which consists of ACL entries that
allow a permission set defined by ACL schema, an ACL database to store the ACL created.
Functionality to check caller's privilege to access any desired resource.

4-61 305-CD-028-002

ECSAcl

Storage

Manager

ECS

Modifyable
DCEAcl

Schema DCEUuid

EcSeServer

KeyMgmtrgy_editacl_edit

appClientObj ServerProg appServerObj ESO DCERefMon
EcSeSecurity DCEAclMgr

Acl
ECSEAclDb

ACLs

Uses the serverKeyFile to get its Password

Creates & Provides

serverKeyFile

(contains server

principal Name &

Password)

Creates new DCEAclStorageManager object and

through this object invokes CreateNewDatabase

ClientProg

Create instance of DCERefMon object

and initialize the server preferences

Create global DCEAclMgr object by using DefineAclMgr Macro

(To register "rdacl" interface manager object with global "theServer" object)

Create Cleanup thread

Create

appSrvObject

Register the

DCERefMon

object with

theServer

object

Register appSrvObj with

global "theServer" object

Set the Name of the

Server object to use

CDS (optional)

Set the Server Authentication

information with RPC runtime

(once per server process)

Activate theServer object

to Listen to Client requests

appClientObj

locates "theServer" object

Invoke RPC

on appSrvObject

Creates AclSchema to define

permission set

Creates AclDatabase to store ACLs

Creates ACLs for objects/services

Checks Client's Authorization Privileges

to execute the RPC in question
Allows/ Denies

RPC execution

Manipulates

Creates an instance of EcSeSec object

RPC executed and

result supplied

Creates a new DCEAclSchema object

and invokes AddPrintstring

and SetControlPermissions

Provides DCERefMon object and DCEUuid object to DCEAclMgr

object through DefineAclMgr Macro

Instantiates a DCEAclDb

object and through this

object invokes CreateAcl

Returns a Modifyable Acl

(of type DCEModifyableAcl)

Instantiates a DCEModifyableAcl object

Creates a DCEUuid object (object uuid)

4-62
305-C

D
-028-002

Create

instance of

appClientObj

Register

appClient

Authentication

info. with

RPC runtime

Figure 4.2.2.5-1. Security Event Trace

4.2.2.5.1.5 Participating Classes

CSS's EcSeSecurity and EcSeServerKeyMgmt classes.

COTS provided classes: DCEAclMgr, DCERefMon, ECSAcl, ECSAclDb, etc.

4.2.2.5.1.6 Pre-conditions

Segments implementing security need to run in the DCE environment.

4.2.2.5.1.7 Post-conditions

The database client and server authentication information are registered with their RPC runtime. A
modifiable ACL with at least one person granted with the privilege to change ACL as desired, an
ACL schema with default 7 permissions (read, write, execute, test, insert, delete, acl_control) and
a provision to define 25 application specific permissions, an ACL database which has the latest
updated ACL are available to the application server implementing security. The rdacl interface
manager object is registered with theServer global object to provide the functionality to use MSS
provided acl_edit utility to manipulate ACLs. A function to check client's authorization privileges
to access resources is available.

4.2.2.5.1.8 Scenario Description

1. For a secure communication, the first step an application developer has to take, is to set the
following authentication preferences for both the client and the server objects:

Authentication Protocol - Authentication protocol can be DCE shared-secret key
authentication, where the server gets its password from a keytab file for establishing its login
context, or no authentication, where no tickets are exchanged, or DCE default authentication
service (The current default authentication service is DCE shared-secret key.), or the DCE public
key authentication (which will be supported by DCE 1.2). This is specified by the server (per
process) to indicate the type of authentication it is OFFERING, and by the client (on a per object
basis) to indicate the type of authentication it DESIRES to have.

Authorization Protocol - Authorization protocol can be either No authorization, where the
server performs no authorization, or Name-based, where the server performs authorization based
on the client's principal name, or PAC/DCE based, where the server performs authorization using
the client's DCE Privilege Attribute Certificate (PAC) sent to the server with each RPC made with
binding. The type of authorization protocol is specified by the client to indicate the authorization
type DESIRED by the client.

Protection Level - Protection level specifies the protection level for RPCs made using
binding. It determines the degree to which authenticated communications between the client and
server are protected by the authentication service specified by authentication protocol. The
protection level when selected to be "packet_integrity" will ensure data integrity (i.e. ensures that
data is not modified during transit) by adding encrypted checksums to the data. Also specifying the
protection level as "packet_privacy" will ensure the privacy of data through the use of secret-key
encryption. However in trying to achieve data integrity/privacy there is a tradeoff. i.e. more
restrictive the protection level, the greater the negative impact on performance.

4-63 305-CD-028-002

i. The appClientObj (per object basis) must invoke the SetAuthInfo() API as follows:

a. Include files

#include "appC.H"// Generated by application IDL.

b. Construct an instance of the Client Class

appClientObj appClObj;

c. Invoke the SetAuthInfo API

appClObj.SetAuthInfo(

(unsigned_char_t*) princName, // Name to identify server principal.

rpc_c_protect_level_pkt_integ,	 // Specifies packet level protection which is the
// highest level guaranteed to be present in the RPC
// runtime.

rpc_c_authn_dce_secret, // Specifies DCE secret-key authentication protocol.

(rpc_auth_identity_handle_t)NULL, 	// NULL specified to use the default security login
// context for the current address space.

rpc_c_authz_dce); // PAC/DCE based authorization protocol specified.

ii. The ESO (DCEServer object 'theServer', already defined in the DCEServer.C file) should
invoke the SetAuthInfo() as follows:

a. Include files

#include <oodce/Server.H>

#include "appS.H"

b. Invoke SetAuthInfo

theServer->SetAuthInfo(

(unsigned_char_t*) princName,

rpc_c_authn_dce_secret,

(void*) keyFile);

// Generated by application IDL.

// Specifies the Principal Name to use for the Server
// when authenticating RPCs.

// DCE secret-key authentication protocol specified.

// Specifies the 'KeyFile' where server gets
// password.

2. Next is the Key management and login context part. The authentication mechanism is
based on two fundamental constructs: principal identities and secret keys. The basic authentication
policy issues therefore have to do with how applications manipulate these data: how they acquire
their principal identities and how they maintain the security of the secret keys (i.e. In a network
environment, when principals want to access the resources over the network, how will they provide
the encrypted password, etc.).

When first invoked, a server process uses the login context of the user who invoked it as its
principal identity. This may be sufficient for the application's purposes; however it may need to
assume its own identity.

The server assumes its own identity by retrieving its secret key, which is analogous to a user's
password, and using the key to establish its own login context. The server's key is stored in two

4-64 305-CD-028-002

places: by the server in a local key data file; and by the Security Service in its Registry Service
database. Keys for servers that require root access to file system data or for servers that need to run
as root are stored in the system-wide key file which is owned by root. Servers that do not need to
run as root should store their keys in a private file, which the server has access to but nobody else
does. The server's local copy is used by the server runtime to decrypt incoming client tickets, and
is also by server to acquire its own login context.

The server will establish its password and login context as follows:

a. Include files

#include <oodce/Password.H>

#include <oodce/Login.H>

#include "EcSeServerKeyMgmt.H"

b. Establish Server Password

(The EcSeServerKeyMgmt class inherits from the base class DCEPassword provided by OODCE)

EcSeServerKeyMgmt passwrd(serverPrincName, serverKeytabFilename);

c. Establish Server Login Context

(DCEStdLoginContext is the default implementation of the DCELoginContext class defined by
OODCE)

DCEStdLoginContext loginCntxt(&passwrd);

3. The ServerProg (server main program) will create a DCERefMon object. The reference
monitor is used to provide mutual authentication (that is, allow the server to check that the client
is as claimed) and to ensure that the server is willing to meet the client preferences for protection
and authorization.

It can perform basic checks before any application code is entered. In general, these checks are as
follows:

•	 Is the client program authenticated (i.e., has the client principal established a login
context?)

•	 Does the protection level requested by the client meet the requirements of the server
program?

•	 Does the authorization model requested by the client meet the requirements of the server
program?

Instantiation of DCERefMon object is as below:

a. Include files

#include <oodce/RefMon.H>

b. Instantiation of the RefMon Object:

DCEStdRefMon	 *thisRefMon = new DCEStdRefMon(protectLevel, authnSvc,
authzSvc);

4-65 305-CD-028-002

4. The ServerProg creates a DCEUuid object and initializes it with an object uuid created
using uuidgen command (Refer to DCE manual for details on uuidgen) as follows:

a. Include files

#include <oodce/Uuid.H>

b. Instantiate DCEUuid object

DCEUuid objectUuid("34c53cfa-9b3d-11cc-adaf-080009627155");

5. Initialization of AclManagement:

The ServerProg creates DCEAclMgr object through DefineAclMgr macro. The DCEAclMgr class
allows server developers to register a rdacl interface manager object with the global DCEServer
object. There is one instance of DCEAclMgr per application server, which is referred by a global
reference called acl_manager. Creation of the DCEAclMgr global object is as below:

a. Include files

#include <oodce/AclStorageManager.H>

#include <oodce/AclMgr.H>

#include "appS.H" // Generated by application IDL.

b. Instantiate DCEAclMgr object

(Note: The DCERefMon object must be instantiated before calling the DefineAclMgr macro.)

DefineAclMgr(*thisRefMon, objectUuid, "database server");

Here the first argument DCERefMon object will enforce the security policy for requests coming
through the rdacl interface. The second parameter, an object uuid will be registered with CDS and
with the endpoint mapper to enable acl_edit tool to contact the right server. The third parameter is
the server name used to identify this instance of a DCEAclMgr.

6. Acl Management

The concept of Access Control Lists (ACLs) is used to perform authorization. DCE/ OODCE
provides a set of mechanisms for access controls, which include;

•	 The authenticated identity and privilege attributes (in the form of credentials) of service
requesters, provided by the RPC runtime to servers.

• ACLs which servers may associate with objects they control.

•	 A default mechanism for determining a service requester's privileges from an ACL and the
requester's credentials.

• Tools for administering ACLs.

Create an instance of EcSeSecurity object. Through this object invoke functions for performing
CreateAclSchema(..), GetAclSchema(..), CreateAcl(..), CreateAclDatabase(..), etc. as follows:

a. Include files

#include <oodce/AclSchema.H>

#include <oodce/AclDb.H>

#include "EcSeSecurity.H"

4-66 305-CD-028-002

b. Instantiate EcSeSecurity object

EcSeSecurity *ecsSecurityObj = new EcSeSecurity(char *databaseName);

c. Create acls, aclschema and acl database

Through this object can invoke the following functions:

ecsSecurityObj->CreateAclSchema();

DCEAclSchema *ecsSecurity-> GetSchema();

ECSAclDb *ecsSecurityObj->CreateDatabase(databaseName, *_Schema, char
*persistentDbName);

d. The application server is brought up and it should be running. The application client when run,
will be requesting some permission to a resource (as indicated earlier a resource can also be an idl
implemented method). The application server will check the ACL associated with the object/
resource and compares it with the client's PAC and makes a decision about the client's requested
access to the resource. If authorized the client will perform the operation else an exception is
thrown by the server on to the client's side.

Invoking the IsAuth function within the appServerObj to check client's authorization privileges:

class ECSAclDb;

ECSAclDb *_database;

if(_database->IsAuth("ecsappobj")

AppMethodX(...);

else

traceobj << "Not Authorized to Perform AppMethodX\n";

If the requesting client has permission for AppMethodX, IsAuth returns TRUE, otherwise it returns
FALSE.

Application developer creates serverkeytab file using rgy_edit utility (explained in one of the
scenarios below). Also when the server is still up and running, the "acl_edit" client can be run in
order to manipulate ACLs (described in one of the below scenarios).

4.2.2.5.2 Scenario #2

4.2.2.5.2.1 Abstract

This scenario (see Figure 4.2.2.5-2) traces the interactions of the application developer with the
DCE/OODCE provided "rgy_edit" utility, to create the server keytab file to store the server
principal's (principal under who's identity the server is to run) password.

4.2.2.5.2.2 Interfaces

COTS provided rgy_edit application.

4.2.2.5.2.3 Stimulus

Application developer (dce authenticated user) invoke the rgy_edit function to create the server
keytab file.

4-67 305-CD-028-002

application
Developer rgy_edit

Run "rgy_edit" (type "rgy_edit")

Gives "rgy_edit" prompt (the prompt is "rgy_edit=>")

At the prompt type the command
"ktadd -p SrvPrincName -f SrvKeyFileName"

Prompts for a password
(the prompt is "Enter password:")

Supply password

Prompts for password verification
(the prompt is "Re-enter password to verify:")

Verify if the SrvKeyFile is created (OPTIONAL)
(the command is "ktlist -f SrvKeyFileName")

If SrvKeyFile is created, gives the message:

(type "q" or "e" for exit)
Exit out of "rgy_edit" utility

"/.../CellName/SrvPrincName" (Indicating the owner
of the SrvKeyFile) Else get the message:

"Unable to retrieve key(s) - Specified key table not found.

Provide Server Principal with READ permission
to the file "SrvKeyFile" (IMPORTANT)

Generation of Server KeyTab File
through "rgy_edit" utility

Figure 4.2.2.5-2. Security Event Trace

4.2.2.5.2.4 Desired Response

The server keytabfile should be created and available for use by the database server to get its
password to establish its identity during login context.

4.2.2.5.2.5 Participating Classes

rgy_edit

4-68 305-CD-028-002

4.2.2.5.2.6 Pre-conditions

The application developer should be a DCE authenticated user in order to create the keytab file
through "rgy_edit".

4.2.2.5.2.7 Post-conditions

Then serverKeyTabFile is available for use by the database server to establish its identity during
login context.

4.2.2.5.2.8 Scenario Description

The application developer invoke the rgy_edit program and run the ktadd command providing the
server principal name and the server keytab file name as "ktadd -p SrvPrincName -f
SrvKeyFileName". The utility prompts for a password "Enter password:" twice. Supply the
password both times. Exit rgy_edit utility. Give the server principal at least READ permission to
this file "SrvKeyFileName" (This is important). Now the server principal is able to establish its
identity during login by getting its password from this keyTabFile. For more information, please
refer to DCE Administration Guide.

4.2.2.5.3 Scenario #3

4.2.2.5.3.1 Abstract

This scenario (see Figure 4.2.2.5-3) traces the interactions of M&O staff modifying the contents of
an ACL associated with an access operation of a database server through an MSS-provided
interface.

4.2.2.5.3.2 Interfaces

MSS's acl_edit application.

4.2.2.5.3.3 Stimulus

M&O staff invoke the acl_edit function to edit the ACL associated with given resource.

4.2.2.5.3.4 Desired Response

The server should use the modified ACL in any future authorization checks performed in deciding
whether a given client can access the resource associated with the ACL.

4.2.2.5.3.5 Participating Classes

acl_edit

4.2.2.5.3.6 Pre-conditions

The database server is running and has implemented the rdacl calls associated with the database
server.

4.2.2.5.3.7 Post-conditions

The newly modified ACL will be attached to the resource.

4-69 305-CD-028-002

M&O acl_edit appServer

Modify Acl

Run "acl_edit" for object "OBJ1"

(Example1
(Example2 "m group:CSS:rx")

Exit out of acl_edit (type "e" for exit)

"m user:manand:rwx")

(type "acl_edit /.:/CdsDirName/appSrvCdsName/OBJ1")

Gives a prompt ("sec_acl_edit>" prompt)

View the object's acl list (type "l" for list)

Run application Server executable

Commit the changes to the Acl (type "co" for commit)

View the Modified Acl list (type "l" for list - OPTIONAL)

Running "acl_edit" utility to Modify Acls

Figure 4.2.2.5-3. Security Event Trace

4.2.2.5.3.8 Scenario Description

M&O staff invoke the acl_edit program and then identify a resource (the access method associated
with a database server application) to view the ACL associated with the resource. The acl_edit
program calls the database server program to get a printable representation of the ACL associated
with the access operation. The database servers view operation checks if the client can perform the
view operation and returns the ACL associated with the access operation in a printable format.
Acl_edit then displays this on the screen. The M&O staff then invoke the edit operation to edit the
selected ACL. The acl_edit invokes the read acl operation to get a copy of the acl associated with
the access operation. Upon checking the permissions associated with the read operation, a copy of
the ACL is sent back to the acl_edit. The M&O staff change this ACL and invoke the save
operation. The acl_edit then invokes the replace acl operation of the database server passing this
modified ACL. The replace operation after checking the authorization privileges, replaces the
supplied ACL in memory and may update the contents onto the disk.

4-70 305-CD-028-002

4.2.2.6 Implementation

The OODCE COTs product will be used for the security functionalities defined in this section.
However, CSS will provide the following custom software:

• EcSeSecurity

Provides a layer encapsulating the underlying security classes such as ECSAcl, ECSAclDb,
ECSModifyableAcl, ECSAclStorageManager, DCEAclMgr, DCEAclSchema and
DCESecId.

When ACls are updated and the application server goes down for some reason, when it is
brought up again, the ACLs available are the initial ACLs and not the updated ACLs. In
order to have the latest updated ACLs available for use by the application server every time
it is brought up, this persistent storage is provided. Everytime an ACL is updated it is
written into persistent storage file and whenever the application server is brought up, the
updated ACLs are written from the persistent storage file back into the memory for use by
application server. For this functionality it is required to implement the methods of the
following classes: ECSAcl, ECSModifyableAcl, ECSAclStorageManager and ECSAclDb.

• ECSPassword

This inherits from the COTs provided class DCEPassword. During login context, in case
of interactive principals, password is supplied on command line. The DCEPassword class
takes a keyfile name as one of the arguments and provides non-interactive principals with
their passwords to be stored in the keyfile, so that non-interactive principals (servers) can
establish their identity without doing a login.

4.2.2.7 Service/CSCI Management and Operation

4.2.2.7.1 System Management and Strategy

The server keytab file and the persistent aclfile should be placed in the same directory where the
database server is going to be executed. It is required to give read permission to the server principal
for the serverKeyTabFile, read and write permission for the persistentAclFile. Both these files
should be placed in the same directory where the database server will be executed. The
persistentAclFile will always have the latest ACLs of objects.

4.2.2.7.2 Operator Interface

• Operator will use acl_edit to modify permissions to principals to access different services.

•	 Through rgy_edit operator will create the server keyTabFile to give an application server
principal its own identity during its login context.

• Through rgy_edit, operator creates user accounts.

For more information regarding these utilities, please refer to the DCE administration guide.

4.2.2.7.3 Reports

Not applicable.

4-71 305-CD-028-002

4.2.3 Message Passing

Overview

ECS distributed computing consists of a variety of client and server applications running on differ
ent platforms. Clients send data to servers, which process the data and return the result to the client.
This interaction can be classified into three categories: synchronous, asynchronous and deferred
synchronous.

In synchronous mode, a client makes a request and passes control to the server, i.e., waits for an
acknowledgment. The server services the request and returns the result back to the client, at which
point the client gets back the control. The program execution on the client side is blocked until the
server returns from the service. This is a blocking call and is referred as "synchronous".

In asynchronous mode, the client makes a non blocking request. Client processing can continue si
multaneously with the server processing. Asynchronous message passing can be further subdivid
ed into two parts: guaranteed and non-guaranteed. Guaranteed asynchronous message passing
guarantees the delivery of the message to the receiver (client-to-server or server-to-client). The
sender of a message can verify the delivery of the message through acknowledgments. In non-guar
anteed asynchronous message passing, the sender should send the message to the receiver only if
the receiver is active and listening. The receiver still may not receive the message due to any num
ber of reasons, and this is not considered an error. FOS applications use this method to send real
time telemetry data to ISTs asynchronously.

Deferred synchronous model is a superset of the asynchronous model. In deferred synchronous
mode the client makes a call and receives an acknowledgment of the call, but no results; it also
gets control back right away. Once the receiver completes doing any processing with the data, re
sults are sent back to the client.

Table 4.2.3-1 describes the different types of message passing and when they are generally used.

CSS will implement synchronous, deferred synchronous, and guaranteed asynchronous message
passing using Distributed Object Framework. Deferred synchronous communications involve
some degree of application programmer involvement.

FOS applications like the Off-line Analysis Request process uses the message passing service to
send analysis data to the Off-line Analysis process and to receive the results of such analysis.

The FOS ECS Operations Control uses the message passing service to send schedule information
to the ISTs.

SDPS process-intensive applications send the intermediate processing state/results to User Inter
face (UI) to display the results of the process done so far.

SDPS subscription service (between the science DataServer and the product generation) needs
guaranteed asynchronous message passing.

CSS is providing two implementations for Message Passing. Both are designed to work with the
OODCE-provided DCE-Pthread class which is used to start and control the execution of a thread.

The first implementation provides asynchronous and synchronous communications (byte streams
only) with store and forward, and recovery - persistence. The concept of groups (one or more re
ceivers) is included into this API.

4-72 305-CD-028-002

The second implementation provides asynchronous and deferred synchronous communication.
The CSS API for this design is not going to be as transparent to the user as the CORBA application
will be, that is, some developer involvement will be required. With respect to Store and Forward,
a thread can be created so that it can periodically try to send the message. The CSS API can handle
any data types; recovery will not be supported.

Table 4.2.3-1. Message Passing Communication Types Defined
Type Description

Synchronous Normally, this is how clients and servers interact using the Remote Procedure
Call (RPC)
interface. Servers are continuously listening for incoming requests.
while supporting the same interface, can implement the interface differently. The
client has the choice to bind to a server offering a particular implementation of the
given interface.
The type of arguments that can be used in this mechanism are all the system
defined generic types plus user defined types. This is a blocking call, where the
client has to wait until control returns back to it from the server.

Non
Guaranteed
Asynchronous

This is same as the synchronous message passing except that this is non
blocking,
server processing to complete. In this mechanism, no result is returned. When a
client invokes the request, the system invokes all the servers currently listening
that support the interface. This is used primarily when the client wants to send
some information to interested parties and doesn't care whether they receive it
not. For example, when the CDS server comes up, it sends a message of its
existence to all the (internal framework) directory agents that are listening.

Guaranteed
Asynchronous

In guaranteed asynchronous mode, the sender specifies a list of receivers where
he/she wants to send the message. A UUID is received back
request is issued. When a callback is returned indicating that the send operation
completed, a UUID is passed back identifying which message was sent
successfully or not. This is also a non blocking call, returning control to the sender
immediately.
not listening, the message will be buffered and sent to the receiver at a latter time.
The argument types that can be passed are not as general as in the above two
cases, rather restricted to string type. This is used where large quantity of data
needs to be passed, without any processing, e.g., the FOS Product and
Scheduling element passing an instrument schedule to the SCFs.

Deferred
Synchronous

In deferred synchronous message, a sender sends a message to one receiver
and gets back a UUID. This UUID is then used at a latter time to receive the result
back from the receiver. This is used in process intensive applications, where the
receiver takes some time to process the request.
at the receiver, control is returned back to the sender immediately.
As in guaranteed asynchronous message passing, the argument types are
restricted to strings only.

mechanism. Both the client and server have to support the same
Each server,

i.e. the client gets the control back immediately without waiting for the

when the send

The delivery of message is guaranteed in this mode. If a receiver is

While the processing continues

4-73 305-CD-028-002

4.2.3.1 Message Passing Implementation One

4.2.3.1.1 Overview

Implementation one will provide for asynchronous and synchronous message passing with store
and forward, and recovery - persistence. The concept of "groups" is included in this API. A group
is a symbolic name representing a number of receivers. Each receiver will be identified by a logical
name associated with a UUID. This API will handle messages consisting of only byte streams.

4.2.3.1.2 Context

Message Passing is an infrastructure key mechanism and is used by ECS subsystems for synchro
nous, and asynchronous communication where a client needs control back immediately after in
voking a remote procedure.

4.2.3.1.3 Object Model

See Figure 4.2.3.1.3-1.

4.2.3.1.3.1 EcMpMsgCb Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class will handle two types of callbacks: 1. For ordinary receive messages:If an

ordinary message is received, then handle Msg is invoked; 2. For acknowledgment of

messages: If an acknowledgment is received, then handleAck is invoked. A sending session

is basically a point to point session to send a message. Each send a message. Each sender

session will have a logical name that is needed to contact the receiver. A list of sending

sessions is maintained in a given application. A sender session list contains a callback

object which provides virtual funtions to be called when a send is complete. This is done at

the sender side. A callback object is created and will implement the acknowledgment. The

virtual funtion handleAck is called when a message is delivered to the destination or when

the underlying mechanism failed to deliver it within the given constraints (number of tries).

Attributes:

None

4-74 305-CD-028-002

EcMpMsgPsngCtrl

EcMpSessionList

EcMpTransferCli

EcMpTransferSrv

EcMpQueueIn

EcMpQueueOut

EcMpQueueCbIn

EcMpQueue

EcMpMsgCb

RWPtrDlistRWFile

Message_Passing_Service

_cacheListP
_theMsgPsngCtrlP
_interfaceUuid
_objUuid

Cleanup()
CreateReceiverCB(recSessionName:EcTChar*,diskFileName:EcTChar*,cbObj:EcMpMsgCb*)
CreateReceiver(recSessionName:EcTChar*,diskFileName:EcTChar*)
~EcMpMsgPsngCtrl()
EcMpMsgPsngCtrl(filename:EcTChar*,appName:EcTChar*)
PutMessage(msgP:EcTVoid*,msgLength:EcTInt,msgId:EcTChar*,recAddr:EcTChar*,
senderAddr:EcTChar*,priority:EcTInt)
Initialize()

_TransferSrvP

InitQ()
RemoveMessage()
SendMessage()
~EcMpQueue()
EcMpQueue()
SetTransferServerPtr(transferSrvP:EcMpTransferSrv*)
GetMessageWait()
GetMessage()

HandleAck(msgP:EcTVoid*,msgLength:EcTInt, msgId:EcTChar*,SenderAddr:EcTChar*,
recAddr:EcTChar*,priority:EcTInt,sourceUUID:EcTChar*,PassFailedSt:EcTInt)
HandleMsg(msgP:EcTVoid* msgLength:EcTInt msgId:EcTChar* senderAddr:EcTChar*
priority:EcTInt)
~EcMpMsgCb()
EcMpMsgCb()

_timeBetweenTries
_NoOfTries

Delete(LogicalName:EcTChar*)
SetTries(i_tries:EcTInt i_timeBetweenTries:EcTInt)
Join(logicalName:EcTChar*)
~EcMpSessionList()
EcMpSessionList(CB:EcMpMsgCb*)
Send(syncAsyncFlag:EcTInt,msgP:EcTVoid*,msgLength:EcTInt,
recAddr:EcTChar*,senderAddr:EcTChar*,priority:EcTInt,msgUuidFlag:EcTInt,
msgId:EcTChar*)

_QueueItems

~EcMpQueueIn()
EcMpQueueIn()
GetMessage(msgP:EcTVoid*)
InitQ()
GetMessageWait(msgP:EcTVoid*, timeout:EcTInt)
RemoveMessage()

~EcMpTransferCli()
EcMpTransferCli(bh:rpc_binding_handle &to:DCEUuid=NullUuid)
Transmit()
SetSecurity(princName:const EcTChar*)

~EcMpTransferSrv()
Transmit(msg:buffer,msglength:EcTLong, msgId:EcTChar, addName:EcTChar*,
status:EcTLong*)
EcMpTransferSrv(obj:uuid_t*)
SetQueuePtr(queueP:EcMpMsgQueue*)
SetQueueType(queueType:EcTChar*)
RemoveAclEntry(principalName:EcTChar*, permLstP:permList*,cellName:EcTChar*)
AddAclEntry(principalName:EcTChar*, permLstP:permList*, cellName:EcTChar*)
CreateAcls(acl_filename:EcTChar*)

_QueueItems
_CBP

RemoveMessage()
SendMessage(msgP:EcTVoid*,msgLength:EcTInt, msgId:EcTChar*, senderAddr:EcTChar*,
priority:EcTInt)
~EcMpQueueCbIn()
EcMpQueueCbIn()
InitQ()
SetCallback(CbP:EcMpMsgCb*)

_QueueItems

RemoveMessage()
SendMessage(msgP:EcTVoid*,msgLength:EcTInt,MsgId:EcTVoid*,recAddr:EcTChar*,
senderAddr:EcTChar*,priority:EcTInt,_lastTimeSent:EcTInt)
InitQ()
~EcMpQueueOut()
EcMpQueueOut()

[Public]

[Public]

[DISTR OBJ]

[DISTR OBJ]

[Public]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[Public]

OffpageOffpage

Offpage

- : CacheList *
- : EcMpMsgPsngCtrl *
- : EcTChar *
- : EcTChar *

+ : EcTVoid
+ : EcMpMsgQueueInCb*
+ : EcMpMsgQueueIn*
+ : EcTVoid
+ : EcTVoid
+ : EcMpQueueOut*

+ : EcTInt

- : EcMpTransferSrv*

+ : EcTVoid
+ : EcTInt
+ : EcTInt
+ : EcTVoid
+ : EcTVoid
+ : EcTInt
+ : EcTInt
+ : EcTInt

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid
+ : EcTVoid

- : EcTInt
- : EcTInt

+ : EcTInt
+ : EcTVoid
+ : EcTInt
+ : EcTVoid
+ : EcTVoid
+ : EcTInt

- : EcTMpQtem

+ : EcTVoid
+ : EcTVoid
+ : EcTInt
+ : EcTVoid*
+ : EcTInt
+ : EcTInt

+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

+ : EcTVoid
+ : EcTVoid

+ : EcTVoid
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : EcTInt

- : EcTMpQItem
- : EcMpMsgCb*

+ : EcTInt
+ : EcTInt

+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

- : EcTMpQItem

+ : EcTInt
+ : EcTInt

+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

has a

initializes

interacts with

4-75
305-C

D
-028-002

Figure 4.2.3.1.3 -1 RelA_MsgPassing_ObjectModel_1Object Model Diagram

Operations:

EcMpMsgCb - Constructor.

Arguments:

Return Type:EcTVoid

Privilege:Public

HandleAck - Callback for 'send with acknowledgment', an asynchronous type of send.

Arguments:msgP:EcTVoid*,msgLength:EcTInt,

msgId:EcTChar*,SenderAddr:EcTChar*,

recAddr:EcTChar*,priority:EcTInt,sourceUUID:EcTChar*,PassFailedSt:EcTInt

Return Type:EcTVoid

Privilege:Public

HandleMsg - Callback for ordinary receive.

Arguments:msgP:EcTVoid* msgLength:EcTInt msgId:EcTChar* senderAddr:EcTChar*

priority:EcTInt

Return Type:EcTVoid

Privilege:Public

~EcMpMsgCb - Destructor.

Arguments:

Return Type:EcTVoid

Privilege:Public

Associations:

The EcMpMsgCb class has associations with the following classes:
Class: EcMpSessionList hasa

4.2.3.1.3.2 EcMpMsgPsngCtrl Class

Parent Class:RWFile

Public:Yes

Distributed Object:No

Purpose and Description:

This class is the controller object, through which any number of receiver sessions can be

created. Each receiver session is associated with a unique name (so other applications can

send messages to this receiver) and a unique file (optional).The file is used for persistence.

When a message comes in, it is stored in the queue associated with the object and a copy

of it is stored in the file associated with this object. Internally, this object creates a sender

queue. All outgoing messages are kept in this queue. A number of threads are generated

internally in the initialize call which periodically get messages from the outgoing queue and

send them.

4-76 305-CD-028-002

Attributes:

_cacheListP - This attribute is a two dimensional array of a hash table containg a list of

pairs, an application name and the corresponding proxy object it is pointing to. The pair

gets removed from the list when we find out that the server is not longer listening.

Data Type:CacheList *

Privilege:Private

Default Value:

_interfaceUuid - This attribute represents an interface uuid.

Data Type:EcTChar *

Privilege:Private

Default Value:

_objUuid - This attribute represents an object uuid.

Data Type:EcTChar *

Privilege:Private

Default Value:

_theMsgPsngCtrlP - This attribute is a pointer to the EcMpMsgPsngCtrl object, a global

one.

Data Type:EcMpMsgPsngCtrl *

Privilege:Private

Default Value:

Operations:

Cleanup - This operation deallocates any memory used and destroys/shutdowns the

threads.

Arguments:

Return Type:EcTVoid

Privilege:Public

CreateReceiver - A receiver is created by means of the CreateReceiver operation. Each

receiver session is associated with a unique name (so other applications can send messages

to this receiver), and a unique file. The file name is used for persistence. When a message

comes in, it is stored into the queue associated with the object and a copy of it is stored on

the file associated with this object. CreateReceiver will create/initialize the ordinary

receiver queue, and open the file for persistence purposes. It will also create an instance of

the transfer server object, and will attach a pointer to the proper queue.

Arguments:recSessionName:EcTChar*,diskFileName:EcTChar*

Return Type:EcMpMsgQueueIn*

Privilege:Public

4-77 305-CD-028-002

 - A special receiver can be created by means of this operation, it calls the user-defined call
back function. A thread, just one, will be awakened every time a message arrives into the
special reciver queue created by the call 'CreateReceiverCB'and a call back (a virtual
function) will be executed. Then, it will check if there is any other message in the queue
and if so, execute the call back again or else shutdown the thread until a message arrives in
the queue. CreateReceiverCb will create/initialize the callback receiver queue and open its
respective file for persistence purposes. It will also create an instance of the transfer server
object, and it will attach a pointer to the proper queue.
Arguments:recSessionName:EcTChar*,diskFileName:EcTChar*,cbObj:EcMpMsgCb*
Return Type:EcMpMsgQueueInCb*
Privilege:Public

EcMpMsgPsngCtrl - This operation is the constructor. It takes two parameters: a filename

and an application name. The file name will be used to name: . the five outgoing queues,

one for each priority type . the five outgoing disk storage files - persistence . the incoming

queue . the incoming disk storage file - persistence The application name will be a full CDS

entry path name. It will represent the relative name in the CDS where the server will store

its binding information. The caller's application store its binding in this application name.

The CDS directory path should be created by default in the developer's cell with public

write permissions. The caller needs to be authenticated in order to write the bindings into

the CDS. At construction time the following actions take place: . Initialize the Outgoing/

Incoming queues. . Open the in/out disk files with read/write permissions. . Set the thread

scheduling attributes for outogoing queues . Using appl. name,checks whether a thread is

listening.

Arguments:filename:EcTChar*,appName:EcTChar*

Return Type:EcTVoid

Privilege:Public

Initialize - This operation starts listening if it is not already.

Arguments:

Return Type:EcTInt

Privilege:Public

PutMessage - This operation calls the EcMpQueueOut method Send to send a message.

Arguments:msgP:EcTVoid*,msgLength:EcTInt,msgId:EcTChar*,recAddr:EcTChar*,

senderAddr:EcTChar*,priority:EcTInt

Return Type:EcMpQueueOut*

Privilege:Public

~EcMpMsgPsngCtrl - This operation is the default destructor.

Arguments:

Return Type:EcTVoid

Privilege:Public

4-78 305-CD-028-002

Associations:

The EcMpMsgPsngCtrl class has associations with the following classes:
Class: EcMpQueue initializes
Message_Passing_Service (Aggregation)

4.2.3.1.3.3 EcMpQueue Class

Parent Class:RWPtrDlist

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class will be the parent class for the following: EcMpMsgQueueIn

EcMpMsgQueueCbIn EcMpMsgQueueOut

Attributes:

_TransferSrvP - This attribute represents a pointer to the EcMpTransferSrv object.

Data Type:EcMpTransferSrv*

Privilege:Private

Default Value:

Operations:

EcMpQueue - This operation is the constructor.

Arguments:

Return Type:EcTVoid

Privilege:Public

GetMessage - This operation performs a single read operation and returns a message from

the Incoming queue or a return status. This call will visit the next node in the queue list. If

an attempt was made to read beyond the tail, it will return CsCRemoveQueueFailed. If the

queue is empty, it will return CsCQueueIsEmpty. If the read operation was successful, it

will return CsCSuccess.

Arguments:

Return Type:EcTInt

Privilege:Public

GetMessageWait - This operation performs a single read operation; however, this call

waits until a message is read from the queue. Optionally a time to wait may be provided in

the wait call. It actually removes the head node from the queue. Returns either

CsCSuccess, CsCRemoveQueueFailed, or CsCTimeout.

Arguments:

4-79 305-CD-028-002

Return Type:EcTInt

Privilege:Public

InitQ - This operation initializes the queue. Calls RWTPtrDlist<List> to construct an

empty list. It does also any other initialization steps that apply to the class EcMpMsgQueue.

Arguments:

Return Type:EcTVoid

Privilege:Public

RemoveMessage - This operation removes all the flagged items. This function checks for

those messages with a deletion flag on, and calls the RW remove call to delete the message

from the queue. This function will be called periodically.

Arguments:

Return Type:EcTInt

Privilege:Public

SendMessage - This operation sends a message.

Arguments:

Return Type:EcTInt

Privilege:Public

SetTransferServerPtr - This operation sets a pointer to the transfer server class.

Arguments:transferSrvP:EcMpTransferSrv*

Return Type:EcTInt

Privilege:Public

~EcMpQueue - This operation is the default destructor.

Arguments:

Return Type:EcTVoid

Privilege:Public

Associations:

The EcMpQueue class has associations with the following classes:
Class: EcMpMsgPsngCtrl initializes
Message_Passing_Service (Aggregation)

4.2.3.1.3.4 EcMpQueueCbIn Class

Parent Class:EcMpQueue

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This queue will contain one thread which will execute a callback every time a message is

4-80 305-CD-028-002

received. The callback will be a virtual function call. This class defines a double linked
list queue. It inherits from the Rogue Wave Library file, RWTPtrDlist.

Attributes:

_CBP - This attribute represents a callback pointer.

Data Type:EcMpMsgCb*

Privilege:Private

Default Value:

_QueueItems - This attribute represents a queue item type.

Data Type:EcTMpQItem

Privilege:Private

Default Value:

Operations:

EcMpQueueCbIn - This operation is the constructor.

Arguments:

Return Type:EcTVoid

Privilege:Public

InitQ - This operation initializes the queue. Calls RWTPtrDlist<inCbList> to construct an

empty list. It does also any other initialization steps that apply to the class

EcMpMsgQueueCbIn.

Arguments:

Return Type:EcTVoid

Privilege:Public

RemoveMessage - This operation removes all the flagged items. This function checks for

those messages with a deletion flag on, and calls the RW remove call to delete the message

from the queue. This function will be called periodically.

Arguments:

Return Type:EcTInt

Privilege:Public

SendMessage - Once a message arrives in the queue, this operation will wake up a thread

(there will be only one thread) and it will invoke the virtual callback function 'HandleMsg'

to let the receiver know that a message just arrived in the queue. Next, it will search to

check if another message arrived in the queue, and if so it will invoke another callback. If

there are no messages in the queue, the thread will be shutdown until a message arrives in

which case it will be awakened again.

Arguments:msgP:EcTVoid*,msgLength:EcTInt, msgId:EcTChar*,

senderAddr:EcTChar*, priority:EcTInt

4-81 305-CD-028-002

Return Type:EcTInt

Privilege:Public

SetCallback - This operation sets a pointer to the callback object.

Arguments:CbP:EcMpMsgCb*

Return Type:EcTVoid

Privilege:Public

~EcMpQueueCbIn - This operation is the default destructor.

Arguments:

Return Type:EcTVoid

Privilege:Public

Associations:

The EcMpQueueCbIn class has associations with the following classes:
None

4.2.3.1.3.5 EcMpQueueIn Class

Parent Class:EcMpQueue

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class will be used to queue the messages once they are received. It will provide a Read

Wait call and a Read Non-Wait call. The Read Wait call performs a single read operation;

however, this call waits until a message is read from the queue. Optionally a time to wait

may be provided in the wait call or a default time will be used. The Read Non-Wait

performs a single read operation and returns a message from the Incoming Queue (or Null

if there are no messages in the queue) and a return status. This class defines a double linked

list queue. It inherits from the Rogue Wave Library file, RWTPtrDlist.

Attributes:

_QueueItems - This attribute represents a queue item type.

Data Type:EcTMpQtem

Privilege:Private

Default Value:

Operations:

EcMpQueueIn - Default constructor.
Arguments:

4-82 305-CD-028-002

Return Type:EcTVoid

Privilege:Public

GetMessage - This operation performs a single read operation and returns a message from

the incoming queue or a return status. This call will visit the next node in the queue list. If

an attempt was made to read beyond the tail, it will return CsCRemoveQueueFailed. If the

queue is empty, it will return CsCQueueIsEmpty. If the read operation was successful, it

will return CsCSuccess.

Arguments:msgP:EcTVoid*

Return Type:EcTInt

Privilege:Public

GetMessageWait - This operation performs a single read operation; however, this call

waits until a message is read from the queue. Optionally a time to wait may be provided in

the wait call. It actually removes the head node from the queue and returns either

CsCSuccess, CsCRemoveQueueFailed, or CsCTimeout.

Arguments:msgP:EcTVoid*, timeout:EcTInt

Return Type:EcTInt

Privilege:Public

InitQ - This operation initializes the queue. It calls RWTPtrDlist<inList> to construct an

empty list. It does also any other initialization steps that apply to the class

EcMpMsgQueueIn.

Arguments:

Return Type:EcTVoid*

Privilege:Public

RemoveMessage - This operation removes all the flagged items. This function checks for

those messages with a deletion flag on, and calls the RW remove call to delete the message

from the queue. This function will be called periodically.

Arguments:

Return Type:EcTInt

Privilege:Public

~EcMpQueueIn - Default destructor.

Arguments:

Return Type:EcTVoid

Privilege:Public

Associations:

The EcMpQueueIn class has associations with the following classes:
None

4-83 305-CD-028-002

4.2.3.1.3.6 EcMpQueueOut Class

Parent Class:EcMpQueue

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

In case of asynchronous calls, the message is put in a queue, which will be sent later by an

internal thread. Controls returns right away. Worker threads will process simultaneous send

operations. Each request that arrives is placed at the end of the outgoing queue. After

adding the request to the queue, the boss thread will wake up a worker thread and this

worker thread will perform the send operation. The send operation will not remove the item

from the queue yet. Once done, it will wait for the next request. There will be about five to

ten working threads and one boss thread. If the message fails to be sent, then the

'_noOfTries' gets decreased by one, and the '_lastTimeSent' gets updated to the current time

(when the message came back after the send failed). The message will be retried once the

'_lastTimeSent' + ' _timeBetweenRetries' was reached or until '_noOfTries' expired. If the

message failed to be sent, the message will be returned (the callback 'handleAck' will be

invoked). The EcMpMsgQueueOut class defines a double link list queue. It inherits from

the Rogue Wave library file, RWTPtrDlist.

Attributes:

_QueueItems - This attribute represents a queue item type.

Data Type:EcTMpQItem

Privilege:Private

Default Value:

Operations:

EcMpQueueOut - This operation is the constructor.

Arguments:

Return Type:EcTVoid

Privilege:Public

InitQ - This operation initializes the queue. Calls RWTPtrDlist<outList> to construct an

empty list. It does also any other initialization steps that apply to the class

EcMpMsgQueueOut.

Arguments:

Return Type:EcTVoid

Privilege:Public

RemoveMessage - This operation removes all the flagged items. This function checks for

those messages with a deletion flag on, and calls the RW remove call to delete the message

4-84 305-CD-028-002

from the queue. This function will be called periodically.

Arguments:

Return Type:EcTInt

Privilege:Public

SendMessage - Performs a send operation (used only for asynchronous calls). It does not

remove the item from the queue, it uses a pointer to the data. If the send call fails, the

'_noOfTries' gets decreased by one, and the '_lastTimeSent' gets updated to the current time

(when the message came back after the send failed). The message will be retried once the

'_lastTimeSent' +'_timeBetweenTries' was reached and until the '_noOfTries' expired. At

that point, the caller will get a notification informing that the message failed to be sent. If

the message was sent successfully, it will be flagged, so it can be deleted later on.

Arguments:msgP:EcTVoid*,msgLength:EcTInt,MsgId:EcTVoid*,recAddr:EcTChar*,

senderAddr:EcTChar*,priority:EcTInt,_lastTimeSent:EcTInt

Return Type:EcTInt

Privilege:Public

~EcMpQueueOut - This operation is the default destructor.

Arguments:

Return Type:EcTVoid

Privilege:Public

Associations:

The EcMpQueueOut class has associations with the following classes:
None

4.2.3.1.3.7 EcMpSessionList Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is a container class whose element type is a logical name and will inherit from the

RWTPtrSlist class. A session list contains a callback object which provides virtual

functions to be called when a send is complete. This is done at the sender side.

Attributes:

_NoOfTries - Number of tries in case of communication errors.

Data Type:EcTInt

Privilege:Private

Default Value:

4-85 305-CD-028-002

_timeBetweenTries - Number of seconds between tries.

Data Type:EcTInt

Privilege:Private

Default Value:

Operations:

Delete - Deletes a receiver, a logical name from the list.

Arguments:LogicalName:EcTChar*

Return Type:EcTInt

Privilege:Public

EcMpSessionList - Constructor.

Arguments:CB:EcMpMsgCb*

Return Type:EcTVoid

Privilege:Public

Join - Used to insert a logical name into the list.

Arguments:logicalName:EcTChar*

Return Type:EcTInt

Privilege:Public

Send - Sends a message to a particular session. The message can be sent expecting an

acknowledgment or not expecting an acknowledgment. Internally if the flag is

synchronous, the remote function, transmit, will be called and the message sent at once.

Control will return when the Send operation completed. If the flag is asynchronous, the

message will be placed in the outgoing queue and it will be sent from there.

Arguments:syncAsyncFlag:EcTInt,msgP:EcTVoid*,msgLength:EcTInt,

recAddr:EcTChar*,senderAddr:EcTChar*,priority:EcTInt,msgUuidFlag:EcTInt,

msgId:EcTChar*

Return Type:EcTInt

Privilege:Public

SetTries - Set the number of tries if a message fails to be sent and needs to be retried, and

the time between the tries.

Arguments:i_tries:EcTInt i_timeBetweenTries:EcTInt

Return Type:EcTVoid

Privilege:Public

~EcMpSessionList - Destructor.

Arguments:

Return Type:EcTVoid

4-86 305-CD-028-002

Privilege:Public

Associations:

The EcMpSessionList class has associations with the following classes:
Class: EcMpMsgCb hasa
Message_Passing_Service (Aggregation)

4.2.3.1.3.8 EcMpTransferCli Class

Parent Class:Not Applicable

Public:No

Distributed Object:Yes

Purpose and Description:

Class EcMpTransferCli is a surrogate object. This class is the surrogate object for making

requests to an EcMpTransfer manager object. An EcMpTransferCli object creates and

holds a single instance of this class which it then binds to successive EcMpTransfer

manager objects as you ask to to perform a transfer. This class allows you to transfer.

Attributes:

None

Operations:

EcMpTransferCli - Constructor.

Arguments:bh:rpc_binding_handle &to:DCEUuid=NullUuid

Return Type:EcTVoid

Privilege:Public

SetSecurity - Set security levels. The default is to ask for secret key authentication, packet

integrity level protection, and the name authorization service. If a NULL pointer is given

or a NULL string, then security is not set.

Arguments:princName:const EcTChar*

Return Type:EcTVoid

Privilege:Public

Transmit - Call the transmit function.

Arguments:

Return Type:EcTVoid

Privilege:Public

~EcMpTransferCli - Default destructor.

Arguments:

4-87 305-CD-028-002

Return Type:EcTVoid
Privilege:Public

Associations:

The EcMpTransferCli class has associations with the following classes:
Class: EcMpTransferSrv interactswith
Message_Passing_Service (Aggregation)

4.2.3.1.3.9 EcMpTransferSrv Class

Parent Class:Not Applicable

Public:No

Distributed Object:Yes

Purpose and Description:

This class is the EcMpTransferSrv manager object.

transfer data which results in the enqueuing of the data.

Attributes:

None

Operations:

AddAclEntry - Add entries to the ACL database.

It responds to client's requests to

Arguments:principalName:EcTChar*, permLstP:permList*, cellName:EcTChar*

Return Type:EcTInt

Privilege:Public

CreateAcls - Set ACL permissions.

Arguments:acl_filename:EcTChar*

Return Type:EcTInt

Privilege:Public

EcMpTransferSrv - Constructor taking an object uuid.

Arguments:obj:uuid_t*

Return Type:EcTVoid

Privilege:Public

RemoveAclEntry - Remove entries from the ACL database

Arguments:principalName:EcTChar*, permLstP:permList*,cellName:EcTChar*

Return Type:EcTInt

Privilege:Public

4-88 305-CD-028-002

SetQueuePtr - Set queue pointer.

Arguments:queueP:EcMpMsgQueue*

Return Type:EcTInt

Privilege:Public

SetQueueType - Set queue type.

Arguments:queueType:EcTChar*

Return Type:EcTInt

Privilege:Public

Transmit - This is the read-side RPC manager function; this is the function that actually

implements the remote procedure defined in the .idl file. The server stub (called by the

RPC runtime) calls this function when an RPC request comes in for this interface. The

manager function takes the arguments defined in the .idl file, performs its function and

returns results as defined in the .idl file. The .idl file specifies use of explicit binding the

manager must take a binding handle as its first argument. Note: the code in this manager

function must be (and is) reentrant as it may be running simultaneously in multiple server

threads. Transmit will enqueue the message in the proper queue.

Arguments:msg:buffer,msglength:EcTLong, msgId:EcTChar, addName:EcTChar*,

status:EcTLong*

Return Type:EcTVoid

Privilege:Public

~EcMpTransferSrv - Destructor.

Arguments:

Return Type:EcTVoid

Privilege:Public

Associations:

The EcMpTransferSrv class has associations with the following classes:
Class: EcMpTransferCli interactswith

4.2.3.1.3.10 Message_Passing_Service Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This implementation will provide for asynchronous and synchronous message passing with

store and forward, and recovery - persistence. The concept of groups is included into this

API. A group is a synbolic name and it represnets a nu ber of receivers. Each receiver will

be identified by a logical name associated to a UUID. This API will handle messages

consisting of only byte streams.

4-89 305-CD-028-002

Attributes:

None

Operations:

None

Associations:

The Message_Passing_Service class has associations with the following classes:
None

4.2.3.1.3.11 RWFile Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Rogue Wave class which encapsulates binary file operations using the Standard C stream

library.

Attributes:

None

Operations:

None

Associations:

The RWFile class has associations with the following classes:
None

4.2.3.1.3.12 RWPtrDlist Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Rogue Wave class which mantains a collection of pointers to type T, implemented as a

doubly linked list. This is a pointer based list: pointers to objects are copied in and out of

4-90 305-CD-028-002

the links that make up the list.

Attributes:

None

Operations:

None

Associations:

The RWPtrDlist class has associations with the following classes:
None

4.2.3.1.4 Functional Model

In order to achieve asynchronous and synchronous message passing, intermediate queues are
maintained, which collects all the messages to be sent, along with the receiver information and then
sends them to the intended receivers as depicted in the Figure 4.2.3.1.3-1.

In asynchronous message passing, when the client sends the data to a set of receiving processes, a
pointer to the data is kept in intermediate message queues. Control comes back to the caller
immediately. The message passing logic will locate the server who is continuously listening, and
sends the data to the server. The server can be running continuously to receive requests from the
client. Alternatively, if the server is not running when the message is sent, the message passing
logic can periodically try to send the message. The sender can specify the number of send-tries,
and the time between tries. After sending the data, the sender will receive an acknowledgment
indicating success/failure upon completion of the send operation.

In this mechanism, each application can receive as well as send messages to other applications.
Each application maintains a group of outgoing queues in which outgoing messages are kept along
with other information like destination. Each outgoing queue is associated with a priority.
Messages belonging to a particular priority are kept in the corresponding outgoing queue. At
startup, several threads are spawned whose primary purpose is to pop messages from the outgoing
queues and send them to the proper destination. Each message is also associated with the number
of tries, that is, how often it should be sent before declaring a failure (due to unavailability of the
receiver or network failures) and the time period between each retry. The threads try to send the
message the given number of times and calls an application supplied call back either after a
successful send or after the determination of a failure to send the message.

Priorities are assigned to the spawned threads. Initially CSS is designed to support ten threads, with
a configurable number of threads at each priority. A total of five priorities are defined. A higher
priority thread tries to find a message from its corresponding queue and then sends it. In the
absence of any messages in its queue, it looks for messages in the lower priority queues to send.

4-91 305-CD-028-002

Threads are assigned for each priority (even the lowest priority). This is done to ensure that lower
priority messages are not starved.

A distributed object (DO) is defined with the functionality to transfer messages. After selecting a
message from a queue, a thread creates a DO client (a proxy object) and invokes the transfer
method to transfer the message to the server object (the receiving application).

In order to receive messages, each application creates a receiving queue with a unique name. An
application can create as many receiving queues as needed, each with unique name. This unique
name is used by an application to send messages and it is kept in the Cell Directory Name Space
(CDS) along with the binding information.

Each receiving queue is associated with a DO server (a transfer object), which can receive
messages from other applications. When a message is received by the server object, that message
is kept in the queue associated with that object. The queue provides two methods: read and read
wait. These methods allow the application programmer to retrieve messages from the queue. The
'GetMessage' method performs a single read operation and returns a message from the incoming
queue or Null (there are no messages in the queue) and a return status. The 'GetMessageWait'
method performs a single read operation; however, this call waits until a message is read from the
queue. Optionally a time to wait may be provided in the wait call, or a default time period will be
used.

Additionally a call back incoming queue is provided. This queue contains one thread which
executes a programmer-defined call back every time a message is received. That is, a thread is
awakened the moment a message arrives in the incoming queue, it invokes the virtual method
'handleMsg', and searches to see if any other messages arrived, if so, it executes another call back,
else, it shuts down the thread until a new message is received. When a message is read, it is
removed from the queue and from the disk.

When a message is to be sent, a pointer to it is placed in to an outgoing queue. The contents of the
queue are saved to disk. If no file name is supplied when instantiating the control call, recovery/
persistence is not provided.

Deferred synchronous model is a direct superset of the asynchronous model. While
implementation one does not support deferred synchronous directly, it provides certain
information, such as, the message UUID, so the application programmer can implement deferred
synchronous messages in the application. Alternatively, the application programmer can use the
CSS implementation two to provide deferred synchronous message passing as an infrastructure
service.

Some constraints are: 1) Each queue must have a maximum number of messages, a user-defined
number; 2) The messages must be of defined maximum length; 3) Logical names ought to be
unique, internally CDS/GDS will be used to store location information associated the receiver
(logical name-UUID pair); 4) The message or buffer should not be changed while the sending is in
progress; otherwise, we need to copy the message; 5) If deferred synchronous is needed, a UUID
and the sender's logical name can be used to send a reply back by the receiving end.

4-92 305-CD-028-002

4.2.3.1.5 Dynamic Model Scenarios

4.2.3.1.5.1 Scenario #1

4.2.3.1.5.1.1 Abstract

This scenario will demonstrate how a process can be a sender of asynchronous messages and a
receiver as well.

4.2.3.1.5.1.2 Interfaces

OODCE provided classes.

4.2.3.1.5.1.3 Stimulus

The process wants to send a message to another process and be able to receive as well.

4.2.3.1.5.1.4 Desired Response

A message is sent and a message is received.

4.2.3.1.5.1.5 Participating Classes

EcMpMsgCtrl, EcMpMsgCb, EcMpSessionList, EcMpQueue, EcMpQueueIn, EcMpQueueOut,
EcMpTransferSrv, EcMpTransferCli.

4.2.3.1.5.1.6 Pre-conditions

The user must determine the receiver identity and under which identity the process wishes to
receive messages.

4-93 305-CD-028-002

Client Application EcMpMsgPsngCtrl EcMpMsgCb EcMpSessionList EcMpQueueIn EcMpQueueOut EcMpTransferSrv EcMpTransferCli

4-94
305-C

D
-028-002

Instantiate an
object of type

EcMpMsgPsngCtrl

Create outgoing
queues and

intitialize the threads

Call Listen

Call Initialize

Create a pointer to an
ordinary incoming queue: rec1P

Instantiate an object of
EcMpQueueIn type

Call
CreateReceiver

InQueueP (a pointer to the the incoming queue)
InQueueP

rec1P = InQueueP

rec1P->GetMessageWait

Register the EcMpTransferSrv object and have this object point to the
receiving queue just created

Instantiate an object of type EcMpMsgCb

Instantiate an object of EcMpSessionList

Set the number of tries and the time between the tries

Call Join(logicalName)

Call Send

Send the message to a receiver

Notification comes back

Send the message to the receiver

HandleAck notifies completion of the Send operation

A message just arrived in the queue

The incoming queue delivers the received message

Figure 4.2.3.1.5-1 Message Passing Scenario One Event Trace

Table 4.2.3.1.5-1 Message Passing Object Responsibility Matrix (1 of 2)
Class Name Description

EcMpMsgPsngCtrl The EcMpMsgPsngCtrl object is the controller object, through which any number
of receiver sessions can be created. Each receiver session is associated with a
unique name (so other applications can send messages to this receiver) and an
optional unique file. The file is used for persistence.
When a message comes in, it is stored in the queue associated with the object
and a copy of it is stored on the file associated with this object.
Internally, this object also creates a sender queue. All outgoing messages are
kept in this queue.
A number of threads are generated internally in the initializing call which
periodically get messages from the outgoing queue and send them.

EcMpMsgCb This class will handle two types of callbacks:
1. For ordinary receive messages:

If an ordinary message is received, then handleMsg is
invoked;

2. For acknowledgment of messages:
If an acknowledgment is received, then handleAck is invoked.
is basically a point to point session to send a message. Each sender session will
have a logical name that is needed to contact the receiver.
A list of sending sessions are maintained in a given application. A sender session
list contains a callback object which provides virtual functions to be called when
a send is complete. This is done at the sender side.
A callback object is created and will implement the acknowledgment. The virtual
function handleAck is called when a message is delivered to the destination or
when the underlying mechanism failed to deliver it within the given constraints
(number of tries).

EcMpSessionList This is a container class whose element type is a logical name and will inherit
from the RWTPtrSlist class.
A session list contains a callback object which provides virtual functions to be
called when a send is complete. This is done at the sender side.

EcMpQueue This class will be the parent class for the following:
• EcMpMsgQueueIn
• EcMpMsgQueueCbIn
• EcMpMsgQueueOut
EcMpMsgQueue inherits from the Rogue Wave library file RWPtrDlist.

EcMpQueueCbIn This queue will contain one thread which will execute a callback every time a
message is received.
defines a double linked list queue. It inherits from the Rogue Wave Library file,
RWTPtrDlist.

A sending session

The callback will be a virtual function call. This class

4-95 305-CD-028-002

Table 4.2.3.1.5-1 Message Passing Object Responsibility Matrix (2 of 2)
Class Name Description

EcMpQueueIn This class will be used to queue the messages once they are received. It will
provide a Read Wait call and a Read Non-Wait call. The Read Wait call performs
a single read operation; however, this call waits until a message is read from the
queue. Optionally a time to wait may be provided in the wait call, or a default time
will be used. The Read Non-Wait performs a single read operation and returns a
message from the Incoming Queue (or Null if there are no messages in the
queue) and a return status. This class defines a double linked list queue. It
inherits from the Rogue Wave Library file, RWTPtrDlist.

EcMpQueueOut In case of a asynchronous calls, the message is put in a queue, which will be sent
later by an internal thread. Controls returns immediately. Worker threads will
process simultaneous send operations. Each request that arrives is placed at the
end of the outgoing queue. After adding the request to the queue, the boss thread
will wake up a worker thread and this worker thread will perform the send
operation. The send operation will not remove the item from the queue yet. Once
done, it will wait for the next request. There will be about five to ten working
threads and one boss thread. If the message fails to be sent, then the 'noOfTries'
gets decreased by one, and the 'lastTimeSent' gets updated to the current time
(when the message came back after the send failed). The message will be retried
once the 'lastTimeSent'+'timeBetweenTries' was reached until the noOfTries
expired. If the message failed to be sent, the message will be returned (the
callback 'handleAck' will be invoked). The EcMpMsgQueueOut class defines a
double linked list queue. It inherits from the Rogue Wave Library file,
RWTPtrDlist.

EcMpTransferSrv This class is the EcMpTransferSrv manager object. It responds to client's
requests to transfer data which result in the enqueuing of the data.

EcMpTransferCli Class EcMpTransferCli is a surrogate object for making requests to an
EcMpTransfer manager object. An EcMpTransferCli object creates and holds a
single instance of this class which it then binds to successive EcMpTransfer
manager objects to carry the transfer operation.

4.2.3.1.5.1.7 Post-conditions

The message is delivered, and the notification is passed back to the sender.

A message is received from another process and it is retrieved.

4.2.3.1.5.1.8 Scenario Description

a. Set up an ordinary receiver session

Instantiate an object of the EcMpMsgPsngCtrl type using a filename (for the outgoing
queue and for the disk filename/persistence), and an application name (a full CDS path
name + application name).

Using the message passing control object start listening for incoming messages (Initialize).
Next, instantiate receiving objects, that is, create an instance of the incoming queue object
(via the 'createReceiver' call) and set it to point to the queue the message passing control
class is attached to.

4-96 305-CD-028-002

When a message comes in, it gets stored in to the queue associated with the object and a
copy of it is stored on the file associated with the object.

In order to retrieve a message two methods can be used: 1) GetMessageWait (block - there
is wait): Performs a single read operation; however, this call waits until a message is read
from the queue. Optionally a time to wait may be provided in the wait call; 2) GetMessage
(Non Block - there is no wait): Performs a single read operation and returns a message from
the Incoming Queue or a return status (“no more messages”).

b. Setup the sending session

A sending session is basically a point-to-point session to send a message. Each sender
session will have a logical name that is needed to contact the receiver. A list of sending
sessions are maintained in a given application. A sender session list contains a callback
object which provides virtual functions to be called when a send is complete. This is done
at the sender side.

Create a callback object and implement/compile the acknowledgment virtual function. The
object EcMpMsgCb has a virtual function named 'handleAck', this function is called when
a message is delivered to the destination or when the underlying mechanism failed to
deliver it within the given constraints (number of tries). This function takes the following
arguments: a flag indicating success/failure, the number of tries, the time between tries, the
actual message, its length, a receiver address, and a destination address, and a message
identifier. This same unique id is presented to the application programmer when sending a
message.

Create a EcMpSessionList and populate it with the following information: 1) Associate the
callback object just created, 2) Set the number of tries and the time between each retry, and
3) For each session give the receiver’s (destination) logical name.

Prepare and send the message to the session list. At initialization time a number of threads
were generated internally which periodically will get the messages from the outgoing
queue and send them. The send call returns back a UUID to the sender that can be used by
the callbacks or to get a reply back.

4.2.3.1.5.1.9 Event Trace

See Figure 4.2.3.1.5-2.

4.2.3.1.5.2 Scenario #2

4.2.3.1.5.2.1 Abstract

This scenario will demonstrate the usage of a callback to receive a message. The receiver will be
notified everytime a message is received.

4.2.3.1.5.2.2 Interfaces

OODCE provided classes.

4.2.3.1.5.2.3 Stimulus

The arrival of a message.

4-97 305-CD-028-002

Internal thread in
Client Application EcMpMsgPsngCtrl EcMpMsgCb EcMpSessionList EcMpQueueCbIn EcMpQueueCbIn EcMpQueueOut EcMpTransferSrv EcMpTransferCli

4-98
305-C

D
-028-002

Instantiate an
object of type

EcMpMsgPsngCtrl Create outgoing
queues and

intitialize the threads

Call Listen

Call Initialize

Create a pointer to a special
incoming queue: rec1P

Instantiate an object of
EcMpQueueCbIn type

Call
CreateReceiver

CbInQueueP (a pointer to the special incoming queue)

CbInQueueP

rec1P = CbInQueueP

Register the EcMpTransferSrv object and have this object point to
the receiving queue just created

Message is delivered to the client

A message just arrived in the queue

Thread is
awakened

Thread invokes
used-defined CB

Receiver
sends a message

Figure 4.2.3.1.5-2 Message Passing Scenario Two Event Trace

4.2.3.1.5.2.4 Desired Response

A thread is awakened when a message is received in the queue. A callback is invoked at that point.

4.2.3.1.5.2.5 Participating Classes

EcMpMsgCtrl, EcMpMsgCb, EcMpSessionList, EcMpQueue, EcMpQueueCbIn, EcMpQueue-
Out, EcMpTransferSrv, EcMpTransferCli.

4.2.3.1.5.2.6 Pre-conditions

The user must determine the receiver identity and under which identity the process wishes to re
ceive messages.

4.2.3.1.5.2.7 Post-conditions

A callback notification is received informing the user a message arrived.

4.2.3.1.5.2.8 Scenario Description

Setup a callback receiver session

Instantiate an object of the EcMpMsgPsngCtrl type using a filename (for the outgoing
queue and for the disk filename/persistence), and an application name (a full CDS path
name + application name).

Using the message passing control object start listening for incoming messages. Next,
instantiate receiving objects, that is, create an instance of the callback incoming queue
object (via the createReceiverCb call) and set it to point to the queue the message passing
control class is attached to it.

When a message comes in, it gets stored in to the queue associated with the object and a
copy of it is stored on the file associated with the object. A 'call back' thread (just one
thread) will be awakened every time a message arrives into the special receiver queue
created by the call 'createReceiverCb'. A call back (virtual function) will be executed. It
will check if there is another message and if so execute another callback. If there are no new
messages it shutdowns the thread until a new message arrives in.

4.2.3.1.5.2.9 Event Trace

4.2.3.1.6 Implementation

This service will utilize COTS such as OODCE and RogueWave.

CSS will provide a set of classes (custom code) that will allow FOS and SCDO subsystems to
achieve asynchronous and synchronous communication. Security is available on this architecture.

4.2.3.1.7 Service/CSCI Management and Operation

4.2.3.1.7.1 System Management and Strategy

Not Applicable.

4.2.3.1.7.2 Operator Interface

Not Applicable.

4-99 305-CD-028-002

4.2.3.1.7.3 Reports

None.

4.2.3.2 Message Passing Implementation Two

4.2.3.2.1 Overview

Implementation two provides asynchronous and deferred synchronous communication. It is
designed to work with the OODCE-provided DCE-Pthread class which is used to start and control
the execution of a thread. The CSS API is not going to be as transparent to the user as the CORBA
application will be, that is, some developer involvement is required. For example, with Store and
Forward, the developer using implementation two would need to create a thread to listen for a reply
from the server. Reply sensing will be COTS with CORBA. In addition, recovery is not supported
with implementation two.

The CSS API spawns a thread to send a message. This thread invokes predetermined, application
programmer specializable, virtual functions. The API supports asynchronous communications.

The CSS API also supports deferred synchronous communication. The results produced by the
execution of the thread can be retrieved using the GetResults member function.

The number of tries, as well as the time between each try, must be defined.

Thread scheduling attributes can be defined if the defaults are not desired. Scheduling policy
controls the algorithm used to schedule threads. Scheduling priority controls the treatment of a
given thread relative to other threads. The default scheduling policy is Foreground. All the threads
with this policy will be scheduled on a round-robin basis regardless of their priority. Higher
priority threads will get better treatment, but all will get some time to run - to provide some fairness
to low-priority threads. Foreground threads can still be locked out by higher-priority thread types,
such as, FIFO or straight Round Robin. The default scheduling priority will apply to the minimum
symbol of the default scheduling policy.

Only one send call can be executed at a time for each method, that is, threads will not be launched
concurrently. The developer can check the status of a thread by calling 'CallInProgress'. This
function will return an integer, a '0' for currently in progress, a '1' for not currently in progress.

The programmer can call the method 'Done' in order to find out whether the operation has finished
successfully or not.

The 'Reset' is used to deallocate any memory assigned to the results field and to reset the flags.
After Reset, the developer can call Send again or just delete the client object and terminate.

4.2.3.2.2 Context

Message Passing is an infrastructure key mechanism and is used by ECS subsystems for deferred
synchronous, and asynchronous communication where a client needs control back immediately
after invoking a remote procedure.

4-100 305-CD-028-002

4.2.3.2.3 Object Model

EcDcDSyncCom

_policy
_priority
_results
_addr
_data
_call_in_progress
_done
_timeBetweenTries
_noOfTries

- : EcEDcThreadPolicy = EcDDcFg
- : EcEDcThreadPriority = EcDDcPri_min
- : EcTPtr = NULL
- : EcTPtr = NULL
- : EcTPtr = NULL
- : EcTInt = 0
- : EcTInt = 0
- : EcTInt = 0
- : EcTInt = 0

SetCallInProgressFlag(a_call_in_progress:EcTInt)
SetDoneFlag(a_done:EcTInt)
EvalThread(a_param:DCEPthreadParam)
Done(ao_status:EcUtStatus*)
Send(a_return_uuid_flag:EcTInt,ao_status:EcUtStatus*)
PostInvoke()
Invoke()
PreInvoke()
CallInProgress(ao_status:EcUtStatus*)
GetResults(ao_status:EcUtStatus*)
SetResults(a_resultP:EcTPtr)
GetTimeBetweenTries(ao_status:EcUtStatus*)
SetTimeBetweenTries(a_timeBetweenTries:EcTInt)
GetNoOfTries(ao_status:EcUtStatus*)
SetNoOfTries(a_noOfTries:EcTInt)
GetPolicy(ao_status:EcUtStatus*)
SetPolicy(a_policy:EcEDcThreadPolicy)
GetPriority(ao_status:EcUtStatus*)
SetPriority(a_priority:EcEDcThreadPriority)
GetAddr(ao_status:EcUtStatus*)
SetAddr(a_addrP:EcTPtr)
GetData(ao_status:EcUtStatus*)
SetData(a_dataP:EcTPtr)
~EcDcDSyncCom()
EcDcDSyncCom()
Reset()

+ : EcUtStatus
+ : EcUtStatus
+ : DCEPthreadResult
+ : EcTInt
+ : EcTChar*
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : EcTPtr
+ : EcUtStatus
+ : EcTInt
+ : EcUtStatus
+ : EcTInt
+ : EcUtStatus
+ : EcEDcThreadPolicy
+ : EcUtStatus
+ : EcEDcThreadPriority
+ : EcUtStatus
+ : EcTPtr
+ : EcUtStatus
+ : EcTPtr
+ : EcUtStatus
+ : EcTVoid
+ : EcTVoid
+ : EcUtStatus

[Public]

Figure 4.2.3.2.3-1 Message Passing Object Model

4-101 305-CD-028-002

4.2.3.2.3.1 EcDcDSyncCom Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class is used to achieve message passing using asynchronous and deferred

synchronous communications. It is designed to work with OODCE-provided DCE-Pthread

class which is used to start and control execution of a thread.

Attributes:

_addr - This attribute points to some address that the developer will use in the overridden

Invoke member function. It is a void pointer and it could be a port number, an IP, a binding,

an object reference, a CDS name, etc.

Data Type:EcTPtr

Privilege:Private

Default Value:NULL

_call_in_progress - This attribute holds a value that identifies whether a thread is currently

executing or not. This flag is used to assure that only one call is processed at a time, and

that we don't have multiple Send calls happening concurrenlty. Only one thread will be

running at a time.

Data Type:EcTInt

Privilege:Private

Default Value:0

_data - This attribute points to some data that the developer will use in the overridden

invoke member function. It is a void pointer.

Data Type:EcTPtr

Privilege:Private

Default Value:NULL

_done - This attribute holds a value that identifies whether a thread has terminated or not.

It gets updated when the process finished execution, after PostInvoke. '0' means the thread

did not finish, '1' means it did.

Data Type:EcTInt

Privilege:Private

Default Value:0

_noOfTries - This attribute defines the number of Send call re-tries if exceptions or errors

occur during the communication.

Data Type:EcTInt

Privilege:Private

Default Value:0

4-102 305-CD-028-002

_policy - This attribute represents the thread scheduling policy. It is an enum type. The

policy types are: EcDDcFifo (first in/first out), EcDDcRr (Round Robin), EcDDcFg

(Foreground), EcDDcBg (Background).

Data Type:EcEDcThreadPolicy

Privilege:Private

Default Value:EcDDcFg

_priority - This attribute represents the thread scheduling priority. It is an enum type. The

priority types are: EcDDcPri_min, EcDDcPri_low, EcDDcPri_mid, EcDDcPri_hi,

EcDDcPri_max.

Data Type:EcEDcThreadPriority

Privilege:Private

Default Value:EcDDcPri_min

_results - This attribute is used to store the results that were a product of the thread

execution. It is a void pointer.

Data Type:EcTPtr

Privilege:Private

Default Value:NULL

_timeBetweenTries - This attribute defines how often Send call re-tries will occur in case

of errors during the communication.

Data Type:EcTInt

Privilege:Private

Default Value:0

Operations:

CallInProgress - This operation returns to the caller the execution status of the thread,

whether is currently executing (in progress), or not.

Arguments:ao_status:EcUtStatus*

Return Type:EcTInt

Privilege:Public

Done - This operation returns to the caller the thread termination status, an integer called

'_done'. It is a flag and will be initialized to '0' in the constructor. When the thread finishes

its execution, which is after PostInvoke, the '_done' flag is set to '1'. Once the results of the

thread execution have been retrieved successfully, then Reset() can be used to clear the flag

back to '0'.

Arguments:ao_status:EcUtStatus*

Return Type:EcTInt

Privilege:Public

4-103 305-CD-028-002

EcDcDSyncCom - Constructor.

Arguments:

Return Type:EcTVoid

Privilege:Public

EvalThread - This is a static member function, an internal one. It makes calls to PreInvoke,

Invoke, and PostInvoke. This function will be executing on a separate thread. It takes as

input parameter a DCEPthreadParam argument, and OODCE type which represents a void

pointer.

Arguments:a_param:DCEPthreadParam

Return Type:DCEPthreadResult

Privilege:Public

GetAddr - This operation returns a pointer to the address.

Arguments:ao_status:EcUtStatus*

Return Type:EcTPtr

Privilege:Public

GetData - This operation returns a pointer to the data.

Arguments:ao_status:EcUtStatus*

Return Type:EcTPtr

Privilege:Public

GetNoOfTries - This operation returns the number of tries.

Arguments:ao_status:EcUtStatus*

Return Type:EcTInt

Privilege:Public

GetPolicy - This operation returns the thread scheduling policy attribute.

Arguments:ao_status:EcUtStatus*

Return Type:EcEDcThreadPolicy

Privilege:Public

GetPriority - This operation returns the thread priority attribute.

Arguments:ao_status:EcUtStatus*

Return Type:EcEDcThreadPriority

Privilege:Public

GetResults - This operation returns the method's results. This is applicable only for

deferred synchronous. Once data was sent, a reply comes back with the results from the

operation.

Arguments:ao_status:EcUtStatus*

Return Type:EcTPtr

Privilege:Public

4-104 305-CD-028-002

GetTimeBetweenTries - This operation returns the time between tries.

Arguments:ao_status:EcUtStatus*

Return Type:EcTInt

Privilege:Public

Invoke - This operation is used to perform whatever operations the developer wishes. It is

called automatically by the static function EvalThread, which is internal to CSS.

Arguments:

Return Type:EcTInt

Privilege:Public

PostInvoke - This operation is used to perform whatever operations the developer wishes.

It is called automatically by the static function EvalThread, which is internal to CSS.

Arguments:

Return Type:EcTInt

Privilege:Public

PreInvoke - This operation is used to perform whatever operations the developer wishes.

It is called automatically by the static function EvalThread, which is internal to CSS.

Arguments:

Return Type:EcTInt

Privilege:Public

Reset - It is called after the thread has terminated, and after the results from the thread

execution (if any) were retrieved. This call will reset the '_done' flag to zero, the

'_call_in_progress' flag to zero, and it will deallocate any memory assigned to '_results'.

Arguments:

Return Type:EcUtStatus

Privilege:Public

Send - When the Send operation is called, a thread gets created and its scheduling attributes

are set. If the Send call fails, the call will be retried as many times as the developer defined

in the '_noOfRetries' field. Once the thread began execution, the '_call_in_progress' flag is

set to '1', the thread is terminated (but the object is not deleted), and the 'call_in_progress'

flag is set to '0'. If the call was deferred synchronous, the method's results will be stored in

'_results'.

Arguments:a_return_uuid_flag:EcTInt,ao_status:EcUtStatus*

Return Type:EcTChar*

Privilege:Public

SetAddr - This operation sets a pointer to some address that the developer wishes to use in

the overridden Invoke member function. The address can be an IP, a port number, an object

reference, a binding, a CDS name, etc.

Arguments:a_addrP:EcTPtr

Return Type:EcUtStatus

4-105 305-CD-028-002

Privilege:Public

SetCallInProgressFlag - This operation sets the '_call_in_progress' flag. This flag is used

to identify whether a thread is currently executing or not.

Arguments:a_call_in_progress:EcTInt

Return Type:EcUtStatus

Privilege:Public

SetData - This operation sets a pointer to some data that the developer wishes to use in the

overridden Invoke member function.

Arguments:a_dataP:EcTPtr

Return Type:EcUtStatus

Privilege:Public

SetDoneFlag - This operation sets the '_done' flag. This flag is used to identify whether a

thread has finished or not.

Arguments:a_done:EcTInt

Return Type:EcUtStatus

Privilege:Public

SetNoOfTries - This operation sets the number of Send retries in case of exceptions/

communications errors at the other end. The Send call will be retried as many times as

specified in '_noOfTries'.

Arguments:a_noOfTries:EcTInt

Return Type:EcUtStatus

Privilege:Public

SetPolicy - This operation sets the thread scheduling policy attribute. The scheduling

policies are: EcDDcFifo (first in/first out), EcDDcRr (Round Robin), EcDDcFg

(Foreground), EcDDcBg (Background).

Arguments:a_policy:EcEDcThreadPolicy

Return Type:EcUtStatus

Privilege:Public

SetPriority - Threads are scheduled according to their scheduling priority and how the

scheduling policy treats those priorities. This operation sets the thread priority attribute.

The thread scheduling priorities are: EcDDcPri_min, EcDDcPri_low, EcDDcPri_mid,

EcDDcPri_hi, EcDDcPri_max.

Arguments:a_priority:EcEDcThreadPriority

Return Type:EcUtStatus

Privilege:Public

SetResults - This operation sets the result from the Invoke call.

Arguments:a_resultP:EcTPtr

Return Type:EcUtStatus

4-106 305-CD-028-002

Privilege:Public

SetTimeBetweenTries - This operation sets the time between each Send retry (in seconds).

If the Send call failed because of communication errors, the Send call will be retried as

often as specified in '_timeBetweenTries'.

Arguments:a_timeBetweenTries:EcTInt

Return Type:EcUtStatus

Privilege:Public

~EcDcDSyncCom - Destructor.

Arguments:

Return Type:EcTVoid

Privilege:Public

Associations:

The EcDcDSyncCom class has associations with the following classes:
None

4.2.3.2.4 Functional Model

The programmer needs to define a new class inheriting from the generic EcDcDSyncCom class and
should implement all the virtual functions defined in the parent class, that is, PreInvoke, Invoke
and PostInvoke. In PreInvoke, the user can do any initialization that is needed prior to the transfer,
Invoke executes the actual transfer method. Once control returns back from Invoke, PostInvoke is
called. This method can take care of the Notifications in the case of Asynchronous message
passing.

The main idea behind this API is to allow the programmer to spawn a thread for listening purposes
and then release it so that the main thread is available to perform other operations such as sending
data.

The programmer must do the following in order to transfer data:

•	 Set a data pointer to some data that will be used in the overridden Invoke member function.
It is represented as a void pointer, to allow for various types of data.

•	 Set the address pointer to some address that will be used in the overridden Invoke member
function. It can be a port number, an IP, a binding, a CDS name, etc. The address is a void
pointer. Since the developer, will be setting this field, he/she will know how to parse it and
implement it in the Invoke call.

•	 Call the Send method. Internally this method will create a number of threads and invoke
the 'EvalThread' function which will execute the PreInvoke, Invoke and PostInvoke virtual
methods. If the send fails, the call will be retried as many times as defined by the developer.
Once the thread finished execution, it is terminated, but the client object will not be
deleted. Results from the thread execution are returned, and 'reset' needs to be called to
deallocate any memory priory set aside. The programmer can then either send some more
data or terminate and delete the client object.

4-107 305-CD-028-002

4.2.3.2.5 Dynamic Model Scenarios

4.2.3.2.5.1 Scenario #1

4.2.3.2.5.1.1 Abstract

This scenario will demonstrate how a process can be a sender of deferred synchronous messages
and at the same time operate as a server (listen for incoming requests).

4.2.3.2.51.2 Interfaces

OODCE provided classes

4.2.3.2.51.3 Stimulus

The process wants to send a message to another process, and get a reply back. It also listens for
incoming requests.

4.2.3.2.51.4 Desired Response

A message is sent and its result comes back.

4.2.3.2.51.5 Participating Classes

EcDcDSyncCom

4.2.3.2.51.6 Pre-conditions

The user must determine the receiver identity and under which identity the process listens.

4.2.3.2.51.7 Post-conditions

The message is delivered, and the notification is passed back. The result comes back after the send
operation completed.

Table 4.2.3.2.4-1 Message Passing Object Responsibility Matrix
Class Name Description

EcDcDSyncC
om

This class is used to achieve message passing using asynchronous and deferred
synchronous communications. It is designed to work with OODCE-provided DCE-
Pthread class which is used to start and control execution of a thread.
The user is expected to override the virtual member functions of this class, which
are, PreInvoke, Invoke, and PostInvoke, in order to perform whatever operations
are needed.
Provides the functionality to
- receive messages from sender
- transmit them to the receivers
- collect and maintain acknowledgment information from the receiver.
- collect and maintain results from the receiver
- pass the acknowledgment and results back to the sender.

4-108 305-CD-028-002

4.2.3.2.5.8 Scenario Description

First define a new class inheriting from the generic EcDcDSyncCom and implement all the virtual
functions defined in the parent class, that is, PreInvoke, Invoke, and PostInvoke. Let the client class
be CliDSyncCom.

In Main, include the client header definition file and spawn a thread for listening purposes, and start
listening. Call pthread_yield to notify the Thread scheduler that the current thread will release the
processor 'thread_listening'.

On the main thread create an instance of the CliDSyncCom object. Set the data pointer to some
data that will be used in the overridden Invoke member function. Data can also be retrieved by
means of the GetData() member function. Set the address pointer. It can be an IP, a port number,
an object reference, a CDS name, etc. Optionally, set the thread scheduling attributes. If they are
not set, the default values for each attribute will be used, that is, EcDcPri_min, and EcDcFg. Set
the number of retries in case of exceptions/communication errors. Set the time between retries in
seconds.

When calling Send, a thread will get started and executed. The thread creation is done
transparently, via this Send call. The developer does not have to deal with thread calls other than
setting the priority or the scheduling policy if desired. Check whether the thread has finished
execution successfully. Obtain the results that were a product from the thread execution.

When calling Reset, set the flags to '0' and deallocate any memory used (i.e.: on results). Delete the
client object or reuse it.

4.2.3.2.5.1.9 Event Trace

See Figure 4.2.3.2.5-1.

4.2.3.2.6 Implementation

This service utilizes COTS within the OODCE and DCE products. CSS provides one generic class
with virtual functions which FOS and SDPS must inherit in order to achieve asynchronous and
deferred synchronous communication.

4.2.3.2.7 Service/CSCI Management and Operation

4.2.3.2.7.1 System Management and Strategy

Not Applicable.

4.2.3.2.7.2 Operator Interface

Not Applicable.

4.2.3.2.7.3 Reports

None.

4-109 305-CD-028-002

Client Application
Main Thread Listen_thread EcDcDSyncCom Server Application

Spawn a thread and
start listening

Call
the Thread Scheduler
that the current thread

will release the processor
'Listen_thread'

Control comes back

Control comes back right away

After setting initializing parameters, call Send (Async communications)
Spawn a thread and send

a message

Inquire whether the send operation has completed
Call Done Inquire

Status returned

Status of the Send operation

Call Get Results

Obtain the results

Results returned

Call Reset

Pthread_yield to notify

Figure 4.2.3.2.5-1. Message Passing Scenario Event Trace

4-110 305-CD-028-002

4.2.4 Multicast

4.2.4.1 Overview

Multicasting is a mechanism through which a single copy of data is transferred from a single point
to several places. In the point-to-point communications, data is transferred from one application to
another application. If an application needs to send the same data to several other applications, the
same data is needed to be sent to each of the receiving applications. Multicasting allows a sending
application to specify a multicast address and send one copy of the data to that address. This data
is then distributed through the Multicast backbone to all the applications listening at that address.
This reduces the network traffic and improves the performance.

4.2.4.2 Context

The multicast API(s) will be used by FOS for distributing three types of data:

1. Real-time telemetry

2. Events

3. Shared playback

FOS shall use other standard API(s) or protocols (such as TCP/UDP) for all other data types. Each
of the three types is detailed below:

1. Real-time Telemetry

Real-time telemetry is sent from EDOS to the EOC. The data flow is unreliable and uses
UDP/IP-multicast in conjunction with EDOS-provided multicast routers. The multicast IP
groups will be predefined, and each group will reflect a different telemetry data stream.
Thus, EOC hosts need only receive the data stream they are interested in and therefore do
not require a mechanism to notify EDOS of group membership.

Each EOC Operational LAN host will receive telemetry directly from EDOS simply by
listening to the appropriate pre-defined multicast address. The Multicast server will unicast
the EDOS telemetry to the ISTs.

The multicast API(s) on the EOC hosts will be used for the receipt of EDOS multicast
telemetry data. The API(s) will also be used by the Multicast server to forward telemetry
to the ISTs. (The API will handle unicasting to each IST that is registered on the server.)

2. Events

Events are sent from any EOC multicast capable host in response to some significant
change in status (such as a host connecting to a string or generating a shared playback). The
event message will be sent to every machine on the network. (For instance, if a host on the
EOC Operational LAN generates an event, the event message will be sent to all EOC hosts
on the Operational LAN and all ISTs with sessions to Operational LAN hosts. The event
message, in this case, will not be sent to the Support LAN hosts.)

The multicast API(s) will allow for generation and receipt of events, and will handle
unicasting events to the ISTs.

3. Shared Playback

Shared playback consists of non-real-time telemetry being sent to one or more hosts at up
to 12 times the real-time rate. The receiving group can consist of both ISTs and EOC hosts.

4-111 305-CD-028-002

4.2.4.4 Implementation

ISS will provide FOS with an unreliable multicast service in the form of an API(s) providing C++
classes. The multicast service shall be implemented at the transport layer via UDP and at the net
work layer via IP multicasts or (where necessary) unicasts. The API(s) will allow multicasting be
tween hosts located within either the EOC Operational or Support LAN (but not between the two).
Communication to the ISTs will be via unicast, but the API(s) will shield this detail from the FOS
applications, so that the application makes a call to send to single group and the API insures that
the data is sent to all members (whether unicast or multicast) of the group. (Note that since this is
a non-guaranteed delivery multicast service, neither the API(s) nor the underlying protocols insure
data receipt; this must be handled by the FOS application.). This will be developed under the in
cremental track for Release B. As such, complete design of this section is not shown here. It is in
cluded here for information purposes only. This is a Release B service but code will be provided
in Release A time-frame so that testing can be conducted by FOS.

4.2.5 Threads Service

4.2.5.1 Overview

A thread can be defined as a lightweight process. Threads actually exist within a process. Threads
differ from the other Object Services in that threads do not involve networking. Threads are a local
service that affect the operation of a single program on a single node. Threads provide an efficient
and portable way to provide for asynchronous and concurrent processing, both of which are re
quirements of network software.

4.2.5.2 Context

All segments are expected to require the Thread Service for ReleaseB. Due to the underlying
complexity of threads, only a subset of their functionality is revealed to the other segments.

Figure 4.2.5.2-1 shows, at a high level, the interaction between SDPS, FOS and MSS developers
and the CSS Thread Service. Applications utilize the Thread Service transparently by setting an
option when starting their server. The Thread Service will transparently cause each invocation of
a server operation to run as a distinct thread.

Application developers must protect against conflicts between different threads by utilizing the
Lock, TryLock and UnLock APIs as can be seen in Figure 4.2.5.2-1. The APIs synchronize the
access of concurrent threads to shared data objects.

4.2.5.3 Object Model

The Thread Service Object Model in Figure 4.2.5.3-1 provides a more detailed view of the
interaction possible using the Thread Service. Implementing a multithreaded server does not
require calling any Pthread routines. Simply calling the Listen() member function (in OODCE)
will cause each invocation of a server operation to run as a distinct thread. Unless the server
operation needs to create additional threads for some reason, there is no need to explicitly call the
Pthread routines. Since each server operation executes as a result of an RPC, there is generally no
need to synchronize their termination.

4-112 305-CD-028-002

Implementing a multithreaded server, however, does require protecting against conflicts between
different threads accessing the same data. Conflicts can occur because a thread can be time sliced
at any time. Whenever a thread accesses data that can be modified by another thread, there is a
potential for inconsistent behavior.

lock(); unlock(); trylock() lock(); unclock(); trylock()SDPS
 FOS

Pthread
Service

lock(); unlock(); trylock()

MSS

Figure 4.2.5.2-1. Thread Service Event Flow

Table 4.2.5.3-1. Thread Service Object Responsibility Matrix
Object Responsibility

Pthread Provides a lightweight process.

PthreadMutex Synchronizes threads.
Controls the access to data objects.
Once a thread has locked a mutex, no other thread can use it or lock it until it
has been unlocked.

PthreadCond Coordinate the access to a mutex shared between many threads. Can
advertise its' availability of mutex to many threads.

PthreadInterval Used to specify synchronization intervals with a PthreadCond object.

PthreadTime Used to specify synchronization intervals with a PthreadCond object.

ThisPthread Provides the ability to reference the current running thread.

4-113 305-CD-028-002

Pthread

ThisPthread

proc
param
p
s
size
t

~Pthread()
Pthread(proc:ThreadProc param:ThreadParam)
Pthread()
Termination(t:PthreadTermination)
Termination()
Stacksize(size:long)
Stacksize()
Scheduling(s:PthreadSched p:PthreadPrio)
Scheduling()
Priority(p:PthreadPrio)
Priority()
Start(proc:ThreadProc param:ThreadParam)
Cancel()
Join()

ThisPthread()
~ThisPthread()
SetCancel(state:CancelState)
SetAsyncCancel(state:DCECancelState)
TestCancel()
Yield()
Delay(iv:PthreadInterval)
Exit(result:PthreadResult)

- : ThreadProc
- : ThreadParam
- : PthreadPrio
- : PthreadSched
- : EcTLong
- : PthreadTermination

+
+
+
+ : void
+
+ : EcTLong
+
+ : PthreadSched
+
+ : PthreadPrio
+
+ : EcTVoid
+ : EcTVoid
+ : ThreadResult

+
+
+ : CancelState
+ : CancelState
+ : void
+ : void
+ : void
+ : void

PthreadMutex

PthreadInterval PthreadTime

~PthreadCond()
PthreadCond(x:PthreadMutex&)
Wait()
Wait(t:PthreadTime)
Wait(i:PthreadInterval)
Signal()
Broadcast()

Lock()
TryLock()
UnLock()
~PthreadMutex()
PthreadMutex()

tv_sec
tv_nsec

PthreadInterval()
PthreadInterval(x:struct timespec)
PthreadInterval(seconds:EcTLong)
PthreadInterval(seconds:EcTLong nanosec:EcTLong)

tv_nsec
tv_sec

PthreadTime()
PthreadTime(x:struct timespec)
PthreadTime(a:PthreadInterval&)

PthreadCond

[Public] [Public]

+
+
+ : void
+ : void
+ : void
+ : void
+ : void

+ : void
+ : EcTInt
+ : void
+
+

- : EcTLong
- : EcTLong

+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

- : EcTLong
- : EcTLong

+
+
+

can_be_controlled_by

4-114
305-C

D
-028-002

[Public]
[Public]

[Public]

Figure 4.2.5.3-1. RelAThread_ObjectModel Object Model

4.2.5.3.1 Pthread Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:

Purpose and Description:

A Pthread is the representation of a thread of execution. A DCEPthread object corresponds

to a single thread. The DCEPthread class provides limited information about a thread and

limited control of that thread. A DCEPthread object represents the thread before, during,

and after its execution. The thread may also continue to execute after the DCEPthread

object has been deleted.

Attributes:

p - Priority to run the thread(Pthread_pri_min, Pthread_pri_low, Pthread_pri_mid,

Pthread_pri_high, Pthread_pri_max).

Data Type:PthreadPrio

Privilege:Private

Default Value:Pthread_pri_mid

param - Parameter passed to thread when thread is started

Data Type:ThreadParam

Privilege:Private

Default Value:

proc - Procedure to be executed when thread is started

Data Type:ThreadProc

Privilege:Private

Default Value:

Contraints:

Non Persisent Flag:False

s - Scheduling type(Pthread_fifo- first in first out, Pthread_rr - round robin, Pthread_fg

foreground non portable, Pthread_bg - background non portable)

Data Type:PthreadSched

Privilege:Private

Default Value:Pthread_fg

size - Size of the stack for the thread

Data Type:EcTLong

Privilege:Private

Default Value:

t - Thread termination type. (Pthread_no_detach_on_delete, Pthread_detach_on_delete, or

4-115 305-CD-028-002

Pthread_join_on_delete)

Data Type:PthreadTermination

Privilege:Private

Default Value:

Operations:

Cancel - Sends a cancel signal to the thread. This operation is only valid once a Pthread has

been Start'ed. The thread may block cancellation, so it need not stop immediately.

Arguments:

Return Type:EcTVoid

Privilege:Public

Join - Waits for completion of thread.

Arguments:

Return Type:ThreadResult

Privilege:Public

Priority - Retrieves priority

Arguments:

Return Type:Void

Privilege:Public

Priority - Sets the priority of the thread

Arguments:p:PthreadPrio

Return Type:PthreadPrio

Privilege:Public

Pthread - Default constructor

Arguments:

Return Type:Void

Privilege:Public

Pthread - Constructors for the Pthread class which will contruct a Pthread based on default

attributes. The second form will also start the thread.

Arguments:proc:ThreadProc param:ThreadParam

Return Type:Void

Privilege:Public

Scheduling - Retrieves scheduling algorithm

Arguments:

Return Type:Void

Privilege:Public

4-116 305-CD-028-002

Scheduling - Sets scheduling and relative priority

Arguments:s:PthreadSched p:PthreadPrio

Return Type:PthreadSched

Privilege:Public

Stacksize - Retrieves stack size

Arguments:

Return Type:Void

Privilege:Public

Stacksize - Sets thread stack size

Arguments:size:long

Return Type:EcTLong

Privilege:Public

Start - Launches that thread by executing the specified procedure, passing it the specified

parameter. This operation may only be performed on a Pthread that has no been previously

Start'ed.

Arguments:proc:ThreadProc param:ThreadParam

Return Type:EcTVoid

Privilege:Public

Termination - Retrieves termination options

Arguments:

Return Type:Void

Privilege:Public

Termination - Sets termination options

Arguments:t:PthreadTermination

Return Type:void

Privilege:Public

~Pthread - The destructor cleans up the Pthread data.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The Pthread class has associations with the following classes:
Class: PthreadMutex can_be_controlled_by

4-117 305-CD-028-002

4.2.5.3.2 PthreadCond Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

The PthreadCond class encapsulates the pthread_cond_t condition type. A mutex is

associated with the PthreadCond when it is constructed.

Attributes:

None

Operations:

Broadcast - This call signals a thread waiting on the condition variable that the condition

may now be true. Broadcast wakes up all the threads that are waiting on the condition

variable.

Arguments:

Return Type:void

Privilege:Public

PthreadCond - The only constructor for PthreadCond takes a mutex as a parameter. This

is the mutex associated with the condition. This mutex must be locked before certain

operations may take place.

Arguments:x:PthreadMutex&

Return Type:Void

Privilege:Public

Signal - This call signals a thread waiting on the condition variable that the condition may

now be true. Signal wakes up one thread that is waiting on the condition variable.

Arguments:

Return Type:void

Privilege:Public

Wait - This operation initiates a wait on the condition variable. The caller should have set

the mutex, then tested for the desired condition before making the call. A return implies that

the mutex is now set for the caller. The condition must be re-checked before continuing. If

the condition is still not true, the caller may wish to wait again.

Arguments:

Return Type:void

Privilege:Public

Wait - This operation initiates a wait on the condition variable. The caller should have set

4-118 305-CD-028-002

the mutex, then tested for the desired condition before making the call. A return implies that

the mutex is now set for the caller. The condition must be re-checked before continuing. If

the condition is still not true, the caller may wish to wait again.

Arguments:t:PthreadTime

Return Type:void

Privilege:Public

Wait - This operation initiates a wait on the condition variable. The caller should have set

the mutex, then tested for the desired condition before making the call. A return implies that

the mutex is now set for the caller. The condition must be re-checked before continuing. If

the condition is still true, the caller may wish to wait again.

Arguments:i:PthreadInterval

Return Type:void

Privilege:Public

~PthreadCond - The destructor deletes the Condition variable. It may only be called when

there are no threads waiting on it, or on its mutex. No check is made to verify that this is

the case.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PthreadCond class has associations with the following classes:
None

4.2.5.3.3 PthreadInterval Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:

Purpose and Description:

The PthreadInterval class represents a time interval. This is used in several of the Pthread

calls. Time intervals are distinguished from actual time (PthreadTime). Conversions may

need to take place between time and interval, depending on the specific needs of a pthread

intrinsic.

Attributes:

tv_nsec - Additional nanoseconds since tv_sec

Data Type:EcTLong

Privilege:Private

4-119 305-CD-028-002

Default Value:

tv_sec - Number of seconds since 00:00:00 GMT, 1 January 1970

Data Type:EcTLong

Privilege:Private

Default Value:

Operations:

PthreadInterval - The constructor builds a time interval.

Arguments:

Return Type:EcTVoid

Privilege:Public

PthreadInterval - The constructor builds a time interval.

Arguments:x:struct timespec

Return Type:EcTVoid

Privilege:Public

PthreadInterval - The constructor builds a time interval.

Arguments:seconds:EcTLong

Return Type:EcTVoid

Privilege:Public

PthreadInterval - The constructor builds a time interval.

Arguments:seconds:EcTLong nanosec:EcTLong

Return Type:EcTVoid

Privilege:Public

Associations:

The PthreadInterval class has associations with the following classes:
PthreadCond (Aggregation)

4.2.5.3.4 PthreadMutex Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:

Purpose and Description:

The PthreadMutex class provides the fundamental locking mechanism.

4-120 305-CD-028-002

Attributes:

None

Operations:

Lock - Acquires a lock on a mutex.

Arguments:

Return Type:void

Privilege:Public

PthreadMutex - Construct a mutex.

Arguments:

Return Type:Void

Privilege:Public

TryLock - Attempts to acquire a lock on a mutex.

Arguments:

Return Type:EcTInt

Privilege:Public

UnLock - Unlocks a mutex.

Arguments:

Return Type:void

Privilege:Public

~PthreadMutex - Delete the mutex. It is illegal to delete a mutex which is currently locked,

but no checks are made.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PthreadMutex class has associations with the following classes:
Class: Pthread can_be_controlled_by

4.2.5.3.5 PthreadTime Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:

Purpose and Description:

4-121 305-CD-028-002

This class represents an actual time, as contrasted with a time interval represented by
PthreadInterval. This class inherits timespec, as defined in pthread.h. The fields of this
struct are publicly available. However, operations (including conversions) are preferable
to direct use of timespec fields. The default copy constructor and assignment operator are
available for use with this type.

Attributes:

tv_nsec - Additional nanoseconds since tv_sec

Data Type:EcTLong

Privilege:Private

Default Value:

tv_sec - Number of seconds since 00:00:00 GMT, 1 January 1970

Data Type:EcTLong

Privilege:Private

Default Value:

Operations:

PthreadTime - The constructor creates a PthreadTime. The timespec is initialized to the

provided timespec, or to the current time plus indicated interval.

Arguments:

Return Type:Void

Privilege:Public

PthreadTime - The constructor creates a PthreadTime. The timespec is initialized to the

provided timespec, or to the current time plus indicated interval.

Arguments:x:struct timespec

Return Type:Void

Privilege:Public

PthreadTime - The constructor creates a PthreadTime. The timespec is initialized to the

provided timespec, or to the current time plus indicated interval.

Arguments:a:PthreadInterval&

Return Type:Void

Privilege:Public

Associations:

The PthreadTime class has associations with the following classes:
PthreadCond (Aggregation)

4-122 305-CD-028-002

4.2.5.3.6 ThisPthread Class

Parent Class:Pthread

Public:Yes

Distributed Object:No

Persistent Class:

Purpose and Description:

ThisPthread is a reference to the current running thread. It is derived from Pthread.

However, an object of type ThisPthread should never be referenced as a Pthread since the

destructor has not been made virtual, and use of the Join and Stacksize member functions

is disallowed.

Attributes:

All Attributes inherited from parent class

Operations:

Delay - Delay this thread for a period of time.

Arguments:iv:PthreadInterval

Return Type:void

Privilege:Public

Exit - Terminates execution of this thread, and sets the result that can be accessed by calling

Join on this thread. Note: this function must not be called from the root thread.

Arguments:result:PthreadResult

Return Type:void

Privilege:Public

SetAsyncCancel - Control the cancellation states. CancelState is either CANCEL_OFF or

CANCEL_ON.

Arguments:state:DCECancelState

Return Type:CancelState

Privilege:Public

SetCancel - Control the cancellation states. CancelState is either CANCEL_OFF or

CANCEL_ON

Arguments:state:CancelState

Return Type:CancelState

Privilege:Public

TestCancel - Tests whether cancellation of the thread has occurred.

Arguments:

Return Type:void

4-123 305-CD-028-002

Privilege:Public

ThisPthread - Constructor for the class

Arguments:

Return Type:Void

Privilege:Public

Yield - Allows another thread to gain control of kernel.

Arguments:

Return Type:void

Privilege:Public

~ThisPthread - Destructor for the class

Arguments:

Return Type:Void

Privilege:Public

Associations:

The ThisPthread class has associations with the following classes:
None

4.2.5.4 Dynamic Model Scenarios

4.2.5.4.1 Abstract

A process sends a message to another process. Within the message passing logic the message to
be sent was placed on an outgoing queue. There are two threads processing the entries on the out
going queue.

4.2.5.4.2 Interfaces

Thread Service

4.2.5.4.3 Stimulus

A message is being sent from one process to another process.

4.2.5.4.4 Desired Response

The message is sent successfully. The two threads processing the outgoing queue do not interfere
with each other while removing the message from the queue.

4.2.5.4.5 Participating Classes

PthreadMutex

4-124 305-CD-028-002

PthreadMutex
Pthread for queue Outgoing QueueMsg Passing Control

Thread one spawn
to service the queue

Thread two spawn
to service the queue

Outgoing queue mutex is also constructed

Contruction of message passing control builds outgoing queue

Thread one locks
the queue

Thread one removes an entry from the queue

Thread two tries to
lock the queue

Thread two cannot
lock the queue

Queue was locked

the queue
Thread two unlocks

Thread one unlocks
the queue

Queue is unlocked

Thread two locks
the queue

Thread two removes an entry from the queue

Figure 4.2.5.4-1. Thread Service Event Trace

4.2.5.4.6 Pre-conditions

The message passing control object was constructed. During construction the queues were
established along with the queue locks, and threads were spawned to process the entries on the
queue. A process made a request to send a message and a message was placed on the outgoing
queue.

4.2.5.4.7 Post-conditions

The message on the outgoing queue was sent successfully and the message was removed from the
outgoing queue.

4-125 305-CD-028-002

4.2.5.4.8 Scenario Description

There is a message on the outgoing queue that is to be sent to another process/application. There
are two threads processing and removing messages on/from the outgoing queue. Thread one has
completed sending a message and needs to remove the message from the outgoing queue. Thread
one locks the queue so that thread two does not corrupt the outgoing queue while thread one is
removing the entry off the outgoing queue. Thread two tries to lock the queue but is unsuccessful.
After thread one removes the entry off the outgoing queue, thread one unlocks the queue so that
thread two may access the queue. Thread two can now lock the queue.

4.2.5.4.9 Event Trace

4.2.5.5 Implementation

The Thread Service is available as a COTS within the OODCE and DCE products.

4.2.5.6 Service/CSCI Management and Operation

4.2.5.6.1 Service/CSCI Management and Operation

Not Applicable.

4.2.5.6.2 System Management and Strategy

Not Applicable.

4.2.5.6.3 Reports

None.

4.2.6 Time Service

4.2.6.1 Overview

The CSS Time Service will utilize the DCE (Distributed Computing Environment) DTS
(Distributed Time Service) to keep system clocks in the ECS network approximately in sync by
adjusting the time kept by the operating system at every node. Timestamps are used by many
applications when recording event occurrences to a log. The implementation detail of the CSS
Time Service and DCE DTS are invisible to the software developer.

The CSS Time Service will take advantage of the DCE DTS which has a Time Provider Interface
(TPI). The TPI will allow an external time source to connect to the Time Service. A Time Provider
provides access to standardized or government controlled time devices such as radios, satellites, or
telephone lines. The servers with a Time Service query the Time Providers for the current time
and can pass the standard Coordinated Universal Time (UTC) time values to a DTS server and
propagate them through the network. The Time Providers are considered the most accurate source
of time information.

The Distributed Time Service (DTS) synchronizes the system clock on each host by directly
adjusting the time kept by the operating system. Under ordinary circumstances, this is done
gradually so that there are no sudden jumps in the time. It is also done in such a way that the time

4-126 305-CD-028-002

never goes backward. If a system clock is too far ahead, it is slowed down until the time is correct
by modifying the tick increment.

4.2.6.2 Context

All segments are expected to use the Time Service for Release A. Figure 4.2.6.2-1 shows, at a high
level, the interaction between FOS and SCDO subsystem applications and the CSS Time Service.
The CSS Time Service will provide distributed time with millisecond resolution. Applications
utilize the Time Service when they need to obtain the time in various formats. The Time Service
provides APIs to perform these categories of functionality.

The CSS time service will not provide a method to set time but will provide methods to obtain the
time in various formats.

Some applications may need to simulate the current time by applying a delta to the current time.
The time class allows application developers to obtain the current time in various formats and
optionally lets them apply a predetermined delta to those values.

SDPS
EcTiTimeService; ~EcTiTimeService; GetAscGmtTime; GetSecNanoTime;

Time
Service

EcTiTimeService; ~EcTiTimeService; GetAscGmtTime; GetSecNanoTime;
GetTimeValues; GetLocalTime; GetTime; CmpIntervalTime; CmpMidTime;

GetTimeValues; GetLocalTime; GetTime; CmpIntervalTime; CmpMidTime;

EcTiTimeService; ~EcTiTimeService; GetAscGmtTime; GetSecNanoTime;
GetTimeValues; GetLocalTime; GetTime; CmpIntervalTime; CmpMidTime;

MkBinTime; MkGMTTime; GetLocalZone; AddTime; SubTime

FOS
MkBinTime; MkGMTTime; GetLocalZone; AddTime; SubTime

MSS
MkBinTime; MkGMTTime; GetLocalZone; AddTime; SubTime

Figure 4.2.6.2-1. Time Service Event Flow

4.2.6.3 Object Model

The Time Service Object Model, Figure 4.2.6.3-1, provides a more detailed view of the interaction
possible using the Time Service. Time Service provides operations to obtain timestamps based on
Coordinated Universal Time (UTC). The Time Service also translates different timestamp formats
and performs calculations on timestamps. A basic object responsibility matrix follows:

CSS is presenting a design that provides an external feed at every DAAC, the EOC, and the
isolation cell. The NASA-36 time will be received by a Time Server (product which accepts
NASA-36 and converts it into UTC format) which will in turn be fed into the DTS for the EOC.
All other DCE cells will require a commercial device (time provider) which can receive and
interpret radio, telephone, or satellite signals to provide the UTC time values needed for DTS.

4-127 305-CD-028-002

void ServReqProvider(timeResp:struct TPtimeMsg *)
void ConProvider(CtrResp:struct TPctrlMsg *)

bind_addr
status

EcFosTimeProviderB

Interacts
with

EcTiTimeService

_delta_value
_delta_indicator

~EcTiTimeService()
GetSecNanoTime(ao_timesp :timespec_t& ao_inaccsp :timespec_t& ao_tdf
:EcTLongInt&)
GetAscGmtTime(ao_TimeString[] :EcTChar)
EcTiTimeService()
EcTiTimeService(status :EcUtStatus* a_NameSpace :const EcTChar* a_DeltaType
:EcTInt)
GetLocalZone(a_utc :const utc_t& a_tzlen :EcTInt& ao_tzname[] :EcTChar ao_tdf
:EcTLongInt& ao)
MkBinTime(a_timesp :const timespec_t& a_inaccsp :const timespec_t& a_tdf
:EcTLongInt& ao_u)
CmpIntTime(a_utc1 :const utc_t& a_utc2 :const utc_t& ao_relation :enum
utc_cmptype&)
CmpMidTime(a_utc1 :const utc_t& a_utc2 :const utc_t& ao_relation :enum
utc_cmptype&)
GetLocalTime(a_utc :const utc_t& ao_timetm :struct tm& ao_tns :EcTLongInt&
ao_inacctm :struct tm& ao_ins :EcTLongInt&)
GetTime(ao_utc utc_t&)
BinToAscGmt(a_utc :const utc_t& ao_TimeString[] :EcTChar)
CvtStrToBin(a_TimeString :const EcTChar* ao_utc utc&)
ApplyDelta(a_utc :const utc_t& ao_utc :utc_t&)
CalculateDelta(a_testtime :const utc_t&)
CvtDeltaToBinary(a_deltastring :const EtcChar*)
GetTimeValues(ao_tm : struct tm&)
MkGMTTime(a_timetm :const struct tm& a_tns :EcTLongInt ao_utc :etc_t)
GmTime(a_utc :const utc_t& ao_tm :struct tm&)
GetAscGmtTime(ao_TimeString :RWCString)
SubTime(a_utc1 :const utc_t& a_utc2 :const utc_t& ao_result :utc_t&)
MkBinRelTime(a_timesp :const timespec_t a_iaccsp :const timespec_t& ao_utc
:utc_t&)
AddTime(a_utc1 const utc_t a_utc2 :const utc_t ao_result :utc_t&)

- : utc_t
- : EcTInt

+
+ : EcUtStatus

+ : EcUtStatus
+
+

+ : EcUtStatus

+ : EcUtStatus

+ : EcUtStatus

+ : EcUtStatus

- : EcUtStatus
- : EcUtStatus
- : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus

+ : EcUtStatus

[Public]

4-128
305-C

D
-028-002

Figure 4.2.6.3-1. Time Service Object Model

Table 4.2.6.3-1. Time Service Object Responsibility Matrix
Object Responsibility

EcTiTimeService Retrieving timestamp information
Converting between binary timestamps and ASCII representations

EcFosTimePrviderB Responsible for extracting the time from the external time source for the FOS

4.2.6.3.1 EcFosTimeProviderB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class allows a time source FOS to convert time from NASA-36 format to a given

format and this outputted time can be propagated through DCE for use. The accuracy here

is to a microsecond.

Attributes:

bind_addr - The handle that allows the DTS daemon to find and connect to a Time
provider process

status - The result of returned value form function call

Operations:

void ConProvider - This is the first routine called by DTS. The routine is called to verify

that the TP process is running and to obtain a control message that DTS uses for subsequent

communications with the TP process and for synchronization after it receives the

timestamps.

Arguments:CtrResp:struct TPctrlMsg *

void ServReqProvider - After the TimeProvider is successfully contacted, DTS makes the

ServerRequestProviderTime procedure call to obtain the timestamps from the external

time-provider.

Arguments:timeResp:struct TPtimeMsg *

Associations:

The EcFosTimeProviderB class has associations with the following classes:

Class: EcTiTimeService Interactswith

4-129 305-CD-028-002

4.2.6.3.2 EcTiTimeService Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:

Purpose and Description:

This class is used to obtain the current time in various formats.

Attributes:

_delta_indicator - Indicates what to do with the _delta_value; 0 = Obtain current time; 1

= Add delta to the current time.

Data Type:EcTInt

Privilege:Private

Default Value:

_delta_value - Delta that will be added to the current time.

Data Type:utc_t

Privilege:Private

Default Value:

Operations:

AddTime - This method adds two binary timestamps, producing a third binary timestamp

whose inaccuracy is the sum of the two input inaccuracies.

Arguments:a_utc1 const utc_t a_utc2 :const utc_t ao_result :utc_t&

Return Type:EcUtStatus

Privilege:Public

ApplyDelta - Apply the delta to the current time

Arguments:a_utc :const utc_t& ao_utc :utc_t&

Return Type:EcUtStatus

Privilege:Public

BinToAscGmt
Arguments:a_utc :const utc_t& ao_TimeString[] :EcTChar

Return Type:EcUtStatus

Privilege:Private

CalculateDelta - Given an absolute time calculate the delta.

Arguments:a_testtime :const utc_t&

Return Type:EcUtStatus

Privilege:Public

4-130 305-CD-028-002

CmpIntTime - Compares two binary timestamps or two relative binary timestamps and

returns the relationship not ignoring inaccuracies.

Arguments:a_utc1 :const utc_t& a_utc2 :const utc_t& ao_relation :enum utc_cmptype&

Return Type:EcUtStatus

Privilege:Public

CmpMidTime
Arguments:a_utc1 :const utc_t& a_utc2 :const utc_t& ao_relation :enum utc_cmptype&

Return Type:EcUtStatus

Privilege:Public

CvtDeltaToBinary - Convert a delta value from the namespace to a binary timestamp.

Arguments:a_deltastring :const EtcChar*

Return Type:EcUtStatus

Privilege:Public

CvtStrToBin - Converts character string to binary timestamp.

Arguments:a_TimeString :const EcTChar* ao_utc utc&

Return Type:EcUtStatus

Privilege:Private

EcTiTimeService - Default constructor. When a NULL string is passed as a parameter in

the constructor,the current time will be obtained.

Arguments:

Return Type:Void

Privilege:Public

EcTiTimeService - Constructor. Creates an instance of the class ,given a name from the

namespace and a flag that indicates how delta is passed (as a relative delta or incorporated

in the absolute testtime).

Arguments:status :EcUtStatus* a_NameSpace :const EcTChar* a_DeltaType :EcTInt

Return Type:Void

Privilege:Public

GetAscGmtTime - Obtain current GMT time in ASCII string format.

Arguments:ao_TimeString[] :EcTChar

Return Type:EcUtStatus

Privilege:Public

GetAscGmtTime - Obtain current GMT Time in RWCString format

Arguments:ao_TimeString :RWCString

Return Type:EcUtStatus

Privilege:Public

4-131 305-CD-028-002

GetLocalTime - Converts a binary timestamp to a tm structure that expresses local time.

Arguments:a_utc :const utc_t& ao_timetm :struct tm& ao_tns :EcTLongInt& ao_inacctm

:struct tm& ao_ins :EcTLongInt&

GetLocalZone - This method gets the local time zone label and offset from GMT, given

utc.

Arguments:a_utc :const utc_t& a_tzlen :EcTInt& ao_tzname[] :EcTChar ao_tdf

:EcTLongInt& ao

Return Type:EcUtStatus

Privilege:Public

GetSecNanoTime - Obtain current time (timespec_t - seconds, nanoseconds)

Arguments:ao_timesp :timespec_t& ao_inaccsp :timespec_t& ao_tdf :EcTLongInt&

Return Type:EcUtStatus

Privilege:Public

GetTime - Obtains current binary timestamp.

Arguments:ao_utc utc_t&

Return Type:EcUtStatus

Privilege:Private

GetTimeValues - Obtain current time (tm structure - seconds, minutes, hours, day of

month, month of year, year, day of week, day of week, day of year, flag for daylight savings

time).

Arguments:ao_tm : struct tm&

Return Type:EcUtStatus

Privilege:Public

GmTime - Converts a Binary stamp to a TM structure.

Arguments:a_utc :const utc_t& ao_tm :struct tm&

Return Type:EcUtStatus

Privilege:Public

MkBinRelTime - Make Binary Relative Time from the timespec_t structure

Arguments:a_timesp :const timespec_t a_iaccsp :const timespec_t& ao_utc :utc_t&

Return Type:EcUtStatus

Privilege:Public

MkBinTime - This method converts a timespec structure time to a binary timestamp.

Arguments:a_timesp :const timespec_t& a_inaccsp :const timespec_t& a_tdf

:EcTLongInt& ao_u

Return Type:EcUtStatus

Privilege:Public

4-132 305-CD-028-002

MkGMTTime - This method converts a trn structure that expresses GMT or UTC to a binary
stamp.
Arguments:a_timetm :const struct tm& a_tns :EcTLongInt ao_utc :etc_t
Return Type:EcUtStatus
Privilege:Public

SubTime - The method subtracts one time stamp from another.

Arguments:a_utc1 :const utc_t& a_utc2 :const utc_t& ao_result :utc_t&

Return Type:EcUtStatus

Privilege:Public

~EcTiTimeService - Destructor for the EcTiTimeService Class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcTiTimeService class has associations with the following classes:
Class: EcFosTimeProviderB Interactswith

4.2.6.4 Dynamic Model Scenarios

4.2.6.4.1 Scenario #1

4.2.6.4.1.1 Abstract

An application wishes to obtain a simulated time.

4.2.6.4.1.2 Interfaces

Time Service

4.2.6.4.1.3 Stimulus

An application constructs an EcTiTimeService object with a delta value to be used for simulated
time and then makes a request for the time.

4.2.6.4.1.4 Desired Response

Application receives the correct simulated time.

4.2.6.4.1.5 Participating Classes

EcTiTimeService

4-133 305-CD-028-002

4.2.6.4.1.6 Pre-conditions

The application must place an entry in the Directory Service which contains a delta value to be used
in simulating time. The application must also construct an EcTiTimeService object using the
"Name" in the Directory Service where the delta value can be found.

4.2.6.4.1.7 Post-conditions

The application receives the correct simulated time and continues processing.

4.2.6.4.1.8 Scenario Description

The application places an entry in the Directory Services that contains the delta value and
constructs an EcTiTimeService object using the "Namespace" where the delta value was placed.
The application than makes a request to obtain the ASCII GMT time.

4.2.6.4.1.9 Event Trace

Application Directory Service EcTiTimeService

Application places delta
value in the namespace

Application contructs time object using the
name in the namespace where

Request to obtain the ASC GMT Time

Request for delta value
using name in the
directory service

Delta Value

the simulated time
ASC GMT Time plus delta value,

delta value can be found

Figure 4.2.6.4-1. Time Service Event Trace

4.2.6.4.2 Scenario #2

4.2.6.4.2.1 Abstract

A FOS application wishes to convert NASA-36 Time to UTC

4.2.6.4.2.2 Interfaces

Time Provider Service

4-134 305-CD-028-002

4.2.6.4.2.3 Stimulus

An application constructs EcTiTimeService object to convert time to required format.

4.2.6.4.2.4 Desired Response

Application receives desired time.

4.2.6.4.2.5 Participating Classes

EcFosTimeServiceB,EcTiTimeService

4.2.6.4.2.6 Pre-conditions

The application places constructs an EcTiTimeService object and then makes a request for the

formatted time.

The EcFosTimeProvider object is instantiated and the DTS daemon is running. The system

administrator has to the invoke the EcFosTimeProvider object before the DCE Time Provider

Interface can extract the time from the external time source.

4.2.6.4.2.7 Post-conditions

The application receives the correct output time desired to the accuracy of a micro-second.

4.2.6.4.2.8 Scenario Description

The application takes the NASA-36 time provided and constructs an ECTiTimeService object. The
application then uses this time provided to the DTS by the external time source.

4.2.6.4.2.9 Event Trace

FOS DTS Daemon
Applications External Clock EcsTimeProvider (EcTiTimeService) Directory Service

Return Communication Status (ok)

Activate ServProvider uses RPC

Supply Time

Get TimeStamp

Send Time

Request for Time

Activate ConProvider via RPC

Return Status wTimestamps

Figure 4.2.6.4-2. Time Service Event Trace

4-135 305-CD-028-002

4.2.6.5 Implementation

The Time Service is available as COTS within the OODCE and DCE products. CSMS and FOS
are combining requirements to procure an external Time Provider. Each DCE cell requires access
to an external URL-based time provider. The resolution of DCE distributed time is millisecond
accuracy. The DCE Time Services within each of the DCE cells will provide distributed time for
the entire system. A FOS unique need for microsecond resolution at certain servers within the
EOC will require a hardwired external source. The DCE cell at the EOC will use one of the
hardwired external sources for its DCE time source.

4.2.6.6 Service/CSCI Management and Operation

4.2.6.6.1 System Management and Strategy

All system clocks have common properties that contribute to clock error and interferes with the
synchronization process. If a system clock should go askew (become desynchronized) then the
system clock must be synchronized with the other system clocks in the network.

4.2.6.6.2 Operator Interface

If a system clock should skew more than a specified time period away from the other system clocks
in the network, operations must set the system time manually to the correct time.

4.2.6.6.3 Reports

None.

4.2.6.7 Frequently Asked Questions

1)	 NTP is widely used in the Internet community (and in the V0 system) and many COTS
products support it, so why not use it instead of DTS?

The CSS Time Service will utilize the DCE (Distributed Computing Environment) DTS
(Distributed Time Service) to keep system clocks in the ECS network approximately in
sync by adjusting the time kept by the operating system at every node. Timestamps are used
by many applications when recording event occurrences to log. The implementation detail
of the CSS Time Service and DCE DTS are invisible to the software developer.

The CSS Time Service will take advantage of the DCE DTS which has a Time Provider
Interface (TPI). The TPI will allow an external time source to connect to the Time Service.
A Time Provider provides access to standardized or government controlled hardware time
devices such as radios, satellites, or telephone lines, or from a software source that's
connected to their cell such as NTP, which is a distributed time service on TCP/IP. The
servers with a Time Service query the Time Providers for the current time and can pass the
standard Coordinated Universal Time (UTC) time values to a DTS server and propagate
them through the network. The Time Providers are considered the most accurate source of
time information.

2)	 Is DCE locked into DTS for time support? If so, why not use NTP to provide time sync,
and have DTS clients on each system slaved to NTP?

4-136 305-CD-028-002

One of DCE’s most important features is that it is a managed environment. One of its'
administrative features is that it checks for the presence of DTS servers, because of this
DTS can be considered "locked into" the DCE environment. Furthermore, the system also
checks that the DTS servers are accurate. Unlike other COTS products, DTS measures the
inaccuracy of the distributed time. If a DTS server is found to be out of range the system
will remove the server from system.

3) 	 Ensure that host time adjustments are always made by adjusting clock rate, and never by
resetting time to an earlier value.

The Distributed Time Service (DTS) synchronizes the system clock on each host by
directly adjusting the time kept by the operating system. Under ordinary circumstances,
this is done gradually so that there are no sudden jumps in the time. It is also done in such
a way that the time never goes backward. If a system clock is too far ahead, it is slowed
down until the time is correct by modifying the tick increment. In other words, if a clock
is normally incremented 10 milliseconds at each clock interrupt, and the clock is ahead,
then the clock register will instead be incremented 9 milliseconds at each clock time until
it reaches the correct time.

4.2.7 LifeCycle Service (Initialization/Activation)

4.2.7.1 Overview

Distributed systems consists of applications distributed over several platforms connected across
the network. The system is a collection of these applications. These applications collectively
provide the necessary computational behavior to achieve the system objectives. Each application
may consists of several objects. These objects provide some well defined functionality
encapsulating the underlying state and implementation.

Managing a system involves managing individual applications. An operator may want to start a
new application, shutdown/suspend a running application due to some anomalies. An application
may not have to be active all the time to accept requests. For example, at peak times, one may want
to run several instances of an application, while at other times, a few of the instances may be
enough to service the incoming requests. In order to effectively use the CPU and memory, it is
desired to control the applications as well as some objects residing in the application by starting
them on demand.

LifeCycle services can be broadly classified into two categories: Application and Object level.

LifeCycle services for applications involve Startup, Shutdown, Suspend and Resume functionality
on applications. This functionality lets the M&O manage server applications. MSS provides the
application related LifeCycle functionality. CSS provides the internal APIs that are needed for the
MSS to control the applications.

LifeCycle services for objects provide the application programmer with the functionality to create
and delete server objects residing in different address spaces. These server objects listen
continuously for incoming requests, process them, and send the results back to the caller.

4-137 305-CD-028-002

4.2.7.2 Context

MSS will use this interface to request a server shutdown, startup, or stop/resume processing
requests.

Application developers can control server objects through activation.

4.2.7.3 Object Model

DCEActivation

ActivateObject()+

[Public]

Figure 4.2.7.3-1. LifeCycle Service Object Model

4.2.7.3.1 DCEActivation Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This abstract class is used by server developers to provide an interface onto the activation

of server manager objects. Since the activation of these objects is application specific,

many implementations will exist. An activation object can be registered with a Server

object and be used to dynamically activate manager objects.

Attributes:

None

Operations:

ActivateObject - This is a pure virtual member function used to gain access to an

implementation of activation functions. ActivateObject is called to activate the object

associated with the UUID argument. The ActivateObject member function takes a

DCEActivationResultT structure. Checks to see if the object state is stored in the file

system, initializes the activation result and creates a new application manager object by

passing the object UUID to the constructor.

Arguments:

4-138 305-CD-028-002

Return Type:Void
Privilege:Public

Associations:

The DCEActivation class has associations with the following classes:
None

4.2.7.4 Functional Model

GSO is a Global Server Object defined in OODCE. The LifeCycle services, used to control
applications, are implemented by redefining some of the functionality in the GSO object. The
methods, the rationale along with a description of these changes are addressed in the following
paragraphs.

•	 Startup - Starting up applications is done from the outside of an application. Management
applications gather relevant data about an application and start applications from the
Network Node Manager through the Management Agents residing on the hosts.

While startup doesn't need any functionality from within the application, shutdown,
suspend and resume need application cooperation. For example, before suspending an
application, it may be needed to bring the application to a transient state (closing/saving
files, finishing pending requests from other clients) for graceful shutdown.

Application related functionality is provided by the MSS, which in turn call CSS provided
shutdown / suspend / resume services. Generally, in order for an object to service requests,
it should be registered in several places together with the object-related information.
Firstly, the object needs to be registered in a directory service which provides clients with
partial information of how to reach the server object; the remaining of the information, that
is, how to reach the server object, is kept into the end point mapper running on the host.
Each application, when brought up, is assigned a port number on the host, where it can
listen for incoming calls. The port number assigned is dynamic and can change every time
an application is brought up. This information is kept in the endpoint mapper. Clients after
getting the endpoint mapper information have to consult the endpoint mapper on the host
to find the port number where the service is being offered. A client after acquiring all this
information, makes a call to that port on a particular host. A control application (global
server object) running on that port now receives the call and dispatches it to one of the
objects residing in its address space. This is called runtime. In order for the GSO to dispatch
the incoming call to the proper object, the server object needs to be registered with the
endpoint map. Shutdown, suspend, and resume control this information to provide / limit
the ability of clients to reach server objects.

•	 Suspend - This method unregisters the information from the local runtime. The suspend
provided by OODCE removes all the objects from the local runtime. In this case, the next
resume call can not be a request coming from outside the applications as the application is
not listening for incoming calls. The resume call must be originated from within the
application. In order to listen to other control messages like resume, from the Management
applications (Agent), the MsManager object's interface object must be up and must be in a

4-139 305-CD-028-002

listening state to receive incoming control messages. The Suspend method provided in the
GSO should be rewritten to remove all the objects except the MsManager object from the
local runtime. It also needs to remember the information about the suspended objects so it
can register that information later when it receives a resume call. CSS provides this (custom
developed) functionality by removing only the application objects from the local run time,
and saves the information about the suspended objects with the Global Server Object.

•	 Resume - In order for the suspended objects to receive incoming requests, the information
about these objects (suspended earlier) will be registered back with the local runtime. After
the resume, the global server object listening for the entire server application can receive
calls destined to the other objects in that application and then, dispatches them.

•	 Shutdown - Shutdown uses the OODCE provided shutdown method. It removes the object
information from the local runtime, endpoint map. If the application binding information is
registered in the CDS, Shutdown removes that information from the CDS. Removing the
information from the CDS prevents new clients from obtaining information about the
server objects. Clients with existing binding information can no longer reach the server
object and an error status will be returned to the caller. In the process of shutting down an
application, internally it calls the suspend first and then comes out of the listen loop and
exits the application. Unlike regular suspend, shutdown needs to suspend all the server
objects. So the suspend functionality provided will be to indicate that all the objects
(including the MsManager object) should be suspended. The default provided shutdown
function will be modified to call the custom developed suspend function before interrupting
the listen loop.

The above mentioned LifeCycle operations are to maintain the application as a whole. In addition
to that, functionality to control (create/delete) server objects is also needed. For example, some
ECS applications like the DataServer may have to entertain several sessions (one per user)
simultaneously to preserve the state information associated with each user. These session objects
need to be created on demand. Creating a predetermined number of sessions objects will not only
take-up unnecessary resources, but the number of session objects created may not be enough to
receive requests from different users. Creating and deleting the server objects on demand can be
done in two ways: Factories, and Activation. These are explained here in detail along with the pros
and cons.

•	 Factory: A factory is a parent object which has the functionality to create child objects on
requests. A session factory is to be running on the server side all the time which can take
requests to create/delete sessions objects. Clients needing a separate session object must
first bind to the factory object and make a request to create the session object. This session
object is created exclusively for the requested client which can preserve the state
information associated with that client. This reduces the complexity of maintaining state
information in a threaded environment. After acquiring the binding information of a new
session object, the client then interacts with that session directly to make requests.

Instead of explicitly binding to a factory object, and creating a session object in the client
application, the client stub of a session object can be modified. A new client object for the
session object is created inheriting from the IDL generated client stub. This new object
when created, first creates an empty client object without binding to any particular session

4-140 305-CD-028-002

server. After constructing the client object, it binds to a factory server object (a server
parent object which is capable of creating a session object) and requests the factory to
create a session object. Obtains the binding information for the newly created session
object and using this binding information, the session client rebinds to that newly created
session server. This approach involves modifications (inheriting from the IDL generated
client stubs, rather than changing them) to the client stubs, but provides a cleaner interface
to the application programmer to create and connect to a session object. These
modifications of the client stub are provided in CORBA at compile time. So migrating the
existing applications to the CORBA paradigm will involve less breakage and makes the
application programming logic much simpler.

•	 Activation: In this approach, each server object is associated with an activation object.
While registering a server object, the activation object associated with that server object is
also registered with the Global Server Object. The Activation object contains application
programmer supplied information as to how create a server object. When a call is received
by the GSO, it checks if an instance of that object exists in its address space. In the absence
of an instance of that object, it calls the activation object to create an instance. The GSO
then dispatches the call to the instance of that server object. The problem with this
approach is that it only checks if there is an instance of a server object. It doesn't distinguish
between instances of a server object. As such, it is not possible to create multiple instances
of a server object within the same address space. This approach is useful for generic
services (stateless servers), where one instance can receive and process all the incoming
requests.

4.2.7.5 Dynamic Model Scenarios

Please refer to the Scenarios # 5 and #6 in DOF.

4.2.7.6 Implementation

The Global Server Object (GSO) in OODCE needs to be specialized in order to modify suspend,
resume, startup and shutdown.

4.2.7.7 Service/CSCI Management and Operation

4.2.7.7.1 System Management and Strategy

Not Applicable.

4.2.7.7.2 Operator Interface

Not Applicable.

4.2.7.7.3 Reports

None.

4-141 305-CD-028-002

4.2.8 Generic Security Service

4.2.8.1 Overview

Closely linked, conceptually, to the security service, the GSS (Generic Security Service) provides
security to clients outside of the DCE realm. The GSS is a feature of DCE 1.1 which allows clients
outside of a DCE cell to be authenticated by DCE security. The GSS also allows clients outside
the DCE realm to communicate securely with servers inside the DCE realm. The GSS does not
rely on DCE RPCs as means of communication nor does it specify any particular communication
mechanism to use. The programmer must supply the communication routines to the GSS. Since
the GSS APIs provided by DCE are complicated, difficult to use and not based on an object
oriented design, two classes (EcSeGSSB and EcSeGSSTCPB) have been created to alleviate these
problems. Use of the EcSeGSSB class is fairly simple. Note that EcSeGSSB is an abstract class
and cannot be instantiated. A subclass, EcSeGSSTCPB, is provided for those who will be
communicating via TCP sockets. If some other protocol is to be used, the programmer must create
their own subclass of EcSeGSSB. The EcSeGSSB class provides a number of functions for use by
the programmer. The InitSecContext and AcceptSecContext functions are used to establish a
security context. Once a security context is established the client and server are authenticated with
each other. All communication thereafter is authenticated. The SendData and RcvData functions
allow for data to be sent using no security, data integrity or data privacy. The InitSecContext,
AcceptSecContext, SendData and RcvData functions all use the virtual ReadData and WriteData
functions for transmitting information. The SecureMsg and UnSecureMsg functions do the same
thing as the SendData and RcvData without actually transmitting data. Instead an encrypted buffer
is returned to be sent explicitly by the process. This feature allows for easier incorporation with
legacy code and for instances where the data must be sent by means other than ReadData and
WriteData. When the security context is no longer needed, simply delete the EcSeGSSTCPB
object.

Subclassing EcSeGSSB

Two functions must be written in order to subclass EcSeGSSB: ReadData and WriteData. These
are the pure virtual functions that make EcSeGSSB abstract. A constructor for the subclass must
also be created even if it does nothing but call one of the EcSeGSSB constructors.

Using the EcSeGSSTCPB class

Three constructors are provided for instantiating the class. If the default constructor is used, a
security context will not be created and either InitSecContext or AcceptSecContext must be called
to establish the security context. If one of the other constructors is used a security context will be
created upon instantiation and neither InitSecContext nor AcceptSecContext should be called. The
programmer should never call both InitSecContext and AcceptSecContext. InitSecContext and the
corresponding constructor are for use only by the client to initiate the security context.
AcceptSecContext and its corresponding constructor are for use only by the server to accept a
security context. Once a security context has been established the programmer may proceed to call
the other EcSeGSSB member functions as necessary. The EcSeGSSB class was inherited publicly
so all public member functions are available to EcSeGSSTCPB.

4-142 305-CD-028-002

4.2.8.2 Context

The GSSAPI allows non-DCE RPC applications to take advantage of the DCE Security services
for authentication. ECS supports the GSS for applications which wish to interact securely with the
ECS system but can not take advantage of DCE RPCs. Such applications include legacy systems
and the gateway.

4.2.8.3 Object Model

EcSeGSSB

EcSeGSSTCPB

fd

EcSeGSSTCPB(sockfd:EcTInt)
EcSeGSSTCPB(serverName:const EcTChar* reqFlags:EcTInt reqTime:EcTInt
sockfd:EcTInt)
EcSeGSSTCPB(prncplName:EcTChar* delCred:gss_cred_id_t* sockfd:EcTInt)
~EcSeGSSTCPB()
ReadData(buf:EcTVoid* len:unsigned)
WriteData(buf:const EcTVoid* len:unsigned)

actual_mech
ctx_established

InitSecContext(serverName:const EcTChar* reqFlags:EcTInt reqTime:EcTInt)
AcceptSecContext(prncplName:const EcTChar* delCred:gss_cred_id_t*)
SendData(sndbuf:const EcTVoid* secLevel:EcTInt ctxHndl:gss_ctx_id_t*)
RcvData(rcvBuf:EcTVoid&* secLevel:EcTInt*)
SecureMsg(inbuf:const EcTVoid* outbuf:EcTVoid&* secLevel:EcTInt
ctxHndl:gss_ctx_id_t*=NULL)
UnSecureMsg(inbuf:const EcTVoid* outbuf:EcTVoid&* secLevel:EcTInt&)
GetTextName(inName:const EcTChar* outName:EcTChar&* nameType:gss_OID*)
GetMechs()
DelSecContext(ctxHndl:gss_ctx_id_t*)
GetTimeLeft(ctxHndl:gss_ctx_id_t)
EcSeGSSB()
EcSeGSSB(serverName:const EcTChar* reqFlags:EcTInt reqTime:EcTInt)
EcSeGSSB(prncplName:const EcTChar* delCred:gss_cred_id_t*)
~EcSeGSSB()
ReadData(buf:EcTVoid* len:unsigned)
WriteData(buf:const EcTVoid* len:unsigned)
GssErr(maj_stat:OM_uint32 min_stat:OM_uint32 gssStat:EcUtStatus*)

- : EcTInt

+
+

+
+
± : EcTInt
± : EcTInt

- : gss_OID
- : EcTInt

+ : EcUtStatus
+ : EcUtStatus
+
+
+

+
+ : gss_buffer_t*
+ : OM_uint32
+ : EcTInt
+ : long
+
+
+
+
± : EcTInt {abstract}
± : EcTInt {abstract}
- : EcTInt

[Public]

[Public]

Figure 4.2.8.3-1. GSS Object Model

4.2.8.3.1 EcSeGSSB Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is an abstract class which provides the bulk of the functionality for GSS. A user of

4-143 305-CD-028-002

this class must derive a class from this one which implements the ReadData and WriteData
member functions at a minimum. The EcSeGSSTCPB class is an example of such a
derivation and the default class which most people should use.

Attributes:

actual_mech - The underlying mechanism used for authentication. May be either DCE or

Kerberos.

Data Type:gss_OID

Privilege:Private

Default Value:

ctx_established - Indicates whether or not a security context has been established. This

attribute is checked by all member functions that require a previously established context.

The function will fail if this attribute is not set.

Data Type:EcTInt

Privilege:Private

Default Value:

Operations:

AcceptSecContext - This function is called only by the server process and serves to accept

a security context initiated by a client. This must be the first GSS member function called

unless the corresponding constructor is used (see constructors).

Arguments:prncplName:const EcTChar* delCred:gss_cred_id_t*

Return Type:EcUtStatus

Privilege:Public

DelSecContext - This functioin deletes the security context associated with the object.

Once this function is called none of the other member functions will work except

InitSecContext and AcceptSecContext.

Arguments:ctxHndl:gss_ctx_id_t*

Return Type:EcTInt

Privilege:Public

EcSeGSSB - Default constructor - This allows a GSS object to be created without

establishing a security context. Note, however, that a security context must be established

before any of the GSS may be used (see InitSecContext and AcceptSecContext).

Arguments:

Return Type:Void

Privilege:Public

EcSeGSSB - Client Constructor - This constructor is used only by the client when the client

wishes to establish a security context upon the creation of the GSS object. If this

4-144 305-CD-028-002

constructor is used, the InitSecContext function should not be called.

Arguments:serverName:const EcTChar* reqFlags:EcTInt reqTime:EcTInt

Return Type:Void

Privilege:Public

EcSeGSSB - Server Constructor - This constructor is used only by the server when the

server wishes to establish a security context upon the creation of the GSS object. If this

constructor is used the AcceptSecContext function should not be called.

Arguments:prncplName:const EcTChar* delCred:gss_cred_id_t*

Return Type:Void

Privilege:Public

GetMechs - Returns the value of the actual_mech attribute.

Arguments:

Return Type:OM_uint32

Privilege:Public

GetTextName - Returns a textual representation of an opaque internal name.

Arguments:inName:const EcTChar* outName:EcTChar&* nameType:gss_OID*

Return Type:gss_buffer_t*

Privilege:Public

GetTimeLeft - Returns the remaining amount of time for which the security context is

established.

Arguments:ctxHndl:gss_ctx_id_t

Return Type:long

Privilege:Public

GssErr - This function determines if a DCE GSS error occured and if so, convertes it to an

EcUtStatus.

Arguments:maj_stat:OM_uint32 min_stat:OM_uint32 gssStat:EcUtStatus*

Return Type:EcTInt

Privilege:Private

InitSecContext - This function is called by the client process only and serves to initiate the

establishment of a security context. This must be the first GSS member function called

unless the corresponding constructor is used (see constructors).

Arguments:serverName:const EcTChar* reqFlags:EcTInt reqTime:EcTInt

Return Type:EcUtStatus

Privilege:Public

RcvData - This function will receive a buffer using the virtual ReadData member function,

unsecure it and return both the buffer and the security level used to secure the message.

Arguments:rcvBuf:EcTVoid&* secLevel:EcTInt*

Return Type:Void

4-145 305-CD-028-002

Privilege:Public

ReadData - This is a pure virtual member function for reading a buffer from some

communication device. This function is used by InitSecContext, AcceptSecContext,

SendData and RcvData.

Arguments:buf:EcTVoid* len:unsigned

Return Type:EcTInt

Privilege:Protected

This is an abstract operation

SecureMsg - This function applies security to an input buffer and returns an opaque version

of the buffer without sending the buffer. This function is good for incorporating GSS into

existing code and for cases where data must be sent via some means other than the

WriteData member function.

Arguments:inbuf:const EcTVoid* outbuf:EcTVoid&* secLevel:EcTInt

ctxHndl:gss_ctx_id_t*=NULL

Return Type:Void

Privilege:Public

SendData - This function will apply the specified secuity to the given buffer and send the

buffer using the virtual WriteData member function.

Arguments:sndbuf:const EcTVoid* secLevel:EcTInt ctxHndl:gss_ctx_id_t*

Return Type:Void

Privilege:Public

UnSecureMsg - This function takes an opaque buffer, unsecures it and returns both the

readable buffer and the security level used to secure it. This function is good for

incorporating GSS into existing code and for instances where data must be received via

some means other that the ReadData member function.

Arguments:inbuf:const EcTVoid* outbuf:EcTVoid&* secLevel:EcTInt&

Return Type:Void

Privilege:Public

WriteData - This is a pure virtual function for writing a buffer to some communication

device. This function is used by InitSecContext, AcceptSecContext, SendData, RcvData.

Arguments:buf:const EcTVoid* len:unsigned

Return Type:EcTInt

Privilege:Protected

This is an abstract operation

~EcSeGSSB - Destructor deletes the security context and destroys the object.

Arguments:

Return Type:Void

Privilege:Public

4-146 305-CD-028-002

Associations:

The EcSeGSSB class has associations with the following classes:

None

4.2.8.3.2 EcSeGSSTCPB Class

Parent Class:EcSeGSSB

Public:Yes

Distributed Object:No

Purpose and Description:

This is the concrete derivation of the EcSeGSSB class. This class implements the GSS

using TCP sockets. A connection must be established prior the instantiating this object.

Attributes:

fd - This is the socket file descriptor associated with the connection that this object is to use.

Data Type:EcTInt

Privilege:Private

Default Value:

Operations:

EcSeGSSTCPB - This constructor instantiates the class using a socket file descriptor from

a connection that must already be established. I also calls the default constructor for

EcSeGSSB.

Arguments:sockfd:EcTInt

Return Type:Void

Privilege:Public

EcSeGSSTCPB - This constructor initializes this class with the socket file descriptor and

then calls the corresponding EcSeGSSB constructor.

Arguments:serverName:const EcTChar* reqFlags:EcTInt reqTime:EcTInt sockfd:EcTInt

Return Type:Void

Privilege:Public

EcSeGSSTCPB - This constructor initializes the socket file descriptor and then calls the

corresponding EcSeGSSB constructor.

Arguments:prncplName:EcTChar* delCred:gss_cred_id_t* sockfd:EcTInt

Return Type:Void

Privilege:Public

ReadData - This is the TCP socket implementation of the pure virtual ReadData function

in EcSeGSSB.

Arguments:buf:EcTVoid* len:unsigned

4-147 305-CD-028-002

Return Type:EcTInt

Privilege:Protected

WriteData - This the TCP socket implementation of the pure virtual WriteData function

from EcSeGSSB.

Arguments:buf:const EcTVoid* len:unsigned

Return Type:EcTInt

Privilege:Protected

~EcSeGSSTCPB - Calls the EcSeGSSB destructor then destroys the object.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcSeGSSTCPB class has associations with the following classes:

None

4.2.8.4 Dynamic Model Scenarios

4.2.8.4.1 Scenario #1

4.2.8.4.1.1 Abstract

This scenario traces the interactions of a client with the class EcSeGSSTCPB.

4.2.8.4.1.2 Interfaces

Custom application.

4.2.8.4.1.3 Stimulus

Client invokes InitSecContext either explicitly or via the constructor.

4.2.8.4.1.4 Desired Response

The client establishes security context with server and sends a secure message.

4.2.8.4.1.5 Participating Classes

EcSeGSSTCPB

4.2.8.4.1.6 Pre-conditions

A TCP socket connection is established between the client and the server.

4.2.8.4.1.7 Post-conditions

None

4-148 305-CD-028-002

4.2.8.4.1.8 Scenario Description

The client instantiates the EcSeGSSTCPB object then initiates the creation of a security context by
calling InitSecContext. The InitSecContext routine will pass information among the DCE Secrutiy
Server and the server application and eventually return with a security context. Once the client has
the security context the client is authenticated with the server. The client, wishing to send a secure
message to the server, calls SecureMsg with the message data to be sent. The SecureMsg function
returns an opaque encrypted data buffer to the client. The client then sends the data buffer to the
server.

Client Server
Application EcSeGSSTCPB Application

Return status

Return encoded data

EcSeGSSTCPB(int)

Send encrypted message to server

InitSecContext

SecureMsg

Figure 4.2.8.4.1-1. GSS Client Scenario Event Trace

4.2.8.4.2 Scenario #2

4.2.8.4.2.1 Abstract

This scenario traces the interactions of a server with the class EcSeGSSTCPB.

4.2.8.4.2.2 Interfaces

Custom application.

4.2.8.4.2.3 Stimulus

Server invokes AcceptSecContext either explicitly or via the constructor.

4-149 305-CD-028-002

4.2.8.4.2.4 Desired Response

The server establishes security context with client and receives a secure message.

4.2.8.4.2.5 Participating Classes

EcSeGSSTCPB

4.2.8.4.2.6 Pre-conditions

A TCP socket connection is established between the client and the server.

4.2.8.4.2.7 Post-conditions

None

4.2.8.4.2.8 Scenario Description

The server instantiates the EcSeGSSTCPB object then calls AcceptSecContext. The
AcceptSecContext routine will pass information among the DCE Secrutiy Server and the client
application and eventually return with a security context. Once the server has the security context
the it is authenticated with the client. When the server receives an encrypted data buffer from the
client it calls UnSecureMsg with the data buffer. The UnSecureMsg function returns with the
original, unencrypted message.

Client Server
Application EcSeGSSTCPB Application

Return unencoded data

EcSeGSSTCPB(int)

AcceptSecContext

Return status

Receive data from client

UnSecureMsg

Figure 4.2.8.4.2-1. GSS Server Scenario Event Trace

4-150 305-CD-028-002

4.3 Distributed Object Framework

4.3.1 Overview

Object Oriented applications consist of a number of interrelated objects. Each object is
characterized by a set of attributes and methods. Each object has a clear interface that identifies
the methods a user can invoke and get responses to. The object that requests information is called
the requester and the object that provides a service is called the provider. Each provider object
takes requests for operations that it has identified in the interface, performs the computations, and
passes the results back to the requester. Object-oriented Application development consists of
defining and instantiating the objects and passing messages (invoking methods) between the
objects to achieve its objective.

In single address space applications, all objects reside in the same address space. In a distributed
object framework, objects are distributed in multiple address spaces, spanning heterogeneous
platforms. Objects can reside anywhere in the network, but the basic contract between an object
and the users is the interface that the object provides and users can use. Objects can be spread
across the network based on efficiency, availability of data. From the perspective of the requester
of a service, the object location (location independence), invocation (invocation independence)
should be the same no matter where the object is physically present.

Invoking methods amounts to passing messages between objects. If the objects are in different
address spaces, then the messaging should be done via the network. The client/server paradigm
supports this kind of communication. In this paradigm, one side of the session (client) is allowed
to make requests, while the other side (server) may only make replies. Remote procedure call is
one communication method that is used to implement the client/server paradigm.

The server provides a certain operation and is called a subroutine/function for the clients to use. In
that sense, a normal program can be broken down into a number of subroutines and servers which
implement the subroutines. Clients call these subroutines as if they are local. When a client
invokes one of these remotely implemented functions, program execution transfers from the client
to the server where it is processed. Once the execution is done, the result is passed back to the
caller. The client and the program execution flow will then be turned back to the client.

In order to achieve the above client/server interaction, there must be a standard interface definition
language (IDL) to express the interface in a clear way. This is a pseudo language for which
mappings should exist so that the interface expressed in IDL can be converted to high level
languages like C and C++ using an IDL compiler. Once the interface is expressed in a standard
language, any requester who wants to make an invocation can do so by adhering to the signatures
present in the interface. The IDL should support standard types, obey some lexical rules and have
a language syntax to express the interface in a crisp and unambiguous way and by preserving the
semantics of the interface.

Since the data formats or internal representation of data may be different on different platforms,
the RPC mechanism should provide a way to convert the data into a standard format so that both
the receiver and the sender would interpret the data in the same way. The process of converting the
data into a standard format is called marshaling and the process of converting the data from the
standard format into a platform's internal format is called unmarshalling. This paradigm deals at
the program function level and has no notion of objects.

4-151 305-CD-028-002

An object framework is somewhat like the functional framework just described, but instead of
differentiating at a function level, it differentiates at an object level. The object's behavior is
captured in the interface definition language. The object's implementation is carried on remote
hosts, which are responsible to execute procedures, update the object state and return the results.
This paradigm makes use of inheritance while defining new interfaces by inheriting existing
interfaces. Implementation inheritance may also be possible as long as the implementation of the
super class exists within the scope of the current implementation. This paradigm also needs a
standard interface definition language and provides the mechanism to marshal and unmarshal
standard types. In this paradigm, an executing program (client) can instantiate an object at any host
that provides the implementation of that object and query that object to do certain operations. In
order to do that, two objects are created: one at the client and one at the server. The object created
at the server is the real object that implements the behavior of the object. The object created at the
client is called a surrogate object, whose main purpose is to marshal/unmarshal the arguments,
make call to the real object, and get the results back to the calling program. From the client's
perspective, the call is carried locally. The surrogate object does all the underlying work: locating
the server that is offering the service, binding to it, setting security preferences, instantiating the
server object if necessary through the use of life cycle services, and finally invoking the method.
This is transparent to the client and is done through the use of IDL and the supporting framework.

4.3.2 Context

FOS and SCDO clients use this framework to locate remote services, bind to those services and
invoke methods provided by those servers. They pass the arguments to the server and get the results
back from the server. Clients can set security preferences that they desire to have in communicating
with the server.

FOS and SCDO servers use this framework to register the location of their services, set security
preferences, receive in coming calls and redirect them to the appropriate implementation object,
create/maintain Access Control Lists associated with methods defined in the interface.

4-152 305-CD-028-002

DCEInterface Application Client Object

SetRebind; BindInterface; SetServerName; SetBinding; SetServerObject;
RebindInterface; ResetBinding; GetBinding; GetServerPrincipal; SetAuthInfo;

SetServerPrincipal; GetIdentity; SetIdentity; GetAuthenticationService;
SetAuthenticationService; GetProtectLevel; SetProtectLevel;

SetAuthorizationService; GetAuthorization Service

returned_status

ESO

Application Server Main

ServerCleanup;
SetAuthnService;

SetAuthInfo;

GetProfileName;
GetHostPolicy;

Export;

returned_status

returned_status

Protocol; UseAllProtocols; UseProtocol; Listen; Stop; Shutdown;
ServerIsListening; SetActivationObject; GetActivationObject

GetManagementAuthorizer; Registration; RegisterObject; UnRegisterObject;
SetName; GetName; SetGroupName; GetGroupName; SetProfileName;

GetProfileName

GetPrincipalName;SetPrincipalName; Security;
GetKeyRetriever;SetKeyRetriever; GetAuthnService;

SetManagementAuthorizer; SetAuthArg; GetAuthArg;

SetHostPolicy;SetExportScope; GetExportScope;
SetDescription; GetDescription;GetGroupSyntax; GetSyntax;

UnExportInterface UnExportObject; ExportObject;

4-153
305-C

D
-028-002

Figure 4.3.1-1. Distributed Object Framework Event Flow (1 of 3)

DCEInterfaceMgr DCEObj

Application Server Object

Destructor;
SetRefMon;

DecActivity;
Constructor;

SetAllRefMon;

returned_status returned_status

rpc_mgr_epv_tGetEpv;GetObject; GetType;
IncActivity;SetActivity; GetRefMon;

GetActivity
Interfaces;RegisterInterface;
ObjectReference GetId; SetAllActivity;

Figure 4.3.1-1. Distributed Object Framework Event Flow (2 of 3)

CSS
DOF

Directory Naming

CSS
DOF

Security

Application
Server Object

Application
Client Object

Application
Server Main

Figure 4.3.1-1. Distributed Object Framework Event Flow (3 of 3)

4-154 305-CD-028-002

DOF

Security

ESO

Naming
DCEInterface DCEInterfaceMgr

DCEObj

_if_impl_mgr

DCEInterfaceMgr(:rpc_if_handle_t :uuid_t* :rpc_mgr_epv_t)
DCEInterfaceMgr(:rpc_if_handle_t :uuid_t* :uuid_t* :rpc_mgr_epv_t)
DCEInterfaceMgr(:rpc_if_handle_t :DCEObj& :uuid_t* :rpc_mgr_epv_t)
~DCEInterfaceMgr()
GetType()
GetObj()
SetRefMon(rm:DCERefMon*)
GetEpv()

DCEObj(id:uuid_t*,rm:DCERefMon*,act:DCEActivityBase*)
~DCEObj()
GetInterfaces()
GetId()
RegisterInterface(DCEInterfaceMgr*)
GetObjectReference()
SetAllRefMon(DCERefMon*)
SetAllActivity(DCEActivityBase*)
SetAllRefMon()

_handle
_if_handle
_cds_entry
_rebind_count
_server_cache
_service_bound
_object
_reference
_local
_attempt_rebind
_authz_svc
_set_security
_sec_pref_changed
_server_principal_name
_protection_level
_authn_svc
_auth_identity

~DCEInterface()
DCEInterface(rpc_if_handle_t,rpc_binding_handle_t,DCEUuid&)
DCEInterface(rpc_if_handle_t,unsigned char*,unsigned32,DCEUuid&)
DCEInterface(rpc_if_handle_t,DCENsiObject*,DCEUuid&)
DCEInterface(rpc_if_handle_t,unsigned char*,unsigned char*,DCEUuid&)
DCEInterface(rpc_if_handle_t,DCEUuid&)
DCEInterface(rpc_if_handle_t,rpc_binding_vector_t*,DCEUuid&)
DCEInterface(rpc_if_handle_t,DCEObjRefT*)
SetRebind(DCERebindPolicy,unsigned32)
SetRebind(DCERebindPolicy)
BindInterface()
SetServerName(unsigned char*, unsigned32 = rpc_c_ns_syntax_default)
SetBinding(unsigned char*)
SetBinding(DCEBinding&)
SetBinding(rpc_binding_handle_t)
SetServerObject(DCEUuid&)
RebindInterface()
ResetBinding()
GetBinding()
GetServerPrincipal()
SetAuthInfo(unsigned
char*,unsigned32,unsigned32,rpc_auth_identity_handle_t,unsigned32)
SetServerPrincipal(unsigned char*)
GetIdentity()
SetIdentity(rpc_auth_identity_hanlde_t)
GetAuthenticationService()
SetAuthenticationService(unsigned32)
GetProtectLevel()
SetProtectLevel(unsigned32)
SetAuthorizationService(unsigned32)
GetAuthorizationService()

_profile_prio
_profile
_Init
_group
_server_lock
_reaper
_auth_obj
_objects
_protocols
_exports
_free_list
_interfaces
_endpoints_registered
_server_is_registered
_server_is_listening
_interface_registered
_protocols_registered
_max_call_requests
_use_protocols
_key_retrieval_obj
_auth_arg_val
_authentication_service_type
_server_principal_name
_description
_activator
_servent

SetName(const unsigned char*,const unsigned32)
SetName(const char*,const unsigned32)
Listen()
RegisterObject()
SetAuthInfo(unsigned char*, unsigned32, DCEKeyRetriever*, void*)
SetAuthInfo(unsigned char *, unsigned32, void*)
ServerCleanup(void*)
SetPrincipalName(unsigned char*)
GetPrincipalName()
SetAuthnService(this_service:unsigned32)
GetAuthnService()
SetKeyRetriever(kr:DCEKeyRetriever*)
GetKeyRetriever()
SetAuthArg(arg:void*)
GetAuthArg()
SetManagementAuthorizer(ma:DCEMgmtAuthorizer*)
GetManagementAuthorizer()
UnRegisterObject(uuid_t*, boolean32)
UnRegisterObject(DCEObj&, boolean32)
UnRegisterObject(DCEInterfaceMgr&, boolean32)
GetName()
SetGroupName(const char*,const unsigned32)
SetGroupName(const unsigned char*, const unsigned32)
SetGroupName(cons DCENsiName&)
GetGroupName()
GetProfilePriority()
SetProfilePriority(prio:unsigned32)
GetProfile()
SetProfileName(const char*, const unsigned32)
SetProfileName(const unsigned char*,const unsigned32,)
SetProfileName(const DCENsiName&)
GetProfileName()
SetExportScope(scope:DCEExportScope)
GetExportScope()
SetHostPolicy(policy:const DCEHostPolicy)
GetHostPolicy()
SetDescription(desc:char*)
GetDescription()
ExportObject(uuid_t*)
UnExportObject(uuid_t*)
UnExportInterface(DCEInterfaceMgr&)
UseAllProtocols(DCEInterfaceMgr&, const unsgined32)
UseAllProtocols(const unsigned32)
UseProtocol(const unsigned char*,const unsigned32)
UseProtocol(const unsigned char*,const unsigned char*,const unsigned32)
UseProtocol(const unsigned char*,DCEInterfaceMgr&,const unsigned32)
Stop()
Shutdown()
SetActivationObject(DCEActivation*,DCEUuidVector&)
SetActivationObject(DCEActivation*,DCEUuid&)
GetActivationObject()
_GetInterfaces()
_GetObjectList()
_RegisterObject(DCEInterfaceMgr&,const boolean32)
_AuthFunc(handle_t,unsigned32,unsigned32*)
_GetKey(void*,unsigned_char_p_t,unsigned32,void**,unsigned32*)
RemoveObjects()
ServerIsListening()
GetEntry()

Offpage

OffpageOffpage

[Public]

[Public]

± : rpc_mgr_epv_t

+
+
±
+
+ : DCEUuid&
+ : DCEUuid&
+
+ : rpc_mgr_epv_t

+
+
+ : DCEInterfaces&
+ : DCEUuid&
+ : void
+ : DCEObjectReference&
+ : void
+ : void
+

± : rpc_binding_handle_t
± : rpc_if_handle_t
± : DCENsiObject*
± : unsigned32
± : rpc_binding_vector_t*
± : boolean32
± : uuid_t
± : DCEObjectReference*
± : DCEInterfaceMgr*
± : DCERebindPolicy
± : unsigned32
± : boolean32
± : boolean32
± : unsigned char*
± : unsigned32
± : unsigned32
± : rpc_auth_identity_handle_t

+ : void
+
+
+
+
+
+
+
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : rpc_binding_handle_t
+ : unsigned char*
+ : void

+ : void
+ : rpc_auth_identity_handle_t
+ : void
+ : unsigned32
+ : void
+ : unsigned32
+ : void
+ : void
+ : unsigned32

± : unsigned32
± : DCENsiProfile *
± : int
± : DCENsiGroup*
± : pthread_mutex_t
± : DCEPthread*
± : DCEMgmtAuthorizer*
± : DCEObjectList
± : DCEProtocolList
± : DCEInterfaceList
± : DCEInterfaceList
± : DCEInterfaceList
± : boolean
± : boolean
± : boolean
± : boolean
± : boolean
± : unsigned32
± : DCEProtSeqReg
± : DCEKeyRetriever
± : void*
± : unsigned32
± : unsigned char*
± : char*
± : DCEActivation*
± : DCENsiEnry*

+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : static pthread_addr_t
+ : void
+ : unsigned char*
+ : void
+ : unsigned char*
+ : void
+ : DCEKeyRetriever*
+ : void*
+ : void*
+ : void
+ : DCEMgmtAuthorizer*
+ : void
+ : void
+ : void
+ : char*
+ : void
+ : void
+ : void
+ : const char*
+ : unsigned32
+ : void
+ : DCENsiProfile*
+ : void
+ : void
+ : void
+ : char*
+ : void
+ : DCEExportScope
+ : void
+ : DCEHostPolicy
+ : void
+ : char*
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : DCEActivation*
+ : DCEInterfaceList*
+ : DCEObjectList*
+ : void
+ : boolean32
+ : void
+ : void
+ : boolean
+ : DCENsiEntry*

4.3.3
O

b
ject M

o
d

el [Public]

[Public]

Figure 4.3.3-1. Distributed Object Framework Object Model

4-155
305-C

D
-028-002

4.3.3.1 DCEInterface Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

The application client class inherits from the DCEInterface class which provides the default

functionality required at the client side. It includes locating a service, binding and

accessing the remote objects managed by that server. Client class inherits from this

DCEInterface class and as such this interface is embedded in the client class. The

application programmer can modify the default behavior provided by the DCEInterface

class to achieve any needed special behavior.

Attributes:

_attempt_rebind - rebind policy

Data Type:DCERebindPolicy

Privilege:Protected

Default Value:

_auth_identity - Identity

Data Type:rpc_auth_identity_handle_t

Privilege:Protected

Default Value:

_authn_svc - Authentication

Data Type:unsigned32

Privilege:Protected

Default Value:

_authz_svc - Authorization

Data Type:unsigned32

Privilege:Protected

Default Value:

_cds_entry - CDS name

Data Type:DCENsiObject*

Privilege:Protected

Default Value:

_handle - Binding handle

Data Type:rpc_binding_handle_t

Privilege:Protected

Default Value:

4-156 305-CD-028-002

_if_handle - DCEInterface

Data Type:rpc_if_handle_t

Privilege:Protected

Default Value:

_local - local object

Data Type:DCEInterfaceMgr*

Privilege:Protected

Default Value:

_object - Object UUID

Data Type:uuid_t

Privilege:Protected

Default Value:

_protection_level - Data security

Data Type:unsigned32

Privilege:Protected

Default Value:

_rebind_count - Number of attempts to make

Data Type:unsigned32

Privilege:Protected

Default Value:

_reference - object reference

Data Type:DCEObjectReference*

Privilege:Protected

Default Value:

_sec_pref_changed - Flag

Data Type:boolean32

Privilege:Protected

Default Value:

_server_cache - DCEBinding cache

Data Type:rpc_binding_vector_t*

Privilege:Protected

Default Value:

_server_principal_name - DCEServer principal

Data Type:unsigned char*

Privilege:Protected

Default Value:

4-157 305-CD-028-002

_service_bound - Flag
Data Type:boolean32
Privilege:Protected
Default Value:

_set_security - Flag
Data Type:boolean32
Privilege:Protected
Default Value:

Operations:

BindInterface - Used to obtain a fully bound handle from the location and binding

information held in the internal state of the object. This memeber function ensures that a

compatible Server object is available and is able to support the Interface and object

requirements of the client object. The BindInterface member function only needs to be

used by the application code if fine grain control is requred over the binding of clients to

servers. If the client object has not been bound to a server when the first RPC call is made,

the BindInterface function is called has no effect if called when a valid binding exists. The

Binding Interface member is virtual so that the binding policy may be overloaded in

derived classes that require specialized binding mechanism.

Arguments:

Return Type:void

Privilege:Public

DCEInterface - Constructor. Construct from Object reference.

Arguments:rpc_if_handle_t,DCEObjRefT*

Return Type:Void

Privilege:Public

DCEInterface - Constructor. Construct from DCEUuid. If DCEUuid& null, use the once

given.

Arguments:rpc_if_handle_t,DCEUuid&

Return Type:Void

Privilege:Public

DCEInterface - Constructor. Construct from binding vector and DCEUuid

Arguments:rpc_if_handle_t,rpc_binding_vector_t*,DCEUuid&

Return Type:Void

Privilege:Public

DCEInterface - Constructor. Construct from hostname/protocol

Arguments:rpc_if_handle_t,unsigned char*,unsigned char*,DCEUuid&

Return Type:Void

4-158 305-CD-028-002

Privilege:Public

DCEInterface - Constructor. Construct from DCENsiObject

Arguments:rpc_if_handle_t,DCENsiObject*,DCEUuid&

Return Type:Void

Privilege:Public

DCEInterface - Constructor. Construct from unsigned string

Arguments:rpc_if_handle_t,unsigned char*,unsigned32,DCEUuid&

Return Type:Void

Privilege:Public

DCEInterface - Constructor. Construct from a binding

Arguments:rpc_if_handle_t,rpc_binding_handle_t,DCEUuid&

Return Type:Void

Privilege:Public

GetAuthenticationService - Used to get the authentication service type required by the

client to perform authentication.

Arguments:

Return Type:unsigned32

Privilege:Public

GetAuthorizationService - Used to get the client side identity for the communication with

a Server object.

Arguments:

Return Type:unsigned32

Privilege:Public

GetBinding - Returns the current binding information for the interface object. It returns

information from internal state and as such the return value is marked as const.

Arguments:

Return Type:rpc_binding_handle_t

Privilege:Public

GetIdentity - Used to get the client side identity for the communication with a Server

object.

Arguments:

Return Type:rpc_auth_identity_handle_t

Privilege:Public

GetProtectLevel - Used to get required data protection levels between the client and the

server.

Arguments:

Return Type:unsigned32

4-159 305-CD-028-002

Privilege:Public

GetServerPrincipal - Used to get the principal nameof the server object.

Arguments:

Return Type:unsigned char*

Privilege:Public

RebindInterface - Rebinds the binding information and perform checks that the Server

object can support the client object requirements.

Arguments:

Return Type:void

Privilege:Public

ResetBinding - Resets endpoint information contained in the binding handle. The client

object will re-bind the endpoint information on the next RPC call.

Arguments:

Return Type:void

Privilege:Public

SetAuthInfo - Used to set the client side security preferences.

Arguments:unsigned

char*,unsigned32,unsigned32,rpc_auth_identity_handle_t,unsigned32

Return Type:void

Privilege:Public

SetAuthenticationService - Set the authentication service type required by the client to

perform authentication.

Arguments:unsigned32

Return Type:void

Privilege:Public

SetAuthorizationService - Used to set the client side identity for the communication with

a Server object.

Arguments:unsigned32

Return Type:void

Privilege:Public

SetBinding - Resets the binding information held in the internal state of the object. Any

existing binding information is removed and new binding checks are performed on the next

RPC call. It takes a binding handle as an argument.

Arguments:rpc_binding_handle_t

Return Type:void

Privilege:Public

4-160 305-CD-028-002

SetBinding - Resets the binding information held in the internal state of the object. Any

existing binding information is removed and new binding checks are performed on the next

RPC call. It takes a DCEBinding as an argument.

Arguments:DCEBinding&

Return Type:void

Privilege:Public

SetBinding - Resets the binding information held in the internal state of the object. Any

existing binding information is removed and new binding checks are performed on the next

RPC call. It takes an string as argument.

Arguments:unsigned char*

Return Type:void

Privilege:Public

SetIdentity - Used to set the client side identity for the communication with a Server

object.

Arguments:rpc_auth_identity_hanlde_t

Return Type:void

Privilege:Public

SetProtectLevel - Used to set required data protection levels between the client and the

server.

Arguments:unsigned32

Return Type:void

Privilege:Public

SetRebind - Sets the rebind policy of the interface object. By default the interface object

has the rebind policy of never_rebind. The rebind policy allows the specification of a re

bind policy for client objects. If communication with a Server object results in a failure the

client object can be instructed to attempt a re-bind. The rebind policy can be:

1.never_rebind:No rebind is done, failure is passed reported to caller as an exception.

2.attempt_rebind:Client object will attempt to rebind and replay the failed operation. The

default re-bind algorithm is to first reset the endpoint on the binding handle used. If this

fails then an attempt is made to obtain a new binding (which could mean going to a totally

different Server object). Re-bind is attempted once if the rebind or the re-playing of the

failed operation presents another failure and an exception is passed to the client.

3.wait_on_rebind: Does the same as the attempt_rebind option, however this option will

continue to retry a re-bind until it is successful or the calling thread is terminated. It takes

as argument the DCERebindPolicy.

Arguments:DCERebindPolicy

Return Type:void

Privilege:Public

4-161 305-CD-028-002

SetRebind - Sets the rebind policy of the interface object. By default the interface object

has the rebind policy of never_rebind. The rebind policy allows the specification of a re

bind policy for client objects. If communication with a Server object results in a failure the

client object can be instructed to attempt a re-bind. The rebind policy can be:

1.never_rebind:No rebind is done, failure is passed reported to caller as an exception.

2.attempt_rebind:Client object will attempt to rebind and replay the failed operation. The

default re-bind algorithm is to first reset the endpoint on the binding handle used. If this

fails then an attempt is made to obtain a new binding (which could mean going to a totally

different Server object). Re-bind is attempted once if the rebind or the re-playing of the

failed operation presents another failure and an exception is passed to the client.

3.wait_on_rebind: Does the same as the attempt_rebind option, however this option will

continue to retry a re-bind until it is successful or the calling thread is terminated. It takes

as arguments the DCERebindPolicy and an integer.

Arguments:DCERebindPolicy,unsigned32

Return Type:void

Privilege:Public

SetServerName - Set the CDS entry name that is used to locate the required Server object.

When SetServerName is called, the existing binding handle is invalidated and the client

object will rebind using the new server name on the next RPC call.

Arguments:unsigned char*, unsigned32 = rpc_c_ns_syntax_default

Return Type:void

Privilege:Public

SetServerObject - Sets or modifies the DCE object uuid of a client binding. Checks are

made to ensure the Server Object supports the required DCE object uuid.

Arguments:DCEUuid&

Return Type:void

Privilege:Public

SetServerPrincipal - Used to set the principal name of the server object.

Arguments:unsigned char*

Return Type:void

Privilege:Public

~DCEInterface - Destructor

Arguments:

Return Type:void

Privilege:Public

Associations:

The DCEInterface class has associations with the following classes:
DOF (Aggregation)

4-162 305-CD-028-002

4.3.3.2 DCEInterfaceMgr Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

There can be multiple implementations for a given interface. The application server

implementation class inherits from the InterfaceMgr class and the DCEObj class. The

DCEInterfaceMgr class is the base abstract class from which all generated server side

classes are derived. This class allows the application programmer to define and attach a

RefMon class where the desired level of security (authentication) can be specified. The

DCEObj class provides the concept of the Generic object which can have multiple

interfaces. This class provides the functionality to associate a RefMon object to all the

interfaces that it is associated to. Server implementation class inherits from these classes

and as such their interfaces are embedded in the server class. The application programmer

can modify the default behavior provided by these classes to achieve any needed special

behavior.

Attributes:

_if_impl_mgr - C Manager epv for DCE

Data Type:rpc_mgr_epv_t

Privilege:Protected

Default Value:

Operations:

DCEInterfaceMgr - This constructor creates a DCEInterface object with the interface

identifier.

Arguments::rpc_if_handle_t :uuid_t* :rpc_mgr_epv_t

Return Type:Void

Privilege:Public

DCEInterfaceMgr - This constructor will create DCEInterfaceMgr object with the

interface and the object identifier.

Arguments::rpc_if_handle_t :uuid_t* :uuid_t* :rpc_mgr_epv_t

Return Type:Void

Privilege:Public

DCEInterfaceMgr - This constructor creates DCEInterfaceMgr object with the object

reference.

Arguments::rpc_if_handle_t :DCEObj& :uuid_t* :rpc_mgr_epv_t

Return Type:Void

4-163 305-CD-028-002

Privilege:Protected

GetEpv - Used to access the endpoint vector for the DCEInterfaceMgr object. Access to

this data structure is required by the class library but not normally needed for general

development.

Arguments:

Return Type:rpc_mgr_epv_t

Privilege:Public

GetObj - Provides access to the DCE object identifier information for the

DCEInterfaceMgr object.

Arguments:

Return Type:DCEUuid&

Privilege:Public

GetType - Provides access to the DCE implementation type information for the

DCEInterfaceMgr object.

Arguments:

Return Type:DCEUuid&

Privilege:Public

SetRefMon - Set reference monitor

Arguments:rm:DCERefMon*

Return Type:Void

Privilege:Public

~DCEInterfaceMgr - This is the destructor. It will deallocate memory occupied by

DCEInterfaceMgr object.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The DCEInterfaceMgr class has associations with the following classes:
DOF (Aggregation)

4.3.3.3 DCEObj Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class provides the concept of DCE object which is a logical entity and can have

multiple interfaces. This class is used to collect related interfaces together to form a DCE

4-164 305-CD-028-002

object. Object of this class can be registered with a Server object.

Attributes:

None

Operations:

DCEObj - Constructor.

Arguments:id:uuid_t*,rm:DCERefMon*,act:DCEActivityBase*

Return Type:Void

Privilege:Public

GetId - Obtains the object UUID associated with the DCEObj class instance.

Arguments:

Return Type:DCEUuid&

Privilege:Public

GetInterfaces - Obtains a list of the interfaces supported by the manager object.

Arguments:

Return Type:DCEInterfaces&

Privilege:Public

GetObjectReference - Obtains an object reference fro the DCEObj class instance. This

reference can be used by clients to create a binding to the server base object.

Arguments:

Return Type:DCEObjectReference&

Privilege:Public

RegisterInterface - Registers the interface data with the DCEObj class. This class

maintains a list of all interfaces supported by the manager object associated with the

DCEObj class.

Arguments:DCEInterfaceMgr*

Return Type:void

Privilege:Public

SetAllActivity - Sets the activity object for all of the DCEInterfaceMgr objects registered

with DCEObj. This allows multiple objects to share the same activity object and counter.

Arguments:DCEActivityBase*

Return Type:void

Privilege:Public

SetAllRefMon - Used to associate a RefMon object with all of the DCEInterfaceMgr

objects registered with the DCEOjec object. Therefore, all interfaces supported by the

4-165 305-CD-028-002

manager object share the same RefMon object.

Arguments:

Return Type:Void

Privilege:Public

SetAllRefMon - Set reference monitor

Arguments:DCERefMon*

Return Type:void

Privilege:Public

~DCEObj - Destructor.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The DCEObj class has associations with the following classes:
DOF (Aggregation)

4.3.3.4 DOF Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

FOS and SCDO clients use this framework to locate remote services, bind to those services

and invoke methods provided by those servers. They pass the arguments to the server and

get the results back from the server. Clients can set security preferences that they desire to

have in communicating with the server. FOS and SCDO servers use this framework to

register the location of their services, set security preferences, receive incomming calls and

redirect them to the appropriate implementation object, create/maintain Access Control

Lists associated to the methods described in the service.

Attributes:

None

Operations:

None

Associations:

4-166 305-CD-028-002

The DOF class has associations with the following classes:
None

4.3.3.5 ESO (CSS Provided-Class Inheriting from DCEServer Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

A generic Server class is provided at the server side. This class deals with the management

of the objects that implement the interfaces. This class provides the functionality to interact

with the objects that implement the interfaces. This class provides the functionality to

interact with the naming and security services on behalf of the objects it manages. There

will only be one instance of this class in a process. An instance of this will be created and

bound to a global variable called theServer. Server main application uses this class to

manage the objects. The server main is a driver program which uses this class to create a

deamon running all the time listening to incoming requests. Each time a request arrives,

this application decides which server manager should address the request and spawns a new

thread to run that implementaion of the server application. Each server driver can manage

several server managers. A server manager is one implementaion of the server. This class

provides all the needed interfaces to deal with core servies like the naming and the security.

This class provides an abstraction of the interfaces to these core services, which the

application programmer can use. The actual interface between this service and the core

services is private and the application programmer never uses that directly. The number of

requests a server main can take are limited, and can be set by the application programmer.

It also maintains a queue to keep the incoming request if all the server implementaions are

busy. The length of the queue is configurable by the application programmer. If a request

arrives when the queue is full, then the request is ignored without any notifications.

Application specific behavior can be extended by defining another object inheriting from

the global server object (GSO). For example, if the application need to register it some

local database, the register method can be implemented in the newly created global server

object. This can be done by application programmer.

Attributes:

_Init - One time init flag

Data Type:int

Privilege:Protected

Default Value:

_activator - Activation object (optional)

Data Type:DCEActivation*

Privilege:Protected

Default Value:

4-167 305-CD-028-002

_auth_arg_val - KeyTab file arg

Data Type:void*

Privilege:Protected

Default Value:

_auth_obj - Authorizer for management functions

Data Type:DCEMgmtAuthorizer*

Privilege:Protected

Default Value:

_authentication_service_type - Authn server type

Data Type:unsigned32

Privilege:Protected

Default Value:

_description - Text description

Data Type:char*

Privilege:Protected

Default Value:

_endpoints_registered - Flag, are the endpoints registered

Data Type:boolean

Privilege:Protected

Default Value:

_exports - List of Interfaces for export

Data Type:DCEInterfaceList

Privilege:Protected

Default Value:

_free_list - List of Interfaces for deletion

Data Type:DCEInterfaceList

Privilege:Protected

Default Value:

_group - Optional CDS group

Data Type:DCENsiGroup*

Privilege:Protected

Default Value:

_interface_registered - Flag, are interfaces registered with runtime

Data Type:boolean

Privilege:Protected

Default Value:

4-168 305-CD-028-002

_interfaces - List of interfaces

Data Type:DCEInterfaceList

Privilege:Protected

Default Value:

_key_retrieval_obj - Key retriever object

Data Type:DCEKeyRetriever

Privilege:Protected

Default Value:

_max_call_requests - Maximum number of concurrent calls

Data Type:unsigned32

Privilege:Protected

Default Value:

_objects - List of server objects

Data Type:DCEObjectList

Privilege:Protected

Default Value:

_profile - Optional CDS profile

Data Type:DCENsiProfile *

Privilege:Protected

Default Value:

_profile_prio - Profile priority

Data Type:unsigned32

Privilege:Protected

Default Value:

_protocols - List of protocol sequences

Data Type:DCEProtocolList

Privilege:Protected

Default Value:

_protocols_registered - Flag, are protocols registered

Data Type:boolean

Privilege:Protected

Default Value:

_reaper - Cleanup thread

Data Type:DCEPthread*

Privilege:Protected

Default Value:

4-169 305-CD-028-002

_servent - CDS server entry

Data Type:DCENsiEnry*

Privilege:Protected

Default Value:

_server_is_listening - Flag, is server object listen loop

Data Type:boolean

Privilege:Protected

Default Value:

_server_is_registered - Flag, is server registered in CDS

Data Type:boolean

Privilege:Protected

Default Value:

_server_lock - Main Mutex for DCEServer class

Data Type:pthread_mutex_t

Privilege:Protected

Default Value:

_server_principal_name - Principal name

Data Type:unsigned char*

Privilege:Protected

Default Value:

_use_protocols - Protocol registration policy

Data Type:DCEProtSeqReg

Privilege:Protected

Default Value:

Operations:

ExportObject - Exports the object information into the CDS.

Arguments:uuid_t*

Return Type:void

Privilege:Public

GetActivationObject - Used to access the Activation object associated with the server.

Arguments:

Return Type:DCEActivation*

Privilege:Public

GetAuthArg - The member functions defined above can be used to specify optional

parameter information that will be passed to the key retrieval mechanism when keys are

4-170 305-CD-028-002

requested. Security keys are stored in a key table, the default key table is a simple file with

a well known filename. If the Server object is using the default key retrieval machanism

but the key is not stored in the default key table the above functions may be used to set the

filename of the key table to use. If a KeyRetriever object is registered with the server

object, additional argument information can be passed to the KeyRetriever object by using

the SetAuthArg function. The interpretation of the information set by the SetAuthArg

member function is dependent on the value of the authentication service type.

Arguments:

Return Type:void*

Privilege:Public

GetAuthnService - Gets the authentication service type used to do the authentication

between the Server object and the client.

Arguments:

Return Type:unsigned char*

Privilege:Public

GetDescription - Used to get a textual description for the server object.

Arguments:

Return Type:char*

Privilege:Public

GetEntry - Used to obtain the CDS class for the server objects entry name.

Arguments:

Return Type:DCENsiEntry*

Privilege:Public

GetExportScope - Gets the export policy that controls the registration of interface and

object information with a Server object. By default, Interface and object information is

registered with the local RPC runtime and the endpoint mapper.

Arguments:

Return Type:DCEExportScope

Privilege:Public

GetGroupName - Gets the group name of the entry from the CDS.

Arguments:

Return Type:const char*

Privilege:Public

GetHostPolicy - Gets the per host operation policy of the Server object. By default

multiple instances of a particular server object can exist per host. This allows the option of

enforcing a single instance per host.

Arguments:

Return Type:DCEHostPolicy

Privilege:Public

4-171 305-CD-028-002

GetKeyRetriever - Gets the key retriever object associated with the server. This is used

when an application programmer wants to run a server with an identity different from the

principal starting that server.

Arguments:

Return Type:DCEKeyRetriever*

Privilege:Public

GetManagementAuthorizer - Gets a MgmtAuthorizer object for a Server object. If the

Server Object has no MgmtAuthorizer object, then the default DCE policy is used to

control access to the server management functions. However, if such an object is registered

it will be used to control access to management functionality.

Arguments:

Return Type:DCEMgmtAuthorizer*

Privilege:Public

GetName - Gets the server entry name from the CDS. Cell relative or a global names can

be used to denote a server entry.

Arguments:

Return Type:char*

Privilege:Public

GetPrincipalName - Gets the security principal's name of the Server object.

Arguments:

Return Type:unsigned char*

Privilege:Public

GetProfile - Returns a CDS profile name.

Arguments:

Return Type:DCENsiProfile*

Privilege:Public

GetProfileName - Retrieves profile information from the CDS.

Arguments:

Return Type:char*

Privilege:Public

GetProfilePriority - Used to retrieve profile priority information from the CDS.

Arguments:

Return Type:unsigned32

Privilege:Public

Listen - Keeps the server in the listen state waiting for incoming requests. Maximum

number of concurrent calls can be optionally specified here.

Arguments:

4-172 305-CD-028-002

Return Type:void

Privilege:Public

RegisterObject - Registers a new object with the server and optionally with the CDS. The

server must have at least one object registered before the Listen method can be called.

Arguments:

Return Type:void

Privilege:Public

RemoveObjects - Server manager objects that are unregistered from the server object may

be placed on an internal list. The RemoveObjects function can be used to free up resources

associated with the manager objects. This function is called automatically by a garbage

collection thread.

Arguments:

Return Type:void

Privilege:Public

ServerCleanup - Implements the cleanup handler for the server when the server goes down

like removing binding information from the CDS.

Arguments:void*

Return Type:static pthread_addr_t

Privilege:Public

ServerIsListening - Returns true if the Server object is currently in the listening state and

false otherwise.

Arguments:

Return Type:boolean

Privilege:Public

SetActivationObject - SetActivationObject is used to register an Activation object with

the server. The activation object can be associated with a single interface or a vector of

interfaces.

Arguments:DCEActivation*,DCEUuidVector&

Return Type:void

Privilege:Public

SetActivationObject - SetActivationObject is used to register an Activation object with

the server. The activation object can be associated with a single interface or a vector of

interfaces.

Arguments:DCEActivation*,DCEUuid&

Return Type:void

Privilege:Public

SetAuthArg - The member functions defined above can be used to specify optional

parameter information that will be passed to the key retrieval mechanism when keys are

4-173 305-CD-028-002

requested. Security keys are stored in a key table, the default key table is a simple file with

a well known filename. If the Server object is using the default key retrieval machanism

but the key is not stored in the default key table the above functions may be used to set the

filename of the key table to use. If a KeyRetriever object is registered with the server

object, additional argument information can be passed to the KeyRetriever object by using

the SetAuthArg function. The interpretation of the information set by the SetAuthArg

member function is dependent on the value of the authentication service type.

Arguments:arg:void*

Return Type:void*

Privilege:Public

SetAuthInfo - Registers the principal name and authorization (optionally a key retriever)

information with the runtime RPC. Two versions of the SetAuthInfo member function are

provided. The first one allows a KeyRetriever object to be set for the Server object allowing

an alternative mechanism for retrieving security keys to be used. The second version, just

allows the setting of principal name and authentication service type. In this case the default

key retrieval mechanism provided by DCE is used.

Arguments:unsigned char*, unsigned32, DCEKeyRetriever*, void*

Return Type:void

Privilege:Public

SetAuthInfo - Registers the principal name and authorization (optionally a key retriever)

information with the runtime RPC. Two versions of the SetAuthInfo member function are

provided. The first one allows a KeyRetriever object to be set for the Server object allowing

an alternative mechanism for retrieving security keys to be used. The second version, just

allows the setting of principal name and authentication service type. In this case the default

key retrieval mechanism provided by DCE is used.

Arguments:unsigned char *, unsigned32, void*

Return Type:void

Privilege:Public

SetAuthnService - Sets the authentication service type used to do the authentication

between the Server object and the client.

Arguments:this_service:unsigned32

Return Type:void

Privilege:Public

SetDescription - Used to obtain the name syntax of the server if specified.

Arguments:desc:char*

Return Type:void

Privilege:Public

SetExportScope - Sets the export policy that controls the registration of interface and

object information with a Server object. By default, Interface and object information is

registered with the local RPC runtime and the endpoint mapper.

4-174 305-CD-028-002

Arguments:scope:DCEExportScope

Return Type:void

Privilege:Public

SetGroupName - Sets the group name of the entry from the CDS.

Arguments:cons DCENsiName&

Return Type:void

Privilege:Public

SetGroupName - Sets the group name of the entry from the CDS.

Arguments:const unsigned char*, const unsigned32

Return Type:void

Privilege:Public

SetGroupName - Sets the group name of the entry from the CDS.

Arguments:const char*,const unsigned32

Return Type:void

Privilege:Public

SetHostPolicy - Sets the per host operation policy of the Server object. By default multiple

instances of a particular server object can exist per host. This allows the option of enforcing

a single instance per host.

Arguments:policy:const DCEHostPolicy

Return Type:void

Privilege:Public

SetKeyRetriever - Sets the key retriever object associated with the server. This is used

when an application programmer wants to run a server with an identity different from the

principal starting that server.

Arguments:kr:DCEKeyRetriever*

Return Type:void

Privilege:Public

SetManagementAuthorizer - Sets a MgmtAuthorizer object for a Server object. If the

Server Object has no MgmtAuthorizer object, then the default DCE policy is used to

control access to the server management functions. However, if such an object is registered

it will be used to control access to management functionality.

Arguments:ma:DCEMgmtAuthorizer*

Return Type:void

Privilege:Public

SetName - Sets the server entry name from the CDS. Cell relative or a global name can be

used to denote a server entry.

Arguments:const char*,const unsigned32

Return Type:void

4-175 305-CD-028-002

Privilege:Public

SetName - Sets the server entry name from the CDS. Cell relative or a global name can be

used to denote a server entry.

Arguments:const unsigned char*,const unsigned32

Return Type:void

Privilege:Public

SetPrincipalName - Sets the security principal's name of the Server object.

Arguments:unsigned char*

Return Type:void

Privilege:Public

SetProfileName - Registers a profile entry in the CDS.

Arguments:const char*, const unsigned32

Return Type:void

Privilege:Public

SetProfileName - Registers a profile entry in the CDS.

Arguments:const unsigned char*,const unsigned32,

Return Type:void

Privilege:Public

SetProfileName - Registers a profile entry in the CDS.

Arguments:const DCENsiName&

Return Type:void

Privilege:Public

SetProfilePriority - Used to manipulate the CDS profile information. Specifically, used

to set profile priority information, or to associate a priority to the entry.

Arguments:prio:unsigned32

Return Type:void

Privilege:Public

Shutdown - Stops the server for new requests, unregisters the information from the CDS.

Arguments:

Return Type:void

Privilege:Public

Stop - Causes the server to stop listening for new incoming requests.

Arguments:

Return Type:void

Privilege:Public

UnExportInterface - Unexports the server interface information from the CDS.

4-176 305-CD-028-002

Arguments:DCEInterfaceMgr&

Return Type:void

Privilege:Public

UnExportObject - Removes the object information from the CDS.

Arguments:uuid_t*

Return Type:void

Privilege:Public

UnRegisterObject - Unregisters a new object with the server and optionally with the CDS.

The server must have at least one object registered before the Listen method can be called.

Arguments:DCEInterfaceMgr&, boolean32

Return Type:void

Privilege:Public

UnRegisterObject - Unregisters a new object with the server and optionally with the CDS.

The server must have at least one object registered before the Listen method can be called.

Arguments:uuid_t*, boolean32

Return Type:void

Privilege:Public

UnRegisterObject - Unregisters a new object with the server and optionally with the CDS.

The server must have at least one object registered before the Listen method can be called.

Arguments:DCEObj&, boolean32

Return Type:void

Privilege:Public

UseAllProtocols - Uses all the protocols and sets the maximum number of request that can

be handled by the server object.

Arguments:const unsigned32

Return Type:void

Privilege:Public

UseAllProtocols - Uses all the protocols and sets the maximum number of request that can

be handled by the server object.

Arguments:DCEInterfaceMgr&, const unsgined32

Return Type:void

Privilege:Public

UseProtocol - Instructs the server to use a particular protocol for client requests. This can

be called multiple times to set multiple protocols.

Arguments:const unsigned char*,const unsigned32

Return Type:void

Privilege:Public

4-177 305-CD-028-002

UseProtocol - Instructs the server to use a particular protocol for client requests. This can

be called multiple times to set multiple protocols.

Arguments:const unsigned char*,const unsigned char*,const unsigned32

Return Type:void

Privilege:Public

UseProtocol - Instructs the server to use a particular protocol for client requests. This can

be called multiple times to set multiple protocols.

Arguments:const unsigned char*,DCEInterfaceMgr&,const unsigned32

Return Type:void

Privilege:Public

_AuthFunc - Protected member function.

Arguments:handle_t,unsigned32,unsigned32*

Return Type:boolean32

Privilege:Public

_GetInterfaces - Returns a pointer to a list of each unique interface provided by the

objects.

Arguments:

Return Type:DCEInterfaceList*

Privilege:Public

_GetKey - Protected member function.

Arguments:void*,unsigned_char_p_t,unsigned32,void**,unsigned32*

Return Type:void

Privilege:Public

_GetObjectList - Returns a pointer to a list of Object_Set_t structures defined in the

Server.H file which contains object and export information for every object registered with

the server object.

Arguments:

Return Type:DCEObjectList*

Privilege:Public

_RegisterObject - Register the server object passing an instance of the DCEInterfaceMgr

class.

Arguments:DCEInterfaceMgr&,const boolean32

Return Type:void

Privilege:Public

4-178 305-CD-028-002

Associations:

The ESO class has associations with the following classes:
DOF (Aggregation)

4.3.3.6 Naming Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Implementation of the Directory Naming Service.

Attributes:

None

Operations:

None

Associations:

The Naming class has associations with the following classes:
DOF (Aggregation)

4.3.3.7 Security Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Implementation of the Security Service.

Attributes:

None

Operations:

None

4-179 305-CD-028-002

Associations:

The Security class has associations with the following classes:
DOF (Aggregation)

4.3.4 Functional Model

The whole object framework consists of a set of core services with distinct functionality to make
the development of the distributed applications easier. The core services are naming, security,
threads, time, and RPC. In order to aid the application programmer, another layer of abstraction is
provided. DOF interacts with the naming service to save and retrieve service locations. Similarly
it interacts with the Security service to provide security. The other provided layer consists of four
generic classes: ESO, DCEObj, DCEInterface and DCEInterfaceMgr. Application programmers
implementing the client server application need to develop three parts: an application client part
which invokes the service, an application server part that implements the service, and an
application server main (driver) part which actually creates and runs the application server as a
separate process and provides all the functionality needed at the server side.

The application client class inherits from the DCEInterface class and the application server class
inherits from the DCEInterfaceMgr and the DCEObj to use the default functionality provided in
the parent classes. Alternately, they can modify the inherited methods to achieve the needed
behavior. There will be a global instance of the server class which the server driver users. These
four generic classes, along with the Interface Definition Language (IDL), C and C++ (limited)
language bindings to the IDL provide all the functionality for the application programmer to
develop client/server applications.

In DCE, the interfaces are defined using the DCE Interface Definition Language and are processed
by a compiler called IDL, which generates system data structures and communication stubs for
which generates system data structures and communication stubs for the client and server. OODCE
uses the same IDL language, but an enhanced version of the compiler is used to process the
interface specification. The compiler program is called idl++. The idl++ compiler generates the
client and server stub and header files needed for a DCE RPC interface. idl++ also generates a
number of C++ files that provide communication between OODCE clients and servers. Even
though IDL++ generates C++ language stubs, it does not support interface inheritance and class
attributes.

OODCE enforces the following:

•	 Each defined RPC must use explicit binding management. In explicit binding, the binding
information (has the type 'handle_t') is passed as the first argument to remote procedures.
DCE IDL also supports the implicit and automatic binding modes; however they must not
be used in IDL files passed to the idl++ compiler. The functionality provided by implicit
and automatic binding is supported at higher level in OODCE.

•	 An interface version number must be specified so that idl++ can generate class names that
allow multiple versions of an interface to be used within an application without name
clashes.

•	 Custom binding is an IDL feature not readily supported by OODCE. This can be supported
at higher level and should not be specified in the IDL file.

4-180 305-CD-028-002

The application programmer carries all the interaction with the underlying core services like
Naming, Security, Threads, Time through the DOF for normal operations. Interfaces with these
underlying core services are also provided and explained in earlier sections, through which the
application programmer can tailor the application and to achieve finer grain control.

Table 4.3.4-1 describes the DOF classes.

Writing a Client/Server Application

The object framework provides the underlying infrastructure for remote object creation and
method invocation. This section explains the process of developing a client/server application
from the application developer's perspective. The development process can be divided into five
basic phases.

Table 4.3.4-1. DOF Object Responsibility Matrix
Class Name Description

ESO This class inherits from DCEServer and deals with the management of the objects
that implement the application interfaces. This class provides the functionality to
interact with the naming and security services. There will only be one instance of
this class in a process. An instance of this will be created and bound to a global
variable called theServer. Server main application uses this class to manage the
objects.

DCEInterface This class provides the basic functionality required at the client side. It includes
locating a service, binding and accessing the remote object managed by that
server. Application client class inherits from this class and as such inherits its
behavior.

DCEInterfaceMgr The DCEInterfaceMgr class is the base abstract class from which all generated
server side classes are derived. It encapsulates object and type information as
well as the endpoint vector (EPV) that is called by the RPC sub-system when an
incoming remote procedure is received.

DCEObj This class provides the concept of the Generic object that is a logical entity that
can have multiple interfaces. This class is used to collect related interfaces
together to form a DCE object. Object of this class can be registered with a Server
object.

Phase 1 consists of defining the interface between the client, and the server in a pseudo interface
definition language IDL. The interface expressed in IDL is then converted to stubs (written in a
high-level language like C++) using a compiler. The stub files contain classes whose methods
capture the behavior expressed in the IDL. The compiler generates the definition of two classes:
one for the client and one for the server. The class generated for the client is called a proxy class.
When an operation of this class is invoked, this operation in turn calls the corresponding operation
on the server class that actually implements the behavior of the operation (method). The server
side class acts as a manager class that takes calls and invokes the proper implementation of a
method. Client side code is developed by imbedding the client class and making calls to it. Server
class is embedded in the server code, which provides the actual implementation of the methods,
along with other private functions.

4-181 305-CD-028-002

Phase 2 consists of setting up the server to listen for incoming requests. On the server side, the
same interface can have different implementations. Each one is called a manager. Setting up the
server involves the following steps:

• Identify all the different implementations the server is going to support.

• Implement methods for each implementation (provide code for the methods)

• Identify the protocols to be used in servicing the requests.

•	 Specify the maximum number of threads the service can run in order to execute the user
specified services concurrently.

• Register the authentication information.

•	 Establish the server identity (Reset the principal identity to the server principal name from
the principal that is actually running the service).

•	 Register (export) the binding information for each combination of the interface name
(UUID), protocol, and implementation in a central database.

•	 Obtain endpoints on the host for each such combination of the service and register them in
the endpoint mapper on the host.

• Start a separate thread and go into a listen loop and wait for incoming requests.

•	 Wait for the thread to finish, or wait for a shutdown message or user interrupt (kill signal)
and cleanup the central database by removing these services binding information and exit.

IDL File

Client

Libraries

IDL
Compiler

C Compiler
& Linker

Server
Header Header

Client Server
Stub Stub

Client Server
Code Code

Client Server
Executable Executable

Figure 4.3.4-1. Client/Server Application Development Process

4-182 305-CD-028-002

Phase 3 consists of a client binding to a service and invoking the service. The client obtains the
binding information (binding handle) from the central database by specifying a protocol and a
combination of a unique service name, a unique implementation type, a unique object name. The
client then specifies the security options and invokes the services using the binding handle. [The
arguments to the calls are marshaled and sent to the server.] This is a blocking call and as such, the
client waits for the results from the server.

Phase 4 consists of a server receiving a request and processing it. When the server receives a
request, [arguments passed are unmarshalled] it first authenticates the client and then wakes up the
appropriate manager to process the request. The manager in turn, obtains the users privileges and
compares them with the access control lists associated with the service to decide whether the user
can perform the operation or not and can return if the check fails. Otherwise, the manager calls
the appropriate method to process the request, [marshals the result] and returns the result back to
the caller and then goes into the wait loop waiting for other incoming requests.

In Phase 5, the client receives the result back from the server [and unmarshals it] and continue
execution.

4.3.5 Dynamic Model Scenarios

4.3.5.1 Scenario #1

4.3.5.1.1 Abstract

This scenario traces the interactions of a client application, a Dataserver search client object, that
takes some search criteria and sends it to an application server, a Dataserver search server object,
running remotely that can perform the search request and return the results.

4.3.5.1.1 Interfaces

SDPS client application.

4.3.5.1.2 Stimulus

Users want to search a database given some search criteria and invokes the search method.

4.3.5.1.3 Desired Response

Results of the search should be returned to the client that then can be used to display a picture.

4.3.5.1.4 Participating Classes

ESO

DCEInterface

DCEInterfaceMgr

DCEObj

4.3.5.1.5 Pre-conditions

The SDPS Search interface is defined in the IDL file and is compiled using OODCE idl++
compiler, which will generate an abstract class definition from the IDL implementation and a

4-183 305-CD-028-002

concrete class definition that is derived from the abstract class on both the client and the server.
The search client and the search server are developed from these classes and compiled. The search
application server is running on a remote host. Its location is entered in the namespace so clients
can find it by a name. The search method is protected by Access Control Lists so only authorized
clients can invoke this method.

4.3.5.1.6 Post-conditions

The results of the search are returned to the application client.

4.3.5.1.7 Scenario Description

The client application creates a proxy object of the search server with the given search server name.
The constructor (inherited from the interface class) consults the central namespace to find the
location of the server (unique name given to the server) and binds to it. The proxy object is returned
to the client application. The client application then invokes an operation on the proxy object. The
proxy object in turn forwards that call to the server manager. The server manager application first
gets the client's privilege certificate and consults the security server to authenticate the client. The
server manager then invokes the appropriate server implementation method passing the arguments.
The actual implementation method gets the client's privileges and consults the security server
(ACL Manager calls) to check whether the client is authorized to invoke the method. The server
code executes the search request, and returns the results back to the client.

4.3.5.1.8 Event Trace

4.3.5.2 Scenario #2

4.3.5.2.1 Abstract

A server object is running and is registered in the namespace. When the client object is constructed,
location information can be supplied to the constructor via arguments. By default no location
information is required, in which case any manager object that implements the required interface
will be found and used. In this scenario when the search client is constructed, location information
is supplied in the constructor using the CDS name. This name can refer to a server, a group, or a
profile.

4.3.5.2.2 Interfaces

SDPS client application.

4.3.5.2.3 Stimulus

Create a proxy object and provide a CDS Name to locate manager objects. The name can be a serv
er, a group or a profile.

4.3.5.2.4 Desired Response

Find the desired manager object.

4-184 305-CD-028-002

4.3.5.2.5 Participating Classes

ESO

DCEInterface

DCEInterfaceMgr

DCEObj

Client Client Server Server
Application Object CDS Main() Security Object

constructor

service location

binding

lookup

operation()
authentication

ack
operation()

authorization

ack
results are returned

host location

obj is returned

operation()

Figure 4.3.5-1. Distributed Object Framework Event Trace

4-185 305-CD-028-002

4.3.5.2.6 Pre-conditions

CDS up and running

4.3.5.2.7 Post-conditions

The client object locates the manager object given the CDS name.

4.3.5.2.8 Scenario Description

A server object is running and is registered in the namespace. A caller creates a proxy object
supplying a logical name (CDS name). The client runtime consults the namespace, obtains partial
binding information. Consults the endpoint mapper and obtains the port number. Gets all the
binding information and bind to the server. Now any calls made to the proxy object are routed to
the real server object.

4-186 305-CD-028-002

4.3.5.2.9 Event Trace

Client Client Client Server Server
Application Object

operation()

Consults EPV

Returns Port #

Gets a complete Binding and binds
to the Server

Gets partial
binding

Consult
CDS

Construct

Runtime CDS EPV Main() Object

Constructor

operation()

operation()

Figure 4.3.5-2. Distributed Object Framework Event Trace

4.3.5.3 Scenario #3

4.3.5.3.1 Abstract

A proxy object is created with no arguments. When the SDPS search client object is constructed,
location information is supplied to the constructor using the interface as an implicit argument.

4.3.5.3.2 Interfaces

SDPS client application.

4-187 305-CD-028-002

4.3.5.3.3 Stimulus

Create a proxy object and provide the interface to locate SDPS server manager objects.

4.3.5.3.4 Desired Response

Find the desired manager object.

4.3.5.3.5 Participating Classes

ESO

DCEInterface

DCEInterfaceMgr

DCEObj

4.3.5.3.6 Pre-conditions

CDS up and running.

4.3.5.3.7 Post-conditions

Any object that implements the requested interface will be bound.

4.3.5.3.8 Scenario Description

Client runtime knows the interface id of the distributed object. It consults the namespace and finds
the first SDPS search server object whose interface matches the interface id that it is looking for
and gets the binding information (from the port map also). The search client proxy binds to the
server object.

Calls made to the proxy are routed to the search server object and results are returned back to the
search client application through the proxy.

4.3.5.3.9 Event Trace

4.3.5.4 Scenario #4

4.3.5.4.1 Abstract

There can be any number of failures while creating and invoking methods on a remote application,
such as, network and communication errors. The application, either the client or the server portion
of it, need to be able to detect and process such failures.

The OODCE library uses C++ exceptions as the model for error handling. This provides a clean
and consistent model for dealing with problems that can occur when using DCE. The caller of the
OODCE library should be prepare to handle exceptions that are raised within the library. All
OODCE calls including constructors should be surrounded by a C++ try/catch clause.

4.3.5.4.2 DCEInterface

SDPS client application.

4-188 305-CD-028-002

4.3.5.4.3 Stimulus

An error occurred within the client (proxy) code.

Client
Client CDS Server Server

Application

Find
Interface ID

operation()

Return Binding

Bind to the Server

Object
Main() Object

constructor

operation()

operation()

Figure 4.3.5-3. Distributed Object Framework Event Trace

4.3.5.4.4 Desired Response

A fatal condition is trapped and transmitted to the user.

4.3.5.4.5 Participating Classes

ESO

DCEInterface

4-189 305-CD-028-002

DCEInterfaceMgr

DCEObj

4.3.5.4.6 Pre-conditions

Setup a try block to catch exceptions prior to constructing a client object and calling the member
function that invokes the remote procedure on the server side object.

4.3.5.4.7 Post-conditions

Exceptions are caught.

4.3.5.4.8 Scenario Description

This scenario shows the use of the try/catch clause. The creation of the proxy and the invocation
calls are encapsulated in a C++ try block with a corresponding catch clause. Any communication/
status errors result in C++ exceptions and is caught by the application programmer to act
appropriately.

The catch block traps any DCE errors that may occur during the execution of the server main
function. An exception type is converted into a character string and a user message is printed. In
general, every public status code defined by DCE has a corresponding exception class in OODCE.
Each of these classes can be converted back into a status code (error_status_t) or to a character
string that describes the error and the DCE subsystem that generated it. Since specific exception
classes exist for each DCE status code, specific DCE fault conditions can be trapped and
processed.

4.3.5.4.9 Event Trace

4.3.5.5 Scenario #5

4.3.5.5.1 Abstract

Creating a factory manager object to allow for the creation and deletion of other manager objects
(sessions objects) provided by the server.

Objects that are declared before the call to server listen are static and are available when the server
program executes. OODCE allows objects to be created or activated dynamically (that is while the
server program is listening for client requests) on behalf of a client. This scenario describes
creating a factory object that will be able to create proxy objects, and the next scenario (#6)
describes object activation.

The application programmer using OODCE is able to create manager objects within a server
process. Creation is different than activation in that assumes that an object has already been
created. OODCE can support a factory by specifying an IDL interface for a factory object. The
factory manager object on the server is then responsible for creating other manager objects
provided by the server. For example, consider the case of the dataserver interface. The class
DsDdRequesManagerS represents a factory server object, and its job is to create
DsDdDistRequestS manager objects.

4-190 305-CD-028-002

Client Client Server Server DCE
Application Object CDS

Main() Object Exception

operation()

operation()

operation()

Host Location

Bind to the Server

Setup try blcok for exceptions

Lookup

Host Location Binding

Service Location

Object is
returned

Results are returned

End of try block

Catch

If there are exceptions, return them

Figure 4.3.5-4. Distributed Object Framework Event Trace

To allow for factory objects the support of different object types, the programmer can assign the
application interface UUID to the factory object UUID. The interface UUID will be common to all
the newly created objects, but each object type will be identified by a different object UUID. For
example, take the case of the dataserver, this object will have an interface identifier, but there is
one dataserver per DAAC. Each one of them will have the same interface UUID but a unique object
UUID. When the user tries to connect to the dataserver in Alaska, it needs to supply the object
UUID in order to be able to locate it (the interface id will be implicitly supplied at the construction
time.

Factories can also be used to store information related to each manager object that was created.

4-191 305-CD-028-002

4.3.5.5.2 Interfaces

SDPS client application.

4.3.5.5.3 Stimulus

An object needs to get created.

4.3.5.5.4 Desired Response

A factory object gets created and is registered with the Global Server Object (GSO).

4.3.5.5.5 Participating Classes

ESO

DCEInterface

DCEInterfaceMgr

DCEObj

4.3.5.5.6 Pre-conditions

The object is not declared before the call to server listen (so it needs to be created dynamically).

4.3.5.5.7 Post-conditions

A factory object gets created and is registered with the GSO.

4.3.5.5.8 Scenario Description

This scenario shows how a factory object on the server creates and deletes other manager objects
to be managed by the server. The interface definition language file for the factory provides RPC
specifications (methods) for creating and deleting objects at the server side using object references.

The factory server is brought up, that is, an instance of the factory manager object,
'Factory_1_0_Mgr' (a class generated by the IDL compiler) is created, registered with the GSO and
set to listen. Its job is to create and delete proxy objects.

By means of the factory manager an application client can create other manager objects (within the
server program) when the application client object is constructed. The client application constructs
a factory client object which creates an instance of the factory object to allow for creation of
application objects. Using this newly created factory object, the factory client invokes the method
'Create' at the server side. A new application manager object is created by the factory manager
object, which inherits from the IDL generated class 'application_1_0_Mgr', and gets registered
with the GSO (which in turns, registers it with the runtime to take incoming calls). The factory
manager object returns back a reference to the created object. This object reference is used by the
factory client object to set the binding handle, and to initialize the binding information of the client
object to refer to the application manager object just created by the factory. The client application
is then able to make remote calls.

The application manager object gets deleted when the client object's destructor is run.

4-192 305-CD-028-002

4.3.5.5.9 Event Trace

Server Factory

Main() Object GSO Endpoint Map

Return

Create Factory
Object Using

UUID

Request the Factory
Object be

Registered with
the GSO

GSO

Register the Factory
Object with the

Register interface
and Object
Information

Figure 4.3.5-5. Distributed Object Framework Event Trace

4.3.5.6 Scenario #6

4.3.5.6.1 Abstract

Creating an activation object, attaching it to the server object, and registering it with the GSO.

If a server program manages a large number of DCE objects, it can be impractical to have all of its
objects active at the same time. Activation is different from creation because it assumes that the
object has already been created and initialized but is not currently active or available for clients to
use (it is in a passive state). Object activation allows a server designer to choose when it is
appropriate to activate an object (normally when a client needs to use it) and do this independent
of when a server program is started.

4-193 305-CD-028-002

Activation is generally associated with persistent storage. When an object is passive, it usually
means that its state has been saved in long term storage (i.e.: a file system or database). OODCE
does not provide persistent storage of an object's state, but can work with persistent store
implementations like object databases to achieve the semantics of object activation. The
application programmer needs to provide the read/write methods of the object's state to the UNIX
file system.

For an object to be activated, the DCE object UUID is required to identify the object to be
activated. OODCE defines an abstract class called Activation that provides an abstraction onto the
activation of manager objects. You need to derive a concrete class from the Activation class and
provide an implementation that performs the activation for a specific object class or set of classes.
This implementation locates the object state based on the DCE object UUID, creates a new
manager object for the class associated with the Object UUID, initializes the new manager object
with the state and registers it with the GSO.

4.3.5.6.2 Interfaces

SDPS client application.

4.3.5.6.3 Stimulus

An object needs to get activated.

4.3.5.6.4 Desired Response

Object is activated.

4.3.5.6.5 Participating Classes

ESO

DCEInterface

DCEInterfaceMgr

DCEObj

4.3.5.6.6 Pre-conditions

The object has already been created and initialized but it is not currently active or available for
clients to use. Its state information was saved on disk.

4.3.5.6.7 Post-conditions

Object is activated, its state information is recovered from the disk.

4.3.5.6.8 Scenario Description

This scenario will demonstrate how to locate the object state based on the UUID, create a new
manager object for the class associated with the object UUID, initialize the new manager object
with the state, and register the manager object with the GSO.

For an application to support Activation, a server program must register an activation object
implementation with the GSO. This is done in the server program's main function. It sets an
activation object by passing the application interface UUID. Then the server is set to listen. When

4-194 305-CD-028-002

the server main code executes, it creates an application server with a single manager object. An
activation object is registered with the GSO using the SetActivationObject member function. This
function is called with the activation object and an interface UUID. Activation is done when a
client makes a call on an interface. The GSO needs to know which interfaces support activation. In
this scenario activation only occurs when a client object makes a call to the server program.

SetActivationObject can be called more than once for different interfaces or a vector of interface
UUIDs can be passed to the member function instead of a single UUID.

Once the server program has been started and the initial manager object has been registered in the
endpoint map, any application client program can activate that manager object if necessary.

To implement Activation, the manager object needs to define a class that is derived from the base
DCEActivation abstract class. This new class must be implemented to support activation of
application objects. In general a single member function needs to be implemented called
ActivateObject. The ActivateObject member function takes a DCEActivationResultT structure.
Checks to see if the object state is stored in the file system, initializes the activation result and
creates a new application manager object by passing the object UUID to the constructor. This
UUID is used to check if the object was previously created, if so, its state is read from the file,
otherwise, the state is set to zero. The constructor initializes the object state from the file system.
Then registers the application manager object with the GSO and returns back the activation result.
Before the constructor exits, it creates a thread whose job will be to periodically check the object
states every certain period. If there have been no client requests on the manager object between two
checkpoints, its state (any type of information, i.e. a math computation) is stored in a UNIX file
system and the manager object is unregistered from the server program. If a client request is made
on this manager object, the object is reactivated from its persistent storage (store state of the file
system) for further bookkeeping/maintenance.

4.3.5.6.9 Event Trace

See Figure 4.3.5-6.

4.3.6 Implementation

COTS products are available that implement this architecture. Some of them are not mature, and
some of them do not provide the full object functionality. It has been recommended that an
encapsulated DCE (using OODCE) be used now which provides security, object oriented
capabilities, and a high degree of interoperability, and migrate to a CORBA product in Release C.
Encapsulated DCE will provide all the functionality described in DOF.

4-195 305-CD-028-002

Client
Application

Client
Object

Server
Main

Manager/Server
Object

GSO

If there are no
client requests,

deactivation of the
manager obj occurs

constructor

service location

binding

lookup

operation()

operation()

results are returned

host location

obj is returned

operation()

Activation object is
registered with the

GSO Exported/Registered

no client requests ==> deactivate

state of object = passive

manager object gets
activated. It is registered with the GSO

state of obj = active

Figure 4.3.5-6. Distributed Object Framework Event Trace

4-196
305-C

D
-028-002

4.3.7 Service/CSCI Management and Operation

4.3.7.1 System Management and Strategy

The whole object framework consists of a set of core services with distinct functionality to make
the development of the distributed applications easier. The core services are naming, security,
threads, time, and RPC. Please refer to each individual service description for more details.

4.3.7.2 Operator Interface

Not applicable.

4.3.7.3 Reports

None.

4.3.8 Frequently Asked Questions

Some of the Frequently Asked Questions (FAQ) included in this section are taken from the OSF
DCE FAQ. We have included those that are directly relevant to ECS. Refer to the OSF Web Page
(http://www.osf.org/dce/faq-mauney.html) for the most up to date and complete version of the
FAQ.

1) 	 How a proxy object can reach a particular server object instance? How to create a proxy
using the object UUID?

There may be several instances of an object. They all share the same interface UUID, but
the object UUID will be different. The proxy object will need to use the object UUID to
identify the specific server (the interface UUID is implicitly used in the call).

For example, going back to the Dataserver example, if there is one Dataserver running at
each DAAC site and they all share the same interface id, in order to locate the one in
Alaska, the caller needs to use the appropriate object id.

2) When session objects (server objects) should be deleted?

When an application programmer creates a session object on the server side, it is the
responsibility of the calling application (client) to delete these objects when done

If the lifetime of these objects exceeds the application lifetime, then the application must
be coded such that it remembers that information when creating server (manager) objects,
and when the application comes up next time, it can either use the existing server objects
or destroy them.

3) What is meant by combining interfaces?

OODCE IDL doesn't support interface inheritance. If the programmer wants to combine
several classes into one (a new class inheriting from all the classes) then it must be done
outside of the IDL specification. First the programmer generates the IDL files and
generates the server and client stubs separately. Then a new C++ class can be created which
inherits from these IDL generated classes. This is done at both the client and the server side.
The new object, which inherits from the IDL generated stubs, creates individual interface
objects.

4-197 305-CD-028-002

When the user creates one of these composite proxy (client) classes, it binds to the
respective server objects. Calls made to the client objects relay the calls like before to the
appropriate server objects. In order to relate the server objects, it may be necessary to
maintain some information common to all of them.

4) 	 How to set security preferences?

Please refer to the Security Section, 4.2.2.

5) 	 How to create and attach refmon objects to server objects?

Please refer to the Security Section, 4.2.2.

6) 	 How to check authorization?

Please refer to the Security Section, 4.2.2.

7) 	 How to detect when a server has died and how to take appropriate action (communicating
OODCE Exceptions from Server to Client)?

By default, the server uses exceptions to communicate errors to the client. There are two
ways to find server failures as described below:

a.	 Propagate exceptions raised by the OODCE library directly to the client program
without translation. This happens automatically if the server does not catch the
exception. In this case the client must recognize and handle OODCE errors directly.

b.	 The server program catches an OODCE library exception and translates it into an
application-specific exception that the client program is more likely to know how to
handle.

In general the second approach is recommended, although there might be situations where
the first approach is more desirable.

There are a few exceptions converting errors to exceptions. When a server dies, the
application can not convert the status to an exception and propagate it. In this case, the only
way for the client to find out is to explicitly receive the status as an argument of the call and
check it for server failure errors.

A call can have an additional communication status parameter. A client makes a call and
waits for the server to finish processing. When the server dies at this point, control returns
back to the client immediately with the failed communication status. The client can then
check the communication status and decide what it should do. The status parameter can be
added automatically to every call in the stub by generating another type of file called the
Attribute Configuration File (ACF), which needs to be generated by the application
programmer. For example, consider the 'sleeper.acf' attribute configuration file:

interface sleeper

{

Sleep([comm_status,fault_status] st);

}

The Sleep call uses 'comm_status' and 'fault status' attributes. This controls the behavior of
the stub code. 'comm_status' indicates that communication problems should be returned to
the RPC caller as a DCE error in the 'st' parameter; 'fault status' causes fault in the server

4-198 305-CD-028-002

(such as data segmentation fault' in the manager routine) to be sent back as a DCE error in
the st parameter. The 'st' parameter must be defined as an output parameter in the 'idl' file.

Another way to detect whether a server died, is when a server application creates a server
object in its address space, to constantly watch when the last interaction with that server
object took place. After a certain predetermined period of inactivity, the factory object that
originally created that server object can delete that object.

Once, the communication with a server results in a failure the client object can be instructed
to attempt a rebind. The method 'SetRebind' with the parameter 'attemp_rebind' will allow
the client object to attempt to rebind and replay the failed operation. The default rebind
algorithm is to first reset the endpoint on the binding handle used. If this fails, then an
attempt is made to obtain a new binding (which could mean going to a totally different
server). Rebind is attempted once if the rebind of the replaying of the failed operation
presents another failure and an exception is passed to the client.

8) How to detect when a client has died and how to take appropriate action?

When a server receives a call, it processes the request, and returns the result back. If the
client dies in between, at the time of returning the result back, the server would find that the
client is not there anymore.

The context handle provides this ability. When a context handle is created and passed to the
client, the DCE runtime library keeps track of the connection between client and server; this
may be done in the network code as in the case of TCP, or by DCE-specific ping messages
if a connectionless protocol is used. When the client dies, the server is notified and executes
a "rundown" function to clean up its data structures.

If ECS applications maintain their own queues, then the client is really not waiting for the
server to process the call. The duration of the call is going to be very small, and the server
is going to find that the client connection is broken.

If the processing involves some time, and the client is waiting for the return value during
this processing, then the server needs to know the failure of a client as soon as possible (to
stop further processing); this can be handled by passing client specific information. With
DCE RPC, the solution is to associate the context with a 'context handle'. When the first
call is made, the server allocates some kind of data structure that describes the current state
of processing associated with that particular request and sets the context handle to point to
it. Then the call returns, the context handle is returned as an output. The client then provides
the handle on all subsequent calls. This allows the server to find the appropriate context. In
IDL, context handles are declared by using a void pointer and the 'context_handle' attribute:
typedef [context_handle] void *context_hdl_t;

It is important to know that context handles are associated by the runtime with specific
servers. In DCE terminology, context handles carry binding information. A server that uses
context_handle should provide a context rundown routine (a user defined function). This
routine will be called by the RPC runtime if the connection to the client is broken
(asynchronous notification during server processing). The purpose of the routine is to clear
any resources associated with the context. Otherwise, the server would accumulate obsolete
context information and perhaps eventually run out of memory or some other resource. The

4-199 305-CD-028-002

context rundown routine is identified by its name, which must consists of the context
handle type name followed by '_rundown'. The rundown routine has one parameter which
is the context handle to run down. Naturally the type of parameter is the declared context
handle type. If the server uses more than one type of context handles, it should provide a
rundown routine for each one.

OODCE produces the client/server stubs in a fixed way without this context handle as one
of its default arguments in the method. CSS can not automatically include this argument in
each of the application provided methods, as the stubs are generated from the compiler.
Any change in the way the stubs are produced, should involve modifications to the
compiler. The application programmer needs to modify manually the stubs to include a
context handle, and define a new rundown method which will be called upon breaking a
connection with a client.

9) How to pass an object as an argument in an RPC call?

The communications infrastructure selected for the development of client/server
applications is OODCE. OODCE uses an RPC mechanism to invoke functions on objects
residing in different address spaces. Object passing, on the other hand, involves converting
the object into a common network representation, passing it to the other object in a different
address space, where the original representation is recovered (unmarshalled), and
recreating the object at the receiving end. In order to do that, the IDL compiler should have
the knowledge of the structure of the object that is being passed. OODCE doesn't support
object passing in the versions to be used for release A, but does support an interim
alternative to support this type of functionality.

In a distributed environment, desired functionality can be achieved without passing objects
between applications, as objects are reachable (as such methods in them are invocable)
from other applications. Some times, efficiency demands moving an object to a different
application. In order to achieve object passing, the application programmer can define
operator methods to convert an object into a common network format and from the
common network format back to an object. The definitions of remote procedure call should
be changed to change the type of the argument from an object to a byte stream. Then when
a remote call is made with the actual object as an argument, the object is then cast (implicit
conversion) to a byte stream and sent to the receiving object. The receiving object after
receiving this byte stream, converts it into the proper object. DCE 1.2 is currently planning
to support XIDL compiler which supports object passing in RPC calls. Until then, it is the
responsibility of the application programmer to provide methods to convert the object into
/ from a byte stream.

In order to provide the functionality to send an object or any of its descendants, the
receiving application should be able to distinguish which object it is receiving. For
example, if CERES and ASTER are two objects inheriting from a generic
DATAGRANULE object. The receiving object's call signature will contain a type
DATAGRANULE. Now in order to distinguish the actual object that it has received, the
receiving application needs to have some indication of the type of actual object. This can
be achieved by the sending application prepending a token like CERES or ASTER to the
byte stream before sending it to the receiver. The receiver after examining the first token

4-200 305-CD-028-002

in the byte stream, constructs the appropriate object and recover its state information from
the remaining byte stream. Another way to achieve this is by inheriting all the objects from
the RogueWave class RWCollectable class. This class provides the necessary token
information so that recovery of the object is easier for the application programmer.

10) How to deal when operating in several environments simultaneously?

When Release A is in operational mode, we will need to test the next release
simultaneously. While it is possible to carry on the testing in a separate environment, it is
very expensive to maintain two sets of hardware environments. Running both the
operational and testing in the same environment poses some problems. This section
addresses some of them and explains how to deal with them.

Each server application consists of one or more server objects. Server objects (all instances
of a given server object) are identified by a unique interface identifier. This identifier is the
same for all the instances of a particular server object. For example, all the Dataserver
Server objects have the same identifier. In ECS we may have more than one Dataserver
object. These individual instances are identified by another unique identifier (object UUID)
to distinguish among the instances of Dataserver. Together, these two identifiers are
enough to identify an instance of a server object. Server applications (NOTE: server
applications and not server objects) also can be denoted by logical names. When a server
comes up, the binding information that is needed for clients to reach them are saved in a
central namespace with the above information. The identifiers and the logical names act as
database keys to retrieve the binding information from the database.

Each interface (class) is also denoted by a version number consisting of two numbers: a
major version and a minor version. Like operating system version numbers, the version
number provides information to clients about compatibility. A change in the major version
indicates that the previous version is not compatible with the new version of the server
object. As such client applications compiled with the previous definition of the object can
not bind to the newer version and invoke calls. On the other hand, an increase in the minor
version indicates upward compatibility with previous versions of the server objects. A
client compiler with a lower minor version can still reach a server object whose minor
version is greater than the one in the client application. The version number is part of the
IDL specification and is included in the stubs (client and server) generated by the IDL
compiler.

A client can bind to a server object in various ways depending on the arguments that the
client (proxy) object takes at construction time as explained in the previous scenarios:

a.	 With no arguments - uses the interface identifier of the server object and binds to the
first server object that it can find in the namespace

b.	 With the logical name (CDS name) - finds the object associated with the logical name
and binds to that server. The logical name is for the server application which can
contain more than one instances of a server object. In this case, the proxy binds to any
of the server objects (of a particular interface/class) present in that application.

4-201 305-CD-028-002

c.	 With an object identifier (object reference) - finds an object whose interface and object
identifier matches with the given information. This is the only way to find and bind to
a particular instance of a server object.

d.	 With the host address and the protocol sequence. The client object will go to the host
porter and try to find a server program that implements its object. Once a server
program has been located (using the Endpoint Map on porter) an object associated with
the server is chosen to handle the client request.

Refer to the MSS documentation for details on how Mode Management will be
implemented by ECS applications using some of the ideas presented here.

11) How to get binding information?

A client must locate a server compatible with it, this is called binding. The runtime routines
that have to do with the use of the DCE Directory Service for the purpose of storing and
retrieving binding information are collectively called the Name Service Interface (NSI).

A partially bound binding handle refers to a protocol sequence and server host (but not to
an endpoint). The binding to a server cannot complete until an endpoint is found. A
binding handle that is partially bound corresponds to a server system but not a server
process on that system. When a partially bound binding handle is passed to the RPC
runtime library, an endpoint is automatically obtained for you from the interface or the
endpoint map on the server's system. A a binding handle that has an endpoint as part of its
binding information is called a fully bound binding handle.

You can use the DCEInterface class (GetBinding) to return the current binding information
(rpc_binding_handle_t). Also you can use DCEObjectReference Class (DCEGetBindings)
and pass an object reference to obtain the RPC binding handle back.

The NSIObject base class defines the common behaviors of all objects in the directory,
regardless of whether they are server entries, groups, profiles, or other types of objects. An
NSIObject can access bindings associated with the entry in the directory namespace,
possible recursively if the object actually refers to a group or profile. A method is provided
to retrieve a vector of binding handles either as an rpc_binding_vector_t or a
BindingVector class.

Each NSIObject has an associated confidence level, indicating whether requests to the
object can use cached data. A confidence of LOW indicates that the NSIObject or any
derived class can do internal class caching; a confidence of MED indicates that the class
itself cannot cache, but the CDS clerk cache may be used; a confidence of HIGH means do
not use even the CDS cache, instead all request should go directly to the directory. The
default provided by NSIObject is LOW to allow the class library to cache for improved
performance.

12) How to reclaim unused server sessions objects?

Need to record time of last access. Server application periodically polls and deletes the
objects that are older than a certain period.

4-202 305-CD-028-002

13) Do two instances of the same server object share ACL files?

Two instances of the same server object do not share ACL files unless they are in the same
process. The problem is maintaining consistency between the application and the acl_edit.
Please refer to the Security Section, 4.2.2.

14) What happens if there is a version mismatch?

The version consists of two numbers separated by a dot. The first is the major version and
the second is the minor version. Like the UUID, the version is used in the binding process.
A client and a server are compatible only if the major versions are the same. In addition,
the minor version of the server must be newer (higher) or equal to that of the client. If the
minor version is higher, it indicates a compatible upgrade to the interface (interfaces that
share the same major number and have a higher minor number are fully compatible with
interfaces that have a lower minor number). Because the version of an interface is so
significant, the DCE interface names include both a UUID and its version.

The logic behind this is that in some sense the server owns the interface. It implements the
service and determines how it works. The client must take it or leave it. Thus, the server is
never modified to respond to changes in the client, but the client may need to be modified
if incompatible changes are made to the server. So when modifying the server, the rule is:
if the changes are upwardly compatible (old clients will still work), increment the minor
version only. If the changes are not upwardly compatible, increment the major number and
set the minor version to zero.

FAQ #10 also describes the version attribute.

15) What is meant by an interface in DCE RPC?

An interface is a set of remote procedure call operations and associated data. Every
interface contains one or more operations. An operation is an actual remote procedure.
Each operation may have input and output parameters associated with it, just like any
procedure call.

16) Can a DCE client import multiple interfaces?

Yes. A client can use as many different services as it needs.

17) Can a DCE client connect to multiple servers?

Yes. A client can connect to multiple servers providing different services, and/or multiple
servers providing the same service. To use multiple servers with the same interface, the
client must obtain a binding handle for each server and use explicit handles in the RPC.

18) Can a DCE server export multiple interfaces?

Yes. A server can provide service on multiple interfaces simultaneously. A common
example is a server which exports an application interface and a management interface.

19) Can a process be both a server and a client?

Yes. There are two scenarios.

- A program might act as a server for interface A, and also as a client for interface B. This
is easy. The program merely imports interface B like a normal client and exports
interface A like a normal server.

4-203 305-CD-028-002

- A program might want to provide a service, and also act as a client to other servers that
provide the same service. In this case, the programmer must expend more effort. The
problem is that the names of the server-side functions (manager routines) clash with the
names of the client stubs. The solution is to manually build an endpoint vector for the
server, and use different names for the manager routines. For details on using endpoint
vectors, see the Lockhart book.

Note that most server programs also act as clients, since they usually access the endpoint
mapper (rpcd), and the security service; these actions use RPCs, though it may not be
obvious in the code.

20) How do I perform asynchronous RPC?

DCE-RPC is synchronous. The way to make an asynchronous call is to create a thread for
each RPC call. You should be able to have dozens, if not hundreds, of threads with no
problem.

21) How can a server keep track of multiple clients?

For example, to know what information has already been provided to a client, and thus vary
subsequent responses.

The DCE RPC mechanism includes a "context handle" which can be created by a server
and returned to a client. The handle is used on subsequent RPCs to identify the client.

22) How efficient is DCE RPC?

Performance testing at several user organizations has shown that DCE RPC performance is
similiar to other RPC implementations when doing the same things. The throughput and
response times for a series of remote procedure calls is similiar.

The use of features in DCE not present in other implementations may consume additional
time and resources. For example, name-based binding may required additional time,
depending on the number of directories traversed. Using the packet integrity and packet
privacy features of the security service can increase processing times as a linear function of
message sizes.

There are three papers providing preliminary performance data published in:

DCE--The OSF Distributed Computing Environment, Lecture Notes in Computer Science
#731, Springer-Verlag.

IBM has done quite a bit of performance testing of DCE. Many of the reports are available
on line; go to IBM's corporate Web page, http://www.ibm.com, and choose the search
feature to search for something like "dce performance". To summarize a few of the results
in these reports:

RPC time increases linearly with the size of the data.

Passing a large array in one RPC call is about the same speed as using a pipe

assing a large array in several RPC calls is slower than a single call using a pipe

The "packet integrity" security level slows the RPC, nearly doubling the total time for calls.

The "packet privacy" level incurs a several-fold increase in time.

RPC is slower than simply making socket calls directly.

4-204 305-CD-028-002

The time spent on RPC overhead was a small fraction of the total

processing time in a realistic business scenario.

RPC is pretty fast on Intel procesors (running OS/2).

23) The DCE threads uses draft 4 of the standard, but DCE threads standard has moved beyond
draft 4. Will DCE change to the most recent standard?

It is hard to predict exactly what will happen. But OSF prefers to follow standards rather
then invent them. Once the threads document is approved as a standard, it would be obvious
for the DCE to migrate to it.

24) Is DCE IDL the same as all the other IDLs in the world?

No.

IDL stands for "Interface Definition Language," and the idea of using a special language to
define the interface between entities is not unique to DCE. In particular, CORBA's IDL is
used for the same purpose as DCE's, but the two languages are not identical; see Q26 for
more information. There are other Interface Definition Languages as well. IDL also stands
for "Interactive Data Language", which is a completely unrelated product.

When asking or answering a question about IDL, one should be careful about specifying
which IDL is involved.

25) Can I move idl-compiled stubs from one platform to another and rebuild the object files
locally?

No. You must run the IDL compiler separately on each platform.

The IDL compiler builds the client and server stubs to handle network communication and
data marshalling, which are platform- specific activities. Therefore the stub code is not
portable and must be re-created on each platform.

Likewise, while the task of the stub does not change, the set of service routines called from
the stub may be changed by the vendor for any given platform. Therefore stubs for the same
RPC may look very different on different platforms.

26) Does DCE Security interoperate with other Kerberos systems?

Basically, no, or maybe yes, depending on what you want to do. To use authenticated DCE
services, you must have credentials from the DCE security service; vanilla Kerberos v5
tickets aren't sufficient. But then, to use DCE services you must be using DCE RPC, so this
is not really a problem.

Going the other way, it is expected that a DCE security server can issue tickets that can be
used by vanilla Kerberos applications. The OSF was wary of promising this until the
Kerberos v5 specs were published, but now that the Kerberos RFC has been published,
OSF anticipates guaranteeing interoperability sometime "soon".

In a little more detail, the way to think about this is as follows:

Kerberos offers 2 services (Authentication Service, Ticket Granting Service) over 1
communication mechanism (UDP port 88). DCE security offers 3 services (AS, TGS,
Privilege Service) over 2 communication mechanisms (UDP port 88, RPC). Where

4-205 305-CD-028-002

Kerberos and DCE security intersect (AS, TGS over UDP port 88), the services are
identical.

DCE V1.1 supports the GSSAPI, so non-DCE services that use GSSAPI can be integrated
with DCE security server.

27) Can I use DCE from C++?

Yes. First of all, since you can call C functions from C++ you can access all the DCE
services from a C++ program. But that will not give you the benefits of C++. OODCE
provides a C++ interface to DCE.

28) Can I write an application that uses DCE and X11/Motif?

Yes, but there are several serious pitfalls.

The X11/Xt/Motif libraries may not be thread-safe. For example, suppose one thread calls
a function in Xt, which calls a non-thread-safe malloc(), which then gets preempted. The
next thread may call a thread safe malloc() that comes with DCE. When control returns to
the first malloc(), any assumptions about the state of the heap are invalid.

Also, Motif/Xt/Xlib are not currently reentrant wrt/themselves. You can't have multiple
threads concurrently manipulating any Motif/Xt/Xlib global state. Fortunately this issue is
under you control when designing the application. X11R6 includes a thread-safe version of
Xlib, but it will be a while yet before the vendors are all delivering thread-safe Motif.

A related issue is that XtAppMainLoop() waits in a select() for activity, coupled with the
fact that DCE also waits in a select() for activity. Unless the two are select()s are
cooperating, one or the other will be starved. This is a platform-specific issue, you should
check with your DCE vendor for full details. If it is a problem in your environment, the
standard solution is to encapsulate the GUI in one process, the DCE client code in another
process, and connect them with a simple IPC such as a Unix pipe.

29) Is DCE an official standard?

OSF calls the specification an Application Environment Specification, or AES. The AES
documents both the software programming interfaces and also the communications
protocols employed by DCE. Thus it would be possible, in theory, for someone to build a
compatible implementation without using the code from OSF.

The AES for RPC, Time, and Directory services have been accepted as standards by X/
Open. The AES for Security is currently undergoing review.

DCE Threads follow the Posix Threads draft standard 1003.4a draft 4. DCE Access Control
Lists (ACLs) are based on POSIX.6 Draft 12. The Distributed Time Service (DTS) uses
time formats defined by international standards and in POSIX.4. The Global Directory
Service (GDS) complies with the X.500 international standard. (Although DCE complies
with the 1988 version of X.500, not the 1992 version.)

ISO is considering an RPC standard based on the X/Open document.

DCE's status as a de facto standard is even stronger. Almost every major hardware and
software vendor has committed to providing DCE on its platform. These vendors include
not only OSF stalwarts such as IBM, DEC and HP, but also other key vendors such Novell,
Inc. See Q 6 for a list of DCE vendors. In addition, a number of major user organizations

4-206 305-CD-028-002

(e.g., the European Economic Community) have already embraced DCE as their standard
for distributed applications.

30) What is the relationship between DCE and CORBA?

There is not a lot of direct relationship. DCE and CORBA are tools to help you build
distributed systems. Each has its advantages and disadvantages. Use of one will not hinder
future use of the other.

DCE provides a lower-level programming model than does CORBA. DCE is not fully
"Object-Oriented". DCE has far better inter-operability than (current) CORBA products.
DCE is an optional interoperability mechanism in the CORBA 2.0 specification.

In order to understand the relationship between DCE and the Common Object Request
Broker Architecture (CORBA) of the Object Management Group (OMG), it is necessary to
consider the past, the present and the future.

Past

Historically, the object paradigm has been viewed as a break with procedural styles of the
past. Objects, which encapsulate data and procedures behind an external interface, are often
contrasted with other approaches where procedures and data are treated separately.

In this context, DCE is a descendant of the procedural school which emphasizes the
decomposition of programs into procedures and achieves distribution by locating some of
those procedures remotely. Thus there was a tendency for the object community, including
the OMG, to view DCE as technology which was obsolete before it was available.

However this view ignored the fact that designers of distributed systems had for a long time
recognized that the most successful approach to developing distributed systems was to
created encapsulated objects that can only be accessed via well defined interfaces. Thus the
cornerstone of DCE RPC is the interface definition language (IDL) which allows the
external attributes of a set of server operations to be specified.

Furthermore, the name-based binding mechanisms of DCE were extended to include the
ability to bind to a server based on the object instances which it supports. These object
binding mechanisms also allow the transparent selection among multiple implementations
of the same server operations based on the type of the specified object. In object
terminology this is called polymorphism.

The DCE notion of a server supporting interfaces consisting of one or more operations is
so close to the notion of an object which provides one or more methods, that it should be
no surprise that CORBA defies an IDL which differs from DCE IDL in only a few
significant respects.

Principal among these is that in CORBA IDL every call must specify an object, which is
used in determining the server to use. DCE can do this as well, but there is more work
involved and it is optional. Another difference is that CORBA IDL allows an interface to
be defined as a extension of one or more other interfaces, this is called interface inheritance.
DCE does not permit interface inheritance, but may in the future. Implementation
inheritance is not specified by either DCE or CORBA.

4-207 305-CD-028-002

The use of object oriented techniques and principles should not be confused with using an
object oriented language. Object oriented designs can be expressed in procedural
languages, and in fact most of the current object environments supported C before
supporting C++ or Smalltalk. Therefore, the fact that the DCE API is implemented in C is
no barrier to using it to create a distributed object system. In fact, CORBA specified C
language bindings first.

Present

CORBA should not be viewed in isolation, but in the context of all of the OMG's
standardization efforts. OMG has defined a reference architecture (OMA) and has defined
or is defining standards in a broad range of areas, including: databases, events, lifecycle,
transactions, persistence, security, naming and relationships. Viewed in this way, OMG's
activities are much more ambitious and broader in scope than DCE.

A recent addition to CORBA, as a part of the CORBA 2.0 work was the definition of the
means of interoperability between ORBs. CORBA 2.0 defines one mandatory and two
optional mechanisms. The mandatory means is a new, lightweight protocol called UNO.
The optional means are 1) via a gateway and 2) via an alternative protocol definition. At
the present the only alternative protocol that has been defined is DCE RPC.

Many people who had hoped that DCE would be selected as the mandatory protocol were
disappointed at this result. However, it should be observed that DCE is endorsed as
alternative protocol and that several vendors have committed to providing ORBs that
interoperate via DCE.

Another difference between DCE and the OMG standards is one of general philosophy.
DCE has been defined quite rigorously in a series of documents published by X/Open.
There is a set of conformance tests that are available to anyone. Any product passing these
rigorous tests can be branded as DCE, without necessarily being based on the OSF code.
Several vendors, including Microsoft and Tandem have reverse engineered significant
portions of DCE.

OMG standards vary considerably in their level of detail, but in general, aim at a much
looser level of standardization. In some cases, the standard merely specifies an object
interface and some general semantics. This approach is a deliberate attempt to encourage
diverse solutions which may be applicable in different environments. Even where
specifications are relatively tight, for example in the area of CORBA portability, there is
still room for considerable interpretation, as witness the fact that there is at least one
company that provides consulting services on how to make CORBA applications compliant
in practice.

At the present time, CORBA-compliant products and products that work with them do not
provide a scalable infrastructure suitable for large environments. Key features such as
concurrency mechanisms, security and distributed transactions are not currently available.
In contrast, DCE provides proven heterogeneous interoperability and most of the
capabilities required by robust, production applications. Additional capabilities can be
obtained by means of third products, such as transaction monitors built upon DCE. This
situation will change over the next 2-3 years from a combination of standardization work
by OMG and new product development by vendors.

4-208 305-CD-028-002

Future

Most authorities agree that in the long term object technology will be the basis for building
large scale distributed systems. In addition to the principle of encapsulation, object- based
systems allow systems to be built up, evolve and be reconfigured as needed because of their
ability to dynamically bind requesters to objects that provide services.

There are many specific issues concerning the properties of distributed object systems that
are the subject of research and debate. It is also clear that there are some features of existing
local object environments and languages that will not scale effectively to large scale
distributed systems — dynamic inheritance is one. Never the less, the general direction of
the future is clear.

Clearly, the high level of interest in OMG defined standards comes not from current
products, but from their exciting future potential. There is a natural tendency to compare
DCE's current capabilities with the promise of CORBA's future. However, DCE is also
evolving and will likely add additional object oriented features in the future. For example,
HP is offering a DCE C++ class library which is expected to eventually become a standard
part of DCE.

Where DCE was built by integrating existing software, OMG has chosen by and large to
start with a clean sheet of paper. The idea is to be better able to implement object oriented
constructs without the baggage of features carried over from previous systems. However,
OMG faces great challenges. Object theory is currently in a great state of flux. Experts
disagree on very fundamental issues about what features are necessary, useful or harmful.

Developing standards under these conditions is extremely challenging. OMG's approach to
date has been to compromise and allow multiple alternatives. It is unclear whether this will
succeed in the long run.

Does the conclusion that future distributed systems will be object-based mean that it is a
mistake to build distributed systems today using DCE? The answer is no for several
reasons. First, many organizations cannot afford to do nothing for several years. End users
have pressing needs for robust, scalable systems today. For many organizations, waiting
would mean attempting to catch up with competitors who will have a tremendous head
start.

Second, as this brief discussion has shown, it is possible to employ object techniques when
developing distributed applications using DCE. Carefully designed systems will be able to
take advantage DCE features such as dynamic binding and polymorphism and converge
with CORBA-compliant systems as they mature.

Third, if object environments are to be successful in supporting industrial-strength
distributed systems, they will have to address the problems that DCE addresses. The skills
and techniques developed in working with DCE will be directly applicable to distributed
systems environments of the future. This applies not only software developers, but also to
operations personnel, planners, even business managers.

Further, the likelihood that DCE will be at least one technology for CORBA
interoperability, implies that the eventually migration of applications which use DCE
directly to an object environment should not present any insurmountable difficulties.

4-209 305-CD-028-002

Finally, your direct experience in developing and operating robust distributed systems will
provide you with great insight into the important characteristics of distributed systems
environments as they apply to your organization's applications. This knowledge is vital to
the shaping of successful tools of the future. History has shown that vendors and standards
bodies, left to their own devices, will often miss the mark.

4.4 Common Facility Services

4.4.1 Email

4.4.1.1 Overview

This service provides interactive (for operators) and development (API, for applications) interfaces
to manage electronic mail messages. An operator, for this discussion is defined as a member of the
M&O staff. It is not the intention of the ECS to provide interactive mail services or mail stores for
external end users. Interactive interfaces provide a full set of functionality, and are entirely COTS.
The API is limited in scope as it only addresses sending a message from within an application
("mail-enabled application") There is no identified requirement to provide a secure Email service.

4.4.1.2 Context

CSS is providing an object to manage the composing and sending of email. The ability to attach
files is also provided. The object interface encapsulates the interface to OTS mail (SMTP). There
are mail browsers and clients distributed with each vendor OS available for users.

4.4.1.3 Object Model

See Figure 4.4.1.3-1.

4.4.1.3.1 CsBBMailRelA Class

Parent Class:CsEmMailRelA

Public:Yes

Distributed Object:No

Purpose and Description:

Used to post messages to bulletin boards.

Attributes:

NNTPHost - Will hold the name of the NNTP host to send the message to.

Data Type:EcTChar[EcDShortStr]

Privilege:Private

Default Value:

4-210 305-CD-028-002

CsEmMailRelA

CsBBMailRelA

myHeaderList
myMessageBody
myAttachedFiles
myToList
myCCList
myBCCList

CsEmMailRelA()
~CsEmMailRelA()
AddTo(str:EcTChar*)
AddCC(str:EcTChar*)
AddBCC(str:EcTChar*)
Send()
Subject(str:EcTChar*)
AttachFile(str:EcTChar*)
AddMessage(str:EcTChar*)
AddHeader(str:EcTChar*)

NNTPHost

CsBBMailRelA()
~CsBBMailRelA()
SetNNTPHost(str:EcTChar*)
Send()

- : EcTChar*
- : EcTChar*
- : EcTChar*
- : EcTChar*
- : EcTChar*
- : EcTChar*

+
+
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus

- : EcTChar[EcDShortStr]

+
+
+ : EcUtStatus
+ : EcUtStatus

[Public]

[Public]

Figure 4.4.1.3-1. Email Service Object Model

Operations:

CsBBMailRelA - Constructor that will create object and send the specified message. It

will not delete any storage after the message has been sent.

Arguments:

Return Type:Void

Privilege:Public

Send - Will send the message in the current state. It will not delete any of the internally

stored data.

Arguments:

Return Type:EcUtStatus

Privilege:Public

4-211 305-CD-028-002

SetNNTPHost - Will set the NNTP host to post the message to.

Arguments:str:EcTChar*

Return Type:EcUtStatus

Privilege:Public

~CsBBMailRelA - Destructor.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The CsBBMailRelA class has associations with the following classes:
None

4.4.1.3.2 CsEmMailRelA Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

Used to send email to recipients.

Attributes:

myAttachedFiles - Internal stored (possibly uuencoded) message bodies.

Data Type:EcTChar*

Privilege:Private

Default Value:

myBCCList - Internal list of BCC recipients of the message.

Data Type:EcTChar*

Privilege:Private

Default Value:

myCCList - Internal list of CC's recipients of the message.

Data Type:EcTChar*

Privilege:Private

Default Value:

myHeaderList - Internal list of headers.

Data Type:EcTChar*

Privilege:Private

Default Value:

4-212 305-CD-028-002

myMessageBody - Internal copy of the message body.

Data Type:EcTChar*

Privilege:Private

Default Value:

myToList - Internal list of recipients of the message.

Data Type:EcTChar*

Privilege:Private

Default Value:

Operations:

AddBCC - Will add the name string to the list of BCC'd recipients. Commas may be used

to separate multiple usernames.

Arguments:str:EcTChar*

Return Type:EcUtStatus

Privilege:Public

AddCC - Will add the name string to the list of CC'd recipients. Commas may be used to

separate multiple usernames.

Arguments:str:EcTChar*

Return Type:EcUtStatus

Privilege:Public

AddHeader - Will add an arbitrary header line to the message, the entire line you wish to

appear in the header must be specified. Multiple calls will add multiple headers.

Arguments:str:EcTChar*

Return Type:EcUtStatus

Privilege:Public

AddMessage - Will add the text to the currently stored body of the message. If there are

attached files that have been already attached, calls to the AddMessage will add text after

the file.

Arguments:str:EcTChar*

Return Type:EcUtStatus

Privilege:Public

AddTo - Will add the name string to the list of recipients on the 'To:' line. Commas may

be used to separate multiple usernames.

Arguments:str:EcTChar*

Return Type:EcUtStatus

Privilege:Public

4-213 305-CD-028-002

AttachFile - Will add the file named to the internal file storage. The file will be read in at

the point of this call. The file may be uuencoded for transmittal.

Arguments:str:EcTChar*

Return Type:EcUtStatus

Privilege:Public

CsEmMailRelA - This is the default constructor. It will not fill in any of the user-settable

fields.

Arguments:

Return Type:Void

Privilege:Public

Send - Will send the message in the current state. It will not delete any of the internally

stored data.

Arguments:

Return Type:EcUtStatus

Privilege:Public

Subject - Will set the subject to the passed text string. Will delete any previously created

subjects.

Arguments:str:EcTChar*

Return Type:EcUtStatus

Privilege:Public

~CsEmMailRelA - Will delete the object and all internal storage used. If mailing large

files, it is recommended that this be performed as soon as possible.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The CsEmMailRelA class has associations with the following classes:
None

4.4.1.4 Dynamic Model Scenarios

4.4.1.4.1 Scenario #1

4.4.1.4.1.1 Abstract

In this scenario, a message is set in email.

4.4.1.4.1.2 Interfaces

The CsEmMailRelA class is used.

4-214 305-CD-028-002

4.4.1.4.1.3 Stimulus

This class may be used when an email message must be sent.

4.4.1.4.1.4 Desired Response

After being called, a message should have been sent.

4.4.1.4.1.5 Participating Classes

CsEmMailRelA class is the only class involved.

4.4.1.4.1.6 Beginning State

No message has been sent.

4.4.1.4.1.7 Ending State

A message has been sent.

4.4.1.4.1.8 Scenario Description

In this scenario, an email message is sent to a user.

4.4.1.4.1.9 Event Trace

1. The object is instantiated.

2. AddTo() is called to name a recipient.

3. Subject() is called to specify a subject.

4. AddMessage() is called to specify a message body.

5. Send() is called to send the message.

6. The destructor for the object may then be called.

Applicatoin CsEmMailRelA Sendmail

Instantiates CsEmMailRelA object

Calls AddTo() to name a recipient

Calls Send() to send the message

spawns sendmail and passes
composed message to it

returns status

returns status

Calls Subject() to specify a subject

Calls AddMessage() to compose the message body

Figure 4.4.1.4-1. Email Service Event Trace

4-215 305-CD-028-002

4.4.1.5 Functional Model and Implementation

Mail is created by having the object collect the information necessary to send the message. Upon
receiving a send() it will spawn a sendmail process and use that to handle the actual delivery of the
message.Aside from methods to set the standard header information there is an additional method
worth mention. AddHeader will add an arbitrary text string to the header field - this allows future
extensions. (For example some browsers make use of header information to indicate a MIME
encoded message) Two threads should not manipulate the same mail object at the same time.

4.4.1.6 Service/CSCI Management and Strategy

4.4.1.6.1 System Management and Strategy

The sendmail program (distributed by the OS vendor) will need to be maintained as will the smtpd
daemon, any email gateways necessary for the transit of the message, and the destination mail
account if on our machines. For all kerberized connections, the Kerberos database and local files
need to be maintained.

4.4.1.6.2 Operator Interface

There is no operator interface for the API, and the mail interfaces are defined by the COTS
programs for the mail readers or by the OS for the daemons.

4.4.1.6.3 Reports

None.

4.4.2 FTP

4.4.2.1 Overview

FTP, which stands for File Transfer Protocol, may be used to send and receives files on a network.
A program is run on the client machine which connects to a process on a server machine. The client
may then send and receives files.

4.4.2.2 Context

CSS is providing an API to allow developers to instantiate a CsFtFTPRelB object and send the ob
ject messages controlling a ftp session. CSS will also provide kerberized FTP for systems which
will support it. In addition, CSS will provide the ability to execute a program for notification of
successful pulls from the pull area. The CSS object is used to encapsulate FTP, an OTS standard
application provided with most TCP/IP implementations.

4-216 305-CD-028-002

4.4.2.3 Object Model

CsFtFTPRelB

myPassword
myRemoteHost
myUserName
myProxyPassword
myProxyRemoteHost
myProxyUserName
myProxyStatus
myConnectionOpen
myProxyConnectionOpen
myFTPRunningStatus
myPipe
myTransferTimeB
myBatchFileB

- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : EcTInt = 0
- : EcTInt = 0
- : EcTInt = 0
- : EcTInt
- : EcTInt
- : RWCString
- : RWCString

GetHostName(EcUtStatus)
GetRemoteDirectory(EcUtStatus)
GetUserName(EcUtStatus)
GetListing(EcUtStatus)
Receive(src:RWCString,dest:RWCString)
ReceiveAll(RWCString)
ReceiveMatching(RWCString)
SendMatching(RWCString)
SetHostName(RWCString)
SetLocalDirectory(RWCString)
SetPassword(RWCString)
SetRemoteDirectory(RWCString)
SetUserName(RWCString)
SetProxy(EcTInt)
GetProxy(EcUtStatus)
Close()
Open()
GetLastMessage(EcUtStatus)
CsFtFTPRelB()
~CsFtFTPRelB()
SetFileTypeB(RWCString)
Send(src:RWCString,dest:RWCString)
SetTransferTimeB(Time:RWCString)
SetBatchFileB(file:RWCString)
ScheduleTransferB()

+ : RWCString
+ : RWCString
+ : RWCString
+ : RWCString
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcTBoolean
+ : EcUtStatus
+ : EcUtStatus
+ : RWCString
+
+
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus

[Public]

Figure 4.4.2.3-1. FTP Service Object Model

4.4.2.3.1 CsFtFTPRelB Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

CsFtFTPRelB provides an API for application programmer to initiates a FTP session to

transfer files non-interactively. It also provides the capability to schedule file transfer.

4-217 305-CD-028-002

Attributes:

myBatchFileB - used to store the batch script for batch mode transfer

Data Type:RWCString

Privilege:Private

Default Value:

myConnectionOpen - status bit to indicate if a connection is currently open on the primary

host

Data Type:EcTInt

Privilege:Private

Default Value:0

myFTPRunningStatus - used to indicate the status of the pipe to the FTP program

Data Type:EcTInt

Privilege:Private

Default Value:

myPassword - used to store the password for the primary host to contact

Data Type:RWCString

Privilege:Private

Default Value:

myPipe - pipe for sending and receiving data from the FTP client program

Data Type:EcTInt

Privilege:Private

Default Value:

myProxyConnectionOpen - status bit to indicate if a connection is currently open on the

proxy host

Data Type:EcTInt

Privilege:Private

Default Value:0

myProxyPassword - used to hold the password for the proxy connection

Data Type:RWCString

Privilege:Private

Default Value:

myProxyRemoteHost - used to hold the hostname for the proxy connection

Data Type:RWCString

Privilege:Private

Default Value:

4-218 305-CD-028-002

myProxyStatus - used to hold a toggle bit to indicate if commands are directed to the

primary host or the proxy host

Data Type:EcTInt

Privilege:Private

Default Value:0

myProxyUserName - used to hold the username for the proxy connection

Data Type:RWCString

Privilege:Private

Default Value:

myRemoteHost - used to store the hostname for the primary machine to contact

Data Type:RWCString

Privilege:Private

Default Value:

myTransferTimeB - used to store the time for batch mode transfer

Data Type:RWCString

Privilege:Private

Default Value:

myUserName - used to hold the username for the primary account

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

Close - will close the connection

Arguments:

Return Type:EcUtStatus

Privilege:Public

CsFtFTPRelB - constructor for session

Arguments:

Return Type:Void

Privilege:Public

GetHostName - will return the host name of the connected client

Arguments:EcUtStatus

Return Type:RWCString

Privilege:Public

GetLastMessage - will return a pointer to a text buffer containing the exact text of the

4-219 305-CD-028-002

message that was returned by the last command. The message may span multiple lines.

The buffer will be over written when the next ftp command is called with the object, so

copy the data to non-volital memory if you do not plan to inspect if before executing other

command.

Arguments:EcUtStatus

Return Type:RWCString

Privilege:Public

GetListing - will return the file listing of the current directory on the remote mahcine

Arguments:EcUtStatus

Return Type:RWCString

Privilege:Public

GetProxy - will check the status of the proxy bit

Arguments:EcUtStatus

Return Type:EcTBoolean

Privilege:Public

GetRemoteDirectory - will return the working directory of the connected client

Arguments:EcUtStatus

Return Type:RWCString

Privilege:Public

GetUserName - will return the name of the current user

Arguments:EcUtStatus

Return Type:RWCString

Privilege:Public

Open - will open a new connection to a host and log the user on

Arguments:

Return Type:EcUtStatus

Privilege:Public

Receive - Will transfer the named file and store it in the file named in the optional second

argument. A directory may not be specified as part of a path name (calls "get" command).

Arguments:src:RWCString,dest:RWCString

Return Type:EcUtStatus

Privilege:Public

ReceiveAll - will transfer all files on the remote machine in the current directory

Arguments:RWCString

Return Type:EcUtStatus

Privilege:Public

4-220 305-CD-028-002

ReceiveMatching - Will transfer all files on the remote machine in the current directory

that match the specified as part of the wildcard.

Arguments:RWCString

Return Type:EcUtStatus

Privilege:Public

ScheduleTransferB - will schedule the transfer

Arguments:

Return Type:EcUtStatus

Privilege:Public

Send - Will send the named file to the remote machine and store it in the file named

specified in the optional second argument. (calls "put")

Arguments:src:RWCString,dest:RWCString

Return Type:EcUtStatus

Privilege:Public

SendMatching - Will transfer all files to the remote machine in the current directory that

match the specified wildcard. A path may not be specified as part of the wildcard.

Arguments:RWCString

Return Type:EcUtStatus

Privilege:Public

SetBatchFileB - Will set the batch script for scheduled transfer

Arguments:file:RWCString

Return Type:EcUtStatus

Privilege:Public

SetFileTypeB - Will set the file type for transfer (binary or ASCII)

Arguments:RWCString

Return Type:EcUtStatus

Privilege:Public

SetHostName - Will set the name of the host to connect to.

Arguments:RWCString

Return Type:EcUtStatus

Privilege:Public

SetLocalDirectory - Will execute the lcd command to change the local working directory

Arguments:RWCString

Return Type:EcUtStatus

Privilege:Public

SetPassword - Will set the password to use to connect to the remote host

Arguments:RWCString

4-221 305-CD-028-002

Return Type:EcUtStatus

Privilege:Public

SetProxy - Will set or unset the "proxy" bit. This will determine if future commands are

set to the primary host or the proxy host. This prevents having two seperate identical sets

of functions to send commands to the two servers. If this function is not called, the default

value is 0 - which means that commands will go to the primary not the proxy host.

Arguments:EcTInt

Return Type:EcUtStatus

Privilege:Public

SetRemoteDirectory - Will execute the cd command to change the working directory on

the remote machine

Arguments:RWCString

Return Type:EcUtStatus

Privilege:Public

SetTransferTimeB - Will set the time for batch mode transfer

Arguments:Time:RWCString

Return Type:EcUtStatus

Privilege:Public

SetUserName - Will set the user name to be used with the FTP session

Arguments:RWCString

Return Type:EcUtStatus

Privilege:Public

~CsFtFTPRelB - destructor for session, will close all open connection

Arguments:

Return Type:Void

Privilege:Public

Associations:

The CsFtFTPRelB class has associations with the following classes:

None

4.4.2.4 Dynamic Model Scenarios

4.4.2.4.1 Scenario #1

4.4.2.4.1.1 Abstract

In this scenario, a program will instantiate a CsFtFTPRelB object and use it to transfer a file from
a remote machine to the local machine. First it will instantiate a CsFtFTPRelB object and fill out
the relevant information to open a connection (like hostname, username, etc..) After sending a

4-222 305-CD-028-002

message to open the connection, the application will change directories, list files, and finally
request the transfer of a file and close the connection.

4.4.2.4.1.2 Interfaces

CSS's CsFtFTPRelB object.

4.4.2.4.1.3 Stimulus

The CsFtFTPRelB object is instantiated when it is necessary to transfer a file between two
machines.

4.4.2.4.1.4 Desired Response

The object, when used, should transfer the requested files and report any errors as they occur.

4.4.2.4.1.5 Participating Classes

CsFtFTPRelB is the only object involved in the transfers.

4.4.2.4.1.6 Beginning State

There is no connection open, and no files locally stored.

4.4.2.4.1.7 Ending State

There is no connection open, but there are now files locally stored.

4.4.2.4.1.8 Scenario Description

In this scenario, a client will retrieve a file found in a directory listing from a remote host, taking
care to avoid overwriting any local files.

1. The application instantiates a CsFtFTPRelB object.

2. The application calls SetHostName() to set the host to connect to.

3.	 The application calls SetPassword() and SetUserName() to set password and username of
caller.

4. The application calls open() which initiates the connection with the server.

5.	 The application calls SetRemoteDirectory() which passes the message through to the server
and returns the status.

6. The application calls SetLocalDirectory() to change the local ftp directory.

7.	 The application calls GetListing() which returns a text message of all files which it uses to
make sure that local files will not be over-written.

8. The application calls Receive() to transfer the file.

9. The application calls Close() to end the file transfer.

10. The application calls the object destructor which frees all memory associated with the
object.

4-223 305-CD-028-002

4.4.2.4.1.9 Event Trace

Application
CsFtFTPRelB Ftp Server

returns list

Calls SetHostName() to set the host to connect to

Calls SetRemoteDirectory() to change remote directory

Calls SetLocalDirectory() to change local directory

Calls GetListing() to return a list of all files

Calls Receive() to receive a file from ftp server

Calls Clost() to close ftp session

Returns status

Instantiates CsFtFTPRelB object

Calls SetUserName() and SetPassword() to set the
user name and password to be used for the connection

Calls Open() to open a ftp session, and initialize a pipe
connection between the application and the ftp session

returns success

Returns status

returns status

closes

handshakes

sends command "cd"

returns success

sends command "ls"

returns list

sends command "get"

sends command to close

open ftp connection

Returns file

Figure 4.4.2.4-1. FTP Service Event Trace

4-224 305-CD-028-002

4.4.2.4.2 Scenario #2

4.4.2.4.2.1 Abstract

In this scenario, a program will instantiate a CsFtFTPRelB object and use it to schedule a file
transfer. First it will instantiate a CsFtFTPRelB object and fill out the relevant information for
batch mode transfer (transfer time and batch file, which will hold each of the commands to the ftp
connection) The application will then execute the batch file to perform file transfer at the specify
time, and finally close the connection.

4.4.2.4.2.2 Interfaces

CSS's CsFtFTPRelB object.

4.4.2.4.2.3 Stimulus

The CsFtFTPRelB object is instantiated when it is necessary to schedule a file transfer between
two machines.

4.4.2.4.2.4 Desired Response

The object, when used, should log results of batch mode transfer to a specified log files. In case of
scheduled operation fails, it should generate events using event logging service.

4.4.2.4.2.5 Participating Classes

CsFtFTPRelB is the only object involved in the transfers.

4.4.2.4.2.6 Beginning State

There is no connection open, and no files locally stored.

4.4.2.4.2.7 Ending State

There is no connection open, but there are now files locally stored.

4.4.2.4.2.8 Scenario Description

In this scenario, a client will schedule a file transfer for a specific time.

1. The application instantiates a CsFtFTPRelB object.

2. The application calls SetTransferTime() to set the time to perform transfer.

3.	 The application calls SetBatchFile() to set the batch file which will hold each of the
commands to the ftp connection. SetBatchFile() accept an optional argument filename. If
filename is provided, this file will be used to hold each of the ftp commands. This method
will also set the batch mode transfer flag to be true. If filename is not provided, a default
file will be used.

4.	 The application will call each of the commands that need to be performed for the scheduled
transfer. The application calls SetHostName() to set the host to connect to.

5.	 The application calls SetPassword() and SetUserName() to set password and username of
caller.

4-225 305-CD-028-002

6. The application calls Open() which initiates the connection with the server.

7.	 The application calls SetRemoteDirectory() which passes the message through to the server
and returns the status.

8. The application calls Receive() to transfer the file.

9. The application calls Close() to end the file transfer.

10. The application calls ScheduleTransfer() to put the scheduled transfer in queue, and
execute the transfer at the specified time.

11. The application calls the object destructor which frees all memory associated with the
object.

4.4.2.4.2.9 Event Trace

See Figure

4-226 305-CD-028-002

Application CsFtFTPRelB Batch file

Instantiates CsFtFTPRelB object

Calls SetTransferTime() to schedule the transfer

Calls SetBatchFile() to specify the name of the
batch file, batch mode transfer flag will be set to

true at this point

Calls SetHostName() to set the host to connect to

Calls SetUserName() and SetPassword() to set the
user name and password to be used for the connection

Calls Open() to open a ftp session, and initialize a pipe
connection between the application and the ftp session 4-227

305-C
D

-028-002

Calls SetRemoteDirectory() to change remote directory

Calls SetLocalDirectory() to change local directory

Calls Receive() to receive a file from ftp server

Calls Close() to close ftp session

Calls ScheduleTransfer() to put transfer request into a
queue, file transfer will be perform at the specified time

Figure 4.4.2.4-2. FTP Service Event Trace

4.4.2.5 Functional Model and Implementation

There are two basic separate parts in the implementation. For the client API:

The object is implemented fairly simply. Upon receiving the open command, the object will spawn
an independent ftp client process. It will then use a created pipe to send requests to the ftp client,
and will return any errors or data to the caller of the method. Thus, if a given command, say a
'change directory', fails, the application will receive an error from that function. It will also have a
non-interactive mode for which it will create a script which it will schedule to run at the appropriate
time. Upon deletion of the object, or a call to the close() method, the object will close the connec
tion, and in the case of a non-interactive job, it will schedule the transfer for later. FTP servers and
clients are standard on unix boxes and do not require any changes. Multiple threads may not simul
taneously send commands to the same CsFtFTPRelB object. If an unexpected error occurs (like the
ftp client dying, or the connection being unexpectedly lost) then an exception will be thrown to the
application. To verify that a transfer completed successfully, the application will need to call the
GetLastMessage() function call to check the text string that the ftp server used to reply to the client
to make sure it is in agreement with what was expected.

For the FTP server modifications are necessary to the OTS code to notify the dataserver of a suc
cessful pull:

The ftpd server will be modified to spawn a new process and execute a provided program each time
a file is transferred. The arguments to the executed program would be as follows:

joeuser 784953937 pull myfile.dat

which would indicate that user 'joeuser' successfully pulled file 'myfile.dat' at the time that is
784953937 seconds since Jan. 1, 1970. (which happens to be Nov. 15 21:45:37 1994) This repre
sentation of time is a well known standard for unix.

4.4.2.6 Service/CSCI Management and Strategy

4.4.2.6.1 System Management and Strategy

Not Applicable.

4.4.2.6.2 Operator Interface

There is no operator interface since the class only provides an interface for existing services.
However, the operators will have to maintain the local ftp client, the remote ftpd server, and the
remote inetd which spawns ftpd when needed. In addition, for the pull area, the customized
executable for notification will need to be maintained.

4.4.2.6.3 Reports

None.

4.4.3 DFS

4.4.3.1 Overview

Distributed File Service (DFS) provides location independent file access with high performance,
availability and security. With the remote file access (RFA) capabilities provided by DFS, users

4-228 305-CD-028-002

can access remote files as if they are on the local file system. The whole process is transparent
upon authentication at login with the file servers up, no difference is noticed between a DFS file
and files on local disk.

4.4.3.2 Context

DFS is a distributed DCE application. As such, ECS can derive benefits from its integration with
and use of DCE services. Within the ECS system users and programs frequently need to share
files. This is especially true in the case of individual DAACs. Against such a backdrop DFS makes
information sharing easy because everyone in a cell has access to one seamless file system. In
addition, DFS builds on DCE functionality to provide a single global integrated file system to the
entire ECS system.

4.4.3.3 Object Model

No object model is provided for DFS.

4.4.3.4 Dynamic Model Scenarios

4.4.3.4.1 Scenario #1

4.4.3.4.1.1 Abstract

This scenario describes the interaction of a science user with DFS. The user, using a visualization
tool, intends to examine the weather data for a specific date which is bound as one set per month.
This requires the user to repeatedly access the same data over a certain length of time. The data
itself is contained in a specific part of a large data product which is indexed and resides in common
area mounted on DFS.

4.4.3.4.1.2 Interfaces

The visualization tool being used by the scientist.

4.4.3.4.1.3 Stimulus

File access required by the visualization tool.

4.4.3.4.1.4 Desired Response

Access to the file is provided/denied based on authorization checking. Upon successful
authorization the file is made available to the user from the file server. In addition, the specific
portion of the data which the user wishes to view is cached by DFS in the local system.

4.4.3.4.1.5 Participating Classes

Not Applicable.

4.4.3.4.1.6 Beginning State

The requested file is not locally stored. User is an authenticated DCE principal. In addition, the
Data Server has already deposited the data product as a file in a common area mounted on DFS.

4-229 305-CD-028-002

4.4.3.4.1.7 Ending State

Part of the file is cached to local machine.

4.4.3.4.1.8 Scenario Description

1.	 Using the interface provided by the visualization tool, the user changes to the desired
directory and chooses the file he wishes to access. Note that to get to a DFS directory in
another cell, the complete path name must be provided.

2.	 The DFS server examines the users identity and group membership and determines if the
access requested is allowed. If okay, success is returned.

3.	 The user indicates the specified part of data using the interface provided by the
visualization tool.

4. DFS caches this portion of the data on the local machine using the cache manager.

5.	 The user repeatedly displays the data using the visualization tool. This repeated access to
the same part of the file does not result in any DFS related traffic.

4.4.3.4.1.9 Event Trace

4.4.3.4.2 Scenario #2

4.4.3.4.2.1 Abstract

A user wishes to read and modify a file stored at some DAAC from a personal workstation. This
access must appear to be a standard local access. When done, the user will save his/her changes.

4-230 305-CD-028-002

Visualization tool Cache Mgr File Server DCE ACL

open file

request specific data

return file token

request data

return status

return file token

open file

request specific data

return data

return data

check

return data

authorization

Figure 4.4.3.4-1. Event Trace for DFS Science User Access (Release B)

4.4.3.4.2.2 Interfaces

The editor.

4.4.3.4.2.3 Stimulus

The user opens the file in a favorite editor by specifying a Unix path name to the file.

4.4.3.4.2.4 Desired Response

The file will be loaded into the editor and the user can read and modify the file like a normal file.
Changes will be visible to other users after the file is closed.

4-231 305-CD-028-002

4.4.3.4.2.5 Participating Classes

None.

4.4.3.4.2.6 Beginning State

User is an authenticated DCE principal.

4.4.3.4.2.7 Ending State

Changes are stored in DFS for other users.

4.4.3.4.2.8 Scenario Description

1. User selects open on a file stored in DFS from within her favorite editor.

2. The editor uses the standard Unix "open" call specifying the path name to the file.

3. After detecting that the file is in DFS, the OS invokes the cache manager API for open.

4.	 The Cache Manager contacts the DFS FLDB to locate the fileset which contains the file in

question. This may take several steps since DFS resolves the path one piece at a time.

5.	 The DFS server examines the users identity and group membership and determines if the

access requested is allowed. If okay, success is returned.

6.	 As the user accesses the file, the editor will issue the Unix read command. The Cache

Manager will fetch pieces of the file on demand from the DFS server and return them to the

editor.

7. The user makes some changes to the file and saves it.

8. The editor will issue a write call.

9. The Cache Manager will obtain a write token from DFS and then save the changes locally.

10. The user closes the file causing the editor to call "close".

11. The Cache Manager sends file changes to the DFS server which stores them.

4.4.3.4.2.9 Event Trace

4.4.3.4.3 Scenario #3

4.4.3.4.3.1 Abstract

A file server fails while files on it are being read.

4.4.3.4.3.2 Interface

A program that reads the file.

4.4.3.4.3.3 Stimulus

File server fails while file is being read.

4-232 305-CD-028-002

File ServerUser Editor Cache Mgr FLDB

open file

edit file & save

open file

file is open

read file

display file

write and close

locate file

file location

open file

file open tokens

read file

file chunks

file bytes

write chunks release token

Figure 4.4.3.4-2. Event Trace for DFS (Release B)

4.4.3.4.3.4 Desired Response

Readers of the file will continue to have access. This will be transparent.

4.4.3.4.3.5 Participating Classes

None.

4-233 305-CD-028-002

4.4.3.4.3.6 Beginning State

Files in fileset a are open for reading on server A. The filesets on A are replicated to server B. In
particular, a is replicated as fileset a'. The FLDB must also be replicated.

4.4.3.4.3.7 Ending State

Clients should be unaffected.

4.4.3.4.3.8 Scenario Description

1. Client access file from fileset a on server A.

2. Client cache manager fetches chunks of file from A.

3. Server A fails.

4. Client accesses more parts of files from fileset a.

5. Cache Manager contacts server A for chunks.

6. After a time-out, the Cache Manager determines that A is unavailable.

7. The Cache Manager contacts the FLDB to obtain a new server that holds fileset a.

8. The FLDB returns the file server B.

9. The Cache Manager contacts server B and requests chunks from fileset a'.

10. The chunks are returned, and operation continues as normal.

4.4.3.4.3.9 Event Trace

4.4.3.4.4 Scenario #4

4.4.3.4.4.1 Abstract

A system administrator must move a fileset from one server to another.

4.4.3.4.4.2 Interfaces

DFS administrative tool.

4.4.3.4.4.3 Stimulus

The system administrator issues the DFS move fileset command.

4.4.3.4.4.4 Desired Response

The fileset will move to a new server AND users will be unaware of the transfer.

4-234 305-CD-028-002

client File Server A FLDB
File Server B

access file

return token and chunks

Figure 4.4.3.4-3. Event Trace for DFS Server Failure Scenario (Release B)

4.4.3.4.4.5 Participating Classes

None.

4.4.3.4.4.6 Beginning State

Fileset 1 is on server A.

access file

return token and chunks

access file

time out

locate alternative server

return server B address

4-235 305-CD-028-002

4.4.3.4.4.7 Ending State

Fileset 1 is on server B. Users are unaware of move.

4.4.3.4.4.8 Scenario Description

1. Users are accessing files in fileset 1.

2. Sysadmin issues fileset move command.

3.	 DFS begins cloning fileset 1 by copying its contents to server B WITHOUT locking
anything.

4. After the first pass, DFS copies the changes made during the first pass.

5.	 After the second pass, DFS locks the fileset (preventing write access) and copies the
changes made during the second pass. This operation should be very brief. Users may
experience a short delay in file writes.

6. DFS updates the FLDB entry for fileset 1 to point to server B.

7. Some user attempts to access a file from fileset 1.

8.	 The Cache Manager will be unable to access the fileset from server A. It will instead
contact the FLDB to obtain the fileset's new location.

9. The Cache Manager will access the file from server B.

4.4.3.4.4.9 Event Trace

4.4.3.5 Functional Model and Implementation

Not Applicable

4.4.3.6 Service/CSCI Management and Strategy

4.4.3.6.1 System Management and Strategy

The amount of administration needed to maintain DFS depends largely on the number of files
stored in DFS. Some of the factors that can affect system management and administration include,
initial configuration choices, physical location of the file servers, load balancing between
fileservers, familiarity of the operators with local user needs and policies related to replication and
backups/restores. System management includes monitoring and adjusting the file system
performance, using access control lists to control access to files and directories and using
administrative lists to control DFS server access (to prevent unauthorized principals from tinkering
with DFS servers). In general, DFS attempts to manage itself where possible. The DFS BOS
(Basic OverSeer) monitors and restarts DFS servers as needed. Finally, DFS includes integrated
backup facilities to aid in the management of fileset backups.

4-236 305-CD-028-002

client
File Server Asysadmin

FLDB
File Server B

return token and chunks

return server B address

access file

return token and chunks

move fileset

fileset contents

access file

new fileset location

access file

locate alternative server

no such file

Figure 4.4.3.4-4. Event Trace for DFS-System Administrator Interaction (Release B)

4.4.3.6.2 Operator Interface

DFS provides a standard command line interface which can be used for several administrative
functions. Furthermore, DFS being a a major subsystem within DCE some portions of its
management are performed by using the standard DCE management interfaces to CDS and DCE
Security. In addition, DFS comes with several command line tools that allow administrators to
manage filesets, access control, and the various DFS servers.

4-237 305-CD-028-002

4.4.3.6.3 Reports

Not Applicable.

4.4.3.7 Frequently Asked Questions

1) What is a distributed file system?

A distributed filesystem is a filesystem in which access to remote files is the same as to
local files.

2) What are the benefits of having a distributed file system?

Without a distributed filesystem, if a user on one host wanted to access file on another host,
he would need to use some special utility. For example, on Unix systems, rlogin, telnet or
ftp could possibly be used. On the other hand with a distributed filesystem, no special
procedures or utilities need to be used and the user would not typically know that the file
being accessed is remote. One of the most popular distributed filesystems today is the
Network File System (NFS). The DCE Distributed File Service (DFS) is a newer
distributed filesystem from OSF and is rapidly becoming very popular.

3) What are the advantages of DFS?

Distributed File Service (DFS) provides location independent file access with high
performance, availability and security. With the remote file access (RFA) capabilities
provided by DFS, users can access remote files as if they are on the local file system.

Some advantages of DFS include:

• Uniform file access through uniform name space

• Full DCE based authentication and ACL authorization

• Local caching for high performance

• Replication for high availability and performance

• Logging file system for rapid server recovery

• Tools for management and administration control

• Gateway for Network File System (NFS) clients

4) What is a fileset?

A fileset is a hierarchical grouping of files and directories managed as a single unit. A
fileset can be any size but is always smaller than a single UNIX disk partition. Unlike
UNIX partitions, filesets can be easily expanded or moved. They can also be replicated to
improve availability.

5) How does replication work?

Replication creates multiple read only copies of a DFS fileset and places them on multiple
server machines. As a result, the failure of a single machine that is housing a replicated
fileset will not interrupt read only access to that fileset. This increases file system
availability.

4-238 305-CD-028-002

6) How does DFS support location independence?

DFS tracks the location of every individual fileset. This information is maintained in the
Fileset Location Data Base (FLDB). When DFS clients need access to a fileset, they
request its current location from the FLDB. As a result, filesets can be moved any time
without impacting access to the fileset. The FLDB is replicated to ensure that it is always
available. By tracking fileset location in the FLDB, administrators are freed from having
to record the location of every fileset.

7) How does DFS interoperate with NFS?

The DFS/NFS Secured Gateway allows NFS clients to securely access the DFS filespace.
A Gateway Server runs on a machine which is DFS client and exports the DFS filespace (/
...) via NFS. The Gateway Server appears to be a standard NFS file server to NFS clients.

8) What does the client system need to access DFS?

A DFS client machine requires a DCE secure core, the DFS client daemon (dfsd) as well
as a modified kernel that incorporates DFS calls. In addition, space must be allocated on
the local file system for the DFS cache. The cache can be of any size, although a larger
cache will allow the DFS Cache Manager to cache more information and thus improve
performance.

9) How does DFS ensure secure file access?

DFS is fully integrated with DCE. As such it takes full advantage of the DCE security
service. DFS users must be authenticated DCE principals. Each access is checked using
DCE ACLs. These ACLs can be set by users on a file or directory basis. The allowed
permissions are read, write, execute, control, insert and delete. ACLs allow individual
users to receive from the file server permission to perform particular operations on files or
directories that are stored in a file server.

4.4.4 Bulletin Board

4.4.4.1 Overview

This service provides interactive (for operators) and development (API, for applications) interfaces
to manage bulletin board messages. Interactive interfaces provide a full set of functionality, and
are entirely COTS. The API is limited in scope as it only addresses sending a message from within
an application.

4.4.4.2 Context

CSS is providing an object to manage the posting of messages to NNTP Bulletin Boards. It is also
possible to attach files to a message before sending. The object encapsulates the interface to the
COTS product.

4.4.4.3 Object Model

The object Model for Bulletin Board service is combined with Email service object Model. Refer
to Section 4.4.1.3.

4-239 305-CD-028-002

4.4.4.4 Dynamic Model Scenarios

4.4.4.4.1 Scenario #1

4.4.4.4.1.1 Abstract

In this scenario, a message is posted to a public bulletin board.

4.4.4.4.1.2 Interfaces

The CsBBMailRelA class is used for the interface.

4.4.4.4.1.3 Stimulus

At times a message will need to be posted publicly. This class will allow such posting.

4.4.4.4.1.4 Desired Response

After the class is called a message should be posted.

4.4.4.4.1.5 Participating Classes

The CsBBMailRelA class and the CsEmMailRelA (used transparently) class are used. The entire
interface is through the CsBBMailRelA class, however, the underlying structure has
CsBBMailRelA inheriting many methods and storage variables from CsEmMailRelA to prevent
redundant code being written.

4.4.4.4.1.6 Beginning State

In the beginning, no message has been posted.

4.4.4.4.1.7 Ending State

After using the object, a message will be posted to the appropriate bulletin board.

4.4.4.4.1.8 Scenario description

Sending a message to a bulletin board looks nearly identical to sending an email message. The only
difference is that an nntp server needs to be specified.

4.4.4.4.1.9 Event Trace

1. The object is instantiated.

2. AddTo() is called to name a destination bulletin board (ex "comp.soft-sys.dce").

3. Subject() is called to specify a subject.

4. SetNNTPHost() is called to specify the host to post the message to.

5. AddMessage() is called to add text to the message body.

6. Send() is called to send the message.

7. The destructor for the object may then be called.

4-240 305-CD-028-002

4.4.4.5 Functional Model and Implementation

CSS is providing a class which contains APIs to allow posting of messages. This object inherits
most of the data structures and methods from the CsBBMailRelA object used for sending email. A
nntp host has been added and a few non-applicable methods have been overridden. Two threads
should not manipulate the same mail object at the same time - the results are not defined.

4.4.4.6 Service/CSCI Management and strategy

4.4.4.6.1 System Management and Strategy

The nntp server will need to be maintained outside of CSS.

4.4.4.6.2 Operator Interface

There is no operator interface for the API, and the bulletin board interfaces are defined by the
COTS programs for the readers and servers.

4.4.4.6.3 Reports

None.

Application

returns status

Send message to the Bulletin Board

CsBBMailRelA NNTP Bulletin Board

Instantiates CsBBMailRelA object

Calls AddTo() to specify the destination bulletin board

Calls Send() to send the message

returns status

Calls Subject() to specify a subject

Calls AddMessage() to compose the message body

Calls SetNNTPHost() to specify the host to post the message to

Figure 4.4.4.4-1. RelB_BB_EventTrace Dynamic Model

4.4.5 Virtual Terminal

4.4.5.1 Overview

Virtual terminal (VT) hides the terminal characteristics and handling conventions from both the
operator and server host by allowing both parties to deal with a virtual device that has similar
capabilities. VT provides operators the capability to remotely log onto ECS machines. CSS will
also provide kerberized telnet and telnetd on available systems.

4-241 305-CD-028-002

In addition, CSS will provide common facility support for the ECS dial-up service (Please refer to
305-CD-004--001).

4.4.5.2 Context

CSS is providing kerberized telnet and telnetd for systems where available. Telnet and telnetd
(non-kerberized) are distributed as part of the OS.

The dial-up service provides user access to the ECS search and order tool character-based user
interface (CHUI).

4.4.5.3 Object Model

There are no objects involved with a Virtual Terminal.

4.4.5.4 Dynamic Model Scenarios

4.4.5.4.1 Scenario #1

Not Applicable.

4.4.5.4.1.1 Abstract

Not Applicable.

4.4.5.4.1.2 Interfaces

Not Applicable.

4.4.5.4.1.3 Stimulus

Not Applicable.

4.4.5.4.1.4 Desired Response

Not Applicable.

4.4.5.4.1.5 Participating Classes

Not Applicable.

4.4.5.4.1.6 Beginning State

Not Applicable.

4.4.5.4.1.7 Ending State

Not Applicable.

4.4.5.4.1.8 Scenario Description

Not Applicable.

4.4.5.4.1.9 Event Trace

None

4-242 305-CD-028-002

4.4.5.5 Functional Model and Implementation

The implementation will be telnet clients and servers - these are completely COTS and provided
by OS or public domain.

The infrastructure needed for the dial-up service is being provided by ISS. Specific details in this
regard may be obtained from the ISS design document. CSS implementation of the service will
include providing the necessary support to ISS in designing specialized user accounts that may be
needed for the dial-up users to access ECS.

4.4.5.6 Service/CSCI Management and Strategy

4.4.5.6.1 System Management and Strategy

The server binary needs to be maintained, and it is started dynamically by the process inetd which
also needs to be maintained. For all kerberized connections, the Kerberos database and local files
need to be maintained.

4.4.5.6.2 Operator Interface

While there is no direct operator interface provided by CSS since all software is COTS, the telnetd
and inetd process will need to be maintained to allow new connections, and the telnet client will
need to be maintained.

4.4.5.6.3 Reports

None.

4.4.6 Event Logging

4.4.6.1 Overview

This service allows applications to log event and history information to a file which can later be
used for fault, performance or statistical analysis. The service supports application defined events
and collects management and fault data.

4.4.6.2 Context

CSS is providing several objects to allow applications to log events to an application specific file.
In addition there are four management objects for logging management events (Fault,
Performance, Audit, and Security) and these have the ability to send a SNMP trap.

4.4.6.3 Object Model

EcUtLoggerRelA object for application logging.

EcUtLoggerRelADebug object for logging application debug messages.

EcUtLoggerRelAMgmt object (abstract) for different management events. The following objects
inherit from the EcUtLoggerRelAMgmt object:

EcUtLoggerRelAFault object for logging Fault events.

EcUtLoggerRelAPerf object for logging Performance events.

EcUtLoggerRelAAudit object for logging Audit events.

EcUtLoggerRelASec object for logging Security events.

4-243 305-CD-028-002

Offpage

4-244
305-C

D
-028-002

EcUtLoggerRelA

EcUtLoggerRelAMgmt

EcUtLoggerRelASecEcUtLoggerRelAAudit
EcUtLoggerRelAFault

EcUtLoggerRelAPerf

EcUtLoggerRelADebug

strstream

SetLoggingStatus(:EctBoolean)

GetLoggingStatus()

EcUtLoggerRelADebug(appname:EcTChar * appversion:EcTChar * = NULL)
~EcUtLoggerRelADebug()

EcUtLoggerRelAFault(appname:EcTChar * appversion:EcTChar * = NULL)
~EcUtLoggerRelAFault()
SetMyEventType(EcTInt)

EcUtLoggerRelAAudit(appname:EcTChar * appversion:EctChar * = NULL)
~EcUtLoggerRelAAudit()
SetMyEventType(EcTInt)

EcUtLoggerRelASec(appname:EcTChar * appversion:EctChar * = NULL)
~EcUtLoggerRelASec()
SetMyEventType(EcTInt)

myAppName
myAppVersion
myLogFile
myErrorLevel
myErrorBitmask
myMaxFileSize
myLockCount
ourSynchMutex
ourOSVersion
ourIPAddress
ourCellName
ourOSName

EcUtLoggerRelA(appname: EcTChar * appversion:EcTChar *)
~EcUtLoggerRelA()
Operator<<(:object)
GetLogFileName()
GetLoggingBitmask()
SetAppName(:EcTChar *)
OpenFile()
HandleMessage(:EcTInt)
LockDown()
FreeLock()
LockFile()
UnLockFile()
SetErrorLevel(:EcTInt)

myParentId
myId
myDisposition
myEventType
myLoggingStatus

~EcUtLoggerRelAMgmt()
SetMyParentId(:EcTChar *)
SetMyId(:EcTChar *)
EcUtLoggerRelAMgmt(appname: EctChar * appversion:EcTChar * = NULL)
SetMyEventType(EcTInt)

EcUtLoggerRelAPerf(appname:EcTChar * appversion:EctChar * = NULL)
~EcUtLoggerRelAPerf()
SetMyEventType(:EcTInt)

[DISTR OBJ]

[Public]

[DISTR OBJ]

[Public]

[DISTR OBJ][DISTR OBJ]

[Public]

[DISTR OBJ]

[Public]

[DISTR OBJ]

[Public]

+ : EcTVoid

+ : EcTBoolean

+
+

+
+
+ : EcTVoid

+
+
+ : EcTVoid

+
+
+ : EcTVoid

- : EcTChar[EcDStr]
- : EcTChar[EcDStr]
- : EcTChar[EcDMaxFileName]
- : EcTInt = 0
- : EcTInt32
- : EcTInt
- : EcTInt
$- : DCEPthreadMutex

- : static EcTChar[EcDStr]
- : static EcTChar[EcDStr]
- : static EcTChar[EcDStr]
- : static EcTChar[EcDStr]

+
+
+
± : const EcTChar *
± : EcTInt32
±
± : EcTInt
±
+ : EcTVoid
+ : EcTVoid
+ : EcTInt
+ : EcTInt
+

- : EcTChar[130]
- : EcTChar[130]
- : EcTInt
± : EcTInt
- : EcTInt

+
+
+
+
±

+
+
+ [Public]

[Public]

Figure 4.4.6.3-1. Event Logging Service Object Model

4.4.6.3.1 EcUtLoggerRelA Class

Parent Class:strstream

Public:Yes

Distributed Object:Yes

Purpose and Description:

This service allows applications to log event and history information to a file which can

later be used for study.

Attributes:

myAppName - will be used to hold the application name

Data Type:EcTChar[EcDStr]

Privilege:Private

Default Value:

myAppVersion - will be used to hold the version number

Data Type:EcTChar[EcDStr]

Privilege:Private

Default Value:

myErrorBitmask - will be used to hold the ErrorLevel bitmask. It will determine which

error levels will get logged.

Data Type:EcTInt32

Privilege:Private

Default Value:

myErrorLevel - will be used to hold the currently set error level this has a default level of

0

Data Type:EcTInt

Privilege:Private

Default Value:0

myLockCount - will be used in conjunction with the thread writing mutex to keep a count

of locks to the recursive mutex.

Data Type:EcTInt

Privilege:Private

Default Value:

myLogFile - will be used to hold the name of the log file.

Data Type:EcTChar[EcDMaxFileName]

Privilege:Private

Default Value:

4-245 305-CD-028-002

myMaxFileSize - Will hold the maximum file size of the file.

Data Type:EcTInt

Privilege:Private

Default Value:

ourCellName - will hold the cell name.

Data Type:static EcTChar[EcDStr]

Privilege:Private

Default Value:

ourIPAddress - will be used to hold the ip address of the local machine

Data Type:static EcTChar[EcDStr]

Privilege:Private

Default Value:

ourOSName - will hold the OS name

Data Type:static EcTChar[EcDStr]

Privilege:Private

Default Value:

ourOSVersion - will be used to hold the os name and version

Data Type:static EcTChar[EcDStr]

Privilege:Private

Default Value:

ourSynchMutex - mutex to protect internal integrity.

Data Type:DCEPthreadMutex

Privilege:Private

Default Value:

This is a Class Attribute.

Operations:

EcUtLoggerRelA - Constructor. Will use the appname to determine the filename to log to.

The appversion is optional or may be NULL.

Arguments:appname: EcTChar * appversion:EcTChar *

Return Type:Void

Privilege:Public

FreeLock - - internal function - frees lock

Arguments:

Return Type:EcTVoid

Privilege:Public

4-246 305-CD-028-002

GetLogFileName - Will return the log file name to the application. No guarantee is made

about the format of the file.

Arguments:

Return Type:const EcTChar *

Privilege:Protected

GetLoggingBitmask - Will return the bitmask of which errors are currently being logged.

Arguments:

Return Type:EcTInt32

Privilege:Protected

HandleMessage - Used to handle control messages

Arguments::EcTInt

Return Type:Void

Privilege:Protected

LockDown - - internal function - locks down structures

Arguments:

Return Type:EcTVoid

Privilege:Public

LockFile - - internal function - locks file

Arguments:

Return Type:EcTInt

Privilege:Public

OpenFile - - internal function - opens file

Arguments:

Return Type:EcTInt

Privilege:Protected

Operator<< - will be used to send messages to the object. Chaining of <<s is encouraged.

Arguments::object

Return Type:Void

Privilege:Public

SetAppName - Will set the current application - and will as a result have its log file

determined.

Arguments::EcTChar *

Return Type:Void

Privilege:Protected

SetErrorLevel - Will set the error level for the current message.

Arguments::EcTInt

Return Type:Void

4-247 305-CD-028-002

Privilege:Public

UnLockFile - - internal function - locks file

Arguments:

Return Type:EcTInt

Privilege:Public

~EcUtLoggerRelA - Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcUtLoggerRelA class has associations with the following classes:
None

4.4.6.3.2 EcUtLoggerRelAAudit Class

Parent Class:EcUtLoggerRelAMgmt

Public:Yes

Distributed Object:Yes

Purpose and Description:

Used to create Audit event logging objects.

Attributes:

All Attributes inherited from parent class

Operations:

EcUtLoggerRelAAudit - constructor - accepts application name and an optional

application version as arguments.

Arguments:appname:EcTChar * appversion:EctChar * = NULL

Return Type:Void

Privilege:Public

SetMyEventType - Sets the event type.

Arguments:EcTInt

Return Type:EcTVoid

Privilege:Public

~EcUtLoggerRelAAudit - destructor
Arguments:

4-248 305-CD-028-002

Return Type:Void
Privilege:Public

Associations:

The EcUtLoggerRelAAudit class has associations with the following classes:
None

4.4.6.3.3 EcUtLoggerRelADebug Class

Parent Class:EcUtLoggerRelA

Public:Yes

Distributed Object:No

Purpose and Description:

Used to log application debugging information.

Attributes:

All Attributes inherited from parent class

Operations:

EcUtLoggerRelADebug - Constructor. Accepts as arguments the application name and an

optional version string.

Arguments:appname:EcTChar * appversion:EcTChar * = NULL

Return Type:Void

Privilege:Public

GetLoggingStatus - Will return if logging is currently on or off.

Arguments:

Return Type:EcTBoolean

Privilege:Public

SetLoggingStatus - This will turn on and off logging of messages.

Arguments::EctBoolean

Return Type:EcTVoid

Privilege:Public

~EcUtLoggerRelADebug - Destructor

Arguments:

Return Type:Void

Privilege:Public

4-249 305-CD-028-002

Associations:

The EcUtLoggerRelADebug class has associations with the following classes:
None

4.4.6.3.4 EcUtLoggerRelAFault Class

Parent Class:EcUtLoggerRelAMgmt

Public:Yes

Distributed Object:Yes

Purpose and Description:

Used to log Fault events.

Attributes:

All Attributes inherited from parent class

Operations:

EcUtLoggerRelAFault - constructor - accepts application name and an optional

application version as arguments.

Arguments:appname:EcTChar * appversion:EcTChar * = NULL

Return Type:Void

Privilege:Public

SetMyEventType - Used to set the event type.

Arguments:EcTInt

Return Type:EcTVoid

Privilege:Public

~EcUtLoggerRelAFault - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcUtLoggerRelAFault class has associations with the following classes:
None

4.4.6.3.5 EcUtLoggerRelAMgmt Class

Parent Class:EcUtLoggerRelA

Public:Yes

Distributed Object:Yes

4-250 305-CD-028-002

Purpose and Description:

Virtual object for management logging.

Attributes:

myDisposition - will hold the disposition

Data Type:EcTInt

Privilege:Private

Default Value:

myEventType - will hold the event type

Data Type:EcTInt

Privilege:Protected

Default Value:

myId - will hold id

Data Type:EcTChar[130]

Privilege:Private

Default Value:

myLoggingStatus - Logging status

Data Type:EcTInt

Privilege:Private

Default Value:

myParentId - Will hold parent id

Data Type:EcTChar[130]

Privilege:Private

Default Value:

Operations:

EcUtLoggerRelAMgmt - constructor - accepts as arguments, the application name and an

opional version.

Arguments:appname: EctChar * appversion:EcTChar * = NULL

Return Type:Void

Privilege:Public

SetMyEventType - Used to set the event type.

Arguments:EcTInt

Return Type:Void

Privilege:Protected

4-251 305-CD-028-002

SetMyId - used to set the id

Arguments::EcTChar *

Return Type:Void

Privilege:Public

SetMyParentId - used to set the parent id

Arguments::EcTChar *

Return Type:Void

Privilege:Public

~EcUtLoggerRelAMgmt - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcUtLoggerRelAMgmt class has associations with the following classes:
None

4.4.6.3.6 EcUtLoggerRelAPerf Class

Parent Class:EcUtLoggerRelAMgmt

Public:Yes

Distributed Object:Yes

Purpose and Description:

Object for logging Performance events.

Attributes:

All Attributes inherited from parent class

Operations:

EcUtLoggerRelAPerf - Constructor.

Arguments:appname:EcTChar * appversion:EctChar * = NULL

Return Type:Void

Privilege:Public

SetMyEventType - Set the event type.

Arguments::EcTInt

Return Type:Void

Privilege:Public

4-252 305-CD-028-002

~EcUtLoggerRelAPerf - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcUtLoggerRelAPerf class has associations with the following classes:
None

4.4.6.3.7 EcUtLoggerRelASec Class

Parent Class:EcUtLoggerRelAMgmt

Public:Yes

Distributed Object:Yes

Purpose and Description:

Used to log Security events.

Attributes:

All Attributes inherited from parent class

Operations:

EcUtLoggerRelASec - constructor - accepts application name and an optional application

version as arguments.

Arguments:appname:EcTChar * appversion:EctChar * = NULL

Return Type:Void

Privilege:Public

SetMyEventType - Used to set the event type.

Arguments:EcTInt

Return Type:EcTVoid

Privilege:Public

~EcUtLoggerRelASec - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

4-253 305-CD-028-002

The EcUtLoggerRelASec class has associations with the following classes:
None

4.4.6.3.8 strstream Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

standard c++ class

Attributes:

None

Operations:

None

Associations:

The strstream class has associations with the following classes:
None

4.4.6.4 Dynamic Model Scenarios

4.4.6.4.1 Scenario #1

4.4.6.4.1.1 Abstract

In this scenario, a EcUtLoggerRelA object will be created and will have a multi part message
written.

4.4.6.4.1.2 Interfaces

CSS's EcUtLoggerRelA object - for application logging.

4.4.6.4.1.3 Stimulus

This object is used to log event messages to file.

4.4.6.4.1.4 Desired Response

When used, the object should commit the messages to the appropriate file, with 'permission' from
the management object.

4.4.6.4.1.5 Participating Classes

EcUtLoggerRelA is the only object involved.

4-254 305-CD-028-002

4.4.6.4.1.6 Beginning State

Before being instantiated, the error will not be written in a file.

4.4.6.4.1.7 Ending State

After use, the message that EcUtLoggerRelA was sent will have been written to the appropriate log
file.

4.4.6.4.1.8 Scenario Description

In this scenario, the object will be created, have a multi part message written to it, and will be
destroyed.

1. The application instantiates a EcUtLoggerRelA object.

2.	 The application writes a message, with chained <<s assuming the error is not masked out
by the management object. (For example if the disk is too full, the management object may
decide to block all but the highest level error messages.)

3.	 Each part of the message is stored in the object, and at each stage the object returns itself
so that the <<s can be chained.

4.	 Finally, the object is passed the ENDMSG marker which causes the file to be opened,
locked, checked for its size. Then the message stored internally is written, and finally it is
flushed committing all error messages to disk.

5. Then the object is destroyed.

4-255 305-CD-028-002

4.4.6.4.1.9
E

ven
t T

race

application
EcUtLoggerRelA

object log file

creates object and sends
begin message

returns object

writes messages

writes data to file

returns object

sends end message

returns object

4-256
305-C

D
-028-002

returns success

Figure 4.4.6.4-1. Event Logging Service Event Trace

4.4.6.4.2 Scenario #2

4.4.6.4.2.1 Abstract

In this scenario, EcUtLoggerRelAFault object will be created by a management object and will
have management fault event written to the log file.

4.4.6.4.2.2 Interfaces

CSS's EcUtLoggerRelAFault object - for management fault event logging

4.4.6.4.2.3 Stimulus

EcUtLoggerRelAFault object is used by a management object to log management event messages
to file.

4.4.6.4.2.4 Desired Response

When used, EcUtLoggerRelAFault should commit the messages to the appropriate file.

4.4.6.4.2.5 Participating Classes

Management object

EcUtLoggerRelAFault

4.4.6.4.2.6 Beginning State

Before being instantiated, the error will not be written in a file.

4.4.6.4.2.7 Ending State

After use, the message that EcUtLoggerRelAFault was sent will have been written to the
appropriate log file.

4.4.6.4.2.8 Scenario Description

In this scenario, the application will log a management fault event into the specified log file. The
error severity is low, SNMP trap will not be generated.

1. The application instantiates a management object.

2. The management object instantiates CSS's EcUtLoggerRelAFault object.

3. The application writes messages.

4.	 Each part of the message is stored in the EcUtLoggerRelAFault object, and at each stage
the object returns itself so that the <<s can be chained.

5.	 The EcUtLoggerRelAFault object is passed the ENDMSG marker which causes the file to
be opened, locked, checked for its size. Then the message stored internally is written, and
finally it is flushed committing all error messages to disk.

6. The application check the severity of the event.

7.	 The severity is low, the application calls the object destructor which frees all memory
associated with the object.

4-257 305-CD-028-002

4.4.6.4.2.9 Event Trace

management application management object EcUtLoggerRelBFault log file

creates object

returns object

writes messages

sends end message

returns success

writes data to file

creates object and
send event information

check event severity

severity is low, return object

send begin message

returns object

returns object

Figure 4.4.6.4-2. Event Logging Service Event Trace for Management Events
(Release B)

4.4.6.5 Functional Model and Implementation

The object, EcUtLoggerRelA, will be assigned a unique identifier(eventid) upon instantiation. It
will then read a configuration file to determine the name of the file to log into as well as the
maximum size for the file log. Messages will be passed in with the << operator. There will be
special reserved symbols to end the message and change priority of the messages logged. When a
log file is half the maximum size the file will be moved to have a .old extension,. and future writes
will occur to a new file. There will be a bitmask to determine what errors will be logged. This can
be set by the Management Object. To send an error message a developer would do the following:

loggingobject << BEGINMSG << "This is a error message" << " with multiple strings and the
number " << 5 << ENDMSG;

It is necessary end each message with ENDMSG since that will flush all the data and allow other
threads to begin writing their own messages. If priority of a message is set, it will be reset with the
end of a message. Since beginning to write a message requires an exclusive lock, care should be
taken to avoid delay between start and end of a message. The functions will be thread safe.
Internally it will use an ofstream so all standard stream data can be sent to the error class. However,
even though it uses an strstream internally, only the << constructor and destructor operators are
supported. The use of any of the underlying operators is prohibited.

4-258 305-CD-028-002

The EcUtLoggerRelAMgmt object is an abstract class with the added fields necessary for logging
DCE events. It also has a variable of event type which is set by the classes that inherit from the
object. The object will have the ability to determine the severity of the events that it is given and
will optionally (as determined by information from the management object) instantiate a M&O
object which will create a SNMP trap.

EcUtLoggerRelAFault will set the type to Fault but will otherwise be identical.

EcUtLoggerRelAPerf will set the type to Performance but will otherwise be identical.

EcUtLoggerRelAAudit will set the type to Audit but will otherwise be identical.

EcUtLoggerRelASec will set the type to Security but will otherwise be identical.

The EcUtLoggerRelADebug object will inherit from the EcUtLoggerRelA object and has, in
addition, the ability to turn on and off the logging at compile time or runtime.

4.4.6.6 Service/CSCI Management and Strategy

4.4.6.6.1 System Management and Strategy

The table to determine the name of the log file and the maximum file size will be maintained by
M&O. The management object will also be able to selectively enable or disable error logging to
protect against filling a disk.

4.4.6.6.2 Operator Interface

There is no direct Operator Interface.

4.4.6.6.3 Reports

No reports are sent externally, but there is data logged locally, and the possibility that traps can be
sent.

4.4.7 Bulk Data Service (BDS)

ECS Release B will use a lightweight TCP/IP protocol, called Bulk Data Service (BDS), for file
transfer between Data Server and Science Processing. BDS provides an NFS-like client interface,
and its server is supported as a thread in the operating system kernel. BDS has been demonstrated
to support file transfer over a single HiPPI channel between SGI platforms at a rate of 65 MB per
second; three channels running simultaneously between two machines have supported 180 MB per
second. This speed is accomplished by providing separate socket connections for control and data
between the client and server, by using the largest block sizes supported by the underlying fabric,
by using direct I/O to the client and host file systems (avoiding buffering by the operating system),
and by aligning data buffers with memory buffer boundaries to allow efficient memory transfers.
BDS uses TCP/IP services and is independent of NFS and independent of the physical network.
BDS is available from SGI as a beta product in March 1996, and will be available as an Irix 6.2
extension product in June 1996.

4-259 305-CD-028-002

4.5 Infrastructure Services

4.5.1 Process Framework

4.5.1.1 Overview

The ECS contains several infrastructure features which facilitate the implementation of client
server applications. The framework provides an extensible mechanism for ECS Client and Server
applications to transparently include these infrastructure features. Therefore, its importance grows
with future releases of ECS. Furthermore, the framework is used solely by ECS custom developed
applications and as such is not meant for COTS applications. The primary objective of the PF is
to ensure design and implementation consistency for all ECS Client and Server applications. This
is achieved by encapsulating the implementation details of ECS infrastructure services and
removing the need for programmers to rewrite common initialization code.

In general, the following capabilities are needed in the ECS client and server applications and have
to be accommodated in a appropriate fashion:

1)	 Ability to initialize the process application and infrastructure in a consistent way and
provide some basic process information

2) Interface to Mode Management

3) Interface to Error-Event logging

4) Ability to set OODCE Naming/Directory Service options

5) Ability to set OODCE Security management parameters

6) Support for Life Cycle services

7) Interface to Asynchronous Message Passing

8) Interface to Server Request Framework, and

9) Interface to the Batch FTP service

A two step approach is used to develop the process framework. First, a process classification for
the ECS project is developed from the client/server perspective. Then, the required capabilities are
allocated at different levels of abstraction for each process type. The details of the above steps are
presented below.

Process Classification:

Figure 4.5.1.1-1 presents a classification of ECS application processes. A generic process can be
specialized into a client process and a server process. The former can be specialized into a gateway
client (client external to the ECS system and connected to it through a gateway) and DCE client
(client in the ECS system which uses DCE communication mechanisms). A server process can be
specialized into an unmanaged server process and a managed server process.

In this context, a Managed Server Process is a process controlled by the management agent services
provided by MSS. An Unmanaged server process is a process created by another process for its
specific use and is not under the direct control of the management agents. The name must not
confuse the reader. An unmanaged process is managed as well, but it is managed by its parent

4-260 305-CD-028-002

process instead of MSS. Finally, it should be noted that a process, which is both client and server,
is considered a server.

Process

Client Server

Unmanged Server Managed ServerGateway Client DCE Client

Figure 4.5.1.1-1. ECS Process Classification

Capability Allocation:

All the capabilities that are common to all the processes need to be incorporated at the generic
process level in the hierarchy described above. These include, the basic process information
capabilities, and interfaces to Mode Management and Event Logging. The ability to locate
services and set security preferences is provided to the client processes and server process in
different ways. Therefore, this functionality is implemented differently in the client and server but
the interface is common.

General services such as asynchronous messaging, Server Request Framework access, and batch
FTP that are needed by all server processes are provided by interfacing with the Message Passing
Service, the Server Request Framework and the batch FTP facility respectively. Full Life cycle
functionality is provided to every Server process. It has to be tailored in a different way for
Managed or Un-Managed Servers. The former has to be implemented with the management
instrumentation classes being developed by the Management Subsystem (MSS). The latter has to
be implemented by the parent Server which spawned the un-managed server.

4-261 305-CD-028-002

ECS Host

ECS Host

MSS

Management
Log

Managed
Server

Process 1

Un-Managed
Server

Process 1.1

Un-Managed
Server

Process 1.2

Application
Log Client

Log

DCE Client
Process

A

B

C

External Workstation

Client
Log

Client
Process

D

MSS
Management

Log

Application
Log

G
a
t
e
w
a
y

DCE

DCE

Figure 4.5.1.2-1. Process Framework Context

4.5.1.2 Context

Figure 4.5.1.2-1 identifies the context in which the above described processes operate. The ellipse
A, B, C, and D locate the contexts for Managed Server Processes, Unmanaged Server Processes,
DCE Client Processes, and Gateway Client Processes. A Managed Server process is connected to
the MSS sub-system (ellipse A). It can also spawn other processes. These latter processes might be
other Managed Server Processes as well as Unmanaged Server Processes. Unmanaged Server
Processes are connected to the parent process which has spawned them (ellipse B). They are not
directly connected to MSS and MSS is not aware of their existence. Their world is limited to the
application domain. They are called unmanaged because MSS doesn't manage them directly.
Client Processes have less constraints. They are simply clients of ECS server applications with an
external interface to log information in the Client Log. Only the DCE clients (ellipse C) are part
of the ECS and for only these kind of client processes the framework is applicable.

4-262 305-CD-028-002

4.5.1.3 Object Model

EcPfGenProcess

EcPfGenServer

EcPfManagedServer

EcPfConfigFile

GSO

EcPfClient

PfProcessEvent

EcPfUnmanagedServer

MyClientProc

MyUnmanagedServerProc

MyManagedServerProc

MSS_Stuff

SRF

AsyncMsg

myMSSMgrPtr

~EcPfManagedServer()
PfStart()
EcPfManagedServer(a_argc:ECTInt,a_argv:EcTChar**,status:EcUtStatus)
PfExecShutdown(a_level:EcAgMgmtLevel)
PfShutdownMyself(a_level:EcAgMgmtLevel,a_event:EcAgEvent)
PfProcessEvent(a_event:EcAgEvent*,a_log_type:EcTAgLogType)
PfRegisterMetric(a_level EcAgMgmtLevel,a_perfmetric:EcAgPerfMetric*)
PfRegisterMetric(a_level EcAgMgmtLevel,a_faultmetric:EcAgFaultMetric*)
PfRegisterMetric(a_level:EcAgMgmtLevel,a_configmetric:EcAgConfigMetric*)
PfInit()
PfGetShutdownSeconds(a_level:EcTAgMgtmLevel)
PfShutdown(shutdownlevel:EcTAgMgmtLevel,EcTInt,EcTInt)
PfStartMonitoring()
PfStopMonitoring(EcTInt)

ObjectLinkList

myMode
mySite
myExecName
myConfigFileName
myPath
myDeltaTime
myAppID
myProgramID
myPID
myMinorVersion
myConfigFileP
myMajorVersion
myAppName

~EcPfGenProcess()
EcPfGenProcess(argc:EcTInt,argv:EcTChar**,status:EcUtStatus)
PfSetAttrFromArgv(arc:EcTInt,argv:EcTChar**)
PfGetPath(server:RWCString, EcUtStatus*)
PfGetMode(EcUtStatus*)
PfGetDeltaTime(EcUtStatus*)
PfGetPath(site:RWCString, server:RWCString, EcUtStauts*)
PfGetPath(site:RWCString, server:RWCString,Mode:RWCString,EcUtStatus*)
PfGetExecName(EcUtStatus*)
PfGetPID(EcUtStatus*)
PfGetAppID(EcUtStatus*)
PfGetProgramID(EcUtStatus*)
PfGetMajorVersion(EcUtStatus*)
PfGetMinorVersion(EcUtStatus*)
PfGetConfigFileName(EcUtStatus*)
PfGetConfigFileP(EcUtStatus*)
PfGetAppName(EcUtStatus*)
PfGetSite(EcUtStatus*)
PfCheckStrOfInt(RWCString*)
PfProcessErrorMsg(EcLgErrorMsg*)

ServerStatus
ObjectLinkListPtr

ProfileName
GroupName
MyPolicy
ProtocolPolicy
PrincipalName
keyfile

diskFileName
NbrOfFTPThr
ObjectCount
Server_state_mutex

serverShortName
messpassflag
serverFTPptr

aclDBName
SRFflag

rwHashTable

PfCreateReceiver(RWCString&recSessName,RWCString&diskFileNameEcMpMsgCb*cbObj,EcU
tStatus&status)
~EcPfGenServer()
PfUnregisterList()
PfRegisterList()
PfRemoveObjectOfList(DCEObj&)
Shutdown()
PfSetAttrFromConfigFile(EcUtStatus*)
PfCreateSessionList(EcTInt, EcUtStatus*)
PfRegisterObject(DCEObj&, dceFlag:boolean)
PfUnregisterObject(DCEObj&, dceFlag:boolean)
PfUnregisterObject(uuid_t*, dceFlag:boolean)
PfSuspend()
PfResume()
Pfget_ServerStatus(EcUtStatus*)
Pfset_ProfileName(const RWCString,EcUtStatus*)
Pfget_ProfileName(EcUtStatus*)
Pfset_GroupName(const RWCString, EcUtStatus*)
Pfget_GroupName(EcUtStatus*)
Pfset_ProtocolPolicy(const RWCString, EcUtStatus*)
Pfget_ProtocolPolicy(EcUtStatus*)
Pfset_PrincipalName(const RWCString, EcUtStatus*)
Pfget_PrincipalName(EcUtStatus*)
Pfset_keyfile(const RWCString, EcUtStatus*)
Pfget_keyFile(EcUtStatus*)
Pfset_diskFile(const RWCString, EcUtStatus*)
Pfget_diskFile(EcUtStatus*)
Pfset_HostPolicy(HostPolicy, EcUtStatus*)
Pfget_HostPolicy(EcUtStatus*)
Pfset_NbrOfFTPThr(const EcTInt, EcUtStatus*)
Pfget_NbrOfFTPThr(Status: EcUtStatus*)
PfSetAttrFromArgv(argc:int,
PfCreateReceiverCb(RWCString,RWCString,EcTInt,DCEUuid,RWCString,EcUtStatus*)
PfGenServerInit()
EcPfGenServer(EcTInt, EcTChar**, EcUtStatus*)
PfAddCb(index:EcTInt,cb:EcMpMsgCb*)
PfAddIndexAndCallback(EcTInt,EcTVoid)
PfGetCallbackAddress(EcTInt, EcUtStatus*)
PfCreateFileAndModeName(RWCString, EcUtStatus*)
Pfget_serverFTPptr(EcUtstatus*)
Pfset_aclDBName(RWCString, EcUtStatus)
Pfget_aclDBName(EcUtStatus*)
Pfget_SRFflag(EcUtStatus*)
StartDceServerProc()
StartMessPassProc()
StartSecurityProc()
StartFTPProc()

[Public]

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

- : EcAgManager*

+
+ : EcUtStatus
+
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcTInt
+ : EcUtStatus
- : EcUtStatus
- : EcUtStatus

Offpage

- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt = 0
- : EcPfConfigFile*
- : EcTInt = 0
- : RWCString

+
+

: EcTVoid
+ : RWCString
+ : RWCString
+ : RWCString
+ : RWCString
+ : RWCString
+ : RWCString
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : RWCString
± : EcPfConfigFile*
+ : RWCString
+ : RWCString
± : EcUtStatus
+

- : EcTInt = 0
- : Pointer to the ObjectLinkList class

- : RWCString = NULL
- : RWCString = NULL
- : HostPolicy = 1
- : RWCString = NULL
- : RWCString = NULL
- : RWCString = NULL

- : RWCString = NULL
- : EcTInt = 0
- : EcTInt
- : DCEPthreadMutex = unlocked

- : RWCString
- : EcTInt
- : CsFtFTPSchedObj*

- : RWCString
- : RWCString

- : RWHashDictionary

+ : EcMpMsgQueueIn*

+
- : EcUtStatus
- : EcUtStatus
- : EcUtStatus
± : EcTVoid
- : EcTVoid
+ : EcMpSessionList*
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EctInt
+
+ : RWCString
+
+ : RWCString
+
+ : RWCString
+
+ : RWCString
+
+ : RWCString
+
+ : RWCString
+ : EctVoid
+ : HostPolicy
+
+ : EctInt
- : EcUtStatus
+ : EcMpMsgQueueCbIn*
+ : EcUtStatus
+
+ : EcUtStatus
+ : EcUtStatus
+ : EcTInt
+ : RWCString
+ : CsFtFTPSchedObj*
+ : EcTVoid
+ : RWCString
+ : RWCString
- : EcUtStatus
- : EcUtStatus
- : EcUtStatus
- : EcUtStatus

provides

is created by

argv:char**)

Figure 4.5.1.3-1. Process Framework Object Model

4-263 305-CD-028-002

4.5.1.3.1 AsyncMsg Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The AsyncMsg class has associations with the following classes:
EcPfGenServer (Aggregation)
SRF (Aggregation)

4.5.1.3.2 EcPfClient Class

Parent Class:EcPfGenProcess

Attributes:

All Attributes inherited from parent class

Operations:

PfProcessEvent
Arguments:

Associations:

The EcPfClient class has associations with the following classes:
None

4.5.1.3.3 EcPfConfigFile Class

Parent Class:Not Applicable

Attributes:

4-264 305-CD-028-002

None

Operations:

None

Associations:

The EcPfConfigFile class has associations with the following classes:
Class: EcPfGenProcess provides

4.5.1.3.4 EcPfGenProcess Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

EcPfGenProcess represents the process framework for a generic process. It has all the

common functionality for all the process frameworks. It is mainly a container of attributes

needed by every process. It obtains attribute values from the configuration file or the

command line parameters.

Attributes:

myAppID - Application ID.

Data Type:EcTInt

Privilege:Private

Default Value:

myAppName - Name of the application

Data Type:RWCString

Privilege:Private

Default Value:

myConfigFileName - Full configuration file name path. It must be provided in the

command line.

Data Type:RWCString

Privilege:Private

Default Value:

myConfigFileP - A pointer to the configuration file.

Data Type:EcPfConfigFile*

Privilege:Private

Default Value:

4-265 305-CD-028-002

myDeltaTime - Delta time for simulation purposes

Data Type:RWCString

Privilege:Private

Default Value:

myExecName - Executable name of the program

Data Type:RWCString

Privilege:Private

Default Value:

myMajorVersion - Major version of the application

Data Type:EcTInt

Privilege:Private

Default Value:0

myMinorVersion - Minor version of the application.

Data Type:EcTInt

Privilege:Private

Default Value:0

myMode - Provides the mode the user is curently in (i.e. test, production, training, etc...).

It must be privided from the command line.

Data Type:RWCString

Privilege:Private

Default Value:

myPID - Process ID

Data Type:EcTInt

Privilege:Private

Default Value:

myPath - CDS entry path.

Data Type:RWCString

Privilege:Private

Default Value:

myProgramID - Program ID.

Data Type:EcTInt

Privilege:Private

Default Value:

mySite - Site name where the process is running.

Data Type:RWCString

Privilege:Private

4-266 305-CD-028-002

Default Value:

Operations:

EcPfGenProcess - Constructor which will set attributes from configuration file. It will then

read arguments from the command line to reset attributes dynamically.

Arguments:argc:EcTInt,argv:EcTChar**,status:EcUtStatus

Return Type:Void

Privilege:Public

PfCheckStrOfInt - Check input data type for integer

Arguments:RWCString*

Return Type:EcUtStatus

Privilege:Protected

PfGetAppID - Obtains the application ID

Arguments:EcUtStatus*

Return Type:EcTInt

Privilege:Public

PfGetAppName - Obtains application name

Arguments:EcUtStatus*

Return Type:RWCString

Privilege:Public

PfGetConfigFileName - Obtains the full path name of the configuration file

Arguments:EcUtStatus*

Return Type:RWCString

Privilege:Public

PfGetConfigFileP - Obtains the pointer to the configuration file

Arguments:EcUtStatus*

Return Type:EcPfConfigFile*

Privilege:Protected

PfGetDeltaTime - Obtains delta time

Arguments:EcUtStatus*

Return Type:RWCString

Privilege:Public

PfGetExecName - Obtains the executable name

Arguments:EcUtStatus*

Return Type:RWCString

Privilege:Public

4-267 305-CD-028-002

PfGetMajorVersion - Obtains the major version of the program

Arguments:EcUtStatus*

Return Type:EcTInt

Privilege:Public

PfGetMinorVersion - Obtains the minor version of the program

Arguments:EcUtStatus*

Return Type:EcTInt

Privilege:Public

PfGetMode - Obtains the mode

Arguments:EcUtStatus*

Return Type:RWCString

Privilege:Public

PfGetPID - Obtains the process ID of the program

Arguments:EcUtStatus*

Return Type:EcTInt

Privilege:Public

PfGetPath - Construct the CDS path entry using mySite, myMode and the specified server

name

Arguments:server:RWCString, EcUtStatus*

Return Type:RWCString

Privilege:Public

PfGetPath - Construct the CDS path entry using myMode, and the specified site name and

server name

Arguments:site:RWCString, server:RWCString, EcUtStauts*

Return Type:RWCString

Privilege:Public

PfGetPath - Construct the CDS path entry using the specified Mode, site name and server

name

Arguments:site:RWCString, server:RWCString,Mode:RWCString,EcUtStatus*

Return Type:RWCString

Privilege:Public

PfGetProgramID - Obtains the program ID

Arguments:EcUtStatus*

Return Type:EcTInt

Privilege:Public

PfGetSite - Obtains the site name

4-268 305-CD-028-002

Arguments:EcUtStatus*

Return Type:RWCString

Privilege:Public

PfProcessErrorMsg - TBD

Arguments:EcLgErrorMsg*

Return Type:Void

Privilege:Public

PfSetAttrFromArgv - Read argument list from command line and set the attributes

Arguments:arc:EcTInt,argv:EcTChar**

Return Type:EcTVoid

Privilege:Protect

~EcPfGenProcess - Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcPfGenProcess class has associations with the following classes:
Class: EcPfConfigFile provides

4.5.1.3.5 EcPfGenServer Class

Parent Class:EcPfGenProcess

Parent Class:GSO

Public:No

Distributed Object:No

Purpose and Description:

This class inherits from both the EcPfGenProcess and the DCEServer class and is inherited

by the EcPfManagedServer class. This class will provide the generic DCEServer

capabilities and some enhanced features as well. It will also serve as a linking interface

with other services such as FTP, Message Passing, Server Request Framework, and

Security.

Attributes:

GroupName - Needed to decide the group name in CDS

Data Type:RWCString

Privilege:Private

Default Value:NULL

4-269 305-CD-028-002

MyPolicy - Decides the host policy; 0 for unique host policy, 1 for multiple host policy.

Data Type:HostPolicy

Privilege:Private

Default Value:1

NbrOfFTPThr - Indicates the number of FTP threads in the application; The FTP

initialization is done only for values greater then 0.

Data Type:EcTInt

Privilege:Private

Default Value:0

ObjectCount - Keeps track of the number of objects in the link list

Data Type:EcTInt

Privilege:Private

Default Value:

ObjectLinkListPtr - Pointer to the linked list of objects to be registered or unregistered.

Data Type:Pointer to the ObjectLinkList class

Privilege:Private

Default Value:

PrincipalName - Needed in message passing and security, user name

Data Type:RWCString

Privilege:Private

Default Value:NULL

ProfileName - Needed to decide the profile name in CDS

Data Type:RWCString

Privilege:Private

Default Value:NULL

ProtocolPolicy - Needed to decide the protocol policy of CDS

Data Type:RWCString

Privilege:Private

Default Value:NULL

SRFflag - Flag indicating whether Server Request Framework is needed

Data Type:RWCString

Privilege:Private

Default Value:

ServerStatus - There is to indication the status of server objects. There are three different

status: 1) Initial - no user objects registered with the server, 2) suspendable and 3)

resumable

Data Type:EcTInt

4-270 305-CD-028-002

Privilege:Private

Default Value:0

Server_state_mutex - Lock attribute used to activate a self unlocking mutex that forces

register object, unregister object, suspend, resume, to be called sequentially.

Data Type:DCEPthreadMutex

Privilege:Private

Default Value:unlocked

aclDBName - Filename for ACL DB

Data Type:RWCString

Privilege:Private

Default Value:

diskFileName - Needed as a parameter in message passing

Data Type:RWCString

Privilege:Private

Default Value:NULL

keyfile - Needed as a parameter in message passing and security

Data Type:RWCString

Privilege:Private

Default Value:NULL

messpassflag - Flag that is put to 1 by the user in order to explicitly require that message

passing be activated.

Data Type:EcTInt

Privilege:Private

Default Value:

rwHashTable - Contains FTP thread index and associated callback functions

Data Type:RWHashDictionary

Privilege:Private

Default Value:

serverFTPptr - Pointer to FTP object

Data Type:CsFtFTPSchedObj*

Privilege:Private

Default Value:

serverShortName - server name

Data Type:RWCString

Privilege:Private

Default Value:

4-271 305-CD-028-002

Operations:

EcPfGenServer - EcPfGenServer Constructor

Arguments:EcTInt, EcTChar**, EcUtStatus*

Return Type:Void

Privilege:Public

PfAddCb - This will calls the respective message passing method. (For details see

description of EcMpMsgPsngCtrl class)

Arguments:index:EcTInt,cb:EcMpMsgCb*

Return Type:EcUtStatus

Privilege:Public

PfAddIndexAndCallback - This method is called by the application programmer any time

they make a FTP call. Its purpose is to keep the callback together with its index in a

HashTable, so that in case of failure, given the index, the address of the callback can be

traced.

Arguments:EcTInt,EcTVoid

Return Type:EcUtStatus

Privilege:Public

PfCreateFileAndModeName - This method is used to create filenames with the extension

_mode, so that be explicitly forced that when applications are run in different modes, the

files used for Security, Message Passing, etc, be different.

Arguments:RWCString, EcUtStatus*

Return Type:RWCString

Privilege:Public

PfCreateReceiver - Method for creating a receiver object for message passing

Arguments:

RWCString&recSessName,RWCString&diskFileNameEcMpMsgCb*cbObj,EcU

tStatus&status

Return Type:EcMpMsgQueueIn*

Privilege:Public

PfCreateReceiverCb - Method for creating a receiver object for message passing

Arguments:RWCString,RWCString,EcTInt,DCEUuid,RWCString,EcUtStatus*

Return Type:EcMpMsgQueueCbIn*

Privilege:Public

PfCreateSessionList - Creates session list for message passing

Arguments:EcTInt, EcUtStatus*

Return Type:EcMpSessionList*

Privilege:Public

4-272 305-CD-028-002

PfGenServerInit - Starts the main attributes of the server obtained in configuration file and

command line

Arguments:

Return Type:EcUtStatus

Privilege:Public

PfGetCallbackAddress - This method is called by FTP service in case of failure. Given

the index, it will trace the address of the callback.

Arguments:EcTInt, EcUtStatus*

Return Type:EcTInt

Privilege:Public

PfRegisterList - This method is called by PfResume for re-registering objects with the

server

Arguments:

Return Type:EcUtStatus

Privilege:Private

PfRegisterObject - Method for registering objects with the server and inserting them in a

private list

Arguments:DCEObj&, dceFlag:boolean

Return Type:EcUtStatus

Privilege:Public

PfRemoveObjectOfList - This method is called by PfUnregisterObject for removing an

objects from the linked list

Arguments:DCEObj&

Return Type:EcUtStatus

Privilege:Private

PfResume - Method for re-registering the objects that reside in the linked list

Arguments:

Return Type:EcUtStatus

Privilege:Public

PfSetAttrFromArgv - This method is called by the constructor to check for any possible

attributes that need to be set. It will overwrite the attribute values already read in the

configuration file.

Arguments:argc:int, argv:char**

Return Type:EcUtStatus

Privilege:Private

PfSetAttrFromConfigFile - Read the configuration file and sitting class attribuites

accordingly

4-273 305-CD-028-002

Arguments:EcUtStatus*

Return Type:EcTVoid

Privilege:Private

PfSuspend - Method for unregistering all objects that are inserted in the linked list

Arguments:

Return Type:EcUtStatus

Privilege:Public

PfUnregisterList - This method is called by PfSuspend for unregistering objects from the

server

Arguments:

Return Type:EcUtStatus

Privilege:Private

PfUnregisterObject - Method for unregistering a given object with the server and

removing it from the private list

Arguments:DCEObj&, dceFlag:boolean

Return Type:EcUtStatus

Privilege:Public

PfUnregisterObject - Method for unregistering a given object with the server and

removing it from the private list

Arguments:uuid_t*, dceFlag:boolean

Return Type:EcUtStatus

Privilege:Public

Pfget_GroupName - Returns GroupName value

Arguments:EcUtStatus*

Return Type:RWCString

Privilege:Public

Pfget_HostPolicy - Return HostPolicy value

Arguments:EcUtStatus*

Return Type:HostPolicy

Privilege:Public

Pfget_NbrOfFTPThr - Returns NbrOfFTPThr value

Arguments:Status: EcUtStatus*

Return Type:EctInt

Privilege:Public

Pfget_PrincipalName - Returns PrincipalName value

Arguments:EcUtStatus*

Return Type:RWCString

4-274 305-CD-028-002

Privilege:Public

Pfget_ProfileName - Returns the ProfileName value

Arguments:EcUtStatus*

Return Type:RWCString

Privilege:Public

Pfget_ProtocolPolicy - Returns the ProtocolPolicy value

Arguments:EcUtStatus*

Return Type:RWCString

Privilege:Public

Pfget_SRFflag - Return Server Request Framework flag

Arguments:EcUtStatus*

Return Type:RWCString

Privilege:Public

Pfget_ServerStatus - Returns server status _ServerStatus

Arguments:EcUtStatus*

Return Type:EctInt

Privilege:Public

Pfget_aclDBName - Returns file name for ACL database

Arguments:EcUtStatus*

Return Type:RWCString

Privilege:Public

Pfget_diskFile - Returns diskFile value

Arguments:EcUtStatus*

Return Type:RWCString

Privilege:Public

Pfget_keyFile - Returns keyfile value

Arguments:EcUtStatus*

Return Type:RWCString

Privilege:Public

Pfget_serverFTPptr - Returns pointer to FTP object

Arguments:EcUtstatus*

Return Type:CsFtFTPSchedObj*

Privilege:Public

Pfset_GroupName - Set group name

Arguments:const RWCString, EcUtStatus*

Return Type:Void

4-275 305-CD-028-002

Privilege:Public

Pfset_HostPolicy - Set HostPolicy value

Arguments:HostPolicy, EcUtStatus*

Return Type:EctVoid

Privilege:Public

Pfset_NbrOfFTPThr - Set NbrOfFTPThr value

Arguments:const EcTInt, EcUtStatus*

Return Type:Void

Privilege:Public

Pfset_PrincipalName - Set PrincipalName value

Arguments:const RWCString, EcUtStatus*

Return Type:Void

Privilege:Public

Pfset_ProfileName - set profile name value

Arguments:const RWCString,EcUtStatus*

Return Type:Void

Privilege:Public

Pfset_ProtocolPolicy - Set ProtocolPolicy value

Arguments:const RWCString, EcUtStatus*

Return Type:Void

Privilege:Public

Pfset_aclDBName - Sets the ACL DB file name attribute

Arguments:RWCString, EcUtStatus

Return Type:EcTVoid

Privilege:Public

Pfset_diskFile - Set diskFile value

Arguments:const RWCString, EcUtStatus*

Return Type:Void

Privilege:Public

Pfset_keyfile - Set keytab file location

Arguments:const RWCString, EcUtStatus*

Return Type:Void

Privilege:Public

Shutdown - This is theServer Shutdown method

Arguments:

Return Type:EcTVoid

4-276 305-CD-028-002

Privilege:Protected

StartDceServerProc - This method is called privately by the PfGenStart to initialize

common server activities such as SetName, SetProtocols, etc. It will only perform those

activities for which the respective attributes will be set either in the configuration file or in

the command line.

Arguments:

Return Type:EcUtStatus

Privilege:Private

StartFTPProc - This method is called privately by the PfGenStart to initialize the FTP

process when the application sets the number of FTP threads to a value greater than 0. The

maximum number of FTP threads allowed is 30.

Arguments:

Return Type:EcUtStatus

Privilege:Private

StartMessPassProc - This method is called privately by the PfGenStart to initialize the

message passing process.

Arguments:

Return Type:EcUtStatus

Privilege:Private

StartSecurityProc - This method is called by PfGenServerInit to initialize the Security

process.

Arguments:

Return Type:EcUtStatus

Privilege:Private

~EcPfGenServer - Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcPfGenServer class has associations with the following classes:
None

4.5.1.3.6 EcPfManagedServer Class

Parent Class:EcPfGenServer

Public:Yes

Distributed Object:No

Purpose and Description:

4-277 305-CD-028-002

This class is the framework class for Managed Server Processes. This class defines the
method Process Event which handles the events generated by the Managed Server
Processes. This class is also connected to the MSS EcAgManager class as required by the
MSS desing. The Managed Server class will povide methods to inform the EcAgManager
to start and stop monitoring, to inform the EcAgManager the number of shutdown seconds
required for the application, program, and process, to register metrics with the
EcAgManager. The Managed Server class also receives requests from the EcAgManager
class to suspend, resume, and shutdown. The method, PfShutdownMyself, is provided by
the Managed Server class to the application may request a shutdown of itself.

Attributes:

myMSSMgrPtr - Pointer to the EcAgManger object. Used to call methods contained in

the EcAgManager class.

Data Type:EcAgManager*

Privilege:Private

Default Value:

Operations:

EcPfManagedServer - Constructor

Arguments:a_argc:ECTInt,a_argv:EcTChar**,status:EcUtStatus

Return Type:Void

Privilege:Public

PfExecShutdown - Calls theServer Shutdown() and PfShutdown method with the

management level(application, program, process).

Arguments:a_level:EcAgMgmtLevel

Return Type:EcUtStatus

Privilege:Public

PfGetShutdownSeconds - Needs to be overriden by application, the number of seconds

requires to shutdown the application

Arguments:a_level:EcTAgMgtmLevel

Return Type:EcTInt

Privilege:Public

PfInit - Calls the PfGenServerInit(inherited) method, instantiates the EcAgManager

Object and registers it with the GSO

Arguments:

Return Type:EcUtStatus

Privilege:Public

PfProcessEvent - Calls the ProcessEvent method of the EcAgManager object

4-278 305-CD-028-002

Arguments:a_event:EcAgEvent*,a_log_type:EcTAgLogType

Return Type:EcUtStatus

Privilege:Public

PfRegisterMetric - Calls the RegisterMetric method of the EcAgManger object.

Arguments:a_level EcAgMgmtLevel,a_perfmetric:EcAgPerfMetric*

Return Type:EcUtStatus

Privilege:Public

PfRegisterMetric - Calls the RegisterMetric method of the EcAgManager object.

Arguments:a_level EcAgMgmtLevel,a_faultmetric:EcAgFaultMetric*

Return Type:EcUtStatus

Privilege:Public

PfRegisterMetric - Calls the RegisterMetric method of the EcAgManager object.

Arguments:a_level:EcAgMgmtLevel,a_configmetric:EcAgConfigMetric*

Return Type:EcUtStatus

Privilege:Public

PfShutdown - Needs to be overriden by application to perform specific shutdown

appropriate for application

Arguments:shutdownlevel:EcTAgMgmtLevel,EcTInt,EcTInt

Return Type:EcUtStatus

Privilege:Public

PfShutdownMyself - Calls StopMonitoring. Calls PfShutdown method with the

management level(application,program,process). Calls the DCEServer Shutdown method.

Arguments:a_level:EcAgMgmtLevel,a_event:EcAgEvent

Return Type:EcUtStatus

Privilege:Public

PfStart - Calls PfStartMonitoring and DCEServer listen methods

Arguments:

Return Type:EcUtStatus

Privilege:Public

PfStartMonitoring - Calls StartMonitoring() method of the EcAgManager Object

Arguments:

Return Type:EcUtStatus

Privilege:Private

PfStopMonitoring - Calls StopMonitoring() method of the EcAgManager Object

Arguments:EcTInt

Return Type:EcUtStatus

Privilege:Private

4-279 305-CD-028-002

~EcPfManagedServer - Destructor. Deletes the EcAgManager object.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcPfManagedServer class has associations with the following classes:
None

4.5.1.3.7 EcPfUnmanagedServer Class

Parent Class:EcPfGenServer

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The EcPfUnmanagedServer class has associations with the following classes:
None

4.5.1.3.8 GSO Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

4-280 305-CD-028-002

The GSO class has associations with the following classes:
None

4.5.1.3.9 MSS_Stuff Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The MSS_Stuff class has associations with the following classes:
EcPfManagedServer (Aggregation)

4.5.1.3.10 MyClientProc Class

Parent Class:EcPfClient

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MyClientProc class has associations with the following classes:
None

4.5.1.3.11 MyManagedServerProc Class

Parent Class:EcPfManagedServer

Attributes:

4-281 305-CD-028-002

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MyManagedServerProc class has associations with the following classes:
Class: MyUnmanagedServerProc iscreatedby

4.5.1.3.12 MyUnmanagedServerProc Class

Parent Class:EcPfUnmanagedServer

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MyUnmanagedServerProc class has associations with the following classes:
Class: MyManagedServerProc iscreatedby

4.5.1.3.13 ObjectLinkList Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

None

Operations:

None

4-282 305-CD-028-002

Associations:

The ObjectLinkList class has associations with the following classes:
EcPfGenServer (Aggregation)

4.5.1.3.14 SRF Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The SRF class has associations with the following classes:
EcPfGenServer (Aggregation)

4.5.1.4 Functional Model

Different types of processes need different framework functionality. The framework design
closely maps the process classification so that the reuse of common functionality is maximized.

The class EcPfGenProcess represents the process framework for a generic process. It has all
the common functionality for all the processes. It is an abstract class which provides a common
interface to access the common methods. For example, every process has to have a mode
management capability. Moreover, every process needs to have available some basic information
about itself. This functionality can work in the same way for every process and therefore is defined
in this class. On the other hand, every process needs to have Event-Error Handling capability, but
its implementation must be different for client and server processes, although its interface could be
the same. The method PfProcessEvent is therefore declared as pure virtual forcing the
subclasses to implement this capability.

The class EcPfClient defines the framework for client processes. The only method specified is
the PfProcessEvent method. The current design assumes that the client process does not
differ from a generic process in any other respect. This class is defined to satisfy a future need for
specific functionality needed by client processes.

The class EcPfGenServer is the basic framework class for server process. It is further
specialized into Managed and Un-Managed Server Process. All the common functionality for
every Server is included in this class.

4-283 305-CD-028-002

The functionality includes:

•	 Lifecycle support, through the use of the methods: PfShutdown, PfSuspend, and
PfResume.

•	 The Message Passing interface through the methods: PfCreateSessionList,
PfCreateReceiver, and PfCreateReceiverCB.

• The Server Request Framework interface, through the pointer to the SRF Handler object.

•	 Ability to set OODCE parameters. Several access functions (Get and Set methods) are
provided to read and change the attribute values.

•	 The customization of a select set of GSO methods that are commonly used by the
application developers.

The class EcPfManagedServer is the framework class for Managed Server Processes. It
defines the method PfProcessEvent which handles the events generated by Managed Server
Processes. It is also connected to the MSS classes as required by the MSS design. The class
EcPfUnmanagedServer is the framework class for Unmanaged Server Processes. The blocks
myClientProc, myUnmanagedServerProc, and MyManagedServerProc represent the possible
classes developed for each specific applications by the developer.

Table 4.5.1.4-1 describes the PF classes.

Table 4.5.1.4-1. PF Object Responsibility Matrix
Class name Description

EcPfGenProcess represents the process framework for a generic process.
It has all the common functionality for all the processes.
It is an abstract class which provides a common
interface to access the common methods.

EcPfClient defines the framework for client processes.

EcPfGenServer basic framework class for server process.

EcPfManagedServer is the framework class for Managed Server Processes.

EcPfUnManagedServer is the framework class for Unmanaged Server
Processes.

MyManagedServerProc is the class implemented by the programmer to inherit
managed server process functionality

MyUnManagedServerProc is the class implemented by the programmer to inherit
unmanaged server process functionality

MyClientProc is the class implemented by the programmer to inherit
client process functionality

4.5.1.5 Dynamic Model Scenarios

4.5.1.5.1 Scenario #1

4.5.1.5.1.1 Abstract

This scenario describes the startup of a generic server application.

4-284 305-CD-028-002

4.5.1.5.1.1 Interfaces

MSS provided classes.

4.5.1.5.1.2 Stimulus

The operator using HP/Open View (HPOV) double clicks on the server application icons.

4.5.1.5.1.3 Desired Response

The application is started and an icon representing the running application appears on the HPOV
desktop.

4.5.1.5.1.4 Participating Classes

MyManagedServerProc

EcPfManagedServer

GSO

SRF

EcMpSessionList

EcPfConfigFile

EcAgManager

We also consider in the event trace the MSS SubAgent block and the application main program
module to better clarify the system behavior.

4.5.1.5.1.5 Pre-conditions

The application is available on an ECS host.

4.5.1.5.1.6 Post-conditions

The application is started.

4.5.1.5.1.7 Scenario Description

The request to start an ECS application is issued by a ECS systems administrator who has a HP/
Open View based user interface which reaches the MSS sub-agent. The subagent then fires the
associated script needed to start the ECS server application. The script in turn runs the server main
program. Specific information for ECS applications is stored in configuration files. These include
the attributes needed for the process execution thus reducing the number of parameters to be passed
to the main program and minimizing the need for environment variables.

Application main first instantiates a MyManagedServerProc object, and reads from a
configuration file and command line arguments to set attributes needed for the process execution.
Application main then calls PfInit() to perform all DCE related initialization (and optionally
SRF, message passing, and FTP initialization) for the process, and creates an EcAgManager
object. EcAgManager is a distributed object which provides interfaces to the MSS sub-agent.
The application will then perform normal server set up such as creating server manager objects,
registering objects with GSO, and registering metrics with MSS. Finally, application main will call
PfStart() to start MSS monitoring, and listen to client requests.

4-285 305-CD-028-002

4.5.1.5.1.8
E

ven
t T

race

MSS Application
SubAgent main() MyMngd EcAg

ServerProc EcPfMngd Manager SRF
EcMpSession

List

run a server app
Server GSO EcPfConfigFile

Construct EcPfMngdServer Object

read the configuration file

parse the command line arg

parse the command line arg

PfSetProtocol
Policy

Pffinit()
Initialize DCE related procedure

start()

PfStart()
Start

Monitoring

call theServer->Listen()

InitializeMP and SRF

Instantiate EcAgManager Object,
Register with GSO

Instantiate MyMngdServerProc

PfRegisterObject()

RegisterObject()

PfRegisterMetric()

RegisterMetric()

PfCreateSessionList(AppCB)

Instantiates EcMpSessionList, return a ptr

4-286
305-C

D
-028-002

Figure 4.5.1.5-1 Process Framework Event Trace for Application Start-Up

4.5.1.5.2 Scenario #2

4.5.1.5.2.1 Abstract

This scenario describes the shutdown of a generic server application at the request of MSS.

4.5.1.5.2.2 Interfaces

MSS

4.5.1.5.2.3 Stimulus

The operator, using HPOV, clicks on the server application icon and selects Shutdown from the
appearing menu.

4.5.1.5.2.4 Desired Response

The application is shutdown and its icon, representing the running application, is removed from the
HPOV desktop.

4.5.1.5.2.5 Participating Classes

MyManagedServerProc

EcPfManagedServer

GSO

EcAgManager

We also consider in the event trace the MSS SubAgent block and the application main program
module to better clarify the system behavior.

4.5.1.5.2.6 Pre-conditions

The application process is running.

4.5.1.5.2.7 Post-conditions

The application process is shutdown.

4.5.1.5.2.8 Scenario Description

MSS sub-agent, EcAgManager, calls PfGetShutdownSec() to obtain the number of seconds
the application needs to perform shutdown. This method needs to be over ridden by the application
to provide an estimation of shutdown time the application needs. If PfGetShutdownSec() is
not provided by the application, a default number of seconds will be provided by the process
framework. After the shutdown seconds is obtained, the MSS sub-agent then calls
PfExecShutdown() to shutdown the server process. PfExecShutdown() will first call
theServer->Shutdown() to stop accepting client requests, and return from listen. The
application specific shutdown method (PfShutdown()) will then be called to perform
application specific shutdown. If the application does not shutdown within the indicated time
frame, the operator will be given an opportunity to kill the application or let it continue to operate.

4-287 305-CD-028-002

4.5.1.5.2.9 Event Trace

MyMngdServerProc EcPfMngdServer EcAgManager
GSO

PfExecShutdown(level)

PfShutdown(level)

theServer->Shutdown()

PfGetShutdownSec()

Figure 4.5.1.5-2 Process Framework Event Trace for Application Shutdown by MSS

4.5.1.5.3 Scenario #3

4.5.1.5.3.1 Abstract

The process decides to terminate itself.

4.5.1.5.3.2 Interfaces

None.

4.5.1.5.3.3 Stimulus

An error/exception occurs and the process decides to terminate itself.

4.5.1.5.3.4 Desired Response

The application process is shutdown.

4.5.1.5.3.5 Participating Classes

MyManagedServerProc

EcPfManagedServer

GSO

EcAgManager

4.5.1.5.3.6 Pre-conditions

The application process is running, an error/exception occur within the application.

4-288 305-CD-028-002

4.5.1.5.3.7 Post-conditions

The application process is shutdown.

4.5.1.5.3.8 Scenario Description

The application call PfShutdownMySelf method, which will first call
PfGetShutdownSec() to obtain the number of seconds to shutdown.
PfStopMonitoring()will then be called to notify MSS to stop monitoring the process. A call
to theServer->Shutdown() is made to shutdown the server and return from listening.
Finally, the application shutdown PfShutdown() will be called to gracefully shutdown the
application. If the application does not shutdown within the indicated time frame, the operator
will be given an opportunity to kill the application or let it continue to operate.

4.5.1.5.3.9 Event Trace

MyMngdServerProc EcPfMngdServer EcAgManager GSO

PfShutdownMyself(level)

PfGetShutdownSec

StopMonitoring

PfShutdown(level)

theServer -> Shutdown()

Figure 4.5.1.5-3 Process Framework Event Trace for Application Self Shutdown

4.5.1.5.4 Scenario #4

4.5.1.5.4.1 Abstract

This scenario describes how a generic server application is suspended and then resumed.

4.5.1.5.4.2 Interfaces

MSS provided classes.

4.5.1.5.4.3 Stimulus

The operator using HPOV clicks on the server application process icon and selects Suspend from
the appearing menu. Later he selects Resume.

4.5.1.5.4.4 Desired Response

The application is suspended and its icon, representing the running application on the HPOV desk
top, changes color. When Resume is selected, the process resume listening for client requests and
the HPOV icon go back to the original color.

4-289 305-CD-028-002

4.5.1.5.4.5 Participating Classes

MyManagedServerProc

EcPfManagedServer

GSO

EcAgManager

We also consider in the event trace the MSS SubAgent block to better clarify the system behavior.

4.5.1.5.4.6 Pre-conditions

The application is running and at least one server object is registered with the server.

4.5.1.5.4.7 Post-conditions

After the suspend command the application is in the suspended status. After the resume command,
it is in the running status.

4.5.1.5.4.8 Scenario Description

The sub-agent manager, EcAgManager, calls the PfSuspend method to temporarily remove all
objects from the server. This will unregister all objects, except the management object (EcAg-
Manager), that are previously registered with the server.

At a later time, PfResume method is called to reregister all previously unregistered objects with
the server.

4-290 305-CD-028-002

4.5.1.5.4.9 Event Trace

MSS MyMngd EcAg
SubAgent ServerProc

EcPfGenServer

PfSuspend()

UnregisterObject(obj1)

UnregisterObject(obj2)

UnregisterObject(objn)

PfResume()

RegisterObject(obj1)

RegisterObject(obj2)

RegisterObject(objn)

Manager GSO

Suspend request

Resume request

Figure 4.5.1.5-4 Process Framework Event Trace for Suspend and Resume

4.5.1.5.5 Scenario #5

4.5.1.5.5.1 Abstract

This scenario describes the logging of a generic event.

4.5.1.5.5.2 Interfaces

MSS.

4.5.1.5.5.3 Stimulus

An error/event is detected and is to be logged.

4.5.1.5.5.4 Desired Response

The error/event is stored in the appropriate log file.

4-291 305-CD-028-002

4.5.1.5.5.5 Participating Classes

MyManagedServerProc

EcPfManagedServer

EcAgManager

EcAgEvent

We also consider in the event trace the MSS SubAgent block to better clarify the system behavior.

4.5.1.5.5.6 Pre-conditions

A log file is available.

4.5.1.5.5.7 Post-conditions

The event is stored in the log file.

4.5.1.5.5.8 Scenario Description

If an application object detects an event, it creates an instance of the EcAgEvent class which
describes the event. It then passes the event object, along with the log type, to the EcAgManager
to be logged using the method ProcessEvent.

4.5.1.5.5.9 Event Trace

EcAgManager EcPfMngdServer MyMngdserverProc EcAgEvent

PfProcessEvent(the Event)

ProcessEvent(the Event)

theEvent = new EcAgEvent()

Figure 4.5.1.5-5. Process Framework Event Trace for Event/Error Logging

4.5.1.6 Implementation

The following observations can be made regarding the functionalities included in the framework:

•	 Some are specific to the distributed architecture chosen while others are independent of the
architecture.

•	 Those specific to the distributed architecture are provided to the processes by appropriately
using the classes provided by the distributed system.

•	 Those independent of the distributed architecture are being custom developed by the ECS
subsystems.

4-292 305-CD-028-002

Hence, the process framework is dependent on the underlying distributed architecture and the
development of various infrastructural components by various ECS subsystems. The distributed
architecture is currently being provided by using DCE/OODCE which is a COTS product. This is
based on the recommendation that an encapsulated DCE (using OODCE) which provides security,
object oriented capabilities, and a high degree of interoperability, be used in Release A & B time
frame and migrate to a CORBA product in Release C. DCE is a very mature product which
increasingly being used for client/server application development. OODCE provides the full
object functionality that is needed to accomodate the object-oriented design employed by ECS.

4.5.1.7 Service/CSCI Management and Operation

4.5.1.7.1 System Management and Strategy

The whole Process Framework consists of a set of core services with distinct functionality to make
the development of the distributed applications easier. Details are provided for each of these
services in this document and other relevant ECS design documents. It comprises of only one CSC
to accomodate the framework implementation. It is also comprised of the interface class CSCs
from MSS.

4.5.1.7.2 Operator Interface

Not applicable.

4.5.1.7.3 Reports

None.

4.5.1.8 Frequently Asked Questions

4.5.2 Server Request Framework (SRF)

4.5.2.1 Overview
The SRF infrastructure is intended for use by the developers of ECS client applications to handle
callbacks associated with asynchronous requests and notifications associated with subscriptions.
The infrastructure standardizes these aspects of asynchronous communication.

The infrastructure is also intended for use by the developers of server applications. It will create
and track service requests. It accepts callbacks (e.g., event notifications) and sends them to the
corresponding client object. It automatically tracks objects which can handle incoming requests or
accept callbacks and dispatches the requests or callbacks to the correct object, and matches up
synchronous requests with their responses. Client applications can send requests to server objects
identified by their UR - the infrastructure will resolve the UR to the correct server object. Finally,
the infrastructure provides factories for creating server objects (and the client counter parts)
dynamically.

4.5.2.2 Context

SRF will be used by ECS clients to access ECS services. It is intended to be supported by all servers
that handle requests and thus by all clients that interact with those servers. It will not be used by
MSS or other subsystems that do not need the request queuing and asynchronous features of SRF.

4-293 305-CD-028-002

4.5.2.3 Object Model
SRF is structured into two layers. These two layers together provide the SRF functionality. The
SRF Client/Server layer is used directly by applications. That will be shown first. The SRF
Message Handling Layer is used internally by SRF to enhance the underlying CSS Messaging
Layer. However, server developers will need to use some of the SRF Message Layer classes
directly for initiating communication.

4.5.2.3.1 SRF Client Server Layer

See Figure 4.5.2.3.1-1.

4.5.2.3.1.1 AppAsynchRequest_C Class

Parent Class:EcSrAsynchRequest_C

Public:No

Distributed Object:No

Purpose and Description:

This object is not part of SRF, but rather an object that users of SRF are expected to create.

This object should handle the client side of application specific SRF requests.

Attributes:

All Attributes inherited from parent class

Operations:

ClientOperation

Arguments:

Associations:

The AppAsynchRequest_C class has associations with the following classes:
None

4-294 305-CD-028-002

4-295
305-C

D
-028-002

EcSrAsynchRequest_C

EcMhMsgReceiver

EcSrRequestDispatcher

EcSrRequestServer_C
EcSrRequestServer_S

EcSrAsynchRequest_S

AppAsynchRequest_C

AppRequestServer_C

ClientOperation

AppRequestServer_S

ServerOperation

AppAsynchRequest_S

Execute

ClientOperation

Execute(EcUtStreamable&)
ReceiveMsg(msg:EcUtStreamable& clientInfo:EcSrClientInfo&)
Connect(client:EcSrClientInfo&)
ReceiveMsgRAcceptance(msg:EcUtStreamable& clientInfo:EcSrClientInfo&)
Disconnect(client:EcSrClientInfo&)

myState
myPriority
myUser
myFinishTime
myStartTime
mySubmitTime
Checkpoint()
StateChange(EcSrRequestState&)
Complete()
Status()
SetPriority(EcSrRequestPriority&)
Execute()
Restore(TBD)
GetPriority()
ReceiveMsg()
ReceiveMsgRAccecptance()

myRequestList
myRequestServerList
AddRequest(EcSrAsynchRequest_S*)
DeleteRequest(EcSrAsynchRequest_S*)
RequestCompleted(EcSrAsynchRequest_S*)
RequestCanceled(EcSrAsynchRequest_S*)
DispatchNextRequest()
Startup(TBD)
Shutdown(TBD)
RegisterRequestServer(TBD)

myServerUR
Cancel()
Status()
ChangePriority(EcSrRequestPriority&)
ReceiveMsg(newMessage:EcUtStreamable& EcSrClientInfo& clientInfo)
Complete(EcSrRequestState&)
StateChange(EcSrRequestState&)
ReceiveMsgRAcceptance(newMessage:EcUtStreamable& EcSrClientInfo& clientInfo)

Offpage

+ : void
+ : void
+ : void
+ : EcUtStreamable *
+ : void

- : EcSrRequestStatus
- : EcSrRequestPriority
- : EcSrUser
- : RWTime *
- : RWTime *
- : RWTime *
+ : void
+ : void
+ : void
+ : EcSrRequestState
+ : void
+ : void
+ : void
+ : EcSrRequestPriority
+
+

- : RWTPtrDlist<EcSrAsynchRequest_S>
- : RWTPtrDlist<EcSrRequestServer_S>
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
± : EcUtStatus
+ : TBD
+ : TBD
+ : TBD

- : EcSrAsynchRequest_SUR *
+ : EcUtStatus
+ : EcSrRequestState
+ : EcUtStatus
+ : void
+ : void
+ : void
+ : EcUtStreamable *

Figure 4.5.2.3.1-1. SRF Object Model

4.5.2.3.1.2 AppAsynchRequest_S Class

Parent Class:EcSrAsynchRequest_S

Public:No

Distributed Object:No

Purpose and Description:

This object is not part of SRF, but rather an object that users of SRF are expected to create.

This object should handle the server side of application specific SRF requests.

Attributes:

All Attributes inherited from parent class

Operations:

Execute
Arguments:

Associations:

The AppAsynchRequest_S class has associations with the following classes:
None

4.5.2.3.1.3 AppRequestServer_C Class

Parent Class:EcSrRequestServer_C

Public:No

Distributed Object:No

Purpose and Description:

This object is not part of SRF, but rather an object that users of SRF are expected to create.

This object should handle the client side of application specific SRF server connections.

Attributes:

All Attributes inherited from parent class

Operations:

ClientOperation
Arguments:

Associations:

4-296 305-CD-028-002

The AppRequestServer_C class has associations with the following classes:
None

4.5.2.3.1.4 AppRequestServer_S Class

Parent Class:EcSrRequestServer_S

Public:No

Distributed Object:No

Purpose and Description:

This object is not part of SRF, but rather an object that users of SRF are expected to create.

This object should handle the server side of application specific SRF server connections.

Attributes:

All Attributes inherited from parent class

Operations:

ServerOperation
Arguments:

Associations:

The AppRequestServer_S class has associations with the following classes:
None

4.5.2.3.1.5 EcMhMsgReceiver Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Provides general message receiving and response functions. Inherited by all classes which

accept requests or call backs.

Attributes:

None

Operations:

None

4-297 305-CD-028-002

Associations:

The EcMhMsgReceiver class has associations with the following classes:
None

4.5.2.3.1.6 EcSrAsynchRequest_C Class

Parent Class:EcMhMsgReceiver

Public:No

Distributed Object:No

Purpose and Description:

The corresponding asynchronous request object class for the client side. Created by client

application prior to calling an asynchronous API.

Attributes:

myServerUR - identifies the request server object which is servicing the request.

Data Type:EcSrAsynchRequest_SUR *

Privilege:Private

Default Value:

Operations:

Cancel - Calling the method will result in the creation of an EcMhAsynchMessage object

of the appropriate type, which is then submitted to the EcMhMessageHandler. The

operation is synchronous, in that the client application's thread will be suspended until the

response is received. This is handled transparently by the EcMhMessageHandler. Cancel()

sends a Cancel request message to the corresponding EcMhASynchRequest_S object.

Arguments:

Return Type:EcUtStatus

Privilege:Public

ChangePriority - Similar to Cancel() accept that the request attempts to change the

priority.

Arguments:EcSrRequestPriority&

Return Type:EcUtStatus

Privilege:Public

Complete - Called whenever the corresponding EcSrAsynchRequest_S object has

completed the request.

Arguments:EcSrRequestState&

Return Type:void

Privilege:Public

4-298 305-CD-028-002

ReceiveMsg - Specialization of method that handles dispatching for this class's methods.

Arguments:newMessage:EcUtStreamable& EcSrClientInfo& clientInfo

Return Type:void

Privilege:Public

ReceiveMsgRAcceptance - Specialization of method that handles dispatching for this

class's methods.

Arguments:newMessage:EcUtStreamable& EcSrClientInfo& clientInfo

Return Type:EcUtStreamable *

Privilege:Public

StateChange - Called whenever the corresponding EcSrAsynchRequest_S object changes

state.

Arguments:EcSrRequestState&

Return Type:void

Privilege:Public

Status - Similar to Cancel() accept that a Status message is sent to the server object.

Arguments:

Return Type:EcSrRequestState

Privilege:Public

Associations:

The EcSrAsynchRequest_C class has associations with the following classes:
None

4.5.2.3.1.7 EcSrAsynchRequest_S Class

Parent Class:EcMhMsgReceiver

Public:No

Distributed Object:No

Purpose and Description:

Standard mechanism class for controlling asynch remote operations. Provides request

control operations (e.g. Cancel) as well as asynch notification operations (e.g. Complete,

StateChange). Created when a new request is received by the server.

Attributes:

myFinishTime - The time when the request processing was completed.

Data Type:RWTime *

Privilege:Private

Default Value:

4-299 305-CD-028-002

myPriority - The request priority. Note: the default prioritization scheme is fairly

simpleminded. The RequestDispatcher class can be specialized to add more complex

priorities.

Data Type:EcSrRequestPriority

Privilege:Private

Default Value:

myStartTime - The time when processing of the request began.

Data Type:RWTime *

Privilege:Private

Default Value:

myState - The current state of the request.

Data Type:EcSrRequestStatus

Privilege:Private

Default Value:

mySubmitTime - The time that the request was submited.

Data Type:RWTime *

Privilege:Private

Default Value:

myUser - The user that submitted the request.

Data Type:EcSrUser

Privilege:Private

Default Value:

Operations:

Checkpoint
Arguments:
Return Type:void
Privilege:Public

Complete
Arguments:
Return Type:void
Privilege:Public

Execute
Arguments:
Return Type:void
Privilege:Public

4-300 305-CD-028-002

GetPriority
Arguments:
Return Type:EcSrRequestPriority
Privilege:Public

ReceiveMsg
Arguments:
Return Type:Void
Privilege:Public

ReceiveMsgRAccecptance
Arguments:
Return Type:Void
Privilege:Public

Restore
Arguments:TBD
Return Type:void
Privilege:Public

SetPriority
Arguments:EcSrRequestPriority&
Return Type:void
Privilege:Public

StateChange
Arguments:EcSrRequestState&
Return Type:void
Privilege:Public

Status
Arguments:
Return Type:EcSrRequestState
Privilege:Public

Associations:

The EcSrAsynchRequest_S class has associations with the following classes:
EcSrRequestDispatcher (Aggregation)

4.5.2.3.1.8 EcSrRequestDispatcher Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

4-301 305-CD-028-002

Purpose and Description:

Attributes:

myRequestList - The list of requests currently known to the server

Data Type:RWTPtrDlist<EcSrAsynchRequest_S>

Privilege:Private

Default Value:

myRequestServerList - The list of all server objects currently known to the system.

Data Type:RWTPtrDlist<EcSrRequestServer_S>

Privilege:Private

Default Value:

Operations:

AddRequest - Adds a Request to the list of open Requests.

Arguments:EcSrAsynchRequest_S*

Return Type:EcUtStatus

Privilege:Public

DeleteRequest - Removes a Request from the list of open Requests.

Arguments:EcSrAsynchRequest_S*

Return Type:EcUtStatus

Privilege:Public

DispatchNextRequest - Dispatches next available request based on priority.

Arguments:

Return Type:EcUtStatus

Privilege:Protected

RegisterRequestServer - Register a new RequestServer with the dispatcher.

Arguments:TBD

Return Type:TBD

Privilege:Public

RequestCanceled - Indicates that the request has been cancelled.

notification.

Arguments:EcSrAsynchRequest_S*

Return Type:EcUtStatus

Privilege:Public

RequestCompleted - Indicates that the request has been finished.

notification.

My result in client

My result in client

4-302 305-CD-028-002

Arguments:EcSrAsynchRequest_S*

Return Type:EcUtStatus

Privilege:Public

Shutdown - Shutdown routine. Details TBD.

Arguments:TBD

Return Type:TBD

Privilege:Public

Startup - Initialization routine. Details TBD.

Arguments:TBD

Return Type:TBD

Privilege:Public

Associations:

The EcSrRequestDispatcher class has associations with the following classes:
None

4.5.2.3.1.9 EcSrRequestServer_C Class

Parent Class:EcMhMsgReceiver

Public:No

Distributed Object:No

Purpose and Description:

Generic base class for the client portion of all distributed classes. Provides client wrapper

around asynch messaging framework. Also responsible for maintaining the connection to

the corresponding server object. In case of a Server Process failure, will re-establish

connection with server object.

Attributes:

All Attributes inherited from parent class

Operations:

Execute - Sends an asynchronous request message to the corresponding

EcSrRequestServer_S object for execution. Derived types of EcSrRequestServer_C will

provide server specific methods (e.g. Search). For each method the derived type will

construct an asychronous request message and transmit it to the server via this method.

Arguments:EcUtStreamable&

Return Type:void

4-303 305-CD-028-002

Privilege:Public

Associations:

The EcSrRequestServer_C class has associations with the following classes:
None

4.5.2.3.1.10EcSrRequestServer_S Class

Parent Class:EcMhMsgReceiver

Public:No

Distributed Object:No

Purpose and Description:

Generic base class for the server portion of all distributed classes. Provides server wrapper

around messaging framework. Also responsible for maintaining the connection to the

corresponding client object (EcSrRequestServer_C).

Attributes:

All Attributes inherited from parent class

Operations:

Connect - Receives initial connect() request from client application.

Arguments:client:EcSrClientInfo&

Return Type:void

Privilege:Public

Disconnect - Handles disconnect() request from client application.

Arguments:client:EcSrClientInfo&

Return Type:void

Privilege:Public

ReceiveMsg - Overrides the virtual method in the EcMhMessageReceiver base class.

Whenever EcMhMessageHandler receives a message for this object, it will call this

ReceiveMsg method. The validity of the type of request message for the particular request

server has already been validated before the MessageHandler calls the request server.

Arguments:msg:EcUtStreamable& clientInfo:EcSrClientInfo&

Return Type:void

Privilege:Public

ReceiveMsgRAcceptance - Similar to ReceiveMsg accept handles the case of waiting for

acceptance replies.

Arguments:msg:EcUtStreamable& clientInfo:EcSrClientInfo&

4-304 305-CD-028-002

Return Type:EcUtStreamable *
Privilege:Public

Associations:

The EcSrRequestServer_S class has associations with the following classes:
None

4.5.2.3.2 SRF Message Handling Layer

See Figure 4.5.2.3.2-1.

4.5.2.3.2.1 EcMhMsgEnvelope Class

Parent Class:EcUtStreamable

Public:No

Distributed Object:No

Purpose and Description:

Simple wrapper around the application message to track originator/destination of a

message. Holds extra information about the message: sender, receiver, etc.

Attributes:

myAcceptanceExpected - Flag indicating if an acceptance message is expected.

Data Type:EcTBoolean

Privilege:Private

Default Value:

myLetter - Stores the application message to be sent.

Data Type:EcUtStreamable

Privilege:Private

Default Value:

myLettersID - The UR of the letter.

Data Type:EcUtClassID

Privilege:Private

Default Value:

4-305 305-CD-028-002

4-306
305-C

D
-028-002

EcMhMsgHandler

EcMhMsgReceiver

EcMhXMessageHandler

EcMhPendingMsg

EcMpMsgCb

EcMhMsgEnvelope

EcMpSessionList

EcUtStreamable

myPendingMsgList
myDispatchList

RegisterMsgReceiver(aReceiver:EcMhMsgReceiver)
UrToQueueName(aUr:EcMhRsgReceiverUR&)
SendMsg(sendTo:EcMhMsgReciverUR& sendMsg:EcUtStreamable&)
DispatchMsg(newMsg:EcMhMsgEnvelope&)
SendMsgRAcceptance(sendTo:EcMhMsgReceiverUR, sendMsg:EcUtStreamable&
acceptMsg:EcUtStreamable*)
SendMsgRAck(sendTo:EcMhMsgReceiverUR& sendMsg:EcUtStreamable&)
HandleCbMsg(ptr:EcTPtr id:EcTUShortInt len:EcTInt msgId:RWCString
reply:RWCString s:RWCStrin)
UnregisterMsgReceiver(aReceiver:EcMhMsgReceiver)

ReceiveMsg(msg:EcUtStreamable& client:EcSrClientInfo&)
ReceiveMsgRAcceptance(msg:EcUtStreamable& client:EcSrClientInfo&)

myMutex
myCond

myLetter
myLettersID
myAcceptanceExpected

GetLetter()
AcceptanceExpected()
GetFromAddress()
GetToAddress()
GetLettersID()
RestoreFrom(RWvistream&)
SaveTo(RWvostream&)
CompareTo(EcUtStreamable*)
Clone()

myMutex
myCond
myFromAddress
myToAddress

ReceiveMsg(newMessage:EcUtStreamable& clientInfo:EcSrClientInfo&)
SendMsgRAcceptance(sendTo:EcMhMsgReceiver& sendMsg:EcUtStreamable&
replyMsg:EcUtStreamable*)
SendMsgRAck(sendTo:EcMhMsgReceiverUR& sendMsg:EcUtStreamable&)
HandleAck(msg:EcTPtr classID:ShortInt len:LongInt id:RWCString& dest:RWCString&
cdsName:RW CString& PassFailSt:Boolean)

Offpage

[Public]

Offpage

[Public]

Offpage

Offpage

- : RWTPtrSlist <EcMhPendingMsg>
- : RWTPtrSlist <EcMhMsgReceiver>

+ : EcUtStatus
± : EcUtStatus
+ : EcUtStatus
± : EcUtStatus
+ : EcUtStatus

+ : EcUtStatus
+ : EcUtStatus

+ : EcUtStatus

+ : void
+ : EcUtStramable*

- : EcUtStreamable
- : EcUtClassID
- : EcTBoolean

+ : EcUtStreamable
+ : EcTBoolean
+ : EcMhMsgReceiverUR
+ : EcMhMsgReceiverUR
+ : EcUtClassID
+ : void
+ : void
+ : EcTInt
+ : EcUtStreamable*

- : DCEPthreadMutex = unlocked
- : DCEPthreadCond
-
-

+ : void
+ : EcUtStatus

+ : EcUtStatus

myDispatchList

send

myLetter

myEnvelope

myPendingMsgList

Figure 4.5.2.3.2-1: SRF Message Object Model

Operations:

AcceptanceExpected - returns myAcceptanceExpected. True if an acceptance response is

expected.

Arguments:

Return Type:EcTBoolean

Privilege:Public

Clone
Arguments:

Return Type:EcUtStreamable*

Privilege:Public

CompareTo
Arguments:EcUtStreamable*

Return Type:EcTInt

Privilege:Public

GetFromAddress - returns myFromAddress.

Arguments:

Return Type:EcMhMsgReceiverUR

Privilege:Public

GetLetter - returns myLetter() reference.

Arguments:

Return Type:EcUtStreamable

Privilege:Public

GetLettersID - returns myLetterID.

Arguments:

Return Type:EcUtClassID

Privilege:Public

GetToAddress - returns myToAddress.

Arguments:

Return Type:EcMhMsgReceiverUR

Privilege:Public

RestoreFrom
Arguments:RWvistream&
Return Type:void
Privilege:Public

4-307 305-CD-028-002

SaveTo
Arguments:RWvostream&
Return Type:void
Privilege:Public

Associations:

The EcMhMsgEnvelope class has associations with the following classes:
EcMhPendingMsg (Aggregation)

4.5.2.3.2.2 EcMhMsgHandler Class

Parent Class:EcMpMsgCb

Public:No

Distributed Object:No

Purpose and Description:

Central manager for all message communications. Provides the following: ·Wrapper

around Asynch Messaging Framework. ·Conversion of UR's to Named Queue ·Maintains

list of EcSrRequestServer_S objects and their UR's ·Dispatches in-coming messages to

appropriate EcSrRequestServer_S. ·Routes out-going messages to proper named queues in

asynch messaging framework. Created at application start-up time by process framework

Attributes:

myDispatchList - List of registered EcMhMsgReceiver objects. The list is used to

dispatch incoming messages.

Data Type:RWTPtrSlist <EcMhMsgReceiver>

Privilege:Private

Default Value:

myPendingMsgList - List of pending messages via EcMhPendingMsg objects. The

pending messages are those that are awaiting Replies or Acks.

Data Type:RWTPtrSlist <EcMhPendingMsg>

Privilege:Private

Default Value:

Operations:

DispatchMsg
Arguments:newMsg:EcMhMsgEnvelope&
Return Type:EcUtStatus
Privilege:Protected

4-308 305-CD-028-002

HandleCbMsg
Arguments:ptr:EcTPtr id:EcTUShortInt len:EcTInt msgId:RWCString reply:RWCString

s:RWCStrin

Return Type:EcUtStatus

Privilege:Public

RegisterMsgReceiver
Arguments:aReceiver:EcMhMsgReceiver

Return Type:EcUtStatus

Privilege:Public

SendMsg
Arguments:sendTo:EcMhMsgReciverUR& sendMsg:EcUtStreamable&

Return Type:EcUtStatus

Privilege:Public

SendMsgRAcceptance
Arguments:sendTo:EcMhMsgReceiverUR, sendMsg:EcUtStreamable&

acceptMsg:EcUtStreamable*

Return Type:EcUtStatus

Privilege:Public

SendMsgRAck
Arguments:sendTo:EcMhMsgReceiverUR& sendMsg:EcUtStreamable&

Return Type:EcUtStatus

Privilege:Public

UnregisterMsgReceiver
Arguments:aReceiver:EcMhMsgReceiver

Return Type:EcUtStatus

Privilege:Public

UrToQueueName
Arguments:aUr:EcMhRsgReceiverUR&
Return Type:EcUtStatus
Privilege:Protected

Associations:

The EcMhMsgHandler class has associations with the following classes:
None

4-309 305-CD-028-002

4.5.2.3.2.3 EcMhMsgReceiver Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Provides general message receiving and response functions. Inherited by all classes which

accept requests or call backs.

Attributes:

myCond

myMutex

Operations:

ReceiveMsg
Arguments:msg:EcUtStreamable& client:EcSrClientInfo&

Return Type:void

Privilege:Public

ReceiveMsgRAcceptance
Arguments:msg:EcUtStreamable& client:EcSrClientInfo&

Return Type:EcUtStramable*

Privilege:Public

Associations:

The EcMhMsgReceiver class has associations with the following classes:
EcMhMsgHandler (Aggregation)

4.5.2.3.2.4 EcMhPendingMsg Class

Parent Class:EcMhMsgReceiver

Parent Class:EcMpMsgCb

Public:No

Distributed Object:No

Purpose and Description:

Used by EcMhMsgHandler to implement SendMsgRAcceptance and SendMsgRack. This

class takes care of the wait for reply or ack portion of the Send. It uses myCond &

myMutex for the waits.

4-310 305-CD-028-002

Attributes:

myCond - Condition variable used for signaling with myMutex. Together, they are used

for signaling the receipt of a response message.

Data Type:DCEPthreadCond

Privilege:Private

Default Value:

myFromAddress
Data Type:

Privilege:Private

Default Value:

myMutex - Mutex used for locking with myCond. Together, they are used for signaling the

receipt of a response message.

Data Type:DCEPthreadMutex

Privilege:Private

Default Value:unlocked

myToAddress
Data Type:
Privilege:Private
Default Value:

Operations:

HandleAck
Arguments:msg:EcTPtr classID:ShortInt len:LongInt id:RWCString& dest:RWCString&
cdsName:RW CString& PassFailSt:Boolean

ReceiveMsg
Arguments:newMessage:EcUtStreamable& clientInfo:EcSrClientInfo&
Return Type:void
Privilege:Public

SendMsgRAcceptance
Arguments:sendTo:EcMhMsgReceiver&
replyMsg:EcUtStreamable*
Return Type:EcUtStatus
Privilege:Public

SendMsgRAck

sendMsg:EcUtStreamable&

Arguments:sendTo:EcMhMsgReceiverUR& sendMsg:EcUtStreamable&
Return Type:EcUtStatus

4-311 305-CD-028-002

Privilege:Public

Associations:

The EcMhPendingMsg class has associations with the following classes:
Class: EcMpSessionList send
EcMhMsgHandler (Aggregation)

4.5.2.3.2.5 EcMhXMessageHandler Class

Parent Class:EcMhMsgHandler

Public:No

Distributed Object:No

Purpose and Description:

Specialized version of EcSrMessageHandler for use in X Windows applications. Ensures

that all message dispatching is performed within the X thread. Created at application start

up time (mechanism TBD)

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The EcMhXMessageHandler class has associations with the following classes:
None

4.5.2.3.2.6 EcMpMsgCb Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class will handle two types of callbacks: 1. For ordinary receive messages: If an

ordinary message is received, then HandleMsg is invoked; 2. For acknowledgment of

messages: If an acknowledgement is received, then HandleAck is invoked. A sending

session is basically a point to point session to send a message. Each sender session will have

a logical name that is needed to contact the receiver. A list of sending sessions is

maintained in a given application. A sender session list contains a callback object which

provides virtual funtions to be called when a send is complete. This is done at the sender

4-312 305-CD-028-002

side. A callback object is created and will implement the acknowledgment. The virtual
function HandleAck is called when a message is delivered to the destination or when the
underlying mechanism failed to deliver it within the given constraints (number of tries)

Attributes:

None

Operations:

None

Associations:

The EcMpMsgCb class has associations with the following classes:
None

4.5.2.3.2.7 EcMpSessionList Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is a container class whose element type is a logical name and will inherit from the

RWTPtrSlist class. A session list contains a callback object which provides virtual

functions to be called when a send is complete. This is done at the sender side.

Attributes:

None

Operations:

None

Associations:

The EcMpSessionList class has associations with the following classes:
Class: EcMhPendingMsg send

4-313 305-CD-028-002

4.5.2.3.2.8 EcUtStreamable Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The EcUtStreamable class has associations with the following classes:
EcMhMsgEnvelope (Aggregation)

4.5.2.4 Functional Model

The following figure shows the software layers in a typical SRF based application. The SRF
Framework provides two layers of the application: The client/server layer and the Message Han
dling layer. These layers build on the message passing (implementation one) layer provided by the
CSS subsystem.

DCE

OODCE

Message Passing

SRF Message Layer

SRF Application Layer

Application

Service Specific Layer

Operating System

Figure 4.5.2.4-1. SRF Layering

4-314 305-CD-028-002

Create Request
EcSrRequestServer_C

operation on Request
EcSrAsyncRequest_C

EcSrRequestDispatcher

EcSrAsyncRequest_S Tracks

Creates

status about Request

Figure 4.5.2.4-2. SRF Conceptual View

The SRF Client/Server layer provides a set of 5 generic object classes for both clients and servers.
The figure below presents a high-level overview of the framework.

The infrastructure provides

• generic asynchronous request object classes for the client and server side

•	 object classes which implement the communication between client and server and dispatch
requests or callbacks to the correct client or server object

• a generic message class for transmitting requests, responses, and callbacks

There will be two client side implementations of the infrastructure: one for clients which operate
in an X-windows environment; and one for other types of clients. The special version for X-
Windows is needed because X-windows and Motif do not support multi-threading. The
infrastructure will insulate the X environment from the threads which are necessary to support
asynchronous communication.

4.5.2.4.1 Fundamentals

The infrastructure includes object classes (named EcSr.....) which provide a level of abstraction
above the Messaging framework of CSS.

Objects on the server side which accept requests from clients are specialized from a generic
RequestServer class. The RequestServer class knows how to accept and track requests and how to
interface with the message infrastructure. There is a corresponding RequestServer_C object class
for the client side. Server developers specialize it to provide the client API for each RequestServer
class. The client application calls a RequestServer_C object to send requests to the corresponding
server object. The generic RequestServer_C class knows how to package a call into a request and
interface with the message infrastructure.

RequestServer_S and RequestServer_C are local object classes, i.e., they are not distributed
objects.

All requests to servers pass through the Messaging framework. The infrastructure includes
MessageHandler objects for clients and servers which provide the direct interface to the Messaging
framework.

EcSrRequestServer_S

4-315 305-CD-028-002

The MessageHandler offers interfaces for sending a request requiring a reply; sending a request
requiring an acknowledgment; and sending a notification requiring no confirmation at all. The
MessageHandler tracks requests for which replies or acknowledgments are pending.

Each asynchronous requests are tracked by an AsynchRequest object. The client application must
supply an AsynchRequest object when it makes an asynchronous call to a RequestServer_C. The
AsynchRequest object provides standard functions to accept callbacks from the server indicating
request completion or a change in the request status.

Each instance of an AsynchRequest will have a unique identification for reference by the client and
server For the purpose of distributed reference, the unique identifier is turned into a UR.

All objects which expect callbacks or requests, register themselves with the MessageHandler.
AsynchRequest objects register themselves automatically when the request is submitted to the
server. Each request, response, and callback passing between a client and a server requires an
AsynchMessage object of a unique type.

4.5.2.5 Dynamic Model Scenarios

4.5.2.5.1 Scenerio #1: Client View

4.5.2.5.1.1 Abstract
This scenario demonstrates the initialization sequence of a single SRF AsynchRequest. In this
hypothetical example, a server writer has created a new service called "sleeper". The sleeper
service supports a single operation: sleep. This scenario covers the client's view. The server's view
follows.

4.5.2.5.1.2 Interfaces

SleepRequestServer_C & SleepAsynchRequest_C.

4.5.2.5.1.3 Stimulus
Clients call the sleep method on the client side object (SleepRequestServer_C).

4.5.2.5.1.4 Desired Response
The server receives the sleep request message & queues it into its dispatch queue. At some later
time the client will be notified that the sleep call has completed.

4.5.2.5.1.5 Participating Classes
SleepAsynchRequest_(C & S), SleepRequestServer_(C & S), SleepRequestMsg,
EcMhMsgHandler, EcMhPendingMsg, and EcMhMsgEnvelope.

4.5.2.5.1.6 Pre-conditions
The client has already constructed the SleepRequestServer_C.

4.5.2.5.1.7 Post-conditions
After the client is notified, the server returns to its original state & the request is considered
complete.

4-316 305-CD-028-002

4.5.2.5.1.8 Scenario Description
1. A client application calls SleepRequestServer_C::Sleep() (not shown).

2.	 The sleep() method then constructs a message and sends it via
EcMhMsgHandler::SendMsgRAcceptance().

3.	 The SRF communication layer then constructs a pending message object (to hold the
outstanding message). That object in turn, constructs an envelope.

4.	 The Msghandler then calls SendMsgRAcceptance() on the pending message object. which
in turn uses the underlying CSS Messaging call: EcMpQueueOut::Send(). At this point, the
message is on its way to the server.

5.	 After a brief delay, the response comes from the server. This causes the MsgHandler to
construct the SleepAsynchRequest_C object. Control is then returned to
SleepRequestServer_C which then returns control to the client application.

4.5.2.5.1.9 Event Trace
See Figure 4.5.2.5-1.

4.5.2.5.2 Scenario #2: Server View

4.5.2.5.2.1 Abstract
This scenario demonstrates the initialization sequence of a single SRF AsynchRequest. In this
hypothetical example, a server writer has created a new service called "sleeper". The sleeper
service supports a single operation: sleep. This scenario is the server's view.

4.5.2.5.2.2 Interfaces

SleepRequestServer_S & SleepAsynchRequest_S.

4.5.2.5.2.3 Stimulus
Server receives sleep request.

4.5.2.5.2.4 Desired Response
The server receives the sleep request message & queues it into its dispatch queue. At some later
time the client will be notified that the sleep call has completed.

4.5.2.5.2.5 Participating Classes
SleepAsynchRequest_(C & S), SleepRequestServer_(C & S), SleepRequestMsg,
EcMhMsgHandler, EcMhPendingMsg, EcSrReuqestDispatcher, and EcMhMsgEnvelope.

4.5.2.5.2.6 Pre-conditions
The server has already constructed the SleepRequestServer_S and initialized SRF.

4.5.2.5.2.7 Post-conditions
After the client is notified, the server returns to its original state & the request is considered
complete.

4-317 305-CD-028-002

SleepRequestServer_C::Sleep Event Trace (Client Side)

EcMhPendingMsg EcMpQueueIn

4-318
305-C

D
-028-002

SleepRequestServer_C EcMhMsgHandler EcMhMsgEnvelopeSleepRequestMsg EcMpQueueOut
SleepAsynchRequest_C

ctor

SendMsgRAcceptance

MsgAvailable

ctor

return

ctor

SendMsgRAcceptance

ReceiveMsg

return

ctor

Send

Figure 4.5.2.5-1. SRF Event Trace

4.5.2.5.2.8 Scenario Description
1. The message is received by the EcMpQueueIn object (from CSS Message Passing).

2.	 EcMpQueueIn passes the message to EcMhMsgHandler which then looks up in its internal
dispatch table the object that should be receiving a message with this UR & type.

3.	 The SleepRequestServer_S::ReceiveMsgRAcceptance is invoked. That method was
overridden by the server writer. The message is then dispatched to the correct method (in
this case sleep()).

4.	 The SleeperRequestServer_S object constructs a SleepAsynchRequest_S object to manage
the asynch request and then submits it to the EcSrRequestDispatcher which queues the
message for later execution.

5.	 The SleepRequestServer_S then returns a message which will be sent to the client. That
message contains the UR for the SleepAsyncRequest_C object.

6.	 When the dispatcher executes the sleep request at a later time, the client will be notified.
See the following scenario.

4.5.2.5.2.9 Event Trace
See Figure 4.5.2.5-2.

4.5.2.5.3 Scenerio #3: Client Notification

4.5.2.5.3.1 Abstract

This scenario demonstrates the notification process of SRF. In this hypothetical example, a server
writer has created a new service called "sleeper". The sleeper service supports a single operation:
sleep. The client now receives the notification that the sleep has been completed. The server's view
is covered in the next scenario.

4.5.2.5.3.2 Interfaces

SleepAsynchRequest_C.

4.5.2.5.3.3 Stimulus

The server sends to the client the sleep notification.

4.5.2.5.3.4 Desired Response

The client dequeues the message and it is dispatched to the SleepAsynchRequest_C object.

4.5.2.5.3.5 Participating Classes

SleepAsynchRequest_(C & S), EcMhMsgHandler, EcMhMsgReceiver.

4.5.2.5.3.6 Pre-conditions

The client has previously called sleep() on the SleepAsychRequest_C object.

4-319 305-CD-028-002

4-320
305-C

D
-028-002

SleepRequestServer_S::Sleep Event Trace (Server Side)

EcMpQueueOut EcMpQueueIn EcMhMsgHandler EcMhMsgReceiver SleepRequestServer_S SleepAsynchRequest_S EcSrRequestDispatcher

Send

Return(Msg)

MsgAvailable

DispatchMsg

ReceiveMsgRAcceptance

Return(Msg)

ReceiveMsgRAcceptance

Sleep

ctor

Execute

Submit

Figure 4.5.2.5-2. SRF Event Trace

4.5.2.5.3.7 Post-conditions

After the client is notified, the server returns to its original state & the request is considered
complete.

4.5.2.5.3.8 Scenario Description

1. The notification message is passed to EcMhMsgHandler.

2.	 EcMhMsgHandler determines the object that should receive this message based on its UR.
The ReceiveMsg() method is then invoked on the SleepAsynchRequest_C object.

3.	 The SleepAsynchRequest_C object then dispatches the message to the correct method. In
this case that is TimeIntervalNofification(). That method might then perform some service
specific action.

4.5.2.5.3.9 Event Trace

SleepAsynchRequest_C::TimeIntervalNotification (Client Side)

EcMpQueueIn EcMhMsgHandler EcMhMsgReceiver SleepAsynchRequest_C

MsgAvailable

ReceiveMsg

ReceiveMsg

TimeIntervalNotif

Figure 4.5.2.5-3. SRF Event Trace

4.5.2.5.4 Scenerio #4: Client Notification - Server View

4.5.2.5.1.1 Abstract

This scenario demonstrates the notification process of SRF. In this hypothetical example, a server
writer has created a new service called "sleeper". The sleeper service supports a single operation:
sleep. The client now receives the notification that the sleep has been completed. This is the server's
view.

4.5.2.5.1.2 Interfaces

SleepAsynchRequest_S.

4.5.2.5.1.3 Stimulus

A timer expires based on a request which is currently being processed. In this example, the
"processing" is merely waiting for the timer.

4-321 305-CD-028-002

4.5.2.5.1.4 Desired Response

The server notifies the client that the sleep call has completed.

4.5.2.5.1.5 Participating Classes

SleepAsynchRequest_(C & S), EcMhMsgHandler, EcMhPendingMsg, and EcMhMsgEnvelope.

4.5.2.5.1.6 Pre-conditions

The server has already dispatched the sleep request message.

4.5.2.5.1.7 Post-conditions

After the client is notified, the server returns to its original state & the request is considered
complete.

4.5.2.5.1.8 Scenario Description

1.	 The sleep request is being processed. When the timer expires, it calls
SleepAsynchRequest_S's TimeIntervalNotification().

2.	 The server method (TimeIntervalNotification()) then constructs a message of the
appropriate type and sends it using the EcMhMsgHandler::SendMsgRAck().

3.	 Since the message requires an ack, the message handler constructs a EcMhPendingMsg
object and in turn a EcMhMsgEnvelope object to hold the message.

4.	 The SendMsgWAck() method is called which in turn, invokes the Send() method on the
EcMpQueueOut object to actually send the message across the network. The server thread
then waits for the ack.

5.	 When the ack arrives, the handleAck() method is invoked on the EcMhPendingMsg object.
The EcMhPendingMsg object then returns control to the handler since the ack has been
received.

6.	 The handler object then returns the status value to the SleepAsynchRequest_S object
indicating success. That object might then reset the timer for a future time and notification.

4-322 305-CD-028-002

4.5.2.5.1.9 Event Trace

SleepAsynchRequest_S::TimeIntervalNotification (Server Side)

SomeTimer SleepAsynchRequest_STimerIntervNotifMsg

ctor

SendMsgRAck

return

EcMhMsgHandler EcMhMsgEnvelopeEcMpQueueOut

ctor

Send

handleAck

EcMhPendingMsg

ResetTimer

TimeIntervalNotifcation

ctor

return

SendMsgRAck

Figure 4.5.2.5-4. SRF Event Trace

4.5.3 Subscription Server

4.5.3.1 Overview

The role of the Subscription Server is to support the detection of previously defined events and to
perform specified actions on behalf of clients who have previously registered to those events. In
order to actually perform its role in the ECS, the Subscription Server Process requires that its
clients be active and have previously registered events with it. Examples of events include science
granule insertion, metadata update, new advertisement, new schema export to DDICT, etc.

ECS Event
Producing

Subsystems

Subscription
Server

ECS Event
Subscribing
Subsystems

OR

Users/Operators

Event
Notification P-P or e-mail

Notification

Requests

Requests

Figure 4.5.3.1-1. Subscription Server Context

4-323 305-CD-028-002

4.5.3.2 Context

The subscription server addresses the need for a common mechanism across subsystems which can
support a generic event-action model based on a event producer/consumer paradigm. Some of the
users of the subscription server in Release B are listed below:

ECS Subscription Event Producers:

• Data Server

• Advertising Service and

• Data

ECS Subscription Users or Submitters:

• Client on behalf of science users or operators

• Data Processing

• Planning

4.5.3.3 Object Model, Part 1

See Figure 4.5.3.3-1.

4.5.3.3.1 EcClAction Class

Parent Class:EcShActionBase

Public:Yes

Distributed Object:No

Purpose and Description:

A client interface object that represents the components of the action to be performed when

a subscription is triggered. The possibilities are that the client will receive a notification

(including all parameters that are returned by the object that triggers the subscription and

an optional piece of client-specified text) and/or a request that will be executed. The client

is required to specify an action for each subscription.

Attributes:

myRequest - The request that is currently associated with this action.

Data Type:EcClRequest

Privilege:Private

Default Value:

4-324 305-CD-028-002

4-325
305-C

D
-028-002

EcClSubscriptionCollector <RWVector>

EcClCollectorVector <T:class>

EcClSubscription

EcClCollectorVector()
~EcClCollectorVector()
GetCollector(const)

EcClAction

EcShActionBase

EcShSubscription

EcClEvent

EcClGenConnector

myFactory
myDistributedPart

EcClEvent(EcTSbEventID)
EcClEvent(EcESbCategory,name:RWCString,)
EcClEvent()
~EcClEvent()
Register()
UnRegister()
Update()
Trigger(GlParameterList&)

myNotify
myRequestFlag
myText

EcShActionBase(RWBoolean, RWCString)
~EcShActionBase()
SetText(RWCString)
GetText()
SetNotify(RWBoolean)
GetNotify()
ClearRequest()
HasRequest()

myRequest

ClearRequestB()
SetRequestB(EcClRequest &)
GetRequestB()
EcClActionB(RWCString &text, EcClRequest * = NULL)
EcClActionB(EcClRequest &, RWBoolean = FALSE, RWCString * = NULL)
~EcClAction()
EcCIAction()

myUserInfo
myEventID
myStartDate
myExpirationdate
myStatus

GetUserInfo()
GetEventID()
GetStartDate()
GetExpirationDate()
saveOn(ostream&)
SetUserInfo(MsAcUserProfile&)
SetEventID(EcTSbEventID&)
SetStartDate(RWDate startDate)
SetExpirationDate(RWDate expirationDate)
EcShSubscription(MsAcUserProfile)
EcShSubscription(const)
~EcShSubscription()
EcShSubscription()
Getstatus()

mySubmittedFlag
myCollector
myExpirationDate
myDurationType
myUserInfo
myDescription
ourCollectorvector
myAction

ClearSubmittedFlag()
EcClSubscription(submittedflag, EcClSubscriptionCollector&, Stream)
EcClSubscription(userinfo, Advertisement&, EcClSubscriptionCollector&)
GetAction(EcClAction)
GetCollector()
GetDescription()
GetDurationtype()
GetExpirationdate()
GetSubmittedflag()
GetUserinfo(GLClient&)
IsSubmitted()
SetAction(EcClAction&)
SetDescription(RWCString)
SetDurationType(EcEClSubscriptionType)
SetExpirationDate(RWDate)
SetSubmittedFlag(RWBoolean)
Submit()
Update()
Withdraw()
~EcClSubscription()

myStatus

EcClSubscriptionCollector(GlUR &dataserver, MSS_UserProfile &)
~EcClSubscriptionCollector()
BuildListB()
BuildList(MSS_UserProfile &)
BuildList(Advertisement&)
saveOn(ostream&)
SubmitSubscription(EcClSubscription&)
CancelSubscription(EcClSubscription&)
CreateSubscription(GlParameterList&)
Populate(GlParameterList&)
SubmitRequest(EcClRequest&)
CreateSubscription(RWBoolean SubmittedFlag, istream &Stream,
EcClSubscriptionCollector *me)

[DISTR OBJ]

[Public]

<RWVector>

<T:class>

+
+
+ : T&

[Public]

Offpage
- : EcClSubFactoryProxy*
- : EcClSubEventProxy*

+
+
+
+
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus

± : RWBoolean
± : RWBoolean
± : RWCString

+
+
+ : EcTVoid
+ : RWCString
+ : EcTVoid
+ : RWBoolean
+ : EcTVoid
+ : RWBoolean

- : EcClRequest

+ : EcTVoid
+
+ : const EcClRequest&
+
+
+
+

± : MsAcUserProfile
± : EcTSbEventID
± : RWDate
± : RWDate
± : EcUtStatus

+ : MsAcUserProfile&
+ : EcTSbEventID&
+ : RWDate
+ : RWDate
+ : void
+ : void
+ : void
+ : void
+ : void
+
+
+
+
+ : EcUtStatus

± : RWBoolean = RWTrue
± : EcClSubscriptionCollector&
± : RWDate
± : enum EcClSubscriptionType = {ONCE, OUTSTANDING}
± : EcClClient
± : RWCString
± : EcClSubscriptionCollectionVector
± : EcClAction

± : EcTVoid
+
+
+ : void
± : EcClSubscriptionCollector*
+ : RWCString
+ : EcEClSubscriptionType
+ : RWDate
+ : RWBoolean
+
± : RWBoolean
+ : void
+ : void
+ : void
+ : void
± : void
+ : GlStatus&
+ : EcUtStatus
+ : GlStatus&
+

- : GlStatus

+
+
+ : const GlStatus &
+ : const GlStatus &
+ : const GlStatus &
- : EcTVoid
+ : EcTVoid

± : EcUtStatus
± : EcUtStatus
+ : GlParameterList&
- : EcClSubscription*

[Public]

Figure 4.5.3.3-1. Subscription Server Object Model, Part 1

Operations:

ClearRequestB - Used to clear any request that has been set for the action.

Arguments:

Return Type:EcTVoid

Privilege:Public

EcCIAction - Default constructor

Arguments:

Return Type:Void

Privilege:Public

EcClActionB - Used to construct an action from a piece of text and, RELEASE B:

optionally, a request. The notification flag is set.

Arguments:RWCString &text, EcClRequest * = NULL

Return Type:Void

Privilege:Public

EcClActionB - Used to construct an action from a request and, optionally, a value for the

notification flag and a piece of text.

Arguments:EcClRequest &, RWBoolean = FALSE, RWCString * = NULL

Return Type:Void

Privilege:Public

GetRequestB - Returns the request currently set for the action.

Arguments:

Return Type:const EcClRequest&

Privilege:Public

SetRequestB - Sets the request to be executed when the subscription fires.

Arguments:EcClRequest &

Return Type:Void

Privilege:Public

~EcClAction - Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcClAction class has associations with the following classes:
EcClSubscription (Aggregation)

4-326 305-CD-028-002

4.5.3.3.2 EcClCollectorVector Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This private class is maintained in static memory by EcCl items (EcClSubscription and

EcClESDTReference). Those items contain a EcClCollectorVector. This class supports

the "hidden construction" of collector objects (and hence, connections to a dataserver). It

is a RWTPtrOrderedVector, which is parameterized so that the item which is maintaining

it can decide what type of collector to store and track. This class represents a table of

available EcCl<item>Collectors which were created by item-level EcCl public classes

(i.e., EcClSubscription or EcClESDTReference). This table will contain a pointer to one

EcCl<item>Collector per dataserver. All item-level objects created in the client space

independently of a client-created EcCl<item>Collector will be assigned to the default

EcCl<item>Collector as defined by the entry in the EcClCollectorVector which

corresponds to the dataserver for which the client is creating the independent item. (phew!)

Attributes:

None

Operations:

EcClCollectorVector - This is the default constructor, for initial startup.

Arguments:

Return Type:Void

Privilege:Public

GetCollector - This operation finds the existing collector for the given dataserver (if any)

or creates one if none exists. It returns the reference to the chosen collector. Because the

class is a template, the return value will match (be the right kind of collector for) the object

which is calling this operation.

Arguments:const

Return Type:T&

Privilege:Public

~EcClCollectorVector - The destructor should presumably be called only when the vector

is empty, but it might be a good idea to check for any collectors here and close them down.

Arguments:

Return Type:Void

Privilege:Public

4-327 305-CD-028-002

Associations:

The EcClCollectorVector class has associations with the following classes:
None

4.5.3.3.3 EcClEvent Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

myDistributedPart - The distributed part of CsClEvent

Data Type:EcClSubEventProxy*

Privilege:Private

Default Value:

myFactory - This is a pointer to the subscription server's factory distributed object. This

provides client interface to the subscription server's factory distributed object, and is used

to create client connection and request objects.

Data Type:EcClSubFactoryProxy*

Privilege:Private

Default Value:

Operations:

EcClEvent - full constructor, creates auto-filled-in new event object

Arguments:EcESbCategory,name:RWCString,

Return Type:Void

Privilege:Public

EcClEvent - Usual constructor, takes event ID and instantiates the event

Arguments:EcTSbEventID

Return Type:Void

Privilege:Public

EcClEvent - Defualt constructor

Arguments:

Return Type:Void

Privilege:Public

4-328 305-CD-028-002

Register - Put this event into the system

Arguments:

Return Type:EcUtStatus

Privilege:Public

Trigger - Activate this event in the system such that all subscriptions to this event will be

processed

Arguments:GlParameterList&

Return Type:EcUtStatus

Privilege:Public

UnRegister - Take this event out of the system

Arguments:

Return Type:EcUtStatus

Privilege:Public

Update - Change this event's value in the system

Arguments:

Return Type:EcUtStatus

Privilege:Public

~EcClEvent - Destructor, cleans up and removes this object

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcClEvent class has associations with the following classes:
None

4.5.3.3.4 EcClGenConnector Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

4-329 305-CD-028-002

Associations:

The EcClGenConnector class has associations with the following classes:
EcClEvent (Aggregation)

4.5.3.3.5 EcClSubscription Class

Parent Class:EcShSubscription

Public:Yes

Distributed Object:No

Purpose and Description:

This class is the client side subscription which can either be created from advertisements or

from exisiting subscriptions from the server side (through a stream.)

Attributes:

myAction - The action to be performed when the subscription fires.

Data Type:EcClAction

Privilege:Protected

Default Value:

myCollector - A pointer to the collector that this reference is a member of. If this pointer

is null, then this reference is a member of one of the collectors in the static collector vector.

Data Type:EcClSubscriptionCollector&

Privilege:Protected

Default Value:

myDescription - String which contains service of the subscription.

Data Type:RWCString

Privilege:Protected

Default Value:

myDurationType - Time duration of subscriptions (i.e., can be done one time or forever

(outstanding).

Data Type:enum EcClSubscriptionType

Privilege:Protected

Default Value:{ONCE, OUTSTANDING}

myExpirationDate - Identifies when this subscription will expire and be removed from the

system. The value may be "never" (i.e. the subscription is permanent)

Data Type:RWDate

Privilege:Protected

Default Value:

4-330 305-CD-028-002

mySubmittedFlag - Flag which shows whether the subscription has been submitted or not.

Data Type:RWBoolean

Privilege:Protected

Default Value:RWTrue

myUserInfo - Client information, provided by client software.

Data Type:EcClClient

Privilege:Protected

Default Value:

ourCollectorvector - Static vector of pointers to DsClSubscriptionCollector objects, one

per dataserver.

Data Type:EcClSubscriptionCollectionVector

Privilege:Protected

Default Value:

Operations:

ClearSubmittedFlag - Flag as not submitted

Arguments:

Return Type:EcTVoid

Privilege:Protected

EcClSubscription - Constructor for client software (therefore, public) which gets attribute

information from advertisements, such as service provider. If no collector has been

provided, it goes and finds one, based on the static nature of the collector.

Arguments:userinfo, Advertisement&, EcClSubscriptionCollector&

Return Type:Void

Privilege:Public

EcClSubscription - Constructor for already existing collector which gets already existing

subscriptions from the sever side through a stream.

Arguments:submittedflag, EcClSubscriptionCollector&, Stream

Return Type:Void

Privilege:Public

GetAction - Means of accessing myAction attribute (object), which will be communicated

to the server what this subscription should do when it fires.

Arguments:EcClAction

Return Type:void

Privilege:Public

4-331 305-CD-028-002

GetCollector - Get Collector object

Arguments:

Return Type:EcClSubscriptionCollector*

Privilege:Protected

GetDescription - Returns description, containing the service, as a RogueWave string.

Arguments:

Return Type:RWCString

Privilege:Public

GetDurationtype - Accesses myDurationType attribute as to whether subscriptions are

done one time or forever (outstanding).

Arguments:

Return Type:EcEClSubscriptionType

Privilege:Public

GetExpirationdate - Public access to myExpirationDate attribute, which provides the

expiration date of the subscription.

Arguments:

Return Type:RWDate

Privilege:Public

GetSubmittedflag - Public access to flag as to whether a subscription has been submitted.

Arguments:

Return Type:RWBoolean

Privilege:Public

GetUserinfo - Public access to user information which can be put into the DsSrClient

object.

Arguments:GLClient&

Return Type:Void

Privilege:Public

IsSubmitted - Indicate current state

Arguments:

Return Type:RWBoolean

Privilege:Protected

SetAction - Sets the myAction attribute for this particular subscription as determined by

the client software.

Arguments:EcClAction&

Return Type:void

Privilege:Public

4-332 305-CD-028-002

SetDescription - Allows the client software to fill in the Description attribute with service

information.

Arguments:RWCString

Return Type:void

Privilege:Public

SetDurationType - Sets the attribute which determines the existence type of the

subscription.

Arguments:EcEClSubscriptionType

Return Type:void

Privilege:Public

SetExpirationDate - Sets the expiration date of the subscription itself.

Arguments:RWDate

Return Type:void

Privilege:Public

SetSubmittedFlag - Sets the flag which indicates whether or not the DsClSubscription has

actually been submitted to the dataserver (i.e. the client software is finished with filling in

the information, and has invoked the Submit method).

Arguments:RWBoolean

Return Type:void

Privilege:Protected

Submit - Submits subscription to the subscription collector.

Arguments:

Return Type:GlStatus&

Privilege:Public

Update - Replace this subscription in the system

Arguments:

Return Type:EcUtStatus

Privilege:Public

Withdraw - Deletes a subscription from the subscription collector.

Arguments:

Return Type:GlStatus&

Privilege:Public

~EcClSubscription - The DsClSubscription's destructor.

Arguments:

Return Type:Void

Privilege:Public

4-333 305-CD-028-002

Associations:

The EcClSubscription class has associations with the following classes:
EcClSubscriptionCollector (Aggregation)

4.5.3.3.6 EcClSubscriptionCollector Class

Parent Class:EcClGenConnector

Public:Yes

Distributed Object:Yes

Purpose and Description:

This public, distributed class is a specialization of the Collector class which handles

DsClSubscriptions. This class provides, in addition to the normal vector operations, the

ability to create a list of all subscriptions for a given user or advertisement, and a means of

submitting and cancelling subscriptions. There are no attributes for this object.

Attributes:

myStatus - This attribute allows the object to maintain information on current status.

Data Type:GlStatus

Privilege:Private

Default Value:

Operations:

BuildList - This operation creates a list of all subscriptions for a given event.

Arguments:Advertisement&

Return Type:const GlStatus &

Privilege:Public

BuildList - This operation creates a list of all subscriptions for a given user.

Arguments:MSS_UserProfile &

Return Type:const GlStatus &

Privilege:Public

BuildListB - This operation allows ops/admin staff to get a list of all subscriptions in the

system.

Arguments:

Return Type:const GlStatus &

Privilege:Public

CancelSubscription
Arguments:EcClSubscription&

4-334 305-CD-028-002

CreateSubscription - This is a private service used to build the set of subscriptions

contained by the SubscriptionCollector.

Arguments:RWBoolean SubmittedFlag, istream &Stream, EcClSubscriptionCollector

*me

Return Type:EcClSubscription*

Privilege:Private

CreateSubscription - This function makes a new CsClSubscription with the provided data

and adds it to the CsClSubscriptionCollector.

Arguments:GlParameterList&

Return Type:EcUtStatus

Privilege:Protected

EcClSubscriptionCollector - The constructor for DsClSubscriptionCollector's. This

constructor establishes a set of Subscriptions for the user based on the provided science data

server and the user information.

Arguments:GlUR &dataserver, MSS_UserProfile &

Return Type:Void

Privilege:Public

Populate - This method generates CsClSubscription objects for each of the sets of

information in the provided parameter list.

Arguments:GlParameterList&

Return Type:EcUtStatus

Privilege:Protected

SubmitRequest
Arguments:EcClRequest&

Return Type:GlParameterList&

Privilege:Public

SubmitSubscription - This function registers the provided subscription with the

subscription server.

Arguments:EcClSubscription&

Return Type:EcTVoid

Privilege:Public

saveOn - This function produces human-readable formatting of the contents of the object

such that it can be used in the overloading of the << operator.

Arguments:ostream&

Return Type:EcTVoid

Privilege:Private

~EcClSubscriptionCollector - The EcClSubscriptionCollector's destructor.

Arguments:

4-335 305-CD-028-002

Return Type:Void
Privilege:Public

Associations:

The EcClSubscriptionCollector class has associations with the following classes:
EcClCollectorVector (Aggregation)

4.5.3.3.7 EcShActionBase Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Base class for actions to be performed when subscriptions fire.

Attributes:

myNotify - Whether to notify on firing

Data Type:RWBoolean

Privilege:Protected

Default Value:

myRequestFlag - Whether request has been set

Data Type:RWBoolean

Privilege:Protected

Default Value:

myText - Notification text

Data Type:RWCString

Privilege:Protected

Default Value:

Operations:

ClearRequest - Clear any request that has been set

Arguments:

Return Type:EcTVoid

Privilege:Public

EcShActionBase
Arguments:RWBoolean, RWCString

Return Type:Void

Privilege:Public

4-336 305-CD-028-002

GetNotify - Obtains current value of notify flag

Arguments:

Return Type:RWBoolean

Privilege:Public

GetText - Obtains notification text

Arguments:

Return Type:RWCString

Privilege:Public

HasRequest - Find out if any request has been set

Arguments:

Return Type:RWBoolean

Privilege:Public

SetNotify
Arguments:RWBoolean
Return Type:EcTVoid
Privilege:Public

SetText
Arguments:RWCString

Return Type:EcTVoid

Privilege:Public

~EcShActionBase - Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcShActionBase class has associations with the following classes:
None

4.5.3.3.8 EcShSubscription Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

4-337 305-CD-028-002

myEventID - event subscribed to

Data Type:EcTSbEventID

Privilege:Protected

Default Value:

myExpirationdate - date subscription runs out

Data Type:RWDate

Privilege:Protected

Default Value:

myStartDate - date subsciption was made

Data Type:RWDate

Privilege:Protected

Default Value:

myStatus - Status of this object

Data Type:EcUtStatus

Privilege:Protected

Default Value:

myUserInfo - subscriber information

Data Type:MsAcUserProfile

Privilege:Protected

Default Value:

Operations:

EcShSubscription - normal constructor

Arguments:MsAcUserProfile

Return Type:Void

Privilege:Public

EcShSubscription - copy constructor

Arguments:const

Return Type:Void

Privilege:Public

EcShSubscription - default constructor defined here to prevent anyone from using it

Arguments:

Return Type:Void

Privilege:Public

GetEventID - get value of myUserInfo

Arguments:

4-338 305-CD-028-002

Return Type:EcTSbEventID&

Privilege:Public

GetExpirationDate - get value of myUserInfo

Arguments:

Return Type:RWDate

Privilege:Public

GetStartDate - get value of myUserInfo

Arguments:

Return Type:RWDate

Privilege:Public

GetUserInfo - get value of myUserInfo

Arguments:

Return Type:MsAcUserProfile&

Privilege:Public

Getstatus - get status of this instance

Arguments:

Return Type:EcUtStatus

Privilege:Public

SetEventID - set myUserInfo attribute to provided info

Arguments:EcTSbEventID&

Return Type:void

Privilege:Public

SetExpirationDate - set myUserInfo attribute to provided info

Arguments:RWDate expirationDate

Return Type:void

Privilege:Public

SetStartDate - set myUserInfo attribute to provided info

Arguments:RWDate startDate

Return Type:void

Privilege:Public

SetUserInfo - set myUserInfoattribute to

Arguments:MsAcUserProfile&

Return Type:void

Privilege:Public

saveOn - Debugging aid Input/Output. send msgs to

Arguments:ostream&

4-339 305-CD-028-002

Return Type:void

Privilege:Public

~EcShSubscription - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcShSubscription class has associations with the following classes:
None

4.5.3.4 Object Model, Part 2

See Figure 4.5.3.4-1.

4.5.3.4.1 EcDbEventStore Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

None

Operations:

Add -
Arguments:EcSbEvent&
Return Type:EcUtStatus &
Privilege:Public

GetEvents -
Arguments:EcSbEventHandler&
Return Type:EcUtStatus &
Privilege:Public

4-340 305-CD-028-002

4-341
305-C

D
-028-002

EcSrGenConnector

EcSrGenConnector(GIUR)

EcSbEventHandler

EcSbTimeKeeper

EcSbEvent
ourStore
myStatus

Init()
Register()
UnRegister()
Update()
Trigger(GlParameterList&)
EcSbEvent()
EcSbEvent(EcESbCategory category, RWCString name, RWCString *description)
~EcSbEvent()

EcSbSubscription

EcDbSubscriptionStoreEcDbEventStore

EcSbSubscriptionHandler

EcSbSubscriptionServer

GetNextID()
GetEvents(EcSbEventHandler&)
GetEvents(EcTSbEventId EcSbEventHandler&)
GetEvents(MsAcUserProfile& EcSbEventHandler&)
GetEvents(EcESbCategory, EcSbEventHandler&)
Add(EcSbEvent&)
Remove(EcSbEventID)

myStatus
myInterval

SetInterval(size_t interval)
GetInterval()
CheckExpirations()
Reset()
EcSbTimeKeeper()
EcSbTimeKeeper(size_t interval)
~EcSbTimeKeeper()

myStatus

saveOn(ostream&)
GetNextEventID()
UnregisterAllEvents(MsAcUserProfile&)
GetAllEvents(MsAcUserProfile&)
GetAllEvents(EcESbCategory Category)
Execute(EcShCommandBase&, GlParameterList&)
GetAllEvents()
EcSbEventHandler()
EcSbEventHandler(const EcSbEventHandler & rhs)
~EcSbEventHandler()

myEventHandler
mySubscriptionHandler
myStatus

EcSbSubscriptionServer()
EcSbSubscriptionServer(EcSbSubscriptionServer& rhs)
EcSbSubscriptionServer(GIUR& server, MsAcUserProfile& clientInfo,
EcEShConnectionID connectionID)
Execute(EcSrGenRequest&)
saveon(ostream&)
~EcSbSubscriptionServer()

ourStore
myAction

EcSbSubscription(MsAcUserProfile)
ExecuteAction(GlParameterList&)
GetAction()
NotifyCancel()
NotifyExpiration()
SetAction(EcSbAction& action)
Submit()
Update()
Withdraw()
~EcSbSubscription()

myStatus

saveOn(ostream&)
CancelAllSubscriptions(MsAcUserProfile&)
GetAllSubscriptions(MsAcUserProfile&)
ProcessEvent(EcTSbEventID, GlParameterList&)
Execute(EcShCommandBase& GlParameterList&)
GetAllSubscriptions(RWDate)
CancelAllSubscriptions(RWDate)
GetAllSubscriptions()
CancelAllSubscriptions()
GetAllSubscriptions(EcTSbEventID)
CancelAllSubscriptions(EcTSbEventID)
EcSbSubsciptionHandler(EcSbSubscriptionHandler)
EcSbSubsciptionHandler()
~EcSbSubscriptionHandler()

GetSubscriptions(EcSbSubscriptionHandler&)
GetSubscriptions(MsAcUserProfile&, EcTSbEventID, EcSbSubscriptionHandler&)
GetSubscriptions(MsAcUserProfile&, EcSbSubscriptionHandler&)
GetSubscriptions(EcTSbEventId, EcSbSubscriptionHandler&)
GetSubscriptions(RWDate, EcSbSubscriptionHandler&)
Add(EcSbSubscription&)
Remove(EcSbSubscription&)

+

[DISTR OBJ][PERSISTENT CLASS]

- : EcDbEventStore*
- : EcUtStatus

+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+
+
+

+ : EcTSbEventID
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &

- : EcUtStatus
- : size_t

+
+ : size_t
+ : EcUtStatus &
+ : void
+
+
+

- : EcUtStatus

+ : void
+ : EcTSbEventID&
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
± : EcUtStatus &
-
+
+

- : EcSbEventHandler
- : EcSbSubscriptionHandler
- : EcUtStatus

+
+
+

+ : EcUtStatus&
+ : void
+

- : EcDbSubscriptionStore*
- : EcSbAction*

+
+ : EcUtStatus&
+ : EcSbAction&
+ : EcUtStatus&
+ : EcUtStatus&
+ : void
+ : EcUtStatus&
+ : EcUtStatus&
+ : EcUtStatus&
+

- : EcUtStatus

+ : void
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+
+
+

+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &

Figure 4.5.3.4-1. Subscription Server Object Model, Part 2

GetEvents -

Arguments:EcTSbEventId EcSbEventHandler&

Return Type:EcUtStatus &

Privilege:Public

GetEvents -

Arguments:MsAcUserProfile& EcSbEventHandler&

Return Type:EcUtStatus &

Privilege:Public

GetEvents -

Arguments:EcESbCategory, EcSbEventHandler&

Return Type:EcUtStatus &

Privilege:Public

GetNextID -

Arguments:

Return Type:EcTSbEventID

Privilege:Public

Remove -

Arguments:EcSbEventID

Return Type:EcUtStatus &

Privilege:Public

Associations:

The EcDbEventStore class has associations with the following classes:
Class: EcSbEvent
Class: EcSbEventHandler

4.5.3.4.2 EcDbSubscriptionStore Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

None

Operations:

4-342 305-CD-028-002

Add -

Arguments:EcSbSubscription&

Return Type:EcUtStatus &

Privilege:Public

GetSubscriptions -

Arguments:EcSbSubscriptionHandler&

Return Type:EcUtStatus &

Privilege:Public

GetSubscriptions -

Arguments:MsAcUserProfile&, EcTSbEventID, EcSbSubscriptionHandler&

Return Type:EcUtStatus &

Privilege:Public

GetSubscriptions -

Arguments:MsAcUserProfile&, EcSbSubscriptionHandler&

Return Type:EcUtStatus &

Privilege:Public

GetSubscriptions -

Arguments:EcTSbEventId, EcSbSubscriptionHandler&

Return Type:EcUtStatus &

Privilege:Public

GetSubscriptions -

Arguments:RWDate, EcSbSubscriptionHandler&

Return Type:EcUtStatus &

Privilege:Public

Remove -

Arguments:EcSbSubscription&

Return Type:EcUtStatus &

Privilege:Public

Associations:

The EcDbSubscriptionStore class has associations with the following classes:
Class: EcSbSubscription
Class: EcSbSubscriptionHandler

4.5.3.4.3 EcSbEvent Class

Parent Class:Not Applicable
Public:No

4-343 305-CD-028-002

Distributed Object:Yes

Persistent Class:True

Purpose and Description:

Defines events used by the server.

Attributes:

myStatus -

Data Type:EcUtStatus

Privilege:Private

Default Value:

ourStore -

Data Type:EcDbEventStore*

Privilege:Private

Default Value:

Operations:

EcSbEvent - default constructor

Arguments:

Return Type:Void

Privilege:Public

EcSbEvent - aut0o-fill constructor

Arguments:EcESbCategory category, RWCString name, RWCString *description

Return Type:Void

Privilege:Public

Init - do set up work such as initialize the event store

Arguments:

Return Type:EcUtStatus &

Privilege:Public

Register - register to the server as being able to

Arguments:

Return Type:EcUtStatus &

Privilege:Public

Trigger - tell server that this event occurred

Arguments:GlParameterList&

Return Type:EcUtStatus &

Privilege:Public

occur

4-344 305-CD-028-002

UnRegister - unregister from the server

Arguments:

Return Type:EcUtStatus &

Privilege:Public

Update - change values

Arguments:

Return Type:EcUtStatus &

Privilege:Public

~EcSbEvent - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcSbEvent class has associations with the following classes:
Class: EcDbEventStore
Class: EcSbEventHandler
Class: EcSbSubscriptionHandler
Class: EcSbTimeKeeper

4.5.3.4.4 EcSbEventHandler Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

myStatus -
Data Type:EcUtStatus
Privilege:Private
Default Value:

Operations:

EcSbEventHandler - default constructor

Arguments:

Return Type:Void

Privilege:Private

4-345 305-CD-028-002

EcSbEventHandler - copy constructor

Arguments:const EcSbEventHandler & rhs

Return Type:Void

Privilege:Public

Execute - interpret and execute this command

Arguments:EcShCommandBase&, GlParameterList&

Return Type:EcUtStatus &

Privilege:Public

GetAllEvents - get all events created by this entry

Arguments:MsAcUserProfile&

Return Type:EcUtStatus &

Privilege:Public

GetAllEvents - get all events in this category

Arguments:EcESbCategory Category

Return Type:EcUtStatus &

Privilege:Public

GetAllEvents - get all events in system(by operator)

Arguments:

Return Type:EcUtStatus &

Privilege:Protected

GetNextEventID - provide ID to new event

Arguments:

Return Type:EcTSbEventID&

Privilege:Public

UnregisterAllEvents - remove all events created by this entry

Arguments:MsAcUserProfile&

Return Type:EcUtStatus &

Privilege:Public

saveOn - hyman readable stream on which to write

Arguments:ostream&

Return Type:void

Privilege:Public

~EcSbEventHandler - destructor

Arguments:

Return Type:Void

Privilege:Public

4-346 305-CD-028-002

Associations:

The EcSbEventHandler class has associations with the following classes:
Class: EcDbEventStore
Class: EcSbEvent
Class: EcSbTimeKeeper
EcSbSubscriptionServer (Aggregation)

4.5.3.4.5 EcSbSubscription Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:

Purpose and Description:

Records all characteristics of a single subscription. It is responsible for executing the

requested action when the associated event occurs.

Attributes:

myAction -

Data Type:EcSbAction*

Privilege:Private

Default Value:

ourStore -

Data Type:EcDbSubscriptionStore*

Privilege:Private

Default Value:

Operations:

EcSbSubscription - normal constructor

Arguments:MsAcUserProfile

Return Type:Void

Privilege:Public

ExecuteAction - perform the subscriber's action

Arguments:GlParameterList&

Return Type:EcUtStatus&

Privilege:Public

GetAction - get this objects action

Arguments:

4-347 305-CD-028-002

Return Type:EcSbAction&

Privilege:Public

NotifyCancel - warn subscriber about cancelation

Arguments:

Return Type:EcUtStatus&

Privilege:Public

NotifyExpiration - warn subscriber about end date

Arguments:

Return Type:EcUtStatus&

Privilege:Public

SetAction - get this objects action

Arguments:EcSbAction& action

Return Type:void

Privilege:Public

Submit - register this subscription

Arguments:

Return Type:EcUtStatus&

Privilege:Public

Update - replace this subscription

Arguments:

Return Type:EcUtStatus&

Privilege:Public

Withdraw - cancel this subscription

Arguments:

Return Type:EcUtStatus&

Privilege:Public

~EcSbSubscription - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcSbSubscription class has associations with the following classes:
Class: EcDbSubscriptionStore
Class: EcSbSubscriptionHandler
Class: EcSbTimeKeeper

4-348 305-CD-028-002

4.5.3.4.6 EcSbSubscriptionHandler Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

myStatus -
Data Type:EcUtStatus
Privilege:Private
Default Value:

Operations:

CancelAllSubscriptions - remove all subscriptions for this entity

Arguments:MsAcUserProfile&

Return Type:EcUtStatus &

Privilege:Public

CancelAllSubscriptions - cancell all subscription for this date

Arguments:RWDate

Return Type:EcUtStatus &

Privilege:Public

CancelAllSubscriptions - cancel all subscription for the operators

Arguments:

Return Type:EcUtStatus &

Privilege:Public

CancelAllSubscriptions - remove all subscriptions for this event

Arguments:EcTSbEventID

Return Type:EcUtStatus &

Privilege:Public

EcSbSubsciptionHandler - copy constructor

Arguments:EcSbSubscriptionHandler

Return Type:Void

Privilege:Public

EcSbSubsciptionHandler -

Arguments:

Return Type:Void

4-349 305-CD-028-002

Privilege:Public

Execute - interpret and execute this command with these parameters

Arguments:EcShCommandBase& GlParameterList&

Return Type:EcUtStatus &

Privilege:Public

GetAllSubscriptions - find all subscriptions for this entity

Arguments:MsAcUserProfile&

Return Type:EcUtStatus &

Privilege:Public

GetAllSubscriptions - find all subscriptions for this date

Arguments:RWDate

Return Type:EcUtStatus &

Privilege:Public

GetAllSubscriptions - get all subscriptions in the systems

Arguments:

Return Type:EcUtStatus &

Privilege:Public

GetAllSubscriptions - get all subscription for this event

Arguments:EcTSbEventID

Return Type:EcUtStatus &

Privilege:Public

ProcessEvent - fire subscription for this event

Arguments:EcTSbEventID, GlParameterList&

Return Type:EcUtStatus &

Privilege:Public

saveOn - human readable stream on which to write

Arguments:ostream&

Return Type:void

Privilege:Public

~EcSbSubscriptionHandler - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

4-350 305-CD-028-002

The EcSbSubscriptionHandler class has associations with the following classes:
Class: EcDbSubscriptionStore
Class: EcSbEvent
Class: EcSbSubscription
Class: EcSbTimeKeeper
EcSbSubscriptionServer (Aggregation)

4.5.3.4.7 EcSbSubscriptionServer Class

Parent Class:EcSrGenConnector

Public:No

Distributed Object:No

Purpose and Description:

Provides an interface to subscription services. Other objects can use it to access all

administrative functions that are necessary for creating, removing, and managing

subscriptions. It also handles event registration, and returns a handle to the

DsSbEventHandler to registering events.

Attributes:

myEventHandler -

Data Type:EcSbEventHandler

Privilege:Private

Default Value:

myStatus -

Data Type:EcUtStatus

Privilege:Private

Default Value:

mySubscriptionHandler -

Data Type:EcSbSubscriptionHandler

Privilege:Private

Default Value:

Operations:

EcSbSubscriptionServer - default constructor

Arguments:

Return Type:Void

Privilege:Public

EcSbSubscriptionServer - copy constructor

Arguments:EcSbSubscriptionServer& rhs

4-351 305-CD-028-002

Return Type:Void

Privilege:Public

EcSbSubscriptionServer - constructor : data server to use user info specific connection

Arguments:GIUR& server, MsAcUserProfile& clientInfo, EcEShConnectionID

connectionID

Return Type:Void

Privilege:Public

Execute - execute this request

Arguments:EcSrGenRequest&

Return Type:EcUtStatus&

Privilege:Public

saveon - human readable stream on which to write

Arguments:ostream&

Return Type:void

Privilege:Public

~EcSbSubscriptionServer - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcSbSubscriptionServer class has associations with the following classes:
None

4.5.3.4.8 EcSbTimeKeeper Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

myInterval -
Data Type:size_t
Privilege:Private
Default Value:

myStatus

4-352 305-CD-028-002

Data Type:EcUtStatus
Privilege:Private
Default Value:

Operations:

CheckExpirations - notify/cancel

Arguments:

Return Type:EcUtStatus &

Privilege:Public

EcSbTimeKeeper - default constructor

Arguments:

Return Type:Void

Privilege:Public

EcSbTimeKeeper - normal constructor

Arguments:size_t interval

Return Type:Void

Privilege:Public

GetInterval - get value for my interval

Arguments:

Return Type:size_t

Privilege:Public

Reset - go back to sleep

Arguments:

Return Type:void

Privilege:Public

SetInterval - set new value for myInterval amount of time

Arguments:size_t interval

Return Type:Void

Privilege:Public

~EcSbTimeKeeper - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

4-353 305-CD-028-002

The EcSbTimeKeeper class has associations with the following classes:
Class: EcSbEvent
Class: EcSbEventHandler
Class: EcSbSubscription
Class: EcSbSubscriptionHandler

4.5.3.4.9 EcSrGenConnector Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

None

Operations:

EcSrGenConnector -
Arguments:GIUR
Return Type:Void
Privilege:Public

Associations:

The EcSrGenConnector class has associations with the following classes:
None

4-354 305-CD-028-002

4.5.3.5
O

b
ject M

o
d

el, P
art 3Ä

4-355
305-C

D
-028-002

EcShSubscription

EcShAction

EcSbSubscription

EcShEvent

EcSbAction

EcSbEvent

EcClSubscription EcClAction

EcClEvent

mytext
SetText(RWCString)
GetText()
Notification()
EcShSubAction(RWCString* text)
~EcShSubAction()
EcShSubAction()

myRequest
EcCIAction()
EcClActionB(EcClRequest &, RWBoolean = FALSE, RWCString * = NULL)
EcClActionB(RWCString &text, EcClRequest * = NULL)
~EcClAction()
GetRequestB()
SetRequestB(EcClRequest &)
ClearRequestB()

ourStore
myStatus
Init()
Register()
UnRegister()
Update()
Trigger(GlParameterList&)
EcSbEvent()
EcSbEvent(EcESbCategory category, RWCString name, RWCString *description)
~EcSbEvent()

myFactory
myDistributedPart
EcClEvent(EcTSbEventID)
EcClEvent(EcESbCategory,name:RWCString,)
EcClEvent()
~EcClEvent()
Register()
UnRegister()
Update()
Trigger(GlParameterList&)

myStatus
DoIt(GlParameterList&)
Notify(GlParameterList&)
EcSbAction()
EcSbAction(RWCString* text)
~EcSbAction()

myEventID
myCategory
myName
myDescription
myStatus
SetID(EcTSbEventID&)
GetID()
SetCategory(EcESbCategory &)
GetCategory()
SetName(RWCString)
GetName()
SetDescription(RWCString)
GetDescription()
SetStatus(EcUtStatus)
GetStatus()
EcShEvent()
EcShEvent(EcTSbEventID)
EcShEvent(EcESbCategory category, RWCString name, RWCString* description)
~EcShEvent()

ourStore
myAction
EcSbSubscription()
EcSbSubscription(EcSbSubscription&)
EcSbSubscription(MsAcUserProfile)
ExecuteAction(GlParameterList&)
GetAction()
NotifyCancel()
NotifyExpiration()
SetAction(EcSbAction& action)
Submit()
Update()
Withdraw()
~EcSbSubscription()

myUserInfo
myEventID
myStartDate
myExpirationdate
myStatus
GetUserInfo()
GetEventID()
GetStartDate()
GetExpirationDate()
saveOn(ostream&)
SetUserInfo(MsAcUserProfile&)
SetEventID(EcTSbEventID&)
SetStartDate(RWDate startDate)
SetExpirationDate(RWDate expirationDate)
EcShSubscription(MsAcUserProfile)
EcShSubscription(const)
~EcShSubscription()
EcShSubscription()
Getstatus()

mySubmittedFlag
myCollector
myExpirationDate
myDurationType
myUserInfo
myDescription
ourCollectorvector
myAction
ClearSubmittedFlag()
EcClSubscription(submittedflag, EcClSubscriptionCollector&, Stream)
EcClSubscription(userinfo, Advertisement&, EcClSubscriptionCollector&)
GetAction(EcClAction)
GetCollector()
GetDescription()
GetDurationtype()
GetExpirationdate()
GetSubmittedflag()
GetUserinfo(GLClient&)
IsSubmitted()
SetAction(EcClAction&)
SetDescription(RWCString)
SetDurationType(EcEClSubscriptionType)
SetExpirationDate(RWDate)
SetSubmittedFlag(RWBoolean)
Submit()
Update()
Withdraw()
~EcClSubscription()

[DISTR OBJ][PERSISTENT CLASS]

[Public]

- : RWCString
+ : void
+ : RWCString&
+ : RWBoolean
+
+
±

- : EcClRequest
+
+
+
+
+ : const EcClRequest&
+
+ : EcTVoid

- : EcDbEventStore*
- : EcUtStatus
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+ : EcUtStatus &
+
+
+

- : EcClSubFactoryProxy*
- : EcClSubEventProxy*
+
+
+
+
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus

- : EcUtStatus
+ : EcUtStatus
± : EcUtStatus
+
+
+

- : EcTSbEventID
- : EcESbCategory
- : RWCString
- : RWCString
- : EcUtStatus
+ : void
+ : EcTSbEventID
+ : void
+ : EcESbCategory
+ : void
+ : RWCString
+ : void
+ : RWCString
+ : void
+ : EcUtStatus&
+
+
+
+

- : EcDbSubscriptionStore*
- : EcSbAction*
+
+
+
+ : EcUtStatus&
+ : EcSbAction&
+ : EcUtStatus&
+ : EcUtStatus&
+ : void
+ : EcUtStatus&
+ : EcUtStatus&
+ : EcUtStatus&
+

± : MsAcUserProfile
± : EcTSbEventID
± : RWDate
± : RWDate
± : EcUtStatus
+ : MsAcUserProfile&
+ : EcTSbEventID&
+ : RWDate
+ : RWDate
+ : void
+ : void
+ : void
+ : void
+ : void
+
+
+
+
+ : EcUtStatus

± : RWBoolean = RWTrue
± : EcClSubscriptionCollector&
± : RWDate
± : enum EcClSubscriptionType = {ONCE, OUTSTANDING}
± : EcClClient
± : RWCString
± : EcClSubscriptionCollectionVector
± : EcClAction
± : EcTVoid
+
+
+ : void
± : EcClSubscriptionCollector*
+ : RWCString
+ : EcEClSubscriptionType
+ : RWDate
+ : RWBoolean
+
± : RWBoolean
+ : void
+ : void
+ : void
+ : void
± : void
+ : GlStatus&
+ : EcUtStatus
+ : GlStatus&
+

[Public]

Figure 4.5.3.5-1. Subscription Server Object Model, Part 3

4.5.3.5.1 EcClAction Class

Parent Class:EcShAction

Public:Yes

Distributed Object:No

Purpose and Description:

A client interface object that represents the components of the action to be performed when

a subscription is triggered. The possibilities are that the client will receive a notification

(including all parameters that are returned by the object that triggers the subscription and

an optional piece of client-specified text) and/or a request that will be executed. The client

is required to specify an action for each subscription.

Attributes:

myRequest - The request that is currently associated with this action.

Data Type:EcClRequest

Privilege:Private

Default Value:

Operations:

ClearRequestB - Used to clear any request that has been set for the action.

Arguments:

Return Type:EcTVoid

Privilege:Public

EcCIAction - Default constructor

Arguments:

Return Type:Void

Privilege:Public

EcClActionB - Used to construct an action from a piece of text and, RELEASE B:

optionally, a request. The notification flag is set.

Arguments:RWCString &text, EcClRequest * = NULL

Return Type:Void

Privilege:Public

EcClActionB - Used to construct an action from a request and, optionally, a value for the

notification flag and a piece of text.

Arguments:EcClRequest &, RWBoolean = FALSE, RWCString * = NULL

Return Type:Void

Privilege:Public

4-356 305-CD-028-002

GetRequestB - Returns the request currently set for the action.

Arguments:

Return Type:const EcClRequest&

Privilege:Public

SetRequestB - Sets the request to be executed when the subscription fires.

Arguments:EcClRequest &

Return Type:Void

Privilege:Public

~EcClAction - Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcClAction class has associations with the following classes:
EcClSubscription (Aggregation)

4.5.3.5.2 EcClEvent Class

Parent Class:EcShEvent

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

myDistributedPart - The distributed part of CsClEvent

Data Type:EcClSubEventProxy*

Privilege:Private

Default Value:

myFactory - This is a pointer to the subscription server's factory distributed object. This

provides client interface to the subscription server's factory distributed object, and is used

to create client connection and request objects.

Data Type:EcClSubFactoryProxy*

Privilege:Private

Default Value:

Operations:

4-357 305-CD-028-002

EcClEvent - full constructor, creates auto-filled-in new event object

Arguments:EcESbCategory,name:RWCString,

Return Type:Void

Privilege:Public

EcClEvent - Usual constructor, takes event ID and instantiates the event

Arguments:EcTSbEventID

Return Type:Void

Privilege:Public

EcClEvent - Defualt constructor

Arguments:

Return Type:Void

Privilege:Public

Register - Put this event into the system

Arguments:

Return Type:EcUtStatus

Privilege:Public

Trigger - Activate this event in the system such that all subscriptions to this event will be

processed

Arguments:GlParameterList&

Return Type:EcUtStatus

Privilege:Public

UnRegister - Take this event out of the system

Arguments:

Return Type:EcUtStatus

Privilege:Public

Update - Change this event's value in the system

Arguments:

Return Type:EcUtStatus

Privilege:Public

~EcClEvent - Destructor, cleans up and removes this object

Arguments:

Return Type:Void

Privilege:Public

Associations:

4-358 305-CD-028-002

The EcClEvent class has associations with the following classes:
None

4.5.3.5.3 EcClSubscription Class

Parent Class:EcShSubscription

Public:Yes

Distributed Object:No

Purpose and Description:

This class is the client side subscription which can either be created from advertisements or

from exisiting subscriptions from the server side (through a stream.)

Attributes:

myAction - The action to be performed when the subscription fires.

Data Type:EcClAction

Privilege:Protected

Default Value:

myCollector - A pointer to the collector that this reference is a member of. If this pointer

is null, then this reference is a member of one of the collectors in the static collector vector.

Data Type:EcClSubscriptionCollector&

Privilege:Protected

Default Value:

myDescription - String which contains service of the subscription.

Data Type:RWCString

Privilege:Protected

Default Value:

myDurationType - Time duration of subscriptions (i.e., can be done one time or forever

(outstanding).

Data Type:enum EcClSubscriptionType

Privilege:Protected

Default Value:{ONCE, OUTSTANDING}

myExpirationDate - Identifies when this subscription will expire and be removed from the

system. The value may be "never" (i.e. the subscription is permanent)

Data Type:RWDate

Privilege:Protected

Default Value:

mySubmittedFlag - Flag which shows whether the subscription has been submitted or not.

Data Type:RWBoolean

Privilege:Protected

4-359 305-CD-028-002

Default Value:RWTrue

myUserInfo - Client information, provided by client software.

Data Type:EcClClient

Privilege:Protected

Default Value:

ourCollectorvector - Static vector of pointers to DsClSubscriptionCollector objects, one

per dataserver.

Data Type:EcClSubscriptionCollectionVector

Privilege:Protected

Default Value:

Operations:

ClearSubmittedFlag - Flag as not submitted

Arguments:

Return Type:EcTVoid

Privilege:Protected

EcClSubscription - Constructor for client software (therefore, public) which gets attribute

information from advertisements, such as service provider. If no collector has been

provided, it goes and finds one, based on the static nature of the collector.

Arguments:userinfo, Advertisement&, EcClSubscriptionCollector&

Return Type:Void

Privilege:Public

EcClSubscription - Constructor for already existing collector which gets already existing

subscriptions from the sever side through a stream.

Arguments:submittedflag, EcClSubscriptionCollector&, Stream

Return Type:Void

Privilege:Public

GetAction - Means of accessing myAction attribute (object), which will be communicated

to the server what this subscription should do when it fires.

Arguments:EcClAction

Return Type:void

Privilege:Public

GetCollector - Get Collector object

Arguments:

Return Type:EcClSubscriptionCollector*

Privilege:Protected

4-360 305-CD-028-002

GetDescription - Returns description, containing the service, as a RogueWave string.

Arguments:

Return Type:RWCString

Privilege:Public

GetDurationtype - Accesses myDurationType attribute as to whether subscriptions are

done one time or forever (outstanding).

Arguments:

Return Type:EcEClSubscriptionType

Privilege:Public

GetExpirationdate - Public access to myExpirationDate attribute, which provides the

expiration date of the subscription.

Arguments:

Return Type:RWDate

Privilege:Public

GetSubmittedflag - Public access to flag as to whether a subscription has been submitted.

Arguments:

Return Type:RWBoolean

Privilege:Public

GetUserinfo - Public access to user information which can be put into the DsSrClient

object.

Arguments:GLClient&

Return Type:Void

Privilege:Public

IsSubmitted - Indicate current state

Arguments:

Return Type:RWBoolean

Privilege:Protected

SetAction - Sets the myAction attribute for this particular subscription as determined by

the client software.

Arguments:EcClAction&

Return Type:void

Privilege:Public

SetDescription - Allows the client software to fill in the Description attribute with service

information.

Arguments:RWCString

Return Type:void

Privilege:Public

4-361 305-CD-028-002

SetDurationType - Sets the attribute which determines the existence type of the

subscription.

Arguments:EcEClSubscriptionType

Return Type:void

Privilege:Public

SetExpirationDate - Sets the expiration date of the subscription itself.

Arguments:RWDate

Return Type:void

Privilege:Public

SetSubmittedFlag - Sets the flag which indicates whether or not the DsClSubscription has

actually been submitted to the dataserver (i.e. the client software is finished with filling in

the information, and has invoked the Submit method).

Arguments:RWBoolean

Return Type:void

Privilege:Protected

Submit - Submits subscription to the subscription collector.

Arguments:

Return Type:GlStatus&

Privilege:Public

Update - Replace this subscription in the system

Arguments:

Return Type:EcUtStatus

Privilege:Public

Withdraw - Deletes a subscription from the subscription collector.

Arguments:

Return Type:GlStatus&

Privilege:Public

~EcClSubscription - The DsClSubscription's destructor.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcClSubscription class has associations with the following classes:
None

4-362 305-CD-028-002

4.5.3.5.4 EcSbAction Class

Parent Class:EcShAction

Public:No

Distributed Object:No

Purpose and Description:

This defines an activity to be performed on behalf of a server when a previously defined

and advertised event occurs. Currently, notifications and requests are valid actions.

Attributes:

myStatus
Data Type:EcUtStatus
Privilege:Private
Default Value:

Operations:

DoIt - do whatever action is specified

Arguments:GlParameterList&

Return Type:EcUtStatus

Privilege:Public

EcSbAction - default constructor

Arguments:

Return Type:Void

Privilege:Public

EcSbAction - text only constructor

Arguments:RWCString* text

Return Type:Void

Privilege:Public

Notify - send the notification text with the supplied parameters

Arguments:GlParameterList&

Return Type:EcUtStatus

Privilege:Protected

~EcSbAction - destructor

Arguments:

Return Type:Void

Privilege:Public

4-363 305-CD-028-002

Associations:

The EcSbAction class has associations with the following classes:
EcSbSubscription (Aggregation)

4.5.3.5.5 EcSbEvent Class

Parent Class:EcShEvent

Public:No

Distributed Object:Yes

Persistent Class:True

Purpose and Description:

Defines events used by the server.

Attributes:

myStatus -

Data Type:EcUtStatus

Privilege:Private

Default Value:

ourStore -

Data Type:EcDbEventStore*

Privilege:Private

Default Value:

Operations:

EcSbEvent - default constructor

Arguments:

Return Type:Void

Privilege:Public

EcSbEvent - auto-fill constructor

Arguments:EcESbCategory category, RWCString name, RWCString *description

Return Type:Void

Privilege:Public

Init - do set up work such as initialize the event store

Arguments:

Return Type:EcUtStatus &

Privilege:Public

4-364 305-CD-028-002

Register - register to the server as being able to

Arguments:

Return Type:EcUtStatus &

Privilege:Public

Trigger - tell server that this event occurred

Arguments:GlParameterList&

Return Type:EcUtStatus &

Privilege:Public

UnRegister - unregister from the server

Arguments:

Return Type:EcUtStatus &

Privilege:Public

Update - change values

Arguments:

Return Type:EcUtStatus &

Privilege:Public

~EcSbEvent - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

occur

The EcSbEvent class has associations with the following classes:
None

4.5.3.5.6 EcSbSubscription Class

Parent Class:EcShSubscription

Public:No

Distributed Object:No

Persistent Class:

Purpose and Description:

Records all characteristics of a single subscription. It is responsible for executing the

requested action when the associated event occurs.

Attributes:

myAction -
Data Type:EcSbAction*

4-365 305-CD-028-002

Privilege:Private

Default Value:

ourStore -

Data Type:EcDbSubscriptionStore*

Privilege:Private

Default Value:

Operations:

EcSbSubscription - normal constructor

Arguments:MsAcUserProfile

Return Type:Void

Privilege:Public

EcSbSubscription - copy constructor

Arguments:EcSbSubscription&

Return Type:Void

Privilege:Public

EcSbSubscription - default constructor defined here to prevent anyone from using it

Arguments:

Return Type:Void

Privilege:Public

ExecuteAction - perform the subscriber's action

Arguments:GlParameterList&

Return Type:EcUtStatus&

Privilege:Public

GetAction - get this objects action

Arguments:

Return Type:EcSbAction&

Privilege:Public

NotifyCancel - warn subscriber about cancelation

Arguments:

Return Type:EcUtStatus&

Privilege:Public

NotifyExpiration - warn subscriber about end date

Arguments:

Return Type:EcUtStatus&

Privilege:Public

4-366 305-CD-028-002

SetAction - get this objects action

Arguments:EcSbAction& action

Return Type:void

Privilege:Public

Submit - register this subscription

Arguments:

Return Type:EcUtStatus&

Privilege:Public

Update - replace this subscription

Arguments:

Return Type:EcUtStatus&

Privilege:Public

Withdraw - cancel this subscription

Arguments:

Return Type:EcUtStatus&

Privilege:Public

~EcSbSubscription - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcSbSubscription class has associations with the following classes:
None

4.5.3.5.7 EcShAction Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

mytext
Data Type:RWCString
Privilege:Private

4-367 305-CD-028-002

Default Value:

Operations:

EcShSubAction - normal constructor

Arguments:RWCString* text

Return Type:Void

Privilege:Public

EcShSubAction - hidden default cinstructor

Arguments:

Return Type:Void

Privilege:Protected

GetText - obtain notification text

Arguments:

Return Type:RWCString&

Privilege:Public

Notification - obtain current value of notify flag

Arguments:

Return Type:RWBoolean

Privilege:Public

SetText - set notification text

Arguments:RWCString

Return Type:void

Privilege:Public

~EcShSubAction - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcShAction class has associations with the following classes:
None

4.5.3.5.8 EcShEvent Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

4-368 305-CD-028-002

Purpose and Description:

Attributes:

myCategory
Data Type:EcESbCategory

Privilege:Private

Default Value:

myDescription
Data Type:RWCString
Privilege:Private
Default Value:

myEventID
Data Type:EcTSbEventID

Privilege:Private

Default Value:

myName
Data Type:RWCString
Privilege:Private
Default Value:

myStatus
Data Type:EcUtStatus
Privilege:Private
Default Value:

Operations:

EcShEvent - default constructor: create new empty and fill

Arguments:

Return Type:Void

Privilege:Public

EcShEvent - constructor uses existing eventid

Arguments:EcTSbEventID

Return Type:Void

Privilege:Public

EcShEvent - constructor for new auto-filled

Arguments:EcESbCategory category, RWCString name, RWCString* description

Return Type:Void

4-369 305-CD-028-002

Privilege:Public

GetCategory - provides access to the attribute myCategory

Arguments:

Return Type:EcESbCategory

Privilege:Public

GetDescription - provide access to the attribute myDescription

Arguments:

Return Type:RWCString

Privilege:Public

GetID - provide access to the attribute myEventID

Arguments:

Return Type:EcTSbEventID

Privilege:Public

GetName - provides access to the attribute myName

Arguments:

Return Type:RWCString

Privilege:Public

GetStatus - provide access to the attribute myStatus

Arguments:

Return Type:EcUtStatus&

Privilege:Public

SetCategory - set the attribute myCategory to the specified value

Arguments:EcESbCategory &

Return Type:void

Privilege:Public

SetDescription - sets the attribute myDescription to the specified value

Arguments:RWCString

Return Type:void

Privilege:Public

SetID
Arguments:EcTSbEventID&

Return Type:void

Privilege:Public

SetName - sets the attribute name to the specified value

Arguments:RWCString

Return Type:void

4-370 305-CD-028-002

Privilege:Public

SetStatus - sets the attribute myStatus to the specified value

Arguments:EcUtStatus

Return Type:void

Privilege:Public

~EcShEvent - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcShEvent class has associations with the following classes:
None

4.5.3.5.9 EcShSubscription Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

myEventID - event subscribed to

Data Type:EcTSbEventID

Privilege:Protected

Default Value:

myExpirationdate - date subscription runs out

Data Type:RWDate

Privilege:Protected

Default Value:

myStartDate - date subsciption was made

Data Type:RWDate

Privilege:Protected

Default Value:

myStatus - Status of this object

Data Type:EcUtStatus

Privilege:Protected

4-371 305-CD-028-002

Default Value:

myUserInfo - subscriber information

Data Type:MsAcUserProfile

Privilege:Protected

Default Value:

Operations:

EcShSubscription - normal constructor

Arguments:MsAcUserProfile

Return Type:Void

Privilege:Public

EcShSubscription - copy constructor

Arguments:const

Return Type:Void

Privilege:Public

EcShSubscription - default constructor defined here to prevent anyone from using it

Arguments:

Return Type:Void

Privilege:Public

GetEventID - get value of myUserInfo

Arguments:

Return Type:EcTSbEventID&

Privilege:Public

GetExpirationDate - get value of myUserInfo

Arguments:

Return Type:RWDate

Privilege:Public

GetStartDate - get value of myUserInfo

Arguments:

Return Type:RWDate

Privilege:Public

GetUserInfo - get value of myUserInfo

Arguments:

Return Type:MsAcUserProfile&

Privilege:Public

4-372 305-CD-028-002

Getstatus - get status of this instance

Arguments:

Return Type:EcUtStatus

Privilege:Public

SetEventID - set myUserInfo attribute to provided info

Arguments:EcTSbEventID&

Return Type:void

Privilege:Public

SetExpirationDate - set myUserInfo attribute to provided info

Arguments:RWDate expirationDate

Return Type:void

Privilege:Public

SetStartDate - set myUserInfo attribute to provided info

Arguments:RWDate startDate

Return Type:void

Privilege:Public

SetUserInfo - set myUserInfoattribute to

Arguments:MsAcUserProfile&

Return Type:void

Privilege:Public

saveOn - Debugging aid Input/Output. send msgs to

Arguments:ostream&

Return Type:void

Privilege:Public

~EcShSubscription - destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcShSubscription class has associations with the following classes:
None

4-373 305-CD-028-002

4.5.3.6 Object Model, Part 4

Offpage

EcSbNotification

EcDcDSyncCom

EcDcDSync
myEcDcDSyncP

Send(RWCString:logicalName , RWCString:emailAdd , RWCString:msgLen ,
RWCString:msg)
EcSbNotification()
~EcSbNotification()

Offpage

- : EcDcDSync*

+

+
+

[Public]

[Public]

Figure 4.5.3.6-1. Subscription Server Object Model, Part 4

4.5.3.6.1 EcDcDSync Class

Parent Class:EcDcDSyncCom

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The EcDcDSync class has associations with the following classes:
EcSbNotification (Aggregation)

4.5.3.6.2 EcDcDSyncCom Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

4-374 305-CD-028-002

This class is used to achieve message passing using asynchronous and deferred
synchronous communications. It is designed to work with OODCE-provided DCE-Pthread
class which is used to start and control execution of a thread.

Attributes:

None

Operations:

None

Associations:

The EcDcDSyncCom class has associations with the following classes:
None

4.5.3.6.3 EcSbNotification Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

Attributes:

myEcDcDSyncP - A pointer to EcDsDSync class

Data Type:EcDcDSync*

Privilege:Private

Default Value:

Operations:

EcSbNotification - This is the default constructor

Arguments:

Return Type:Void

Privilege:Public

Send - This operation will be used to send notification message and its corresponding

information.

Arguments:RWCString:logicalName , RWCString:emailAdd , RWCString:msgLen ,

RWCString:msg

Return Type:Void

4-375 305-CD-028-002

Privilege:Public

~EcSbNotification - Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcSbNotification class has associations with the following classes:
None

4.5.3.7 Functional Model

The subscription service provides a set of classes with distinct functionality which makes the
incorporation of generic subscription functionality into ECS client/server applications easy. The
classes can be categorized into three distinct catogories:

(1) classes that provide the basic abstractions of event, action and subscription

(2) classes that provide distributed object behavior, and

(3) classes that basically conduct timekeeping and handling functions

The framework facilitates the following functionality:

• Ability to register events through the use of the event classes

• Ability to create and submit subscriptions through the use of the subscription classes

The class EcSbSubscriptionServer provides the specialized connection for the subscription server
on the server-side and also the access to the processing of events and subscriptions. The class
EcSbSubscriptionCollector provides the primary interface for submitting subscriptions on the cli
ent side. The class EcSbEvent defines the framework for creating an event. The class EcSbSub
scription defines the framework for creating a subscription. The class EcSbAction is the basic
framework class for creating actions.

Table 4.5.3.7-1 describes the subscription classes.

Table 4.5.3.7-1. Subscription Server Object Responsibility Matrix (1 of 2)
Class name Description

EcSbSubscriptionServer Provides the specialized connection for the subscription server and
also (through containment) access to the processing of events and
subscriptions

EcSbSubscriptionCollector Provides the primary interface for submitting subscriptions on the
client side

EcSbTimeKeeper Keeps track of time as the subscription server runs, and makes sure
that anything linked to time (such as the expiration of subscriptions)
occurs. Supports the concept of "Timed Subscriptions"

4-376 305-CD-028-002

Table 4.5.3.7-1. Subscription Server Object Responsibility Matrix (2 of 2)
Class name Description

EcSbEventHandler Provides the interface to work with events on the server side (server
side management of events)

EcSbSubscriptionHandler Provides the interface to work with subscriptions on the server side

EcDbEventStore Provides the interface to interact with a database of events

EcDbSubscriptionStore Provides the interface to interact with a database of subscriptions

EcSbEvent Provides the data and behavior that is particular to events on the
server i.e. the actual implementation of the event

EcSbAction Provides the data and behavior that is particular to the server, with
respect to what action to perform when a given subscription fires

EcSbSubscription Provides the data and behavior that is particular to the subscriptions
on the server i.e. the actual implementation of the subscriptions

EcClEvent Provides the data and behavior that is particular to events on the
client side

EcClAction Provides the data and behavior that is particular to actions on the
client side

EcClSubscription Provides the data and behavior that is particular to subscriptions on
the client side

EcShEvent Provides the data and behavior that is common to events on both the
client and the server side

EcShAction Base class for actions to be performed when subscriptions fire

EcShSubscription Provides the data and behavior that is common to subscriptions on
the client and the server side

EcSbNotification Provides the ability to alert or inform clients of events. This object
transmits data from a notification source (e.g. subscription that has
been triggered) to a notification receiver (e.g. a user who created a
subscription). It attempts to notify the receipient directly, else via e
mail.

4.5.3.8 Dynamic Model Scenarios

4.5.3.8.1 Scenario #1

4.5.3.8.1.1 Abstract

This scenario demonstrates the steps that the client application (CallingObject) must perform to
submit a subscription on behalf of an end-user. In this scenario the client has retrieved a
subscription advertisement from the Advertising server and has decided that he/she would like to
be notified upon the future occurrence of that advertised event.

4.5.3.8.1.1 Interfaces

The client object and the Advertising server

4-377 305-CD-028-002

4.5.3.8.1.2 Stimulus

The client application constructs the EcClSubscription object with the subscription information
from the advertisement.

4.5.3.8.1.3 Desired Response

The subscription is added to the subscription list maintained by the appropriate subscription server.

4.5.3.8.1.4 Participating Classes

EcClSubscription

EcClSubscriptionCollector

EcSbSubscriptionServer

EcSbSubscriptionHandler

4.5.3.8.1.5 Pre-conditions

The preconditions for this scenario are that a user has selected an advertised subscription from the
Advertiser (that represents the event that he/she is interested in) and the client application has
created an instance of the advertisement. The advertisement contains information about the event
that will trigger the subscription. The user may specify an action for the data server to perform
whenever the subscribed event occurs. For example, the user could request automatic distribution
whenever new CERES02 data arrives.

4.5.3.8.1.6 Post-conditions

The subscription is activated.

4.5.3.8.1.7 Scenario Description

1.	 The scenario primitive starts with the client application creating a subscription, passing the
advertisement (event information) and user information (notification recipient).

2.	 The client then creates an action which includes a request and an optional notification text
string (user-entered data).

3.	 Next the EcClSubscription object's SetAction() operation is used to register the user
defined action.

4.	 Finally, the server uses AddSubscriptions to add the new subscription to its list of managed
subscriptions.

4-378 305-CD-028-002

4.5.3.8.1.8 Event Trace

ClientApp EcClSubscription EcClSubscriptionCollector EcSbSubscriptionServer EcSbSubscriptionEcSbSubscriptionHandler

EcClSubscription

EcClSubscriptionCollector

EcSbSubscriptionServer

SetAction

Submit

Insert

AddSubscription

EcSbSubscription

GetEventId

AddSubscriptions

Figure 4.5.3.8-1 Event Trace for Submitting a Subscription

4.5.3.8.2 Scenario #2

4.5.3.8.2.1 Abstract

This scenario shows the steps that are executed when a subscription expires. Note that the user is
notified in advance of a subscription expiration, and it only expires if it's not renewed.

4.5.3.8.2.2 Interfaces

No external clients are involved in this scenerio. Internally, the EcSbSubscriptionServer object is
being used.

4.5.3.8.2.3 Stimulus

There is one subscription that has expired today and the subscription server callback timer fires.

4.5.3.8.2.4 Desired Response

The subscription is removed from the subscription list.

4.5.3.8.2.5 Participating Classes

EcSbCallbackTimer

EcSbSubscriptionServer

EcSbSubscription

EcSbNotification

GlStatus

EcSbSubscriptionHandler

4-379 305-CD-028-002

4.5.3.8.2.6 Pre-conditions

The subscription server is running normally.

4.5.3.8.2.7 Post-conditions

The subscription server returns to its normal idle state. The expired subscription is gone.

4.5.3.8.2.8 Scenario Description

1.	 The diagram begins with the daily callback timer firing, which calls CheckExpirations on
the EcSbSubscriptionServer object.

2.	 The EcSbSubscriptionServer searches the list of EcSbSubscription objects for any that
have expired, and when it finds one it calls NotifyCancel on that object.

3.	 This generates a notification that is sent to the user (either direct or email) informing him
of the expiration of the subscription.

4. Finally, the subscription is canceled and removed from the server.

4.5.3.8.2.9 Event Trace

EcSbCallbackTimer EcSbSubscriptionServer EcSbSubscription EcSbNotification GlStatus EcSbSubscriptionHandler

CheckExpirations

NotifyCancel

EcSbNotification

GlStatus

SetText

SetCode

SendToUser

CancelSubscription

CancelSubscription

~EcSbSubscription

Figure 4.5.3.8-2. Event Trace for Auto Canceling a Subscription

4-380 305-CD-028-002

4.5.3.8.3 Scenario #3

4.5.3.8.3.1 Abstract

The scenario shows how the client cancels a subscription.

4.5.3.8.3.2 Interfaces

Client Application using the EcClSubscription object.

4.5.3.8.3.3 Stimulus

The client wishes to withdraw a subscription.

4.5.3.8.3.4 Desired Response

The subscription is canceled and appropriate changes are reflected on the server side.

4.5.3.8.3.5 Participating Classes

EcClSubscription

EcClSubscriptionCollector

EcSbSubscriptionServer

EcSbSubscriptionHandler

EcSbSubscription

4.5.3.8.3.6 Pre-conditions

1. User has logged on and has proper permissions.

2. EcClSubscriptionCollector has already been created.

4.5.3.8.3.7 Post-conditions

The client and server resume normal activity and the subscription is removed from the server's
database.

4.5.3.8.3.8 Scenario Description

1.	 The client issues the Withdraw request. This results in the CancelSubscription method
being called on the collector object.

2. The collector then calls CancelSubscription on the server-side EcSbSubscriptionServer.

3.	 The EcSbSubscriptionServer then calls the CancelSubscription method on the
EcSbSubscriptionHandler.

4-381 305-CD-028-002

4.5.3.8.3.9 Event Trace

ClientApp EcClSubscription EcClSubscriptionCollector EcSbSubscriptionServer EcSbSubscriptionHandler EcSbSubscription

Withdraw

~EcClSubscription

CancelSubscription

CancelSubscription

CancelSubscription

~EcSbSubscription

Figure 4.5.3.8-3 Event Trace for Canceling a Subscription

4.5.3.8.4 Scenario #4

4.5.3.8.4.1 Abstract

This scenario shows how a server fulfills a previously submitted subscription. The action for the
submitted subscription is to send a notification. The subscription example illustrated here is a one
time subscription. Thus, after the event detection is processed, the subscription will be removed
from the active subscription list.

4.5.3.8.4.2 Interfaces

Client applications. In this case relevant datatypes from the Science Data Server.

4.5.3.8.4.3 Stimulus

In this scenario the originating object has detected the advertised and subscribed event.

4.5.3.8.4.4 Desired Response

The event notification is triggered and the subscription is cancelled.

4.5.3.8.4.5 Participating Classes

EcGeESDT

EcGeEventTable

EcSbEvent

EcSbEventHandler

EcSbSubscriptionServer

EcSbSubscriptionHandler

EcSbSubscription

EcSbAction

EcSbNotification

4-382 305-CD-028-002

GlStatus

GlParameterList

4.5.3.8.4.6 Pre-conditions

A server is processing a new data item which is a subscribable event.

4.5.3.8.4.7 Post-conditions

The user is notifed and the event is cancelled.

4.5.3.8.4.8 Scenario Description

1. A DSS server looks up the event in the EventTable using Find.

2.	 The server then triggers the event by calling EcSbEvent.Trigger(). This in turn causes the
EventOccured method to be called on the EventHandler.

3.	 The event handler makes a remote call to the EcSbSubscriptionHandler
(ExecuteSubscriptions) to inform the event server that the event has occured.

4. The subscription handler then executes the subscription.

5.	 The EcSbSubscription object determines the receivers (via GetNotify) and the notification
text (via GetText).

6. The notification is then sent via the GINotification object.

7. After sending the notification, the subscription is cancelled via CancelSubscription().

4-383 305-CD-028-002

4.5.3.8.4.9
E

ven
t T

race

EcSbSubscriptionHandlerEcSbSubscriptionEcSbActionEcGeESDT EcGeEventTableEcSbEvent EcSbEventHandlerEcSbSubscriptionServer EcSbNotification GlStatus GlParameterLIst

EcGeEventTable

Find

Trigger

Execute

GetNotify

ExecuteSubscriptions

GetText

GlStatus

Textify

SetText

EcSbNotifcation

SendToUser

CancelSubscription

CancelSubscription

~EcClSubscription

EventOccurred

4-384
305-C

D
-028-002

Figure 4.5.3.8-4. Event Trace for Fulfilling a One-Time Subscription

4.5.3.8.5 Scenario #5

4.5.3.8.5.1 Abstract

This scenario shows how a server fulfills a previously submitted subscription. The submitted
subscription is for a simple notification to be sent. The subscription example illustrated here is a
open-ended subscription, meaning it will continue to be active, waiting for future occurrences of
the event.

4.5.3.8.5.2 Interfaces

Client applications. In this case relevant datatypes from the Science Data Server.

4.5.3.8.5.3 Stimulus

In this scenario the originating object has detected the advertised and subscribed event.

4.5.3.8.5.4 Desired Response

The originating object then triggers that event for processing within the Subscription Server.

4.5.3.8.5.5 Participating Classes

EcGeESDT

EcGeEventTable

EcSbEvent

EcSbEventHandler

EcSbSubscriptionHandler

EcSbSubscription

EcSbAction

EcSbNotification

GlStatus

GlParameterList

4.5.3.8.5.6 Pre-conditions

A server is processing a new data item which is a subscribable event.

4.5.3.8.5.7 Post-conditions

The user is notifed and the event is cancelled.

4.5.3.8.5.8 Scenario Description

1. A DSS server looks up the event in the EventTable using Find.

2.	 The server then triggers the event by calling EcSbEvent.Trigger(). This in turn causes the
EventOccured method to be called on the EventHandler.

3.	 The event handler makes a remote call to the EcSbSubscriptionHandler
(ExecuteSubscriptions) to inform the event server that the event has occured.

4-385 305-CD-028-002

4. The subscription handler then executes the subscription.

5.	 The EcSbSubscription object determines the receivers (via GetNotify) and the notification
text (via GetText).

6. The notification is then sent via the GINotification object.

4-386 305-CD-028-002

4.5.3.8.5.9
E

ven
t T

race

EcGeESDT EcGeEventTable EcSbEvent EcSbEventHandler EcSbSubscriptionHandler EcSbSubscription EcSbAction EcSbNotification GlStatus GlParameterLIst

4-387
305-C

D
-028-002

EcGeEventTable

Find

Trigger

EventOccurred

Execute

GetNotify

ExecuteSubscriptions

GetText

GlStatus

Textify

SetText

EcSbNotification

SendToUser

Figure 4.5.3.8-5. Event Trace for Fulfilling An Open-Ended Subscription

4.5.3.8.6 Scenario #6

4.5.3.8.6.1 Abstract

The purpose of this scenario is to show how a subscribable event gets established. This occurs
within the context of a variety of scenarios including adding a new Data Type and Startup of the
Science Data Server. Although this scenario focuses on events that are generated by Data Types,
this is not meant to imply that all subscribable events are Data Type related. A subscribable event
might be the occurrence of a disk being full. This scenario begins after an EcDeESDTDescriptor
has been created and it has determined that it must establish its subscribable events.

4.5.3.8.6.2 Interfaces

Client applications. In this case relevant datatypes from the Science Data Server and the Adver
tisement Server.

4.5.3.8.6.3 Stimulus

The Data Server decides that a particular data related event should be subscribable.

4.5.3.8.6.4 Desired Response

The subscribable event is registered with the subscription server.

4.5.3.8.6.5 Participating Classes

EcDeESDTDescriptor

EcDeEventVector

EcDeEvent

EcDbAccess

EcGeESDTEventTable

EcSbFactory

EcSbEvent

EcSbSubscriptionServer

DmAdAdvertisement

4.5.3.8.6.6 Pre-conditions

• The Science Data Sever has the UR of its Subscription Server Factory.

• The Subscription Server is active.

• There is just one event being registered.

• The EcDeEventVector and EcDeEvent are already created.

4.5.3.8.6.7 Post-conditions

The event is registered with the subscription server and an advertisment of the subscribable event
is registered with the advertiser.

4-388 305-CD-028-002

4.5.3.8.6.8 Scenario Description

1.	 The EcDeESDTDescriptor establishes a EcGeESDTEventTable for holding all of the
events for this Data Type and persistently stores it.

2.	 Then for an event that the Data Type has the ability to notice, the EcDeESDTDescriptor
creates a EcSbEvent with a name, category, and description. Since the EcSbEvent is a
distributed object, this causes a creation of an EcSbEvent within the Subscription Server
process space.

3.	 Then the EcDeESDTDescriptor registers the event which notifies the Subscription Server
that this is now a known event.

4.	 The Subscription Server coordinates with the Data Management Subsystem to advertise the
fact that this event is subscribable.

5.	 After the event has been registered, it gets stored persistently in the previously created
EcGeESDTEventTable. This process is repeated for each event that this Data Type has the
ability to notice.

4-389 305-CD-028-002

4.5.3.8.6.9
E

ven
t T

race

EcDeESDTDescriptor EcDeEventVector EcDeEvent EcDbAccess EcGeESDTEventTable EcSbFactory EcSbEvent EcSbSubscriptionServer DmAdAdvertisement

4-390
305-C

D
-028-002

MakeEvent

EcSbSubscriptionServer
RegisterEvent

DmAdAdvertisement
Insert

~DmAdAdvertisement
~EcSbSubscriptionServer

~EcSbEvent

EcGeESDTEventTalbe

Add

~EcGeESDTEventTable

Register
Register

Register

Store

Store

EcSbEvent

Figure 4.5.3.8-6. Event Trace for Registering a Subscribable Event

4.5.3.8.7 Scenario #7

4.5.3.8.7.1 Abstract

The purpose of this scenario is to show how a subscribable event which has been previously
established, gets unregistered. This would be done if a Data Type were being removed from the
Data Server. This scenario begins after an EcDeESDTDescriptor has been created and it has
determined that it must unregister its subscribable events.

4.5.3.8.7.2 Interfaces

Client applications. Science Data Server and the Advertisement Server in this case.

4.5.3.8.7.3 Stimulus

The Data Server determines that it will not longer support a certain event.

4.5.3.8.7.4 Desired Response

The Data Server acts to remove the event from the Subscription Server.

4.5.3.8.7.5 Participating Classes

EcDeESDTDescriptor

EcGeESDTEventTable

EcDbAccess

EcSbFactory

EcSbEvent

EcSbSubscriptionServer

DmAdAdvertisement

4.5.3.8.7.6 Pre-conditions

o The SDSRV has the UR of its Subscription Server Factory.

o The Subscription Server is active.

o All events of a Data Type are being unregistered.

4.5.3.8.7.7 Post-conditions

The subscribable event is removed from the subscription server and from the advertisements.

4.5.3.8.7.8 Scenario Description

1.	 The EcDeESDTDescriptor establishes the EcGeESDTEventTable for this Data Type
which contains the EcSbEvents that were previously stored when this Data Type was
initialized. Because this is a distributed object, an EcSbEvent is created in the Subscription
Server execution space.

2.	 Then for each event that the Data Type has previously stored in the EcGeESDTEventTable,
the EcDeESDTDescriptor unregisters that event. This causes the SubscriptionServer to
cancel the advertisement associated with this event.

3. Finally, the EcSbEvent is removed from the persistent EcGeESDTEventTable.

4-391 305-CD-028-002

4.5.3.8.7.9
E

ven
t T

race

EcDeESDTDescriptor EcGeESDTEventTable EcDbAccess EcSbFactory EcSbEvent EcSbSubscriptionServer DmAdAdvertisement

EcSbSubscriptionServer

UnregisterEvent

DmAdAdvertisement

Cancel

EcGeESDTEventTable

MakeEvent

at(0)

Unregister

~EcSbSubscriptionServer

~EcGeESDTEventTable

~EcSbEvent

EcDbAccess

Fill

Remove

Unstore

EcSbEvent

~DmAdAdvertisement

4-392
305-C

D
-028-002

Figure 4.5.3.8-7. Event Trace for Unregistering a Subscribable Event

4.5.3.8.8 Scenario #8

4.5.3.8.8.1 Abstract

The scenario shows how the client updates a subscription.

4.5.3.8.8.2 Interfaces

Client Applications.

4.5.3.8.8.3 Stimulus

The client wishes to update a subscription.

4.5.3.8.8.4 Desired Response

The subscription is updated.

4.5.3.8.8.5 Participating Classes

EcClSubscription

EcClSubscriptionCollector

Other classes included in scenario #1 and scenario #4 are also needed here to complete the
scenario.

4.5.3.8.8.6 Pre-conditions

• user has logged on and has proper permissions.

• EcClSubscriptionCollector has already been created.

4.5.3.8.8.7 Post-conditions

The subscription is still registered, but it has been updated.

4.5.3.8.8.8 Scenario Description

The scenario shows steps used to update a subscription from the client side and ultimately,
reflected on the server side. This is achieved through the distributed object,
EcClSubscriptionCollector. The object, EcClSubscriptionCollector, has already been constructed.
This scenario shows that the client wants to update the expiration date of the subscription. These
are the steps:

1. The client sets the expiration date of the subscription.

2.	 The older subscription is withdrawn as outlined in the scenario #4, subscription server
canceling a subscription.

3.	 The subscription is submitted as outlined in the scenario #1, subscription server submitting
a subscription.

4-393 305-CD-028-002

4.5.3.8.8.9 Event Trace

ClientApp EcClSubscription EcClSubscriptionCollector

SetExpirationDate

Submit

Withdraw

Scenario: Subscription Cancellation

Scenario: Subscription Submitting

Figure 4.5.3.8-8. Event Trace for Updating a Subscription

4.5.3.8.9 Scenario #9

4.5.3.8.9.1 Abstract

This scenario shows how the EcClSubscriptionCollector is populated with the subscriptions for a
specified user.

4.5.3.8.9.2 Interfaces

Client applications. Science Data Server is used as an example in this case.

4.5.3.8.9.3 Stimulus

The client may wish to get a list of subscriptions.

4.5.3.8.9.4 Desired Response

The list is returned.

4.5.3.8.9.5 Participating Classes

EcClSubscriptionCollector

EcClSubscription

EcSbSubscriptionServer

GlParameterList

GlStringP

4-394 305-CD-028-002

4.5.3.8.9.6 Pre-conditions

There is one subscription for the user.

4.5.3.8.9.7 Post-conditions

All steps execute successfully.

4.5.3.8.9.8 Scenario Description

The client tells the EcClSubscriptionCollector (a distributed object) to BuildList, which (server
side) asks the EcSbSubscriptionServer to build a parameter list of references to the subscriptions
for a user. The client-side EcClSubscriptionCollector takes this list and builds a EcClSubscription
(only one in this case) from it and adds it to himself.

4.5.3.8.9.9 Event Trace

SDCLIENT EcClSubscriptionCollector EcClSubscription EcSbSubscriptionServer GlParameterList GlStringP

BuildList

EcClSubscription

insert

GetAllSubscriptions

GlParameterList

GlStringP

insert

Figure 4.5.3.8-9. Event Trace for Returning a List of Subscriptions

4.5.3.9 Implementation

The Subscription Server depends on the implementations of various ADSRV, CSS and MSS
services.

4-395 305-CD-028-002

4.5.3.10 Service/CSCI Management and Operation

4.5.3.10.1 System Management and Strategy

The SubscriptionServer Process comprises the following CSS (DCCI) CSCs:

• Client

• Configuration/Startup

• Global

• Subscription

It is also comprised of the interface class CSCs from ADSRV and MSS.

4.5.3.10.2 Operator Interface

Not applicable.

4.5.3.10.3 Reports

None.

4.5.4 Universal References

4.5.4.1 Overview

Universal References (URs) provide applications and users a system wide mechanism for
referencing ECS data and service objects. Once a UR is made for an object, the object can be
disposed of and later reconstituted from the UR. URs can refer to objects that may be local to an
address space, or remote.

URs are implemented as a framework which provides objects the capability to create URs for
themselvers, distribute URs throughout the system, then use these URs to reconstitute and/or
access the original object. URs themselves are objects which can externalize themselves into an
ASCII representation, then internalize from their ASCII representation back to objects. The
content of the externalized UR is human transcribable and transport friendly. While the UR
mechanism guarantees reliable data externalization and internalization, the content of each type of
UR is application specific. Only the object that initially provides the UR (from now on we will call
this the "UR Provider") is allowed to access and understand its content. URs are strongly typed to
enforce appropriate access control to internal data both at compile time and during runtime. Since
URs are typed and have object specific data in them, separate UR object classes exist for each UR
Provider object class referred to. All of these UR classes use the mechanisms provided by the UR
framework. The framework also provides UR Providers support for their common requirements.
The following diagram, Figure 4.5.4.1-1, illustrates the functions of the various frameworks.

4-396 305-CD-028-002

--- ------

Appl1a Appl2a Appl3a

UR

Object DNA

Appl1b Appl2b Appl3c

UR Provider

Object being referenced

UR Framework

Application Provided

UR Maker ~=
Classifying,

Producing URs

UR Stream

External
Representation

“aBC@d”

UR Provider Maker ~=
Producing UR Providers

ProvideUR

Reconstitute

Externalize

Internalize

Figure 4.5.4.1-1. Functions of Different UR Frameworks

From left to right, going from top to bottom,

•	 the UR Provider framework supports common functions for all object referenced by URs.
This framework allows URs for the UR Provider to be extracted and later reconstituted.

•	 ECS application objects subclass this framework to enable themselves to be referred to by
URs.

•	 the UR framework supports common functions for referring to UR Providers; this function
will allow URs to be externalized and internalized.

•	 ECS application UR objects subclass this framework and will hold the application specific
state data to uniquely identify the application object referred to.

• URs can be externalized to ASCII strings that are managed by the user.

The object paradigm uses techniques of abstraction and inheritance to create designs that are
resilient to change. ECS will extend the data and services it provides. The UR and UR Provider
Frameworks are designed to support both abstraction and inheritance. An abstract UR that
provides a defined set of data and services can be passed to a UR consumer. The consumer is not
required to know the actual concrete UR object they are working with. When these abstract URs
are used to access the object they refer to, the concrete object is accessed. However, the consumer
is not required to know which concrete object they are using. They are only required to know the
interfaces to the abstract object. This capability of working with abstract URs and abstract objects
allows ECS to extend, through inheritance, the data and services it provides with minimal changes

4-397 305-CD-028-002

to applications. The framework supports the dynamic introduction of new remote objects that meet
a given pre-existing abstract interface.

A corollary design component of URs concerns backward compatibility. Objects providing URs
will change over time. The URs they provide as references to themselves will then also probably
change. The UR and UR Provider Frameworks allow a UR Provider to support multiple UR types
as long as a backward compatibility feature exists in the provider. This design component will
mitigate problems of end users and applications using URs dispensed from prior software versions.

As described, URs have an extensible and evolvable design which allows the UR types to grow
and change over time. A very important specialization of URs is used in the SRF design, where
URs are tailored to support location of services. The UR framework is independent of the
communication infrastructure and does not couple the ECS architecture to OODCE. It provides a
general mechanism for keeping references to logical entities for long periods of time, without the
computational costs of maintaining those objects in memory.

4.5.4.2 Context

ECS functions are performed by manipulating logical entities represented at runtime as C++
objects in virtual memory. Users and applications require references to the logical entities beyond
the time that it is computationally effective to keep the objects in memory. Therefore, applications
and users are given Universal References (URs) to these objects. URs have a low cost to keep in
memory and can be externalized into an ASCII string that an end user can manage. A UR has the
capability of re-accessing and/or reconstituting the object into memory as needed. Therefore, the
object does not have to remain in memory, and can if appropriate, be written to a secondary storage
system, like a database.

4-398 305-CD-028-002

4.5.4.3 Object Model

EcUrUR

EcUrURMaker

EcUrURProvider

EcUrURProviderMaker

EcUrClassID

EcUrURProviderMaker(void)
~EcUrURProviderMaker(void)
Register(const EcClassID&, EcURProvider* (*func)(), EcTBoolean replaceOK=FALSE)
MakeURProvider(const EcUR&)

myStream

EcUrURMaker(void)
EcUrURMaker(const EcUrURMaker&)
~EcUrURMaker(void)
GetURID(istream&)
GetURProviderID(istream&)
Register(const EcUtClassID&, EcUrURProvider*(*func)(), EcTBoolean
replaceOK=FALSE))
MakeUR(istream&)
DeleteUR(const EcUrUR*)

myRep

EcUrClassID(void)
EcUrClassID(const int)
EcUrClassID(const char*)
EcUrClassID(const EcUrClassID&)
~EcUrClassID(void)
operator==(const EcUrClassID&)
operator!=(const EcUrClassID&)
operator<<(ostream&)
operator>>(istream&)
IsValid(void)
hash(void)

ProvideUR(void)
DeleteUR(const EcUrUR*)
Reconstitute(const EcUrUR&)
EcUrURProvider(void)
~EcUrURProvider(void)
GetMyClassID(void)
CreateUR(void)
ProvideClassUR(EcUrUR&)
ReconstituteClassData(const EcUrUR&)

GrLiAnyURClass GrLiAnyReferencedClass

InternalizeClassData(istream&)
ExternalizeClassData(ostream&)
GetURProviderID(void)
GetURID(void)
Internalize(istream&)
operator>>(istream&)
Externalize(ostream&)
operator<<(ostream&)
ReadTypingData(istream&, EcUrClassID&)
~EcUrUR(void)
EcUrUR(void)

ReconstituteClassUR()
ProvideClassUR()

InternalizeClassData()
ExternalizeClassData()

is created

rebuilds

rebuilds

[Public]

[Public]

[Public]

[Public]

+
+
+ : void
+ : EcUrURProvider*

- : istream&

+
+
+
+ : const EcClassID&
+ : const EcClassID&

+ : const EcUR*
+ : void

- : RWCString

+
+
+
+
+
+ : int
+ : int
+ : ostream&
+ : istream&
+ : EcTBoolean
+ : EcTUInt

+ : const EcUrUR*
+ : void
+ : void
±
±
+ : static const EcUrClassID&
± : EcUrUR*
± : void
± : void

± : void
± : void
+ : const EcUrClassID&
+ : const EcUrClassID&
+ : void
+ : istream&
+ : void
+ : ostream&
- : void
±
±

±
±

±
±

1+

[Public]

Figure 4.5.4.3-1. Universal References Object Model

4.5.4.3.1 EcUrClassID Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class encapsulates an indentifier for ECS C++ classes. It supports several

constructors, a mechanism for comparing two instance of this class, and the ability to read/

write itself from streams. A const global object of this class, "theInvalidClassID" is

defined. It can be used to set/check if something is out of range.

Attributes:

myRep - This attribute is the internal representation of the Class ID.

Data Type:RWCString

Privilege:Private

4-399 305-CD-028-002

Default Value:

Operations:

EcUrClassID - This method is the default constructor for this class. This object's value,

while initialized, is still undefined.

Arguments:void

Return Type:Void

Privilege:Public

EcUrClassID - This method will construct an object whose value is defined by the

argument.

Arguments:const int

Return Type:Void

Privilege:Public

EcUrClassID - This method will construct an object whose value is defined by the

argument.

Arguments:const char*

Return Type:Void

Privilege:Public

EcUrClassID - This method is the copy constructor the object.

Arguments:const EcUrClassID&

Return Type:Void

Privilege:Public

IsValid -

Arguments:void

Return Type:EcTBoolean

Privilege:Public

hash -

Arguments:void

Return Type:EcTUInt

Privilege:Public

operator!= - This method is the inequality operator. It will return a non-zero value if the

objects being compared are logically different.

Arguments:const EcUrClassID&

Return Type:int

Privilege:Public

operator<<

4-400 305-CD-028-002

Arguments:ostream&

Return Type:ostream&

Privilege:Public

operator== -

Arguments:const EcUrClassID&

Return Type:int

Privilege:Public

operator>> - This is the stream extraction operator for the method. Unfortunately, while

the name 'extraction' is similar to the UR operation 'Extract' its behavior is unrelated. This

method reads the contents of the class ID from the input stream argument. It can only read

a class ID written with the insertion operator<<. An exception will be raised if the stream

or stream data is invalid.

Arguments:istream&

Return Type:istream&

Privilege:Public

~EcUrClassID - This method is the destructor for the object. State cleanup before the

object is destroyed will occur here.

Arguments:void

Return Type:Void

Privilege:Public

Associations:

The EcUrClassID class has associations with the following classes:
GrLiAnyURClass (Aggregation)

4.5.4.3.2 EcUrUR Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is the abstract base class for all Universal Reference (UR)s. A UR is a special ECS

identifier for an object. What makes it special is that an object can be identified, but the

object does not have to exist in memory at the time. The contents of a UR are specified by

subclasses. Generally speaking, the contents are the key elements of the object that this UR

refers to. It can be thought of as DNA. We can reconstitute or clone an organism (i.e.

object or URProvider) given its DNA (i.e. UR). The key public methods are "Externalize"

and "Internalize"

Attributes:

4-401 305-CD-028-002

None

Operations:

EcUrUR - This protected constructor initializes the object.

Arguments:void

Return Type:Void

Privilege:Protected

Externalize - This method is the public interface for exporting the contents of the UR to

an output stream. This data can be imported later with Internalize. This method allows

URs to persist outside the runtime of the application. The stream will contain information

(processed by Internalize) that prevents tampering.

Arguments:ostream&

Return Type:void

Privilege:Public

ExternalizeClassData - This method exports the UR's state to the output stream argument.

This method shall be overridden by all concrete UR classes. The data written should have

been read back from the stream with InternalizeClassData. This method shall call all

appropriate associated objects' ExternalizeClassData method. An associated object is

either a direct base class or a contained object. Note the public interface for this

functionality is Externalize.

Arguments:ostream&

Return Type:void

Privilege:Protected

GetURID - This method returns the class ID of the UR object. Often abstract base class

URs are passed around. This method can be used to find the actual conrete object being

passed. The method GetURProviderID can be used to findout what concrete object this UR

refers to.

Arguments:void

Return Type:const EcUrClassID&

Privilege:Public

GetURProviderID - The method returns the Class ID of the object that is referred to by

this UR. This is the object that Extract'ed this UR and that can Reconstitute itself from this

UR.

Arguments:void

Return Type:const EcUrClassID&

Privilege:Public

Internalize - This is the public method for importing data from a stream into a UR. If the

stream does not contain the correct kind of data for this UR or if the data is invalid, an

4-402 305-CD-028-002

exception will be raised.

Arguments:istream&

Return Type:void

Privilege:Public

InternalizeClassData - This method imports the UR's state from the input stream

argument. This method shall be overridden by all concrete UR classes. The data read

should have been written to the stream with ExternalizeClassData. This method shall call

all appropriate associated objects InternalizeClassData method. An associated object is

either a direct base class or a contained object. Note the public interface for this

functionality is Internalize. Exceptions should be raised in this operation if errors occur.

Arguments:istream&

Return Type:void

Privilege:Protected

ReadTypingData - This private method allows a friend object class to determine the UR

class ID contained in a stream. It is used by URMaker. The class ID is placed in the Class

ID reference argument.

Arguments:istream&, EcUrClassID&

Return Type:void

Privilege:Private

operator<< - This method the same as the Externalize method except it support the

standard stream insertion signature.

Arguments:ostream&

Return Type:ostream&

Privilege:Public

operator>> - This method the same as the Internalize method except it support the standard

stream extraction signature.

Arguments:istream&

Return Type:istream&

Privilege:Public

~EcUrUR - This protected method is the destructor for the object. It will clean up state

prior to the object being destroyed.

Arguments:void

Return Type:Void

Privilege:Protected

Associations:

4-403 305-CD-028-002

The EcUrUR class has associations with the following classes:
Class: EcUrURMaker
Class: EcUrURProvider

4.5.4.3.3 EcUrURMaker Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class supports two correlated responsibilities. First, it is an object factory for

Universal Reference (UR)s. It allows subclasses of URs to register themselves. Then

based on a given encapsulated ClassID, it can dynamically construct URs of any registered

type. Secondly, it can decode a stream containing externalized (i.e. ASCII represented)

URs. This class can read a stream containing a UR and identify the UR specified in the

stream or the UR Provider referred to by the UR in the stream.

Attributes:

myStream - This attribute is a pointer to the current input stream associated with this

object. This stream contains exported URs that this object helps to import.

Data Type:istream&

Privilege:Private

Default Value:

Operations:

DeleteUR - This static function is provided as an aid to callers who used MakeUR to create
a "const EcUR*. While they are responsible for deleting it, they can't because it is const.
This routine can delete it.

Arguments:const EcUrUR*

Return Type:void

Privilege:Public

EcUrURMaker - This method is the default constructor for the object.

must be set after this constructor.

Arguments:void

Return Type:Void

Privilege:Public

EcUrURMaker
Arguments:const EcUrURMaker&
Return Type:Void
Privilege:Public

The stream still

4-404 305-CD-028-002

GetURID - This method returns a reference to the Class ID of the exported UR currently

at the beginning of the input stream. The returned class ID will be invalid if the stream does

not contain a valid UR.

Arguments:istream&

Return Type:const EcClassID&

Privilege:Public

GetURProviderID - This method returns a reference to the Class ID of the UR Provider

object referred to by the exported UR currently at the beginning of the input stream. An

invalid class ID will be returned if the stream does not contain a valid UR.

Arguments:istream&

Return Type:const EcClassID&

Privilege:Public

MakeUR - Makes a UR and Internalize it. The user is responsible for deleting the return

value through ::DeletedUR. This function can return NULL if the UR defined in the stream

is not registered.

Arguments:istream&

Return Type:const EcUR*

Privilege:Public

Register
Arguments:const EcUtClassID&, EcUrURProvider*(*func)(), EcTBoolean

replaceOK=FALSE

~EcUrURMaker - This method is the destructor for the object. It will clean up the state

to allow proper deallocation. The state of the internal stream will not be affected by this

operation.

Arguments:void

Return Type:Void

Privilege:Public

Associations:

The EcUrURMaker class has associations with the following classes:
Class: EcUrUR

4.5.4.3.4 EcUrURProvider Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class is the abstract base class for all things refered to by Universal Reference (UR)s.

4-405 305-CD-028-002

Its primary responsibility is to provide URs to clients, thus the name "UR Provider". The
primary operations of interest are "ProvideUR" and "Reconstitute".

Attributes:

None

Operations:

CreateUR - This method will create and return an new UR that can refer to this object.

This method shall be overridden by all concrete derived classes of this class.

Arguments:void

Return Type:EcUrUR*

Privilege:Protected

DeleteUR - This function is static. Since we return a const UR, from ProvideUR, the client

can't delet it. This method is responsible for deleting it.

Arguments:const EcUrUR*

Return Type:void

Privilege:Public

EcUrURProvider - This method is the constructor for the class.

Arguments:void

Return Type:Void

Privilege:Protected

GetMyClassID -

Arguments:void

Return Type:static const EcUrClassID&

Privilege:Public

ProvideClassUR - Provide primary key data for the class state and place it in the UR.

Then, call this method for each of your associated objects.

Arguments:EcUrUR&

Return Type:void

Privilege:Protected

ProvideUR - This method will provide a Universal Reference to the caller that represents

the current logical entity. The return value is allocated on the heap and should be

deallocated with the "DeleteUR" method. The return value is a "Memento" (standard

design pattern) that can be used to logically bring this object back. The "Reconstitute"

method can be called to bring an object back to this state. Note that state is application

specific. Derived classes should decide on policies. Possibilities include bring back that

exact object the UR came from or reconstituting to the latest version. This method is a

4-406 305-CD-028-002

"template method" (standard design pattern) that calls "ProvideClassUR".

Arguments:void

Return Type:const EcUrUR*

Privilege:Public

Reconstitute - Public method to make ourselves the object that is logically referred to by

the UR.

Arguments:const EcUrUR&

Return Type:void

Privilege:Public

ReconstituteClassData - Reconstitute class data self based on the UR. Then, call this for

associated objects.

Arguments:const EcUrUR&

Return Type:void

Privilege:Protected

~EcUrURProvider - This method is the destructor for the class.

Arguments:void

Return Type:Void

Privilege:Protected

Associations:

The EcUrURProvider class has associations with the following classes:
Class: EcUrUR
Class: EcUrURProviderMaker

4.5.4.3.5 EcUrURProviderMaker Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class is an object factory responsible for the registration and dynamic creation of

object subclasses from "URProvider". Objects are indexed by the encapsulated type

"ClassID".

Attributes:

None

Operations:

4-407 305-CD-028-002

EcUrURProviderMaker - This method is the constructor for this object.

Arguments:void

Return Type:Void

Privilege:Public

MakeURProvider - Make a URProvider that matches the UR argument and then

Reconstitute it.

Arguments:const EcUR&

Return Type:EcUrURProvider*

Privilege:Public

Register - Register a creation function for a UR Provider derived object.

Arguments:const EcClassID&, EcURProvider* (*func)(), EcTBoolean

replaceOK=FALSE

Return Type:void

Privilege:Public

~EcUrURProviderMaker - This method is the destructor for this method.

Arguments:void

Return Type:Void

Privilege:Public

Associations:

The EcUrURProviderMaker class has associations with the following classes:
Class: EcUrURProvider

4.5.4.3.6 GrLiAnyReferencedClass Class

Parent Class:EcUrURProvider

Public:No

Distributed Object:No

Purpose and Description:

This class is an example of an application specific UR provider class.

Attributes:

All Attributes inherited from parent class

Operations:

ProvideClassUR - This method is the application specific override of the parent class pure

virtual method.

Arguments:

4-408 305-CD-028-002

Return Type:Void

Privilege:Protected

ReconstituteClassUR - This method is the application specific override of the parent class

pure virtual method.

Arguments:

Return Type:Void

Privilege:Protected

Associations:

The GrLiAnyReferencedClass class has associations with the following classes:
None

4.5.4.3.7 GrLiAnyURClass Class

Parent Class:EcUrUR

Public:No

Distributed Object:No

Purpose and Description:

This class is an example of an application specific UR class

Attributes:

All Attributes inherited from parent class

Operations:

ExternalizeClassData - This method is the application specific override of the parent class

pure virtual method.

Arguments:

Return Type:Void

Privilege:Protected

InternalizeClassData - This method is the application specific override of the parent class

pure virtual method.

Arguments:

Return Type:Void

Privilege:Protected

Associations:

4-409 305-CD-028-002

The GrLiAnyURClass class has associations with the following classes:
None

4.5.4.4 Functional Model

The Universal Reference Framework provides a set of classes with distinct functionality to facil
itate the incorporation of Universal References into ECS client/server applications. The classes
can be categorized into three distinct catogories:

(1) UR framework classes which provide a framework for the URs themselves

(2) UR Provider framework classes which provide a framework for providers of URs, and

(3) UR utility classes which support the UR and UR provider framework classes.

UR Framework Classes

The class EcUrUR is the abstract base class for all Universal References. A UR is a special ECS
identifier for an object. What makes it special is that an object can be identified, but the object does
not have to exist in memory at the time. The contents of a UR are specified by subclasses.
Generally speaking, the contents are the key elements of the object to which this UR refers. It can
be thought of as DNA. We can reconstitute or clone an EcUrURProvider object given its DNA
(i.e. UR).

Developers subclass the EcUrUR to define UR classes which will provide references to data and
services specific to their applications. These derived classes are provided with the attributes and
operations necessary to reconstitute the UR referrent i.e., the UR provider. An example of this
specialization is the class GrLiAnyURClass. As shown in the object model GrLiAnyURClass
contains two operations, Externalize and Internalize. These two operations are replacements for
the corresponding pure virtual functions in the abstract class, and as such must be developed at the
subclass level. Other operations for GrLiAnyURClass are inherited from the parent class.

The key public methods of EcUrUR are Externalize and Internalize. Externalize provides the
capability for the UR to convert itself into an ASCII stream. In this form the UR becomes
accessable by other types of applications (which could be email, or an ASCII reader). Internalize
provides the UR object with the capability to accept an externalized form of the UR and store it
within itself.

UR Provider Framework

The class EcUrURProvider is the abstract base class for all things referred to by Universal
Reference (UR)s. Its primary responsibility is to provide URs to clients, thus the name "UR
Provider".The primary operations of interest are "ProvideUR" and "Reconstitute". The ProvideUR
operation returns to the caller a UR object which is the referrent to the UR provider. The
Reconstitute operation rebuilds the provider using the UR passed to it.

Developers specialize the EcUrURProvider class to develop subclasses for the object which they
want to be able to reference and store using URs. These developer created provider subclasses
represent objects which can exist in different address spaces from the URs which refer to them. An
example of this specialization is the class GrLiAnyReferencedClass which contains two
operations, ProvideClassUr and ReconstituteClassUr. These two operations provide
implementation for the corresponding pure virtual functions in the parent class, and as such must

4-410 305-CD-028-002

be developed at the subclass level. Other operations for GrLiAnyReferencedClass are inherited
from the parent class.

Utility Classes

The EcUrClassID class encapsulates an identifier for ECS C++ classes. It supports several
constructors, a mechanism for comparing two instances of this class, and the ability to read/write
itself from streams. A const global object of this class, "theInvalidClassID" is defined and may be
used to set/check if parameters are out of range.

The class EcUrURMaker supports two correlated responsibilities. First, it is an object factory for
Universal Reference (UR)s. It allows subclasses of URs to register themselves. Then based on a
given encapsulated ClassID, it can dynamically construct URs of any registered type. Secondly, it
can decode a stream containing externalized (i.e. ASCII represented) URs. This class can read a
stream containing a UR and identify the UR specified in the stream or the UR Provider referred to
by the UR in the stream, so that the referenced object can be rebuilt.

The class EcUrURProviderMaker is an object factory responsible for the registration and dynamic
creation of object subclasses from "URProvider". Objects are indexed by the encapsulated type
"ClassID"

Table 4.5.4.4-1 describes the UR Framework classes.

Table 4.5.3.4-1. Universal References Object Responsibility Matrix (1 of 2)
Class name Description

EcUrUR The abstract base class for all Universal
Reference (UR)s. Must be specialized by
developers to provide UR classes which are
application specific.

EcUrURProvider The abstract base class for all data and service
objects referred to by Universal Reference
(UR)s. Must be specialized by developers to
provide specific provider classes.

EcUrClassID This class supports a mechanism for comparing
two instances of this class, and the ability to
read/write itself from streams.

EcUrURMaker An object factory for URs. Provides several
capabilities:
1. Registering of UR object classes,
2. Creation of URs based on registered object
class type,
3. Read streams with URs and rebuild the UR
objects.

4-411 305-CD-028-002

Table 4.5.3.4-1. Universal References Object Responsibility Matrix (2 of 2)
Class name Description

EcUrURProviderMaker An object factory for UR providers. Provides
capability to register data and services object
classes, and refulds UR provider objects using
URs.

GrLiAnyUR Example of a specialization of the EcUrUR
class. Any class referenced by a UR must
define its own UR, which is a specialization of
the EcUrUR class.

GrLiAnyReferencedClass Example of a specialization of the
EcUrURProvider class. Any class referenced
by a UR must have its own specialization of the
EcUrURProviders class.

4.5.4.5 Dynamic Model Scenarios

Two main scenarios describe how the UR framework supports the use of URs. The first scenario
involves the creation of URs: given an object, how is a UR created for it and then externalized (in
a e-mailable form for example). Once a UR is created for an object and externalized, then a second
scenario involves the reverse process: going from the external representation of an UR to create
the object which the UR describes.

The following event traces illustrate the steps in these two scenarios. The event trace for scenario
one illustrates the use of the UR framework by a referenced class to create a UR for itself, and
provide an external representation of the UR. The event trace for the second scenario illustrates
the use of the UR framework to recreate a object from a externalized UR.

Both scenarios are purposefully generic to focus on the functioning of UR Framework
components. More detailed scenarios could be developed for subsystem-specific specializations
of the URs, but these scenarios would be derived from either of the two scenarios presented here.

4.5.4.5.1 Scenario #1

4.5.4.5.1.1 Abstract

This scenario shows how a referenced class creates a UR to itself, and provides an external
representation of the UR.

4.5.4.5.1.1 Interfaces

Client application shown as a ServiceUser object in the event trace.

4.5.4.5.1.2 Stimulus

An application is required to provide a UR in a transportable format.

4.5.4.5.1.3 Desired Response

An ASCII version of the UR for the referenced object is made available.

4-412 305-CD-028-002

4.5.4.5.1.4 Participating Classes

GrLiAnyURClass

GrLiAnyURProviderClass

4.5.4.5.1.5 Pre-conditions

None.

4.5.4.5.1.6 Post-conditions

None.

4.5.4.5.1.7 Scenario Description

The event trace starts with the ServiceUser object making a call to a referenced object
(GrLiAnyReferencedClass) to provide a UR for itself. The referenced object is instantiated from
a child class of the EcUrURProvider abstract class. To provide a more concrete example from
ECS, session classes, data granule classes, and advertisement classes will all be among those
specialized from EcUrURProvider. Objects instantiated from any of them could be substituted in
the example for aGrLiAnyReferencedClass as providers of URs.

The ServiceUser object invokes the method ProvideUr of the object GrLiAnyReferencedClass
when it wants to create the UR for that object. This call causes the creation of the UR object, an
object of type GrLiAnyUrClass. In the event trace diagram only the call to the constructor is
shown. Operations to set the UR values are specific for every UR and are not shown here. The
last step in the event trace is the service provider's call to the GrLiAnyURClass object to
externalize itself, using the method Externalize(ostream&). This method will provide back an
ASCII representation of UR object, which can then be easily transported or stored in secondary
storage.

GrLiAnyURClass is a child class of the EcUrUR base class. Also as with the referenced class,
session UR classes, data UR classes, advertisement UR classes will all be among those specialized
from EcUrUR. Objects instantiated from any of them could be substituted in the example for
GrLiAnyUrClass object as types of URs for the appropriate referenced object.

4-413 305-CD-028-002

4.5.4.5.1.8 Event Trace

ServiceUser GrLiAnyReferencedClassE GrLiAnyURClass

ProvideUR

Externalize(ostream&)

ctor()

Figure 4.5.4.5-1 Event Trace for Creating and Externalizing a UR

4.5.4.5.2 Scenario #2

4.5.4.5.2.1 Abstract

This scenario describes going from the external representation of an UR to create the object which
the UR references.

4.5.4.5.2.2 Interfaces

A client application shown as a ServiceUser object.

4.5.4.5.2.3 Stimulus

An application is required to reconstitute an object from an externalized UR.

4.5.4.5.2.4 Desired Response

The application gets back the originally created object.

4-414 305-CD-028-002

4.5.4.5.2.5 Participating Classes

GrLiAnyURClass

GrLiAnyReferencedClass

UrMaker

UrProviderMaker

4.5.4.5.2.6 Pre-conditions

A UrMaker and a UrProviderMaker have already been instantiated.

4.5.4.5.2.7 Post-conditions

None.

4.5.4.5.2.8 Scenario Description

As with scenario 1, the GrLiAnyUrReferencedClass can be substituted in the scenario with session
classes, data granule classes, and advertisement classes, among others, which will all be among
those specialized from EcUrURProvider. The GrLiAnyUrClass can also be substituted with
objects from session UR classes, data granule UR classes, and advertisement UR classes
appropriate to the type of UR provider.

In this scenario, the ServiceUser object must restore the GrLiAnyReferencedClass object from the
input stream which should carry the information necessary to rebuild the UR. The ServiceUser
object calls the method MakeUr(istream&) with the input stream, which creates the UR object
GrLiAnyUrClass in a two step process. First, the object GrLiAnyUrClass is constructed using a
factory. Then it is filled with the data of the input stream using the method Internalize(istream&).

Now the ServiceUser is ready to reconstitute the object identified by the UR. The ServiceUser
calls UrProviderMaker passing it the UR object created in the previous step. URProviderMaker
uses the information in the UR object to construct a GrLiAnyReferencedClass object.
UrProviderMaker first calls the constructor for a GrLiAnyReferencedClass, then requests a
GrLiAnyReferencedClass to “Reconstitute” itself, passing it the UR object. Now an object exactly
like the initial object that the UR stream was made from is rebuilt in memory.

4-415 305-CD-028-002

4.5.4.5.2.9 Event Trace

ServiceUser URMaker GrLiAnyURClass URProviderMaker GrLiAnyReferencedClass

ctor()

MakeUR(istream&)

Internalize(istream&)

MakeURProvider(EcUrUR&)

ctor()

Reconstitute(EcUrUR&)

Figure 4.5.4.5-2. Event Trace for Internalizing and Reconstituting a UR

4.5.3.6 Implementation

The UR framework is a core infrastructural service and does not depend on any other CSCIs in the
ECS system.

4.5.3.7 Service/CSCI Management and Operation

4.5.3.7.1 System Management and Strategy

The Universal Reference framework comprises of only one CSS (DCCI) CSCs, namely Univeral
Reference.

4.5.3.7.2 Operator Interface

Not applicable.

4.5.3.7.3 Reports

None

4-416 305-CD-028-002

	Figure 4.2.2.5-1. Security Event Trace
	4. Communications Subsystem (CSS) Design
	4.1 Introduction
	4.2 Services Description
	4.2.1 Directory/Naming Service
	Figure 4.2.1.3-1. Naming Object Model
	Figure 4.2.1.4-1. Naming Service - CDS Entry Struc...
	Figure 4.2.1.5-1. Naming Scenario #1
	Figure 4.2.1.5-2. Naming Scenario #2
	Figure 4.2.1.5-3. Naming Scenario #3
	Figure 4.2.1.5-4. Naming Scenario #4

	4.2.2 Security Service
	Figure 4.2.2.2-1. Security Service Event Flow
	Figure 4.2.2.3-1. Security Service Object Model
	Figure 4.2.2.5-1. Security Event Trace
	Figure 4.2.2.5-2. Security Event Trace
	Figure 4.2.2.5-3. Security Event Trace

	4.2.3 Message Passing
	Figure 4.2.3.1.3-1. RelA_MsgPassing_ObjectModel_1Object Model Diagram
	Figure 4.2.3.1.5-1. Message Passing Scenario One Event Trace
	Figure 4.2.3.1.5-2 Message Passing Scenario Two Ev...
	Figure 4.2.3.2.3-1 Message Passing Object Model
	Figure 4.2.3.2.5-1. Message Passing Scenario Event...

	4.2.4 Multicast
	4.2.5 Threads Service
	Figure 4.2.5.2-1. Thread Service Event Flow
	Figure 4.2.5.3-1. RelA Thread_ObjectModel Object Model
	Figure 4.2.5.4-1. Thread Service Event Trace

	4.2.6 Time Service
	Figure 4.2.6.2-1. Time Service Event Flow
	Figure 4.2.6.3-1. Time Service Object Model
	Figure 4.2.6.4-1. Time Service Event Trace
	Figure 4.2.6.4-2. Time Service Event Trace

	4.2.7 LifeCycle Service (Initialization/Activation...
	Figure 4.2.7.3-1. LifeCycle Service Object Model

	4.2.8 Generic Security Service
	Figure 4.2.8.3-1. GSS Object Model
	Figure 4.2.8.4.1-1. GSS Client Scenario Event Trac...
	Figure 4.2.8.4.2-1. GSS Server Scenario Event Trac...

	4.3 Distributed Object Framework
	4.3.1 Overview
	Figure 4.3.1-1. Distributed Object Framework Event...

	4.3.2 Context
	4.3.3 Object Model
	Figure 4.3.3-1. Distributed Object Framework Object Model

	4.3.4 Functional Model
	Figure 4.3.4-1. Client/Server Application Developm...

	4.3.5 Dynamic Model Scenarios
	Figure 4.3.5-1. Distributed Object Framework Event...
	Figure 4.3.5-2. Distributed Object Framework Event...
	Figure 4.3.5-3. Distributed Object Framework Event...
	Figure 4.3.5-4. Distributed Object Framework Event...
	Figure 4.3.5-5. Distributed Object Framework Event...
	Figure 4.3.5-6. Distributed Object Framework Event...

	4.3.6 Implementation
	4.3.7 Service/CSCI Management and Operation
	4.3.8 Frequently Asked Questions

	4.4 Common Facility Services
	4.4.1 Email
	Figure 4.4.1.3-1. Email Service Object Model
	Figure 4.4.1.4-1. Email Service Event Trace

	4.4.2 FTP
	Figure 4.4.2.3-1. FTP Service Object Model
	Figure 4.4.2.4-1. FTP Service Event Trace
	Figure 4.4.2.4-2. FTP Service Event Trace

	4.4.3 DFS
	Figure 4.4.3.4-1. Event Trace for DFS Science User...
	Figure 4.4.3.4-2. Event Trace for DFS (Release B)
	Figure 4.4.3.4-3. Event Trace for DFS Server Failu...
	Figure 4.4.3.4-4. Event Trace for DFS-System Admin...

	4.4.4 Bulletin Board
	Figure 4.4.4.4-1. RelB_BB_EventTrace Dynamic Model...

	4.4.5 Virtual Terminal
	4.4.6 Event Logging
	Figure 4.4.6.3-1. Event Logging Service Object Mod...
	Figure 4.4.6.4-1. Event Logging Service Event Trac...
	Figure 4.4.6.4-2. Event Logging Service Event Trac...

	4.4.7 Bulk Data Service (BDS)

	4.5 Infrastructure Services
	4.5.1 Process Framework
	Figure 4.5.1.1-1. ECS Process Classification
	Figure 4.5.1.2-1. Process Framework Context
	Figure 4.5.1.3-1. Process Framework Object Model
	Figure 4.5.1.5-1. Process Framework Event Trace for Application Start-Up
	Figure 4.5.1.5-2. Process Framework Event Trace for Application Shutdown by MSS
	Figure 4.5.1.5-3. Process Framework Event Trace for Application Self Shutdown
	Figure 4.5.1.5-4. Process Framework Event Trace for Suspend and Resume
	Figure 4.5.1.5-5. Process Framework Event Trace for Event/Error Logging

	4.5.2 Server Request Framework (SRF)
	Figure 4.5.2.3.1-1. SRF Object Model
	Figure 4.5.2.3.2-1: SRF Message Object Model
	Figure 4.5.2.4-1. SRF Layering
	Figure 4.5.2.4-2. SRF Conceptual View
	Figure 4.5.2.5-1. SRF Event Trace
	Figure 4.5.2.5-2. SRF Event Trace
	Figure 4.5.2.5-3. SRF Event Trace
	Figure 4.5.2.5-4. SRF Event Trace

	4.5.3 Subscription Server
	Figure 4.5.3.1-1. Subscription Server Context
	Figure 4.5.3.3-1. Subscription Server Object Model...
	Figure 4.5.3.4-1. Subscription Server Object Model...
	Figure 4.5.3.5-1. Subscription Server Object Model...
	Figure 4.5.3.6-1. Subscription Server Object Model...
	Figure 4.5.3.8-1 Event Trace for Submitting a Subs...
	Figure 4.5.3.8-2. Event Trace for Auto Canceling a...
	Figure 4.5.3.8-3 Event Trace for Canceling a Subsc...
	Figure 4.5.3.8-4. Event Trace for Fulfilling a One...
	Figure 4.5.3.8-5. Event Trace for Fulfilling An Op...
	Figure 4.5.3.8-6. Event Trace for Registering a Su...
	Figure 4.5.3.8-7. Event Trace for Unregistering a ...
	Figure 4.5.3.8-8. Event Trace for Updating a Subsc...
	Figure 4.5.3.8-9. Event Trace for Returning a List...

	4.5.4 Universal References
	Figure 4.5.4.1-1. Functions of Different UR Framew...
	Figure 4.5.4.3-1. Universal References Object Mode...
	Figure 4.5.4.5-1 Event Trace for Creating and Exte...
	Figure 4.5.4.5-2. Event Trace for Internalizing an...

