
305-CD-026-002

EOSDIS Core System Project

Release B SDPS Planning
Subsystem Design Specification

for the ECS Project

March 1996

Hughes Information Technology Systems

Upper Marlboro, MD

Release B SDPS Planning Subsystem

Design Specification

for the ECS Project

March 1996

Prepared Under Contract NAS5-60000

CDRL Item #046

SUBMITTED BY

Rick Kochhar /s/ 3/20/96

Rick Kochhar, Release B CCB Chairman Date

EOSDIS Core System Project

Hughes Information Technology Systems
Upper Marlboro, Maryland

This page intentionally left blank.

305-CD-026-002

Preface

This document is one of eighteen comprising the detailed design specifications of the SDPS and
CSMS subsystem for Release B of the ECS project. A complete list of the design specification
documents is given below. Of particular interest are documents number 305-CD-020, which
provides an overview of the subsystems and 305-CD-039, the Data Dictionary, for those reviewing
the object models in detail.

The SDPS and CSMS subsystem design specification documents for Release B of the ECS Project
include:

305-CD-020	 Release B Overview of the SDPS and CSMS Segment System Design
Specification

305-CD-021 Release B SDPS Client Subsystem Design Specification

305-CD-022 Release B SDPS Interoperability Subsystem Design Specification

305-CD-023 Release B SDPS Data Management Subsystem Design Specification

305-CD-024 Release B SDPS Data Server Subsystem Design Specification

305-CD-025 Release B SDPS Ingest Subsystem Design Specification

305-CD-026 Release B SDPS Planning Subsystem Design Specification

305-CD-027 Release B SDPS Data Processing Subsystem Design Specification

305-CD-028 Release B CSMS Segment Communications Subsystem Design Specification

305-CD-029	 Release B CSMS Segment Systems Management Subsystem Design
Specification

305-CD-030 Release B GSFC Distributed Active Archive Center Design Specification

305-CD-031 Release B LaRC Distributed Active Archive Center Design Specification

305-CD-033 Release B EDC Distributed Active Archive Center Design Specification

305-CD-034	 Release B ASF Data Center Distributed Active Archive Center Design
Specification

305-CD-035 Release B NSIDC Distributed Active Archive Center Design Specification

305-CD-036 Release B JPL Distributed Active Archive Center Design Specification

305-CD-037 Release B ORNL Distributed Active Archive Center Design Specification

305-CD-038 Release B System Monitoring and Coordination Center Design Specification

305-CD-039 Release B Data Dictionary for Subsystem Design Specification

Object models presented in this document have been exported directly from CASE or DBMS tools

and in some cases contain too much detail to be easily readable within hard copy page constraints.

The reader is encouraged to view these drawings on line using the Portable Document Format

(PDF) electronic copy available via the ECS Data Handling System (EDHS) at:

URL http://edhs1.gsfc.nasa.gov.

iii 305-CD-026-002

This document is a formal contract deliverable with an approval code of 2; as such it requires

Government review and approval prior to acceptance and use. This document is under ECS

contractor configuration control. Once this document is approved, Contractor approved changes

are handled in accordance with Class I and Class II change control requirements described in the

EOS Configuration Management Plan, and changes to this document shall be made by document

change notice (DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Systems

1616 McCormick Drive

Upper Marlboro, MD 20774-5372

iv 305-CD-026-002

Abstract

This document describes the Release B CDR design for the SDPS Planning subsystem. It defines
the Planning Subsystem (PLS) computer software and hardware architectural design, as well as
subsystem design based on Level 4 requirements. The subsystem comprises of two CIs: the
PLANG CSCI and the PLNHW HWCI. The PLANG CSCI is used to plan production processing
of science data. That production is carried out by the Data Processing Subsystem (DPS). The
PLANG CSCI also performs resource planning for a site. Object model diagrams and event traces
are used to illustrate the current design of the PLANG CSCI.

Keywords: Planning, SDPS, Release B, OMT, PDPS, PLS, Production, Resource Planning

v 305-CD-026-002

This page intentionally left blank.

vi 305-CD-026-002

Change Information Page

List of Effective Pages

Page Number Issue

Title Submitted as Final

iii through xvi Submitted as Final

1-1 and 1-2 Submitted as Final

2-1 and 2-2 Submitted as Final

3-1 through 3-16 Submitted as Final

4-1 through 4-308 Submitted as Final

5-1 through 5-10 Submitted as Final

A-1 through A-24 Submitted as Final

AB-1 and AB-2 Submitted as Final

Document History

Document Number Status/Issue Publication Date CCR Number

305-CD-026-001 Preliminary October 1995 95-0741

305-CD-026-002 Submitted as Final March 1996 96-0231

vii 305-CD-026-002

This page intentionally left blank.

viii 305-CD-026-002

Contents

Preface

Abstract

1. Introduction

1.1 Identification ... 1-1

1.2 Purpose and Scope .. 1-1

1.3 Status and Schedule .. 1-1

1.4 Organization .. 1-1

2. Related Documentation

2.1 Parent Documents ... 2-1

2.2 Applicable Documents .. 2-1

3. Subsystem Overview

3.1 Context .. 3-1

3.2	 Subsystem Overview .. 3-6

3.2.1 Use of COTS within the Planning and Data Processing Subsystems 3-6

3.2.2 Summary of Changes to the Planning Subsystem .. 3-9

3.2.3 Key Design Drivers .. 3-11

3.2.4 Planning Subsystem Use of Key Design Mechanisms 3-15

3.2.5 Subsystem Structure ... 3-16

4. PLANG - Production Planning CSCI

4.1	 CSCI Overview ... 4-1

4.1.1 PDPS Database ... 4-2

4.1.2 Production Request Editor .. 4-2

4.1.3 Production Planning Workbench .. 4-3

4.1.4 Planning Subscription Editor .. 4-4

4.1.5 Subscription Manager ... 4-4

4.1.6 On-Demand Manager .. 4-4

4.1.7 Resource Planning Workbench ... 4-4

ix 305-CD-026-002

4.2	 CSCI Object Model ... 4-5

4.2.1 PGE Profile View ... 4-5

4.2.2 Production Request View ... 4-8

4.2.3 Subscription Submission View .. 4-11

4.2.4 Production Planning View ... 4-13

4.2.5 Production Planning User Interface View ... 4-15

4.2.6 Publishing Plans View ... 4-17

4.2.7 Resource Planning View .. 4-19

4.2.8 Resource Management View ... 4-22

4.2.9 Plan Activation View ... 4-24

4.2.10 Subscription Manager View .. 4-26

4.2.11 Data Activity Times View ... 4-28

4.2.12 DBMS Proxy Agent View ... 4-30

4.2.13 On-Demand Manager View ... 4-32

4.3	 Production Planning Class Descriptions .. 4-34

4.3.1 DmLmClRequestServer Class ... 4-34

4.3.2 DpPrScheduler Class ... 4-34

4.3.3 DsClCommand Class ... 4-36

4.3.4 DsClESDTReference Class ... 4-37

4.3.5 DsClESDTReferenceCollector Class ... 4-37

4.3.6 DsClQuery Class .. 4-38

4.3.7 DsClRequest Class ... 4-38

4.3.8 DsClSubscription Class ... 4-39

4.3.9 EcEvent Class .. 4-39

4.3.10 EcMpMsgCb Class .. 4-40

4.3.11 EcPfClient Class .. 4-40

4.3.12 EcPfManagedServer Class ... 4-41

4.3.13 EcRequest Class ... 4-44

4.3.14 EcUrUR Class .. 4-44

4.3.15 GlCallback Class .. 4-45

4.3.16 GlParameterList Class ... 4-45

4.3.17 IoAdProduct Class ... 4-46

4.3.18 IoAdProductList Class ... 4-46

4.3.19 IoAdProductSearchCommand Class .. 4-46

4.3.20 IoAdProvider Class .. 4-47

4.3.21 IoAdService Class .. 4-47

4.3.22 PlActivePlan Class ... 4-48

4.3.23 PlActivities Class ... 4-50

4.3.24 PlActivity Class ... 4-52

x 305-CD-026-002

4.3.25 PlAlternateDataGranuleNB Class ...4-54

4.3.26 PlAlternateNB Class ...4-55

4.3.27 PlCluster Class ..4-57

4.3.28 PlComputer Class ..4-58

4.3.29 PlDASDelta Class ...4-60

4.3.30 PlDASDifferent Class ...4-61

4.3.31 PlDASNB Class ..4-62

4.3.32 PlDATRecord Class ..4-64

4.3.33 PlDBMSProxyAgent Class ...4-66

4.3.34 PlDPRB Class ...4-66

4.3.35 PlDPRs Class ..4-73

4.3.36 PlDataAvailabilityTimes Class ...4-74

4.3.37 PlDataDependencies Class ..4-77

4.3.38 PlDataGranule Class ...4-78

4.3.39 PlDataScheduled Class ...4-81

4.3.40 PlDataSchedules Class ..4-83

4.3.41 PlDataSource Class ...4-83

4.3.42 PlDataSourceFactory Class ...4-85

4.3.43 PlDataTranferHistory Class ..4-85

4.3.44 PlDataTypeB Class ...4-87

4.3.45 PlDataTypeCatalogue Class ..4-93

4.3.46 PlDataTypeReq Class ...4-94

4.3.47 PlDiskPartition Class ..4-96

4.3.48 PlEDASModeRecordNB Class ...4-97

4.3.49 PlEDASRecordNB Class ..4-98

4.3.50 PlEntryScreenNB Class ...4-100

4.3.51 PlExportedPlanNB Class ...4-101

4.3.52 PlFOSDASFile Class ...4-103

4.3.53 PlFile Class ..4-104

4.3.54 PlGroundActivity Class ...4-104

4.3.55 PlGroundEvent Class ...4-106

4.3.56 PlGroundEventAllocation Class ..4-109

4.3.57 PlGroundEventExecutable Class ...4-109

4.3.58 PlGroundEvents Class ...4-110

4.3.59 PlImportedActivity Class ...4-111

4.3.60 PlInstModeRecords Class ..4-112

4.3.61 PlInstrumentModes Class ..4-113

4.3.62 PlMetaDataChecks Class ... 4-115

4.3.63 PlNetwork Class ...4-117

xi 305-CD-026-002

4.3.64 PlOnDemandExceed Class ...4-117

4.3.65 PlOnDemandManagerNB Class ...4-119

4.3.66 PlOnDemandPRNB Class ...4-121

4.3.67 PlOnDemandReplanValues Class ...4-123

4.3.68 PlOrbitModelNB Class ...4-124

4.3.69 PlOrbitScheduledNB Class ...4-125

4.3.70 PlOtherTypes Class ...4-126

4.3.71 PlOutputYield Class ..4-127

4.3.72 PlPDASFile Class ...4-128

4.3.73 PlPDASMetaData Class ..4-129

4.3.74 PlPDASRecords Class ..4-131

4.3.75 PlPGE Class ..4-132

4.3.76 PlPGEActivity Class ...4-136

4.3.77 PlPGECollection Class ...4-137

4.3.78 PlPGEPriorityNB Class ..4-138

4.3.79 PlPGEProfile Class ...4-139

4.3.80 PlPRCollectionNB Class ..4-140

4.3.81 PlPRPriorityNB Class ...4-142

4.3.82 PlPerformance Class ...4-143

4.3.83 PlPgeFactory Class ...4-146

4.3.84 PlPlanASCIIReportFile Class ...4-146

4.3.85 PlPlanB Class ..4-147

4.3.86 PlPlanBinaryReportFile Class ..4-155

4.3.87 PlPlanGenerationUIB Class ..4-156

4.3.88 PlPlanMetadataFile Class ...4-157

4.3.89 PlPlanningWorkbenchUI Class ..4-159

4.3.90 PlPopupMessage Class ...4-161

4.3.91 PlProdStratNB Class ...4-162

4.3.92 PlProdStratUINB Class ...4-164

4.3.93 PlProductionPlannersUI Class ..4-165

4.3.94 PlProductionRequestB Class ..4-166

4.3.95 PlProductionRequestUI Class ...4-170

4.3.96 PlPublishedPlan Class ...4-172

4.3.97 PlReplanCriteria Class ..4-173

4.3.98 PlReplanCriteriaUI Class ..4-174

4.3.99 PlRescUseThreshNB Class ...4-175

4.3.100 PlRescUseThreshUINB Class ..4-176

4.3.101 PlResource Class ..4-177

4.3.102 PlResourceChange Class ..4-177

xii 305-CD-026-002

4.3.103 PlResourceManager Class ..4-178

4.3.104 PlResourceRequirement Class ..4-179

4.3.105 PlRoutineArrival Class ...4-180

4.3.106 PlService Class ..4-182

4.3.107 PlSourcetoDsHistoryNB Class ...4-182

4.3.108 PlString Class ..4-184

4.3.109 PlSubMsgCb Class ...4-185

4.3.110 PlSubscriptionManager Class ...4-188

4.3.111 PlSubscriptionSubmitIF Class ..4-189

4.3.112 PlTile Class ...4-190

4.3.113 PlTileScheduledNB Class ...4-192

4.3.114 PlTimeLineDisplay Class ...4-195

4.3.115 PlTimeScheduled Class ..4-196

4.3.116 PlTimer Class ..4-197

4.3.117 PlUserParameters Class ..4-199

4.3.118 PlUserPriorityNB Class ..4-201

4.4 PLANG Dynamic Model ...4-202

4.4.1 Production Request Scenario ..4-202

4.4.2 Data Availability Scenario ..4-207

4.4.3 Subscription Submission Scenario ..4-210

4.4.4 Subscription Withdrawal Scenario ...4-212

4.4.5 Plan Creation Scenario ..4-214

4.4.6 Assigning a Priority to an Activity Scenario ..4-217

4.4.7 Publishing a Plan Scenario ..4-220

4.4.8 Importing a Plan from the Data Server Scenario ..4-223

4.4.9 Plan Activation Scenario ...4-226

4.4.10 Statusing a Plan Scenario ..4-229

4.4.11 Canceling a Plan Scenario ..4-232

4.4.12 Deleting a Plan Scenario.. 4-234

4.4.13 Subscription Notification Scenario ...4-235

4.4.14 Subscription Notification with Spatial Based Input Scenario4-238

4.4.15 Subscription Notification with Alternate Inputs Scenario4-240

4.4.16 Data Availability Times Scenario ...4-242

4.4.17 Limited Automatic Replan based on a New DAS4-245

4.4.18 User Logon and Authentication Scenario ...4-248

4.4.19 On-Demand Production Request Scenario (Processed)4-249

4.4.20 Limited Automatic Replan based on an On-demand Production

Request Scenario ..4-253

xiii 305-CD-026-002

4.4.21 On-Demand Production Request Scenario (Delayed)4-256

4.4.22 Entering and Approving a Resource Reservation Scenario4-259

4.4.23 Creating a New Resource Plan ..4-262

4.5	 CSCI Structure ...4-267

4.5.1 Planning Subscription Editor CSC ...4-267

4.5.2 Production Request Editor CSC ...4-268

4.5.3 Subscription Manager CSC ..4-269

4.5.4 Production Planning Workbench CSC ...4-270

4.5.5 Planning Object Library ...4-272

4.5.6 PDPS Database CSC ..4-295

4.5.7 On-Demand Manager CSC ..4-297

4.5.8 Resource Planning Workbench CSC ...4-297

4.6	 PLANG CSCI Management and Operation ...4-299

4.6.1 PLANG CSCI Operation ...4-299

4.6.2 System Management Strategy ..4-302

4.6.3 Operator Interfaces ...4-304

4.6.4 Reports ...4-307

5. Planning Subsystem Hardware CI

5.1	 Hardware Design Drivers ... 5-1

5.1.1 Key Trade-Off Studies and Prototypes ... 5-2

5.1.2 Sizing and Performance Analysis ... 5-3

5.1.3 Scalability, Evolvability, Migration to Release B .. 5-4

5.2	 HWCI Structure .. 5-4

5.2.1 Connectivity .. 5-6

5.2.2 HWCI Components ... 5-6

5.3 Fail-over and Recovery Strategy .. 5-9

Figures

3.1-1. Context Diagram .. 3-2

3.2-1. AutoSys Production Sequence .. 3-7

3.2-2. Graphical Schedule Displays Provided by AutoXpert .. 3-8

4.1-1. CSCI Overview .. 4-1

4.1-2. Planning SCSI Component Diagram ... 4-2

4.2-1. PGE Profile View .. 4-7

4.2-2. Production Request View ... 4-10

4.2-3. Subscription Submission View ... 4-12

4.2-4. Production Planning View .. 4-14

xiv 305-CD-026-002

4.2-5. Production Planning User Interface View ...4-16

4.2-6. Publishing Plans View ...4-18

4.2-7. Resource Planning View ..4-21

4.2-8. Resource Management View ...4-23

4.2-9. Plan Activation View ...4-25

4.2-10. Subscription Manager View ..4-27

4.2-11. Datat Activity Times View ..4-29

4.2-12. DBMS Proxy Agent View ...4-31

4.2-13. On-Demand Manager View ...4-33

4.4-1. Production Request Scenario ..4-206

4.4-2. Data Availability Scenario ..4-209

4.4-3. Subscription Submission Scenario ..4-211

4.4-4. Subscription Withdrawal Scenario ...4-213

4.4-5. Plan Creation Scenario ..4-216

4.4-6. Assigning a Priority to an Activity Scenario ..4-219

4.4-7. Publishing a Plan Scenario ..4-222

4.4-8. Importing a Plan from the Data Server Scenario ..4-225

4.4-9. Plan Activation Scenario Scenario ..4-228

4.4-10. Statusing a Plan Scenario ..4-231

4.4-11. Cancelling a Plan Scenario ...4-233

4.4-12. Subscription Notifications Scenario ...4-237

4.4-13. Subscription Notification with Spatial Based Input Scenario4-239

4.4-14. Subscription Notification with Alternate Inputs Scenario4-241

4.4-15. Data Availability Times Schedule ..4-244

4.4-16. Limited Automatic Replan Based on a New DAS ..4-247

4.4-17. On-Demand Production Request Scenario (Processed) ..4-252

4.4-18. 	 Limited Automatic Replan Based on an On-Demand Production

Request Scenario ...4-255

4.4-19. On-Demand Production Request Scenario (Delayed) Request Scenario4-258

4.4-20. Entering and Approving a Resource Reservation Scenario4-261

4.4-21. Create Resource Plan Scenario ...4-263

4.4-22. Commit Resource Plan Scenario ..4-266

4.5-1. Delphi Scheduler Object Model ..4-277

4.5-2. Delphi Resource Object Model ...4-280

4.5-3. Delphi Timeline Object Model ...4-284

4.5-4. Planning Workbench Architecture ..4-286

4.5-5. Planning Workbench System Resource Object Model ...4-289

4.5-6. Planning Workbench System Scheduling Object Model ..4-291

4.5-7. Delphi Schedule Event Trace ..4-294

xv 305-CD-026-002

5-1. Planning Block Diagram ...5-5

5-2. Planning Generic Network Connectivity ..5-6

5-3. Primary and Secondary Server Concept Overview ...5-10

Table

3.1-1. Planning Subsystem Interfaces ..3-3

4.5-1. Production Planning CSCs ...4-267

5-1. PLNHW Logical Components and Equipment Classes ..5-8

Appendix A. Requirements Trace

Abbreviations and Acronyms

xvi 305-CD-026-002

1. Introduction

1.1 Identification
This Release B SDPS Planning Subsystem Design Specification for the ECS Project, Contract
Data Requirement List (CDRL) Item 046, with requirements specified in Data Item Description
(DID) 305/DV2, is a required deliverable under the Earth Observing System Data and Information
System (EOSDIS) Core System (ECS), Contract NAS5-60000. This publication is part of a series
of documents comprising the Science and Communications Development Office design
specification for the Communications and System Management segment (CSMS) and the Science
Data Processing Subsystem (SDPS) for Release B.

1.2 Purpose and Scope
The Release B SDPS Planning Subsystem Design Specification defines the progress of the design.
It defines the Planning Subsystem computer software and hardware architectural design, as well as
subsystem design based on Level 4 requirements.

This document reflects the February 14, 1996 Technical Baseline maintained by the ECS
Configuration Control Board in accordance with ECS Technical Direction No.11 dated
December 6, 1994.

1.3 Status and Schedule
This submittal of DID 305/DV2 meets the milestone specified in the Contract Data Requirements
List (CDRL) of NASA Contract NAS5-60000. The present version of this document will be
reviewed during the CSMS Critical Design Review (CDR).

1.4 Organization
The document is organized to describe the Planning subsystem design as follows:

Section 1 provides information regarding the identification, scope, status, and organization of this
document.

Section 2 provides a listing of the related documents, which were used as source information for
this document.

Section 3 provides an overview of the subsystem, focusing on the high-level design concept. This
provides general background information to put the Planning subsystem into context.

Sections 4 contain the structure of the computer software configuration item (CSCI) comprising
the Planning subsystem.

Section 5 contains the hardware configuration item (HWCI) design of the Planning subsystem.

Appendix A contains a table mapping each Level 4 Requirement to the design components which
will implement that requirements' functionality.

The section Abbreviations and Acronyms contains an alphabetized list of the definitions for
abbreviations and acronyms used in this volume.

1-1 305-CD-026-002

This page intentionally left blank.

1-2 305-CD-026-002

2. Related Documentation

2.1 Parent Documents
The parent document is the document from which the scope and content of this Planning
Subsystem Design Specification is derived.

194-207-SE1-001 System Design Specification for the ECS Project

2.2 Applicable Documents
The following documents are referenced within this Planning Subsystem Design Specification, or
are directly applicable, or contain policies or other directive matters that are binding upon the
content of this document.

209-CD-001-003	 Interface Control Document Between EOSDIS Core System (ECS) and
the NASA Science Internet (NSI)

209-CD-002-003	 Interface Control Document Between EOSDIS Core System (ECS) and
ASTER Ground Data System

209-CD-003-003	 Interface Control Document Between EOSDIS Core System (ECS) and
EOS-AM Project for AM-1 Spacecraft Analysis Software

209-CD-004-003	 Data Format Control Document for the Earth Observing System (EOS)
AM-1 Project Data Base

209-CD-005-005	 Interface Control Document Between EOSDIS Core System (ECS) and
Science Computing Facilities (SCF)

209-CD-006-005	 Interface Control Document Between EOSDIS Core System (ECS) and
National Oceanic and Atmospheric Administration (NOAA) Affiliated
Data Center (ADC)

209-CD-007-003	 Interface Control Document Between EOSDIS Core System (ECS) and
TRMM Science Data and Information System (TSDIS)

209-CD-008-004	 Interface Control Document Between EOSDIS Core System (ECS) and
the Goddard Space Flight Center (GSFC) Distributed Active Archive
Center (DAAC)

209-CD-009-002	 Interface Control Document Between EOSDIS Core System (ECS) and
the Marshall Space Flight Center (MSFC) Distributed Active Archive
Center (DAAC)

209-CD-011-004	 Interface Control Document Between EOSDIS Core System (ECS) and
the Version 0 System

305-CD-002-002	 Science Data Processing Segment (SDPS) Segment Design Specifica­
tion for the ECS Project

305-CD-003-002	 Communications and System Management Segment (CSMS) Design
Specification for the ECS Project

2-1 305-CD-026-002

308-CD-001-005 Software Development Plan for the ECS Project

313-CD-004-001	 Release A CSMS/SDPS Internal Interface Control Document for the
ECS Project

423-41-03	 Goddard Space Flight Center, EOSDIS Core System (ECS) Contract
Data Requirements Document

2-2 305-CD-026-002

3. Subsystem Overview

The Planning subsystem is responsible for supporting operation staff in managing the data
production activities at a site. The Planning subsystem assists the operations staff in performing
two major functions:

• Defining the data processing tasks to be performed at a site; and

• Generating efficient plans for the scheduling of those tasks.

In addition, the Planning subsystem is responsible for coordinating the production with the Data
Server and Data Processing subsystems to achieve a highly automated production system.

3.1 Context
A context diagram illustrating the relationships between the Planning subsystem and other
subsystems is shown in Figure 3.1-1, and summarized in Table 3.1-1.

The context diagram shows those interfaces which are a part of the EOS AM-1 release Earth
Observing System (EOS) Data and Information System (EOSDIS) Core System (ECS). Interfaces
that provide additional capabilities will be described in the detailed design document at the
appropriate future release.

3-1 305-CD-026-002

Data Server

Data
Processing

Production
Planner
(human)

MSS

Planning
Subsystem

CSS

Interoperability

Data
Management

This System

Planning Command Responses,
Plan Display,

Informational Displays

Planning Commands,
Production Request

Subscription,
Communication Services

Requests

Processing Status/Current Mode,
Detected H/W&S/W faults,

Resource Utilization, Event Notification

Lifecycle Commands,
Scheduling information,
Resource Usage Info,

Resource Configuration

DPR Information,
Scheduling Commands,
PGE Profile InformationData Query, Candidate Plans,

Active Plans, PDAS,
On-demand processing status

Granule Information,
Stored Plans, FOS schedules,

On demand production requests,
PDAS

Subscription
Notification,

Common facilities,
Object Services

Advertisement

PGE Processing Status,
PGE Profile Information Update

Query Results

Queries for
Plans

Advertisement
Search Request

3-2
305-C

D
-026-002

Planning Commands Scheduling Commands
Create Plan Command, Activate Plan Command, Cancel Plan Command, Schedule Job Command, Cancel Job Command, Update Job Command,

Limited Automatic Replan Criteria, On-Demand Resource Usage Thresholds, Release Job Command, Suspend Job Command, Resume Job Command
Production Stategies and Subscriptions

Planning Command Response Informational Displays
Production Request Response, Create Plan Command Response, PDAS and FOS DAS notices, warning messages of delayed processing,

Active Plan Command Response, Cancel Plan Command Response cross-DAAC dependencies, descriptions of job causing scheduling conflicts,
notices of on-demand production request deferrals

Figure 3.1-1. Context Diagram

Table 3.1-1. Planning Subsystem Interfaces (Page 1 of 2)
Source Destination Data Types Data

Volume
Frequency

Production
Planner

Planning Subscriptions low as required

Production
Planner

Planning On-Demand Resource
Usage Thresholds

low as required

Production
Planner

Planning Production Strategies low as required

Production
Planner

Planning Limited Automatic Replan
Criteria

low as required

Production
Planner

Planning Create Plan Command low as required

Production
Planner

Planning Activate Plan Command low as required

Production
Planner

Planning Cancel Plan Command low as required

Production
Planner

Planning Production Requests low as required

Planning Production
Planner

PDAS and FOS DAS notices
(display)

low when input data is available

Planning Production
Planner

Warning messages of
delayed processing (display)

low when processing will not
complete per original
schedule

Planning Production
Planner

Cross-DAAC data
dependencies (display)

low as required

Planning Production
Planner

Description of job causing
scheduling conflicts (display)

low when scheduling conflict
occurs

Planning Production
Planner

Notice of On-Demand
Production Request deferrals

low when on-demand data
product exceeds a
predefined resource usage
threshold

Planning Production
Planner

Production Request
Response

low when queried

Planning Production
Planner

Create Plan Command
Response

low when queried

Planning Production
Planner

Activate Plan Command
Response

low when queried

Planning Production
Planner

Cancel Plan Command
Response

low when queried

Planning Production
Planner

Plan Display low when queried

Data Server Planning FOS schedules low as required
Data Server Planning On-demand Production

Requests
low as required

Data Server Planning PDAS low as required
Data Server Planning Stored active or candidate

plans
low as queried

Data Server Planning Granule Information low as required

3-3 305-CD-026-002

Table 3.1-1. Planning Subsystem Interfaces (Page 2 of 2)
Source Destination Data Types Data

Volume
Frequency

Planning Data Server PDAS low created from active plans
Planning Data Server On-demand processing

status notices
low as required

Planning Data Server Data Query low as required
Planning Data Server Candidate Plans low as required
Planning Data Server Active Plans low as required
Processing Planning PGE Processing Status low as required
Processing Planning PGE Profile Information

Update
low as required

Planning Processing DPR Information low as required
Planning Processing Schedule Job Command low as required
Planning Processing Cancel Job Command low as required
Planning Processing Update Job Command low as required
Planning Processing Release Job Command low as required
Planning Processing Suspend Job Command low as required
Planning Processing Resume Job Command low as required
Planning Processing PGE Profile Information low as required
MSS Planning Lifecycle Commands low as required
MSS Planning Resource Usage Information low as required
MSS Planning Resource Configuration low as required
MSS Planning Scheduling Information low as required
Planning MSS Processing Status low as required
Planning MSS Current Mode low as required
Planning MSS Detected H/W and S/W

Faults
low as required

Planning MSS Resource Utilization low as required
Planning MSS Event Notification low as required
CSS Planning Subscription Notification low as required
CSS Planning Common Facilities low as required
CSS Planning Object Services low as required
Planning CSS Subscription low as required
Planning CSS Communication Services

Requests
low as required

Planning Interops Advertisement Search
Request

low as required

Interops Planning Advertisement low as required
Data
Management

Planning Query Results low as required

Planning Data
Management

Queries for Plans low as required

In the table, where an exact number is unavailable, the data volume is estimated as low (less than 1 MB), medium (be­
tween 1 MB and 1 GB), or high (greater than 1 GB) per use defined in the frequency column. The frequency information
will be updated as the interfaces are fully defined.

3-4 305-CD-026-002

The Planning subsystem interfaces with the Algorithm Integration and Test Tools Computer
Software Configuration Item (CSCI) within the Data Processing subsystem for information on
Product Generation Executives (PGE). The information that is collected is referred to as a PGE
Profile. This includes information on the PGE executable, the input data type(s) it requires, the
output data type(s) it generates, the PGE resource requirements - hardware platform, memory, disk
storage, etc. The Planning subsystem provides storage for the profiles to permit the Algorithm
Integration and Test Tools to insert, retrieve and modify PGE information.

The primary interface of the Planning subsystem with the Data Processing subsystem is to describe
the PGEs that need to be run in order to fulfill the production goals. A Data Processing Request
(DPR) describes a run of a PGE to the Data Processing subsystem. A DPR describes the specific
input and output data, filenames, run-time parameters, dependencies and predicted run-times. The
Data Processing subsystem provides status and processing completion information to the Planning
subsystem.

The Planning User Interface provides a means of human interaction with the Planning Subsystem.
Through this interface an operator can enter Production Requests. A Production Request describes
an order for data that is to be produced by the Data Processing subsystem. Production Requests
may signify the need for processing of new data (Routine Production Requests, a.k.a. standing
orders) or the need for the reprocessing of data (Reprocessing Production Requests). The planning
subsystem takes these Production Requests and uses the PGE profile information to work out the
Data Processing Requests that will be required to fulfill the Production Request. The system also
supports a hierarchy of Production Requests called Production Request Collections. These allow
for operator-defined and named groupings of Production Requests. In addition, the system cost (in
terms of resource utilization) for a particular collection can be provided. This functionality is
especially helpful for large Reprocessing requests (e.g., six months of data). The Planning User
Interface is also used to issue commands to initiate plan creation, plan activation and the canceling
of a plan, as well as providing reports/status of progress within a plan. Resource planning for the
entire DAAC will also be done using the Planning User Interface; the impact of ground events on
DAAC resources will be taken into account when developing production plans. To aid in handling
inter-DAAC data dependencies, the Planning User Interface will also provide the ability to display
another DAAC's plan at the local site. The data dependencies between the two sites will be
identified by the system.

The Planning subsystem queries the Data Server holdings for existence of data required for
processing. If the data exists, the Data Server responds with granule information (identification,
metadata, etc.). The Data Server also provides the subscription services needed by Planning to
determine when new data are available for processing. The operator can use a Planning

Subsystem utility to generate the subscriptions to be triggered by the arrival of data at the Data
Server. The Data Server sends a notification when data that fulfill the subscription are inserted into
the Data Server. Subscriptions are also submitted on Planning Data Availability Schedules (PDAS)
and FOS Detailed Activity Schedules (DAS) so plans can be based on more accurate predictions
of when data will arrive.

3-5 305-CD-026-002

In addition, On-Demand Production Requests are received from the Data Server. On-Demand
Production Requests (OPRs) are checked against operator-defined resource usage thresholds. If it
exceeds a resource usage threshold, it will be stored in the database, and will need to be added to
a production plan just as any other routine or reprocessing Production Request. OPR's that do not
exceed the resource usage threshold will be sent directly to the Data Processing subsystem.

The Ingest subsystem also provides a subscription service (via the Ingest Data Server) for
notification of the arrival of L0 data from SDPF and EDOS. The ECS Advertising services are used
to provide the advertisement data that is required by the Planning subsystem in order to generate
subscriptions.

The Planning subsystem uses the Document Data Server within the Data Server subsystem to store
production plans. The Document Data Server then makes those plans available to the user
community.

The Planning Subsystem also has an interface to the Management Subsystem (MSS). The Planning
subsystem is responsible for sending MSS fault management data and resource utilization data.
The Planning Subsystem will exchange mode management information, and will receive event
notifications from MSS. For Resource Planning, the Planning Subsystem will receive
configuration management resource information with which to initialize it's database from MSS as
well as the actual times of ground events from the MSS log.

Lastly, the Planning Subsystem interfaces with Data Management to query about plans from other
DAACs to support inter-DAAC planning

3.2 Subsystem Overview
This section describes the key drivers for the Planning subsystem and how the design responds to
them. The section starts with a discussion of the use of Commercial-off-the-shelf (COTS) software
within Planning and Data Processing and describes the key changes to the Planning subsystem
since the preliminary design specification, brought about by the selection of COTS.

3.2.1 Use of COTS within the Planning and Data Processing Subsystems

Between Release A's Preliminary Design Review (PDR) and Critical Design Review (CDR) the
Planning and Data Processing subsystems focused much attention on the evaluation and selection

of COTS. Managing systems involving large numbers of processing tasks is not a problem unique
to ECS; robust vendor provided software exists to facilitate a high degree of automation in these
systems. When carefully selected, COTS significantly reduces both the schedule and technical
risks and can provide capabilities that would otherwise take considerable effort to develop. The
evaluation and selection process is described in the Data Processing Subsystem Design
Specification. It is important to emphasize that the selection of COTS that provides maximum
benefits to ECS has resulted in a change to the PDR architecture and design of both the Planning
and Data Processing subsystems. This will be outlined in Section 3.2.2.

3.2.1.1 Brief Description of Job Scheduling COTS

The main focus of COTS evaluation within the Planning and Data Processing subsystems has been
to select a Job Scheduling Engine to provide the automated production management capabilities
required. The COTS that have been selected is a combination of packages called AutoSys and

3-6 305-CD-026-002

AutoXpert.

AutoSys provides robust capabilities for managing schedules of Jobs. Jobs are defined within the
AutoSys database and are initiated on remote machines when the dependencies of a Job have been
met, and the resources required to complete the Job are available. AutoSys basically is comprised
of three components:

• AutoSys RDBMS - contains the job definition and dependency information

• Event Processor - reads RDBMS to determine actions to be taken

• AutoSys Remote Agent - initiates a job on a remote processor

The basic production sequence of AutoSys is shown diagrammatically in Figure 3.2-1.

Event
Processor

AutoSys
RDBMS

Remote
Agent

UNIX
Job PDPS

Server

Science
Processor

RDBMS

- Events
- JobDef

Event Proc.

- Read DBMS
- Determine
Actions

- Initiate Job

Remote Agent

- Receive
Instructions

- Initiates Job
- Waits for
Exit Code

- Completes
and Exits

Unix Job

- Run Unix
command

- Completes
and Exits

2

3

4

Figure 3.2-1. AutoSys Production Sequence

3-7 305-CD-026-002

1

AutoXpert provides advanced capabilities for monitoring the schedule of Jobs and predicting their
completion time. The graphic display provided by the AutoXpert provides for three views onto the
production schedule (also shown in Figure 3.2-2):

•	 Timeline or GANTT style view, showing the current status according to schedule and
estimated completion times for tasks

•	 Job Network or PERT style view, showing the current status according to the task
dependencies

•	 Resource style view, showing the current status according to allocation of tasks to
machines

AutoXpert also provides capabilities to perform “what-if” scenarios on the schedule to predict the
impact of failures within the job network on the downstream dependent tasks.

Schedule View Job Dependency View Resource View

job_1
job_2

job_3
job_9

job_8

job_4
job_6

HOST1 HOST2

HOST3 HOST4

• Graphical Monitoring of Production Schedule
• Predictions for Completion Times
• Color coded status
• Many levels of abstraction
• What If - downstream impact analysis

AutoSys
RDBMS

Figure 3.2-2. Graphical Schedule Displays Provided by AutoXpert

3-8 305-CD-026-002

3.2.2 Summary of Changes to the Planning Subsystem

3.2.2.1 From Release A's PDR to CDR

As described in the COTS evaluation paper, the goal of the selection was to obtain the packages
which provide the maximum of the capabilities required by the ECS. No COTS solution exists to
cover the entire ECS Planning and Data Processing subsystems. The design presented in the rest
of this document describes those areas which are ECS specific or areas where the requirements can
not be covered by COTS. In the area where the requirements can not currently be covered by COTS
it should be emphasized that the ECS is also actively encouraging the vendors to improve their
capabilities.

The basic capabilities of the Planning subsystem described in the preliminary design have not
changed. Rather, these capabilities have been enhanced by the AutoSys/AutoXpert selection. What
has changed is the division of responsibilities within the Planning and Data Processing subsystems.
A major goal in re-designing the system after the selection was to ensure that the interfaces to
COTS are within one subsystem. This ensures that interfaces to the COTS can be appropriately
encapsulated to give later flexibility augmenting, modifying or replacing the underlying COTS as
ECS matures.

The Job Scheduling COTS is appropriately made a component of the Data Processing subsystem,
which accounts for the reallocation of some of the Planning capabilities. The key changes to the
Planning design since PDR are within the Production Management capabilities. The two main
activities performed here were:

•	 To coordinate the production by providing a Data Processing Request to the Data
Processing subsystem when all the data required for the task are present at the local Data
Server

• To provide a display of the active production, and its status according to the plan

These two capabilities have been split into separate CSCs. The (new) subscription manager CSC,
which is part of this subsystem, provides the first of these capabilities. The graphic capabilities of
AutoXpert in the Data Processing subsystem provides for the second.

Other changes that have been brought on due to the selection of AutoSys and AutoXpert pertain to
the sequence of events “activating” a plan. This now involves rolling a portion of the “long term”
plans generated in the Planning subsystem into AutoSys. The design and scenarios that describe
this procedure are presented in Section 4 of this document.

3.2.2.2 From Release A CDR to Release B IDR

In terms of the overall architecture, no major changes are planned to be made from Release A to
Release B. As was stated earlier, Release B will continue to monitor developments of the COTS
products, and will influence to the best of our ability the direction the vendors head.

In terms of added functionality, the following major enhancements have been made:

•	 Acceptance of On-Demand Production Requests from the Data Server. We have added a
new CSC, the On-Demand Manager, which receives these requests and forwards them on
to the Data Processing Subsystem

3-9 305-CD-026-002

•	 The ability to compare plans from one DAAC to another, emphasizing the data
dependencies involved.

•	 Limited automatic replanning. This is the ability to have the software automatically prompt
the operator based on certain configurable events which may indicate that the plan and
actual status are drifting apart.

•	 Distribution and use of Planning Data Availability Schedules (PDAS). These are schedules
of when a site predicts it will make data sets available. They are used by other DAACs in
generating local plans.

•	 Use of the FOS Detailed Activity Schedule (DAS) to predict when L0 data from EDOS will
be available, and to capture any necessary instrument mode information.

•	 The ability for an operator to define and use simple production strategies. These strategies
will allow specification of priorities and resources to help control processing.

•	 The ability to construct Production Request Collections from existing Production Requests
and to provide an estimated cost of any single or collected Production Request. This feature
is especially useful for large Reprocessing Requests (e.g., 6 months of data).

•	 Additional Resource Planning capabilities which will incorporate inter-DAAC resource
scheduling concerns.

3.2.2.3 From Release B IDR to Release B CDR

No major additions or modifications were made to the Planning subsystem architecture during this
period. As was stated earlier, ECS will continue to monitor developments of the COTS products,
and has influenced, to the best of our ability, the direction the vendors have gone.

All of the new Release B functionality items listed in the previous section have be refined in their
design, especially:

•	 Production Rules (see section 3.2.3.1.2 for description). Most of the functionality to
implement production rules has been added to the Production Request Editor and the
Subscription Manager. In addition, the AITTL CI of Data Processing also has substantial
changes to allow for the entry of the new production rules into the PDPS system.

•	 Limited Automatic Replan. The types of limited automatic replan have been defined and
incorporated into the design. The operator-defined limits for these checks are configured in
the Planning Workbench UI while the actual check against the particular threshold will be
made by the Subscription Manager and On-Demand Manager CSCs.

•	 Resource Planning. There has been a lot of activity in this CSC based on feedback from the
Ops Concept Workshop. Most of the changes have been in the Release A implementation.
The design documented in section 4.1.7 has incorporated these modifications and the new
Release B features.

•	 FOS Data Availability Schedule (DAS). We have refined our approach to extracting the
necessary collection times and mode information from this schedule. There are a number
of new objects to help us do this.

3-10 305-CD-026-002

3.2.3 Key Design Drivers

As outlined in the overview the planning subsystem has three main responsibilities:

• Defining the goals for data production,

• Preparing plans for production, and

• Coordinating the production from those plans.

Each of these areas are discussed in turn in order to describe how the subsystem responds to the
key drivers in these areas.

3.2.3.1 Defining Production Goals

3.2.3.1.1 PGE Profiles

The Planning subsystem stores a description of the PGE in order to be able to determine the correct
PGEs and associated input required to generate a product. Each PGE has individual data
requirements. These data requirements are captured within the PGE Profile to allow the Planning
subsystem to select the appropriate data for a PGE either from the Data Server (in the case of
reprocessing) or from its own predictions of data availability (in the case of routine production).
The PGE profile is a key component of the Planning subsystem that allows the Planning subsystem
to determine which PGEs have to be run to create a given data set (the term Data Processing
Requests is used within the ECS to describe an individual run of a PGE).

3.2.3.1.2 Production Rules

There is a fair degree of diversity in the scheduling characteristics of PGEs that are being
developed for ECS. The most standard category of PGE describes those that require a well defined
period of data as input and produce one or more output data products. For example, the CERES
subsystem 1 geolocation and earth radiance calibration PGE requires one day's worth of L0 data
and ephemeris data and produces a single product file of bi-directional scan data, as well as 24 files
of instrument earth scans, each containing 1 hour of data. However, there are many other categories
with more complex scheduling requirements (PGEs scheduled per orbit, PGEs that mosaic data
into geographical tiles, PGEs with alternative data sets that are determined at run time). These
types of PGE have been characterized for the ECS through the work of the Ad Hoc Working Group
on Production (AHWGP) and are described in terms of production rules. All of the production rules
identified at the Production Rules Workshop will be supported within the Planning subsystem at
the AM-1 Release of ECS. If additional production rules surface at a later date, we will be able to
incorporate them by using specializations of the various production rule objects.

3.2.3.1.3 Production Requests

The ECS supports both routine production and ad-hoc or on-demand production. The goal of ECS
is to produce science data sets to facilitate earth science research. Consistently generated data
spanning long time frames are required for much of this research; therefore, many of the tasks
performed within the data processing subsystem will be highly routine with the same task being
performed (albeit on different data) a large number of times per month. As described above, the
formulation of a Data Processing Request is a non-trivial task, and therefore a high degree of
automation is required to aid in this process. The Production Request is a key abstraction which

3-11 305-CD-026-002

describes an “order” for the generation of a data set over a period of time. The Production Request
is used along with the PGE profile to generate the Data Processing Requests; typically one
production request will generate many data processing requests. The Planning subsystem will
determine a default PGE to generate this product; however, this predetermination may be
overridden within the Production Request. Similarly, user parameters may be provided to override
their defaults defined within the PGE profile. In addition, the Planning subsystem provides the
capabilities to review and modify the individual Data Processing Requests created from the
Production Request to ensure that the correct task is defined to achieve the production goal. Not all
Production Requests have to be put into production, Production Requests can be defined to
describe backup options for processing. On identification of a problem within the production chain,
the tasks defined for a backup Production Request may be quickly scheduled.

3.2.3.2 Preparing Plans for Production

3.2.3.2.1 Planning

The ability to generate production plans is important to both operations and users for the following
reasons:

•	 Staffing Projections—A long term projection describing the data products that will be
generated at a site allows organizations to manage staffing to support the anticipated
production, for example, to cover on-site or off-site QA requirements.

•	 Disconnects—Dependencies on data not planned for production can be identified, which
then allows corrective steps to be taken.

•	 Efficiency—Proper organization of the data production activities within a plan ensures that
the production will utilize resources in an efficient manner. In the AM-1 release, the
operator will be able to enter simple production strategies to control this organization.

•	 Inter-DAAC data dependencies—Allows coordination of processing throughout the
DAACs to ensure that there are no data dependency conflicts in the plans.

There is no explicit planning horizon that is hard coded into the Planning subsystem software. The
nominal Operations Concept is to plan 30 days in advance. However, this may prove to be
unreasonable at DAACs with a large number of Data Processing Requests, and therefore they will
likely choose a shorter horizon.

3-12 305-CD-026-002

3.2.3.2.2 Publishing Plans

The Planning subsystem provides the capability to publish plans that are generated at a site. The
Document Data Server is the most appropriate repository for these plans, since the plans can then
be made available to WWW access. The published plans will also be stored within a WAIS
database so that, using a simple HTML forms interface, a user may select the plans for a specific
period. A small set of metadata will describe the plans, to allow the user to select a plan based on
period, data product types which are scheduled in the plan, as well as operator comments. A
number of plan formats will be stored within the Document Data Server including a simple ASCII
report as well as a more electronically parsable format. For Inter-DAAC planning, the published
plan will also include an exported plan, that will allow one site to import and view plans from other
DAACs. The ability to include meaningful graphics within another possible format will be
investigated. The ability to subscribe to plans is supported so that users may be automatically
alerted to delays in production.

3.2.3.3 Managing the Production

3.2.3.3.1 Schedule/Data Driven Production

The plans generated in the Planning subsystem describe a prediction of the activities that will occur
in the Data Processing subsystem. This prediction is only a forecast of the activities that will occur
and a recipe for the production under nominal conditions. It is important to emphasize that the
production isn't driven directly from the plan. As an example, if a PGE is predicted to start at 3.00
in the afternoon it doesn't mean that the PGE will be executed in the Data Processing subsystem at
3.00 precisely. The Planning subsystem always ensures that the data are present within the system
before an activity is released to run. The Data Processing subsystem ensures that all of the required
resources are available to permit that activity to complete. Jobs are queued within the Data
Processing subsystem so that (within the constraints of priority and job dependencies) the
resources will be kept efficiently occupied.

3.2.3.3.2 Using the Plan

There are many events that can impact a plan: delays in data arrival, poor performance of system
components, etc. There is no need to replan in circumstances like these. The Planning and Data
Processing architecture and design are robust to many fault situations. A replan is only really
required when the production goals need to be redefined to accommodate an unanticipated
circumstance. For example, a repeated failure within the science data processing might indicate
that it would be appropriate to switch from routine production to concentrate on some reprocessing
objectives.

As previously stated, plans generated in the Planning subsystem describe a prediction of the
activities that will occur in the Data Processing subsystem. The system is tolerant to changes in
schedule, but these changes usually indicate a circumstance that needs to be brought to the attention
of the operators. The forecasts provided by the Planning subsystem are used within the Data
Processing subsystem to define alarms to alert the operator of deviations against the schedule.
Delays in the arrival of data, which may not provoke any exception in the system that would be
identified as an error, will thus still be noticed and flagged.

3-13 305-CD-026-002

3.2.3.3.3 Bypassing the Plan

It is understood that, especially during early mission activities, it is frequently desirable to be able
to schedule jobs individually. Operators require the capability to insert a job into the stream without
necessarily planning this task. The net result of inserting a job into the production stream in an ad­
hoc manner is that the forecast times for completion as determined by Planning may no longer be
accurate. However, the benefits that this capability bring are clear. The planning subsystem will
permit authorized operations staff to enter a Production Request and schedule the resulting Data
Processing Requests to the Data Processing subsystem.

The other major method of bypassing the Plan is via the On-Demand request mechanism from the
Data Server. These requests are automatically handled by the Planning subsystem, turned into Data
Processing Requests, and sent to the Data Processing subsystem. Normally, no operator
intervention is necessary. These requests are first validated and then checked against operator
defined resource thresholds. If the request exceeds a resource threshold, it is deferred until the next
planning period so its resource usage can be better accounted for. In any case, status information
is passed back to the Data Server. In general, On-Demand requests will not completely throw off
the plan with respect to actuals, since the system takes On-Demand requests into account during
candidate plan creation by inserting dummy requests which consume resources proportional to the
expected load. In addition to this, all Data Processing Requests, including On-Demand requests,
are tracked by the Planning subsystem as they occur.

3.2.3.4 Distribution of Planning Capabilities

3.2.3.4.1 SCF access to Planning Capabilities

It is acknowledged that, the definition of Production Requests - specifying the data processing
goals - is tightly coupled to science objectives of calibration and validation of instruments and
algorithms, especially during early mission life. Since the responsibility of production ultimately
resides with the Distributed Active Archive Center (DAAC), there is no intent to distribute the
Planning subsystem capabilities away from the DAAC. However, to encourage the collaboration
between the different teams with stakes in the production of science data, the Planning subsystem
capabilities can be made available by remote access. Kerberized remote login procedures for
special users and limited access permissions to the Planning subsystem database tools will ensure
that DAACs can maintain secure authority over use of these capabilities.

3.2.3.4.2 Inter-DAAC Data Dependencies

The Planning subsystem also needs to account for data dependencies between DAACs. For this
reason, the ability to export and import plans from other DAACs is available. Once a plan is
imported by a remote DAAC, data dependencies are identified and any conflicts can be noted.
When plans have been generated that are acceptable to all parties, these plans can be baselined;
future plans created will be compared with this baseline to report on how this plan meets all inter-
DAAC commitments. This allows the DAACs to coordinate production so that all production
goals can be met in a timely manner.

3-14 305-CD-026-002

3.2.4 Planning Subsystem Use of Key Design Mechanisms

The Planning Subsystem uses a number of the key design mechanisms developed by ECS to
encapsulate much of the interprocess communication and to handle the infrastructure services.
Inheriting from or reusing this code saves on design and programming effort and increases
maintainability.

3.2.4.1 Managed Process Framework

All Planning applications use the managed process framework to handle mode management, MSS
agent interface and the OODCE infrastructure interface. Utilities, such as the Production Planning
Workbench, fall under the category of 'clients', and inherit from the 'EcPfClient' object; they do
not need as much control as a server process because they are not executing continuously and do
not use complicated interprocess communications. The Subscription Manager and the On-
Demand Manager are managed servers and inherit from the 'EcPfManagedServer' object. They are
started, stopped and monitored by MSS. Errors or faults within the managers are automatically
handled. These lifecycle services ensure that any subscription notifications or on-demand
production requests are handled at all times.

3.2.4.2 Event Handling

Another key mechanism used by all the CSCs within Planning is event handling, which is
encapsulated by the EcEvent object. Events include abnormal conditions (errors or faults) as well
as normal occurrences. Not all events that occur within the system are of interest from a system
operations and management perspective; those that are are called managed events, which must be
reported and logged. This mechanism handles any messages that require operator notification with
the Planning Subsystem, as well as notification to a centralized MSS event logging facility.

3.2.4.3 Server Request Framework and Message Passing

Both the Subscription Manager and the On-demand Manager use the interprocess communication
provided by the key mechanisms. The On-demand Manager uses the Server Request Framework
to provide management capabilities in the form of modification, deletion and status of the On­
demand Production Requests. The subscription manager receives subscription notifications from
the Data Server using message passing, a subset of the Server Request Framework. Callbacks in
the managers, which handle messages from other subsystems, inherit much of their code from the
'EcMpMsgCb' object.

3.2.4.4 Advertisements and Subscriptions

The Advertising Service within ECS allows the different service providers within ECS to advertise
their services and products. Subscriptions to these services can be submitted to allow outside
systems to be aware of changes to the system. The Planning Subsystem uses the Advertising
Service to find these services for the various data types it needs as input. These advertisements are
then used to create subscriptions on these data by the Production Request Editor and the On­
demand Manager, as well as the Subscription Editor, to allow the Subscription Manager to be
notified when input data becomes available. The Subscription Manager uses these notifications to
determine which Data Processing Requests are ready to begin processing. This process is only
done when a new subscription needs to be added, not every time.

3-15 305-CD-026-002

3.2.4.5 Universal References

Universal references are the key mechanism used by ECS to locate services and products; they are
encapsulated by the object 'EcUrUR'. These references allow different parts of ECS to
communicate about the services and products they provide. Universal references for data granules
are used by the Production Request Editor, the On-demand Manager, the Subscription Manager,
and the Data Processing Subsystem to communicate where a product can be found. The
Subscription Editor, the Production Request Editor, and the On-demand Manager use universal
references to set up subscriptions on data collections within the Data Server. Universal references
are also the result from queries to the Data Server and to the Data Management Subsystem
performed by the Planning Workbench, the Production Request Editor and the Subscription
Manager.

3.2.4.6 Request Status Tracking

The On-demand Manager also uses the request status tracking mechanism, encapsulated in the
EcRequest object. This key mechanism allows a client (a user or another subsystem) to receive the
status of a request, such as an On-demand Production Request, at any time.

3.2.5 Subsystem Structure

The Planning subsystem consists of two CIs: the Production Planning CSCI and the Production
Planning HWCI. The Planning CSCI consists of software to meet the subsystem requirements. The
Planning HWCI consists of the hardware resources to support the Planning software.

This page intentionally left blank.

3-16 305-CD-026-002

4. PLANG - Production Planning CSCI

4.1 CSCI Overview
The Production Planning CSCI consists of a number of utilities and server applications as shown
in Figure 4.1-1. The distinction between these two classes of programs is useful when describing
the software design:

•	 Utilities are programs that perform well defined tasks and are invoked at the operator's
requests. A utility is usually exited when the task is complete; the system does not depend
on the utility being active at any given time. As an example, a mail editor is a common
utility program, invoked whenever an operator wishes to generate a mail message.

•	 Servers are programs that perform ongoing tasks and have to be active at all times for the
subsystem to carry out its allocated functions. An example here is the mail daemon; the
mail won't be delivered unless the daemon is running.

The allocation of the Planning subsystem capabilities to distinct applications accounts for the need
to provide distinct interfaces for distinct activities, and to restrict access to planning functions to
classes of users. The applications define an integrated set of tools with well-defined functions to
supplement the COTS components. The allocation of capabilities to applications within the
Planning CSCI also accounts for the need to permit independent development of the components
as the capabilities of the ECS evolve. The hardware on which the various applications will run is
shown in Figure 4.1-2 and the purpose of each application is briefly outlined below.

Production Production
Resource Request Planning
Planning Editor Workbench

Workbench

Subscription

Editor

Subscription
Manager

PDPS Database

On-demand
Manager

Utility Application

Server Application

Figure 4.1-1. CSCI Overview

4-1 305-CD-026-002

Utility Application

Subscription
Manager

On-demand
Manager

PDPS
Database
Server

Planning Server
Production Planning Workstation

Subscription
Editor

Production

Workbench
Planning
Production

Request
Editor

Workbench
Planning
Resource

MSS Workstation

Utility Application

Server Application

Figure 4.1-2. Planning SCSI Component Diagram

4.1.1 PDPS Database

At the heart of the Planning CSCI is the Planning and Data Processing System (PDPS) Database
(and the implied database server). This provides for the persistent storage of data and facilitates the
sharing of this data between the applications. The database server affords built-in security, fault
tolerance, and a locking mechanism for managing concurrent access to data. The objects which are
built from the persistent data within the PDPS database are indicated within the object design. The
schema for the database has been derived from the object model and is described in the SDPS
Database Design and Schema Specifications CDRL.

Access to the PDPS Database from the application code is via special database interface classes.
Complete definitions of these classes may be found in the Release B SDPS Data Processing
Subsystem Design Specification for the ECS Project.

4.1.2 Production Request Editor

This application allows the user to submit production requests that describe the data products to be
produced. The application uses the PGE descriptions (profiles) entered during AI&T in order to
work out the tasks - Data Processing Requests - that in sum meet the request. The application
provides the capabilities to add, modify, and delete Production Requests, as well as review and
modify the resulting Data Processing Requests. The Production Request Editor is identified as a
part of the planning workbench although the process of defining production requests will be a
discrete activity, unrelated to the “planning” of these events. Multiple Production Requests can be
grouped together in a Production Request collection, especially in the case of performing related
reprocessing requests.

4-2 305-CD-026-002

The Production Request Editor may also be used by authorized operations staff to schedule Data
Processing Requests derived from a production request directly to the Data Processing subsystem.

The Production Request Editor is one of the CSCs that plays a large part in implementing
production rules. See Section 4.3.2 for the objects that participate in this.

4.1.3 Production Planning Workbench

This application is used to prepare a plan for the production at a site, and forecast the start and
completion times of the activities within the plan. These functions provided by the workbench
include the following high-level activities:

•	 Candidate Plan Creation—from the production requests prepared by the Production
Request Editor

• Plan Activation—activating a candidate plan

• Updating the Active Plan—feedback from the processing into the active plan

• Canceling/Modifying the Active Plan

•	 Publishing and Importing Plans - to share plans between DAACs and with the outside
world

• Cross-DAAC planning—identifying data dependencies between DAACs

As described previously, activating a plan entails rolling a portion of a selected plan into the
AutoSys COTS. This “schedule” is then managed within the Data Processing subsystem. The
forecast times generated within the planner are used to set up operator alerts that would make the
operator aware of gross departures from the predicted plan. The production planning workbench
can periodically update it's predictions using feedback from the AutoSys.

One of the new capabilities of the Production Planning Workbench is cross-DAAC planning. This
will allow a production planner at one DAAC to display data dependencies with other DAACs and
to identify any conflicts. This will essentially allow the production planners to view multiple
DAAC plans as one plan. The priorities and scheduled execution times of jobs causing conflicts
can be noted and the DAACs can work together, and if necessary, with the SMC, to resolve the
conflicts.

In addition, the Planning Workbench has a number of configuration items that allow the Production
Planner to control production. Production Strategies, entered by the Production Planner at a high
level, allow the Workbench to determine the priorities of the individual runs of the PGE. Limited
Automatic Replan criteria entered here determine when the Production Monitor should be alerted
that a replan should be done. On-demand resource thresholds allow the Production Planner to
throttle on-demand production requests received so they don't overly impact the production plan.

4-3 305-CD-026-002

4.1.4 Planning Subscription Editor

This application provides the capabilities required to submit subscriptions to the Data Servers
responsible for the storage of ingested data. Registration of a subscription at a Data Server is
required for the Planning CSCI to receive notification when data arrive within the ECS. In previous
releases, the submission of subscriptions was managed as an operator initiated activity. This has
now been mostly automated, and only manual subscriptions for PDASs from other DAACs and for
the FOS DAS are now required. These both need only be done once, however, and the Subscription
Editor will remain as a tool to view the subscriptions that are in place.

4.1.5 Subscription Manager

The Subscription Manager is used to manage the receipt of subscription notifications from the Data
Server. These notifications inform Planning of the arrival of input data required for PGE execution,
Detailed Activity Schedules for predicting data arrival from EDOS, and Planning Data Availability
Schedules for predicting data arrival from other DAAC's. The Subscription Notification contains
Universal References (URs) which are pointers to the data objects stored on the Data Server.

The Subscription Manager updates the PDPS database to indicate data availability. When all input
data for a Data Processing Request is available, the job defined for that Data Processing Request
is released for execution within the Data Processing subsystem.

Data objects that are not associated with data granules (e.g. PDAS' and FOS Detailed Activity
Schedules) are acquired from the Data Server by the Subscription Manager. When a schedule is
received, the associated PlDataAvailabilityTimes object is created indicating predicted arrival
times of data needed at the DAAC.

The Subscription Manager is one of the CSCs that plays a large part in implementing production
rules. See Section 4.3.10 for the objects that participate in this.

4.1.6 On-Demand Manager

The On-Demand Manager is used to manage the on-demand production requests received from the
Data Server. Upon receipt of a production request the On-Demand Production Request class
verifies that resource usage thresholds are not exceeded and that the data is available to generate
the product. If all criteria is satisfied then the production request is added to the list of On-Demand
requests maintained by the manager, the processing request is submitted to the Data Processing
subsystem and the product is produced. Based on certain threshold values a replan may be
triggered. Additional possible On-Demand notifications are a request to modify or cancel a
production request or a request for the status of a production request.

4.1.7 Resource Planning Workbench

The Resource Planning Workbench allows the Resource Planner to submit reservations for
hardware resources and allocate and plan their use. Reservations may be made for activities that
include major ECS data processing services as well as ground events. Ground events include
activities such as maintenance, test, and training. The hardware resources include CPUs, storage
devices, (sub)networks, as well as platforms that are made up of CPUs and storage devices. A list
of resources is configuration managed by MSS. Reports of planned versus actual resource usage
can be generated and timelines for the resource plans may be displayed. This application is

4-4 305-CD-026-002

separate and distinct from the Production Planning Workbench. Its plan, however, is used as input
to the Production Planning Workbench, so that production plans can take into account planned
resource usage.

4.2 CSCI Object Model
The CSCI object model is shown in a number of views; Figures 4.2-1 to 4.2-13. Each view aims
to capture a different aspect of the CSCI capabilities. Classes will appear in several views, only the
operations and attributes pertinent to the capability being illustrated are included in the figures in
order to reduce confusion. Complete class descriptions are provided in text in Section 4.4.

4.2.1 PGE Profile View

The PGE profile view (Figure 4.2-1) describes the classes which are provided to the Algorithm
Integration and Test Tools to allow the entry of information that describes a PGE to the Production
Planning CSCI.

The key classes introduced within this model are:

•	 PlPGEProfile: This class defines the collection of information that describes a PGE to the
Planning subsystem.

•	 PlPGE: This is the base class within a generalization hierarchy that describes PGEs. The
class defines abstract operations required for the planning subsystem to determine when a
PGE needs to be scheduled, as well as containing the key attributes defining the PGE.

•	 PlPgeFactory: This is a class used to create derived PlPGE objects without knowing the
subclass at instantiation.

•	 PlDataScheduled: This specialization of the PGE accounts for the classification of PGEs
whereby the PGE scheduling is determined directly from the period of some primary input
data type. This object participates in the implementation of Production Rules.

•	 PlTimeScheduled: This specialization of the PGE accounts for the classification of PGEs
whereby the PGE scheduling is determined from some regular time period, such as an hour,
a day, a week, a month etc. This object participates in the implementation of Production
Rules.

•	 PlOrbitScheduledNB: This specialization of the PGE accounts for the classification of
PGEs whereby the PGE scheduling is determined based on spacecraft orbits. This object
participates in the implementation of Production Rules.

•	 PlOrbitModelNB: This class is used by PlOrbitScheduled to determine the approximate
extent of the orbit to be used. This object participates in the implementation of Production
Rules.

•	 PlTileScheduledNB: This specialization of the PGE accounts for the classification of PGEs
whereby the PGE scheduling is determined based on tile (spatial) criteria. This object
participates in the implementation of Production Rules.

•	 PlCluster: This class is used by PlTileScheduled to determine a group of tiles arranged over
the earth. A cluster of tiles will be scheduled together to optimize disk usage. This object
participates in the implementation of Production Rules.

4-5 305-CD-026-002

•	 PlTile: This class is used by PlTileScheduled to determine the spatial coordinates of a
single tile to be processed by a Tile Scheduled PGE. This object participates in the
implementation of Production Rules.

•	 PlDataTypeB: This class describes the data types used or output from PGEs. The
PlDataType class can be thought of as a proxy to the Earth Science Data Type of the Data
Server. The class contains the information required by the Planning subsystem to describe
the inputs and outputs of a PGE.

•	 PlDataTypeReq: This describes the correlation between a PGE and the input data type. This
class contains the data that allows a PGE to select the required granules of a given input
type to perform a production task.

•	 PlAlternateNB: This specialization of the Data Type defines an alternate input data type for
the PGE. It is used for PGEs that require only some of a long list of inputs, or a PGE that
desires a secondary choice if one of its primary inputs does not exist. This object
participates in the implementation of Production Rules.

• PlOutputYield: Specifies the recipe to describe the output data granules for a PGE.

• PlUserParameters: Describes any user defined parameters associated with a PGE.

•	 PlResourceRequirements: This class contains a description of the resource requirements of
a PGE, which may be matched against the resource configuration of the processing
hardware known to the Planning subsystem.

•	 PlPerformance: This class describes the performance statistics of a PGE. These
performance statistics are established at AI&T. The class also contains attributes to
describe the statistics updated from the Data Processing subsystem after PGE execution.

Since the data for these classes is established at AI&T, interactions for this view are described in
Section 6 of the "Release B SDPS Data Processing Subsystem Design Specification for the ECS
Project".

4-6 305-CD-026-002

PlPGEProfile

PlDataTypeBPlResourceRequirement PlUserParameters
PlPGE

PlDataScheduled
PlTimeScheduled

PlOtherTypes

PlPerformance

myPrimaryDataSource
myInputDataId
myNoOfInstancesPerPgeRun

GenerateDPRs(PlProductionRequest)

myDescription
myName
myLogicalID
myDefaultValue

PlUserParameters()
~PlUserParameters()
Create()
Delete()
Modify(DefValue:String)

myString
myComputer
myOperatingSystem
myNCPUs
myDiskSpace

PlResourceRequirement()
~PlResourceRequirement()

$PlPGEProfile(...)
~PlPGEProfile(...)
ModifyPGEProfile(PGEProfId:int, ModType:enum, ModField:String, ModValue:String)
DeletePGEProfile(PGEProfID:int)
RetrievePGEProfile(PlPGEProfID)

PlOrbitScheduledNB

PlOrbitModelNB

PlTileScheduledNB
PlAlternateNB

PlTile
PlCluster

myPgeId
myPGECPUTime
myElapsedTime
mySharedMemoryUse
myMaxMemoryUse
myNoOfPageFaults
myNoOfSwaps
myNoOfBlockInOper
myNoOfBlockOutOper
myRunPGUCPUTime
myRunElapsedTime
myRunSharedMemoryUse
myRunMaxMemoryUse
myRunNoOfPageFaults
myRunNoOfSwaps
myRunNoOfBlockInOper
myRunNoOfBlockOutOper

PlPerformance()
PlPerformance(RWCString:PgeId)
~PlPerformance()
UpdateRunTimePerfPar(EcTInt:ParId, RWString:ParVal)

myAcquisitionProcessingBoundary
myAcquisitionProcessingPeriod
myTimeUnits
myNoOfTimeUnitsPerPgeRun

PlTimeScheduled(RWCString:PgeId)
~PlTimeScheduled()
GenerateDPRs(PlProductionRequest)

PlPgeFactory

PlPgeFactory()
~PlPgeFactory()
Create(RWCString&)

myTemporalFlag
myDefaultOrder
myWaitFor
myPrimary

PlAlternate()
~PlAlternate()

PlMetaDataChecks

myPgeId
myDataTypeId
myMetaDataType
myMetaDataOper
myMetaDataParmName
myMetaDataValue

CheckForCondition(RWCString, PlDataGranule &, EcTBoolean &)
CompareActualWithCondition(EcTFloat, EcTFloat, RWCString &, EcUtStatus &)
CompareActualWithCondition(RWCString &, RWCString &, RWCString &, EcUtStatus &)
CompareActualWithCondition(EcTInt, EcTInt, RWCString &, EcUtStatus &)

myBoundary
myPeriod
myL0DataType
myProductionDeltaTime
myNumClusters
myDelayFactor
myTileDefinition

PlTileScheduledNB()
PlTileScheduledNB(ESDT L0Type, RWTime PredictionDelta, RWTime ProductionDelta,
RWCString Definition)
~PlTileScheduledNB()
ReturnProductionDelta()
ReturnL0Type()
CalcTileOverlap()
GenerateDPRs(PlProductionRequest)

myLastOrbit
myPredictedAvailability
myNumTiles

PlCluster()
PlCluster(EctInt Tiles, RWTime PredAvail, EctInt LastOrbit)
~PlCluster()
Update(RWCString Attribute, RWCString Value)
ReturnLastOrbit()
ReturnPredictedAvail()
ReturnNumTiles()

myTileID
myCoordinates

PlTile()
PlTile(EctInt TileID)
~PlTile()
ReturnTileID()
ReturnCoordinates()
SetCoordinates(List of EctFloat Coordinates)

PlInstrumentModes

PlPGECollection

myPlatform
myOrbitNum

PlOrbitModelNB()
PlOrbitModelNB(Platform:RWCString, OrbitNum:EcTInt)
ConvertOrbitNumtoTime(EcTInt:OrbitNum,RWTime:OrbitTime)
~PlOrbitModelNB()

PlSourcetoDsHistoryNB

myDataTypeID
myMovingAverageTime
myNumberOfEstimates
myStandardDeviation
myPrevTransferTimes
myLastPredictedArrival
myLastActualArrival

UpdateHistoricalInfo(RWTime)
AddLastArrivalTime(RWTime<myActualAvailability>)

myOrbitLength
myEphemeris

PlOrbitScheduledNB()
~PlOrbitScheduledNB()
GenerateDPRs(PlProductionRequest)

myPgeId
myDataTypeId
myLogicalID
myCommandString
myInspectString
myQAThreshold
myNumNeeded
myType
myDataTypeReq

PlDataTypeReq()
PlDataTypeReq(RWCString:PgeId, RWCString:DataTypeId)
~PlDataTypeReq()

myPgeId
myDataTypeId
myCommandString
myYield
myLogicalID

PlOutputYield()
PlOutputYield(RWCString:PgeId, RWCString:DataTypeId)
~PlOutputYield()

myInputDataTypeList
myInstrument
myOutputDataTypeList
myPGEName
myPGEVersion
myPgeId
myPlatform
myTestOperational
myNumCPUs
myType

PlPGE()
PlPGE(RWCString:PGEid)
~PlPGE()
Delete()
FindDataAvailability(Interval)
GenerateDPRs(PlProductionRequest)
UpdateVersion()
Modify(TestOrOper:enum)

myDescription
myArchiveCenter
myName
myCatalogueCatagory
myDServURString
myDynamicFlag
myESDTParmList
myInstrumentName
myNominalSize
myQASubscription
mySatelliteName
myUsedByCenter
myDataTypeId
myProcessingCenter
mySubscriptionFlag
myProvider
mySpatialFlag
myService

RegisterDataArrival()
InstallReceiver()
FindDataAvailability(RWTime Start,RWTime Stop)
InspectDataArrival()
MatchDataArrival()
PlDataType()
PlDataType(RWCString:DataTypeId)
~PlDataType()
Submit()
Withdraw()
QueryDATRecords(RWTime: StartTime, RWTime: StopTime, RWTlistSval<PlDATRecords>)
GetAdService(EcUtStatus

PlDataTypeReq

PlOutputYield

[Public]

[Boundary]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[PERSISTENT CLASS]
[PERSISTENT CLASS]

Offpage

[Public]

[PERSISTENT CLASS]

- : String
- : int
- : int

+ : void

- : String
- : String
- : int
- : String

+ : PlUserParameters
+ : void
+ : void
+ : void
+ : void

- : String
- : String
- : String
- : int
- : int

+ : PlResourceRequirement
+ : void

+ : void
+ : void
+ : void
+ : void
+ : void

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

- : RWCString
- : RWTime
- : RWTime
- : EcTFloat
- : EcTFloat
- : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt
- : RWTime
- : RWTime
- : EcTFloat
- : EcTFloat
- : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt

+
+
+
+ : EcTVoid

- : Time
- : Time
- : enum
- : float

+ : PlTimeScheduled
+
+ : void

+
+
+ : PlPge*

- : EcTBoolean
- : EcTInt
- : EcTBoolean
- : PlDataTypeReq

+
+

[Public]

[PERSISTENT CLASS]

- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : RWCString

+
+
+
+

- : RWTime
- : RWTime
- : ESDT
- : RWTime
- : EcTInt
- : RWTime
- : RWCString

+

+
+ : RWTime
+ : ESDT
+
+

- : EcTInt
- : RWTime
- : EctInt

+
+
+
+ : EctInt
+ : EctInt
+ : RWTime
+ : EctInt

- : EctInt
- : List of EctFloat

+
+
+
+ : EctInt
+ : List of EctFloat
+

Offpage[PERSISTENT CLASS]

[Public]

Offpage[PERSISTENT CLASS]

- : RWCString
- : EctInt

+
+
+
+

[PERSISTENT CLASS]

- : RWCString
- : RWTime
- : EcTInt
- : EcTInt
- : RWTValSlist<RWTime>
- : RWTime
- : RWTime

+ : EcUtStatus
+ : EcUtStatus

- : RWTime
- : RWTValList<RWCString>

+
+
+

- : RWCString
- : RWCString
- : EcTInt
- : RWCString
- : RWCString
- : RWCString
- : EcTInt
- : enum
- : RWCString

+ : EctVoid
+ : EctVoid
+ : EctVoid

- : RWCString
- : RWCString
- : RWCString
- : EcTFloat
- : EcTInt

+
+
+

- : RWTValSlist<RWCString>
- : RWCString
- : RWTValSlist<RWCString>
- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : enum
- : EcTInt
- : RWCString

+ : PlPGE
+ : PlPGE
+ : void
+ : void
+ : void
+ : void {abstract}
+ : void
+ : void

- : RWCString
- : RWCString
- : RWCString

- : RWCString
- : EcTBoolean
- : GlParameterList
- : RWCString
- : EcTFloat
- : EcTBoolean
- : RWCString
- : RWTValSlist<RWCString>
- : RWCString
- : RWCString
- : EcTBoolean = EcDFalse
- : RWCString
- : EcTBoolean = EcDFalse
- : RWCString

+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : PlDataType
+ : PlDataType
+
- : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : IoAdService *

output

is referenced by

references

created by

input

is referenced by

references

&)

[Public]

4-7
305-C

D
-026-002

Figure 4.2-1. PGE Profile View

4.2.2 Production Request View

This view (Figure 4.2-2) describes the classes used during the entry of a production request and the
subsequent process by which the Production Request is translated into Data Processing Requests.

The following key classes are introduced:

• 	 PlProductionRequest: A production request describes an order for data products. A
production request typically specifies a request for a data product to be produced for an
extended period of time (e.g. a month’s worth of some product).

• 	 PlProductionRequestUI: This class provides the methods to support the user interface for
entry/modification/deletion of production requests.

• 	 PlPRCollectionNB: This collection class contains a group of production requests. This will
allow for any number of Production Requests to be specified and managed in a convenient
manner.

• 	 PlOnDemandPRNB: This specialization of the PlProductionRequest contains attributes
and operations specific to On-Demand or Ad hoc requests.

• 	 PlDPRB: The DPR describes a single run of a PGE and has associations to the data granules
required for that Data Processing Request.

• 	 PlDataGranule: This class describes a data granule to the planning subsystem. This object
is in effect a proxy to the real data granules within the ECS. The class describes the
information that is needed in the Planning subsystem to allow selection of that granule by
a PGE for a Data Processing Request. The PlDataGranule describes either data that is
actually in the system or a prediction of data that will come into the system.

• 	 PlAlternateDataGranule: This association class describes data granules that are alternate
inputs for a PGE. Input data granules are either required (always used) or alternate.
Alternate inputs are either primary (first choice) or backup (secondary choices in
preference order). This object participates in the implementation of Production Rules.

• 	 PlDataType: This class describes the data types used or output from PGEs. The PlDataType
class can be thought of as a proxy to the Earth Science Data Type of the Data Server. The
class contains the information required by the Planning subsystem to describe the inputs
and outputs of a PGE.

• 	 PlDataTypeCatalogue: This class describes a collection that lists the data types that may
be generated by the production system. The class is constructed from the PlDataTypes
class using the catalogue category attribute from that class.

• 	 PlDataTypeReq: This class contains the data that associates a PGE to an input data type. It
is also a base class for the derived PlAlternate class used for alternate input types.

• 	 PlAlternate: This class is derived from the PlDataTypeReq class. It describes input data
types for PGEs that expect alternate inputs. This object participates in the implementation
of Production Rules.

• PlOutputYield: Specifies the recipe to describe the output data granules for a PGE.

• 	 PlDATRecord: Contains the predicted availability for a particular data granule received
from a source outside of the local DAAC.

4-8 305-CD-026-002

• 	 PlDataSource: This class is the base class that provides the methods for predicting when
external data will arrive within the ECS, for example, from SDPF or National Oceanic and
Atmospheric Administration (NOAA). The Data Sources are specialized to describe the
different ways that predictions are obtained. This object participates in the implementation
of Production Rules.

• 	 PlDataSourceFactory: This class provides methods to create the derived PlDataSource
classes from a DatatypeId without directly knowing the subclass class at instantiation time.
This object participates in the implementation of Production Rules.

• 	 PlMetaDataChecks: This class provides methods to perform conditional checks of
metadata for input data granules for a PGE. This object participates in the implementation
of Production Rules.

• 	 PlRoutineArrival: This class is a specialization of the PlDataSource class and describes
routinely arriving data sets. This class contains the attributes and operations required to
describe routine ingest of external data. This object participates in the implementation of
Production Rules.

• 	 PlSubscriptionSubmitIF: This class encapsulates all the methods used for subscription
submittal and withdrawal.

The interactions of these classes are described within the following scenarios:

• 4.4.1 Production Request

• 4.4.2 Data Availability

4-9 305-CD-026-002

PlDataTypeBPlPGE

PlProductionRequestB

PlDataTypeCatalogue

PlProductionRequestUI

PlDataGranule

PlDPRB

PlDataSource

PlRoutineArrival

DsClESDTReferenceCollector

DsClESDTReference

DsClQuery

DsQuery
~DsQuery

Inspect

Search

PlOnDemandPRNB

PlPRCollectionNB

PlAlternateNB

PlMetaDataChecks

myTemporalFlag
myDefaultOrder
myDefaultTimer
myWaitFor
myPrimary

PlAlternate()
~PlAlternate()

PlOnDemandPRNB()
~PlOnDemandPRNB()
ValidateOPR()
RequestCompleted(UR)

myPgeId
myDataTypeId
myCommandString
myYield
myLogicalID

PlOutputYield()
PlOutputYield(RWCString:PgeId, RWCString:DataTypeId)
~PlOutputYield()

myPgeId
myDataTypeId
myLogicalID
myCommandString
myInspectString
myQAThreshold
myNumNeeded
myType
myDataTypeReq

PlDataTypeReq()
PlDataTypeReq(RWCString:PgeId, RWCString:DataTypeId)
~PlDataTypeReq()

myPredictedMethod
mySupplierName

PlDataSource()
PlDataSource(const RWCString &)
~PlDataSource()
PredictArrivals(const PlTime &, const PlTime &)

myBoundary
myPeriod
myDelay

PlRoutineArrival()
PlRoutineArrival(const RWCString &)
~PlRoutineArrival()
PredictArrivals(const PlTime &, const PlTime &)

PlDATRecord

myDataTypeId
myStartTime
myStopTime
myPredictedAvailability

MatchPlDataGranule()

myPgeId
myDataTypeId
myMetaDataType
myMetaDataOper
myMetaDataParmName
myMetaDataValue

CheckForCondition(RWCString, PlDataGranule &, EcTBoolean &)
CompareActualWithCondition(EcTFloat, EcTFloat, RWCString &, EcUtStatus &)
CompareActualWithCondition(RWCString &, RWCString &, RWCString &, EcUtStatus &)
CompareActualWithCondition(EcTInt, EcTInt, RWCString &, EcUtStatus &)

EcPfClient

PlPgeFactory

myDescription
myArchiveCenter
myName
myCatalogueCatagory
myDServURString
myDynamicFlag
myESDTParmList
myInstrumentName
myNominalSize
myQASubscription
mySatelliteName
myUsedByCenter
myDataTypeId
myProcessingCenter
mySubscriptionFlag
myProvider
mySpatialFlag
myService

RegisterDataArrival()
InstallReceiver()
FindDataAvailability(RWTime Start,RWTime Stop)
InspectDataArrival()
MatchDataArrival()
PlDataType()
PlDataType(RWCString:DataTypeId)
~PlDataType()
Submit()
Withdraw()
QueryDATRecords(RWTime: StartTime, RWTime: StopTime, RWTlistSval<PlDATRecords>)
GetAdService(EcUtStatus

myDataGranuleId
myDataTypeId
myStopTime
myStartTime
myTileId
myESDTParmVals
myUR
myAvailability
myActualAvailability
myBaselineTime
myPredictedStagingTime
myPredictedAvailability

PlDataGranule()
~PlDataGranule()
Create(RWTime:start, RWTime:stop)
RegisterAvailability(EcUrUR:instUR, GlParameterList: instESDTParmVals)
FindAssociatedDPRs()
PredictStagingTime()
GetAvailability()
DeleteDummyGranule(RWCString:myDataGranuleId)

CreatePRCollection(RWCString)
DeletePRCollection(RWCString)
DisplayProducts(RWCString:Filter)
AddProductionRequest()
ModifyProductionRequest()
DelProductionRequest()
GenerateCostReport()
DisplayPGEs(RWCString:Filter)
DisplayPGEInfo(RWCString:PGEID)
SelectProduct(RWCString:OutputDataType)
SelectPGE(RWCString:PGEID)
MapPGEtoProduct(RWCString:PGEID)
MapProducttoPGE(RWCString:OutputDataType)
ChangeAlternateInputOrder(RWCString:ProductionRequestID)
DisplayProductDependencies(RWCString:OutputDataType)

myCollectionID
myRequesterID
myDataCollectionStartTime
myDataCollectionStopTime
myOriginationTime
myPriority
myProductionRequestList

Delete(RWCString)
Add(RWCString)
First()
Next()

myDataCollectionStartTime
myDataCollectionStopTime
myOutputDataType
myPGEIdentifier
myPriority
myUserTypeNB
myPRTypeNB
myDPRsNB
myNumDPRsToKeep
myNumDPRsToSkip
myPRCollectionNB
myDescription
myTargetDate
myRequestId
myRequesterId
myUsrParaList
myUsrParaValueList

RetrieveAllProdReq()
DefinePGERuns()
Modify(RWCString:Modfield, RWCString:ModVal)
PlProductionRequest((RWCString:Product, RWCString:PGE, RWTime:Start,
RWTime:Stop, ECTInt:Prior))
StoreProductionRequest(PlProductionRequestB)
CalculateResourceUsageNB(enum)

PlPgeFactory()
~PlPgeFactory()
Create(RWCString&)

CatalogueRequest()
RetrieveDefProduct(RWCString:PGEID)
RetrieveDefPGE(RWCString:ProductType)

myInputDataTypeList
myInstrument
myOutputDataTypeList
myPGEName
myPGEVersion
myPgeId
myPlatform
myTestOperational
myNumCPUs
myType

PlPGE()
PlPGE(RWCString:PGEid)
~PlPGE()
Delete()
FindDataAvailability(Interval)
GenerateDPRs(PlProductionRequest)
UpdateVersion()
Modify(TestOrOper:enum)

myType
myOrder
myPrimaryType
myAccepted
myTemporalFlag
myTimerNB

PlAlternateDataGranule()()
~PlAlternateDataGranule()()
GetTimerNB()()
UpdateTimerNB(RWTime:NewTime)
ChangeOrder(RWCString:DataGranuleId)

myActualStartTime
myBaselineTime
myCompletionState
myDprId
myInputDataInstanceList
myNextConditionalDPR
myOutputDataInstanceList
myPgeId
myPredictedStartTime
myPriority
myProductionRequestId

Cancel()
CheckAvailability()
CheckPredictedAvailabilityNB()
GetCommandString(RWCString:DataType)
GetInputGranuleList()
GetLogicalId(RWCString:DataType)
GetMyPGEType()
GetMyTimer()
GetOutputGranuleList()
Modify()
PlDPR(RWCString:DprId)
Release()
Schedule()
Status()
~PlDPR()

PlDataTypeReq

PlOutputYield

PlAlternateDataGranuleNB

[Public][Boundary]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[Public][Boundary]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[DISTR OBJ]

[Public][Boundary]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

- : EcTBoolean
- : EcTInt
- : RWTime
- : EcTBoolean
- : PlDataTypeReq

+
+

+ : PlOnDemandPRNB
+ : void
+ : String
+ : void

- : RWCString
- : RWCString
- : RWCString
- : EcTFloat
- : EcTInt

+
+
+

- : RWCString
- : RWCString
- : EcTInt
- : RWCString
- : RWCString
- : RWCString
- : EcTInt
- : enum
- : RWCString

+ : EctVoid
+ : EctVoid
+ : EctVoid

- : enum
- : RWCString

+
+
+
+ : EcTVoid {abstract}

- : PlBoundary
- : PlPeriod
- : EcTULongInt

+
+
+
+ : EcTVoid

[PERSISTENT CLASS]

- : RWCString
- : RWTime
- : RWTime
- : RWTime

+ : PlDataGranule

- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : RWCString

+
+
+
+

Offpage

- : RWCString
- : RWCString
- : RWCString

- : RWCString
- : EcTBoolean
- : GlParameterList
- : RWCString
- : EcTFloat
- : EcTBoolean
- : RWCString
- : RWTValSlist<RWCString>
- : RWCString
- : RWCString
- : EcTBoolean = EcDFalse
- : RWCString
- : EcTBoolean = EcDFalse
- : RWCString

+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : PlDataType
+ : PlDataType
+
- : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : IoAdService *

- : RWCString
- : RWCString
- : RWTime
- : RWTime
- : RWCString
- : GlParameterList
- : EcUrUR
- : EcTBoolean
- : RWTime
- : RWTime
- : RWTime
- : RWTime

+ : PlDataGranule
+
+ : void
+ : void
+ : PlDPRs
+ : RWTime
+ : EcTBoolean
+

+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+
+
+ : RWCString:OutputDataType
+ : RWCString:PGEID
+
+ : RWTValSlist<RWCString>

- : RWCString
- : RWCString
- : RWTime
- : RWTime
- : RWTime
- : EcTInt
- : RWTValSlist<RWCString>

+
+
+ : RWCString
+ : RWCString

- : RWTime
- : RWTime
- : RWCString
- : RWCString
- : EcTInt
- : RWCString
- : RWCString
- : RWTValSlist<RWCString>
- : EcTInt
- : EcTInt
- : RWCString
- : RWCString
- : RWTime
- : RWCString
- : RWCString
- : RWTValSlist<RWCString>
- : RWTValSlist<RWCString>

+
+
+
+

+
+ : EcTFloat

+
+
+ : PlPge*

+ : catalogue:char*
+ : RWCString:DefProductName
+ : RWCString:DefPGEName

- : RWTValSlist<RWCString>
- : RWCString
- : RWTValSlist<RWCString>
- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : enum
- : EcTInt
- : RWCString

+ : PlPGE
+ : PlPGE
+ : void
+ : void
+ : void
+ : void {abstract}
+ : void
+ : void

- : enum
- : EcTInt
- : PlDataTypeReq
- : EcTBoolean
- : EcTBoolean
- : RWTime

+
+

- : RWTime
- : RWTime
- : RWCString
- : RWCString
- : RWTValSlist<RWCString>
- : PlDPR&
- : RWTValSlist<RWCString>
- : RWCString
- : RWTime
- : EcTInt
- : RWCString

+ : EcTVoid
+ : Boolean
+ : EcTVoid
+ : RWCString
+ : RWTValSlist<RWCString>
+
+ : RWCString
+ : RWTime
+ : RWTValSlist<RWCString>
+ : EcTVoid
+ : PlDPR
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : void

stores requests in

checks

output

submits
subscriptions

using

output

created by
input

displays

creates

displays

matches

populates

performs

requests

input

is made
up of

&)

PlSubscriptionSubmitIF

DataTypeSelectionWindow
SubscriptionSubmissionControl

DisplayDataTypes()
SelectDataType()
WithdrawSubscription()
SubmitSubscription()
Initialize()

-
-

+
+
+
+
+

[Boundary]

4-10
305-C

D
-026-002

PlDataSourceFactory

PlDataSourceFactory()
~PlDataSourceFactory()
Create(const RWCString &)

+
+
+ : PlDataSource *

Figure 4.2-2. Production Request View

4.2.3 Subscription Submission View

This view (Figure 4.2-3) describes the classes used during the generation, submission and
withdrawal of Subscriptions for the notification of data arrival. The diagram essentially describes
the key components of the subscription submission application.

The classes that are introduced in this model are:

• 	 PlSubscriptionSubmitIF: This class is an abstraction for the user interface to the
subscription submission application. The interface will be developed with a suitable GUI
builder tool. See Section 4.5.3 for a fuller description of this user interface.

•	 IoAdProductSearchCommand: This class is used to submit commands to the advertising
service.

• IoAdProductList: This list contains the results from a query on the advertising service.

• IoAdService: This is a pointer to a service on a product within ECS.

•	 DsClSubscription: This class is used to register and withdraw subscription in the Data
Server. The constructor for this class is overloaded to permit the specification of the
callback queue on which the generator of the subscription is notified of events which fulfill
the subscription.

•	 PlDataType: The status of the subscription is recorded within the planning Data Type
abstraction through modification of the subscription flag attribute.

The interactions of these classes are described within the following scenarios:

• 4.4.3 Subscription Submission

• 4.4.4 Subscription Withdrawal

4-11 305-CD-026-002

4-12
305-C

D
-026-002

DsClSubscription

DsClSubscription(Advertisement&, userinfo, DsClSubsriptionCollector&, CallbackQ)
Submit
Withdraw

PlSubscriptionSubmitIF

DataTypeSelectionWindow
SubscriptionSubmissionControl

DisplayDataTypes()
SelectDataType()
WithdrawSubscription()
SubmitSubscription()
Initialize()

PlDataTypeB

EcPfClient

IoAdProductSearchCommand

IoAdProductList

IoAdProduct

IoAdProvider IoAdService

myDescription
myArchiveCenter
myName
myCatalogueCatagory
myDServURString
myDynamicFlag
myESDTParmList
myInstrumentName
myNominalSize
myQASubscription
mySatelliteName
myUsedByCenter
myDataTypeId
myProcessingCenter
mySubscriptionFlag
myProvider
mySpatialFlag
myService

RegisterDataArrival()
InstallReceiver()
FindDataAvailability(RWTime Start,RWTime Stop)
InspectDataArrival()
MatchDataArrival()
PlDataType()
PlDataType(RWCString:DataTypeId)
~PlDataType()
Submit()
Withdraw()
QueryDATRecords(RWTime: StartTime, RWTime: StopTime, RWTlistSval<PlDATRecords>)
GetAdService(EcUtStatus

[Boundary]

-
-

+
+
+
+
+

[Boundary]

[PERSISTENT CLASS]

Offpage

Offpage

Offpage

Offpage

Offpage Offpage

- : RWCString
- : RWCString
- : RWCString

- : RWCString
- : EcTBoolean
- : GlParameterList
- : RWCString
- : EcTFloat
- : EcTBoolean
- : RWCString
- : RWTValSlist<RWCString>
- : RWCString
- : RWCString
- : EcTBoolean = EcDFalse
- : RWCString
- : EcTBoolean = EcDFalse
- : RWCString

+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : PlDataType
+ : PlDataType
+
- : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : IoAdService *

creates

updates

is used to interface
to the Advertising Service by

provides

is provided by has

uses

&)

[Public]

Figure 4.2-3. Subscription Submission View

4.2.4 Production Planning View

This view (Figure 4.2-4) describes the classes used in the creation and management of plans. The
design presented here for a number of key classes is at a high level of abstraction. This level of
abstraction is offered to explain the design without going into detail about the planning framework
(Delphi) which supports the plan generation. The planning framework within the Production
Planning CSCI is documented in detail within the Planning Object Library CSC, Section 4.5.5.
That section contains object models, class descriptions and scenarios for the framework and maps
the objects used in framework to the abstractions presented here.

The diagram introduces the following key classes:

•	 PlPlanningWorkbenchUI: This class is an abstraction for the user interface to the planning
workbench application. The interface will be developed with a suitable GUI builder tool.

•	 PlPlan: This class represents an abstraction for a production plan. The class describes the
metadata that will be stored for a plan within the PDPS database. The operations shown are
an abstraction for those used within the planning framework.

•	 PlResourceManager: This class represents an abstraction for the resource management
capabilities used when generating a plan, describing the operations required to match
resource requirements of an activity to the available resources, and to allocate the resource
for the activity.

•	 PlResourceRequirement: This class describes the resource requirements for a task. These
requirements may then be matched against the actual resources available.

•	 PlActivity: This class describes an item within a plan. The activity class is a base class
within a specialization hierarchy describing the different activities which occur in the
production plan.

•	 PlPGEActivity: This class is a specialization of the PlActivity class. The class describes a
Data Processing Request - a run of a PGE - within the plan.

•	 PlProdStratNB: This class contains the production strategies used to assign priorities to
jobs when producing a production plan.

•	 PlGroundActivity: This class is a generalization of the PlActivity class. The class describes
a Ground Event within the plan.

•	 PlGroundEvent: This class describes a Ground Event which is recorded in the PDPS
database. A Ground Event marks the allocation of resources to some non-production task
such as maintenance.

•	 PlTimelineDisplay: This class describes the user interface component that represents the
graphical display of a plan. This will be implemented by a COTS or re-use component.

The interactions of these classes are described within the following scenarios:

•4.4.5 Plan Creation

•4.4.12 Deleting a Plan

•4.4.6 Assigning a Priority to an Activity

4-13 305-CD-026-002

4-14
305-C

D
-026-002

PlDPRB

PlActivity

PlPGEActivityPlGroundActivity
PlGroundEvent

PlPlanB

PlPlanningWorkbenchUI

PlProductionRequestB

PlGroundEvents
PlDPRs

PlResourceRequirement

PlPlanGenerationUIB

PlTimeLineDisplay

PlResourceManager

myString
myComputer
myOperatingSystem
myNCPUs
myDiskSpace

PlResourceRequirement()
~PlResourceRequirement()

Delete(PlGroundEvent: event)
Add(PlGroundEvent: event)
Next()
First()
SelectEvents(Interval)

PlDPRs()
~PlDPRs()
Delete(PlDPR: dpr)
Add(PlDPR: dpr)
Next()
First()
SelectDPRs(Interval)

myPriority
myPredictedStop
myPredictedStart

Schedule()
Cancel()
Status()
Modify()

MatchResourceRequirement(PlResourceRequirements)
AllocateResources(PlResource: Resource, PlActivity: Activity)
DeallocateResources(PlResource: Resource, PlActivity: Activity)

DelPRfromPlan(PlProductionRequest: PR)
AddPRtoPlan(PlProductionRequest: PR)

NewPlan()
SelectPlan()

PlProdStratNB

PlDataGranule

PlFile
myAllocationTime
mySize

PlGroundEventExecutable
myScriptName
myActualStartTime
myActualStopTime

Schedule()

myExclusiveOrShared

PlImportedActivity

PlDataDependencies
myDataTypeId
myStartTime
myStopTime

myPlansDisplayed

DisplayPlan(PlPlan &)

ProductionSchedulerCommands()
SelectEntryScreen()
CreateTargetDateReport()
PlanQueryNB(RWCString)
DisplayQueryResultsNB()
DisplayInspectResultsNB()
AddPlanNB(GlUR &)

myName
myDescription
myPriority
myDuration
myWinEndTime
myWinStartTime
myTemplateFlag

PlGroundEvent()
~PlGroundEvent()
Create()
Delete()
Cancel()
Modify()
Status()
Schedule()

EcPfClient

PlRescUseThreshNB
myPercentResources
myResourceType
myCumulative

PlRescUseThreshNB()
CheckThreshold(PlOnDemandPRNB &)

SelectProdStrat(RWCString: ProdStrat)

myProdStratId
myPGEWeight
myUserWeight
myAgingDelta
myInterDAACDelta
myUserSelectedPriorityWeight
myPRTypeWeight

AssignPriorityToActivity(PlActivity &)

DisplayPopUp()

myActiveStatus
myPlanName
myDescription
myStartTime
myProdStrat
myEndTime

Publish(RWTime, RWTime)
Publish(RWTvalSlist<PlProductionRequest>)
Publish(RWTvalSlist<PlPGE>)
Publish()
UpdatePlan()
PlanSchedule()
PlPlan()
PlPlan(PlExportedPlanNB &)
PlanProductionRequest(PlProductionRequest: PR)
UnplanProductionRequest(PlProductionRequest: PR)
DeletePlan()
IdentifyDataDependencies()

myDataGranuleId
myDataTypeId
myStopTime
myStartTime
myTileId
myESDTParmVals
myUR
myAvailability
myActualAvailability
myBaselineTime
myPredictedStagingTime
myPredictedAvailability

PlDataGranule()
~PlDataGranule()
Create(RWTime:start, RWTime:stop)
RegisterAvailability(EcUrUR:instUR, GlParameterList: instESDTParmVals)
FindAssociatedDPRs()
PredictStagingTime()
GetAvailability()
DeleteDummyGranule(RWCString:myDataGranuleId)

myActualStartTime
myBaselineTime
myCompletionState
myDprId
myInputDataInstanceList
myNextConditionalDPR
myOutputDataInstanceList
myPgeId
myPredictedStartTime
myPriority
myProductionRequestId

Cancel()
CheckAvailability()
CheckPredictedAvailabilityNB()
GetCommandString(RWCString:DataType)
GetInputGranuleList()
GetLogicalId(RWCString:DataType)
GetMyPGEType()
GetMyTimer()
GetOutputGranuleList()
Modify()
PlDPR(RWCString:DprId)
Release()
Schedule()
Status()
~PlDPR()

PlGroundEventAllocation

[Public][Boundary]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

OffpageOffpage

[Public][Boundary]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[Boundary]

[Public]

Offpage[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

- : String
- : String
- : String
- : int
- : int

+ : PlResourceRequirement
+ : void

+ : void
+ : void
+ : PlGroundEvent
+ : PlGroundEvent
+ : void

+ : PlDPRs
+ : void
+ : void
+ : void
+ : PlDPR
+ : PlDPR
+ : void

- : EcTInt
- : RWTime
- : RWTime

+ : void {abstract}
+ : void {abstract}
+ : void {abstract}
+ : void {abstract}

+ : PlResource
+
+

+ : void
+ : void

+ : void
+ : void

[PERSISTENT CLASS]

[PERSISTENT CLASS]

-
-

[PERSISTENT CLASS]

- : RWCString
- : RWTime
- : RWTime

+

- : enum

Offpage

- : RWCString
- : RWTime
- : RWTime

- : RWCollectableString<PlPlanId>

+ : void

+
+
+
+
+
+
+

- : String
- : String
- : int
- : Time
- : Time
- : Time
- : Boolean = False

+ : PlGroundEvent
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void

Offpage

[PERSISTENT CLASS]

- : EcTFloat
- : EcTInt
- : EcTInt

+ : PlRescUseThreshNB
+ : Boolean

- : RWCString
- : EcTFloat
- : EcTFloat
- : EcTInt
- : EcTInt
- : EcTFloat
- : EcTFloat

+

- : EcTBoolean = False
- : RWCString
- : RWCString
- : RWTime
- : RWCString
- : RWTIme

+ : EcTVoid
+
+
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

- : RWCString
- : RWCString
- : RWTime
- : RWTime
- : RWCString
- : GlParameterList
- : EcUrUR
- : EcTBoolean
- : RWTime
- : RWTime
- : RWTime
- : RWTime

+ : PlDataGranule
+
+ : void
+ : void
+ : PlDPRs
+ : RWTime
+ : EcTBoolean
+

- : RWTime
- : RWTime
- : RWCString
- : RWCString
- : RWTValSlist<RWCString>
- : PlDPR&
- : RWTValSlist<RWCString>
- : RWCString
- : RWTime
- : EcTInt
- : RWCString

+ : EcTVoid
+ : Boolean
+ : EcTVoid
+ : RWCString
+ : RWTValSlist<RWCString>
+
+ : RWCString
+ : RWTime
+ : RWTValSlist<RWCString>
+ : EcTVoid
+ : PlDPR
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : void

is required by

uses to
manage

resources

has a

is broken up
into individual

is a
planned

when planned is

bases priorities on

input

output

simulates stroage of

contains

is created using
1+

may have

selects for planning

determines
priority

of
constructs

placeholders
for On-demand PRs
using the cumulativeplaceholders

for on-demand
jobs created using

selects

[Public]
[Public]

Figure 4.2-4. Production Planning View

4.2.5 Production Planning User Interface View

This view (Figure 4.2-5) describes the user interface classes associated with the Production
Planning Workbench. The view is a continuation from the Production Planning Workbench view,
presented separately to reduce the complexity of the Workbench diagram. There are a number of
new capabilities in Release B that require operator input including production strategies, On
Demand resource usage thresholds and limited automatic replan thresholds.

The diagram introduces the following key classes:

•	 PlRescUseThreshNB: This class controls the amount of resource that an on-demand
production request can use without being deferred.

•	 PlProdStratNB: This class contains the production strategies used to assign priorities to
jobs when producing a production plan.

• PlPGEPriorityNB: This class ties a PGE to a priority; it is used in the production strategies.

•	 PlUserPriorityNB: This class ties a user type to a priority; it is used in the production
strategies.

•	 PlPRPriorityNB: This class ties a production request type to a priority; it is used in the
production strategies. These 'types' can be DAAC defined; in addition to routine,
reprocessing and on-demand production request types, an operator can add such types as
'Rush job', 'Customer Complaint' or 'Low priority'.

• PlReplan Criteria: This is an abstract base class for criteria for replan notification.

•	 PlDASDifferent: This class is used to compare a newly-received DAS or PDAS to the
previous one of the same type.

•	 PlDASDelta: This list of the maximum acceptable delta times for each data type used for
determining when to replan.

•	 PlResourceChange: This class is used to compare an old resource plan with the current
resource plan.

•	 PlOnDemandExceed: This class checks each On-demand Production Request (OPR)
against a number of limited automatic replan resource thresholds to determine if the
operator should be notified that a replan should be considered.

•	 PlOnDemandReplanValues: The resource usage thresholds for replan notification - one
per resource type (CPU, disk space, etc.).

This view groups together a number of configuration items that are entered in through the Planning
Workbench GUIs. Each of the non-GUI classes appear in other object models and their events
traces are listed there.

4-15 305-CD-026-002

PlPlanningWorkbenchUI

PlEntryScreenNB

ConfirmCreate()
ConfirmModify()

ConfirmDelete()

PlRescUseThreshUINB

PlRescUseThreshNB

PlProdStratUINB

PlProdStratNB

Add()
Delete()
Modify()
Select()

PlPGEPriorityNB PlUserPriorityNB PlPRPriorityNB

Cut()
Copy()

Paste()

Modify()
Add()
Delete()
Modify
Select()

ThreshDescWindow

WeightDescWindow
PGEPriorityDescWindow
UserPriorityDescWindow
PRTypePriorityDescWindow

PlReplanCriteriaUI

Modify()

PlReplanCriteria

PlDASDifferent

PlOnDemandExceed

PlResourceChange

myAutoReplanYN
myReport
myCheckThisYN

CheckReplan()
AddToReport()
NotifyOperator()

myTimeFrame

CheckReplan(??)
AddToReport(PlGroundEvent &)

myPriority
myType

GetPriority(PlDPR &)

myPriority
myUserType

GetPriority(PlDPR &)

myPGE
myPriority

GetPriority(PlDPR &)

ProductionSchedulerCommands()
SelectEntryScreen()

myPercentResources
myResourceType
myCumulative

CheckThreshold(PlOnDemandPRNB &)

PlDASDelta

myDataTypeId
myDelta

GetDelta(RWCString)

myTimeFrame

CheckReplan(PlDataAvailabilityTimes &, PlDataAvailibilityTimes &)
AddToReport(PlDataGranule &, PlDPR &, RWTime)

myDefaultToThresh

CheckReplan(PlOnDemandPRNB &)
AddToReport(EcTFloat, EcTFloat, EcTInt)

myPGEWeight
myUserWeight
myAgingDelta
myInterDAACDelta
myUserSelectedPriorityWeight
myPRTypeWeight

AssignPriorityToActivity(PlActivity &)

EcPfClient

[Boundary]

+
+

+

[PERSISTENT CLASS]

[PERSISTENT CLASS]

+
+
+
+

[PERSISTENT CLASS] [PERSISTENT CLASS] [PERSISTENT CLASS]

+
+

+

+
+
+
+
+

-

-
-
-
-

+

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

- : EcTBoolean = False
- : RWCString = EcNULL
- : EcTBoolean = False

+ : EcTBoolean
+ : RWCString
+ : EcTVoid

[PERSISTENT CLASS]

- : RWTime

+
+ : RWCString

- : EcTInt
- : RWCString

+ : EcTInt

- : EcTInt
- : RWCString

+

- : RWCString
- : EcTInt

+

+
+

- : EcTFloat
- : EcTInt
- : EcTInt

+ : Boolean

[PERSISTENT CLASS]

- : RWCString
- : RWTime

+ : RWTime

- : RWTime

+ : EcTBoolean
+ : RWCString

- : EcTBoolean = False

+ : EcTBoolean
+ : RWCString

- : EcTFloat
- : EcTFloat
- : EcTInt
- : EcTInt
- : EcTFloat
- : EcTFloat

+

Offpage

displays

displays

displays

4-16
305-C

D
-026-002

PlOnDemandReplanValues

myReplanValue
myResourceType
myCumulative

- : EcTInt
- : enum
- : EcTBoolean

CompareThreshold(PlOnDemandPRNB &)+ : EcTBoolean

Figure 4.2-5. Production Planning User Interface View

4.2.6 Publishing Plans View

This view (Figure 4.2-6) describes the classes used in the publishing of plans to the Data Server
and the retrieving and displaying of plans from remote DAACs.

The diagram introduces the following key classes:

•	 PlPlanningWorkbenchUI: This class is an abstraction for the user interface to the planning
workbench application. The interface will be developed with a suitable GUI builder tool.

•	 PlPlan: This class represents an abstraction for a production plan. The class describes the
metadata that will be stored for a plan within the PDPS database. The operations shown are
an abstraction for those used within the planning framework.

•	 PlPublishedPlan: This class represents the files published to the Data Server that represent
a published plan.

•	 PlPlanMetadataFile: This is the information stored in the Data Server that can be queried
when searching for the published plans.

•	 PlPlanBinaryReportFile: A representation of a plan designed to be read by office
automation tools.

• PlPlanASCIIReportFile: A representation of a plan designed to be human-readable.

•	 PlExportedPlan: A representation of a plan that is designed to be passed between Planning
Subsystems for InterDAAC planning. In addition to have a record for each activity in a
plan, it will also have records for any inter-DAAC dependencies within the plan.

•	 PlActivity: This class describes an item within a plan. The activity class is a base class
within a specialization hierarchy describing the different activities which occur in the
production plan.

•	 PlImportedActivity: This class is a specialization of the PlActivity class. The class
describes an activity from a plan imported from a remote DAAC.

•	 PlDataDependencies: This class describes any inter-DAAC dependencies within an
imported Plan.

•	 PlTimelineDisplay: This class describes the user interface component that represents the
graphical display of a plan. This will be implemented by a re-use component.

The interactions of these classes are described within the following scenarios:

• 4.4.8 Importing a Plan from the Data Server

• 4.4.7 Publishing a Plan

4-17 305-CD-026-002

Offpage

4-18
305-C

D
-026-002

PlActivity

PlPlanB

PlPlanningWorkbenchUI

PlPlanGenerationUIB

PlTimeLineDisplay

PlPublishedPlan

PlPlanMetadataFile
PlPlanASCIIReportFile

PlPlanBinaryReportFile

myDataSets
myDescription
myForecast
myEndDay
myStartTime
myDAAC

InsertInDDS()

DsClRequest

DsClCommandGlParameterList

DelPRfromPlan(PlProductionRequest: PR)
AddPRtoPlan(PlProductionRequest: PR)

NewPlan()
SelectPlan() AddPlanNB(GlUR &)

PlExportedPlanNB

ProductionSchedulerCommands()
SelectEntryScreen()
CreateTargetDateReport()

myPlansDisplayed

DisplayPlan(PlPlan &)

myActivityId
myPriority
myPredictedStop
myPredictedStart

Schedule()
Cancel()
Status()
PlActivity()
PlActivity(RCWString, RWTime, RWTime, EcTInt)
Modify()

Write(RWTValSlist<PlActivies>)

Write(RWTvalSlist<PlActivities>)

Import()
Export(RWTvalSlist<PlActivities>)

DmLmClRequestServer

PlanQueryNB(RWCString)
DisplayQueryResultsNB()

GlCallback

DisplayInspectResultsNB()

PlImportedActivity

PlDataDependencies

DsClESDTReferenceCollector

myActiveStatus
myPlanName
myDescription
myStartTime
myProdStrat
myEndTime

Publish(RWTime, RWTime)
Publish(RWTvalSlist<PlProductionRequest>)
Publish(RWTvalSlist<PlPGE>)
Publish()
UpdatePlan()
PlanSchedule()
PlPlan()
PlPlan(PlExportedPlanNB &)
PlanProductionRequest(PlProductionRequest: PR)
UnplanProductionRequest(PlProductionRequest: PR)
DeletePlan()
IdentifyDataDependencies()

PlActivities

PlActivities()
~PlActivities()
SelectActivatedActivities()
Delete(PlActivity: activity)
Add(PlActivity: activity)
Next()
First()
SelectActivities(Interval: interv)

EcPfClient

myStopTime
myStartTime
myTileId
myTypeDependency
myDataTypeId

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[Boundary]

[Boundary]

- : String
- : String
- : int
- : Time
- : Time
- : String

+ : void

Offpage

OffpageOffpage

+ : void
+ : void

+ : void
+ : void +

+
+
+

- : RWCollectableString<PlPlanId>

+ : void

- : RWCString
- : EcTInt
- : RWTime
- : RWTime

+ : void {abstract}
+ : void {abstract}
+ : void {abstract}
+ : void
+
+ : void {abstract}

+

+

+
+

Offpage

+
+

Offpage

+

Offpage

Offpage

- : EcTBoolean = False
- : RWCString
- : RWCString
- : RWTime
- : RWCString
- : RWTIme

+ : EcTVoid
+
+
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

+ : void
+ : void
+ : void
+ : void
+ : void
+ : PlActivity
+ : PlActivity
+ : void

- : RWTime
- : RWTime
- : RWCString
- : EcTChar
- : RWCString

contains

is published using

uses when constructing
ACQUIREs

used
to INSERT

and ACQUIRE
plans

is used when
constructing
INSERT and

ACQUIRE commands

ACQUIREs plans using

QUERIES for plans
from other DAACs using

uses to get
callback from query

and acquires

used for
callbacks from
INSERT and

may have

uses to perform
INSERT and
ACQUIREs

used for QUERIES and ACQUIRES

used
for

ACQUIREs

is contained in a

Figure 4.2-6. Publishing Plans View

4.2.7 Resource Planning View

This view (Figure 4.2-7) describes the classes used during the submission of a resource reservation
and the subsequent allocation and planning that takes place. The view is a continuation from the
Production Planning Workbench view, presented separately to reduce the complexity of the
Workbench diagram.

The following key classes are introduced:

•	 PlRpResourcePlanningUI: This class provides the methods to support the user interface for
defining, reviewing, committing resource reservations and defining and reviewing the
resource configuration.

•	 PlRpResourceTimeline: This class provides the methods to graphically display the
approved resource reservations and conflicts.

•	 PlRpResourcePlan: This collection of approved resource reservations defines the resource
plan.

•	 PlRpPublishedPlan: This class provides the same interface to the Data Server as does the
production plan. There are two forms: ASCII and binary.

•	 PlRpResourceReservationPool: This class manages the pool of resource reservation
objects.

•	 PlRpResourcePool: This class manages the configurable pool of hardware resource
objects.

•	 PlRpResourceReservation: This base class describes a resource reservation and the
methods for validating, committing, approving, detecting conflicts, and transitioning
between the various states a reservation must go through.

•	 PlRpResource: This base class describes a resource and provides methods for allocating
the resource.

• PlRpResourceState: This class captures the allocation of a resource to a reservation.

•	 PlRpActivityType: This class is made up of a set of activity types (production, ground
events, etc.). The types may include known activities such as production so that a
reservation may be made for production.

•	 PlRpExecutable: This class defines an executable that may be run either before or after the
reservation activity (e.g. a script to do something prior to a software upgrade).

•	 PlRpComplexResourceReservation: This class describes a repetitive resource reservation
and generates many reservations when exploded.

•	 PlRpService: This class describes a logical resource which may be required by a PGE in
production planning (e.g. a Data Server)

•	 PlRpPlatform: This class defines a computer and is derived from PlRpResource. It is made
up of CPUs and disks.

• PlRpDiskPartition: This class defines a disk and is derived from PlRpResource.

•	 PlRpSubNetwork: This class defines a subnetwork component and is derived from
PlRpResource.

4-19 305-CD-026-002

•	 PlRpString: This class defines a collection of platforms that are allocated to a particular
instrument team.

• PlRpCPU: This class defines a CPU and is derived from PlRpResource.

•	 PlRpDevice: This class defines a storage device such as a tape drive and is derived from
PlRpResource.

The interactions of these classes are described in the following scenario

• 4.4.22 Entering and Approving a Resource Reservation Scneario

• 4.4.23 Creating a Resource Plan

• 4.4.24 Committing a Resource Plan

4-20 305-CD-026-002

4-21
305-C

D
-026-002

PlRpResourceReservation

PlRpResource

PlRpComplexResourceReservation

PlRpPlatform

PlRpCPU

PlRpDiskPartition PlRpSubNetwork

PlRpDevice

PlRpActivityType

myActivityName

PlRpResourceReservationPool

PlRpResourcePool

PlRpResourceState

myID

myReservationPtr
myResourcePtr
myStartTime
myStopTime

Overlap

PlRpString

PlRpService

PlRpResourcePlan

PlRpResourcePlanningUI

PlRpResourceTimeline

PlRpPublishedPlan

Baseline Manager

COTS

EcMdDBInterface

PlRpExecutable

myFilename

myFrequency

Explode()

myPlatformList

myDiskList
myCPUs
myPerProcessRam
myTotalRam
myOperatingSystem
myMaxDiskSpace

myPartitionSize
myBlockSize
mySysAllocation
myUserAllocation

Review/commit/Modify Reservation List()
Define/Edit Resource Config()
Review/Edit Reservation()
GenerateActualsReport(RWTime Start,RWTime Stop)
CreatePlan(RWTime Start,RWTime Stop)
BuildConfiguration()

Display Conflicts()
Display Timeline()

myStartTIme
myEndTime
myPlanName
myDescription

Publish(RWTValSlist<PlRpResourceState>)

myFilename

InsertInDDS()

PlResource

PlGroundEvent

PlGroundEventExecutable

ApplQuery(RWCString)

myResourceList
myActivity
myState
myOriginator
mySponsor
myActivityDescription
myStartDayTime
myEndDayTime
myReservationId
myPriority
myActivityComments
myActualStartTime
myActualStopTime
myExclusive

AddToPool(PlRpResourceReservation &)
InitializePool(RWTime: Start, RWTime: Stop, EcTBoolean: CommitOnly)
InitializePool()
TransitionTo(PlRpEState)
Commit()
CommitAll()
Delete()
ExtractActuals()
DetectConflicts()
Validate(EcTBoolean: valid)
Modify()
CompareToPDPS()
Approve()

myName
myType
myID
myComments
myDefaultActivity
myStateList

InitializePool()
Allocate(PlRpResourceRequest *: Req)
DetectConflict(RWTime: Start, RWTime: Stop, PlRpResourceRequest * Conflict)
BuildConfiguration()
CompareToPDPS()
Deallocate(PlRpResourceRequest *:Req)

[Boundary]

[PERSISTENT CLASS]

[Boundary]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

Offpage[PERSISTENT CLASS]

[PERSISTENT CLASS] Offpage[PERSISTENT CLASS]

Offpage[PERSISTENT CLASS]

[PERSISTENT CLASS]

Offpage

Offpage

[PERSISTENT CLASS]

[PERSISTENT CLASS]

Offpage[PERSISTENT CLASS]

[PERSISTENT CLASS]

[Boundary]

Offpage

[PERSISTENT CLASS]

Offpage[PERSISTENT CLASS]

[Public][Boundary]

Offpage[PERSISTENT CLASS]

Offpage[PERSISTENT CLASS]

requests

is represented
in a resource

plan by

represents
a non-default

activity
on

is used to retrieve actual
start and stop times for

1+

is displayed by

in the PDPS
database is
updated by

is used
to initialize

in the PDPS
database is
updated by

in the PDPS
database is
updated by

may be used by

list activity types for

Figure 4.2-7. Resource Planning View

4.2.8 Resource Management View

This view (Figure 4.2-8) describes the classes used in the description of the production resource
configuration. Resource Planning provides the planning subsystem with resource configuration
information as described in the Committing a Resource Plan Scenario, Section 4.4.24. This
information is used when producing plans, as presented in the Production Planning Workbench
view. The details for how the resource configuration is integrated into the framework for the
production planning workbench are presented in Section 4.5.4.

The diagram introduces the following key classes:

•	 PlResource: This class is the base class in a generalization hierarchy describing the
production resources.

•	 PlString: A string describes the logical collection of a number of resources allocated for an
instruments processing needs.

• PlComputer: This class describes the production computers

•	 PlServices: This class describes generic services provided by other subsystems within ECS,
such as Data Server and Ingest services

• PlNetwork: This class describes any communication networks or subnetworks

• PlDiskPartition: This class describes the disk resources for data production.

The interactions of these classes are described in the following scenario

• 4.4.24 Committing a Resource Plan

4-22 305-CD-026-002

4-23
305-C

D
-026-002

PlComputerPlString PlDiskPartition

PlResourcePlResourceManager

myDiskList
myCPUs
myPerProcessRam
myTotalRam
myOperatingSystem
/ myMaxDiskSpace

PlComputer()
~PlComputer()
AddDisk(PlDisk)
RemoveDisk(PlDisk)

myComputerList

RemoveComputer(PlComputer: Comp)
AddComputer(PlComputer: Comp)

MatchResourceRequirement(PlResourceRequirements)
AllocateResources(PlResource: Resource, PlActivity: Activity)
DeallocateResources(PlResource: Resource, PlActivity: Activity)

PlService PlNetwork

myDeviceID
myPartitionSize
myBlockSize
mySysAlloction
myUserAllocation

myID
myName

[PERSISTENT CLASS][PERSISTENT CLASS] [PERSISTENT CLASS]

[PERSISTENT CLASS]

- : List
- : int
- : int
- : int
- : String

/- : int

+ : void
+ : void
+ : void
+ : void

- : List

+ : void
+ : void

+ : PlResource
+
+

Offpage Offpage

- : String
- : int
- : int
- : int
- : int

- : int
- : String

Figure 4.2-8. Resource Management View

4.2.9 Plan Activation View

This view (4.2-9) again shows more detail for the Planning Workbench. It explicitly shows the
Data Processing subsystem interface.

The diagram introduces the following key classes:

•	 PlActivePlan: This class is the specialization of the PlPlan class and contains the methods
to manage the activation, canceling, and statesman of a plan.

•	 PlPlanB: This class represents an abstraction for a production plan. The class describes the
metadata that will be stored for a plan within the PDPS database. The operations shown are
an abstraction for those used within the planning framework.

•	 PlActivity: This class describes an item within a plan. The activity class is a base class
within a specialization hierarchy describing the different activities which occur in the
production plan.

•	 PlPDASRecords: The individual records that describe when a data granule that is being
produced at a DAAC is predicted to be completed.

• PlPDASMetaData: Describes the Planning Data Availability Schedule (PDAS) records

• PlDPRB: This class describes an individual run of a PGE.

•	 PlGroundEvent:This class describes a Ground Event which is recorded in the PDPS
database. A Ground Event marks the allocation of resources to some non-production task
such as maintenance.

The interactions of these classes are described in the following scenario:

• 4.4.9 Plan Activation

• 4.4.11 Canceling a Plan

• 4.4.10 Statusing a Plan

4-24 305-CD-026-002

PlDPRB

PlActivity

PlActivePlan

PlPGEActivityPlGroundActivity

PlGroundEvent

PlPlanB

PlActivities

PlProductionPlannersUI

DpPrScheduler

CreateDprJob

GetDprJobStatus

ReleaseDprJob
UpdateDprJob

CancelDprJob
CreateGEvntJob
CancelGEvntJob

PlanSelectionWindow
SchedulingPeriod

ActivateSchedule()

PlActivities()
~PlActivities()
SelectActivatedActivities()
Delete(PlActivity: activity)
Add(PlActivity: activity)
Next()
First()
SelectActivities(Interval: interv)

myPriority
myPredictedStop
myPredictedStart

Schedule()
Cancel()
Status()
Modify()

PlGroundActivity()
PlGroundActivity(PlGroundEvent)
~PlGroundActivity()
Schedule()
Cancel()
Status()
Modify()

PlPGEActivity()
PlPGEActivity(PlDPR)
~PlPGEActivity()
Schedule()
Cancel()
Status()
Modify()

myName
myDescription
myPriority
myDuration
myWinEndTime
myWinStartTime
myTemplateFlag

PlGroundEvent()
~PlGroundEvent()
Create()
Delete()
Cancel()
Modify()
Status()
Schedule()

PlPDASFile

PlPDASMetaData PlPDASRecords

myNumRecords
myStartTime
myStopTime
myDAAC

DsClESDTReferenceCollectorDsClCommandDsClRequest

GlCallback

GlParameterList

ScheduledEndTime
ScheduledStartTime

PlActivePlan()
PlActivePlan(int: PlanID)
~PlActivePlan()
StatusSchedule()
CancelSchedule()
ActivateSchedule(Interval)
CreatePDAS(RWTvalSlist<PlActivity>)
ModifySchedule()

myDataTypeId
myStartTime
myStopTime
myTileId
myTimeCompleted

myActiveStatus
myPlanName
myDescription
myStartTime
myProdStrat
myEndTime

Publish(RWTime, RWTime)
Publish(RWTvalSlist<PlProductionRequest>)
Publish(RWTvalSlist<PlPGE>)
Publish()
UpdatePlan()
PlanSchedule()
PlPlan()
PlPlan(PlExportedPlanNB &)
PlanProductionRequest(PlProductionRequest: PR)
UnplanProductionRequest(PlProductionRequest: PR)
DeletePlan()
IdentifyDataDependencies()

myMetaDataFileName
myFileName

InsertToDSS()
PlPDASFile()

myActualStartTime
myBaselineTime
myCompletionState
myDprId
myInputDataInstanceList
myNextConditionalDPR
myOutputDataInstanceList
myPgeId
myPredictedStartTime
myPriority
myProductionRequestId

Cancel()
CheckAvailability()
CheckPredictedAvailabilityNB()
GetCommandString(RWCString:DataType)
GetInputGranuleList()
GetLogicalId(RWCString:DataType)
GetMyPGEType()
GetMyTimer()
GetOutputGranuleList()
Modify()
PlDPR(RWCString:DprId)
Release()
Schedule()
Status()
~PlDPR()

[Boundary]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

-
-

+

+ : void
+ : void
+ : void
+ : void
+ : void
+ : PlActivity
+ : PlActivity
+ : void

- : EcTInt
- : RWTime
- : RWTime

+ : void {abstract}
+ : void {abstract}
+ : void {abstract}
+ : void {abstract}

+ : PlGroundActivity
+ : PlGroundActivity
+ : void
+ : void
+ : void
+ : void
+ : void

+ : PlPGEActivity
+ : PlPGEActivity
+ : void
+ : void
+ : void
+ : void
+ : void

- : String
- : String
- : int
- : Time
- : Time
- : Time
- : Boolean = False

+ : PlGroundEvent
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void

[Boundary]

- : EcTInt
- : RWTime
- : RWTime
- : RWCString

OffpageOffpageOffpage

Offpage

Offpage

- : Time
- : Time

+ : PlActivePlan
+ : PlActivePlan
+ : void
+ : void
+ : void
+ : void
+ : void
+ : void

- : RWCString
- : RWTime
- : RWTime
- : RWCString
- : RWTime

- : EcTBoolean = False
- : RWCString
- : RWCString
- : RWTime
- : RWCString
- : RWTIme

+ : EcTVoid
+
+
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

- : RWCString
- : RWCString

+ : EcTStatus
+ : PlPDASFile

- : RWTime
- : RWTime
- : RWCString
- : RWCString
- : RWTValSlist<RWCString>
- : PlDPR&
- : RWTValSlist<RWCString>
- : RWCString
- : RWTime
- : EcTInt
- : RWCString

+ : EcTVoid
+ : Boolean
+ : EcTVoid
+ : RWCString
+ : RWTValSlist<RWCString>
+
+ : RWCString
+ : RWTime
+ : RWTValSlist<RWCString>
+ : EcTVoid
+ : PlDPR
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : void

contains

select activities using

creates

is a planned

is a planned

schedules in processing
is scheduled

in processing by

is created from

receives
callback

from
INSERT

used for INSERT

used
for

INSERT

used for
INSERT

holds
parameters
for INSERT

4-25
305-C

D
-026-002

[Public]

[Boundary] [Public] [External]

Figure 4.2-9. Plan Activation View

4.2.10 Subscription Manager View

This view (4.2-10) describes the classes used in the management of notification that a subscription
has been fulfilled. Note: in the implementation of Production Rules, the Subscription Manager
usese a number of object introduced in Section 4.2.1.

This view introduces the following key classes:

•	 PlSubscriptionManager: This class contains the main application methods associated with
the subscription manager application.

•	 PlSubMsgCb: Specialization class to provide the subscription manager callbacks to the
EcMpMsgCb in order to handle the callback chores.

•	 EcMpMsgCb: This class encapsulates the communication for message passing used for
subscription notifications.

•	 EcPfManagedServer: This class contains the external interfaces required by the Managed
process framework in order to activate the appropriate lifecycle services.

•	 EcUrUR: This class is constructed to provide a Universal Reference (UR) of the Data
Server subscription notification.

•	 DsClESDTReference: This class provides the subscription manager with services by which
to access the metadata associated with a Universal Reference.

•	 PlDataAvailabilityTimes: This aggregate class is composed of records with predictions of
data availability from other sources. It is created from either an FOS Detailed Activity
Schedule or from a Planning Data Availability Schedule received from another DAAC.

•	 PlDASDifferent: This class compares newly received FOS Detailed Activity Schedules
and Planning Data Availability Schedules to the previous one of the same type.

• PlDASDelta: This class defines the deltas for each data type.

The interactions of these classes are described within the following scenarios:

• 4.4.13Subscription Notification

• 4.4.14Subscription Notification with Spatial Based Input

• 4.4.15Subscription Notification with Alternate Inputs

• 4.4.17Limited Automatic Replan based on a New DAS

4-26 305-CD-026-002

[External]

PlDataGranule

PlDPRB

PlSubscriptionManager

DsClESDTReference

Inspect

PlSubMsgCb

EcMpMsgCb
EcUrUR

EcPfManagedServer

EcUrUR
~EcUrUR

DpPrScheduler
EcEvent

LogEvent

PlDataAvailabilityTimes

PlTimer

DsClQuery

DsClESDTReferenceCollector

DsQuery()
~DsQuery()

Search()

CreateGEvntJob(Event:PlGroundEvent)
CancelGEvntJob(Event:PlGroundEvent)
CreateDprJob(Dpr:PlDpr)
ReleaseDprJob(Dpr:PlDpr)

UpdateDprJob(Dpr:PlDpr)
GetDprJobStatus(Dpr:PlDpr)

CancelDprJob(Dpr:PlDpr)

DeinstallReceivers()

InstallReceivers()

PfShutdown(EcTAgMgmtLevel,EcTint:ShutdownReason,EcTint:GracefulFlag)
Start()

DsClESDTReference

Inspect

myMSSMgrPtr

~EcPfManagedServer()
PfStart()
EcPfManagedServer(a_argc:ECTInt,a_argv:EcTChar**,status:EcUtStatus)
PfExecShutdown(a_level:EcAgMgmtLevel)
PfShutdownMyself(a_level:EcAgMgmtLevel,a_event:EcAgEvent)
PfProcessEvent(a_event:EcAgEvent*,a_log_type:EcTAgLogType)
PfRegisterMetric(a_level EcAgMgmtLevel,a_perfmetric:EcAgPerfMetric*)
PfRegisterMetric(a_level EcAgMgmtLevel,a_faultmetric:EcAgFaultMetric*)
PfRegisterMetric(a_level:EcAgMgmtLevel,a_configmetric:EcAgConfigMetric*)
PfInit()

PfGetShutdownSeconds(a_level:EcTAgMgtmLevel)
PfShutdown(shutdownlevel:EcTAgMgmtLevel,EcTInt,EcTInt)

PfStartMonitoring()

PfStopMonitoring(EcTInt)

HandleCbMsg(Message, MessageClass, MessageLength, MessageId, ReplyMessageId,
SenderName)

myDataGranuleId
myDataTypeId
myStopTime
myStartTime
myTileId
myESDTParmVals
myUR
myAvailability
myActualAvailability
myBaselineTime
myPredictedStagingTime
myPredictedAvailability

PlDataGranule()
~PlDataGranule()
Create(RWTime:start, RWTime:stop)
RegisterAvailability(EcUrUR:instUR, GlParameterList: instESDTParmVals)
FindAssociatedDPRs()
PredictStagingTime()
GetAvailability()
DeleteGranule(RWCString:myDataGranuleId)

PlReplanCriteria

PlDASDifferent

PlDASDelta

myAutoReplanYN
myReport
myCheckThisYN

CheckReplan()
AddToReport()
NotifyOperator()

myTimeFrame

CheckReplan(PlDataAvailabilityTimes &, PlDataAvailibilityTimes &)
AddToReport(PlDataGranule &, PlDPR &, RWTime)

myDataTypeId
myDelta

GetDelta(RWCString)

PlPlanGenerationUIB

SelectActivePlan()

PlPopupMessage

Display()

EcMpMsgCb
~EpMpMsgCb

MyTimerStart
MyTimerExp

StartTimer(RWTime<myTimerNB>)
CancelTimer()

myStartTime
myStopTime
myProductOrigin

MakeDATFromPDASFile(RWTValSlist<PlDASFile>)
MakeDATFromFOSDASFile(RWTValSlist<PlFOSDASFile>)
RetrieveDATRecords(RWTValSlist<PlDATRecord>)

myType
myOrder
myPrimaryType
myAccepted
myTemporalFlag
myTimerNB

PlAlternateDataGranule()()
~PlAlternateDataGranule()()
GetTimerNB()()
UpdateTimerNB(RWTime:NewTime)
ChangeOrder(RWCString:DataGranuleId)

myActualStartTime
myBaselineTime
myCompletionState
myDprId
myInputDataInstanceList
myNextConditionalDPR
myOutputDataInstanceList
myPgeId
myPredictedStartTime
myPriority
myProductionRequestId

Cancel()
CheckAvailability()
CheckPredictedAvailabilityNB()
GetCommandString(RWCString:DataType)
GetInputGranuleList()
GetLogicalId(RWCString:DataType)
GetMyPGEType()
GetMyTimer()
GetOutputGranuleList()
Modify()
PlDPR(RWCString:DprId)
Release()
Schedule()
Status()
~PlDPR()

PlAlternateDataGranuleNB

[Public]

[PERSISTENT CLASS]

[Public][Boundary]

[PERSISTENT CLASS]

[Boundary]

[Boundary]

[External]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

+ : DpTPrReturnType
+ : DpTPrReturnType
+ : DpTPrReturnType
+ : DpTPrReturnType

+ : DpTPrReturnType
+ : DpTPrProcessingStatus

+ : DpTPrReturnType

+ : void

+ : void

+ : EcUtStatus
+ : EcUtStatus

- : EcAgManager*

+
+ : EcUtStatus
+
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus

+ : EcUtStatus

- : RWCString
- : RWCString
- : RWTime
- : RWTime
- : RWCString
- : GlParameterList
- : EcUrUR
- : EcTBoolean
- : RWTime
- : RWTime
- : RWTime
- : RWTime

+ : PlDataGranule
+
+ : void
+ : void
+ : PlDPRs
+ : RWTime
+ : EcTBoolean

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

- : EcTBoolean = False
- : RWCString = EcNULL
- : EcTBoolean = False

+ : EcTBoolean
+ : RWCString
+ : EcTVoid

- : RWTime

+ : EcTBoolean
+ : RWCString

- : RWCString
- : RWTime

+ : RWTime

+ : void

- : EcTBoolean
- : EcTBoolean

+ : EcUtStatus
+ : EcUtStatus

- : RWTime
- : RWTime
- : RWCString

+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus

- : enum
- : EcTInt
- : PlDataTypeReq
- : EcTBoolean
- : EcTBoolean
- : RWTime

+
+

- : RWTime
- : RWTime
- : RWCString
- : RWCString
- : RWTValSlist<RWCString>
- : PlDPR&
- : RWTValSlist<RWCString>
- : RWCString
- : RWTime
- : EcTInt
- : RWCString

+ : EcTVoid
+ : Boolean
+ : EcTVoid
+ : RWCString
+ : RWTValSlist<RWCString>
+
+ : RWCString
+ : RWTime
+ : RWTValSlist<RWCString>
+ : EcTVoid
+ : PlDPR
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : void

logs

matches corresponding

schedules Notification of arrival of granule

Notification of arrival of DAT

is used
to check
for replan

by

is used to
set timer on

alternate inputs

notifies Operator Using

initiates

4-27
305-C

D
-026-002

Figure 4.2-10. Subscription Manager View

4.2.11 Data Activity Times View

This view (4.2.11) shows the structure and methods of a DataActivityTimes object and the
precursor objects from which it constructs itself.

The key classes introduced within this model are:

•	 PlDATRecord: This class defines the component records of a PlDataAvailabilityTimes
schedule. It contains the predicted time range and associated information for the arrival of
each data granule.

•	 PlDataSchedules: This class is used for retrieving either a FOS DAS or a PDAS from the
data server.

•	 PlPDASFile: This class represents the file containing the Planning Data Availability
Schedule.

•	 PlPDASMetaData: This class contains the metadata information associated with the PDAS
to be retrieved from the data server.

•	 PlPDASRecords: This class contains records associated with the PDAS to be retrieved
from the data server.

•	 PlFOSDASFile: This class represents the file that contains the FOS Detailed Activity
Record.

•	 PlDASNB: This class contains the metadata information associated with the FOS DAS to
be retrieved from the data server.

•	 PlPEDASRecordNB: This class contains records associated with the FOS DAS to be
retrieved from the data server.

•	 PlPEDASModeRecordNB: This class contains the instrument mode records associated
with the FOS DAS to be retrieved from the data server.

•	 PlInstrumentModes: This aggregate class is composed of PlInstModeRecords. It is created
when a FOS Detailed Activity Schedule is received.

•	 PlInstModeRecords: This class defines the component records of a PlInstrumentModes
Schedule. It contains the predicted time range associated with the specified mode for a
particular instrument.

•	 PlDataTransferHistory: This class defines the methods for calculating the empirically­
derived estimate of the time it takes for a granule to be processed by either EDOS or another
DAAC until the time it is available on the data server.

•	 PlSourceToDsHistoryNB: This class contains historical data which is used to compute a
moving average of the delay times of each dataType subscribed to.

The interactions of these classes are described within the following scenario:

• 4.4.16 Data Availability Times

4-28 305-CD-026-002

Offpage Offpage Offpage

PlDATRecord

PlDataTranferHistory

PlSourcetoDsHistoryNB

PlDataGranule

PlDataAvailabilityTimes

PlInstModeRecords

PlDataSchedules

DsClESDTReferenceCollectorDsClCommandDsClRequest

GlCallback

GlParameterList

PlPDASFile

PlPDASMetaData
PlPDASRecords

PlFOSDASFile

PlDASNB

PlInstrumentModes

PlEDASModeRecordNB

myModeName
myInstrumentName
myModeStartTime
myModeStopTime
myDataRate
myRecordTerminator

PlEDASModeRecord()
~PlEDASModeRecord()

mySource
myMessageType
myScheduleStartTime
myScheduleStopTime
myNumDaysInFile
myRecordTerminator
myNumRecordsinFile

PlDASNB()
~PlDASNB()

myNumRecords
myStartTime
myStopTime
myDAAC

PlPDASMeteData()
~PlPDASMeteData()

myDataTypeId
myStartTime
myStopTime
myTileId
myTimeCompleted

PlPDASRecords()
~PlPDASRecords()

PlEDASRecordNB

myActivityRecordType
mySubsystemName
myEOCActivityID
myActivityStartTime
myActivityStopTime
myDataRates
myRecordTerminator

PlEDASRecordNB()
~PlEDASRecordNB()

myDataGranuleId
myDataTypeId
myStopTime
myStartTime
myTileId
myESDTParmVals
myUR
myAvailability
myActualAvailability
myBaselineTime
myPredictedStagingTime
myPredictedAvailability

PlDataGranule()
~PlDataGranule()
Create(RWTime:start, RWTime:stop)
RegisterAvailability(EcUrUR:instUR, GlParameterList: instESDTParmVals)
FindAssociatedDPRs()
PredictStagingTime()
GetAvailability()
DeleteDummyGranule(RWCString:myDataGranuleId)

myStartTime
myStopTime
myProductOrigin

MakeDATFromPDASFile(RWTValSlist<PlDASFile>)
MakeDATFromFOSDASFile(RWTValSlist<PlFOSDASFile>)
RetrieveDATRecords(RWTValSlist<PlDATRecord>)

myDataTypeId
myStartTime
myStopTime
myTileId
myPredictedAvailability

UpdateAvailabilityTime(RWTime)
MatchPlDataGranule()

CalculateMyMovingAverage(RWCString:myDataTypeId)
FindMyDataType(RWCString:myDataTypeId)

myModeName
myModeStartTime
myModeStopTime
myInstrumentName

UpdatInstModeStatus()

myScheduleStart
myScheduleStop

MakeModeScheduleFromDASoper5ation(RWTValSlist<PlFOSDASFile>)
FindAssociatedInstrument(RWCString:myInstrumentName)
RetrieveModeData(RWTValSlist<PlInstModeRecord>)

myFileName

GetDASfile(RWCString)

myMetaDataName
myFileName

PlFOSDASFile()
~PlFOSDASFile()

myMetaDataFileName
myFileName

InsertToDSS()
PlPDASFile()

myDataTypeID
myMovingAverageTime
myNumberOfEstimates
myStandardDeviation
myPrevTransferTimes
myLastPredictedArrival
myLastActualArrival

UpdateHistoricalInfo(RWTime)
AddLastArrivalTime(RWTime<myActualAvailability>)

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[Boundary]

Offpage

Offpage

[Boundary]

[PERSISTENT CLASS]

- : RWCStrimg
- : RWCString
- : RWTime
- : RWTime
- : EcTInt
- : RWTime

+ : PlEDASModeRecord
+

- : RWCString
- : RWCString
- : RWTime
- : RWTime

- : EcTInt
- : EcTInt

+ : PlDASNB

- : EcTInt
- : RWTime
- : RWTime
- : RWCString

+ : PlPDASMeteData
+

- : RWCString
- : RWTime
- : RWTime
- : RWCString
- : RWTime

+ : PlPDASRecords
+

- : RWCString
- : RWCString
- : RWCString
- : RWTime
- : RWTime
- : EcTInt
- : EcTInt

+ : PlEDASRecordNB
+

- : RWCString
- : RWCString
- : RWTime
- : RWTime
- : RWCString
- : GlParameterList
- : EcUrUR
- : EcTBoolean
- : RWTime
- : RWTime
- : RWTime
- : RWTime

+ : PlDataGranule
+
+ : void
+ : void
+ : PlDPRs
+ : RWTime
+ : EcTBoolean
+

- : RWTime
- : RWTime
- : RWCString

+ : EcUtStatus
+ : EcUtStatus
+ : EcUtStatus

- : RWCString
- : RWTime
- : RWTime
- : RWCString
- : RWTime

+ : EcUtStatus
+ : PlDataGranule

+ : RWTime
+ : EcUTStatus

- : RWCStrimg
- : RWTime
- : RWTime
- : RWCStrimg

+ : EcUtStatus

- : RWTime
- : RWTime

+ : EcUtStatus
+ : EcTBoolean
+

- : RWCString

+

- : RWCString
- : RWCString

+ : PlFOSDASFile
+

- : RWCString
- : RWCString

+ : EcTStatus
+ : PlPDASFile

- : RWCString
- : RWTime
- : EcTInt
- : EcTInt
- : RWTValSlist<RWTime>
- : RWTime
- : RWTime

+ : EcUtStatus
+ : EcUtStatus

receives
callback

from
Aquire

used for Aquire

used
for

Aquire

used for
Aquire

holds
parameters
for Aquire

is used to get

is used to predict data
availability at DSS

is used to construct instrument mode schedule

Updates
Arrival
Time

contains many

updates the availability of

from DSS DAS

4-29
305-C

D
-026-002

[Public]

Figure 4.2-11. Data Activity Times View

4.2.12 DBMS Proxy Agent View

This view (Figure 4.2-12) describes the classes used in the management of the lifecycle services
for the PDPS DBMS. This application is almost a template reuse of the MSS services for Proxy
Agents. For further details of the MSS agents and proxy agents refer to Release A CSMS
Management Subsystem Design Specification for the ECS Project.

4-30 305-CD-026-002

PlDBMSProxyAgent

EcPfManagedServer

PlDBMSProxyAgent()
Start()
PfShutdown()

[External]

Offpage

+
+
+

Figure 4.2-12. DBMS Proxy Agent View

4-31 305-CD-026-002

4.2.13 On-Demand Manager View

The On-Demand Manager view (Figure 4.2-13) describes the classes which are used by the
planning subsystem to check an On-Demand Production Request and ensure that it is eligible for
submission to the processing subsystem.

The key classes introduced within this model are:

•	 PlOnDemandManagerNB: This class is the manager for all On-Demand Product Requests
providing the capability to make modifications, provide status and cancel production
requests as necessary.

•	 PlOnDemandPRNB: This class is the specialization class which holds additional/modified
attributes and the operations needed for On-Demand Production Requests beyond those
found in the PlProductionRequestB and it's subclasses.

•	 PlRescUseThreshNB: This class is a table containing the resource usage thresholds for on­
demand production requests and the operation which compares the resource requirements.

•	 EcRequest: This is the global class used to maintain the current status of a request to make
that status available to any user needing to know the current status any given time.

•	 EcEvent: This object provides the event logging interface to the management system
subsystem.

•	 EcPfManagedServer: This class is the framework class for Managed Server Processes.
This class also provides the interface to the management system subsystem lifecycle
services.

•	 EcMpMsgCb: This class provides the callback notification for communications between
servers.

•	 PlSubscriptionSubmitIF: This class is an abstraction for the user interface to the
subscription submission application. The interface will be developed with a suitable GUI
building tool.

• PlReplanCriteria: This class is an abstract base class for the criteria for replan notification.

•	 PlOnDemandExceed: This class checks each On-Demand Production Request against a
number of limited automatic replan resource thresholds to determine if the operator should
be notified that a replan should be considered.

•	 PlOnDemandReplanValues: This class maintains the resource usage thresholds used for
determining if a replan notification is necessary - one per resource type .

•	 PlPlanGenerationUIB: This class is an abstraction for the user interface to the planning
workbench application.

The interactions of these classes are described within the following scenarios:

• 4.4.19 On-Demand Product Request Scenario (Processed)

• 4.4.21 On-Demand Product Request Scenario (Delayed)

• Limited Automatic Replan based on an On-Demand PR

4-32 305-CD-026-002

PlOnDemandManagerNB

EcPfManagedServerPlProductionRequestB

PlOnDemandPRNB

PlRescUseThreshNB

PlPGE

PlDPRB

DpPrScheduler

CancelGEvntJob()
CreateGEvntJob()
CancelDprJob()
UpdateDprJob()
ReleaseDprJob()
GetDprJobStatus()
CreateDprJob()

PlPRCollectionNB

ValidateOPR()
PlOnDemandPRNB()
~PlOnDemandPRNB()

myPGEName
myInputDataTypeList
myOutputDataTypeList
myInstrument
myTestOperational
myPGEVersion
myPlatform
myDefaultTimer
myNumCPUs

Delete()
UpdateVersion()
FindDataAvailability(Interval)
GenerateDPRs(PlProductionRequest)
PlPGE()
PlPGE(int PGEid)
~PlPGE()
Modify(TestOrOper:enum)

myCollectionID
myProductionRequests

Delete()
Add()
First()
Next()

EcRequest

PlReplanCriteria

PlOnDemandExceed

myDefaultToThresh

CheckReplan(PlOnDemandPRNB &)
AddToReport(EcTFloat, EcTFloat)

myPercentResources
myResourceType
myCumulative

PlRescUseThreshNB()

CheckThreshold(PlOnDemandPRNB &)

RequestCompleted(UR)

PlPlanGenerationUIB

SelectActivePlan()
SelectActivePlan(RWCString)
AddPRtoPlan(PlProductionRequest: PR)

myAutoReplanYN
myReport
myCheckThisYN

CheckReplan()
AddToReport()
NotifyOperator() PlSubscriptionSubmitIF

DataTypeSelectionWindow
SubscriptionSubmissionControl

DisplayDataTypes()
SelectDataType()
WithdrawSubscription()
SubmitSubscription()
Initialize()

myMSSMgrPtr

~EcPfManagedServer()
PfStart()
EcPfManagedServer(a_argc:ECTInt,a_argv:EcTChar**,status:EcUtStatus)
PfExecShutdown(a_level:EcAgMgmtLevel)
PfShutdownMyself(a_level:EcAgMgmtLevel,a_event:EcAgEvent)
PfProcessEvent(a_event:EcAgEvent*,a_log_type:EcTAgLogType)
PfRegisterMetric(a_level EcAgMgmtLevel,a_perfmetric:EcAgPerfMetric*)
PfRegisterMetric(a_level EcAgMgmtLevel,a_faultmetric:EcAgFaultMetric*)
PfRegisterMetric(a_level:EcAgMgmtLevel,a_configmetric:EcAgConfigMetric*)
PfInit()
PfGetShutdownSeconds(a_level:EcTAgMgtmLevel)
PfShutdown(shutdownlevel:EcTAgMgmtLevel,EcTInt,EcTInt)
PfStartMonitoring()
PfStopMonitoring(EcTInt)

myCumRescUse
myOnDemandPRs

Init()
Shutdown()
Status(OPRID)
Cancel(OPRID)
Modify(OPRID,OPR)
PlOnDemandManagerNB()
~PlOnDemandManager()
AddOPR(PlOnDemandPRNB &)
UpdateRescUse(rescTime)

RemoveOPR(PlOnDemandPRNB &)

EcMpMsgCb

EcEvent

ReturnUR()

SubmitSubscription()

myDataCollectionStartTime
myDataCollectionStopTime
myOutputDataType
myPGEIdentifier
myPriority
myUserTypeNB
myPRTypeNB
myDPRsNB
myNumDPRsToKeep
myNumDPRsToSkip
myPRCollectionNB
myDescription
myTargetDate
myRequestId
myRequesterId
myUsrParaList
myUsrParaValueList

RetrieveAllProdReq()
DefinePGERuns()
Modify(RWCString:Modfield, RWCString:ModVal)
PlProductionRequest((RWCString:Product, RWCString:PGE, RWTime:Start,
RWTime:Stop, ECTInt:Prior))
StoreProductionRequest(PlProductionRequestB)
CalculateResourceUsageNB(enum)

PlPopupMessage

Display()

~lRescUseThreshNB()

myActualStartTime
myBaselineTime
myCompletionState
myDprId
myInputDataInstanceList
myNextConditionalDPR
myOutputDataInstanceList
myPgeId
myPredictedStartTime
myPriority
myProductionRequestId

Cancel()
CheckAvailability()
CheckPredictedAvailabilityNB()
GetCommandString(RWCString:DataType)
GetInputGranuleList()
GetLogicalId(RWCString:DataType)
GetMyPGEType()
GetMyTimer()
GetOutputGranuleList()
Modify()
PlDPR(RWCString:DprId)
Release()
Schedule()
Status()
~PlDPR()

[Boundary]

[External]

[Public]

[PERSISTENT CLASS]

[DISTR OBJ]

[Public][Boundary]

[PERSISTENT CLASS]

[Public]

[PERSISTENT CLASS]

[Public][Boundary]

[PERSISTENT CLASS]

[External]

[PERSISTENT CLASS]

+
+
+

-
-
-
-
-
-
-

-

+
+
+
+
+

+
+

-

+
+

Offpage

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

-

+

-
-
-

+

+

+

+
+
+

-
-
-

+
+
+

[Boundary]

-
-

+
+
+
+
+

-

+
+
+
+
+
+
+
+
+
+
+
+
-
-

-
-

+
+

+
+
+
+

+
Offpage

Offpage

+

+

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

+
+
+
+

+
+

+

-
-
-
-
-
-
-
-
-
-
-

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

requests

compare
with

generates

composes

are managed by

Provides
Status

check
for need

for replan
notification

is initiated by

submits
subscriptions

using

notifies operator using

4-33
305-C

D
-026-002

PlOnDemandReplanValues

myReplanValue
myResourceType
myCumulative

-
-
-

CompareThreshold(PlOnDemandPRNB &)+

Figure 4.2-13. On-Demand Manager View

4.3 Production Planning Class Descriptions

4.3.1 DmLmClRequestServer Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The DmLmClRequestServer class has associations with the following classes:
Class: PlPlanningWorkbenchUI QUERIESforplansfromotherDAACsusing

4.3.2 DpPrScheduler Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

DpPrScheduler provides operations to manage science software on a DPR level.

Attributes:

None

Operations:

CancelDprJob
Arguments:

CancelDprJob
Arguments:Dpr:PlDpr

Return Type:DpTPrReturnType

Privilege:Public

CancelDprJob
Arguments:

4-34 305-CD-026-002

CancelGEvntJob
Arguments:Event:PlGroundEvent
Return Type:DpTPrReturnType
Privilege:Public

CancelGEvntJob
Arguments:

CreateDprJob
Arguments:

CreateDprJob
Arguments:Dpr:PlDpr

Return Type:DpTPrReturnType

Privilege:Public

CreateDprJob
Arguments:

CreateGEvntJob
Arguments:Event:PlGroundEvent
Return Type:DpTPrReturnType
Privilege:Public

CreateGEvntJob
Arguments:

GetDprJobStatus
Arguments:

GetDprJobStatus
Arguments:Dpr:PlDpr

Return Type:DpTPrProcessingStatus

Privilege:Public

GetDprJobStatus
Arguments:

ReleaseDprJob
Arguments:Dpr:PlDpr

Return Type:DpTPrReturnType

Privilege:Public

ReleaseDprJob

4-35 305-CD-026-002

Arguments:

UpdateDprJob
Arguments:

UpdateDprJob
Arguments:Dpr:PlDpr

Return Type:DpTPrReturnType

Privilege:Public

UpdateDprJob
Arguments:

Associations:

The DpPrScheduler class has associations with the following classes:
Class: PlDPRB
Class: PlGroundEvent isscheduledinprocessingby
Class: PlDPRB schedules
Class: PlDPRB schedulesinprocessing

4.3.3 DsClCommand Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The DsClCommand class has associations with the following classes:
Class: PlPlanningWorkbenchUI ACQUIREsplansusing
Class: PlDataSchedules usedforAquire
Class: PlPDASFile usedforINSERT
Class: PlPublishedPlan usedtoINSERTandACQUIREplans
Class: DsClRequest usestoperformINSERTandACQUIREs

4-36 305-CD-026-002

4.3.4 DsClESDTReference Class

Parent Class:Not Applicable

Attributes:

None

Operations:

Inspect
Arguments:

Associations:

The DsClESDTReference class has associations with the following classes:
Class: PlSubMsgCb
DsClESDTReferenceCollector (Aggregation)

4.3.5 DsClESDTReferenceCollector Class

Parent Class:Not Applicable

Attributes:

None

Operations:

Search
Arguments:

Associations:

The DsClESDTReferenceCollector class has associations with the following classes:
Class: DsClQuery
Class: PlPublishedPlan usedforACQUIREs
Class: PlDataSchedules usedforAquire
Class: PlPDASFile usedforINSERT
Class: PlPlanningWorkbenchUI usedforQUERIESandACQUIRES

4-37 305-CD-026-002

4.3.6 DsClQuery Class

Parent Class:Not Applicable

Attributes:

None

Operations:

DsQuery
Arguments:

~DsQuery
Arguments:

Associations:

The DsClQuery class has associations with the following classes:
Class: DsClESDTReferenceCollector
Class: PlDataTypeB
Class: PlSubMsgCb

4.3.7 DsClRequest Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The DsClRequest class has associations with the following classes:
Class: PlDataSchedules usedforAquire
Class: PlPDASFile usedforINSERT
Class: DsClCommand usestoperformINSERTandACQUIREs

4-38 305-CD-026-002

4.3.8 DsClSubscription Class

Parent Class:Not Applicable

Attributes:

None

Operations:

DsClSubscription
Arguments:Advertisement&, userinfo, DsClSubsriptionCollector&, CallbackQ

Submit
Arguments:

Withdraw
Arguments:

Associations:

The DsClSubscription class has associations with the following classes:
Class: PlDataTypeB
Class: PlSubscriptionSubmitIF creates

4.3.9 EcEvent Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Event logging interface object

Attributes:

None

Operations:

LogEvent
Arguments:

Associations:

4-39 305-CD-026-002

The EcEvent class has associations with the following classes:
Class: PlOnDemandManagerNB
Class: PlSubscriptionManager logs

4.3.10 EcMpMsgCb Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Message Callback object

Attributes:

None

Operations:

EcMpMsgCb
Arguments:

~EpMpMsgCb
Arguments:

Associations:

The EcMpMsgCb class has associations with the following classes:
Class: PlOnDemandManagerNB

4.3.11 EcPfClient Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

None

Operations:

4-40 305-CD-026-002

None

Associations:

The EcPfClient class has associations with the following classes:
None

4.3.12 EcPfManagedServer Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is the framework class for Managed Server Processes. This class defines the

method Process Event which handles the events generated by the Managed Server

Processes. This class is also connected to the MSS EcAgManager class as required by the

MSS desing. The Managed Server class will povide methods to inform the EcAgManager

to start and stop monitoring, to inform the EcAgManager the number of shutdown seconds

required for the application, program, and process, to register metrics with the

EcAgManager. The Managed Server class also receives requests from the EcAgManager

class to suspend, resume, and shutdown. The method, PfShutdownMyself, is provided by

the Managed Server class to the application may request a shutdown of itself.

Attributes:

myMSSMgrPtr - Pointer to the EcAgManger object. Used to call methods contained in

the EcAgManager class.

Data Type:EcAgManager*

Privilege:Private

Default Value:

Operations:

4-41 305-CD-026-002

EcPfManagedServer - Constructor

Arguments:a_argc:ECTInt,a_argv:EcTChar**,status:EcUtStatus

Return Type:Void

Privilege:Public

PfExecShutdown - Calls theServer Shutdown() and PfShutdown method with the

management level(application, program, process).

Arguments:a_level:EcAgMgmtLevel

Return Type:EcUtStatus

Privilege:Public

PfGetShutdownSeconds - Needs to be overriden by application, the number of seconds

requires to shutdown the application

Arguments:a_level:EcTAgMgtmLevel

Return Type:EcTInt

Privilege:Public

PfInit - Calls the PfGenServerInit(inherited) method, instantiates the EcAgManager

Object and registers it with the GSO

Arguments:

Return Type:EcUtStatus

Privilege:Public

PfProcessEvent - Calls the ProcessEvent method of the EcAgManager object

Arguments:a_event:EcAgEvent*,a_log_type:EcTAgLogType

Return Type:EcUtStatus

Privilege:Public

PfRegisterMetric - Calls the RegisterMetric method of the EcAgManager object.

Arguments:a_level EcAgMgmtLevel,a_faultmetric:EcAgFaultMetric*

Return Type:EcUtStatus

Privilege:Public

PfRegisterMetric - Calls the RegisterMetric method of the EcAgManager object.

Arguments:a_level:EcAgMgmtLevel,a_configmetric:EcAgConfigMetric*

Return Type:EcUtStatus

Privilege:Public

PfRegisterMetric - Calls the RegisterMetric method of the EcAgManger object.

Arguments:a_level EcAgMgmtLevel,a_perfmetric:EcAgPerfMetric*

Return Type:EcUtStatus

Privilege:Public

PfRegisterMetric - Calls the RegisterMetric method of the EcAgManager object.

Arguments:a_level EcAgMgmtLevel,a_faultmetric:EcAgFaultMetric*

4-42 305-CD-026-002

Return Type:EcUtStatus

Privilege:Public

PfRegisterMetric - Calls the RegisterMetric method of the EcAgManager object.

Arguments:a_level:EcAgMgmtLevel,a_configmetric:EcAgConfigMetric*

Return Type:EcUtStatus

Privilege:Public

PfShutdown - Needs to be overriden by application to perform specific shutdown

appropriate for application

Arguments:shutdownlevel:EcTAgMgmtLevel,EcTInt,EcTInt

Return Type:EcUtStatus

Privilege:Public

PfShutdownMyself - Calls StopMonitoring. Calls PfShutdown method with the

management level(application,program,process). Calls the DCEServer Shutdown method.

Arguments:a_level:EcAgMgmtLevel,a_event:EcAgEvent

Return Type:EcUtStatus

Privilege:Public

PfStart - Calls PfStartMonitoring and DCEServer listen methods

Arguments:

Return Type:EcUtStatus

Privilege:Public

PfStartMonitoring - Calls StartMonitoring() method of the EcAgManager Object

Arguments:

Return Type:EcUtStatus

Privilege:Private

PfStopMonitoring - Calls StopMonitoring() method of the EcAgManager Object

Arguments:EcTInt

Return Type:EcUtStatus

Privilege:Private

~EcPfManagedServer - Destructor. Deletes the EcAgManager object.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcPfManagedServer class has associations with the following classes:
None

4-43 305-CD-026-002

4.3.13 EcRequest Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Global status passing object for anyone knowledgeable of this request to check the status

of the request.

Attributes:

None

Operations:

None

Associations:

The EcRequest class has associations with the following classes:
Class: PlOnDemandPRNB ProvidesStatus

4.3.14 EcUrUR Class

Parent Class:Not Applicable

Attributes:

None

Operations:

EcUrUR
Arguments:

~EcUrUR
Arguments:

Associations:

The EcUrUR class has associations with the following classes:
Class: PlSubMsgCb

4-44 305-CD-026-002

4.3.15 GlCallback Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The GlCallback class has associations with the following classes:
Class: PlDataSchedules receivescallbackfromAquire
Class: PlPDASFile receivescallbackfromINSERT
Class: PlPublishedPlan usedforcallbacksfromINSERTand
Class: PlPlanningWorkbenchUI usestogetcallbackfromqueryandacquires

4.3.16 GlParameterList Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The GlParameterList class has associations with the following classes:
Class: PlDataSchedules holdsparametersforAquire
Class: PlPDASFile holdsparametersforINSERT
Class: PlPublishedPlan isusedwhenconstructingINSERTandACQUIREcommands
Class: PlPlanningWorkbenchUI useswhenconstructingACQUIREs

4-45 305-CD-026-002

4.3.17 IoAdProduct Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The IoAdProduct class has associations with the following classes:
Class: IoAdService has
Class: IoAdProvider isprovidedby
IoAdProductList (Aggregation)

4.3.18 IoAdProductList Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The IoAdProductList class has associations with the following classes:
Class: IoAdProductSearchCommand uses

4.3.19 IoAdProductSearchCommand Class

Parent Class:Not Applicable

Attributes:

4-46 305-CD-026-002

None

Operations:

None

Associations:

The IoAdProductSearchCommand class has associations with the following classes:
Class: PlDataTypeB isusedtointerfacetotheAdvertisingServiceby
Class: IoAdProductList uses

4.3.20 IoAdProvider Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The IoAdProvider class has associations with the following classes:
Class: IoAdProduct isprovidedby
Class: IoAdService provides

4.3.21 IoAdService Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

4-47 305-CD-026-002

The IoAdService class has associations with the following classes:
Class: IoAdProduct has
Class: IoAdProvider provides

4.3.22 PlActivePlan Class

Parent Class:PlPlanB

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class is the specialization of the PlPlan class and contains the methods to manage the

activation, cancelling, and statusing of a plan

Attributes:

ScheduledEndTime - The end date and time for the portion of the plan entered into the

data processing subsystem scheduler.

Data Type:Time

Privilege:Private

Default Value:

ScheduledStartTime - The start date and time for the portion of the plan entered into the

data processing subsystem scheduler.

Data Type:Time

Privilege:Private

Default Value:

Operations:

ActivateSchedule - Schedule the activities within the specified interval in the plan with

the data processing scheduler.

Arguments:Interval

Return Type:void

Privilege:Public

PDL: {

// Create an ordered list of activities which are within the plan

// and lie within the interval specified

// Iterate through the list, and invoke the schedule method for

// each activity

}

CancelSchedule - Cancel the activities that have been scheduled from the plan within the

data processing scheduler

4-48 305-CD-026-002

Arguments:

Return Type:void

Privilege:Public

PDL: {

// Create an ordered list of activities which are within the plan

// and have been scheduled within the data processing scheduler

// Iterate through the list, and invoke the cancel method for

// each activity

}

CreatePDAS - Creates a PDPS Data Availability Schedule for the current active plan and

stores this file to the Data Server.

Arguments:RWTvalSlist<PlActivity>

Return Type:void

Privilege:Public

PDL: {

Open file for metadata

Write out metadata parameters

Close file

Open file for PDAS records

For each activity in entire plan

get DPR id
For each output data in myOutputDataInstanceList whos DataType indicates
that this data is used at a remote DAAC

Write out a record with the data type,

start and stop times of the data granule,

plus the time this data granule should be produced

(myPredictedStartTime + the time the PGE nominally runs)

Close file

}

ModifySchedule - Modify the activities that have been scheduled from the plan within the

data processing scheduler. The attributes of the activity that may be modified are priority

and the anticipated start / stop times of the activity used to set the alarms in the data

processing scheduler. Any greater modification should be managed by canceling the

activity and scheduling a new activity.

Arguments:

Return Type:void

Privilege:Public

PDL:{

// Create an ordered list of activities which are within the plan

// and have been scheduled within the data processing scheduler

// Iterate through the list, and invoke the modify method for

// each activity

4-49 305-CD-026-002

}

PlActivePlan - Creator method for the active plan

Arguments:

Return Type:PlActivePlan

Privilege:Public

PlActivePlan - Recreates the active plan from the DBMS given an identifier for that plan.

Arguments:int: PlanID

Return Type:PlActivePlan

Privilege:Public

StatusSchedule - Status the plan against the schedule active in the data processing

scheduler.

Arguments:

Return Type:void

Privilege:Public

PDL:{

// Create an ordered list of activities which are within the plan

// and have been scheduled within the data processing scheduler

// Iterate through the list, and invoke the status method for

// each activity -- this is reflected within the activity object

// and DBMS

// Update the plan accordingly

}

~PlActivePlan - Destructor method for the active plan.

Arguments:

Return Type:void

Privilege:Public

Associations:

The PlActivePlan class has associations with the following classes:
Class: PlPDASFile iscreatedfrom
Class: PlActivities selectactivitiesusing

4.3.23 PlActivities Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

4-50 305-CD-026-002

Purpose and Description:

This class is a container class for activities in the PDPS database. This class may be

implemented by a suitable Rogue Wave template class.

Attributes:

None

Operations:

Add - Add an activity to the collection

Arguments:PlActivity: activity

Return Type:void

Privilege:Public

Delete - Delete an activity from the collection.

Arguments:PlActivity: activity

Return Type:void

Privilege:Public

First - Returns the first activity within the collection.

Arguments:

Return Type:PlActivity

Privilege:Public

Next - Returns the next activity within the collection (or NULL if no more activities).

Arguments:

Return Type:PlActivity

Privilege:Public

PlActivities - Constructor for the container class.

Arguments:

Return Type:void

Privilege:Public

SelectActivatedActivities - Select those activities within the plan that have been activated,

i.e. those scheduled within the data processing scheduler.

Arguments:

Return Type:void

Privilege:Public

SelectActivities - Builds the collection for all activities within the plan that lies within the

time interval specified.

Arguments:Interval: interv

Return Type:void

4-51 305-CD-026-002

Privilege:Public

~PlActivities - Destructor method.

Arguments:

Return Type:void

Privilege:Public

Associations:

The PlActivities class has associations with the following classes:
Class: PlPlanB iscontainedina
Class: PlActivePlan selectactivitiesusing

4.3.24 PlActivity Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class describes an item within a plan. The activity class is a base class within a

specialization heirachy descrining the different activities which occur in the production

plan.

Attributes:

myActivityId - Database key for activity

Data Type:RWCString

Privilege:Private

Default Value:

myPredictedStart - The predicted start time of an activity

Data Type:RWTime

Privilege:Private

Default Value:

myPredictedStop - The predicted end time of an activity.

Data Type:RWTime

Privilege:Private

Default Value:

myPriority - Priority of the activity within the plan.

Data Type:EcTInt

Privilege:Private

4-52 305-CD-026-002

Default Value:

Operations:

Cancel - Abstract operation for the cancelling of an activity within the Data Processing

subsystem.

Arguments:

Return Type:void

Privilege:Public

This is an abstract operation

Modify - Abstract operation for the modification of an activity within the Data Processing

subsystem.

Arguments:

Return Type:void

Privilege:Public

This is an abstract operation

PlActivity - Default Constructor

Arguments:

Return Type:void

Privilege:Public

PlActivity - constructs a new activity for a plan - this is used when importing a plan from

a remote DAAC

Arguments:RCWString, RWTime, RWTime, EcTInt

Return Type:Void

Privilege:Public

Schedule - Abstract operation for the scheduling of an activity within the Data Processing

subsystem.

Arguments:

Return Type:void

Privilege:Public

This is an abstract operation

Status - Abstract operation for the statusing of an activity from the Data Processing

subsystem.

Arguments:

Return Type:void

Privilege:Public

This is an abstract operation

Associations:

4-53 305-CD-026-002

The PlActivity class has associations with the following classes:
Class: PlPlanB contains
Class: PlRescUseThreshNB placeholdersforon-demandjobscreatedusing
PlActivities (Aggregation)

4.3.25 PlAlternateDataGranuleNB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

Attributes:

myAccepted - Indicates whether the data granule, when available, has passed any metadata

checks. Defaults to TRUE for data granules that do not undergo metadata checks.

Data Type:EcTBoolean

Privilege:Private

Default Value:

myOrder - The relative priority of an alternate input data granule.

Data Type:EcTInt

Privilege:Private

Default Value:

myPrimaryType - The data type of the primary alternate input associated with this data

granule.

Data Type:PlDataTypeReq

Privilege:Private

Default Value:

myTemporalFlag - Indicates whether this alternate data granule (if TRUE) can be

replaced with the most recent data granule of the same type, if one can't be found in the

current production request time frame.

Data Type:EcTBoolean

Privilege:Private

Default Value:

myTimerNB - The amount of time the Subscription Manager will wait for an alternate

input data granule to arrive.

Data Type:RWTime

Privilege:Private

Default Value:

4-54 305-CD-026-002

myType - Indicates the type of alternate input: required, primary, or backup.

Data Type:enum

Privilege:Private

Default Value:

Operations:

ChangeOrder - Changes the priority order of an alternate input data granule. The relative

order for the associated alternate data granules for the DPR is retained.

Arguments:RWCString:DataGranuleId

Return Type:Void

Privilege:Public

GetTimerNB
Arguments:

PlAlternateDataGranule
Arguments:

UpdateTimerNB - Updates the amount of time the Subscription Manager will wait for an

alternate input data granule to arrive.

Arguments:RWTime:NewTime

Return Type:Void

Privilege:Public

~PlAlternateDataGranule
Arguments:

Associations:
The PlAlternateDataGranuleNB class has associations with the following classes:
None

4.3.26 PlAlternateNB Class

Parent Class:PlDataTypeReq

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class defines an alternate input to a PGE. It is used for PGE that has multiple inputs,

and allows a secondary choice if on (or more) or its primary inputs are not available.

4-55 305-CD-026-002

Attributes:

myDefaultOrder - Default priority of an alternate input data type.

Data Type:EcTInt

Privilege:Private

Default Value:

myDefaultTimer - The default amount of time that the Subscription Manager will wait for

an alternate input data type to arrive.

Data Type:RWTime

Privilege:Private

Default Value:

myPrimary - This points to the primary input for which this input is an alternate.

Data Type:PlDataTypeReq

Privilege:Private

Default Value:

myTemporalFlag - Indicates (if TRUE) whether the most recent alternate input data

granule can be used instead of the primary data granule of the same data type, if a primary

data granule can't be found for the production request time frame.

Data Type:EcTBoolean

Privilege:Private

Default Value:

myWaitFor - This attribute indicates whether or not Planning should wait for this alternate

input after the alternate inputs timer has expired. If the value is set to false, then Planning

will allow the PGE to be executed without this input.

Data Type:EcTBoolean

Privilege:Private

Default Value:

Operations:

PlAlternate - This is the constructor for the class.

Arguments:

Return Type:Void

Privilege:Public

~PlAlternate - This is the destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

4-56 305-CD-026-002

The PlAlternateNB class has associations with the following classes:
None

4.3.27 PlCluster Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class defines the Cluster of tiles used by the PGE. A cluster is set up to allow a group

of tiles to be scheduled at one time that use the same or similar geographic inputs.

Attributes:

myLastOrbit - The number of the orbit that contains the last data granule in this cluster.

Data Type:EcTInt

Privilege:Private

Default Value:

myNumTiles - The number of tiles for this cluster.

Data Type:EctInt

Privilege:Private

Default Value:

myPredictedAvailability - The predicted availability time of all data granules in this

cluster.

Data Type:RWTime

Privilege:Private

Default Value:

Operations:

PlCluster - This is the constructor for the class.

Arguments:

Return Type:Void

Privilege:Public

PlCluster - This constructor takes in a LastOrbit, a PredictedAvail, and a NumTiles and

fills in the attributes when the class is created.

Arguments:EctInt Tiles, RWTime PredAvail, EctInt LastOrbit

Return Type:Void

Privilege:Public

4-57 305-CD-026-002

ReturnLastOrbit - This returns the value in myLastOrbit.

Arguments:

Return Type:EctInt

Privilege:Public

ReturnNumTiles - This method returns myNumTiles.

Arguments:

Return Type:EctInt

Privilege:Public

ReturnPredictedAvail - This method returns the value in myPredictedAvailability.

Arguments:

Return Type:RWTime

Privilege:Public

Update - This method updates the specified Attribute with the specified Value. If the

attribute does not exist, or the value is out of range a "bad" return code is returned.

Arguments:RWCString Attribute, RWCString Value

Return Type:EctInt

Privilege:Public

~PlCluster - This is the destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlCluster class has associations with the following classes:
Class: PlTile
Class: PlTileScheduledNB

4.3.28 PlComputer Class

Parent Class:PlResource

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class describes the computers which are part of the resource configuration for the

production system.

Attributes:

4-58 305-CD-026-002

/ myMaxDiskSpace - Derived max disk space

Data Type:int

Privilege:Private

Default Value:

This is a Derived Attribute.

myCPUs - The number of CPUs within the computer

Data Type:int

Privilege:Private

Default Value:

myDiskList - Describes the disks associated with the computer.

Data Type:List

Privilege:Private

Default Value:

myOperatingSystem - The operating system name and version

Data Type:String

Privilege:Private

Default Value:

myPerProcessRam - The operating system's allocation of ram per process

Data Type:int

Privilege:Private

Default Value:

myTotalRam - The total Ram for the computer

Data Type:int

Privilege:Private

Default Value:

Operations:

AddDisk - Add a disk to the list

Arguments:PlDisk

Return Type:void

Privilege:Public

PlComputer - Class constructor

Arguments:

Return Type:void

Privilege:Public

RemoveDisk - remove a disk from the list

Arguments:PlDisk

4-59 305-CD-026-002

Return Type:void

Privilege:Public

~PlComputer - Class destructor

Arguments:

Return Type:void

Privilege:Public

Associations:

The PlComputer class has associations with the following classes:
Class: PlDiskPartition
Class: PlString
PlService (Aggregation)

4.3.29 PlDASDelta Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

A list of the deltas for each data type.

Attributes:

myDataTypeId - Used to match this delta with a particular data type

Data Type:RWCString

Privilege:Private

Default Value:

myDelta - This is the maximum amount of time between when a Data Granule was

predicted to arrive in the Planning Data Availability Schedule (PDAS) and the previous

PDAS with the time frame specified before a limited automatic replan should be triggered.

Data Type:RWTime

Privilege:Private

Default Value:

Operations:

GetDelta - This operation returns the delta for a particular data type

Arguments:RWCString

Return Type:RWTime

4-60 305-CD-026-002

Privilege:Public

Associations:

The PlDASDelta class has associations with the following classes:
Class: PlDASDifferent

4.3.30 PlDASDifferent Class

Parent Class:PlReplanCriteria

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

Newer Annotation: One of the replan criteria - this object is used to compare a newly­

received DAS or PDAS to the previous one of the same type.

Attributes:

myTimeFrame - This is the time frame (from the time the PDAS or FOS DAS was

received) within the predicted times of the data granules should be checked.

Data Type:RWTime

Privilege:Private

Default Value:

Operations:

AddToReport - This operation adds information about any data that is now predicted to

arrive later than expected and the impacts of this late data on DPRs waiting for that data to

a report that will be displayed so the operator can determine whether a replan should be

done.

Arguments:PlDataGranule &, PlDPR &, RWTime

Return Type:RWCString

Privilege:Public

PDL: //Create a string

// with Data type, start time, stop time

// original predicted availability (From RWTime parameter)

// new DAS predicted availability (From PlDataGranule)

// DPR/PGE waiting for this data

// Predicted start time of this DPR

//Return this string

CheckReplan - Compares the data availability times from a new Planning Data

Availability Schedule or FOS Detailed Activity Schedule with the previous version to see

4-61 305-CD-026-002

if any data granules expected within my TimeFrame are now predicted to come myDelta

later than expected.

Arguments:PlDataAvailabilityTimes &, PlDataAvailibilityTimes &

Return Type:EcTBoolean

Privilege:Public

PDL: //For first DAT passed in

//For each record in the DAT

// If Availability time is within myTimeFrame

// Search for matching record in second DAT

//

// If PredictedAvailability from first DAT

// is later than time in second DAT by

// a greater amount than myDelta for this data type,

//

// Search database for PlDataGranule that matches this record.

// If one exists,

// Search database for DPRs that are in the current

// active plan that use this data,

// and check that the Predicted start time of these DPRs

//

// If any DPR is predicted to start before the new predicted

// availability of the data granule

// if first failure, put general information about PDPS DAS or

// FOS DAS in myReport

//

// call PlDASDifferent::AddToReport

// (PlDataGranule &, PlDPR &, RWTime)

// where RWTime is the original predicted time from DAT

// end FOR

//If any failures, call PlOnDemandExceed::NotifyOperator

Associations:

The PlDASDifferent class has associations with the following classes:
Class: PlDASDelta
Class: PlDataAvailabilityTimes isusedtocheckforreplanby

4.3.31 PlDASNB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:False

Purpose and Description:

4-62 305-CD-026-002

This class contains the meta data information found in an FOS Detailed Actiity Schedule.

Attributes:

myMessageType - This attribute identifies the type of message being transmitted. (i.e.

DAS)

Data Type:RWCString

Privilege:Private

Default Value:

myNumDaysInFile

myNumRecordsinFile - Identifies the number of records contained in the file.

Data Type:EcTInt

Privilege:Private

Default Value:

myRecordTerminator - Identifies the end of the Detailed Activity Schedules header

record.

Data Type:EcTInt

Privilege:Private

Default Value:

myScheduleStartTime - Define the earliest activity start time contained in the Detailed

Activity Schedule.

Data Type:RWTime

Privilege:Private

Default Value:

myScheduleStopTime - Defines the start time of the latest activity found in the Detailed

Activity Schedule.

Data Type:RWTime

Privilege:Private

Default Value:

mySource - This attribute identifies the sender of the message (i.e. EOC)

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

PlDASNB - Constructor

Arguments:

Return Type:PlDASNB

4-63 305-CD-026-002

Privilege:Public

~PlDASNB - Destructor

Arguments:

Return Type:Void

Privilege:

Associations:
The PlDASNB class has associations with the following classes:
PlFOSDASFile (Aggregation)

4.3.32 PlDATRecord Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

Contains the predicted availability for a particular data granule received from source

outside of the local DAAC.

Attributes:

myDataTypeId - Matches the myDataTypeID from PlDataGranule and PlDataType

Data Type:RWCString

Privilege:Private

Default Value:

myPredictedAvailability - The time that this data granule is predicted to be available at

the local DAAC

Data Type:RWTime

Privilege:Private

Default Value:

myStartTime - The start time of the data - matches PlDataGranule::myStartTime

Data Type:RWTime

Privilege:Private

Default Value:

myStopTime - The stop time of the data - matches PlDataGranule::myStopTime

Data Type:RWTime

Privilege:Private

Default Value:

4-64 305-CD-026-002

myTileId - For data granules that are geographical tiles instead of time continuous data,

this attribute will note which tile within the start time and stop time of the orbit set (an orbit

set covers the entire earth once) this data granule matches. Tile attributes, including the

latitude and longitude of the coordinates that bound this tile, are found in the PGE Profile

for PGEs that produce this data type. For data granules that are not tiles, this attribute

would be set to zero.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

MatchPlDataGranule - Returns any data granule from the PDPS database that matches

this PLDATRecord.

Arguments:

Return Type:PlDataGranule

Privilege:Public

UpdateAvailabilityTime - This operation will update the availability time of the data type

to reflect the actual availability on the data server.

Arguments:RWTime

Return Type:EcUtStatus

Privilege:Public

PDL:{

Update Availabilitiy will use information passed in from PlDATRecords

regarding the completion time of the data type, and call

CalculateMyMoving Average to compute this transfer time.

call PlDataTransferHistory::CalculateMyMovingAverage()

Based on new moving average for transfer of data to data server and the

predicted completion time calculate Predicted Availability

PlDATRecord:myPredictedAvailability =

PlSourceToDataDsHistoryNB:myMovingAverageTime + CompletionTime .

}

Associations:

The PlDATRecord class has associations with the following classes:
Class: PlDataAvailabilityTimes
Class: PlDataAvailabilityTimes containsmany
Class: PlDataTranferHistory isusedtopredictdataavailabilityatDSS
Class: PlDataTypeB matches
Class: PlDataGranule updatesavailabilityof
Class: PlDataGranule updatestheavailabilityof

4-65 305-CD-026-002

4.3.33 PlDBMSProxyAgent Class

Parent Class:EcPfManagedServer

Public:No

Distributed Object:No

Purpose and Description:

This class describes the main body for the proxy agent required to manage the lifecycle

services of the PDPS DBMS. The proxy agent will be an almost template re-use of the

MSS capabilities.

Attributes:

All Attributes inherited from parent class

Operations:

PfShutdown - Shut down Sybase SQL server containing the PDPS database

Arguments:

Return Type:Void

Privilege:Public

PlDBMSProxyAgent - class constructor function

Arguments:

Return Type:Void

Privilege:Public

Start - starts the Sybase SQL server containing the PDPS database

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlDBMSProxyAgent class has associations with the following classes:
None

4.3.34 PlDPRB Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

4-66 305-CD-026-002

This class describes an individual run of a PGE.

Attributes:

myActualStartTime - The actual time that this DPR began processing in DPS

Data Type:RWTime

Privilege:Private

Default Value:

myBaselineTime - The time the DPR is predicted to begin in that latest baseline plan.

Data Type:RWTime

Privilege:Private

Default Value:

myCompletionState - Status indicator describing active status of data processing request

Data Type:RWCString

Privilege:Private

Default Value:

myDprId - Unique identifier for the DPR instance

Data Type:RWCString

Privilege:Private

Default Value:

myInputDataInstanceList - List describing all the input files required within for the PGE

Data Type:RWTValSlist<RWCString>

Privilege:Private

Default Value:

myNextConditionalDPR - For PGEs with mode-based activations, a reference to the next

DPR associated with this one. For normal PGEs, this will be null for the first DPR in the

PR list (PlProductionRequest::myDPRs).

Data Type:PlDPR&

Privilege:Private

Default Value:

myOutputDataInstanceList - List describing all the output files to be produced by the

PGE

Data Type:RWTValSlist<RWCString>

Privilege:Private

Default Value:

myPgeId - The id of the PGE that is being executed in this DPR

Data Type:RWCString

Privilege:Private

4-67 305-CD-026-002

Default Value:

myPredictedStartTime
Data Type:RWTime

Privilege:Private

Default Value:

myPriority - Priority for the data processing request is inherited from the production

reqeust, but may be modified individually

Data Type:EcTInt

Privilege:Private

Default Value:

myProductionRequestId - The id of the Production Request of which this DPR is a part.

Data Type:RWCString

Privilege:Private

Default Value:

myStartTime ­

myStopTime ­

myUR - The Universal Reference generated by Data Server for the product generated by
this processing request.

Operations:

Cancel - Cancel the DPR within the data processing job scheduler

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL:{

// calls the cancel DPR job method of the DpPrJobScheduler

}

CheckAvailability - Checks to see if all the data dependies for a DPR have been fulfilled.

Returns true or false.

Arguments:

Return Type:Boolean

Privilege:Public

PDL:{

Get the input granules list for the list of granules needed for Dpr.

PlDPRB::GetInputGranuleList()

Iterate through the input data list to check the availability of the

granule

4-68 305-CD-026-002

 For (index = 1; index <= TotalInList; index++)
{

Call Get Availability to determine if granule is available
PlDataGranule::GetAvailability
if (GranuleExists = false)
{

If not check to see if the granule is a required granule

if (PlAlternateDataGranule:myType = Required)

{

If the granule is required, then CheckAvailability fails

return failed

}

}

else

{

Granule exists

if (PlAlternateDataGranule:myType = Required)

{

set RequiredAvailable to True to indicate that the required data
is available

}
Check if the granule passed the QA check
if (PlAlternateDataGranule:myAccepted = True)
{

If granule passed and it is a primary input
if (PlAlternateDataGranule:myType = Primary)
{

increment the count of primaries that are available. TotPrim ++
}
If granule passed and it is not a primary input
if (PlAlternateDataGranule:myType = Backup)
{

increment the count of backups that are available. TotBackup ++
}

}
}

} loop
If the required and all the primary are availably release job
if (TotPrim = TotPrimaryRequired and RequiredAvailable)
{

Return True

Cancel timer if it has been set

if (TimerIsSet)

{

PlTimer:CancelTimer

4-69 305-CD-026-002

 }
}
If the required and not all the primary is available set timer, or if the temporal
flag is set, indicating that a newer version of the same type is pending, set timer
if (TotPrim < TotPrimaryRequired .or. (TotPrim = TotPrimaryRequired .and.

PlAlternateDataGranule:myTemporalFlag = true) and RequiredAvailable)
{

Check if the timer is set and set if necessary
if (PlTimer:myTimerStart = false)
{

Return False

Get wait time and start timer

PlDpr:: GetMyTimer

PlTimer::StartTimer()

}
}

}

CheckPredictedAvailabilityNB - Determines the predicted availability of the input data

granules

Arguments:

Return Type:EcTVoid

Privilege:Public

GetCommandString - Operation to format the command string that is sent to Data Server

for a Query.

Arguments:RWCString:DataType

Return Type:RWCString

Privilege:Public

GetInputGranuleList - Read the list of required data granules from the PDPS Database

for the PGE to be used.

Arguments:

Return Type:RWTValSlist<RWCString>

Privilege:Public

GetLogicalId - Operation to used to get the logical Id of the Data Type used for this

production request

Arguments:RWCString:DataType

Return Type:Void

Privilege:Public

GetMyPGEType - This operation will get the PGE Type in order to determine whether or

not a PGE is a tiling PGE.

Arguments:

4-70 305-CD-026-002

Return Type:RWCString

Privilege:Public

PDL:

{

Instantiate an instance of PlPge to find the pge type associated with PGE

}

GetMyTimer - Returns the length of time a timer should wait for the primary input data

after receiving the required inputs before using the backups.

Arguments:

Return Type:RWTime

Privilege:Public

PDL:{

gets the wait time associated with the data
GETPlAlternateDataGranuleNB:myTimerNB

}

GetOutputGranuleList - Read the list of date granules that the Pge will generate from the

PDPS Database.

Arguments:

Return Type:RWTValSlist<RWCString>

Privilege:Public

Modify - Modify the DPR within the data processing job scheduler. The attributes of the

DPR that may have been modified are priority and the anticipated start / stop times of the

DPR used to set the alarms in the data processing scheduler.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL:{

// calls the modify DPR job method of the DpPrJobScheduler

}

PlDPR - Constructor method

Arguments:

PlDPR - Constructor

Arguments:RWCString:DprId

Return Type:PlDPR

Privilege:Public

Release - Releases the DPR within the data processing job scheduler. The DPR is released

when the data dependencies of that DPR have been fulfilled.

Arguments:

Return Type:EcTVoid

4-71 305-CD-026-002

Privilege:Public

PDL:{

// calls the release DPR job method of the DpPrJobScheduler

}

Schedule - schedule the DPR within the data processing job scheduler

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL:{

// calls the create DPR job method of the DpPrJobScheduler

}

Status - status the DPR within the data processing job scheduler

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL:{

// calls the status DPR job method of the DpPrJobScheduler

}

~PlDPR - Destructor method

Arguments:

Return Type:void

Privilege:Public

Associations:
The PlDPRB class has associations with the following classes:

Class: DpPrScheduler

Class: PlPGE

Class: PlProdStratNB basesprioritieson

Class: PlOnDemandPRNB composes

Class: PlPGE generates

Class: PlDataGranule input

Class: PlPGEActivity isaplanned

Class: PlProductionRequestB isbrokenupintoindividual

Class: PlProductionRequestB ismadeupof

Class: PlResourceRequirement isrequiredby

Class: PlTimer isusedtosettimeronalternateinputs

Class: PlDataGranule matchescorresponding

Class: PlDataGranule output

Class: DpPrScheduler schedules

Class: DpPrScheduler schedulesinprocessing

Class: PlDataGranule uses

4-72 305-CD-026-002

PlDPRs (Aggregation)

4.3.35 PlDPRs Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is a collector class for the PlDPR class, and contains methods to select Data Processing

Requests from the PDPS database and to iterate through them. This class may be

implemented by a suitable Rogue Wave template class.

Attributes:

None

Operations:

Add - Add a DPR to the collection

Arguments:PlDPR: dpr

Return Type:void

Privilege:Public

Delete - Delete an DPR from the collection.

Arguments:PlDPR: dpr

Return Type:void

Privilege:Public

First - Returns the first DPR within the collection

Arguments:

Return Type:PlDPR

Privilege:Public

Next - Returns the next DPR within the collection (or NULL if no more activities).

Arguments:

Return Type:PlDPR

Privilege:Public

PlDPRs - Constructor method

Arguments:

Return Type:PlDPRs

Privilege:Public

SelectDPRs - Builds the collection for all DPRs within the plan that lies within the time

4-73 305-CD-026-002

interval specified

Arguments:Interval

Return Type:void

Privilege:Public

~PlDPRs - Destructor method

Arguments:

Return Type:void

Privilege:Public

Associations:

The PlDPRs class has associations with the following classes:
None

4.3.36 PlDataAvailabilityTimes Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This object represents the PDPS Data Availability Schedule or the FOS Detailed Activity

Schedule which was used to produce these data availability times records.

Attributes:

myProductOrigin - Where these data availability time records come from (example -

DAAC name or EDOS)

Data Type:RWCString

Privilege:Private

Default Value:

myStartTime - The start time of the FOS DAS or PDPS DAS used to create these Data

Availability Time Records

Data Type:RWTime

Privilege:Private

Default Value:

myStopTime - The stop time of the FOS DAS or PDPS DAS used to create these Data

Availability Time Records

Data Type:RWTime

Privilege:Private

4-74 305-CD-026-002

Default Value:

Operations:

MakeDATFromFOSDASFile - This operation will create a Data Availability Time

Schedule from a PlFOSDASFile received from the Data Server.

Arguments:RWTValSlist<PlFOSDASFile>

Return Type:EcUtStatus

Privilege:Public

PDL:{

Using the information obtained from a PlFOSDASFile from FOS,

generate a DAT Schedule of the data needed at the local DAAC.

This function will use empirical information contained in

PlDataTransferHistory.

Call PlDataAvailabilityTimes::PlDataAvailabilityTimes constructor method

Get PlDataSchedules:PlFOSDASFiles

Get PlDASNB:myMetaDataName

Populate

PlDataAvailabilityTimes:myStartTime,PlDataAvailabilityTimes:myStopTime,

and PlDataAvailabilityTimes:myproductOrigin with meta data values from

PlDASNB.

for all PlEDASRecordNB

{

Determine the volumn of data being collected

Get PlEDASRecordNB:myDataRates

Get PlEDASRecordNB:myActivityStartTime

Get PlEDASRecordNB:myActivityStopTime

The Data rate over the elapsed time will provide us with an estimate

of the data type being collected during that time. Other information

received from FOS may help us to more accurately predict arrival time

in the future.

Search DataBase for DataTypeBeingCollected to see if this data

type is subscribed to by DAAC

if (DataTypeBeingCollected is found)

{

Call PlPDATRecord constructor for record
populate PlDATRecord:myDataTypeId with DataTypeBeingCollected,
PlDATRecord:myStartTime,PlDATRecord:myStopTime,
PlDATRecord:myTileId (if tiling), with
values from PlEDASRecordNB
call PlDATRecord::UpdateAvailabilityTime() to get
transfer time.

}
} loop

4-75 305-CD-026-002

MakeDATFromPDASFile - This operation will create a Data Availability Time Schedule

from a PlPDASFile received from the Data Server.

Arguments:RWTValSlist<PlDASFile>

Return Type:EcUtStatus

Privilege:Public

PDL:{

Upon notification of the arrival of a PlPDASFile from another DAAC, this

operation generates a DAT Schedule for the data needed at the local DAAC.

This function will use the empirical information contained in

PlDataTransferHistory to predict the actual arrival at the data server.

Call PlDataAvailabilityTimes::PlDataAvailabilityTimes constructor method

Get PlPDASFile:myMetaDataFileName

Populate

PlDataAvailabilityTimes:myStartTime,PlDataAvailabilityTimes:myStopTime,

and PlDataAvailabilityTimes:myProductOrigin with meta data values from

PlPDASMetaData.

Get PlPDASFile:myFileName

for all PlPDASRecords

{

Search DataBase for PlPDASRecords:myDataTypeId to see if this data

type is subscribed to by DAAC

if (PlPDASRecords:myDataTypeId is found)

{

Call PlPDATRecord constructor and populate DAT record

PlDATRecord:myDataTypeId,PlDATRecord:myStartTime,

PlDATRecord:myStopTime, PlDATRecord:myTileId, with values from

PlPDASRecords

Get PlDASRecords:myTimeCompleted

call PlDATRecord::UpdateAvailabilityTime() to get

transfer time.

}
} loop

}

RetrieveDATRecords - This operation retrieves all the DAT records for a particular

PDPS DAS or FOS DAS.

Arguments:RWTValSlist<PlDATRecord>

Return Type:EcUtStatus

Privilege:Public

RetrieveDATRecords - This operation retrieves all the DAT records for a particular PDPS

DAS or FOS DAS.

Arguments:RWTvalSlist<PlDATRecord>

4-76 305-CD-026-002

RetrieveDATRecords - This operation retrieves all the DAT records for a particular

PDPS DAS or FOS DAS.

Arguments:RWTValSlist<PlDATRecord>

Return Type:EcUtStatus

Privilege:Public

Associations:

The PlDataAvailabilityTimes class has associations with the following classes:
Class: PlSubMsgCb NotificationofarrivalofDAT
Class: PlDATRecord
Class: PlDATRecord containsmany
Class: PlDASDifferent isusedtocheckforreplanby
Class: PlReplanCriteria isusedtocheckforreplanby
Class: PlDataSchedules isusedtogetDASfromDSS

4.3.37 PlDataDependencies Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Used to store information about the data dependencies of an imported plan.

Attributes:

myDataTypeId - The data type of this data - matches PlDataType::myDataTypeId

Data Type:RWCString

Privilege:Private

Default Value:

myStartTime - The start time and date of the data

Data Type:RWTime

Privilege:Private

Default Value:

myStopTime - The stop time and date of the data

Data Type:RWTime

Privilege:Private

Default Value:

myTileId - For data granules that are geographical tiles instead of time continuous data,

this attribute will note which tile within the start time and stop time of the orbit set (an orbit

set covers the entire earth once) this data granule matches. Tile attributes, including the

4-77 305-CD-026-002

latitude and longitude of the coordinates that bound this tile, are found in the PGE Profile

for PGEs that produce this data type. For data granules that are not tiles, this attribute

would be set to zero.

Data Type:RWCString

Privilege:Private

Default Value:

myTypeDependency - Indicates whether this data is needed as input for this activity (with

an 'I') or is output for this activity ('O') and needed as input by another activity

Data Type:EcTChar

Privilege:Private

Default Value:

Operations:

None

Associations:

The PlDataDependencies class has associations with the following classes:
Class: PlImportedActivity mayhave

4.3.38 PlDataGranule Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class describes individual instances or granules of data types.

Attributes:

myActualAvailability - Date and time that data was made available to subscription

manager.

Data Type:RWTime

Privilege:Private

Default Value:

myAvailability - Flag to indicate availability of data

Data Type:EcTBoolean

Privilege:Private

Default Value:

4-78 305-CD-026-002

myBaselineTime - The availability time of the data granule according to the baselined

active plan agreed to amongst DAACs requiring the data granule.

Data Type:RWTime

Privilege:Private

Default Value:

myDataGranuleId - ID of data granule.

Data Type:RWCString

Privilege:Private

Default Value:

myDataTypeId - The identifier of the data type of the data granule.

Data Type:RWCString

Privilege:Private

Default Value:

myESDTParmVals - Selected metadata fields associated to the data type required to

determine suitability in the production (such as quality info or geophysical attributes)

Data Type:GlParameterList

Privilege:Private

Default Value:

myPredictedAvailability - Predicted time at which the data will be available in ECS, used

to determine PGE schedule estimates.

Data Type:RWTime

Privilege:Private

Default Value:

myPredictedStagingTime - This is an ROUGH estimate of the amount of time that this

file will take to stage, based on the size of the file, the age of the file (determines whether

its in deep storage or on a local disk) and whether the file was remote or local.

Data Type:RWTime

Privilege:Private

Default Value:

myStartTime - The start time and date of the data

Data Type:RWTime

Privilege:Private

Default Value:

myStopTime - The stop time and date of the data

Data Type:RWTime

Privilege:Private

Default Value:

4-79 305-CD-026-002

myTileId - For data granules that are geographical tiles instead of time continuous data,

this attribute will note which tile within the start time and stop time of the orbit set (an orbit

set covers the entire earth once) this data granule matches. Tile attributes, including the

latitude and longitude of the coordinates that bound this tile, are found in the PGE Profile

for PGEs that produce this data type. For data granules that are not tiles, this attribute

would be set to zero.

Data Type:RWCString

Privilege:Private

Default Value:

myUR - Universal Reference by which to reference the granule within the data server.

Data Type:EcUrUR

Privilege:Private

Default Value:

Operations:

Create - Create a entry in the DBMS if this is a unique instance of the granule.

Arguments:RWTime:start, RWTime:stop

Return Type:void

Privilege:Public

DeleteDummyGranule - This operation is used for PGEs that produce spatial tiles to

delete that dummy data granule that represents the last data granule which will be collected

(or processed for higher level products, assuming the data granules are produced in pretty

much the same order that they are collected). The Subscription Manager uses the

notification that this data has arrived to begin to query the Data Server for all the actual data

granules that are needed as input to produce this tile.

Arguments:RWCString:myDataGranuleId

Return Type:Void

Privilege:Public

DeleteGranule - This operation will delete the predicted granule created by the production

request editor for tiling.

Arguments:RWCString:myDataGranuleId

FindAssociatedDPRs - Method to determine the data processing requests associated to the

data granule

Arguments:

Return Type:PlDPRs

Privilege:Public

GetAvailability - Returns whether the data item is available within the ECS or not.

Arguments:

Return Type:EcTBoolean

4-80 305-CD-026-002

Privilege:Public

PlDataGranule - Constructor method

Arguments:

Return Type:PlDataGranule

Privilege:Public

PredictStagingTime - Computes the value stored in myPredictedStagingTime.

Arguments:

Return Type:RWTime

Privilege:Public

RegisterAvailability - Method to register that a data instance that was predicted has

arrived, and to record the UR and metadata associated to that data.

Arguments:EcUrUR:instUR, GlParameterList: instESDTParmVals

Return Type:void

Privilege:Public

~PlDataGranule - Destructor method

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlDataGranule class has associations with the following classes:
Class: PlSubMsgCb Notificationofarrivalofgranule
Class: PlSourcetoDsHistoryNB UpdatesArrivalTime
Class: PlDPRB input
Class: PlDPRB matchescorresponding
Class: PlDPRB output
Class: PlDataTypeB populates
Class: PlFile simulatesstroageof
Class: PlDATRecord updatesavailabilityof
Class: PlDATRecord updatestheavailabilityof
Class: PlDPRB uses

4.3.39 PlDataScheduled Class

Parent Class:PlPGE

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

4-81 305-CD-026-002

This specialization of the PGE accounts for the classification of PGEs whereby the PGE
scheduling is determined from some regular time period, such as an hour, a day, a week, a
month etc.

Attributes:

myInputDataId - ID of the input data based on the arrival of which the PGE is scheduled

to run

Data Type:int

Privilege:Private

Default Value:

myNoOfInstancesPerPgeRun - ID of the input data based on the arrival of which the PGE

is scheduled to run

Data Type:int

Privilege:Private

Default Value:

myPrimaryDataSource - Identifies the source of the data

Data Type:String

Privilege:Private

Default Value:

Operations:

GenerateDPRs - Generate the data processing request that fulfill the production request

Arguments:PlProductionRequest

Return Type:void

Privilege:Public

PDL:{

// Select the primary input granules that are within the period of

// the production request

// Generate a DPR for each myNoOfInstancesPerPgeRun granules

// of input data

// Invoke the select data method for the DPR

}

Associations:

The PlDataScheduled class has associations with the following classes:
None

4-82 305-CD-026-002

4.3.40 PlDataSchedules Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This Class interfaces with the data Server to aquire Detailed Activity Schedules from FOS

and Data Availability Schedules from other DAACs.

Attributes:

myFileName
Data Type:RWCString
Privilege:Private
Default Value:

Operations:

GetDASfile - This operation is used to get a DAS file from the Data Server.

Arguments:RWCString

Return Type:Void

Privilege:Public

Associations:

The PlDataSchedules class has associations with the following classes:
Class: GlParameterList holdsparametersforAquire
Class: PlInstrumentModes isusedtoconstructinstrumentmodeschedule
Class: PlDataAvailabilityTimes isusedtogetDASfromDSS
Class: GlCallback receivescallbackfromAquire
Class: DsClCommand usedforAquire
Class: DsClESDTReferenceCollector usedforAquire
Class: DsClRequest usedforAquire

4.3.41 PlDataSource Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class is the base class that provides the methods for predicting when external data will

arrive within the ECS from SDPF or NOAA for example. The Data Sources are specialized

4-83 305-CD-026-002

to describe the different ways that predictions are obtained.

Attributes:

myPredictedMethod - Describes the method by which the data availability prediction

occurs - e.g., routine arrival, arrival at scheduled times, FOS based prediction.

Data Type:enum

Privilege:Private

Default Value:

mySupplierName - Identifies the supplier of the data.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

PlDataSource - default constructor

Arguments:

Return Type:Void

Privilege:Public

PlDataSource - overloaded constructor from data type id

Arguments:const RWCString &

Return Type:Void

Privilege:Public

PredictArrivals - Predicts data instance arrivals for a given period, pure virtual operation.

Arguments:const PlTime &, const PlTime &

Return Type:EcTVoid

Privilege:Public

This is an abstract operation

~PlDataSource - destructor method

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlDataSource class has associations with the following classes:
Class: PlDataTypeB checks
Class: PlDataSourceFactory createdby
Class: PlSubscriptionSubmitIF submitssubscriptionsusing

4-84 305-CD-026-002

4.3.42 PlDataSourceFactory Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

None

Operations:

Create - Constructs a DataSource object based upon its id.

Arguments:const RWCString &

Return Type:PlDataSource *

Privilege:Public

PlDataSourceFactory
Arguments:
Return Type:Void
Privilege:Public

~PlDataSourceFactory
Arguments:
Return Type:Void
Privilege:Public

Associations:

The PlDataSourceFactory class has associations with the following classes:
Class: PlDataSource createdby

4.3.43 PlDataTranferHistory Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class will computes a moving average of the time it takes for the data to arrive from

EDOS or another DAAC to the Data Server.

4-85 305-CD-026-002

Attributes:

None

Operations:

CalculateMyMovingAverage - This operation will calculate the moving average of the

transfer time of a data type from the source to the data server. The standard deviation will

also be calculated to provide the acceptable delta for the predicted availability of the arrival

of data.

Arguments:RWCString:myDataTypeId

Return Type:RWTime

Privilege:Public

PDL:{

Find record in database associated with data type

PlDataTranferHistory::FindMyDataType()

Calculate the last transfer time of data type to the data server to

based on last predicted and last actual time.

LatestTransferTime = ABS(myLastActual - myLastpredicted)

if (ABS(myPreviousTransferTime - LatestTranferTime) >

PlSourceToDsHistoryNB:myStandardDeviation)

{

if latest transfer time is outside of the standard deviation, this

time should not be used in computing a new moving average.

Set PlDataTranferHistory:myMovingAverageFlag == False

return;

}

Compute moving average and standard deviation

for (index = 1; index <=

PlSourceToDsHistoryNB:myNumberOfEstimates;index++)

{

Sum prior transfer times to calculate average

Total = Total + PlSourceToDsHistoryNB:myPreviousTransferTimes[index]

Square these times to calculate the standard deviation

SumOftransfersSqrd = SumOfTransfersSqrd +

(PlSourceToDsHistoryNB:myPreviousTransferTimes[index])**2

}

Average = Total / PlSourceToDsHistoryNB:myNumberOfEstimates

StandardDeviation = SQRT ((SumOfTransfersSqrd ­

(PlSourceToDsHistoryNB:myNumberOfEstimates*(Average)**2)))/

(PlSourceToDsHistoryNB:myNumberOfEstimates - 1)

Update persistent information pertaining to data.

PlSourceToDsHistoryNB:UpdateHistoricalinfo

}

4-86 305-CD-026-002

FindMyDataType - This operation will find the transfer history record associated with the

Data Availability Times record received.

Arguments:RWCString:myDataTypeId

Return Type:EcUTStatus

Privilege:Public

PDL:{

Parse through list of PlSourceToDsHistoryRecordNB records to find Data

Type associated with this prediction.

Get PlSourceToDsHistoryNB:myDataTypeId

}

Associations:

The PlDataTranferHistory class has associations with the following classes:
Class: PlSourcetoDsHistoryNB
Class: PlDATRecord isusedtopredictdataavailabilityatDSS

4.3.44 PlDataTypeB Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class describes a data type known to the planning subsystem. This is a description of

an input or output type, distinct to a granule or instance of the data type. The class is an

abstraction or proxy that describes one of the Data Server ESDTs. The class captures data

and operations that are required to subscribe and receive notification from the Data Server

when a new instance of the Data Type arrives.

Attributes:

myArchiveCenter - DAAC where Data Type is archived.

Data Type:RWCString

Privilege:Private

Default Value:

myCatalogueCatagory - Catalogue catagory indicates whether the Data Type is valid for

a production request, which would indicate it is generated from a PGE at a site, otherwise

the Data Type is some intermediate file, or input file received from another site.

myDServURString - Universal Reference to identify Data Server providing services

(retreive, insert, inspect) for the Data Type.

Data Type:RWCString

4-87 305-CD-026-002

Privilege:Private

Default Value:

myDataTypeId - This is the identified of the Data Type.

Data Type:RWCString

Privilege:Private

Default Value:

myDescription - This attribute provides a text description for the Data Type

Data Type:RWCString

Privilege:Private

Default Value:

myDynamicFlag - Indicates whether the Data Type is dynamic or static. Examples of

dynamic are L0, L1 data sets etc. with a frequest update time. Examples of static are

calibration files which only change with a new version of a PGE.

Data Type:EcTBoolean

Privilege:Private

Default Value:

myESDTParmList - A parameter list used within the inspect to the Data Server, to retreive

the metadata associated to a newly arrived instance of the Data Type.

Data Type:GlParameterList

Privilege:Private

Default Value:

myInstrumentName - Instrument name associated with PGE

Data Type:RWCString

Privilege:Private

Default Value:

myName - Attribute describes the ESDT Name for the data set within the Data Server.

Data Type:RWCString

Privilege:Private

Default Value:

myNominalSize - Nominal size of the data type

Data Type:EcTFloat

Privilege:Private

Default Value:

myProcessingCenter - This is the name of the DAAC that produces this data type.

Data Type:RWCString

Privilege:Private

Default Value:

4-88 305-CD-026-002

myProvider - the DAAC that is maintaining the data

Data Type:RWCString

Privilege:Private

Default Value:

myQASubscription - Captures whether a subscription has been set up for the QA of this

data type.

Data Type:EcTBoolean

Privilege:Private

Default Value:

mySatelliteName - Satellite name associated to PGE

Data Type:RWCString

Privilege:Private

Default Value:

myService - The service (usually ACQUIRE) that serves the data

Data Type:RWCString

Privilege:Private

Default Value:

mySpatialFlag - If this flag is set, then the data granules for this type require spatial

coordinates to define them as well as start and stop time of the data. This flag will identify

data that has been placed into tiles.

Data Type:EcTBoolean

Privilege:Private

Default Value:EcDFalse

mySubscriptionFlag - Set to true if Planning currently has a subscription on this data type

with the Data Server or Ingest

Data Type:EcTBoolean

Privilege:Private

Default Value:EcDFalse

myUsedByCenter - List of DAACs which use this Data Type as input for their processing.

Used for InterDAAC planning.

Data Type:RWTValSlist<RWCString>

Privilege:Private

Default Value:

Operations:

FindDataAvailability - Ensures that the Data Granules that are required to fulfill a
production request are captured in the PDPS database

4-89 305-CD-026-002

Arguments:RWTime Start,RWTime Stop

Return Type:EcTVoid

Privilege:Public

PDL://

////find any existing data granules

//

//LatestTime = start of time frame

//

////if locally produced data type, query PDPS DB

//

//if myProcessingCenter == myDAAC {

// query PDPS DB for any data granules in the time frame

// call CreateDataGranules (LatestTime)

//}

//

//Call DSS Inspect and Query (see DID 313 scenario primitive for

//Data Server Inspect and Query) to get all datagranules for time period

//between LatestTime and end of time frame

//

//call CreateDataGranules (LatestTime)

//

//// check data availability times (DATs) for remote DAAC data granules

//

//if myProcessingCenter != myDAAC {

// call QueryDATRecords (LatestTime, end of time frame, granuleList)

// call CreateDataGranules (LatestTime)

//}

//

//// Submit subscriptions for future data

//for time > LatestTime && time < end of time frame {

// if mySubscriptionFlag != TRUE

// submit subscription (call PlSubscriptionSubmitIF::SubmitSubscription)

// predict arrivals using PlRoutineArrival

//

//}

//

//CreateDataGranules (RWTime &LatestTime)

//{

//

// for each datagranule found {

// PlDataGranule()

// PlAlternateDataGranule()

//

// // perform metadata check

// call PlMetaDataChecks::CheckforCondition

4-90 305-CD-026-002

// if (PlAlternateDataGranule::myAccepted) // passed check

// insert data granule in DB

// // keep track of latest granule

// if PlDataGranule.StopTime > LatestTime

// LatestTime = PlDataGranule.StopTime

//

// // if primary alternate input, set temporal flag to

// // indicate to subscription mananger to check for most recent

// // granule of the same type as primary, if primary not available

// if (PlDataTypeReq::myType != Required) {

// if (PlAlternate.myTemporalFlag == TRUE

// & PlAlternateDataGranule.myPrimaryType == Null)

// set PlAlternateDataGranule.myTemporalFlag == TRUE

//

// }

//}

//

GetAdService - Used to get the advertisement title for a service for this data type. This

advertisement title will be used when submitting a subscription.

Arguments:EcUtStatus &

Return Type:IoAdService *

Privilege:Public

InspectDataArrival - Creates a UR from the notification message received and uses the

UR to extract the requried metadata (ESDT parameter list) from the Data Server.

Arguments:

Return Type:EcTVoid

Privilege:Public

InstallReceiver - Install a receiving queue in which to receive notification of subscription

from the Data Server.

Arguments:

Return Type:EcTVoid

Privilege:Public

MatchDataArrival - Match the data arrival with the predictions within Data Granule table.

Arguments:

Return Type:EcTVoid

Privilege:Public

PlDataType - This is the default constructor for the class.

Arguments:

Return Type:PlDataType

Privilege:Public

4-91 305-CD-026-002

PlDataType - This constructor takes in the ID of the Data Type to be created.

Arguments:RWCString:DataTypeId

Return Type:PlDataType

Privilege:Public

PlDataType - This is the default constructor for the class.

Arguments:

Return Type:PlDataType

Privilege:Public

PlDataType - This constructor takes in the ID of the Data Type to be created.

Arguments:RWCString:DataTypeId

Return Type:PlDataType

Privilege:Public

QueryDATRecords - This operation returns a list of DAT records for this data type for the

specified interval.

Arguments:RWTime: StartTime, RWTime: StopTime, RWTlistSval<PlDATRecords>

Return Type:EcUtStatus

Privilege:Public

RegisterDataArrival - Procedure to be called on notification of data arrival, this a control

procedure that manages the inspection of the data, comparison to the data instances, and

then subsequent handling of associated DPRs to the arrived data.

Arguments:

Return Type:EcTVoid

Privilege:Public

Submit - Used to submit a subscription for this data type

Arguments:

Return Type:EcUtStatus

Privilege:Private

Withdraw - Used to withdraw a subscription for this data type

Arguments:

Return Type:EcUtStatus

Privilege:Public

~PlDataType - This is the destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

4-92 305-CD-026-002

The PlDataTypeB class has associations with the following classes:

Class: DsClQuery

Class: DsClSubscription

Class: PlDataSource checks

Class: PlPGE input

Class: IoAdProductSearchCommand isusedtointerfacetotheAdvertisingServiceby

Class: PlDATRecord matches

Class: PlPGE output

Class: PlDataGranule populates

Class: PlSubscriptionSubmitIF updates

PlDataTypeCatalogue (Aggregation)

PlPGEProfile (Aggregation)

4.3.45 PlDataTypeCatalogue Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class describes a collection that lists the data types that may be generated by the

production system. The class is constructed from the PlDataTypes class using the

catalogue catagory attribute from that class.

Attributes:

None

Operations:

CatalogueRequest - Request to retrieve all data types the ECS site is capable of

generating.

Arguments:

Return Type:catalogue:char*

Privilege:Public

RetrieveDefPGE - Retrieves the default PGE associated with a selected product.

Arguments:RWCString:ProductType

Return Type:RWCString:DefPGEName

Privilege:Public

RetrieveDefProduct - Retrieves the default product associated with a PGE that has been

selected.

Arguments:RWCString:PGEID

Return Type:RWCString:DefProductName

4-93 305-CD-026-002

Privilege:Public

Associations:

The PlDataTypeCatalogue class has associations with the following classes:
Class: PlProductionRequestUI storesrequestsin

4.3.46 PlDataTypeReq Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class contains the data that associates a PGE to an input data type.

Attributes:

myCommandString - This string is used to construct the acquire command for the data

type, used to stage the data from the data server.

Data Type:RWCString

Privilege:Private

Default Value:

myDataTypeId - This is the identified of the Data Type that is required.

Data Type:RWCString

Privilege:Private

Default Value:

myDataTypeReq - This attribute specifies the data type requirement of a PGE. The string

specifies the select statement to be applied to the Data Granule table, to determine the input

Data Granules for a given Data Processing Request.

Data Type:RWCString

Privilege:Private

Default Value:

myInspectString - This attribute stores the command string sent to the Data Server to

inspect fields of the metadata.

Data Type:RWCString

Privilege:Private

Default Value:

myLogicalID - The logical id relates to the PGE input identifier for a particular product

type. This attribute is required within the SDP toolkit process control interface.

4-94 305-CD-026-002

Data Type:EcTInt

Privilege:Private

Default Value:

myNumNeeded - This represents the number of inputs required by the PGE associated

with PlDataTypeReq.

Data Type:EcTInt

Privilege:Private

Default Value:

myPgeId - This is the identifier of the PGE that requires this data.

Data Type:RWCString

Privilege:Private

Default Value:

myQAThreshold - This attribute describes the quality threshold to be applied to the data

granules to "approve" their suitability for production before releasing a scheduled PGE.

The threshold is specified in terms of the ESDT parameter list of the data type.

Data Type:RWCString

Privilege:Private

Default Value:

myType - This represents the type of input: Required, primary, or backup.

Data Type:enum

Privilege:Private

Default Value:

Operations:

PlDataTypeReq - Default constructor for the class

Arguments:

Return Type:EctVoid

Privilege:Public

PlDataTypeReq - This constructor takes in the PGE ID and Data Type ID of the Data Type

Required class to be created.

Arguments:RWCString:PgeId, RWCString:DataTypeId

Return Type:EctVoid

Privilege:Public

PlDataTypeReq - Default constructor for the class

Arguments:

Return Type:EctVoid

Privilege:Public

4-95 305-CD-026-002

PlDataTypeReq - This constructor takes in the PGE ID and Data Type ID of the Data Type

Required class to be created.

Arguments:RWCString:PgeId, RWCString:DataTypeId

Return Type:EctVoid

Privilege:Public

~PlDataTypeReq - This is the destructor for the class.

Arguments:

Return Type:EctVoid

Privilege:Public

Associations:

The PlDataTypeReq class has associations with the following classes:
Class: PlMetaDataChecks
Class: PlMetaDataChecks performs

4.3.47 PlDiskPartition Class

Parent Class:PlResource

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class describes the disk resources for data production

Attributes:

myBlockSize - the block size for the partition

Data Type:int

Privilege:Private

Default Value:

myDeviceID - specifies the UNIX device id for the partition

Data Type:String

Privilege:Private

Default Value:

myPartitionSize - the total partition size

Data Type:int

Privilege:Private

Default Value:

4-96 305-CD-026-002

mySysAlloction - the size of allocation of the partition for system usage

Data Type:int

Privilege:Private

Default Value:

myUserAllocation - the size of allocation of the partition for production usage

Data Type:int

Privilege:Private

Default Value:

Operations:

All Operations inherited from parent class

Associations:

The PlDiskPartition class has associations with the following classes:
Class: PlComputer
PlService (Aggregation)

4.3.48 PlEDASModeRecordNB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:False

Purpose and Description:

This Class contains information found in a FOS Detailed Activity Schedule, Mode Record.

Attributes:

myDataRate - The average rate at which data is being stored in the buffer during the mode.

Data Type:EcTInt

Privilege:Private

Default Value:

myInstrumentName - Identifies the instrument name with which the mode is associated

with.

Data Type:RWCString

Privilege:Private

Default Value:

myModeName - Mode name as defined in the DFCD for the EOS AM-1 Project Data

Base.

4-97 305-CD-026-002

Data Type:RWCStrimg

Privilege:Private

Default Value:

myModeStartTime - The specified start time of the mode.

Data Type:RWTime

Privilege:Private

Default Value:

myModeStopTime - The specified stop time of the mode.

Data Type:RWTime

Privilege:Private

Default Value:

myRecordTerminator - Identified the end of the mode record.

Data Type:RWTime

Privilege:Private

Default Value:

Operations:

PlEDASModeRecord - Constructor

Arguments:

Return Type:PlEDASModeRecord

Privilege:Public

~PlEDASModeRecord - Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:
The PlEDASModeRecordNB class has associations with the following classes:
PlFOSDASFile (Aggregation)

4.3.49 PlEDASRecordNB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:False

Purpose and Description:

This class contains information found in FOS Detailed Activity Schedule, Activity

4-98 305-CD-026-002

Records.

Attributes:

myActivityRecordType - Indicates the type of scheduling used for the activity (i.e.

absolute time or event based)

Data Type:RWCString

Privilege:Private

Default Value:

myActivityStartTime - Specifies the Start time of the activity.

Data Type:RWTime

Privilege:Private

Default Value:

myActivityStopTime - Specifies the end time of the activity.

Data Type:RWTime

Privilege:Private

Default Value:

myDataRates - Specifies the average rate at which data is being stored.

Data Type:EcTInt

Privilege:Private

Default Value:

myEOCActivityID - An integer value that uniquely identifies the activity.

Data Type:RWCString

Privilege:Private

Default Value:

myRecordTerminator - Identifies the end of an activity record.

Data Type:EcTInt

Privilege:Private

Default Value:

mySubsystemName - Identifies the instrument/subsystem name with which the activity is

scheduled.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

PlEDASRecordNB - Constructor
Arguments:

4-99 305-CD-026-002

Return Type:PlEDASRecordNB

Privilege:Public

~PlEDASRecordNB - Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:
The PlEDASRecordNB class has associations with the following classes:
PlFOSDASFile (Aggregation)

4.3.50 PlEntryScreenNB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

An abstraction of a GUI entry screen.

Attributes:

None

Operations:

Add
Arguments:
Return Type:Void
Privilege:Public

ConfirmCreate
Arguments:
Return Type:Void
Privilege:Public

ConfirmDelete
Arguments:
Return Type:Void
Privilege:Public

ConfirmModify
Arguments:
Return Type:Void

4-100 305-CD-026-002

Privilege:Public

Copy
Arguments:
Return Type:Void
Privilege:Public

Cut
Arguments:
Return Type:Void
Privilege:Public

Delete
Arguments:
Return Type:Void
Privilege:Public

Modify
Arguments:
Return Type:Void
Privilege:Public

Paste
Arguments:
Return Type:Void
Privilege:Public

Select
Arguments:
Return Type:Void
Privilege:Public

Associations:
The PlEntryScreenNB class has associations with the following classes:
PlPlanningWorkbenchUI (Aggregation)

4.3.51 PlExportedPlanNB Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This file is an exported version of a plan. It would contain information such as the start

4-101 305-CD-026-002

and stop times, priority and inter-DAAC data dependencies of the jobs in a plan.

Attributes:

None

Operations:

Export - Converts a local representation of a plan into a file that can be stored to the data

server.

Arguments:RWTvalSlist<PlActivities>

Return Type:Void

Privilege:Public

PDL: {

For plan to be exported

Open output file

Get list of activities in plan

For each activity,

Write name, predicted start & stop time and priority to file

Identify input and output data granules

For each data granule

if data type is needed at or processed at a remote DAAC

write this data type to file as well, with I for input, O for output
}

Import - Reads in an exported plan from a remote DAAC and creates a local

representation of it.

Arguments:

Return Type:Void

Privilege:Public

PDL: {

For file received from data server

Create new plan

Open input file

Read first name, predicted start & stop time and priority

While not EOF

If new Activity

Assign to new PlActivity::
PlActivity(name, start, stop, priority)

If data type,
create a PlDataDependencies -

Read next line
}

4-102 305-CD-026-002

Associations:
The PlExportedPlanNB class has associations with the following classes:
PlPublishedPlan (Aggregation)

4.3.52 PlFOSDASFile Class

Parent Class:PlDataSchedules

Public:No

Distributed Object:No

Purpose and Description:

This file contains FOS Detailed Activity Schedules received from the Data Server.

Attributes:

myFileName - Name of the data file for the FOS DAS

Data Type:RWCString

Privilege:Private

Default Value:

myMetaDataName - Name of the metadata file for the FOS DAS

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

PlFOSDASFile - Constructor

Arguments:

Return Type:PlFOSDASFile

Privilege:Public

~PlFOSDASFile - Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlFOSDASFile class has associations with the following classes:
None

4-103 305-CD-026-002

4.3.53 PlFile Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Used by the planning algorithm to allocate space to the filesystem for any files used by a

DPR in a plan.

Attributes:

myAllocationTime - Allocation Time of File.

Data Type:

Privilege:Private

Default Value:

mySize - Nominal size of PlDataGranule.

Data Type:

Privilege:Private

Default Value:

Operations:

None

Associations:

The PlFile class has associations with the following classes:
Class: PlDataGranule simulatesstroageof

4.3.54 PlGroundActivity Class

Parent Class:PlActivity

Public:No

Distributed Object:No

Purpose and Description:

This class is a generalization of the PlActivity class. The class describes a Ground Event

within the plan.

Attributes:

All Attributes inherited from parent class

Operations:

4-104 305-CD-026-002

Cancel - Cancel the activity

Arguments:

Return Type:void

Privilege:Public

PDL:{

// calls the cancel method of the Ground Event

}

Modify - Modify the activity

Arguments:

Return Type:void

Privilege:Public

PDL:{

// calls the modify method of the Ground Event

}

PlGroundActivity - Constructor method

Arguments:

Return Type:PlGroundActivity

Privilege:Public

PlGroundActivity - Create an activity from the Ground Event object

Arguments:PlGroundEvent

Return Type:PlGroundActivity

Privilege:Public

Schedule - Schedule the activity

Arguments:

Return Type:void

Privilege:Public

PDL:{

// calls the schedule method of the Ground Event

}

Status - Status the activity

Arguments:

Return Type:void

Privilege:Public

PDL:{

// calls the status method of the Ground Event

}

~PlGroundActivity - Destructor method

Arguments:

4-105 305-CD-026-002

Return Type:void
Privilege:Public

Associations:

The PlGroundActivity class has associations with the following classes:
Class: PlGroundEvent isaplanned
Class: PlGroundEvent whenplannedis

4.3.55 PlGroundEvent Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class describes a Ground Event which is recorded in the PDPS database. A Ground

Event marks the allocation of resources to some none-production task such as

maintainance.

Attributes:

myDescription - This attribute provides storage for a text description of a ground event

Data Type:String

Privilege:Private

Default Value:

This is a Constant.

myDuration - This attribute describes the duration of the Ground Event

Data Type:Time

Privilege:Private

Default Value:

This is a Constant.

myName - Event name entered by Resource Manager for this ground event.

Data Type:String

Privilege:Private

Default Value:

myPriority - This attribute describes the priority of the Ground Event.

Data Type:int

Privilege:Private

Default Value:

This is a Constant.

4-106 305-CD-026-002

myTemplateFlag - This attribute describes whether the ground event is to be saved as a

template description of a ground events. Ground Events with this attribute True will be

retained in the PDPS database. Those with this attribute as False will automatically be

deleted a month after the completion date of the Ground Event.

Data Type:Boolean

Privilege:Private

Default Value:False

This is a Constant.

Contraints:

Non Persisent Flag:

myWinEndTime - This attribute describes the end time of the window of opportunity for

when the Ground Event may be planned

Data Type:Time

Privilege:Private

Default Value:

This is a Constant.

Contraints:

Non Persisent Flag:

myWinStartTime - This attribute describes the start time of the window of opportunity for

when the Ground Event may be planned

Data Type:Time

Privilege:Private

Default Value:

This is a Constant.

Contraints:

Non Persisent Flag:

Operations:

Cancel - Cancel the Ground Event within the data processing job scheduler

Arguments:

Return Type:void

Privilege:Public

PDL:{

// calls the cancel Ground Event method of the DpPrJobScheduler

}

Create - Create an ground event in the PDPS database

Arguments:

Return Type:void

Privilege:Public

4-107 305-CD-026-002

Delete - Delete the ground event from the PDPS database

Arguments:

Return Type:void

Privilege:Public

Modify - Modify the Ground Event within the data processing job scheduler. The

attributes of the Ground Event that may have been modified are priority and the anticipated

start / stop times of the DPR used to set the alarms in the data processing scheduler.

Arguments:

Return Type:void

Privilege:Public

PDL:{

// calls the modify Ground Event job method of the DpPrJobScheduler

}

PlGroundEvent - Constructor method

Arguments:

Return Type:PlGroundEvent

Privilege:Public

Schedule - Schedule the Ground Event within the data processing job scheduler

Arguments:

Return Type:void

Privilege:Public

PDL:{

// calls the create Ground Event job method of the DpPrJobScheduler

}

Status - Status the Ground Event within the data processing job scheduler

Arguments:

Return Type:void

Privilege:Public

PDL:{

// calls the status Ground Event job method of the DpPrJobScheduler

}

~PlGroundEvent - Destructor method

Arguments:

Return Type:void

Privilege:Public

Associations:

The PlGroundEvent class has associations with the following classes:
Class: PlResourceRequirement hasa

4-108 305-CD-026-002

Class: PlGroundActivity isaplanned

Class: DpPrScheduler isscheduledinprocessingby

Class: PlGroundActivity whenplannedis

PlGroundEvents (Aggregation)

4.3.56 PlGroundEventAllocation Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

A link class that determines whether or not this ground event needs exclusive use of this

resource

Attributes:

myExclusiveOrShared - Determines whether this ground event requires the exclusive use

of a resource, or if it can share the resource with other activities.

Data Type:enum

Privilege:Private

Default Value:

Operations:

None

Associations:

The PlGroundEventAllocation class has associations with the following classes:
None

4.3.57 PlGroundEventExecutable Class

Parent Class:PlGroundEvent

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

Any ground events that can executed via a UNIX script will be automatically handled

through resource planning using this object

Attributes:

4-109 305-CD-026-002

myActualStartTime - This is the actual time that this Ground Event's script began

executing.

Data Type:RWTime

Privilege:Private

Default Value:

myActualStopTime - This is the actual time that this Ground Event's script finished

executing.

Data Type:RWTime

Privilege:Private

Default Value:

myScriptName - This is the actual name of the script that executes this ground event,

complete with the name of the directory on the host machine where this script can be found

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

Schedule - This operation overrides the parent "Schedule" operation and allows an actual

script to be scheduled to run, instead of just creating a place holder in the Production Queue

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlGroundEventExecutable class has associations with the following classes:
None

4.3.58 PlGroundEvents Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This is a collector class for the PlGroundEvent class, and contains methods to select

Ground Events from the PDPS database and to iterate through them. This class may be

implemented by a suitable Rogue Wave template class

Attributes:

4-110 305-CD-026-002

None

Operations:

Add - Add a Ground Event to the collection

Arguments:PlGroundEvent: event

Return Type:void

Privilege:Public

Delete - Delete a Ground Event from the collection

Arguments:PlGroundEvent: event

Return Type:void

Privilege:Public

First - Returns the first Ground Event within the collection.

Arguments:

Return Type:PlGroundEvent

Privilege:Public

Next - Returns the next Ground Event within the collection (or NULL if no more activities).

Arguments:

Return Type:PlGroundEvent

Privilege:Public

SelectEvents - Builds the collection for all Ground Events within the PDPS database that

lie within the time interval specified.

Arguments:Interval

Return Type:void

Privilege:Public

Associations:

The PlGroundEvents class has associations with the following classes:
None

4.3.59 PlImportedActivity Class

Parent Class:PlActivity

Public:No

Distributed Object:No

Purpose and Description:

This object is a specialization of the class PlActivity and represents activities that have been

4-111 305-CD-026-002

derived from an imported plan.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The PlImportedActivity class has associations with the following classes:
Class: PlDataDependencies mayhave

4.3.60 PlInstModeRecords Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class represents the various modes related to each instrument during the period of the

Instrument Mode Schedule.

Attributes:

myInstrumentName - This attribute specifies the instruments name.

Data Type:RWCStrimg

Privilege:Private

Default Value:

myModeName - Mode name, derived from the PlFOSDASFile as defined in the DFCD for

the EOS AM-1 Project Data Base.

Data Type:RWCStrimg

Privilege:Private

Default Value:

myModeStartTime - The specified start time of the mode.

Data Type:RWTime

Privilege:Private

Default Value:

myModeStopTime - The specified end time of the mode.

4-112 305-CD-026-002

Data Type:RWTime
Privilege:Private
Default Value:

Operations:

UpdatInstModeStatus - this operation updates the mode status for an instrument based

on scheduling information received.

Arguments:

Return Type:EcUtStatus

Privilege:Public

PDL:{

Assign values based on mode information receive from FOS DAS.
PlInstModeRecords:myModeName
PlInstModeRecords:myModeStartTime
PlInstModeRecords:myModeStopTime

}

Associations:

The PlInstModeRecords class has associations with the following classes:
Class: PlInstrumentModes

4.3.61 PlInstrumentModes Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This object represents the PDPS Instrument Mode Schedule based on FOS Detailed

Activity Schedule, mode information.

Attributes:

myScheduleStart - The start time of the FOS Detailed Activity Schedule that was used to

create the Instrument Mode Schedule.

Data Type:RWTime

Privilege:Private

Default Value:

myScheduleStop - The end time of the FOS Detailed Activity Schedule that was used to

create the Instrument Mode Schedule.

Data Type:RWTime

4-113 305-CD-026-002

Privilege:Private
Default Value:

Operations:

FindAssociatedInstrument - This operation will find the instrument associated with a

particular mode in the instrument mode schedule.

Arguments:RWCString:myInstrumentName

Return Type:EcTBoolean

Privilege:Public

PDL:{

Parse through list of PlInstModeRecords to find associated instrument
Get PlInstModeRecord:myInstrumentName
if (found)
{

return Instrument found flag of false
}
else
{

call PlInstModeRecords:UpdateInstModeStatus
to update mode information in list

}
}

MakeModeScheduleFromDASoper5ation
Arguments:RWTValSlist<PlFOSDASFile>

Return Type:EcUtStatus

Privilege:Public

RetrieveModeData - This operation will get the mode information from for a particular

instrument.

Arguments:RWTValSlist<PlInstModeRecord>

Return Type:Void

Privilege:Public

Associations:

The PlInstrumentModes class has associations with the following classes:
Class: PlInstModeRecords
Class: PlPGECollection
Class: PlPGEProfile
Class: PlDataSchedules isusedtoconstructinstrumentmodeschedule

4-114 305-CD-026-002

4.3.62 PlMetaDataChecks Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class provides a metadata field and its corresponding value to be checked against the

actual metadata of the specified input data granule when deciding if a particular input

should be used, or a PGE should be executed.

Attributes:

myDataTypeId - This is the identifier of the data type for which the defined metadata

values should be checked.

Data Type:RWCString

Privilege:Private

Default Value:

myMetaDataOper - This is the operation (=, >, <) for the comparision of the metadata

field.

Data Type:RWCString

Privilege:Private

Default Value:

myMetaDataParmName - This is the name of the metadata parameter to be compared.

Data Type:RWCString

Privilege:Private

Default Value:

myMetaDataType - This is the type (int, string, etc...) of the metadata parameter to be

compared.

Data Type:RWCString

Privilege:Private

Default Value:

myMetaDataValue - This is the value for the metadata parameter to be compared with the

actual metadata value.

Data Type:RWCString

Privilege:Private

Default Value:

myPgeId - This is the identifier of the PGE for which the metadata values are to be

checked.

Data Type:RWCString

4-115 305-CD-026-002

Privilege:Private
Default Value:

Operations:

CheckForCondition - This method checks the metadata for the specified Data Granule for

the metadata field and value.

Arguments:RWCString, PlDataGranule &, EcTBoolean &

Return Type:Void

Privilege:Public

CompareActualWithCondition - This method compares the String metadata attribute

value with the actual file's metadata.

Arguments:RWCString &, RWCString &, RWCString &, EcUtStatus &

Return Type:Void

Privilege:Public

CompareActualWithCondition - This method compares the Int metadata attribute value

with the actual file's metadata.

Arguments:EcTInt, EcTInt, RWCString &, EcUtStatus &

Return Type:Void

Privilege:Public

CompareActualWithCondition - This method compares the Float metadata attribute

value with the value of the actual file's metadata.

Arguments:EcTFloat, EcTFloat, RWCString &, EcUtStatus &

Return Type:Void

Privilege:Public

CompareActualWithCondition - This method compares the String metadata attribute

value with the actual file's metadata.

Arguments:RWCString &, RWCString &, RWCString &, EcUtStatus &

Return Type:Void

Privilege:Public

CompareActualWithCondition - This method compares the Int metadata attribute value

with the actual file's metadata.

Arguments:EcTInt, EcTInt, RWCString &, EcUtStatus &

Return Type:Void

Privilege:Public

Associations:

The PlMetaDataChecks class has associations with the following classes:
Class: PlDataTypeReq

4-116 305-CD-026-002

Class: PlDataTypeReq performs

4.3.63 PlNetwork Class

Parent Class:PlResource

Public:No

Distributed Object:No

Purpose and Description:

Simple specialization of the PlResource class to describe a Network object against which a

Ground Event may be allocated.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The PlNetwork class has associations with the following classes:
PlService (Aggregation)

4.3.64 PlOnDemandExceed Class

Parent Class:PlReplanCriteria

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

Checks each On-demand Production Request against a number of limit automatic replan

resource thresholds to determine if the operator should be notified that a replan should be

considered.

Attributes:

myDefaultToThresh - Indicates whether the Limited Automatic Replan should be

triggered at the same levels as the On Demand Thresholds set up for deferring an OPR.

This way every time an OPR is deferred, the operator will be asked if a replan should be

done.

Data Type:EcTBoolean

Privilege:Private

4-117 305-CD-026-002

Default Value:False

Operations:

AddToReport - Creates a string that can be added to myReport that identifies what

resource threshold was exceeded, what the current limit is, and what the OPR uses.

Arguments:EcTFloat, EcTFloat, EcTInt

Return Type:RWCString

Privilege:Public

PDL: {

For On Demand Production Request resource value that exceeded threshold

Create a string that contains type of threshold exceeded,

current threshold, and OPRs threshold amount

Return this string

}

AddToReport
Arguments:EcTFloat, EcTFloat

CheckReplan - This operation checks if an On-demand Production Request exceeds the

resource thresholds set for limit automatic replans. If any do, then the operator is notified

that a replan should be considered.

Arguments:PlOnDemandPRNB &

Return Type:EcTBoolean

Privilege:Public

PDL: {

For each resource type

Call OnDemandReplanValues::CompareThreshod(OPR &)

if fails ­

if first failure, put general information about OPR in myReport

call OnDemandExceed::AddToReport

(OPR::CalculateResourceUsage(resource type),
OnDemandReplanValues::myReplanValue)

end For
If any failures, call PlOnDemandExceed::NotifyOperator
}

Associations:

The PlOnDemandExceed class has associations with the following classes:
Class: PlOnDemandReplanValues

4-118 305-CD-026-002

4.3.65 PlOnDemandManagerNB Class

Parent Class:EcPfManagedServer

Public:No

Distributed Object:No

Purpose and Description:

This class is the manager for all On-Demand production requests providing status,

modification, cancellation and housekeeping services.

Attributes:

myCumRescUse - This attribute contains the cumulative usage of a resouce for On-

Demand Productions by the resource type for a Production period.

Data Type:RWTime

Privilege:Private

Default Value:

myOnDemandPRs - List of On Demand Production Request currently active.

Data Type:RWTValSlist<RWCString>

Privilege:Private

Default Value:

Operations:

AddOPR - This operation adds the current request to the list of requests maintained by the

manager.

Arguments:PlOnDemandPRNB &

Return Type:void

Privilege:Public

Cancel - Operation to cancel the execution of the production associated with the request

identified by the parameter passed to the operation.

Arguments:OPRID

Init - Initializes the application by creating the lifecycle service callbacks (shutdown, etc.)

and setting up the communications for receiving subscriptions.

Arguments:

Return Type:void

Privilege:Public

Modify - Operation which will provide the capability to modify a production request based

on the parameters passed to the operation which identify the request and provide the new

requirements for the production request.

Arguments:OPRID,OPR

4-119 305-CD-026-002

PlOnDemandManagerNB - Constructor method

Arguments:

Return Type:PlOnDemandManagerNB

Privilege:Public

RemoveOPR - This operation is called when the notification is received that the product

has been generated and this operation then removes the production request from the list of

requests the manager maintains.

Arguments:PlOnDemandPRNB &

Return Type:void

Privilege:Public

Shutdown - Performs a graceful shutdown of the application by deinstalling receivers and

closing communications.

Arguments:

Return Type:void

Privilege:Public

Status - Operation which when called will provide the current status of the production

request associated with the parameter passed to the operation.

Arguments:OPRID

SubmitSubscription - This operation is called by ReturnUR in PlOnDemandPRNB to

create and submit a subscription to be notified of the insertion into the Data Server of an

instance of the product generated by the OnDemand request.

Arguments:

Return Type:void

Privilege:Public

UpdateRescUse - This operation adds the resource usage time to the attribute in the

manager that is tracking the total resource usage for On Demand requests.

Arguments:rescTime

Return Type:void

Privilege:Public

~PlOnDemandManager - Destructor method

Arguments:

Return Type:void

Privilege:Public

Associations:
The PlOnDemandManagerNB class has associations with the following classes:

Class: EcEvent

Class: EcMpMsgCb

Class: PlOnDemandPRNB aremanagedby

4-120 305-CD-026-002

Class: PlSubscriptionSubmitIF submitssubscriptionsusing

4.3.66 PlOnDemandPRNB Class

Parent Class:PlProductionRequestB

Public:Yes

Distributed Object:Yes

Purpose and Description:

This class is the specialization class which holds additional/modified attributes and

operations needed for On-Demand production requests.

Attributes:

All Attributes inherited from parent class

Operations:

PlOnDemandPRNB - Constructor method

Arguments:

Return Type:PlOnDemandPRNB

Privilege:Public

RequestCompleted - Operation to accept UR of a completed product and associate with a

given Production Request, then remove it from the list of requests kept by the Manager and

return the UR to Data Server via the Callback routine.

Arguments:UR

Return Type:void

Privilege:Public

ReturnUR - This operation is called by the Data Server to initiate action to retrieve the UR

for the product being generated by this request. It calls the SubmitSubscription routine in

PlOnDemandManagerNB, and then after the subscription is returned and the cleanup is

accomplished it returns the UR of the product.

Arguments:

Return Type:EcUrUR

Privilege:Public

ValidateOPR - Operation to determine if thresholds are exceeded and if data is available

to generate product. If conditions are satisfactory then request is submitted to processing.

Arguments:

Return Type:String

Privilege:Public

PDL:

PlProductionRequestB : PlDefinePgeRuns();

4-121 305-CD-026-002

PlProductionRequestB : PlStoreProductionRequest(); // Call to PlProductionRequestB
operation to store the information pertaining to this request in the PDPS database.

PlOnDemandManagerNB : AddOPR(PlOnDemandPRNB &); // Call to PlOnDemand
ManagerNB operation to add current PR to list of PRs kept in myOnDemandPRs attribute.

PlDPRB : Schedule(); // Calls DpPrScheduler operation to create the DPR info in the PDPS
Database.

PlRescUseThreshNB(); // Constructor to create instance of PlRescUseThreshNB and
populate the attributes with information from the DB.

if (PlRescUseThreshNB : CheckThreshold(PlOnDemandPRNB &) // Compare resource
requirements from PGE Profile against authorized useage limits for On Demand
Production.

then
PlOnDemandManagerNB : UpdateRescUse(rescTime); //Call to

PlOnDemandManagerNB operation to add current production request resource usage to
myCumRescUse attribute to maintain a running total.

if (PlDPRB : CheckAvailability()) // Call to PlDPRB operation to check if the necessary
data is available at the Data Server.

then
PlDPRB : Release(); // Calls DpPrScheduler operation to release the job to the Autosys

Job Box to start production.

status = "Submitted";

else
PlSubscriptionSubmitIF : SubmitSubscription(); // Call to PlSubscriptionSubmitIF

operation to create a subscription to be notified upon arrival at Data Server of data.

status = "Delayed";

else
status = "Exceeded"; // Resource thresholds exceeded requires operator intervention.

PlOnDemandExceed : CheckReplan(PlOnDemandPRNB &); Check to see if a replan
notification is necessary.

return(status); // Return the text string indicating current status of the production request,
EcRequest object would provide additional information.

4-122 305-CD-026-002

~PlOnDemandPRNB - Destructor method.

Arguments:

Return Type:void

Privilege:Public

Associations:
The PlOnDemandPRNB class has associations with the following classes:

Class: EcRequest ProvidesStatus

Class: PlOnDemandManagerNB aremanagedby

Class: PlReplanCriteria checkforneedforreplannotification

Class: PlRescUseThreshNB comparewith

Class: PlDPRB composes

Class: PlPGE requests

4.3.67 PlOnDemandReplanValues Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

The resource usage thresholds for replan notification - one per resource type (CPU, disk

space, etc)

Attributes:

myCumulative - If true, indicates that this is a culmutive threshold - that is, give a replan

notification if the summation of OPRs received during this time period exceed this

threshold

Data Type:EcTBoolean

Privilege:Private

Default Value:

myReplanValue - The threshold for this resource above which causes a replan notification

Data Type:EcTInt

Privilege:Private

Default Value:

myResourceType - Indicates which resource type this value should be assocation with.

Data Type:enum

Privilege:Private

Default Value:

4-123 305-CD-026-002

Operations:

CompareThreshold - Compares the resource usage of a Production Request with the

threshold set for replan notification for this resource type.

Arguments:PlOnDemandPRNB &

Return Type:EcTBoolean

Privilege:Public

PDL: {

if OPR::CalculateResourceUsage(resource type) > myReplan Value,

return FAILURE
}

Associations:

The PlOnDemandReplanValues class has associations with the following classes:
Class: PlOnDemandExceed

4.3.68 PlOrbitModelNB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class is a table used by PlOrbitScheduled for calculating the estimated times for an

orbit.

Attributes:

myOrbitNum - This attribute is the orbit number.

Data Type:EctInt

Privilege:Private

Default Value:

myPlatform - This attribute is the satelite which will be providing the data.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

ConvertOrbitNumtoTime - Converts an orbit number into its corresponding time.
Arguments:EcTInt:OrbitNum,RWTime:OrbitTime

4-124 305-CD-026-002

Return Type:Void

Privilege:Public

PlOrbitModelNB - This is the default constructor for the class.

Arguments:

Return Type:Void

Privilege:Public

PlOrbitModelNB - This constructor for the class takes in the Platform and Orbitnum, and

places the values into the appropriate attributes when an object is created.

Arguments:Platform:RWCString, OrbitNum:EcTInt

Return Type:Void

Privilege:Public

~PlOrbitModelNB - This is the destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:
The PlOrbitModelNB class has associations with the following classes:
Class: PlOrbitScheduledNB references

4.3.69 PlOrbitScheduledNB Class

Parent Class:PlPGE

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class is a table used by the PGEs scheduled for the orbit to generate the DPRs and their

input data.

Attributes:

myEphemeris - This attribute is the ephemeris data files that are used in determining orbit

start and stop times and to syncronize orbits, if necessary.

Data Type:RWTValList<RWCString>

Privilege:Private

Default Value:

myOrbitLength - This attribute is the duration of an orbit.

Data Type:RWTime

Privilege:Private

4-125 305-CD-026-002

Default Value:

Operations:

GenerateDPRs - This method generates production requests based on the attributes of this

class and the associated OrbitModel.

Arguments:PlProductionRequest

Return Type:Void

Privilege:Public

PlOrbitScheduledNB - Constructor

Arguments:

Return Type:Void

Privilege:Public

~PlOrbitScheduledNB - Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:
The PlOrbitScheduledNB class has associations with the following classes:
Class: PlOrbitModelNB references

4.3.70 PlOtherTypes Class

Parent Class:PlPGE

Public:No

Distributed Object:No

Purpose and Description:

This is a place holder class allowing for other types of PGE scheduling.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

4-126 305-CD-026-002

The PlOtherTypes class has associations with the following classes:
None

4.3.71 PlOutputYield Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

Specifies the recipe to describe the output data granules for a PGE.

Attributes:

myCommandString - This string is used to construct the insert command for the data type,

used to destage the data to the data server.

Data Type:RWCString

Privilege:Private

Default Value:

myDataTypeId - This is the identifier for the Data Type for which this is the output yield.

Data Type:RWCString

Privilege:Private

Default Value:

myLogicalID - The logical id relates to the PGE output identifier for a particular product

type. This attribute is required within the SDP toolkit process control interface.

Data Type:EcTInt

Privilege:Private

Default Value:

myPgeId - This is the identifier of the PGE that this Output Yield is for.

Data Type:RWCString

Privilege:Private

Default Value:

myYield - Describes the number of data granules produced from the Data Processing

Request. These are assumed to be evenly distributed in time accross the acquisition

processing time of the DPR.

Data Type:EcTFloat

Privilege:Private

Default Value:

4-127 305-CD-026-002

Operations:

PlOutputYield - This is the default constructor for the class.

Arguments:

Return Type:Void

Privilege:Public

PlOutputYield - This constructor takes in the PGE ID and Data Type ID for the created

output yield object.

Arguments:RWCString:PgeId, RWCString:DataTypeId

Return Type:Void

Privilege:Public

PlOutputYield - This is the default constructor for the class.

Arguments:

Return Type:Void

Privilege:Public

PlOutputYield - This constructor takes in the PGE ID and Data Type ID for the created

output yield object.

Arguments:RWCString:PgeId, RWCString:DataTypeId

Return Type:Void

Privilege:Public

~PlOutputYield - This is the destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlOutputYield class has associations with the following classes:
None

4.3.72 PlPDASFile Class

Parent Class:PlDataSchedules

Public:No

Distributed Object:No

Purpose and Description:

This object is a representation of a file containing data availability times from remote

DAACs that is stored in the data server

Attributes:

4-128 305-CD-026-002

myFileName - Name of the PDAS file

Data Type:RWCString

Privilege:Private

Default Value:

myMetaDataFileName - Name of the metadata file for the PDAS

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

InsertToDSS - This operation inserts the PDPS Data Availability Schedule file to the Data

Server.

Arguments:

Return Type:EcTStatus

Privilege:Public

PDL: {

Build parameter list for insert (this should be fairly constant for plans)

submit request for insert.

}

PlPDASFile
Arguments:

Return Type:PlPDASFile

Privilege:Public

Associations:

The PlPDASFile class has associations with the following classes:
Class: GlParameterList holdsparametersforINSERT
Class: PlActivePlan iscreatedfrom
Class: GlCallback receivescallbackfromINSERT
Class: DsClCommand usedforINSERT
Class: DsClESDTReferenceCollector usedforINSERT
Class: DsClRequest usedforINSERT

4.3.73 PlPDASMetaData Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

4-129 305-CD-026-002

The metadata stored with a PDPS Data Availability Schedule on the Data Server

Attributes:

myDAAC - The name of the DAAC that is produced this PDAS

Data Type:RWCString

Privilege:Private

Default Value:

myNumRecords - Number of data availability records in this PDPS Data Availability

Schedule

Data Type:EcTInt

Privilege:Private

Default Value:

myStartTime - The start of the timeframe for this PDAS

Data Type:RWTime

Privilege:Private

Default Value:

myStopTime - The end of the timeframe for this PDAS

Data Type:RWTime

Privilege:Private

Default Value:

Operations:

PlPDASMeteData - Constructor

Arguments:

Return Type:PlPDASMeteData

Privilege:Public

~PlPDASMeteData - Destructor

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlPDASMetaData class has associations with the following classes:
PlPDASFile (Aggregation)

4-130 305-CD-026-002

4.3.74 PlPDASRecords Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Contains the information about when data will be produced.

Attributes:

myDataTypeId - Matches myDataTypeId on PlDataType and PlDataGranule

Data Type:RWCString

Privilege:Private

Default Value:

myStartTime - Matches myStartTime in PlDataGranule - the start time of the data.

Data Type:RWTime

Privilege:Private

Default Value:

myStopTime - Matches myStopTime in PlDataGranule - the stop time of the data.

Data Type:RWTime

Privilege:Private

Default Value:

myTileId
Data Type:RWCString

Privilege:Private

Default Value:

myTimeCompleted - This is the time the data will finished being produced at the DAAC.

Data Type:RWTime

Privilege:Private

Default Value:

Operations:

PlPDASRecords - Constructor

Arguments:

Return Type:PlPDASRecords

Privilege:Public

~PlPDASRecords - Destructor

Arguments:

Return Type:Void

4-131 305-CD-026-002

Privilege:Public

Associations:

The PlPDASRecords class has associations with the following classes:
PlPDASFile (Aggregation)

4.3.75 PlPGE Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This is the base class within a generalization heirachy that describes PGEs. The class

defines abstract operations required for the planning subsystem to work out when a PGE

needs to be scheduled. As well as containing the key attributes defining the PGE.

Attributes:

myDefaultTimer - This is the default timer value for the PGE for use in Alternative Input

selection.

myInputDataTypeList - List of input data types needed by the PGE

Data Type:RWTValSlist<RWCString>

Privilege:Private

Default Value:

myInstrument - Instrument for which the PGE is appropriate

Data Type:RWCString

Privilege:Private

Default Value:

myNumCPUs - This is the number of CPUs that the PGE requires. It should be 1 for non­

parallel processing PGEs.

Data Type:EcTInt

Privilege:Private

Default Value:

myOutputDataTypeList - List of output data types needed by the PGE

Data Type:RWTValSlist<RWCString>

Privilege:Private

Default Value:

4-132 305-CD-026-002

myPGEName - Name of the PGE

Data Type:RWCString

Privilege:Private

Default Value:

myPGEVersion - Version number of the PGE

Data Type:RWCString

Privilege:Private

Default Value:

myPgeId - This is the unique identifier of the PGE.

Data Type:RWCString

Privilege:Private

Default Value:

myPlatform - Platform for which the PGE is appropriate, may be a list

Data Type:RWCString

Privilege:Private

Default Value:

myTestOperational - Indicates if the PGE's status is test or operational

Data Type:enum

Privilege:Private

Default Value:

myType - This is the type of the PGE.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

Delete - Delete the PGE from the PDPS database

Arguments:

Return Type:void

Privilege:Public

FindDataAvailability - This is used to find what input data is available for this PGE.

Arguments:Interval

Return Type:void

Privilege:Public

PDL:{

// Iterates over the input data type list invokes the

// Find Data Availability method for each input type

}

4-133 305-CD-026-002

GenerateDPRs - Generate the Data Processing Requests to fulfill the Production Request.

Arguments:PlProductionRequest

Return Type:void

Privilege:Public

This is an abstract operation

PDL://

//// do not generate DPR if metadata checks have failed for all inputs

// if (number of metadata check failures > PlDataTypeReq.myNumNeeded) {

// set PlDPR.myCompletionState to "failed"

// return

// }

//

// determine time period unit (e.g. hour, month, orbit set)

//

// while scheduleTime < stopTime

//

// handle intermittent execution activations

//

// if (PlProductionRequest.myNumDPRsToKeep > 0) {

// // construct DPR if this occurrence is to be kept

// if (keepCount < myNumDPRsToKeep) {

// skipCount = 0

// PlDPR // constructor

// keepCount++

// }

// else if (skipCount < myNumDPRsToSkip) {

// keepCount = 0

// if (skipCount < myNumDPRsToSkip) {

// skipCount++

// break

// }

// }

// }

// else // DPR is always generated each time period

// PlDPR // constructor

// }

//

// get all input and outpout data granules and insert into PDPS DB

//

// bump scheduleTime to beginning of next time period

//

// } // end while

Modify - This is used to modify the attributes of this class.

4-134 305-CD-026-002

Arguments:TestOrOper:enum

Return Type:void

Privilege:Public

PlPGE - Constructor method

Arguments:

Return Type:PlPGE

Privilege:Public

PlPGE - Construct the PGE from the PDPS database

Arguments:int PGEid

PlPGE - Constructor method

Arguments:

Return Type:PlPGE

Privilege:Public

PlPGE - This constructor takes the PGE ID of the object to be constructed.

Arguments:RWCString:PGEid

Return Type:PlPGE

Privilege:Public

PlPGE - Constructor method

Arguments:

Return Type:PlPGE

Privilege:Public

PlPGE - This constructor takes the PGE ID of the object to be constructed.

Arguments:RWCString:PGEid

Return Type:PlPGE

Privilege:Public

UpdateVersion - Update the version of the PGE

Arguments:

Return Type:void

Privilege:Public

~PlPGE - Destructor method

Arguments:

Return Type:void

Privilege:Public

Associations:

4-135 305-CD-026-002

The PlPGE class has associations with the following classes:
Class: PlDPRB
Class: PlPgeFactory createdby
Class: PlPgeFactory creates
Class: PlDPRB generates
Class: PlDataTypeB input
Class: PlResourceRequirement isreferencedby
Class: PlUserParameters isreferencedby
Class: PlDataTypeB output
Class: PlOnDemandPRNB requests
Class: PlProductionRequestB requests
PlPGEProfile (Aggregation)

4.3.76 PlPGEActivity Class

Parent Class:PlActivity

Public:No

Distributed Object:No

Purpose and Description:

This class is a generalization of the PlActivity class. The class describes a Data Processing

Request - a run of a PGE - within the plan.

Attributes:

All Attributes inherited from parent class

Operations:

Cancel - Cancel the activity

Arguments:

Return Type:void

Privilege:Public

PDL:{

// calls the cancel method of the Data Processing Request

}

Modify - Modify the activity

Arguments:

Return Type:void

Privilege:Public

PDL:{

// calls the modify method of the Data Processing Request

}

4-136 305-CD-026-002

PlPGEActivity - Constructor method

Arguments:

Return Type:PlPGEActivity

Privilege:Public

PlPGEActivity - Constructs an activity within the plan for the Data Processing Request

Arguments:PlDPR

Return Type:PlPGEActivity

Privilege:Public

Schedule - Schedule the activity

Arguments:

Return Type:void

Privilege:Public

PDL:{

// calls the schedule method of the Data Processing Request

}

Status - Modify the activity

Arguments:

Return Type:void

Privilege:Public

PDL:{

// calls the modify method of the Data Processing Request

}

~PlPGEActivity - Destructor method

Arguments:

Return Type:void

Privilege:Public

Associations:

The PlPGEActivity class has associations with the following classes:
Class: PlProdStratNB determinespriorityof
Class: PlDPRB isaplanned

4.3.77 PlPGECollection Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

4-137 305-CD-026-002

Purpose and Description:

Attributes:

None

Operations:

None

Associations:

The PlPGECollection class has associations with the following classes:
Class: PlInstrumentModes

4.3.78 PlPGEPriorityNB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class is part of the production strategies which relates a particular PGE to a particular

priority. It can be used to determine the priority of jobs useing that PGE.

Attributes:

myPGE - This attribute is part of the production strategy that relates a PGE to a particular

priority.

Data Type:RWCString

Privilege:Private

Default Value:

myPriority - This attribute is part of the production strategy that relates a priority to a

particular PGE.

Data Type:EcTInt

Privilege:Private

Default Value:

Operations:

GetPriority - This retrieves the priority associated with a PGE for a DPR.

Arguments:PlDPR &

Return Type:Void

4-138 305-CD-026-002

Privilege:Public
PDL: {
Search database table for PRType = PlDPR::GetPR::GetPRType()
return PRIORITY from table associated with that PR Type
if no priority in table for this PR type, return default priority

}

Associations:
The PlPGEPriorityNB class has associations with the following classes:
PlProdStratNB (Aggregation)

4.3.79 PlPGEProfile Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class describes the collection of information that describes a PGE to the Planning

subsystem.

Attributes:

None

Operations:

$PlPGEProfile - Constructor function

Arguments:...

Return Type:void

Privilege:Public

DeletePGEProfile - Deletes a given PGE profile

Arguments:PGEProfID:int

Return Type:void

Privilege:Public

ModifyPGEProfile - Modifies a given PGE profile

Arguments:PGEProfId:int, ModType:enum, ModField:String, ModValue:String

Return Type:void

Privilege:Public

RetrievePGEProfile - Retrieves a given PGE profile

Arguments:PlPGEProfID

Return Type:void

4-139 305-CD-026-002

Privilege:Public

~PlPGEProfile - Destructor function

Arguments:...

Return Type:void

Privilege:Public

Associations:

The PlPGEProfile class has associations with the following classes:
Class: PlInstrumentModes

4.3.80 PlPRCollectionNB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class is a list of the production requests either in processing or awaiting processing.

Attributes:

myCollectionID - Uniquely identifies this production request collection.

Data Type:RWCString

Privilege:Private

Default Value:

myDataCollectionStartTime - The start date/time of the collection.

Data Type:RWTime

Privilege:Private

Default Value:

myDataCollectionStopTime - The stop date/time of the collection.

Data Type:RWTime

Privilege:Private

Default Value:

myOriginationTime - The time the collection request was entered.

Data Type:RWTime

Privilege:Private

Default Value:

myPriority - The priority of the collection.

4-140 305-CD-026-002

Data Type:EcTInt

Privilege:Private

Default Value:

myProductionRequestList - The list of production requests associated with this

collection.

Data Type:RWTValSlist<RWCString>

Privilege:Private

Default Value:

myProductionRequests - This attribute is an instance of a production request.

myRequesterID - The ID of the requester entering the collection.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

Add - Adds a production request to the collection.

Arguments:

Add - Adds a production request to the collection.

Arguments:RWCString

Return Type:Void

Privilege:Public

Delete - Deletes a production request from the collection.

Arguments:

Delete - Deletes a production request from a collection.

Arguments:RWCString

Return Type:Void

Privilege:Public

First - Retrieves the first production request in a collection.

Arguments:

Return Type:RWCString

Privilege:Public

Next - Retrieves the next production request in the collection.

Arguments:

Return Type:RWCString

Privilege:Public

4-141 305-CD-026-002

Associations:
The PlPRCollectionNB class has associations with the following classes:
Class: PlProductionRequestUI displays

4.3.81 PlPRPriorityNB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class describes a table in the PDPS database that matches the types of production

requests (on-demand, standard and reprocessing) and the priority assigned to requests of

that type.

Attributes:

myPriority - This attribute is part of the production strategy that relates a priority to a

particular production request type.

Data Type:EcTInt

Privilege:Private

Default Value:

myType - This attribute is the type of production request (example: standard, reprocessing,

on-demand)

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

GetPriority - This retrieves the priority associated with a PGE for a DPR.

Arguments:PlDPR &

Return Type:EcTInt

Privilege:Public

PDL: {

Search database table for PRType = PlDPR::GetPR::GetPRType()

return PRIORITY from table associated with that PR Type

if no priority in table for this PR type, return default priority

}

Associations:
The PlPRPriorityNB class has associations with the following classes:

4-142 305-CD-026-002

PlProdStratNB (Aggregation)

4.3.82 PlPerformance Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class describes the performance statistcs of a PGE. These performance statistics are

established at AI&T. The class also contains attributes to describe the statistics updated

from the Data Processing subsystem.

Attributes:

myElapsedTime - Elapsed time for the PGE during AI&T

Data Type:RWTime

Privilege:Private

Default Value:

myMaxMemoryUse - Maximum memory required by the PGE during AI&T

Data Type:EcTFloat

Privilege:Private

Default Value:

myNoOfBlockInOper - Number of input blocks for the PGE during AI&T

Data Type:EcTInt

Privilege:Private

Default Value:

myNoOfBlockOutOper - Number of output blocks for the PGE during AI&T

Data Type:EcTInt

Privilege:Private

Default Value:

myNoOfPageFaults - Number of PGE page faults for the PGE during AI&T

Data Type:EcTInt

Privilege:Private

Default Value:

myNoOfSwaps - Number of PGE swaps for the PGE during AI&T

Data Type:EcTInt

Privilege:Private

Default Value:

4-143 305-CD-026-002

myPGECPUTime - CPU required for the PGE during AI&T

Data Type:RWTime

Privilege:Private

Default Value:

myPgeId - This is the unique identifier of the PGE.

Data Type:RWCString

Privilege:Private

Default Value:

myRunElapsedTime - Elapsed time for the PGE during production

Data Type:RWTime

Privilege:Private

Default Value:

myRunMaxMemoryUse - Maximum memory required by the PGE during production

Data Type:EcTFloat

Privilege:Private

Default Value:

myRunNoOfBlockInOper - Number of input blocks for the PGE during production

Data Type:EcTInt

Privilege:Private

Default Value:

myRunNoOfBlockOutOper - The number of output blocks used by the PGE during

production.

Data Type:EcTInt

Privilege:Private

Default Value:

myRunNoOfPageFaults - Number of PGE page faults for the PGE during production

Data Type:EcTInt

Privilege:Private

Default Value:

myRunNoOfSwaps - Number of PGE swaps for the PGE during production

Data Type:EcTInt

Privilege:Private

Default Value:

myRunPGUCPUTime - CPU required for the PGE during production

Data Type:RWTime

Privilege:Private

4-144 305-CD-026-002

Default Value:

myRunSharedMemoryUse - Shared memory required by the PGE during production

Data Type:EcTFloat

Privilege:Private

Default Value:

mySharedMemoryUse - Shared memory required by the PGE during AI&T

Data Type:EcTFloat

Privilege:Private

Default Value:

Operations:

PlPerformance - This is the default constructor for the class.

Arguments:

Return Type:Void

Privilege:Public

PlPerformance - This is the constructor for the class that takes Pgeid as an argument.

Arguments:RWCString:PgeId

Return Type:Void

Privilege:Public

UpdateRunTimePerfPar - This routine updates the runtime performance parameters. It

is called after a PGE has been run to record the latest performance information.

Arguments:EcTInt:ParId, RWString:ParVal

Return Type:EcTVoid

Privilege:Public

~PlPerformance - This is the destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlPerformance class has associations with the following classes:
Class: PlResourceRequirement
PlPGEProfile (Aggregation)

4-145 305-CD-026-002

4.3.83 PlPgeFactory Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is used to create PGE Profile objects. It can create the classes that make up a

PGE Profile reguardless of the type of PGE.

Attributes:

None

Operations:

Create - This method takes in the address of a PGE Profile and creates an object of PlPGE.

Arguments:RWCString&

Return Type:PlPge*

Privilege:Public

PlPgeFactory - This is the constructor for the class.

Arguments:

Return Type:Void

Privilege:Public

~PlPgeFactory - This is the destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlPgeFactory class has associations with the following classes:
Class: PlPGE createdby
Class: PlPGE creates

4.3.84 PlPlanASCIIReportFile Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents an ascii readable externalized report format of the plan. The precise

format of this report is TBD. The report will provide a summary view of the tasks planned

4-146 305-CD-026-002

(no. of particular product types generated within the plan period) as well as a prediction of
the generation time for each product.

Attributes:

None

Operations:

Write - Converts a local representation of the activities in a plan to an ASCII file that can

be read by humans

Arguments:RWTvalSlist<PlActivities>

Return Type:Void

Privilege:Public

PDL: {

Open output file

Create summary information on activies and write them out

For list of activities

Write out description
}

Associations:

The PlPlanASCIIReportFile class has associations with the following classes:
PlPublishedPlan (Aggregation)

4.3.85 PlPlanB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class represents an abstraction for a production plan. The class describes the
metadata that will be stored for a plan within the PDPS database. The operations shown
are an abstraction for those used within the planning framework.

Attributes:

myActiveStatus - Indicator to identify an active plan

Data Type:EcTBoolean

Privilege:Private

Default Value:False

4-147 305-CD-026-002

myDescription - Descriptive text for operator comments describing conditions under

which the plan was generated.

Data Type:RWCString

Privilege:Private

Default Value:

myEndTime - End time for the plan

Data Type:RWTIme

Privilege:Private

Default Value:

myPlanName - Descriptive name for plan to facilitate plan selection.

Data Type:RWCString

Privilege:Private

Default Value:

myProdStrat - The production strategy used to determine priorities for activities for this

plan.

Data Type:RWCString

Privilege:Private

Default Value:

myStartTime - Start time for plan

Data Type:RWTime

Privilege:Private

Default Value:

Operations:

DeletePlan - Deletes the plan from the PDPS database along with the associated activities
Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

IdentifyDataDependencies ­

from different DAACs.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: {

For the current Plan

If Imported Plan

Identifies the data dependencies between displayed plans

4-148 305-CD-026-002

 For each PlImportedActivity
For each PlDataDependency
For each plan in PlTimeLineDisplay::GetPlansDisplayed
excluding the current plan
If PlDataDependency = PlDataDependency, update display

If Local Plan
For each PlPGEActivity

For each data granule in PlDPR::GetInputGranuleList() and
PlDPR::GetOutputGranuleList()

with a DataType that is needed by a remote DAAC or is
produced at a remote DAAC

If PlDataDependency = PlDataDependency, update display
}

PlPlan - Default Constructor

Arguments:

Return Type:EcTVoid

Privilege:Public

PlPlan - This operation is an abstraction for bringing an exported plan acquired from the

data server into the Planning Workbench.

Arguments:PlExportedPlanNB &

Return Type:EcTVoid

Privilege:Public

PDL: {

Open Plan Metadata File

Read in parameters

Construct plan object using these parameters

}

PlPlan - Default Constructor

Arguments:

Return Type:EcTVoid

Privilege:Public

PlPlan - This operation is an abstraction for bringing an exported plan acquired from the

data server into the Planning Workbench.

Arguments:PlExportedPlanNB &

Return Type:EcTVoid

Privilege:Public

PDL: {

Open Plan Metadata File

Read in parameters

Construct plan object using these parameters

}

4-149 305-CD-026-002

PlPlan - Default Constructor

Arguments:

Return Type:EcTVoid

Privilege:Public

PlPlan - This operation is an abstraction for bringing an exported plan acquired from the

data server into the Planning Workbench.

Arguments:PlExportedPlanNB &

Return Type:EcTVoid

Privilege:Public

PDL: {

Open Plan Metadata File

Read in parameters

Construct plan object using these parameters

}

PlanProductionRequest - Adds the Data Processing Requests associated to a Production

Plan. This involves creating an activity within the plan to describe the DPR, and allocating

the resources for the DPR.

Arguments:PlProductionRequest: PR

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

PlanSchedule - This operation is an abstraction that describes the planning process by

which activities are associated to resources in order to set out a time-line for the plan.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

Publish - Initiates the activities involved in publishing a subset of a plan based on

Production Requests

Arguments:RWTvalSlist<PlProductionRequest>

Return Type:Void

Privilege:Public

PDL: {

For the current Plan
Create list of activities by comparing each PlActivity

If PlActivity::GetDPR::GetProductionRequest in subset PRs
Create metadata file
Call PlPlanASCIIReportFile::Write(List of activities in plan)

PlPlanBinaryReportFile::Write(List of activities in plan)
PlExportedPlan::Export(List of activities in plan)

4-150 305-CD-026-002

 Call PlPublishedPlan::InsertToDSS()
}

Publish - Initiates the activities involved n publishing a subset of a plan based on PGEs

Arguments:RWTvalSlist<PlPGE>

Return Type:Void

Privilege:Public

PDL: {

Create metadata file
Create list of activities by comparing each PlActivity

If PlActivity::GetDPR::GetPGE in subset PGEs
Call PlPlanASCIIReportFile::Write(List of activities in plan)

PlPlanBinaryReportFile::Write(List of activities in plan)
PlExportedPlan::Export(List of activities in plan)

Call PlPublishedPlan::InsertToDSS()
}

Publish - Initiates the activities involved in publishing a subset of a plan based on

Production Requests

Arguments:RWTvalSlist<PlProductionRequest>

Return Type:Void

Privilege:Public

PDL: {

For the current Plan

Create list of activities by comparing each PlActivity

If PlActivity::GetDPR::GetProductionRequest in subset PRs
Create metadata file
Call PlPlanASCIIReportFile::Write(List of activities in plan)

PlPlanBinaryReportFile::Write(List of activities in plan)
PlExportedPlan::Export(List of activities in plan)

Call PlPublishedPlan::InsertToDSS()
}

Publish - Initiates the activities involved n publishing a subset of a plan based on PGEs

Arguments:RWTvalSlist<PlPGE>

Return Type:Void

Privilege:Public

PDL: {

Create metadata file
Create list of activities by comparing each PlActivity

If PlActivity::GetDPR::GetPGE in subset PGEs
Call PlPlanASCIIReportFile::Write(List of activities in plan)

PlPlanBinaryReportFile::Write(List of activities in plan)
PlExportedPlan::Export(List of activities in plan)

Call PlPublishedPlan::InsertToDSS()

4-151 305-CD-026-002

}

Publish - Initiates the activities involved in publishing a plan.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: {

For current Plan

Create list of activities in plan

Create metadata file

Call PlPlanASCIIReportFile::Write(List of activities in plan)

PlPlanBinaryReportFile::Write(List of activities in plan)
PlExportedPlan::Export(List of activities in plan)

Call PlPublishedPlan::InsertToDSS()
}

Publish - Initiates the activities involved in publishing a subset of a plan based on time.

Arguments:RWTime, RWTime

Return Type:EcTVoid

Privilege:Public

PDL: {

For the current Plan

Create list of activities by comparing each PlActivity

If activity falls within the timeframe (inclusive)
Create metadata file
Call PlPlanASCIIReportFile::Write(List of activities in plan)

PlPlanBinaryReportFile::Write(List of activities in plan)
PlExportedPlan::Export(List of activities in plan)

Call PlPublishedPlan::InsertToDSS()
}

Publish - Initiates the activities involved in publishing a plan.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: {

For current Plan

Create list of activities in plan

Create metadata file

Call PlPlanASCIIReportFile::Write(List of activities in plan)

PlPlanBinaryReportFile::Write(List of activities in plan)
PlExportedPlan::Export(List of activities in plan)

Call PlPublishedPlan::InsertToDSS()
}

4-152 305-CD-026-002

Publish - Initiates the activities involved in publishing a subset of a plan based on time.

Arguments:RWTime, RWTime

Return Type:EcTVoid

Privilege:Public

PDL: {

For the current Plan

Create list of activities by comparing each PlActivity

If activity falls within the timeframe (inclusive)
Create metadata file
Call PlPlanASCIIReportFile::Write(List of activities in plan)

PlPlanBinaryReportFile::Write(List of activities in plan)
PlExportedPlan::Export(List of activities in plan)

Call PlPublishedPlan::InsertToDSS()
}

Publish - Initiates the activities involved in publishing a plan.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: {

For current Plan

Create list of activities in plan

Create metadata file

Call PlPlanASCIIReportFile::Write(List of activities in plan)

PlPlanBinaryReportFile::Write(List of activities in plan)
PlExportedPlan::Export(List of activities in plan)

Call PlPublishedPlan::InsertToDSS()
}

Publish - Initiates the activities involved in publishing a subset of a plan based on time.

Arguments:RWTime, RWTime

Return Type:EcTVoid

Privilege:Public

PDL: {

For the current Plan

Create list of activities by comparing each PlActivity

If activity falls within the timeframe (inclusive)
Create metadata file
Call PlPlanASCIIReportFile::Write(List of activities in plan)

PlPlanBinaryReportFile::Write(List of activities in plan)
PlExportedPlan::Export(List of activities in plan)

Call PlPublishedPlan::InsertToDSS()
}

Publish - Initiates the activities involved in publishing a subset of a plan based on

4-153 305-CD-026-002

Production Requests

Arguments:RWTvalSlist<PlProductionRequest>

Return Type:Void

Privilege:Public

PDL: {

For the current Plan

Create list of activities by comparing each PlActivity

If PlActivity::GetDPR::GetProductionRequest in subset PRs
Create metadata file
Call PlPlanASCIIReportFile::Write(List of activities in plan)

PlPlanBinaryReportFile::Write(List of activities in plan)
PlExportedPlan::Export(List of activities in plan)

Call PlPublishedPlan::InsertToDSS()
}

Publish - Initiates the activities involved n publishing a subset of a plan based on PGEs

Arguments:RWTvalSlist<PlPGE>

Return Type:Void

Privilege:Public

PDL: {

Create metadata file
Create list of activities by comparing each PlActivity

If PlActivity::GetDPR::GetPGE in subset PGEs
Call PlPlanASCIIReportFile::Write(List of activities in plan)

PlPlanBinaryReportFile::Write(List of activities in plan)
PlExportedPlan::Export(List of activities in plan)

Call PlPublishedPlan::InsertToDSS()
}

UnplanProductionRequest - Removes the activities associated with a particular

production request from the plan.

Arguments:PlProductionRequest: PR

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

UpdatePlan - Updates the plan from the status of the activities in the PDPS database.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: //Create an ordered list of the Ground Events that are in the plan

//Verify whether any new ground events have been added

//If so alert operator, with option of including event

//Regenerate the plan

4-154 305-CD-026-002

 Associations:

The PlPlanB class has associations with the following classes:

Class: PlPlanningWorkbenchUI

Class: PlRescUseThreshNB constructsplaceholdersforOn-demandPRsusingthecumulative

Class: PlActivity contains

Class: PlProductionPlannersUI creates

Class: PlActivities iscontainedina

Class: PlProdStratNB iscreatedusing

Class: PlPublishedPlan ispublishedusing

Class: PlResourceManager usestomanageresources

4.3.86 PlPlanBinaryReportFile Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents an electronic parsable report format of the plan. The precise format

of this report is TBD. The report will provide a summary view of the tasks planned (no. of

particular product types generated within the plan period) as well as a prediction of the

generation time for each product.

Attributes:

None

Operations:

Write - Converts the local representation of a plan into a file that is readable by other

computer programs

Arguments:RWTValSlist<PlActivies>

Return Type:Void

Privilege:Public

PDL: {

Open output file

Create summary information on activies and write them out

For list of activities

Write out description in machine readable format
}

Associations:

4-155 305-CD-026-002

The PlPlanBinaryReportFile class has associations with the following classes:
PlPublishedPlan (Aggregation)

4.3.87 PlPlanGenerationUIB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is an abstraction for the user interface to the planning workbench application.

The class shows the functions available to the production scheduler in support of generating

a plan

Attributes:

None

Operations:

AddPRtoPlan - Add the Data Processing Requests associated to a Production Request to

a plan

Arguments:PlProductionRequest: PR

Return Type:void

Privilege:Public

DelPRfromPlan - Delete the Data Processing Requests associated to a Production Request

from a plan

Arguments:PlProductionRequest: PR

Return Type:void

Privilege:Public

NewPlan - Generate a new plan

Arguments:

Return Type:void

Privilege:Public

SelectActivePlan - This operation is called when the Limited Automatic Replan brings up

the Production Planning Workbench automatically. It loads in the current active plan and

replans it based on the current state of the system.

Arguments:

Return Type:void

Privilege:Public

SelectActivePlan - This operation is called when the Limited Automatic Replan brings up

4-156 305-CD-026-002

the Production Planning Workbench automatically. It loads in the current active plan and

replans it based on the current state of the system - in addition, it takes as a parameter the

PR id (myRequestId on PlProductionRequest), determines the OPR this id relates to and

adds this production request to the plan before replanning.

Arguments:RWCString

Return Type:void

Privilege:Public

SelectActivePlan - This operation is called when the Limited Automatic Replan brings up

the Production Planning Workbench automatically. It loads in the current active plan and

replans it based on the current state of the system.

Arguments:

Return Type:void

Privilege:Public

SelectPlan - Select a plan for modification or activation

Arguments:

Return Type:void

Privilege:Public

SelectProdStrat - Abstract GUI operation which allows an operator to select a production

strategy for a plan.

Arguments:RWCString: ProdStrat

Associations:
The PlPlanGenerationUIB class has associations with the following classes:

Class: PlReplanCriteria initiates

Class: PlReplanCriteria isinitiatedby

Class: PlProdStratNB selects

Class: PlProductionRequestB selectsforplanning

PlPlanningWorkbenchUI (Aggregation)

4.3.88 PlPlanMetadataFile Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the metadata that will be used to describe the plan within the

Document Data Server. The format of this report will be a Parameter=Value list line

separated.

Attributes:

4-157 305-CD-026-002

myDAAC - The site at which the plan was produced

Data Type:String

Privilege:Private

Default Value:

myDataSets - Describes the data sets which are planned for production within the plan.

Data Type:String

Privilege:Private

Default Value:

myDescription - Captures the operators description of the purpose of the plan (for example

30 day forecast)

Data Type:String

Privilege:Private

Default Value:

myEndDay - The end date of the plan

Data Type:Time

Privilege:Private

Default Value:

myForecast - The number if days time period which the plan covers

Data Type:int

Privilege:Private

Default Value:

myStartTime - The start date of the plan

Data Type:Time

Privilege:Private

Default Value:

Operations:

None

Associations:

The PlPlanMetadataFile class has associations with the following classes:
PlPublishedPlan (Aggregation)

4-158 305-CD-026-002

4.3.89 PlPlanningWorkbenchUI Class

Parent Class:EcPfClient

Public:No

Distributed Object:No

Purpose and Description:

This class is an abstraction for the user interface to the planning workbench application.

The interface will be developed with a suitable GUI builder tool.

Attributes:

All Attributes inherited from parent class

Operations:

AddPlanNB - This operation ACQUIRES a plan from the data server.

Arguments:GlUR &

Return Type:Void

Privilege:Public

PDL: {

Creates a ESDTReferenceCollector

Creates a DsClCommand for the ACQUIRE

Tells Data Server to push the Exported Plan on the local disk

}

CreateTargetDateReport - This operation creates a target date or "goal" report - that is,

it compares the target completion dates for each PR with the predicted time of completion

of all the DPRs for that PR. In addition, it compares the predicted completion time for each

DPR that will create data granules needed at remote DAACs (as identified by a non-NULL

value in PlDataType::myUsedByCenter) with the baseline completion time.

Arguments:

Return Type:Void

Privilege:Public

PDL:{

For current local Plan
First compare PR goals with whats in plan
For each PR in plan
For each DPR in PR, get the Activity
If PlActivity::GetStartTime +

PlPerformance(PlDPR::GetPGEID)::GetElaspedTime
is later than PR::myCompletionGoal
add information about this PR/DPR to report

Next compare baseline start times with what's in plan
For each PR in plan, get the PGEid
If any DataType produced by that PGEid is needed at remote DAAC
For each DPR in PR, get the Activity

4-159 305-CD-026-002

 If PlActivity::GetStartTime is later than
PlDPR::GetBaselineTime
add information about this PR/DPR to report

Call DisplayPopUp() and display report in it.
}
DisplayInspectResultsNB - This operation is called by the callback for the INSPECT that
was performed on all the URs returned from the query on the plans in the data server. It
takes the results from the inspect and displays them so the operator can select which plan
to retrieve.
Arguments:
Return Type:Void
Privilege:Public
PDL: {
Display each UR with the metadata from the plan it represents as returned

by the INSPECT submitted by DisplayQueryResults
}

DisplayPopUp - Abstract operation for displaying a pop up window

Arguments:

DisplayQueryResultsNB - This operation is called by callback for the query submitted by

the PlanQueryNB. It submits an INSPECT for all the URs retrieved by the query.

Arguments:

Return Type:Void

Privilege:Public

PDL: {

For each UR returned from PlanQuery

Do an inspect on the metadata for the plan from the Data Server

}

PlanQueryNB - This operation uses the selection criteria entered in a GUI screen to create

a query to be submitted to the DIM.

Arguments:RWCString

Return Type:Void

Privilege:Public

PDL: {

If first time called, construct DmLmClRequestServer object with

myUser = Planning Workbench,
myServer will be stored in a configuration file

Start a new search request
GUI interface has query criteria for plans filled in by user

This criteria is used to construct ESQL
Call DmLmClRequestServer::SendQuery(ESQL query)
}

4-160 305-CD-026-002

ProductionSchedulerCommands - This is an abstraction of the GUI operations intended

for the production scheduler to use.

Arguments:

Return Type:Void

Privilege:Public

SelectEntryScreen - This is an abstraction of a GUI menu that allows the operator to select

which entry screen he/she wants to use.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlPlanningWorkbenchUI class has associations with the following classes:
Class: DsClCommand ACQUIREsplansusing
Class: PlPlanB
Class: PlPlanningWorkbenchUI
Class: DmLmClRequestServer QUERIESforplansfromotherDAACsusing
Class: DsClESDTReferenceCollector usedforQUERIESandACQUIRES
Class: GlCallback usestogetcallbackfromqueryandacquires
Class: GlParameterList useswhenconstructingACQUIREs

4.3.90 PlPopupMessage Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This objects is an abstraction of a display of a pop-up window

Attributes:

None

Operations:

Display - An abstraction of the GUI operations necessary to bring up a pop-up window and

display messages to the operator.

Arguments:

Associations:

4-161 305-CD-026-002

The PlPopupMessage class has associations with the following classes:
Class: PlReplanCriteria notifiesOperatorUsing
Class: PlReplanCriteria notifiesoperatorusing

4.3.91 PlProdStratNB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class describes the production strategies used by the DAAC to determine data

processing request priorities.

Attributes:

myAgingDelta - This is an amount added to the calculated priority of an activity if the DPR

was already selected to be in a previous active plan, but has not yet been completed. This

value allows an operator to "bump up" the priorities of older jobs.

Data Type:EcTInt

Privilege:Private

Default Value:

myInterDAACDelta - This is an amount added to the calculated priority of an activity if

the DPR produces data that is needed at a remote DAAC.

Data Type:EcTInt

Privilege:Private

Default Value:

myPGEWeight - This attribute is the weight given to the priority based on the PGE.

Data Type:EcTFloat

Privilege:Private

Default Value:

myPRTypeWeight - This attribute is the weight given to the priority based on the

production request type.

Data Type:EcTFloat

Privilege:Private

Default Value:

myProdStratId - Primary key for the database table represented by this object

Data Type:RWCString

Privilege:Private

4-162 305-CD-026-002

Default Value:

myUserSelectedPriorityWeight - This attribute is the weight given to the priority entered

by the user for the Production Request

Data Type:EcTFloat

Privilege:Private

Default Value:

myUserWeight - This attribute is the priority given a production request based on the user.

Data Type:EcTFloat

Privilege:Private

Default Value:

Operations:

AssignPriorityToActivity - This method determines the priority for a DPR based on the

production strategies for a particular plan.

Arguments:PlActivity &

Return Type:Void

Privilege:Public

PDL: {

For DPR related to Activity

priority = PlPGEPriority::GetPriority(PlDPR &) * myPgeWeight
+ PlUserPriority::GetPriority(PlDPR &) * myPRTypeWeight
+ PlPRPriority::GetPriority(PlDPR &) * myUserWeight
+ PlProductionRequest::GetPriority * myUserSelectedPriorityWeight

If DPR::myPredictedStartTime is before current time,
priority = priority + myAgingDelta

If any DataType produced by that PGEid is needed at remote DAAC
priority = priority + myInterDAACDelta

}

Associations:
The PlProdStratNB class has associations with the following classes:

Class: PlDPRB basesprioritieson

Class: PlPGEActivity determinespriorityof

Class: PlProdStratUINB displays

Class: PlPlanB iscreatedusing

Class: PlPlanGenerationUIB selects

4-163 305-CD-026-002

4.3.92 PlProdStratUINB Class

Parent Class:PlEntryScreenNB

Public:No

Distributed Object:No

Purpose and Description:

This class is the user interface that allows the user to update/add/delete the production

atrategies.

Attributes:

PGEPriorityDescWindow - This attribute is the window in GUI to be used for entering

the PGEs and their priorities for production strategies.

Data Type:

Privilege:Private

Default Value:

PRTypePriorityDescWindow - This attribute is the window in the GUI to be used for

entering the production request types and their priorities for production strategies.

Data Type:

Privilege:Private

Default Value:

UserPriorityDescWindow - This attribute is the window in the GUI to be used for entering

the users and their priorities for production strategies.

Data Type:

Privilege:Private

Default Value:

WeightDescWindow - This attribute is the window in GUI to be used for entering the

weights to priority for the various production strategies.

Data Type:

Privilege:Private

Default Value:

Operations:

Add - Abstraction of a GUI operation for adding a new value/priority to the production

strategy attribute lists(example - adding a newe PGE with an associated priority to the

PlPGEPriorityNB list).

Arguments:

Return Type:Void

Privilege:Public

Delete - Abstraction of a GUI operation for deleting a new value/priority to the production

4-164 305-CD-026-002

strategy attributes lists (example - deleting a PGE with an associated priority from the

PlPGEPriorityNB list).

Arguments:

Return Type:Void

Privilege:Public

Modify - Abstraction of a GUI operation for modifying a priority from the production

strategy attributes lists (example - changing the proirity associated with a PGE from 5 to

10).

Arguments:

Return Type:Void

Privilege:Public

Select - Abstraction of a GUI operation for selecting a value/priority from the production

strategy attributes lists (example - selecting a PGE ith an associated priority from the

PlPgePrioriityNB list).

Arguments:

Return Type:Void

Privilege:Public

Associations:
The PlProdStratUINB class has associations with the following classes:
Class: PlProdStratNB displays

4.3.93 PlProductionPlannersUI Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is an abstraction for the user interface to the planning workbench application.

The interface will be developed with a suitable GUI builder tool. The class does describe

the basic operations that are provided from the interface.

Attributes:

PlanSelectionWindow - Abstraction of a GUI operation operation of selecting a particular

plan to display in a timeline.

Data Type:

Privilege:Private

Default Value:

SchedulingPeriod - Abstraction of a GUI operation of selecting the scheduling period of

a particular plan.

4-165 305-CD-026-002

Data Type:
Privilege:Private
Default Value:

Operations:

ActivateSchedule - Abstraction of a GUI operation of activating a plan.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlProductionPlannersUI class has associations with the following classes:
Class: PlPlanB creates

4.3.94 PlProductionRequestB Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class is the instructions describing the order for data set(s) to be produced. A

production request typically specifies a request for a Data Set to be produced for an

extended period of time (e.g a month's worth of some product). There are three types of

production requests: Standard, Re-processing and On-Demand.

Attributes:

myDPRsNB - This list is a list of DPRs generated by a production request.

Data Type:RWTValSlist<RWCString>

Privilege:Private

Default Value:

myDataCollectionStartTime - Start time for the production request.

Data Type:RWTime

Privilege:Private

Default Value:

myDataCollectionStopTime - Stop time for the production request.

Data Type:RWTime

Privilege:Private

4-166 305-CD-026-002

Default Value:

myDescription - A textual description of the production request.

Data Type:RWCString

Privilege:Private

Default Value:

myNumDPRsToKeep - For intermittently activated PGEs, this indicates the number of

DPRs to be kept for the PR. For normal PGEs, the value is 0.

Data Type:EcTInt

Privilege:Private

Default Value:

myNumDPRsToSkip - For intermittently activated PGEs, this indicates the number of

DPRs to skip (after a number, specified in myNumDPRstoKeep, are created). For normal

PGEs, this value is 0.

Data Type:EcTInt

Privilege:Private

Default Value:

myOutputDataType - Idemtifies the product desired by the ECS User.

Data Type:RWCString

Privilege:Private

Default Value:

myPGEIdentifier - Identifies the PGE

Data Type:RWCString

Privilege:Private

Default Value:

myPRCollectionNB - Pointer to my parent PlPRCollectorNB

Data Type:RWCString

Privilege:Private

Default Value:

myPRTypeNB - Indicates production type: routine, on-demand, or reprocessing.

Data Type:RWCString

Privilege:Private

Default Value:

myPriority - User requested priority for the submitted production request.

Data Type:EcTInt

Privilege:Private

Default Value:

4-167 305-CD-026-002

myRequestId - A unique identifier for this production request.

Data Type:RWCString

Privilege:Private

Default Value:

myRequesterId - Identifies the person entering the production request.

Data Type:RWCString

Privilege:Private

Default Value:

myTargetDate - The desired time that a production request will be completed - for

informational purposes only.

Data Type:RWTime

Privilege:Private

Default Value:

myUserTypeNB
Data Type:RWCString

Privilege:Private

Default Value:

myUsrParaList - A list of PGE parameters for this production request.

Data Type:RWTValSlist<RWCString>

Privilege:Private

Default Value:

myUsrParaValueList - A list of parameter values for the PGE associated with this

production request.

Data Type:RWTValSlist<RWCString>

Privilege:Private

Default Value:

Operations:

CalculateResourceUsageNB - Determines the resource usage of a Production Request by

multiplying the number of DPRs needed to satify this request with the

PlResourceRequirement and PlPerformance values in PlPGEProfile for the PGE in the

request.

Arguments:enum

Return Type:EcTFloat

Privilege:Public

PDL:{

total = 0
For each DPR related to this PR

get PGEId

4-168 305-CD-026-002

 If (parameter == Disk space)
total = total +PlResourceRequirement::myDiskSpace

If (parameter == wall clock time)
total = total +PlPerformance::myElapsedTime

If (parameter == RAM)
total = total + PlPerformance::myMaxMemoryUse

return total
}

DefinePGERuns - Defines the DPRs corresponding to the PGE.

Arguments:

Return Type:Void

Privilege:Public

Modify - Modifies the production request.

Arguments:RWCString:Modfield, RWCString:ModVal

Return Type:Void

Privilege:Public

PlProductionRequest - Constructor for the PlProductionRequest class.

Arguments:(RWCString:Product, RWCString:PGE, RWTime:Start, RWTime:Stop,

ECTInt:Prior)

Return Type:Void

Privilege:Public

PDL:

RetrieveAllProdReq - Retrieves all the production requests currently in effect.

Arguments:

Return Type:Void

Privilege:Public

StoreProductionRequest - Stores the production request in the PDPS database.

Arguments:PlProductionRequestB

Return Type:Void

Privilege:Public

Associations:
The PlProductionRequestB class has associations with the following classes:

Class: PlProductionRequestUI displays

Class: PlDPRB isbrokenupintoindividual

Class: PlDPRB ismadeupof

Class: PlPGE requests

Class: PlPlanGenerationUIB selectsforplanning

PlPRCollectionNB (Aggregation)

4-169 305-CD-026-002

4.3.95 PlProductionRequestUI Class

Parent Class:EcPfClient

Public:No

Distributed Object:No

Purpose and Description:

This class is an abstraction for the user interface to the production request editor

application.

Attributes:

All Attributes inherited from parent class

Operations:

AddProductionRequest - Creates a production request.

Arguments:

Return Type:void

Privilege:Public

ChangeAlternateInputOrder - Allows the preference ordering for alternate inputs to be

changed.

Arguments:RWCString:ProductionRequestID

Return Type:Void

Privilege:Public

CreatePRCollection - Initializes a collection, or grouping, of production requests.

Arguments:RWCString

Return Type:void

Privilege:Public

DelProductionRequest - Deletes a production request.

Arguments:

Return Type:void

Privilege:Public

DeletePRCollection - Deletes a production request collection.

Arguments:RWCString

Return Type:void

Privilege:Public

DisplayPGEInfo - Diplays the parameters for a selected PGE.

Arguments:RWCString:PGEID

Return Type:void

Privilege:Public

4-170 305-CD-026-002

DisplayPGEs - Displays a list of PGEs that can be added to the production request. The

list can be filtered with the filter string.

Arguments:RWCString:Filter

Return Type:void

Privilege:Public

DisplayProductDependencies - Displays a list of products that are dependent upon the

selected product. The list shows products at the next level higher than the selected

producted (e.g. level 3 products will be listed as dependents of a level 2 product).

Arguments:RWCString:OutputDataType

Return Type:RWTValSlist<RWCString>

Privilege:Public

DisplayProducts - Displays a list of products which can be selected for a production

request. The list can be filtered with a filter string.

Arguments:RWCString:Filter

Return Type:void

Privilege:Public

GenerateCostReport - Generates a report containing resource utilization costs for the

production request. Resources include CPU and disk.

Arguments:

Return Type:void

Privilege:Public

MapPGEtoProduct - Returns the product associated with a PGE.

Arguments:RWCString:PGEID

Return Type:RWCString:OutputDataType

Privilege:Public

MapProducttoPGE - Returns the PGE associated with a product.

Arguments:RWCString:OutputDataType

Return Type:RWCString:PGEID

Privilege:Public

ModifyProductionRequest - Modifies a production request.

Arguments:

Return Type:void

Privilege:Public

SelectPGE - Allows for selection of a PGE.

Arguments:RWCString:PGEID

Return Type:Void

Privilege:Public

4-171 305-CD-026-002

SelectProduct - Allows for selection of a product.

Arguments:RWCString:OutputDataType

Return Type:Void

Privilege:Public

Associations:

The PlProductionRequestUI class has associations with the following classes:
Class: PlPRCollectionNB displays
Class: PlProductionRequestB displays
Class: PlDataTypeCatalogue storesrequestsin

4.3.96 PlPublishedPlan Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This object encapsulates the methods requred to insert externalized formats of the plan into

the document data server

Attributes:

None

Operations:

InsertInDDS - Insert the published plan into the Document Data Server

Arguments:

Return Type:void

Privilege:Public

PDL:{

Build parameter list for insert (this should be fairly constant for plans)
Submit request for insert

}

Associations:

The PlPublishedPlan class has associations with the following classes:
Class: PlPlanB ispublishedusing
Class: GlParameterList isusedwhenconstructingINSERTandACQUIREcommands
Class: DsClESDTReferenceCollector usedforACQUIREs
Class: GlCallback usedforcallbacksfromINSERTand

4-172 305-CD-026-002

Class: DsClCommand usedtoINSERTandACQUIREplans

4.3.97 PlReplanCriteria Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

Abstract base class for criteria for replan notification

Attributes:

myAutoReplanYN - Attribute indicates whether a particular criteria should initiate an

automatic replan - this is a place holder for release C when automatic replanning is done.

Data Type:EcTBoolean

Privilege:Private

Default Value:False

myCheckThisYN - Attribute indicates whether a particular criteria should be checked, and

if met, the operator notified that a replan should be done.

Data Type:EcTBoolean

Privilege:Private

Default Value:False

myReport - A string that contains the report displayed for an operator that indicates why

a replan should be considered

Data Type:RWCString

Privilege:Private

Default Value:EcNULL

Operations:

AddToReport - Virtual Operation - for each criteria, this operation checks if a replan

should be done.

Arguments:

Return Type:RWCString

Privilege:Public

CheckReplan - Virtual opaeration - for each criteria, this operation check if a replan should

be done.

Arguments:

Return Type:EcTBoolean

Privilege:Public

4-173 305-CD-026-002

NotifyOperator - Display a pop-up window with a notice to the operator that a replan

should be done, and the output of the CreateReport operation which indicates why, and two

choices "Replan" or "Cancel".

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: Construct PlPopupMessage object

Display report in window

Wait for Operator selection

If replan

Use a system call to start Planning Workbench with current active plan
if its already running, notify operator

Associations:

The PlReplanCriteria class has associations with the following classes:
Class: PlOnDemandPRNB checkforneedforreplannotification
Class: PlReplanCriteriaUI displays
Class: PlPlanGenerationUIB initiates
Class: PlPlanGenerationUIB isinitiatedby
Class: PlDataAvailabilityTimes isusedtocheckforreplanby
Class: PlPopupMessage notifiesOperatorUsing
Class: PlPopupMessage notifiesoperatorusing

4.3.98 PlReplanCriteriaUI Class

Parent Class:PlEntryScreenNB

Attributes:

All Attributes inherited from parent class

Operations:

Modify
Arguments:
Return Type:Void
Privilege:Public

Associations:

4-174 305-CD-026-002

The PlReplanCriteriaUI class has associations with the following classes:
Class: PlReplanCriteria displays

4.3.99 PlRescUseThreshNB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class is a table containing the resource usage thresholds for On-Demand production

requests.

Attributes:

myCumulative - This attribute is an enumerated type which identifies which type of

resource usage threshold the object represents where, 1 = the cumulative on-demand usage

for a TBD time, and 2 = the usage for each on-demand production request.

Data Type:EcTInt

Privilege:Private

Default Value:

myPercentResources - This attribute is the percentage of resources allowed of

myresourcetype for an on-demand processing request.

Data Type:EcTFloat

Privilege:Private

Default Value:

myResourceType - This attribute is an enumerated type which represents a type of

resource to be checked for on-demand production request thresholds, 1 = cpu, 2 = disk

space, 3 = memory, etc.

Data Type:EcTInt

Privilege:Private

Default Value:

Operations:

CheckThreshold - This operation iterates through the resource types comparing the

resource requirement to allowed resource threshhold. If the threshhold is exceeded for

either the job threshhold or cumulative threshhold then the return value is FALSE

otherwise UpdateRescUse is called in PlOnDemandManagerNB to update the Cumulative

Resource Use for total On Demand jobs and TRUE is returned to the calling operation.

Arguments:PlOnDemandPRNB &

Return Type:Boolean

4-175 305-CD-026-002

Privilege:Public

PlRescUseThreshNB - Default constructor

Arguments:

Return Type:PlRescUseThreshNB

Privilege:Public

~lRescUseThreshNB
Arguments:
Return Type:Void
Privilege:Public

Associations:
The PlRescUseThreshNB class has associations with the following classes:

Class: PlOnDemandPRNB comparewith

Class: PlPlanB constructsplaceholdersforOn-demandPRsusingthecumulative

Class: PlRescUseThreshUINB displays

Class: PlActivity placeholdersforon-demandjobscreatedusing

4.3.100 PlRescUseThreshUINB Class

Parent Class:PlEntryScreenNB

Public:No

Distributed Object:No

Purpose and Description:

This class is the user interface that allows the user to update/add/delete resource usage

thresholds for on-demand production requests.

Attributes:

ThreshDescWindow - This attribute is the window in the GUI to be used for entering

resource thresholds for on-demand production requests.

Data Type:

Privilege:Private

Default Value:

Operations:

Modify - Abstraction of a GUI operation for modifying the values of the resource usage

threshold with which on-demand Production Request are compared.

Arguments:

Return Type:Void

Privilege:Public

4-176 305-CD-026-002

Associations:
The PlRescUseThreshUINB class has associations with the following classes:
Class: PlRescUseThreshNB displays

4.3.101 PlResource Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class is the base class in a generalization heirachy describing the production resource.

Attributes:

myID - Unique identifier for the resource

Data Type:int

Privilege:Private

Default Value:

myName - The name of the resource

Data Type:String

Privilege:Private

Default Value:

Operations:

None

Associations:

The PlResource class has associations with the following classes:
Class: PlResourceManager

4.3.102 PlResourceChange Class

Parent Class:PlReplanCriteria

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

One of the replan criteria - this object is used to compare an old resource plan with the

4-177 305-CD-026-002

current resource plan.

Attributes:

myTimeFrame - This is the time frame (from the time the new resource plan was

receiveed) within the ground events which should be checked for a change.

Data Type:RWTime

Privilege:Private

Default Value:

Operations:

AddToReport - This operation accepts a new ground event or a deleted ground event and

adds this to a report of the changes between the new resource plan and the old one.

Arguments:PlGroundEvent &

Return Type:RWCString

Privilege:Public

CheckReplan - Checks the new resource plan against the old resource plan.

Arguments:??

Return Type:Void

Privilege:Public

Associations:

The PlResourceChange class has associations with the following classes:
None

4.3.103 PlResourceManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents an abstraction for the resource management capabilities used when

generating a plan, describing the operations required to match resource requirements of an

activity to the available resources, and to allocate the resource for the activity.

Attributes:

None

Operations:

4-178 305-CD-026-002

AllocateResources - Allocate the resources to an activity

Arguments:PlResource: Resource, PlActivity: Activity

Return Type:Void

Privilege:Public

DeallocateResources - Deallocate the resources for an activity

Arguments:PlResource: Resource, PlActivity: Activity

Return Type:Void

Privilege:Public

MatchResourceRequirement - Match the resource requirements of an activity to a

resource

Arguments:PlResourceRequirements

Return Type:PlResource

Privilege:Public

Associations:

The PlResourceManager class has associations with the following classes:
Class: PlResource
Class: PlResourceManager
Class: PlPlanB usestomanageresources

4.3.104 PlResourceRequirement Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class contains a description of the resource requirements of a PGE, which may be

matched against the resource configuration known to the Planning subsystem.

Attributes:

myComputer - A computer within the string required by the PGE

Data Type:String

Privilege:Private

Default Value:

myDiskSpace - The disk space required for a PGE

Data Type:int

Privilege:Private

Default Value:

4-179 305-CD-026-002

myNCPUs - The number of CPUs required for a PGE

Data Type:int

Privilege:Private

Default Value:

myOperatingSystem - The operating system for which a PGE is configured

Data Type:String

Privilege:Private

Default Value:

myString - The string required by the PGE

Data Type:String

Privilege:Private

Default Value:

Operations:

PlResourceRequirement - Constructor method

Arguments:

Return Type:PlResourceRequirement

Privilege:Public

~PlResourceRequirement - Destructor method

Arguments:

Return Type:void

Privilege:Public

Associations:

The PlResourceRequirement class has associations with the following classes:
Class: PlPerformance
Class: PlGroundEvent hasa
Class: PlPGE isreferencedby
Class: PlDPRB isrequiredby
PlPGEProfile (Aggregation)

4.3.105 PlRoutineArrival Class

Parent Class:PlDataSource

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

4-180 305-CD-026-002

This class is a specialization of the PlDataSource class and describes the most frequent
method for predicting data arrivals within the ECS (at least for the TRMM data sets). This
class contains the attributes and operations required to describe routine ingest of external
data.

Attributes:

myBoundary - A definitive boundary time from which predicted times can be derived.

Data Type:PlBoundary

Privilege:Private

Default Value:

myDelay - The average delay between data collection and the arrival that of the Data

Granule within ECS specified in seconds.

Data Type:EcTULongInt

Privilege:Private

Default Value:

myPeriod - A period of time (hour, day, week, set of orbits) used in predicting arrivals.

Data Type:PlPeriod

Privilege:Private

Default Value:

Operations:

PlRoutineArrival
Arguments:

Return Type:Void

Privilege:Public

PlRoutineArrival - Constructor method that is created from the database.

Arguments:const RWCString &

Return Type:Void

Privilege:Public

PredictArrivals - Method for predicting the arrival of data granules within an interval.

Arguments:const PlTime &, const PlTime &

Return Type:EcTVoid

Privilege:Public

~PlRoutineArrival
Arguments:
Return Type:Void
Privilege:Public

4-181 305-CD-026-002

Associations:

The PlRoutineArrival class has associations with the following classes:
None

4.3.106 PlService Class

Parent Class:PlResource

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The PlService class has associations with the following classes:
None

4.3.107 PlSourcetoDsHistoryNB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class contains a list of records that track the interval between the time at which the

Data Availability Times Schedule predicts that a data type will arrive from its source (i.e.

EDOS or another DAAC) to the Data Server.

Attributes:

myDataTypeID - Identifies the Data Type associated with a Data Granule.

Data Type:RWCString

Privilege:Private

Default Value:

myLastActualArrival - This atrbute stores the last actual arrival time of this data type, to

4-182 305-CD-026-002

the data server

Data Type:RWTime

Privilege:Private

Default Value:

myLastPredictedArrival - This atrribute provides the last predicted arrival time of a data

type.

Data Type:RWTime

Privilege:Private

Default Value:

myMovingAverageTime - The moving average of the source to data server interval for a

given data type.

Data Type:RWTime

Privilege:Private

Default Value:

myNumberOfEstimates - This provides the number of samples used to compute the

moving average of the source to data server interval.

Data Type:EcTInt

Privilege:Private

Default Value:

myPrevTransferTimes - This attribute stores a list of previous transfer times up to a

maximum determined by MSS for sampling.

Data Type:RWTValSlist<RWTime>

Privilege:Private

Default Value:

myStandardDeviation - Specifies the acceptable standard deviation from the historical

averages of source to data server time.

Data Type:EcTInt

Privilege:Private

Default Value:

Operations:

AddLastArrivalTime - This operation will store the last arrival time of the specified data

type, once notification is received that this data type has arrived.

Arguments:RWTime<myActualAvailability>

Return Type:EcUtStatus

Privilege:Public

PDL:{

Update the last arrival time in PlSourceToDsHistory based on data arrival
PlSourceToDsHistory:myLastActualArrival =

4-183 305-CD-026-002

 PlDataGranule:myActualAvailability
}

UpdateHistoricalInfo - This operation will update historical information stored on a

particular data type.

Arguments:RWTime

Return Type:EcUtStatus

Privilege:Public

PDL:{

This routine is called if a new moving average was computed

if PlDataTransferHistory:myMovingAverageFlag = True

{

Based on new moving average of transfer time and the predicted arrival
time of the granule from the new Data Schedule, update historical
information accordingly.
Add PlDataTransferHistory:myMovingAverage on the top of the list
if (the number of samples in PlSourcetoDsHistory:myPreviousTransferTimes

> the MaximumRequiredSamples)
{

Remove PlSourcetoDsHistory:myPrevTransferTimes[last] off the list
}
else
{

PlSourcetoDsHistory:myNumberOfEstimatess++
}

}
}

Associations:
The PlSourcetoDsHistoryNB class has associations with the following classes:

Class: PlDataTranferHistory

Class: PlDataGranule UpdatesArrivalTime

Class: PlTileScheduledNB references

4.3.108 PlString Class

Parent Class:PlResource

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

A string describes the logical collection of a number of resources allocated for an

instruments processing needs

4-184 305-CD-026-002

Attributes:

myComputerList - Describes the list of computers that make up the string

Data Type:List

Privilege:Private

Default Value:

Operations:

AddComputer - Add a computer to the list

Arguments:PlComputer: Comp

Return Type:void

Privilege:Public

RemoveComputer - Remove a computer from the list

Arguments:PlComputer: Comp

Return Type:void

Privilege:Public

Associations:

The PlString class has associations with the following classes:
Class: PlComputer
PlService (Aggregation)

4.3.109 PlSubMsgCb Class

Parent Class:EcMpMsgCb

Public:No

Distributed Object:No

Purpose and Description:

Specialization class to provide the subscription manager callbacks to the MsManager in

order to be activated for the appropriate lifecycle services (shutdown, resume, suspend

notify).

Attributes:

All Attributes inherited from parent class

Operations:

HandleCbMsg - This function performs callback chores.

Arguments:Message, MessageClass, MessageLength, MessageId, ReplyMessageId,

SenderName

Return Type:EcUtStatus

4-185 305-CD-026-002

Privilege:Public
PDL:{
HandleCbMsg Takes the message, gets the UR and constructs a EcUrUR object
which contains event Id followed by UR. From this info we can extract UR
byte stream.
PlSubMsgCb::HandleCbMsg(Message, MessageClass, MessageLength,
MessageId, ReplyMessageId, SenderName)
GlUR urObj((char *)msgP);
GlClient glClient ("UserProfile");
DsClESDTReference esdtRef (urObj, urObj,glClient);
GlParameterList parmList;
The metadata is obtained from the data server by performing an inspect on
the data server based on the UR. The PlDataGranule is then constructed
and gets and set functions are then performed to get the granule Id and
update ESDT Parameter values in the database.
PlDataGranule::RegisterAvailability(GlUR:instUR, GlParameterList:
instESDTParmVals) registers the data Availability
The DPRs are searched for jobs requiring this data to process.
PlDataGranule::FindAssociatedDPRs(DprList)
For DPRs awaiting data granule
{

Call GetPGEType to get the PGE type in order to begin processing.

PlDPRB::GetPGEType()

If the granule is a geographical tile...

if (Type = TilingPGE)

{

Get Tile coordinates from the PGE profile based on the tile Id.

Coordinates = PlTile:myCoordinates

Query the Data Server with coordinates of tile to get

ESDTReferenceCollector

DsClQuery::DsQuery

Inspect the Data Server to get the

URs for all granules in the tiling scheme.

For all URs

{

Create granules for all granules return from query
PlDataGranule::Create

}

Delete initial Granule created for tiling scheme by the Production

request editor

PlDataGranule::DeleteGranule

}

Check metadata for all Granules. For tiling there will be

several, all other PGE types will do one check at this point.

For All Granules

4-186 305-CD-026-002

 {
Check to see if Granule passes QA Threshold.
if (PlMetaData::CheckForCondition = false)
{
If it fails check if the granule is required

if (PlAlternateDataGranuleNB:myType <> Required)

{

If QA fails and the PGE is not a required input set my

accepted to false, to indicate that it is not a good

alternate input

PlAlternateDataGranule:myAccepted = False

Change the priority ordering of the data granules

PlAlternateDataGranule:ChangeOrder

}

else

{

If QA fails and input is required return with

failure message.

Return

}

}

}loop
Call check Availability function to determine whether all necessary
data is available to release job to processing
PLDPRB:CheckAvailability
release job if check availability is set to true
if (PLDPRB::CheckAvailability is true)
{

Release job to processing
Release()

}

}loop
}

Associations:

The PlSubMsgCb class has associations with the following classes:
Class: DsClESDTReference
Class: DsClQuery
Class: EcUrUR
Class: PlDataAvailabilityTimes NotificationofarrivalofDAT
Class: PlDataGranule Notificationofarrivalofgranule
Class: PlSubscriptionManager

4-187 305-CD-026-002

4.3.110 PlSubscriptionManager Class

Parent Class:EcPfManagedServer

Public:No

Distributed Object:No

Purpose and Description:

This class contains the main application methods associated with the subscription manager

application

Attributes:

All Attributes inherited from parent class

Operations:

DeinstallReceivers - Deinstalls the receivers for each data type that is subscribed to

Arguments:

Return Type:void

Privilege:Public

InstallReceivers - Installs the receivers for each data type that is subscribed to

Arguments:

Return Type:void

Privilege:Public

PfGetShutdownSeconds
Arguments:a_level:EcTAgMgtmLevel

PfShutdown -

Arguments:EcTAgMgmtLevel,EcTint:ShutdownReason,EcTint:GracefulFlag

Return Type:EcUtStatus

Privilege:Public

PfShutdown
Arguments:shutdownlevel:EcTAgMgmtLevel,EcTInt,EcTInt

PfStartMonitoring
Arguments:

PfStopMonitoring
Arguments:EcTInt

Start
Arguments:

Return Type:EcUtStatus

4-188 305-CD-026-002

Privilege:Public

Associations:

The PlSubscriptionManager class has associations with the following classes:
Class: PlSubMsgCb
Class: EcEvent logs

4.3.111 PlSubscriptionSubmitIF Class

Parent Class:EcPfClient

Public:No

Distributed Object:No

Purpose and Description:

This class is an abstraction for the user interface to the subscription submission application.

The interface will be developed with a suitable GUI building tool.

Attributes:

DataTypeSelectionWindow - Abstraction of a GUI window displaying a list of data types

from which the user can select.

Data Type:

Privilege:Private

Default Value:

SubscriptionSubmissionControl - Abstraction of a GUI window from which a user can

submit or withdraw subscriptions.

Data Type:

Privilege:Private

Default Value:

Operations:

DisplayDataTypes - This operation displays a list of the dynamic data types known to the

Planning subsystem as required input to a PGE.

Arguments:

Return Type:Void

Privilege:Public

Initialize - Initialize the subscription submission GUI.

Arguments:

Return Type:Void

Privilege:Public

4-189 305-CD-026-002

SelectDataType - This operation allows the user to select a Data Type from the displayed

list.

Arguments:

Return Type:Void

Privilege:Public

SubmitSubscription - Submit a subscription for the selected Data Type.

Arguments:

Return Type:Void

Privilege:Public

WithdrawSubscription - Withdraw the subscription for the selected Data Type.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlSubscriptionSubmitIF class has associations with the following classes:
Class: DsClSubscription creates
Class: PlDataSource submitssubscriptionsusing
Class: PlOnDemandManagerNB submitssubscriptionsusing
Class: PlDataTypeB updates

4.3.112 PlTile Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This defines a tile used by a TileScheduled PGE. It is a geographic area that will be

processed by the PGE.

Attributes:

myCoordinates - These are the coordinates of the tile, the four Latitude/Longitude pairs

that define the area covered by the tile.

Data Type:List of EctFloat

Privilege:Private

Default Value:

myTileID - This is the identifier for the tile. Each tile in a cluster will have a unique

4-190 305-CD-026-002

identifier.
Data Type:EctInt
Privilege:Private
Default Value:

Operations:

PlTile - This is the default constructor for the class.

Arguments:

Return Type:Void

Privilege:Public

PlTile - This constructor takes in a TileID when it creates an instance of PlTile.

Arguments:EctInt TileID

Return Type:Void

Privilege:Public

ReturnCoordinates - This method returns the coordinates of the tile stored in

myCoordinates.

Arguments:

Return Type:List of EctFloat

Privilege:Public

ReturnTileID - This method returns the value in myTileID.

Arguments:

Return Type:EctInt

Privilege:Public

SetCoordinates - This method sets the coordinates for the tile.

Arguments:List of EctFloat Coordinates

Return Type:Void

Privilege:Public

~PlTile - This is the destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlTile class has associations with the following classes:
Class: PlCluster

4-191 305-CD-026-002

4.3.113 PlTileScheduledNB Class

Parent Class:PlPGE

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class is a table used by the PGEs scheduled for tiling to generate the DPRs and their

input data.

Attributes:

myBoundary - A time from which all periods are referenced. For tile clusters, it is the time

of the first orbit of a cluster.

Data Type:RWTime

Privilege:Private

Default Value:

myDelayFactor - An amount of time used in calculating cluster availability which

accounts for deviations in predictions.

Data Type:RWTime

Privilege:Private

Default Value:

myL0DataType - The LO data type that the tiles will be based upon. Used to calculate the

time to move the L0 data from EDOS to the dataserver.

Data Type:ESDT

Privilege:Private

Default Value:

myNumClusters - The number of clusters for this PGE.

Data Type:EcTInt

Privilege:Private

Default Value:

myPeriod - The amount of time for a complete set of orbits that include a cluster of tiles.

Data Type:RWTime

Privilege:Private

Default Value:

myProductionDeltaTime - Estimated time to produce all intermediate products used as

input to produce tiles.

Data Type:RWTime

Privilege:Private

Default Value:

4-192 305-CD-026-002

myTileDefinition - This attribute is used to create the tile or spatial based input data.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

CalcTileOverlap - This calculates any geographic or input data overlap between tiles.

Arguments:

Return Type:Void

Privilege:Public

GenerateDPRs - Generates a DPR for each tile in each cluster.

Arguments:PlProductionRequest

Return Type:Void

Privilege:Public

PDL://

// // Determine cluster boundary:

//

// Query dataserver for most recent L0 data granule of this type

// with orbit = PlCluster::myLastOrbit

// myBoundary = PlDataGranule::myStartTime

//

// // Determine cluster period:

//

// Query dataserver for second most recent L0 data granule of this type

// with orbit = PlCluster::myLastOrbit

// myPeriod = difference in data granule start times

//

// // Calculate orbit duration:

// OrbitDuration = myPeriod / MaxOrbitsinPeriod

//

// // Get the time it takes for the L0 data to travel from EDOS to DSS

// TransitTime = PlSourcetoDsHistory::GetMovingAverageTime (myL0DataType)

//

// // Get intermediate product production time (filled in at SSI&T)

// ProductionTime = myProductionDeltaTime

//

// // Generate DPRs for each tile in each cluster period in production request time frame

//

// time = PlTime::ClosestBelow(myBoundary, myPeriod)

// while time < PlProductionRequest::myDataCollectionStopTime {

//

// for myNumClusters {

4-193 305-CD-026-002

//

// PlCluster(myNumTiles, myLastOrbit)

//

// // Calculate predicted availability of all L0 data granules for cluster

// L0PredictedAvailability = time + PlCluster::myLastOrbit * OrbitDuration

//

// // Calculate predicted availability of tiles for cluster

// PlCluster::myPredictedAvailability = L0PredictedAvailability + TransitTime

// + ProductionTime + myDelayFactor

//

// for each tile in cluster loop {

//

// PlDPR()

//

// if PlDataType::mySpatialFlag == TRUE {

//

// // construct input granule placeholder - will be replaced with actual

// // granules by subscription manager when it receives them.

// PlDatagranule()

// PlDatagranule.mySpatialFlag = TRUE

// PlDPR.myPredictedStartTime = PlCluster::myPredictedAvailability

// PlDataGranule.myPredictedAvailability = PlCluster::myPredictedAvailability

// PlDatagranule() // output granule: set PlDatagranule::myTileID = tile number

//

// }

//

// }

//

// } // end for myNumClusters

//

// // process next period

// time += myPeriod

// time += PlTime::ClosestAbove(myBoundary, myPeriod)

//

// } // end while

PlTileScheduledNB - This is the default constructor for the class.

Arguments:

Return Type:Void

Privilege:Public

PlTileScheduledNB - This constructor takes in L0Type, PredictionDelta,

ProductionDelta, and Definition and creates an object of the class, giving the corresponding

attributes those values.

Arguments:ESDT L0Type, RWTime PredictionDelta, RWTime ProductionDelta,

4-194 305-CD-026-002

RWCString Definition

ReturnL0Type - Returns myL0DataType.

Arguments:

Return Type:ESDT

Privilege:Public

ReturnProductionDelta - Returns myProductionDeltaTime.

Arguments:

Return Type:RWTime

Privilege:Public

~PlTileScheduledNB - This is the destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:
The PlTileScheduledNB class has associations with the following classes:

Class: PlCluster

Class: PlSourcetoDsHistoryNB references

4.3.114 PlTimeLineDisplay Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class describes the user interface component that represents the graphical display of a

plan. This will be implemented by a COTS or re-use component.

Attributes:

myPlansDisplayed - List of plans currently being displayed on the timeline

Data Type:RWCollectableString<PlPlanId>

Privilege:Private

Default Value:

Operations:

DisplayPlan - Abstract operation for displaying a plan on a timeline

Arguments:PlPlan &

Return Type:void

Privilege:Public

4-195 305-CD-026-002

PDL:Display activities in plan on timeline (Delphi abstract operation)

Associations:

The PlTimeLineDisplay class has associations with the following classes:
PlPlanningWorkbenchUI (Aggregation)

4.3.115 PlTimeScheduled Class

Parent Class:PlPGE

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This specialization of the PGE accounts for the classification of PGEs whereby the PGE

scheduling is determined from some regular time period, such as an hour, a day, a week, a

month etc.

Attributes:

myAcquisitionProcessingBoundary - Identifies the time needed (for data) for

extrapolation purposes.

Data Type:Time

Privilege:Private

Default Value:

myAcquisitionProcessingPeriod - Identifies the acquisition period for the input data.

Data Type:Time

Privilege:Private

Default Value:

myNoOfTimeUnitsPerPgeRun - Number of Units of time for PGE run.

Data Type:float

Privilege:Private

Default Value:

myTimeUnits - Units of time for PGE run frequency.

Data Type:enum

Privilege:Private

Default Value:

Operations:

4-196 305-CD-026-002

GenerateDPRs - { // Iterate over the period of the production request in steps // of

myAquisitionProcessingPeriod from the nearest occurance // of the

myAcquisitionProcessingBoundary within the request period // Generate a DPR // Invoke

the select data method for the DPR }

Arguments:PlProductionRequest

Return Type:void

Privilege:Public

PlTimeScheduled - This constructor takes in the PGE ID of the Time Scheduled class to

create.

Arguments:RWCString:PgeId

Return Type:PlTimeScheduled

Privilege:Public

~PlTimeScheduled - This is the destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The PlTimeScheduled class has associations with the following classes:
None

4.3.116 PlTimer Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class initiates a timer to alert the subscription manager of the expiration of a wait time,

for alternat input activation.

Attributes:

MyTimerExp - This attribute indicates whether or not the time has expired.

Data Type:EcTBoolean

Privilege:Private

Default Value:

MyTimerStart - This attribute indicates whether a timer has started for a DPR.

Data Type:EcTBoolean

Privilege:Private

4-197 305-CD-026-002

Default Value:

Operations:

CancelTimer - This operation cancels the timer for a specified DPR.

Arguments:

Return Type:EcUtStatus

Privilege:Public

StartTimer - This operation starts the timer for a specified DPR.

Arguments:RWTime<myTimerNB>

Return Type:EcUtStatus

Privilege:Public

PDL:{

Based on PlAlternateDataGranule:myOrder and the priority ordering of inputs

For all AlterateDataGranules with PlAlternateDataGranule:myTimerNB <> 0

{

Start the timer based on the sequence of ordering. This will

implemented using Pthreads. This processing will resume once the

specified time has elapsed

Start(PlAlternateDataGranule:myTimerNB)

If the wait time has elapsed call check availability

if (WaitHasElapsed)

{

PLDPRB:: CheckAvailability()

Check to see if there are other timers available if all data is not available.

if (PlAlternateDataGranule:myTimerNB = 0 .and. PLDPRB::CheckAvailability() =

false)
{

Check if either the minimum primaries or backups are available
if (TotPrim <= PlDataTypeReq:myNumNeeded and

TotBackup <= PlDataTypeReq:myNumNeeded)
{

Determine if we need to wait for additional input if not available.
if (PlAlternateDataGranule:myWaitfor = True)
{

return false
}

}
Change the priority ordering of the data granules
PlAlternateDataGranule:ChangeOrder()
Modify the input list to reflect the data types being used
PlDPRB::Modify()
Release job to processing

4-198 305-CD-026-002

 Release()
return

}
Release job and return if the required input is available
if(PLDPRB::CheckAvailability() = true)
{

Release()
return

}
Otherwise, loop to get next timer

}
}
Set TimeExp to true

}

Associations:

The PlTimer class has associations with the following classes:
Class: PlDPRB isusedtosettimeronalternateinputs

4.3.117 PlUserParameters Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Persistent Class:True

Purpose and Description:

Describes any user defined parameters that are associated to a PGE.

Attributes:

myDefaultValue - The default value for the user parameter.

Data Type:String

Privilege:Private

Default Value:

myDescription - Describes the user parameter

Data Type:String

Privilege:Private

Default Value:

myLogicalID - Id of the user parameter

Data Type:int

4-199 305-CD-026-002

Privilege:Private

Default Value:

myName - Name of the user parameter

Data Type:String

Privilege:Private

Default Value:

Operations:

Create - Create an entry within the PDPS database

Arguments:

Return Type:void

Privilege:Public

Delete - Delete the entry from the PDPS database

Arguments:

Return Type:void

Privilege:Public

Modify - Modifies the default value of the user parameter

Arguments:DefValue:String

Return Type:void

Privilege:Public

PlUserParameters - Constructor method

Arguments:

Return Type:PlUserParameters

Privilege:Public

~PlUserParameters - Destructor method

Arguments:

Return Type:void

Privilege:Public

Associations:

The PlUserParameters class has associations with the following classes:
Class: PlPGE isreferencedby
PlPGEProfile (Aggregation)

4-200 305-CD-026-002

4.3.118 PlUserPriorityNB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class is part of the production strategies which relates a particular user to a particular

priority. It can be used to determine the priority of jobs submitted by that user.

Attributes:

myPriority - This attribute is a part of the production strategy that relates a priority to a

particular user.

Data Type:EcTInt

Privilege:Private

Default Value:

myUserType - This attribute is a part of the production strategy which relates a user name

to a priority.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

GetPriority - This operation returns a priority based on the user type of the DPR.

Arguments:PlDPR &

Return Type:Void

Privilege:Public

PDL:{

Search database table for UserType = PlDPR::GetPR::GetUserType()

return PRIORITY from table associated with that User Type

if no priority in table for this user type, return default priority

}

Associations:
The PlUserPriorityNB class has associations with the following classes:
PlProdStratNB (Aggregation)

4-201 305-CD-026-002

4.4 PLANG Dynamic Model
The PLANG Dynamic model presents a number of scenarios and event traces that describe the key
interactions of the classes participating in the various components of the Planning subsystem.

4.4.1 Production Request Scenario

This scenario describes various operations related to entering production requests. The production
request is entered by the Production Planner. The Production Planner has the option of entering a
particular PGE to be used during production. If no PGE is specified Planning will determine the
default PGE required. This scenario describes the process by which a production request is
translated to multiple data processing requests.

When a routine production request is entered, the input data granules needed to fulfill the request
may already be available to ECS, or they may be available in the future. Availability of input data
depends on data collection times entered in the production request with respect to when the request
is entered. The procedure by which the availability of data is determined is described in scenario
4.4.2.

4.4.1.1 Beginning Assumptions

None

4.4.1.2 Interfaces With Other Subsystems and Segments

Routine Production Requests are entered / modified / deleted by the Production Planner (human).
These requests are handled by PlProductionRequestUI class. Necessary GUI will be developed to
enter these requests.

4.4.1.3 Stimulus

Routine Production request is entered / modified / deleted by the Production Planner.

4.4.1.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningUserUI

• PlProductionRequest

• PlDataTypeCatalogue

• PlPGEFactory

• PlDPRB

• PlTimeScheduledNB

4.4.1.5 Beginning System, Segment and Subsystem State(s)

PDPS Database is in a steady state, up and running.

4.4.1.6 Ending State

PDPS Database is in steady state, up and running.

4-202 305-CD-026-002

4.4.1.7 Scenario Description

Thread 1: Routine Production request entry

1.	 Using the Production Request Editor, the Production Planner will enter the command for
initiating the entry of a Routine Production request. This command is received by
PlProductionRequestUI class. Alternatively, the Planner can enter a Production Request
Collection - a group of related PR's. This is useful especially for entering large reprocessing
requests.

2.	 The Production Planner will ask to display a list of products that can be generated. The list
can be filtered. Additionally, the Planner can elect to display dependent products at the next
higher level when creating collections (e.g. display Level 3 products dependent on a
selected Level 2 product).

3.	 PlProductionRequestUI class will use the PlDataTypeCatalogue class to get the list of
products (product catalogue). For each product, the corresponding PGE and input data
types are also requested.

4.	 PlDataTypeCatalogue class will obtain the required information and send it to
PlProductionRequestUI class.

5. PlProductionRequestUI class will display the product catalogue.

6.	 The Production Planner will make the desired selection of the product. At that time, the
default PGE and any default user parameters for that PGE are displayed. The Production
Planner enters the routine production request along with (1) specific user parameters, or (2)
any optional PGE and user parameters associated with that PGE. This request will also have
the data collection start and end periods for product generation. Typically the data
collection start and end periods refer to one of the input data types for that PGE, and this
input type is represented by the PlDataType class.

7.	 The request is checked for validity. For example, data collection start time should be ahead
of data collection end time. If not, the routine production request will be rejected with a
warning.

8.	 The PlProductionRequest class uses the PlPGEFactory class to generate the PGE based on
the PGE's id.

9.	 PlProductionRequest class uses the PlPGE class to generate instances of PlDataGranule
class and PlDPRB class.

10. PlPGE class generates PlDataGranule objects. Note: This is described in scenario 4.4.2.

11. PlPGE class has information on how the input data instances map to Data Processing
Requests. Note: PlPGE class has specialization classes - PlDataScheduled,
PlTimeScheduled, PlOrbitScheduledNB, PlTileScheduledNB, etc. which describe how
often the given PGE needs to be run (refer to Figure 4.2-1, PGE Profile View for details).
PGE creates many instances of PlDPRB objects based on this information.

12. The production request is stored in the PDPS database.

13. When creating collections, steps 4-11 are repeated until the Planner determines the
collection is complete. In addition, a report can be generated that shows the resource
utilization cost for the entire Production Request Collection.

4-203 305-CD-026-002

Sub-Thread 1-1: Orbit and Tile-Scheduled Routine Requests

14. 	For the case where the PlPGE specialization is PlOrbitScheduledNB, the PlOrbitModel is
used to determine the estimated start and stop times of the orbit. For the
PlTileScheduledNB case, the tile definition will be determined. In either case, the number
of PlDPRB objects will be based on this.

Thread 2: Routine Production request modification

1.	 Using the Production Request Editor, the Production Planner will enter the command for
initiating a Routine Production request modification. This command is received by
PlProductionRequestUI class.

2.	 PlProductionRequestUI class will send a request to PlProductionRequest class to send a list
of all current Routine Production requests.

3.	 PlProductionRequest class will gather the requested list (through Planning Database
queries), and send the list to PlProductionRequestUI class. PlProductionRequestUI class
will display the list to the Production Planner.

4.	 The Production Planner will modify the intended field on the intended production request
(which can be data collection start and end times, or PGEs).

5.	 The entered command is checked for validity. For example, data collection start time
should be ahead of data collection end time (If not, the routine production request
modification will be rejected with a warning).

6. The valid command is sent to PlProductionRequest class.

Note: PlProductionRequest class has the pointers to PlDataGranule and PlDPRB objects
corresponding to the Production Request.

Sub-Thread 2-1: Data collection start/end time/both is/are modified

7. 	 PlProductionRequest class compares original data collection period with modified data
collection period.

8.	 Any new data collection period is treated as if a new routine production request is entered
(refer to Thread 1: Routine Production request entry for this case).

Sub-Thread 2-2: PGE is modified

9. 	 When a PGE is modified, the PlPGE object corresponding to the new PGE is determined.
With the new PGE, it is possible that some of the input data types may change.

10. If there is no change in any of the input data types, PlDPRB objects corresponding to the
production request are modified to indicate the new PlPGE class.

11. If there is change in any of the input data types, PlDataGranules corresponding to the old
input data type of the old production request are deleted. New input data types are treated
as if a new routine production request is entered (refer to Thread 1: Routine Production
request entry for this case), which will result in new instances of PlDataGranule
corresponding to the new input data type of the modified production request. PlDPRB
objects corresponding to the production request are modified to indicate the new PlPGE
class, and new PlDataGranule classes.

4-204 305-CD-026-002

Thread 3: Routine Production request deletion

1.	 Using the Production Request Editor (Routine Production request deletion window), the
Production Planner will enter the command for initiating a Routine Production request
deletion. This command is received by PlProductionRequestUI class.

2.	 PlProductionRequestUI class will send a request to PlProductionRequest class to send a list
of all current Routine Production requests.

3.	 PlProductionRequest class will gather the requested list (through Planning Database
queries), and send the list to PlProductionRequestUI class. PlProductionRequestUI class
will display the list to the Production Planner.

4. The Production Planner will delete the intended production request.

5. The deletion command is sent to PlProductionRequest class.

6.	 PlProductionRequest class deletes PlDataGranule and PlDPRB objects corresponding to
the production request as long as the PlDataGranule and PlDPRB objects correspond to an
another production request, in which case they are not deleted.

7. PlProductionRequest object is deleted.

4.4.1.8 Event Trace

See Figure 4.4-1.

4-205 305-CD-026-002

Operator

RWCString:PGE,

ECTInt:Priority)

DisplayProducts
(RWCString Filter)

SelectProduct

SelectPGE

PlDataTypeCatalogue

PlDPRB

PlProductionRequestUI PlProductionRequestB
PlTimeScheduled

[SEE FindDataAvailability trace]

PlPGEFactory

Params: RWCString PGE,RWTime Start,RWTime Stop,
ECTInt Priority,RWCString OutputDataType, RWCString UserType,

RWCString PRType,ECTInt numDPRstoKeep,ECTInt numDPRstoSkip,
RWTime TargetDate,RWCString RequestId,RWCString RequestorId,

RWTValSlist<RWCString>ParaList,RWTValSlist<RWCString>ParaValueList

FindDataAvailability

ctor (params)

AddProductionRequest
(RWCString RequestID)

ctor (RWCString Product,

RWTime:Start,RWTime:Stop,

ctor()

CatalogueRequest
(RWTValSlist<RWCString>

ProductList)

(RWCString ProductID)

RetrieveDefPge
(RWCString ProductId)

(RWCString PGEID)

ctor (RWCString PGEID)

ctor()

Create(RWCString PGEid&)

PlStoreProductionRequest
(PlProductionRequestB)

GenerateDPRs
(PlProductionRequestB)

DisplayPGEs(RWCString Filter)

DefinePGERuns 4-206
305-C

D
-026-002

ctor(RWCString DPRID)

Figure 4.4-1. Production Request Scenario

4.4.2 Data Availability Scenario

4.4.2.1 Abstract

This scenario describes the methods by which the data available for a Production Request are
determined. Data may be already available within the PDPS database or the Data Server (in the
case of reprocessing or processing of historic data); otherwise a prediction of the arriving data is
generated. The prediction can be based on a Planning Data Availability Schedule (PDAS) or
heuristics. If the planning subsystem is not currently subscribed to data that is not currently
available at the Data Server, an automatic subscription is submitted. This scenario describes a
sequence of events that occur in the explosion of a Production Request into Data Processing
Requests, as described in Scenario 4.4.1.

4.4.2.2 Interfaces With Other Subsystems and Segments

The Science Data Server is queried to determine the availability of data.

4.4.2.3 Stimulus

This scenario describes the procedures by which the data available for a Production Request are
determined. The overall stimulus is the receipt of a new production request. This is described in
scenario 4.4.2.

4.4.2.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlProductionRequest

• PlPGE

• PlDataTypeReq

• PlOutputYield

• PlDataType

• PlDataGranule

• PlDataSource

• PlDataSourceFactory

• PlDATRecord

• PlSubscriptionSubmitIF

• PlMetaDataChecks

4.4.2.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running.

4.4.2.6 Ending State

No change in PDPS database server state.

4-207 305-CD-026-002

4.4.2.7 Scenario Description

1.	 The PlProductionRequest class invokes the FindDataAvailability method of the PGE in
order to determine the availability of the data required for that production request, using the
start and stop time of the Production Request.

2.	 The PGE iterates through each of the input data types for that PGE, and invokes the
FindDataAvailability for that data type.

Sub-Thread 1-1 - Search local database

3.	 Withinin the FindDataAvailability method, the PDPS Database is searched for the
existence of the data.

4. For each data granule found, metadata checks (e.q. for QA) are performed.

Sub-Thread 1-2 - Search Data Server

5.	 Within the FindDataAvailability method it is determined whether any of the period of
interest is in the past, if so the Data Server which provides for the archive of that Data Type
is searched for existence of the Data.

6.	 A query and an inspect are constructed and applied against the Data Server (see the DID
313 scenario primitive for the Data Server query and inspect processes for details).

Sub-Thread 1-2-1 - Data server finds all the input data

7. The results set returned from the query is iterated through, extracting the required metadata
that describes the instance. If there are metadata conditions associated with the instance,
the conditions are checked by the CheckforCondition method within the
PlMetaDataChecks class. If the conditions are met, an instance of the PlDataGranule for
each instance is created, ensuring that instance is not a duplicate already within the table.

Sub-Thread 1-2-2 - Data server doesn't find some of the data

8.	 If part or all of the data isn't found, then the Data Availability Time records (DAT) are
queried to determine the time the data will be produced by a remote DAAC. These records
are returned for the collection time frame of the production request. Metadata checks are
applied.

Sub-Thread 1-3 - Data Predictions

9.	 If all or part of the input data for the production request is to be collected in the future, then
the FindDataAvailability method predicts the data arrivals using the PlRoutineArrival
subclass of the PlDataSource class. PlRoutineArrival is used for data with known arrival
patterns.

10. 	These input granules are then created based on these predictions, and marked as predicted
granules.

11. 	For each PlDatatype that is not currently subscribed to and that has granules that are not
currently available, the SubmitSubscription method of PlDataSource is called. This method
submits a subscription using the PlSubScriptionSubmitIF to advertising.

4.4.2.8 Event Trace

See Figure 4.4-2.

4-208 305-CD-026-002

4-209
305-C

D
-026-002

Figure 4.4-2.

PlProductionRequestB PlPGE
PlDataTypeB PlDataGranule DataServer

PlDataSource PlSubscriptionSubmitIF
IoAdAdvertisingSrv_C

PlDataTypeReq PlOutputYield

PlDataSourceFactory
PlDATRecordPlMetaDataChecks

[See scenario primitive from
DID 313 for the DataServer

Query and Inspect processes]

ctor(RWCString PGEId)

FindDataAvailability
(RWTime Start,RWTime Stop)

PlDataTypeB
(RWCString DataTypeId)

ctor(RWCString PGEId,
RWCString DataTypeId)

FindDataAvailability
(RWTime Start, RWTime Stop)

ctor()

SubmitSubscription()

PredictArrivals(RWTime Start, RWTime Stop)

Create(RWTime Start,
RWTime Stop)

[see IDRSubscSubmit
event trace]

ctor()

CheckforCondition(RWCString PGEId, PlDataGranule&, ECTBoolean Result)

ctor()

ctor(RWCString PGEId, RWCString DataTypeId)

INSPECT

ctor(RWCString
DataTypeId)

ctor()

Create(RWTime Start,
RWTime Stop)

ctor()

Create(RWTime Start, RWTime Stop)

Create(RWTime Start,
RWTime Stop)

ctor()

QueryDATRecords
(RWTime Start,
RWTime Stop)

ctor(RWCString PGEId,
RWCString DataTypeId)

ctor()

QUERY

Data Availability Scenario

4.4.3 Subscription Submission Scenario

4.4.3.1 Abstract

This scenario describes submitting a subscription to a Data Server from the Subscription
submission utility.

4.4.3.2 Interfaces With Other Subsystems and Segments

The Interoperability subsystem provides advertisements to the Planning subsystem. The
subscription is submitted to the Data Server subsystem.

4.4.3.3 Stimulus

The Production Planner initiates the Subscription Submission Interface in order to submit a
subscription.

4.4.3.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlSubscriptionSubmitIF

• PlDataType

• IoAdProductSearchCommand

• IoAdProductList

• IoAdService

4.4.3.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running.

4.4.3.6 Ending State

No change in PDPS database server state. The subscription is submitted.

4.4.3.7 Scenario Description

1.	 The user starts the subscription submission utility, the standard user authentication process
applies (see scenario 4.4.18). The user selects to set up a subscription and is offered a
display of those Data Types which may be subscribed to.

2. The user selects the Data Type for which to set up a subscription.

3.	 The subscription submission utility selects the advertisement corresponding for the
selected Data Type, using the Data Server UR and product name attributes of the Data Type
class.

4. The user confirms the submission of the subscription.

5.	 The utility builds the Data Server subscription from the advertisement, submits the
subscription and, on a successful status from the Data Server updates the Data Type object
within the PDPS database.

4-210 305-CD-026-002

See Figure 4.4-3.

4.4.3.8 E
ven

t T
race

PlSubscriptionSubmitIF PlDataTypeB IoAdProductSearchCommand IoAdProductList IoAdService

ctor()

Submit()(

DsClSubscription

GetAdService

ctor()

SetMatchType(Exact)

SearchByText(myName)

ctor()

GetResults()

GetService()

SetService

ctor()

ctor(IoAdService)

Submit()

SetSubscriptionFlag()

4-211
305-C

D
-026-002

Figure 4.4-3. Subscription Submission Scenario

4.4.4 Subscription Withdrawal Scenario

4.4.4.1 Abstract

This scenario describes withdrawing a subscription to a Data Server from the Subscription
submission interface.

4.4.4.2 Interfaces With Other Subsystems and Segments

The Interoperability subsystem provides advertisements to the Planning subsystem. The
subscription is submitted to the Data Server subsystem.

4.4.4.3 Stimulus

The Production Planner initiates the Subscription Submission Interface in order to withdraw a
subscription.

4.4.4.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlSubscriptionSubmitIF

• PlDataType

• IoAdProductSearchCommand

• IoAdProductList

• IoAdService

4.4.4.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running.

4.4.4.6 Ending State

No change in PDPS database server state. The subscription is withdrawn.

4.4.4.7 Scenario Description

1.	 The user starts the subscription submission utility, the standard user authentication process
applies (see scenario 4.4.18). The user selects to withdraw a subscription and is offered a
display of those Data Types which are subscribed to.

2. The user selects the Data Type for which to withdraw a subscription.

3.	 The subscription submission utility selects the advertisement corresponding for the
selected Data Type, using the Data Server UR and product name attributes of the Data Type
class.

4. The user confirms the withdrawal of the subscription.

5.	 The utility builds the Data Server subscription from the advertisement, withdraws the
subscription and, on a successful status from the Data Server updates the Data Type object
within the PDPS database.

4-212 305-CD-026-002

See Figure 4.4-4.

4.4.4.8 E
ven

t T
race

PlSubscriptionSubmitIF PlDataTypeB IoAdProductSearchCommand IoAdProductList IoAdService

ctor()

DsClSubscription

Withdraw()

GetAdService

ctor()

SetMatchType(Exact)

SearchByText(myName)

ctor()

GetResults()

GetService()

SetService

ctor()

ctor(IoAdService)

Withdraw()

SetSubscriptionFlag()

4-213
305-C

D
-026-002

Figure 4.4-4. Subscription Withdrawal Scenario

4.4.5 Plan Creation Scenario

4.4.5.1 Abstract

This scenario describes the creation of a plan within the Production Planning Workbench.

This scenario presents an abstract representation of the activities that occur within the Production
Planning Object Library. The full detail of generating a plan is very complex, and intimately tied
to the Production Planning Object Library. This scenario is presented to describe the process at a
reasonable level of detail. For fuller description please refer to the Production Planning Object
Library CSC section (Section 4.5.5).

4.4.5.2 Interfaces With Other Subsystems and Segments

None.

4.4.5.3 Stimulus

The production planner initiates the Production Planning Workbench in order to generate a new
plan.

4.4.5.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlPlan

• PlGroundEvents

• PlGroundEvent

• PlGroundActivity

• PlDPRs

• PlDPRB

• PlPGEActivity

• PlResourceManager

• PlProdStratNB

4.4.5.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running.

4.4.5.6 Ending State

No change to system state.

4.4.5.7 Scenario Description

1.	 The user starts the planning workbench utility, the standard user authentication process
applies (see scenario 4.4.18). The user specifies the time period for which to generate a plan
within the GUI and initiates the creation of a plan object.

4-214 305-CD-026-002

2.	 The plan object determines which ground events are defined within the duration of the
planning time-period, by creating an instance of the PlGroundEvents collection object.

3.	 The plan object iterates through the ordered list of ground events, creating an activity to
fulfill each event

4.	 The activity is allocated to the appropriate resources by the resource manager, thus setting
out a timeline of when the resources are unavailable for production.

5. 	 The user then specifies the Production Requests which are to be included in the plan. This
would include reprocessing requests, standard requests, and any deferred on-demand
requests.

6.	 The PlDPRs collection class is used to determine which Data Processing Requests should
be included in the plan. All DPRs associated to the Production Requests specified above
are searched. A DPR is selected if all it's input data is predicted to be available within the
time frame of the plan.

7.	 The plan object iterates through the ordered list of Data Processing Requests, creating an
activity to signify the run of the PGE.

8.	 Activities are created as place holders for on-demand production requests. These activities
will be dispersed throughout the planned day to reserve resources and maintain schedule
time frames when on-demand requests are entered.

9.	 Activities are assigned a priority using the production strategies listed in the PlProdStrat
class. See scenario 4.4.6, Assigning a Priority to an Activity for more details.

10. The activity is allocated to the appropriate resources by the resource manager.

11. The schedule for the PGE executions is redetermined by the plan object, defining the
predicted start and predicted stop times of all the activities.

4.4.5.8 Event Trace

See Figure 4.4-5

4-215 305-CD-026-002

PlPlanningWorkbenchUI
PlPlanB PlGroundEvents PlDPRs PlActivity PlRescUseThreshNB PlProdStratNB

RWCString:Plan Name,
RWTime:StartTime,
RWTime: EndTIme

PlPlan()

PlResourceManager

Used to
create placeholders
for on-demand jobs

This operation is
described in detail

in CDRAssignPriorityToDPR

RWTime: StartTime,
RWTime:StopTime

SelectEvents()

Next()

AllocateResource()

PlanSchedule()

RWTime: StartTime,
RWTime: StopTime
RWCString: PRid

SelectDPRs()

Next()

PlActivity()

PlActivity()

PlActivity()

AssignPriorityToActivity()

GetPercentResources(RWCString: ResourceType = CPU,
EcTInt: Cumulative = EcDTrue)

ctor(RWCString: ProdStratId)

RWCString: ProdStratId
SetProdStrat()

RWCString: PRid
PlanProductionRequest() 4-216

305-C
D

-026-002

CreateTargetDateReport()

Figure 4.4-5. Plan Creation Scenario

4.4.6 Assigning a Priority to an Activity Scenario

4.4.6.1 Abstract

This scenario describes how the Production Planning Workbench assigns a priority to an activity
in a plan based on the production strategies associated with that plan. Production strategies allow
the operator to define priorities at a high level based on the values of selected attributes of each
Data Processing Request (DPR) such as PGE, Production Request type or User Type. In addition,
an operator selected addition can be made to the calculated priority based on a few conditions such
as whether or not this DPR produces data needed at a remote DAAC or if this DPR has been
waiting for execution for more than one day.

4.4.6.2 Interfaces With Other Subsystems and Segments

None.

4.4.6.3 Stimulus

During the creation of a candidate plan, the Production Planning Workbench assigns a priority to
the DPRs within that plan before it begins to schedule these jobs.

4.4.6.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlan

• PlActivity

• PlDPRB

• PlProdStrat

• PlPGEPriority

• PlPRPriority

• PlUserPriority

• PlProductionRequest

4.4.6.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. This scenario shows the details of step 9 of Section 4.4.5,
the plan creation scenario.

4.4.6.6 Ending State

The activities in a plan are assigned priorities and the Planning Workbench can then begin
scheduling them.

4.4.6.7 Scenario Description

1.	 The Plan object selects all the Data Processing Requests for the plan to be scheduled and
creates an activity for each one.

4-217 305-CD-026-002

2.	 The DPR for that activity is compared with the Production Strategy tables and a priority is
returned for each table attribute: the PGE, the Production Request type, and the user type
associated with the DPR.

3.	 A calculation of a base priority is done using the values from the tables and the weights
associated with each value. The priority entered by the operator for this Production
Request is also figured into this calculation.

4.	 If the DPR has been waiting in the Processing Queue for more than 1 day, an operator
defined additional amount is added to the priority.

5	 If the DPR produces data that is needed at a remote DAAC, another operator defined
additional amount is added to the priority.

4.4.6.8 Event Trace

See Figure 4.4-6.

4-218 305-CD-026-002

PlPlanB PlActivity PlDPR PlProdStratNB PlPGEPriorityNB PlPRPriorityNB PlUserPriorityNB PlProductionRequestB

Select DPRs

AssignPriorityToActivity(PlActivity &)

GetPriority(PlDPR &)

GetPriority(PlDPR &)

GetPriority(PlDPR &)

GetPriority()

GetProductionRequestId()

ctor(RWCString: ProductionRequestID)

ctor()

4-219
305-C

D
-026-002

SetPriority(EcTInt)

Figure 4.4-6. Assigning a Priority to an Activity Scenario

4.4.7 Publishing a Plan Scenario

4.4.7.1 Abstract

This scenario describes the system response to a production planner publishing a plan which is
maintained within the PDPS database. After being selected, the plan would be formatted by the
system into a published plan consisting of three different types of file, which are Metadata file,
ASCII report file, Binary report file and an exported plan that will enable other DAACs and the
SMC to view the plan at the detailed level required for inter-DAAC planning. The published plan
then would be inserted into Documentation Data Server. The method to insert a published plan into
Document Data Server is an operation encapsulated in the PlPublishedPlan Class.

4.4.7.2 Interfaces With Other Subsystems and Segments

Document Data Server provides storage for published plans. The interface to the Document Data
Server is shown by the DsCtProductionPlan object, which is a Document Data Server abstraction
for the plans.

4.4.7.3 Stimulus

A production planner initiates PublishPlan Function from the Production Planning Workbench.

4.4.7.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlPlan

• PlPublishedPlan

• PlPlanMetadataFile

• PlPlanASCIIReportFile

• PlPlanBinaryReportFile

• PlPlanExportedPlan

4.4.7.5 Beginning System, Segment and Subsystem State(s)

Steady state, up and running.

4.4.7.6 Ending State

No change in the state of the system.

4.4.7.7 Scenario Description

1.	 The production planner starts the planning workbench utility, the standard user
authentication process applies (see scenario 4.4.18).

2.	 The production planner is presented with a function to publish a plan, and initiates the
function.

3. Published Plan object is created.

4-220 305-CD-026-002

4. The published plan is inserted into Document Data Server.

5. Subscribers to these plans will be notified via the normal subscription service.

4.4.7.8 Event Trace

See Figure 4.4-7.

4-221 305-CD-026-002

PlPlan PlPlanASCII PlPlanBinaryPlPlanning
WorkbenchUI PlPlanB

Data Server
PlPublishedPlan MetadataFilePlan ReportFile ReportFile PlExportedPlanNB

PlPublishedPlan()

PlPlanMetadataFile()

PlPlanBinaryReportFile()

PlPlanASCIIReportFile()

PlExportedPlanNB()

write(RWTvalSlist<PlActivity>)

export(RWTvalSlist<PlActivity>)

write(RWTValSlist<PlActivity>)

INSERT

PlActivities

Publish()

InsertInDDS

Select

4-222
305-C

D
-026-002

The INSERT scenario primative can be found in the DID 313

Figure 4.4-7. Publishing a Plan Scenario

4.4.8 Importing a Plan from the Data Server Scenario

4.4.8.1 Abstract

This scenario describes the process of querying other DAAC's plans, importing plans from remote
DAACs and identifying any data dependencies. This scenario presents an abstract representation
of the activities that occur within the Production Planning Workbench. This scenario is presented
to describe the process at a reasonable level of detail.

4.4.8.2 Interfaces With Other Subsystems and Segments

Data Management, Data Server.

4.4.8.3 Stimulus

The production planner initiates the Production Planning Workbench in order to compare DAAC
plans.

4.4.8.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlPlan

• PlActivity

• PlPublishedPlan

• PlExportedPlanNB

4.4.8.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running.

4.4.8.6 Ending State

No change to system state.

4.4.8.7 Scenario Description

1.	 The user starts the planning workbench utility, the standard user authentication process
applies (see scenario 4.4.18). The user specifies the time period for which to generate a plan
within the GUI and initiates the creation of a plan as described in scenario 4.4.5 (Plan
Creation).

2.	 Using the PlPlanGenerationUI, the user selects an option to add a plan from another DAAC
to the display. The AddPlan() method of the PlPlanGenerationUI() requests query criteria
from the user that will be used to find the plan(s) the user wishes to import.

3.	 The PlPlanGenerationUI creates a query for the DIM based on criteria entered by the user
and then gets the metadata for any plan that meets the query criteria. This information is
displayed for the user.

4.	 The user can then select which plans to import. For each plan, an ACQUIRE must be done
to retrieve the appropriate exported plan. The user interface invokes the Import() method

4-223 305-CD-026-002

of PlExportedPlanNB, specifying which DAAC's plan to use. As stated in scenario 4.4.7
(Publishing a plan), a plan can be published at any time.

5.	 The display of this second plan effectively looks as if it was another candidate plan from
the same site, with different resources and jobs.

6.	 The IdentifyDataDependencies() method of PlPlan is then called to 'connect' the two plans
by identifying any data dependencies on the display. Data dependency conflicts are
identified.

7. Conflict resolutions are discussed in the 604 Operations Concept document Section 4.1.6.3.

8. Plans from other DAACs may be added as necessary.

4.4.8.8 Event Trace

See Figure 4.4-8

4-224 305-CD-026-002

PlPlanningWorkbenchUI PlExportedPlanNB
PlPlanB

PlTimeLineDisplayDIM Data Server
PlActivity PlDataDependencies

QUERY

DisplayQueryResults()

INSPECT

DisplayInspectResults()

ACQUIRE

import()

CreatePlan(PlExportedPlanNB &)

IdentityDataDependencies()

(RWTime: myStart,
RWTime: myStop,

RWCString: myDataTypeId)
ctor()

DisplayPlan(PlPlan &)

(RWCString: myActivityId,
RWTime: myStart,
RWTime: myStop,
EcTInt: myPriority)

ctor()

Operator fills
out criteria for

query on plans in
data server

Use to retrieve plan
metatdata parameters

List of plans with metadata
is displayed for operator

to select from

Once a plan has been selected
this plan is acquired

This may be repeated
for multiple plans

ctor()

4-225
305-C

D
-026-002

ctor()

QUERY, INSPECT and ACQUIRE scenario primatives can be found in the DID 313

Figure 4.4-8. Importing a Plan from the Data Server

4.4.9 Plan Activation Scenario

4.4.9.1 Abstract

This scenario describes the activation of a plan from the Production Planning Workbench.

This scenario presents an abstract representation of the activities that occur within the Production
Planning Object Library. The full detail of generating a plan is very complex, and intimately tied
to the Production Planning Object Library. This scenario is presented to describe the process at a
reasonable level of detail. For fuller description of the “planning/scheduling” aspects of this
scenario please refer to the Production Planning Object Library CSC section (Section 4.5.5).

4.4.9.2 Interfaces With Other Subsystems and Segments

Data Server for inserting Planning Data Availability Schedules. Data Processing for inserting
DPRs from the current active plan into the job scheduler queue.

4.4.9.3 Stimulus

The production planner initiates the Production Planning Workbench in order to activate a plan.

4.4.9.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlPlan

• PlGroundActivies

• PlGroundEvent

• PlGroundEvents

• PlPGEActivities

• PlDPRs

• PlDPRB

• PlActivities

• DPJobScheduler

• PlResourceManager

4.4.9.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. There may be scheduled jobs in the data processing
subsystem's job scheduler COTS.

4.4.9.6 Ending State

No PDPS database server state change. A plan is activated (a portion of the active plan has been
rolled into the data processing subsystem's job scheduler COTS).

4-226 305-CD-026-002

4.4.9.7 Scenario Description

1.	 The user starts the planning workbench utility, the standard user authentication process
applies (see scenario 4.4.18). The user selects a plan which is to be used to drive the
production schedule.

2.	 On recreation from the PDPS database the plan is automatically updated to reflect changes
that have occurred since the plan was generated.

3.	 The plan object determines whether any new ground events have been defined, or old
ground events have been deleted since the plan was generated or last updated. The
Activities describing the ground events within a plan are updated accordingly and the plan
is updated.

4.	 The plan object determines whether any of the data processing requests within the plan
have been completed and updates the plan accordingly. Any data processing requests that
have not been completed are consolidated into the new plan. The user may modify the plan
at this point by redefining priorities in order to achieve a revised schedule.

5.	 The user initiates activation of the plan. The plan object will create an ordered list of the
activities which are within the scheduling window. This window defines the portion of the
plan that needs to be rolled into the COTS. By default this window is 24 hours from the
current time, however it is modifiable within from the workbench utility.

6. 	The plan object will create a Planning Data Availability Schedule (PDAS) for distribution
using the PlPDASFile object. These files are then INSERTED into the Data Server.

7.	 The plan object iterates through the activities defined in the order indicated by the plan, and
calls the appropriate scheduling operation for that activity.

8.	 The Data Processing Request activities will initiate a call to create a PGE job within the
data processing subsystem's job scheduling COTS.

9.	 The Ground Events will initiate a call to create a Ground Event Job within the data
processing subsystem's job scheduling COTS.

Note: For details of how the jobs are created within the COTS and subsequently managed from
the COTS please refer to scenarios within the Data Processing Design documentation.

4.4.9.8 Event Trace

See Figure 4.4-9.

4-227 305-CD-026-002

PlPlanningWorkbenchUI PlActivePlan PlPDASFile PlPDASMetaData PlActivities PlPDASRecords PlActivity PlGroundEvent PlDPRB DpPrScheduler DataServer

4-228
305-C

D
-026-002

ctor*(

Schedule()

CreateDPRJob(PlDPR *)

Schedule

CreateGroundEvent(PlGroundEvent *)

Next()

Schedule()

ActivateSchedule

ctor()

ctor()

InsertToDSS()

RWTvalSlist<PlActivities>
CreatePDAS()

Next

ctor()

First

INSERT

ctor()

ctor()

ctor()

ctor()

PlActivePlan

UpdatePlan

See Scenario
Primative from 313

for INSERT

Figure 4.4-9. Plan Activation Scenario Scenario

4.4.10 Statusing a Plan Scenario

4.4.10.1 Abstract

This scenario describes the statusing of a plan from the Production Planning Workbench. A
component of the Job Scheduling COTS, AutoXpert now provides the dynamic display of the
production schedule, therefore there are no requirements for dynamic updating to the plans.
However there are occasions when the Plan from which the schedule originated would require
updating, or statusing. Primarily the need for updating this will be before “downloading” a day's
schedule into the COTS, taking into account the previous days production.

This scenario presents an abstract representation of the activities that occur within the Production
Planning Object Library. The full detail of generating a plan is very complex, and intimately tied
to the Production Planning Object Library. This scenario is presented to describe the process at a
reasonable level of detail. For fuller description of the “planning/scheduling” aspects of this
scenario please refer to the Production Planning Object Library CSC section (Section 4.5.5).

4.4.10.2 Interfaces With Other Subsystems and Segments

None.

4.4.10.3 Stimulus

The production planner initiates the Production Planning Workbench in order to activate a plan.

4.4.10.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlPlan

• PlGroundActivies

• PlGroundEvent

• PlPGEActivities

• PlDPRB

• PlActivities

• DPJobScheduler

4.4.10.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. A portion of a plan has been activated (there are scheduled
jobs in the data processing subsystem's job scheduler COTS).

4.4.10.6 Ending State

No PDPS database server state. The plan is updated.

4-229 305-CD-026-002

4.4.10.7 Scenario Description

1.	 The user starts the planning workbench utility, the standard user authentication process
applies (see scenario 4.4.18). The user selects the active plan which is to be updated.

2.	 On recreation from the PDPS database the plan is automatically updated to reflect changes
that have occurred since the plan was generated.

3.	 The plan object determines whether any new ground events have been defined, or old
ground events have been deleted since the plan was generated or last updated. The
Activities describing the ground events within a plan are updated accordingly and the plan
is updated.

4.	 The plan object determines whether any of the data processing requests within the plan
have been completed and updates the plan accordingly.

5.	 The plan object creates an ordered list of the activities which are part of the active schedule
(determined from the status attribute). For those activities which have not completed the
plan object invokes the status method.

6.	 The PlDPRB and object interfaces with the DPJobScheduler class to return the status of the
activity.

7. The plan is updated.

4.4.10.8 Event Trace

See Figure 4.4-10.

4-230 305-CD-026-002

PlProductionPlannersUI PlActivePlan PlActivities
PlActivity PlGroundEvent PlDPRB

DpPrScheduler

PlActivePlan

StatusSchedule

PlActivities

UpdatePlan

Status

Next

statusPGEJob

4-231
305-C

D
-026-002

Status

Figure 4.4-10. Statusing a Plan Scenario

4.4.11 Canceling a Plan Scenario

4.4.11.1 Abstract

This scenario describes the canceling of an active plan from the Production Planning Workbench.
The scenario illustrates the interface to the Data Processing subsystem through the
DPJobScheduler interface class.

4.4.11.2 Interfaces With Other Subsystems and Segments

The Planning subsystem interfaces with the Data Processing subsystem in order to cancel the
scheduled Data Processing Requests.

4.4.11.3 Stimulus

It's assumed that the Production Planning Workbench application is running and displaying the
active plan. The user decides to cancel the production schedule from the workbench.

4.4.11.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlActivePlan

• PlPGEActivities

• PlPGEActivity

• PlGroundEvent

• PlDPRB

• DPJobScheduler

4.4.11.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. A portion of a plan has been activated (there are scheduled
jobs in the data processing subsystem's job scheduler COTS).

4.4.11.6 Ending State

No change in PDPS database server state. The scheduled activities are canceled.

4.4.11.7 Scenario Description

1. The operator initiates the command to cancel the production schedule.

2.	 The plan object creates an ordered list of the activities which are part of the active schedule
(determined from the status attribute).

3.	 The plan object iterates through the activities and invokes the cancel method from the
activity.

4.	 The PlDPRB and PlGroundEvent classes interface with the DPJobScheduler class to cancel
the activity.

5. The plan is updated.

4-232 305-CD-026-002

See Figure 4.4-11.

4.4.11.8

E

ven
t T

race

PlPlanningWorkbenchUI PlActivePlan PlActivities PlActivity PlGroundEvent PlDPRB DpPrScheduler

4-233
305-C

D
-026-002

PlActivities

Cancel

CancelDPRJob

Cancel

CancelPGEJob

Next

Cancel

CancelSchedule

Figure 4.4-11. Cancelling a Plan Scenario

4.4.12 Deleting a Plan Scenario

4.4.12.1 Abstract

This scenario describes the deletion plan from the Production Planning Workbench. This function
does not delete the associated DPRs or Ground Events from the PDPS database, since they may be
associated to other plans, and are also maintained for a set period such that reports may be
generated against their completion status.

4.4.12.2 Interfaces With Other Subsystems and Segments

None.

4.4.12.3 Stimulus

It's assumed that the Production Planning Workbench application is running. The user decides to
delete the production schedule from the workbench.

4.4.12.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlPlan

• PlPGEActivities

• PlPGEActivity

4.4.12.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. The Production Workbench application is running and that
a plan has been selected.

4.4.12.6 Ending State

No change in PDPS database server state. The plan is deleted.

4.4.12.7 Scenario Description

1. The operator initiates the command to delete the displayed plan.

2. The plan object creates an ordered list of the activities within the plan.

3.	 The plan object iterates through the activities and invokes the delete method from the
activity [note that the delete method means that the activity is removed from the PDPS
database, as opposed to the destructor operation for the class, which deallocates the
memory associated to the object within the application, the destructor is called after the
delete].

4. The entry describing the plan itself in the database is deleted.

4.4.12.8 Event Trace

None.

4-234 305-CD-026-002

4.4.13 Subscription Notification Scenario

4.4.13.1 Abstract

This scenario describes the procedure by which the subscription manager is informed of data
arrival and performs the appropriate actions based on the methods of the data type subscribed to.
PGE jobs defined within the Data Processing subsystem are released when all the necessary data
become available. FOS Detailed Activity Schedules and Planning Data Availability Schedules
create Data Availability Times persistent objects in the PDPS database.

Note: Upon notification of the receipt of an FOS DAS or a PDAS, please refer to the Data
Availability Times scenario

4.4.13.2 Interfaces With Other Subsystems and Segments

The Data Server subsystem initiates the subscription notification. The Planning subsystem releases
PGE jobs within the Data Processing Subsystem when all requirements are satisfied.

4.4.13.3 Stimulus

A notification of data arrival is sent from the Data Server subsystem.

4.4.13.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• EcMpMsgCb

• PlSubMsgCb

• PlDataGranules

• PlDataGranule

• EcUrUR

• DsClESDTReference

• PlDataAvailabilityTimes

4.4.13.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. The subscription manager application is running.

4.4.13.6 Ending State

No change in PDPS database server, subscription manager state.

4.4.13.7 Scenario Description

1.	 The HandleCbMsg callback is invoked upon notification of data arrival, and the UR is
created from the notification message.

2.	 The InspectDataArrival method of the Data Server is invoked to extract the metadata
associated with the UR presented in the data arrival notification.

3.	 Based on the information extracted from the metadata, RegisterDataArrival updates the
availability information pertaining to the Data Granule.

4-235 305-CD-026-002

4.	 The subscription manager determines the DPRs for which this data was required by
selecting those predicted data instances which match the arrived data metadata.

5.	 The subscription manager searches the PGE profile to determine the type of PGE to be
executed.

For Spatial based input. Please refer to the scenario entitled Subscription Notification with Spatial
Based Input Scenario

6.	 The subscription manager checks the metadata to determine whether the data satisfies the
QA requirements.

7.	 If the data dependencies have been fulfilled then the job associated with the DPR is released
within the Data Processing subsystem

For Alternate inputs. Please refer to the scenario entitled Subscription Notification with Alternate
Inputs Scenario

4.4.13.8 Event Trace

See Figure 4.4-12.

4-236 305-CD-026-002

EcMpMsgCb() PlSubMsgCb
EcUrUR DataServer

PlDataIGranules PlDataGranule PlDPRB DpJobSchedulerPlMetaDataChecks

HandleMsgCb(EcTPtr:Message,
EcTUShortInt:MessageClass,

EcTInt:MessageLength,
RWCString:MessageId,

RWCString:ReplyMessageId)

ctor()

INSPECT

MatchInstances

RegisterAvailability()

ReleaseDPRJob()

FindAssociatedDPRs
(RWTValSList:InputDataInstanceList)

CheckAvailability
(RWCString:DprId)

CheckAvailable

CheckForCondition
(RWCString:PgeId,

PlDataGranule&,EcTBoolean&)

ctor()

GetPGEType
(RWCString:PgeId)

ctor

4-237
305-C

D
-026-002

See Tiling Event
Flow for spatial
based products

See AlternateInput
Event Flow for
Alternate inputs

INSPECT scenario primative can be found in the DID 313

Figure 4.4-12. Subscription Notifications Scenario

4.4.14 Subscription Notification with Spatial Based Input Scenario

4.4.14.1 Abstract

This scenario describes the method by which the subscription manager processes notification of
data granules that are geographical tiles instead of time continuous data. A description of the
methods invoked once the GetPGEType operation determine that the type is spatial based . Please
refer to the Subscription Notification Scenario for the Data notification procedures which precede
this step.

4.4.14.2 Interfaces With Other Subsystems and Segments

The Data Server subsystem initiates the subscription notification. The Planning subsystem queries
the Data Server for additional input, and releases PGE jobs within the Data Processing Subsystem
when all requirements are satisfied.

4.4.14.3 Stimulus

A tile-based PGE receives notification of the arrival of input data.

4.4.14.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlSubMsgCb

• PlDataGranule

• EcUrUR

• DsClESDTReference

4.4.14.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. The subscription manager application is running.

4.4.14.6 Ending State

No change in PDPS database server, subscription manager state.

4.4.14.7 Scenario Description

1.	 The associated tile coordinates are obtained from the PGE Profile based on the PgeId and
the tiling information pertaining to the PGE.

2. The query services of the Data Server are used to get the ESDT Reference Collector.

3.	 The InspectDataArrival method of the Data Server is invoked to extract the UR and
accompanying metadata of all granules within the tiling scheme.

4.	 The subscription manager iterates through the URs and constructs a PlDataGranule for
each granule within the tiling scheme creating an entry of this instance in the database with
the corresponding metadata information.

5.	 For each granule, the meta data is checked to determine if the data has passed specified QA
requirements.

4-238 305-CD-026-002

PlSubMsgCb EcUrUR DataServer PlDataGranule

See Subscription Notification
Event Flow for preceding

traces.

PlMetaDataCheck

QUERY

ctor()

Create
(RWTime:StartTime,RWTime:StopTime,

RWCString:DataTypeId,RWCString:TileId)

DeleteGranule
(RWCString:GranuleId)

INSPECT()

See Figure 4.4-13.

4.4.14.8

E

ven
t T

race

is deleted and jobs associated w
ith the D

PR
 are released to the D

ata Processing Subsystem
.

6.
T

he initial granule that w
as created by the production request editor to represent the D

PR

4-239
305-C

D
-026-002

CheckForCondition
(RWCString:PGEId,PlDataGranule&,EcTBoolean&)

Return To Subscription
Notification Event Flow

QUERY and INSPECT scenario primatives can be found in the DID 313

Figure 4.4-13. Subscription Notification with Spatial Based Input Scenario

4.4.15 Subscription Notification with Alternate Inputs Scenario

4.4.15.1 Abstract

This scenario describes the procedure which occurs during the CheckAvailability process of a
subscription notification, in the event that not all data dependencies have been satisfied and
primary and backup data types are specified in the DPR. The methods below are invoked once the
Check availability function determines that the required input associated with the DPR is available
and the primary input specified for this DPR has not arrived. A description of the notification
procedure prior to the check availability step may be found in the Subscription Notification
Scenario.

4.4.15.2 Interfaces With Other Subsystems and Segments

None.

4.4.15.3 Stimulus

Upon notification that data has arrived, it is determined that all the required data for a DPR is
available, but the primary input is still pending.

4.4.15.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlAlternateDataGranuleNB

• PlDataGranule

• PlDPRB

• PlTimer

4.4.15.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. The subscription manager application is running.

4.4.15.6 Ending State

No change in PDPS database server, subscription manager state.

4.4.15.7 Scenario Description

1.	 The Check Availability operations determine that not all data dependencies have been
fulfilled for a particular DPR, and the required input is available.

2.	 The wait time associated with the primary input is obtained, and an instance of the timer is
constructed to start the timer. The DPR continues to wait for notification of the arrival of
additional data.

3. The callback functions of the timer object are notified once the time has expired.

4.	 The database is checked once again to determine if all the dependencies have been
fulfilled. The primary input is still not available, and the alternate input specified is used
thus changing the priority ordering of data.

4-240 305-CD-026-002

See Figure 4.4-14.

4.4.15.8

5.

released w
ithin the D

ata Processing subsystem

associated w
ith the prim

ary input is canceled.
T

he job associated w
ith the D

PR
 is then

M
odify is invoked to m

odify the input data instance list for processing and the tim
er

E
ven

t T
race

PlDataGranule PlDPRBPlAlternateDataGranule

CheckAvailability
(RWCString:DataGranuleId)

StartTimer
(RWTime:TimerNB)

GetMyTimer
(RWTime:TimerNB)

NotifyTimeExpired

CancelTmer
(RWCString:DprId)

CheckAvailability
(RWCString:DprId)

ctor()

ChangeOrder
(RWCString<DataGranuleId>)

GetAvailability
(RWCString:GranuleId)

Modify
(RWTValSlist:InputDataInstanceList)

PlTimer

See Subscription Notification
Evevt Flow for Preceding

Traces

4-241
305-C

D
-026-002

Return to Subscription
Notification Event Flow

Figure 4.4-14. Subscription Notification with Alternate Inputs Scenario

4.4.16 Data Availability Times Scenario

4.4.16.1 Abstract

This scenario describes the construction and disposition of Data Availability times schedules by
the Planning Subsystem from within the Subscription manager.

4.4.16.2 Interfaces With Other Subsystems and Segments

The Data Server subsystem provides and receives Planning Data Availability Schedules and FOS
Detailed Activity Schedules.

4.4.16.3 Stimulus

A notification of availability of a FOS Detailed Activity Schedule or a Planning Data Availability
Schedule is sent by the Data Server subsystem.

4.4.16.4 Participating Classes From the Object Model:

The following are participating classes from the Object Model:

• PlDataAvailabilityTimes

• PlDataSchedules

• PlFOSDASFile

• PlPDASFile

• PlDATRecord

• PlDataTransferHistory

• PlSourceToDsHistory

• PlInstrumentModes

• PlInstModeRecords

4.4.16.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. The subscription manager application is running.

4.4.16.6 Ending State

A persistent DataAvailabilityTimes object is stored in the PDPS database. PlSourceToDsHisto­
ryNB is updated with predicted source (EDOS or another DAAC) to data server transfer times for
all data types in the Schedule received.

4.4.16.7 Scenario Description

1.	 The PlDataAvailabilityTimes() constructor is called by handleMsgCb when either a PDAS
or an FOS Detailed Activity schedule arrival notification is received from the Data Server.

2. The PlDataSchedules Object invokes the data server services to acquires the Schedule.

3.	 The PlDATRecord() constructor is called to construct records based on the scheduling
information received. The data is checked to see if this DAAC uses data referenced in this
record, and records pertaining to data not subscribed to by the DAAC are ignored.

4-242 305-CD-026-002

4.	 Based on the estimated time that the data is scheduled to be complete, the
UpdateAvailability operation of the PlDATRecord is called to update the predicted arrival
time to reflect the arrival time of the granule on the data Server.

5.	 The PlDataTransferHistory persistent object is referenced to calculate a new moving
average of the transfer time of the granule to the data server. The new empirical estimates
of the transfer time is reflected in the persistent object for that data type.

6.	 The corresponding PlDataGranule objects updated to reflect the new predicted arrival
time, based on the predicted completion time of the granule and the historical transfer rate.

Thread 1: constructing FOS instrument schedule.

1.	 When a FOS DAS is received, the PlInstrumentModes constructor is called to construct an
instrument mode schedule.

2.	 Mode records are constructed for all instruments relative to the DAAC. The
FindAssociatedInstruments operation is called to parse PlInstModeRecords for related
records.

3.	 The associated instrument mode records in PlInstModeRecords objects are retrieved and
the mode set accordingly.

4.	 The check replan function is then invoked to determine if the new predictions differ
significantly from the previous ones which may require a replan. See the scenario 4.4.17,
Limited Automatic Replan based on a New DAS, for a complete description.

4.4.16.8 Event Trace

See Figure 4.4-15.

4-243 305-CD-026-002

PlSubMsgCb PlDataAvailabilityTimes PlPDataSchedules dataServer PlDATRecord PlDataTransferHistory PlSourcetoDsHistoryNB PlInstrumentModes PlInstModeRecord PlDataGranule PlDASDifferent

AQUIRE

CheckReplan

GetDasfile(RWCSTring)

MakeDATFromFOSDASFile
(RWTValSlist<PlFOSDASFile>)

CalculateMyMovingAverage
(RWCString:DataTypeId)

UpdateHistoricalInfo
(RWTime:MovingAverageTime,

EcTInt:StandardDeviation,
RWTime:LastPredictedArrival)

FindMyDataType
(RWCString:DataTypeId)

UpdateAvailabilityTime
(RWTime:MovingAverage)

MakeModeScheduleFromDAS
(RWTValSlist<PlFOSDASFile>)

SetPredictedAvailability

UpdateInstModeStatus
(RWTime:ModeStartTime,
RWTime:ModeStopTime,
RWCString:ModeName)

ctor

ctor()

ctor()

FindAssociatedInstrument
(RWCString:InstrumentName)

4-244
305-C

D
-026-002

Please refer to
the AutoReplanDAS

Event Flow.

AQUIRE scenario primitive can be found in the DID 313

Figure 4.4-15. Data Availability Times Schedule

4.4.17 Limited Automatic Replan based on a New DAS

4.4.17.1 Abstract

This scenario describes how a limited automatic replan is initiated by the receipt of a new FOS
Detailed Activity Schedule or Planning Data Availability Schedule. In the Planning Workbench,
the operator can define a delta time for each data type that is an acceptable delay before a replan
notification should be initiated.

Notification that a new DAS is available is sent to the Subscription Manager. The DAS is retrieved
and information concerning the times that external data will be available to the local DAAC is
extracted and stored in tables in the PDPS database. These times are compared with the times from
the last DAS received; in the event that a product is going to be delayed greater than the delta
specified by the operator, the operator is notified that a replan should be considered.

4.4.17.2 Interfaces With Other Subsystems and Segments

None.

4.4.17.3 Stimulus

After the data availability times have been extracted from an FOS DAS or a PDAS (see 4.4.16
Data Availability Times Scenario for more details), these times are compared previous predictions
to determine if a replan is necessary.

4.4.17.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlSubMgrCB

• PlDASDifferent

• PlDataAvailabilityTimes

• PlDATRecord

• PlDASDelta

• PlDataGranule

• PlDPRB

• PlPopupMessage

• PlPlanGenerationUI

• PlPlan

4.4.17.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. This scenario is the details of step 7 of scenario 4.4.16 - the
Data Availability Times Scenario.

4-245 305-CD-026-002

4.4.17.6 Ending State

No PDPS database server state. The new plan is activated (See scenario 4.4.9 Plan Activation
Scenario for the details of plan activation).

4.4.17.7 Scenario Description

1.	 After the data availability times are extracted from a DAS, these times are compared with
the previous predictions of when this data would be available.

2.	 If a product is going to be delayed longer than an operator configurable amount for that data
type, the Data Processing Requests waiting for that product are checked. If any Data
Processing Request is predicted in the current active plan to start before this product will
be available, a description of the product, the new availability time, and information on the
DPR will be added to a report.

3.	 A pop-up display notifies the operator that a replan should be considered and displays the
report with information on the delayed product and it's associated DPRs.

4.	 The operator decides based on this information to do a replan and presses the "replan"
button on the pop-up display.

5	 The Planning Workbench application is started if it is not already executing. The plan is
rescheduled, taking into account the new data availability times and the current state of the
Processing Queue. See Scenario 4.4.9 Plan Creation Scenario for more details.

6. The new plan is displayed on the timeline and is reviewed by the operator.

7. The operator determines that this plan is acceptable and activates this plan.

4.4.17.8 Event Trace

See Figure 4.4-16.

4-246 305-CD-026-002

PlDATRecord PlDataGranule PlPopupMessage

PlSubMsgCb PlPlDASDeltaPlPlDASDifferent PlPlanGenerationUIBPlDataAvailabilityTimes PlDPR

PlDataAvailabilityTimes &)

GetDelta(RWCSTring:DataTypeId)

NotifyOperator()

AddToReport(EcTFloat, EcTFloat)

SelectActivePlan(RWCString)

RetrieveDATRecords
(RWTvalSlist<PlDATRecord>)

ctor()

FindAssociatedDPRs

MatchPlDataGranule()

GetPredictedStartTime()

UpdatePlan()

Display()

PlPlan

CheckReplan
(PlDataAvailabilityTimes &,

PlanSchedule()

4-247
305-C

D
-026-002

Plan name:RWCString
ctor()

Figure 4.4-16. Limited Automatic Replan Based on a New DAS

4.4.18 User Logon and Authentication Scenario

4.4.18.1 Abstract

This scenario describes user logon and authentication to access the Planning operational software.
There are three classes of users, the Production Planner, Resource Manager, and the ECS user. The
Production Planner and Resource Manager are operational staff primarily responsible for
scheduling planning activities and managing resources respectively. The ECS user is primarily
responsible for entering production requests.

The Planning software only permits users to access certain functional areas within the Planning
software system. To this end, certain restrictions are place on different types of users. For instance,
an ECS user cannot create a candidate plan whereas a Production Planner is allowed to create a
candidate plan. These access rights are enforced using CSS User Authentication services. User
accounts and associated privileges will be registered with CSS and maintained by local database
administrative personnel.

4.4.18.2 Interfaces with other Subsystems and Segments

CSS User Authentication services

4.4.18.3 Stimulus

The operator logs into the Planning software and initiates the Planning software.

4.4.18.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlApplication,

• PlPlanningWorkbenchUI,

• PlProductionRequestUI, and

• PlUser.

4.4.18.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running.

4.4.18.6 Ending State

No change to the database server state.

4.4.18.7 Scenario Description

1. The user logs into UNIX supplying an account name and password.

2. The user invokes the Planning software to gain access to its operational environment.

3. Upon initiation of the Planning software, the user's account name is captured.

4.	 Once the user account name is captured, the Planning software makes a connection to the
database server to verify the account name.

4-248 305-CD-026-002

Thread 1: Invalid User

5.	 If there is no match in the database for the corresponding account name, access will not be
permitted to the Planning operational environment.

6.	 The Planning software notifies the user that he is not authorized to use Planning and all
Planning services are denied.

Thread 2: Valid User

7.	 If the user is a valid user, the Planning software queries the database to obtain the
appropriate privileges associated with the user.

8.	 The software assesses the privileges retrieved from the database and restricts the user to the
access only the services within the system that are applicable to the user's class type.

9.	 Upon successful authentication the user proceeds to use the Planning software based on the
user privileges retrieved from the database.

4.4.18.8 Event Trace

None.

4.4.19 On-Demand Production Request Scenario (Processed)

This scenario describes how an On-Demand Production Request (OPR) is handled by the Planning
subsystem. In this scenario: the input data is available, the resource usage of the DPRs is below the
thresholds set for individual OPRs and the combined threshold for all OPR jobs for the production
period, and the job is submitted to processing for production, no replan is necessary.

4.4.19.1 Beginning Assumptions

On-Demand Manager is up and running

4.4.19.2 Interfaces with other Subsystems and Segments

On-Demand Production Request modifications and cancellations are received by the Planning
subsystem from the Data Server. Planning subsystem sends disposition and status information to
the Data Server.

4.4.19.3 Stimulus

The On-Demand Production Request is received by the On-DemandPR class from the Data Server
and the Data Server makes a call to the Validate operation of On-DemandPR class.

4.4.19.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlOnDemandManagerNB

• PlOnDemandPRNB

• PlRescUseThreshNB

• PlDPRB

• PlOnDemandExceed

4-249 305-CD-026-002

• DpPrScheduler

4.4.19.5 Beginning System, Segment and Subsystem State(s)

PDPS Database and On-Demand Manager are in a steady state, up and running.

4.4.19.6 Ending State

PDPS Database and On-Demand Manager are in a steady state, up and running.

4.4.19.7 Scenario Description

1. The Data Server creates an instance of a PlOnDemandPRNB.

2. Data Server executes the ValidateOPR operation of PlOnDemandPRNB..

3.	 PlOnDemandPRNB executes PlDefinePgeRuns which it inherits from PlProductionRe­

questB to generate the DPRs and associated objects as in Production Request event trace.

4.	 PlOnDemandPRNB adds this production request to the list of production requests main­

tained by On-Demand Manager by calling AddOPR in PlOnDemandManagerNB.

5. PlOnDemandPRNB generates an instance of PlRescUseThreshNb.

6.	 Compare the predicted resource usage with PlRescUseThreshNB thresholds for the On-De­

mand Production Request and the cumulative thresholds for all On-Demand Production

Requests by calling CheckThresholds.

7.	 Resource usage associated with On-Demand Production Request does not exceed thresh­

olds for requests, add resource time to Cumulative Resource attribute in On Demand Man­

ager via the UpdataRescUse operation.

8. Call the Schedule routine in PlDPRB to add the Dpr to the AutoSys production list.

9.	 The above operation results in CreateDprJob in DpPrScheduler being called which is what

actually does the transfer of Dpr information to AutoSys.

10. Check for data availability at the Data Server via the CheckAvailability operation in PlD-

PRB. (Data Availability Scenario)

11. On-Demand Production Request is released for production

12. On-Demand Production Request is submitted to Processing for production.

13. Replan threshold are checked and no replan notification is necessary.

14. PlOnDemandPRNB notifies Data Server of processing submission (via return of Valida­

teOPR operation).

15. Data Server then calls the ReturnUR operation to initiate notification of the generation of

the product and it’s UR.

4-250 305-CD-026-002

16. PlOnDemandPRNB then calls the PlOnDemandManagerNB SubmitSubscription opera­

tion to create a subscription for notification of Data Server receiving a product of the data

type requested by this production request.

17. PlOnDemandManagerNB receives notification of the insertion of a product of the type re­

quested by the production request.

18. PlOnDemandManagerNB calls RequestCompleted with the UR of the product to notify

OnDemandPRNB of the product completion.

19. PlOnDemandPRNB then calls RemoveOPR to remove the production request from the list

of production requests maintained by PlOnDemandManagerNB.

20. ReturnUR then returns the UR of the product to Data Server and Data Server calls The

PlOnDemandPRNB destructor to delete the instance of PlOnDemandPRNB.

4.4.19.8 Event Trace

See Figure 4.4-17.

4-251 305-CD-026-002

Data
Server

PlOnDemand
ManagerNB

PlOn
Demand
PRNB

PlRescUse
ThreshNB

PlOnDemand
PlDPRB Exceed

DpPr
Scheduler

CheckThresholds
(PlOnDemandPRNB &)

PlDefinePgeRuns()

PlOnDemandPRNB(Parameters)

Release()

ValidateOPR():String-"Submitted"

AddOPR(PlOn
DemandPRNB &)

ValidateOPR():String

Schedule()

ReturnUR():EcUrUR

UpdateRescUse
(rescTime)

(Create Subscription
for notification
of completion)

Refer to AutoReplanOnDemand Event Trace

Subscription
Notification Request

Completed(UR)

RemoveOPR
(PlOnDemandPRNB &)

PlRescUse
ThreshNB()

~PlOnDemandPRNB()

CreateDprJob()

ReleaseDprJob()

CheckAvailability()

ReturnUR():EcUrUR

SubmitSubscription()

4-252
305-C

D
-026-002

Parameters: String Reqid,

Time Start, Time Stop,

String OutData, String PGEId,

String ReqerId, List ParamID,

List ParamVal, Int Prior

Figure 4.4-17. On-Demand Production Request Scenario (Processed)

4.4.20 Limited Automatic Replan based on an On-demand Production Request
Scenario

4.4.20.1 Abstract

This scenario describes how an automatic replan notification is initiated by an On-demand
Production Request (OPR). There are two thresholds associated with an OPR - a basic resource
usage threshold determines whether a OPR goes directly to processing or is deferred to be planned
later by an operator. The second threshold determines whether a replan notification is sent to the
operator based on this OPR.

While the default is that these thresholds are equal, there are good cases for these thresholds being
different. In one situation, an operator may not want to know every time an OPR is deferred for
later planning and instead only wants to know when a group of OPRs has been deferred - in this
case, the limited automatic replan threshold may be much higher than the resource usage threshold.
However, in another situation where the DAAC expects many OPRs, such as EDC with ASTER,
the resource usage threshold may be set very high so OPRs are sent directly to processing, while
the replan threshold is set lower, so the Production Plan can be periodically kept in sync with what
is going on in Processing.

4.4.20.2 Interfaces With Other Subsystems and Segments

None.

4.4.20.3 Stimulus

After an On-demand Production Request is checked against the resource usage thresholds, it is
compared to the limited automatic replan thresholds.

4.4.20.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlOnDemandPR

• PlOnDemandExceed

• PlOnDemandReplanValues

• PlPopupMessage

• PlPlanGeneration

• PlPlan

4.4.20.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. This scenario shows the details of step 13 of Section 4.4.19,
the On-Demand Production Request Scenario (Processed).

4.4.20.6 Ending State

No PDPS database server state. The new plan is activated (See scenario 4.4.9 Plan Activation
Scenario for the details of plan activation).

4-253 305-CD-026-002

4.4.20.7 Scenario Description

1.	 After an On-demand Production Request is compared with the current resource usage
thresholds, it is compared with each of the current replan thresholds.

2.	 Each time a replan threshold is exceeded, information about the exceeded resource is
written to a report.

3.	 A pop-up display notifies the operator that a replan should be considered and displays the
report with information on the On-demand Production Request and the exceeded
thresholds.

4.	 The operator decides based on this information to do a replan and presses the "replan"
button on the pop-up display.

5	 The Planning Workbench application is started if it is not already executing. The on­
demand production request is added to the current active plan and the plan is rescheduled,
taking into account the current state of the Processing Queue. See Scenario 4.4.5 Plan
Creation for more details.

6. The new plan is displayed on the timeline and is reviewed by the operator.

7. The operator determines that this plan is acceptable and activates this plan.

4.4.20.8 Event Trace

See Figure 4.4-18.

4-254 305-CD-026-002

PlOn
Demand
PRNB

PlRescUse
ThreshNB PlOnDemandReplanValues PlOnDemandExceed

Resource Comparison
is done for multiple
types of resources

(CPU, disk space, etc)

PlPlanGenerationUIB

CheckThresholds()

CheckReplan(PlOnDemandPRNB &)

CompareThreshold(PlOnDemandPRNB &)

CalculateResourceUsage(enum)

NotifyOperator()

AddToReport(EcTFloat, EcTFloat)

SelectActivePlan(RWCString)

Plan name:RWCString

Display()

PlPopupMessage

PlPlan

4-255
305-C

D
-026-002

UpdatePlan()

PlanSchedule()

ctor()

Figure 4.4-18. Limited Automatic Replan Based on an On-Demand Production
Request Scenario

4.4.21 On-Demand Production Request Scenario (Delayed)

This scenario describes how an On-Demand Production Request (OPR) is handled by the Planning
subsystem. In this scenario the request meets the acceptance criteria, however the input data is not
available, so a subscription is created for notification of receipt of the data and the job is held in
the PDPS database for inclusion in a subsequent plan for production.

4.4.21.1 Beginning Assumptions

On-Demand Manager is up and running

4.4.21.2 Interfaces with other Subsystems and Segments

On-Demand Production Request modifications and cancellations are received by Planning
subsystem from the Data Server. Planning subsystem sends disposition and status information to
the Data Server.

4.4.21.3 Stimulus

The On-Demand Production Request is received by the On-DemandPR class from the Data Server
and the Data Server makes a call to the Validate operation of On-DemandPr class.

4.4.21.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlOnDemandManagerNB

• PlOnDemandPRNB

• PlRescUseThreshNB

• PlDPRB

• PlOnDemandExceed

• DpPrScheduler

• PlSubscriptionSubmitIF

4.4.21.5 Beginning System, Segment and Subsystem State(s)

PDPS Database and On-Demand Manager are in a steady state, up and running.

4.4.21.6 Ending State

PDPS Database and On-Demand Manager are in a steady state, up and running.

4.4.21.7 Scenario Description

1. The Data Server creates an instance of a PlOnDemandPRNB.

2. Data Server executes the ValidateOPR operation of PlOnDemandPRNB..

3.	 PlOnDemandPRNB executes PlDefinePgeRuns which it inherits from
PlProductionRequestB to generate the DPRs and associated objects as in Production
Request event trace.

4-256 305-CD-026-002

4.	 PlOnDemandPRNB adds this production request to the list of production requests
maintained by On-Demand Manager by calling AddOPR in PlOnDemandManagerNB.

5. PlOnDemandPRNB generates an instance of PlRescUseThreshNb.

6.	 Compare predicted resource usage with PlRescUseThreshNB thresholds for the On-
Demand Production Request and the cumulative thresholds for all On-Demand Production
Requests by calling CheckThresholds.

7.	 Resource usage associated with On-Demand Production Request does not exceed
thresholds for requests, add resource time to Cumulative Resource attribute in On Demand
Manager via the UpdataRescUse operation.

8. Call the Schedule routine in PlDPRB to add the Dpr to the AutoSys production list.

9.	 The above operation results in CreateDprJob in DpPrScheduler being called which is what
actually does the transfer of Dpr information to AutoSys.

10. Check for data availability at the Data Server via the CheckAvailability operation in
PlDPRB. (Data Availability Scenario)

11. The data is not all available so a subscription is requested to notify planning when the data

becomes available.

12. PlOnDemandPRNB notifies Data Server of processing delay (via return of ValidateOPR

operation.

13. Data Server then calls the ReturnUR operation to initiate notification of the generation of

the product and it’s UR.

14. PlOnDemandPRNB then calls the PlOnDemandManagerNB SubmitSubscription opera­

tion to create a subscription for notification of Data Server receiving a product of the data

type requested by this production request.

15. PlOnDemandManagerNB receives notification of the insertion of a product of the type re­

quested by the production request.

16. PlOnDemandManagerNB calls RequestCompleted with the UR of the product to notify

OnDemandPRNB of the product completion.

17. PlOnDemandPRNB then calls RemoveOPR to remove the production request from the list

of production request maintained by PlOnDemandManagerNB.

18. ReturnUR then returns the UR of the product to Data Server and Data Server calls The

PlOnDemandPRNB destructor to delete the instance of PlOnDemandPRNB.

4.4.21.8 Event Trace

See Figure 4.4-19.

4-257 305-CD-026-002

PlOn
Demand

PlSubscription
PlOnDemand SubmitIFDpPrPlOnDemandData

Server ManagerNB PRNB ThreshNB Scheduler Exceed PlDPRB

CheckAvailability()

PlDefinePgeRuns()

PlOnDemandPRNB(Parameters)

ValidateOPR():String-"Delayed"

AddOPR(PlOn
DemandPRNB &)

ValidateOPR():String

CheckThresholds
(PlOnDemandPRNB &)

CreateDprJob()

SubmitSubscription()

PlRescUse
ThreshNB()

UpdateRescUse
(rescTime)

Refer to AutoReplanOnDemand Event Trace

(CreateSubscription
for notification
of completion)

Subscription
Notification Request

Completed(UR)

RemoveOPR
(PlOnDemandPRNB &)

ReturnUR():EcUrUR

~PlOnDemandPRNB()

Schedule()

ReturnUR():EcUrUR

SubmitSubscription()

PlRescUse

4-258
305-C

D
-026-002

Parameters: String Reqid,
time Start, Time Stop,

String OutData, String PGEId,
String ReqerId, List ParamID,

List ParamVal, int Prior

Figure 4.4-19. On-Demand Production Request Scenario (Delayed) Request

4.4.22 Entering and Approving a Resource Reservation Scenario

4.4.22.1 Abstract

This scenario describes the methods by which a Production Planner enters and approves a hardware
resource reservation . Resource reservations are entered, validated and approved. Validation is
not software driven; rather it is based upon the Planner's evaluation of the reservation as complete
and reasonable. Approval consists of determining whether any conflicts exist between reservations
for resources. This scenario describes a sequence of events that occur in the entry of a resource
reservation.

4.4.22.2 Interfaces With Other Subsystems and Segments

The MSS DB is queried to extract actual resource usage data in order to generate planned versus
actual usage reports.

4.4.22.3 Stimulus

A resource reservation is entered or modified.

4.4.22.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlRpResourcePlanningUI

• PlRpResourceReservationPool

• PlRpActivityType

• PlRpResourceReservation

• PlRpExecutable

• PlRpResourceState

• PlRpComplexResourceReservation

• MsMdBrowseLog

4.4.22.5 Beginning System, Segment and Subsystem State(s)

PDPS and MSS Databases are in a steady state, up and running. The PDPS database has been
loaded with the MSS resource configuration and initialized with default resource allocations and
other ground event activities.

4.4.22.6 Ending State

PDPS and MSS Databases are in a steady state, up and running.

4.4.22.7 Scenario Description

1. The Production Planner starts the Resource Planning Workbench user interface.

2.	 The Planner enters a resource reservation with the EditReservation method in the
PlRpResourcePlanningUI class. The Planner can either choose a reservation from a
displayed list and modify it or enter a new one. Information entered includes the
reservation start and stop times, the planned activity, whether the reservation shares a

4-259 305-CD-026-002

resource with another reservation, desired resources, and descriptive information. If the
reservation is for an activity that is performed at regular intervals, the Planner can also enter
the frequency and the reservation is exploded into multiple reservations.

3.	 The Planner validates the reservation, using the PlRpResourceReservation class Validate
method. If the Planner instead marks the reservation as not valid, the reservation can be
modified with the EditReservation method. The PlRpResourceReservation TransitionTo
method is used to change the reservation's validation state.

4.	 If validated, the reservation is allocated to a resource and added to the resource state list.
The PlRpResource Allocate and PlRpResourceState constructor methods are employed.
The PlRpResourceReservation Insert method is used to insert the reservation into the
reservation pool.

5.	 The Planner initiates the approval process with the EditReservation method of the
PlRpResourcePlanningUI class.

6.	 The PlRpResourceReservation Approve method is invoked. This in turn calls the
DetectConflicts method. This method loops over all the resources allocated for the
reservation to determine whether there are conflicts for a resource. If a reservation is
flagged as sharing a resource, those conflicts are ignored.

7.	 Depending on whether or not there are conflicts, the Planner sets the reservation approval
state with the TransitionTo method. If it's not approved, the Planner can modify the
reservation again with EditReservation method.

4.4.22.8 Event Trace

See Figure 4.4-20.

4-260 305-CD-026-002

PlRpResourceReservation

Validation_OK

Approval_RejectedApproval_OK

New

Validation_Rejected

Deleted

Request_Active

Request_Validated

do: detectConflicts

Commited

Validate(NOK)

Validate(OK)

Modify

commit

modify

approve

[no conflicts] [conflicts exist]

delete

Figure 4.4-20. Entering and Approving a Resource Reservation Scenario

4-261 305-CD-026-002

4.4.23 Creating a New Resource Plan

4.4.23.1 Abstract

This scenario describes how the Resource Planning Workbench displays a new resource plan with
all the currently approved resource reservations.

4.4.23.2 Interfaces With Other Subsystems and Segments

None.

4.4.23.3 Stimulus

The Resource Planner selects 'Display' in the Resource Planning Workbench.

4.4.23.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlRpResourcePlanningUI

• PlRpResourceReservation

• PlRpResourceState

• PlRpResource

• PlRpResourceTimeline

4.4.23.5 Beginning System, Segment and Subsystem State(s)

There exists multiple approved resource reservations in the database.

4.4.23.6 Ending State

No database server state.

4.4.23.7 Scenario Description

1.	 The Resource Planner decides that all the resource reservations have been reviewed and
enters the command to generate a new Resource Plan.

2.	 A query on the database initializes the resource reservation pool with every request that has
been approved or committed.

3. A second query on the database initializes the resource pool with the available resources.

4.	 This information is used by the Timeline to generate a graphical display of the plan which
can be reviewed by the Resource Planner.

4.4.23.8 Event Trace

See Figure 4.4-21.

4-262 305-CD-026-002

4-263
305-C

D
-026-002

PlRpResourcePlanningUI PlRpResourceReservation PlRpResourceState

Resource
Planner PlRpResourceReservationPool

InitializePool(RWTime: Start,
RWTime: Stop, PlRpDCommitOnly)

ctor()

QUERY

AddToPool()

InitializePool()

DisplayTimeline()

CreatePlan
(RWTime: Start,
RWTime: Stop)

PlRpResourceDpPrDbInterface

PlRpResourceTimeline

ctor()

QUERY

ctor()

AddToPool()

ctor()

For details on querying a database, see the
Data Processing 305

Figure 4.4-21. Create Resource Plan Scenario

4.4.24 Committing a Resource Plan

4.4.24.1 Abstract

This scenario describes what happens when the Resource Planner decides to commit the resources
in a plan. This alters the resource baseline for production planning.

4.4.24.2 Interfaces With Other Subsystems and Segments

None.

4.4.24.3 Stimulus

After the creation of a resource plan, the Resource Planner selects 'Commit' in the Resource
Planning Workbench.

4.4.24.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlRpResourcePlanningUI

• PlRpResourceReservation

• PlRpResourceState

• PlRpResource

• PlResource

• PlGroundEvent

• PlGroundEventExecutable

• PlGroundEventAllocation

• PlResourceRequirement

4.4.24.5 Beginning System, Segment and Subsystem State(s)

The database server is running.

4.4.24.6 Ending State

No database server state.

4.4.24.7 Scenario Description

1. The Resource Planner reviews the current Resource Plan and decides to commit it.

2.	 First, all resource reservations that have been approved have their state changed to
"committed"

3.	 Next, the list of currently defined resources in Resource Planning are compared with those
used for Production Planning currently in the PDPS database. Any new resources who
have a default activity of "Production" are added to the PDPS database. Any modified or
deleted resources are deleted. The new definition for resources that have been modified are
added.

4-264 305-CD-026-002

4.	 Finally, the list of currently defined resource reservations in Resource Planning are
compared with the Ground Events defined in Production Planning. The Production
Planning database is updated as with the resources in step 3. In addition, for each
reservation added, a PlResourceRequirement and a PlGroundEventAllocation need to
added as well. For reservations that are associated with executables (such as backup
scripts), a PlGroundEventExecutable is created as well.

4.4.24.8 Event Trace

See Figure 4.4-22.

4-265 305-CD-026-002

PlResourceRequirement PlGroundEventExecutable

Resource
Planner

CommitPlan()

PlGroundEvent PlGroundEventAllocationPlRpResourcePlanningUI PlRpResourceReservation PlRpResource PlResourceDpPrDbInterface

CommitAll()

CompareToPDPS()

CompareToPDPS()

QUERY

ctor()

ctor()

ctor()

ctor()

ctor()

QUERY

4-266
305-C

D
-026-002

For more information on QUERY, see
the Data Processing 305

Figure 4.4-22. Commit Resource Plan Scenario

4.5 CSCI Structure
The CSCI is decomposed into a number of CSCs. The CSCs correspond either to an application,
or a class category describing a logically related set of functionality. The table below briefly
outlines the CSC breakout of the PLANG CSCI.

Table 4.5-1. Production Planning CSCs
CSC Description Type

Subscription
Editor

Interfaces to Data Server for submission of
Subscriptions required so that Planning subsystem is
notified of arriving data.

DEV

Production
Request Editor

Accepts Production Requests which describe an
order for Data production, translates to Data
Processing Requests which specify the PGEs which
have to be run to service the Production Request.

DEV

Subscription
Manager

Interfaces to Data Server for notification of data
availability, releases Data Processing Requests
queued in Data Processing subsystem.

DEV

Production
Planning
Workbench

Provides the ability to create, modify, and activate a
plan for the scheduling of Data Processing Requests.

DEV

On-Demand
Manager

Handles the validation of an on-demand production
request from the Data Server before passing it on to
processing.

DEV

Planning Object
Library

A set of C++ class libraries that provides a framework
for the Planning Workbench.

OTS DELPHI (Hughes
class libraries)

PDPS DBMS DBMS Provides persistent storage for Planning data
(e.g. PGE Profiles, Production Requests, Data
Processing Requests, Plans etc.)

OTS Sybase

Resource
Planning
Workbench

Allows the submittal of reservations for hardware
resources and allocation of those resources to
various activities (e.g. 'Production' or 'Maintenance').
Subsequent resource plan is used in production
planning.

DEV

4.5.1 Planning Subscription Editor CSC

4.5.1.1 Purpose and Description

This application provides the capabilities required to submit subscriptions to the Data Servers
responsible for the storage of ingested data. Registration of a subscription at a Data Server is
required for the Planning CSCI to receive notification when data arrive within the ECS. The
submission of subscriptions may still be managed as an operator initiated activity during
Release B, but the Planning Subsystem will automatically submit a subscription for any input data
needed for a Production Request.

4.5.1.2 Objects implemented by this component

PlDataTypeB

PlSubscriptionSubmitIF

4-267 305-CD-026-002

4.5.1.3 Candidate products

None. This is a custom component required to interface with ECS specific services.

4.5.2 Production Request Editor CSC

4.5.2.1 Purpose and Description

This application allows the user to submit production requests that describe the data products to be
produced. The application uses the PGE descriptions (profiles) entered during SSI&T in order to
work out the tasks - Data Processing Requests - that, in sum, meet the request. The application
provides the capabilities to add, modify and delete Production Requests, as well as review and
modify the resulting Data Processing Requests. The production request editor is identified as a
distinct application and separate from the workbench in anticipation that defining production
requests will be a discrete activity, unrelated to the “planning” of these events.

The Production request editor may also be used by authorized operations staff to schedule Data
Processing Requests derived from a production request directly to the Data Processing subsystem.

4.5.2.2 Objects implemented by this component

PlAlternateDataGranuleNB

PlAlternateNB

PlDataGranule

PlDataSource

PlDataSourceFactory

PlDataTypeB

PlDataTypeCatalogue

PlDataTypeReq

PlDATRecord

PlDPRB

PlMetaDataChecks

PlOnDemandPRNB

PlOutputYield

PlPGE

PlPgeFactory

PlPRCollectionNB

PlProductionRequestB

PlProductionRequestUI

PlRoutineArrival

PlSubscriptionSubmitIF

4-268 305-CD-026-002

4.5.2.3 Candidate products

None. This is a custom component required to manage ECS specific entities such as the PGE.

4.5.3 Subscription Manager CSC

4.5.3.1 Purpose and Description

The Subscription Manager is used to manage the receipt of a subscription notification from the
Data Server. Subscription notification is used to notify Planning on the arrival of input data
required by a given PGE, and of new Planning Data Availability Schedules and FOS Detailed
Activity Schedules. Subscription Notification contains Universal References (URs) which are
pointers to the data objects stored on the Data Server. The Subscription Manager updates the PDPS
database to indicate when data become available and calculates new Predictions of the availability
of data as schedules are received. When all input data for a Data Processing Request is available,
the job defined for that Data Processing Request is released within the Data Processing subsystem.

4.5.3.2 Objects implemented by this component

PlAlternateDataGranuleNB

PlDASDelta

PlDASDifferent

PlDASNB

PlDataAvailabilityTimes

PlDataGranule

PlDataSchedules

PlDataTranferHistory

PlDATRecord

PlDPRB

PlEDASModeRecordNB

PlEDASRecordNB

PlFOSDASFile

PlInstModeRecords

PlInstrumentModes

PlPDASFile

PlPDASMetaData

PlPDASRecords

PlPlanGenerationUIB

PlPopupMessage

PlReplanCriteria

PlSourcetoDsHistoryNB

4-269 305-CD-026-002

PlSubMsgCb

PlSubscriptionManager

PlTimer

4.5.3.3 Candidate products

This is a custom component required to interface with ECS specific services.

4.5.4 Production Planning Workbench CSC

4.5.4.1 Purpose and Description

The application is used to prepare a schedule for the production at a site, and forecast the start and
completion times of the activities within the schedule. These functions provided by the workbench
include the following high-level activities:

1)	 Candidate Plan Creation—from the production requests prepared by the Production request
Editor

2) Plan Activation—activating a candidate plan

3) Updating the Active Plan—feedback from the processing into the active plan.

4) Canceling/Modifying the Active Plan

5) Publishing and Import Plans - to share plans between DAACs and with the outside world

6) Cross-DAAC planning—identifying data dependencies between DAACs

As described previously, activating a plan entails rolling a portion of a selected plan into the
AutoSys COTS. This “schedule” is then managed within the Data Processing subsystem. The
forecast times generated within the planner are used to set up operator alerts that would make the
operator aware of departures from the predicted schedule. The production planning workbench can
periodically update it's predictions using feedback from the AutoSys.

The AM-1 Release has a number of additional features added to the production planning
workbench to give the operator control over DAAC processing. A simple production strategy
based on priorities will be implemented. Resource usage thresholds for on-demand products can
be entered and modified. Criteria for initiating limited automatic replanning can be entered.

4.5.4.2 Objects implemented by this component

PDPSDatabase

PlActivePlan

PlActivities

PlActivity

PlComputer

PlDASDelta

PlDASDifferent

PlDataDependencies

PlDataGranule

4-270 305-CD-026-002

PlDiskPartition

PlDPRB

PlDPRs

PlEntryScreenNB

PlExportedPlanNB

PlFile

PlGroundActivity

PlGroundEvent

PlGroundEventAllocation

PlGroundEventExecutable

PlGroundEvents

PlImportedActivity

PlOnDemandExceed

PlOnDemandReplanValues

PlPDASFile

PlPDASMetaData

PlPDASRecords

PlPGEActivity

PlPGEPriorityNB

PlPlanASCIIReportFile

PlPlanB

PlPlanBinaryReportFile

PlPlanGenerationUIB

PlPlanMetadataFile

PlPlanningWorkbenchUI

PlProdStratNB

PlProdStratUINB

PlProductionPlannersUI

PlProductionRequestB

PlPRPriorityNB

PlPublishedPlan

PlReplanCriteria

PlReplanCriteriaUI

PlRescUseThreshNB

PlRescUseThreshUINB

4-271 305-CD-026-002

PlResource

PlResourceChange

PlResourceManager

PlResourceRequirement

PlString

PlTimeLineDisplay

PlUserPriorityNB

4.5.4.3 Candidate products

The Production Planning Workbench is built largely from COTS components. The planning
workbench is built on top of a Planning Object Library that provides a framework for the
application. This object library is provided by C++ class libraries which are described in the
following section.

Job scheduling COTS are coming close to providing more capabilities that would meet some of the
production planning capabilities, none of the packages at present meet the full requirements of the
ECS. The ECS is committed to influencing vendor direction to leverage capabilities to cover
additional ECS requirements.

4.5.5 Planning Object Library

4.5.5.1 Purpose and Description

The Planning Object Library provides a reuse framework for building the Planning Workbench
application. As described within the Planning Workbench CSC Section 4.5.4, there is no complete
“off the shelf” solution that covers all the Production Workbench requirements, and therefore reuse
of robust class libraries is the best approach for developing this application. A number of planning
and scheduling frameworks have been evaluated for scheduling in the Planning Object Library;
these frameworks are described in the Scheduling Engine Evaluation Trade. In general, these
libraries provide similar capabilities. The Hughes Delphi Scheduling Class Software has been
selected from those considered since it consists of generic, non-application specific libraries and
there is a high degree of expertise within the ECS with using these Libraries, both within the
Planning subsystem through prototypes and within FOS where these libraries are used in the
mission planning.

4.5.5.2 Objects Implemented by this component

The objects implemented by the Planning Object Library are considered COTS, similar to Rogue
Wave objects. Therefore a list of these objects is not presented here. The CSCI object model
presented in Section 4.3.4 showed an abstract view of the Production Planning Workbench. This
was mainly due to the fact that the complexity of these planning and scheduling libraries would
overwhelm the rest of the model and scenario descriptions. It is also the case that the capabilities
could be implemented a number of different ways given different frameworks or COTS approach
taken. The following sections first give an overall view of the Delphi scheduling class libraries and
then show in detail how the Planning Workbench application is designed to reuse the Delphi
libraries.

4-272 305-CD-026-002

4.5.5.3 Hughes Delphi Scheduling Class Libraries

The Hughes Delphi Scheduling Software is designed to assist in developing efficient and effective
scheduling and planning. It is composed of a set of user-oriented, integrated, modular tools.

The toolset provides building blocks to allow developers to:

• Model system resources that reflect all relevant operating states and constraints.

•	 Automatically create coarse or detailed schedules for all system resources based on
requests, using a variety of tailorable scheduling algorithms.

•	 Provide high functionality interfaces for planners to review and edit service requests,
corresponding resource information, and generated schedules.

• Provide support for interactive development of contingency or impact studies (What-Ifs).

Delphi is based upon a system of distributed, modular components. Each component represents a
distinct planning function, and each component can be plugged in, disconnected, or replaced as
changing concepts, system needs or software upgrades require. In addition, each component has
been engineered utilizing object-oriented methodologies. This provides many significant benefits,
including:

• Functionality - The software can be easily tailored to implement application specifics.

•	 Extensibility - Once delivered the system can be easily enhanced without the need for
complete replacement or extensive and costly block changes.

•	 Maintainability - All functions (data and process behavior) are well encapsulated in the
software architecture. Therefore, should a problem occur it can be easily identified and
isolated. Metrics for maintenance indicate exceptional savings for customers in O&M costs
for this software.

These features combine to support a high degree of system flexibility and expandability, and in the
long term contribute to a significantly lower system life-cycle cost.

All of the tools in Delphi are built on a foundation called the Hughes Class Library (HCL). This
product provides a framework for all the objects in the system and provides generic functions for
services such as time, collections (list, sets, arrays, etc.), stream input and output, inter-process
communication, and windows displays.

4.5.5.3.1 Delphi Resource Model

At the heart of Delphi is the Resource Model. In order to generate a timeline schedule for activities
the Planning Workbench system must have detailed knowledge of both the activities that are to be
performed and the resources that are required to be utilized or expended in order to complete each
activity. Delphi's Resource Model supplies the structure to define these entities. In addition, the
Resource Model acts as the owner of all data used by Delphi and therefore provides all data
management services to the toolkit and the user.

The Resource Model consists of resources, resource states, and all relevant resource constraints.

Resources. All resources that are necessary for planning and scheduling are implemented as
objects within the Resource Model. Application specific resource classes/objects can be derived
from the resource classes provided in Delphi. These more specific classes/objects contain the
attributes and behaviors that are unique to them.

4-273 305-CD-026-002

Resource State. Besides modeling real world objects, another function of the Resource Model is to
keep track of the state of all resources over time. Real-time and periodic (batch) updates of the state
of all components of the system are sent to and stored by the resource model. For example, the state
of a resource may indicate whether it is available or unavailable, and the nature of its current
tasking.

Activities. In addition to resources and resource states, the resource model contains activities.
These are schedulable entities that represent system tasking. During scheduling, resources are
assigned to an activity. The resource's state is then updated to include each new activity. In turn,
these updates can be directed as real-time modification to the timeline.

Constraints. Also in the Resource Model are the constraints present in the planning system. The
scheduling algorithm will consider constraints between resources when attempting to properly
allocate resources in a given plan.

The Resource Model defines, in both data structure and functional behavior, the resources being
utilized. Any constraints concerning reasonable, proper, of safe behavior are defined to the system.
The Resource Model also retains control over the definition of activities. These activities define a
sequence of operations that are required to perform a high level goal. Both elements to scheduling,
requests and resources, are managed within the flexible architecture of the Resource Model. Using
these pools of information, the scheduling algorithms optimize the application of activities to
resources to develop constraint-free plans for operational use.

Resource Model Hierarchies

There are two primary hierarchies within the Resource Model: whole/part activities and resource
activities. The whole/part hierarchy provides an aggregation of many associated system objects;
for instance, a “whole,” such as the plan, contains “parts,” such as resources and activities. In this
manner. the Resource Model relates its individual inheritance hierarchies to create a global,
consolidated, constraint-free plan.

A second hierarchy involves the individual resources and activities with which the planning and
scheduling system must deal. In general, a resource hierarchy provides a detailed model of all
relevant system resources. The activities are defined as resource-independent descriptions of
operations that ultimately will be assigned to resources at specific times.

Each resource is responsible for maintaining a record of its state through time, for exporting
algorithms of general interest, and for modeling and applying constraints. The resource state
models what the resource is doing through time and may be different for each kind of resource.
Resources know what plans are available and can have a different state on different plans.

Use of Resource State

Clients of the resource model can interact with resource state in several ways. A client can interact
with resource state directly by asking a resource for all state on a given plan for a given time
interval. The client would then have a detailed knowledge of the resource and can have as much
knowledge of the resource and its inner workings as appropriate.

A client can also ask a resource for time intervals in which particular constraints are satisfied.
These intervals may be displayed on another process, for example a timeline, in order to
communicate to the user the window of opportunity for the resource. To obtain these intervals, the
resource would iterate through all of its states and check with compatibility against existing state.

4-274 305-CD-026-002

Resources can have a heterogeneous state. For examples, a resource could be tasked for a time
interval and also be unavailable for another time interval. Both of these cases are supported by the
resource state mechanisms.

Scheduling Activities to Resources

Resources that can be tasked can generally be asked to allocate (check constraints), unallocate
(remove tasking), force allocate (do not check constraints), check allocate (check constraints but
do not change state), and when allocate (tell me when constraints, if ever, are satisfied for a given
set of tasking). This functionality is generally used by schedulers. For example, a sequential
scheduler could order activities and then try activity/resource combinations until the activity was
scheduled or until no combinations were left. The sequential scheduler will then move on to the
next activity. Activities can be ordered by user-set priority, laxity, availability, or any other
mechanism. The important point is that the scheduler only organizes the activities and orders the
requests for resources. The resources themselves know what constraints to check and how to
generate resource state. The scheduler may have to have resource-specific knowledge during the
ordering process, or may use heuristics to optimize utilization of a resource.

4.5.5.3.2 Delphi Architecture

The following section describes the software architecture used by Delphi. Delphi is composed of
a series of modular libraries of software. Each library defines a series of groupings of both data
and functions that are referred to as classes. The classes serve to provide the mechanism for data
structures and manipulation functions to be encapsulated or localized, thereby providing discrete
functionality that can easily be developed and debugged. These objects provide the atomic
functionality to all Delphi tools.

4.5.5.3.3 Hughes Class Library

The Hughes Class Libraries form the core from which all scheduling products are developed, thus
providing real cost savings in development, test time, and maintenance costs. The Hughes Class
Libraries are implemented in C++ according to the current standard, as set forth in the AT&T
Version 2.0 C++ Programming Language Standard. The bottom layer of software usage is
composed of X-Windows code, per the X11 standard. HCL utilizes X11 and allows the user
application code to make direct calls to X11, if necessary. Within HCL is a display class of utilities
that support the Motif display standards. These libraries have been in existence since 1990, and
have been thoroughly tested and fielded in several operational systems.

The Hughes Class Library (HCL) is a library of C++ class declarations. These declarations are
general purpose programming utilities, and include:

• display classes (XView, XGL, and Motif)

• collection classes

• Inter-process communication classes

• other miscellaneous utilities (e.g. string, rectangle, command line, etc. classes)

HCL contains several libraries: misc, dispx, mdisp, and ipc. These are summarized below:

misc Library

The 'misc' library supports the collections in linked list array, or set format. It provides iterators

4-275 305-CD-026-002

over each type of collection for ease of movement throughout the collection. Collections can safely
have multiple concurrent consumers. HCL allows classes derived from a common base class
(HObject) to be stored in the same collection, thus allowing heterogeneous collections.

The choice of collection type (array, list, set) does not affect the application code. These collection
types all are derived from a common class that established the protocol for the derived classes.

This library also contains classes that provide various date/time functions, command line
information, timer functions, string functions, and vector and matrix functions.

dispx Library

The 'disp' library includes classes for drawing using XGL utilities. It has classes that encapsulate
XGL contexts, rasters, fonts, and color usage. It also has classes to maintain display regions and
collections of sub-regions.

mdisp Library

The 'mdisp' library supports displays with the look and feel specified in the Motif Style Guide. The
library uses the Motif toolkit from the Open Software Foundation (OSF). The Motif toolkit is based
on the X-Toolkit Intrinsics (Xt), which is the standard mechanism on which many of the toolkits
written for the X-Windows System are based. The user will notice that the library encapsulates
capabilities at all three levels (i.e. Motif, Xt, and Xlib).

The library provides classes that allow the user to create and manipulate X-Windows, color maps,
events (i.e. keyboard, mouse buttons, window enter/exit), and user interface objects called widgets
(i.e. menu bars, pulldown menus, buttons, scrollbars). There are classes that provide displayable
regions, sub regions, rectangles, scalable fonts, strings, and colors. Mdisp also provides a class
implementation of the graphics context (GC).

The DAppl class provides a template for a display application. It provides the behaviors to create,
run, and destroy the application. The class does not provide a base frame.

ipc Library

The 'ipc' library contains classes that encapsulate interprocess communications, providing a simple
interface for the programmer. It is an implementation of Berkeley sockets and XDR streams.

Messages derived from a common message class (HMessage) can be passed between processes
without the ipc code knowing anything about the contents of the message. This isolates the code
that does know about the message content, making for a much easier, faster development and easier
maintenance.

4.5.5.3.4 Delphi Reuse Libraries

The framework for all scheduling applications is HCL. In addition to this core product are reusable
libraries of classes for virtually all aspects of a scheduling system. For purposes of discussion,
these libraries will be grouped into four categories. These categories are: Scheduling, Resource,
Timeline, and Planning Class Libraries. All libraries build upon the base of the HCL and are
developed in the C++ programming language.

4.5.5.3.4.1 Scheduling Class Library

The Scheduling Class Library (see Figure 4.5-1) provides a framework for the incorporation of
scheduling algorithms.

4-276 305-CD-026-002

Offpage

SRsPool

SResource

SSimpRsRResource SUpdCatAbsRRsStateList

RRsState

SaActPriSrtr SaAllImpct SaAllNImpct

SaAllocator

SaArySorter

SaComponent

SaFastFit

SaFilter

SaInflator

SaPostProcSaRefinerSaSorter

SaSurgStrikeRActivity

RPlan

RSimpleAct

Offpage

Offpage

OffpageOffpage OffpageOffpage

Offpage

Offpage Offpage Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

OffpageOffpageOffpage

OffpageOffpage

Offpage

Offpage

Figure 4.5-1. Delphi Scheduler Object Model

4-277 305-CD-026-002

Reusable Classes:

SResource (class modeling resources with scheduling) - Each SResource specifies protocol for
allocation of an activity to a resource for a time interval.

SRsPool (scheduling resource pool) - An instance of this class provides a storage mechanism
for quick retrieval of scheduling resources (indexing by associated resource ID). Derived
classes can provide special queries that are typically process non-specific. For example, fill
a given collection with all scheduling resources of a given type that have no state for a given
time interval.

SSimpRs (class modeling resources with mutual exclusion) - Each SSimpRs is associated with
an RResource and implements allocation members that assume a mutual exclusion
constraint.

SUpdCatAbs (resource model change notifier) - SUpdCatAbs is a base class that sets up
protocol for registration of changes of resources, their states, activity changes, and plan
changes. It also has protocol for flushing these change notices. Derived instances of this
class might keep lists of clients interested in changes, and notify these clients when changes
take place.

SaActPriSrtr (activity priority sorter) - This class customizes the sorter for activity
priority.SaAllImpct (Impact Scheduler) - Instances of SaAllImpct know how to accept lists
of activities and edit the resource model accordingly, using impact scheduling. The plan
that is edited is the one already set by using the SaComponent member function plan().

SaAllNImpct (Non-Impact Scheduler) - Instances of SaAllNImpct know how to accept lists of
activities and edit the resource model accordingly, using non-impact scheduling. The plan
that is edited is the one already set by using the SaComponent member function plan().

SaAllocator (activity allocator) - Abstract class used to define generic protocol for allocating
schedulers.

SaArySorter (array sorter) - This class uses the system sort algorithm to perform sorting.

SaComponent (scheduling component) - Abstract class used to define generic protocol for
scheduling algorithm components (sorters, filters, allocators, refiners and post processors).

SaFastFit (fast fit allocator) - This schedule establishes protocol for fast fit scheduling. The
algorithm used is a first come, first serve algorithm.

SaFilter (allocation filter) - Abstract class used to define generic protocol for filtering an area
of a plan.SaInflator (allocation inflation post processing) - This scheduling component
class tries to inflate allocations.

SaPostProc (allocation post processor) - Abstract class used to define generic protocol for post
processing schedulers.

SaRefiner (allocation refiner) - Abstract class used to define generic protocol for refining an
area of a plan.

SaSorter (activity sorter) - Abstract class used to define generic protocol for sorting a collection
of activities.

4-278 305-CD-026-002

SaSurgStrike (surgical strike allocator) - This schedule establishes protocol for surgical strike
fit scheduling. The consumer can provide an actual allocation algorithm.

Customization of the Scheduling Class Hierarchy

The Delphi Scheduling Class Library provides a framework for incorporating a variety of
algorithms in the Planning Workbench. The Planning Workbench reuses the classes the Scheduling
which define protocols for sorting, filtering, resource activity generation, and refinement. It is the
goal of the Planning Workbench to employ the Scheduling framework to construct algorithms
which optimally allocate activities to resources, especially local disk storage.

4.5.5.3.4.2 Resource Class Library

The Resource Class Library (see Figure 4.5-2) provides the structure for defining application
domain resources and it builds upon both HCL and the Scheduling Class Library. The Resource
Class Library provides templates to define resource models capable of managing discrete resource
states and mechanisms for assigning resource availabilities to resources. In addition, inter-request
correlations, such as pre-requisite, co-requisite, and post-requisite constraints, preferences,
consumable resource modeling, and specific configuration requirements, are addressed. Each of
these resource definitions will be used by the schedule deconfliction processes to provide a
constraint free plan. When an activity is defined, multiple resources can be identified as being
applicable to that activity.

4-279 305-CD-026-002

eOffpage

RActAll

RActIdFactAbs

RActIdFactMem RActPool

RActState

RActivity

RAll

RComplexAct

RDegState

RPlan

RPlanPool

RResource

RRsPool

RRsState

RRsStateList

RSchOpp

RSchRqst

RSimpleAct

SaAllocator

SResource

PlComputerPlString PlDiskPartition

PlResource

SSimpRs

eOffpage

eOffpage eOffpage

eOffpage

eOffpage

eOffpage

eOffpage

eOffpage

eOffpage

eOffpage

eOffpage

eOffpage

eOffpage

eOffpage

eOffpage

eOffpage

eOffpage

eOffpage

eOffpage

Offpage[PERSISTENT CLASS]Offpage[PERSISTENT CLASS] Offpage[PERSISTENT CLASS]

Offpage[PERSISTENT CLASS]

eOffpage

4-280
305-C

D
-026-002

Figure 4.5-2. Delphi Resource Object Model

Reusable Classes:

RActAll (information about an activity allocation) - This class adds an activity to the base
allocation. An example use is as a base class for modeling allocation of an activity to a
bunch of resources. In that case, the derived class would have explicit resource support.

RActIdFactAbs (Unique activity id factory) - Instances of RActIdFactAbs are activity id
generators. You can ask them for the next allowable activity id that can be assigned. This
class has the notion of a global RActIdFactAbs object and provides a static nextId member
function so that you do not have to have a specific instance everywhere you want to use it.

RActIdFactMem (Unique activity id factory) - Instances of RActIdFactMem are activity ID
generators. You can ask them for the next allowable activity ID that can be assigned. This
class initializes its activity ID range from the current activity pool.

RActPool (activity pool) - An instance of this class provides a storage mechanism for quick
retrieval of activities (indexing by activity ID). Derived classes can provide special queries
that are typically process non-specific. For example, fill this collection with all activities of
a given type that have been allocated on a given plan.

RActState (tasking on a resource) - RActState is a resource state class that is generated by an
activity.

RActivity (scheduling activity) - This is a base class for scheduling activities. It establishes
protocol for all derived activities.

RAll (information about an allocation) - Each allocation has a time interval an optional plan
name and a lock. If the plan name is empty, the allocation can pertain to all
plans.RComplexAct (collection of activities) - Each instance of this class holds a collection
of activities.

RDegState (tasking on a resource) - RDegState is a resource state class that represents a
degraded resource. Presence of a direct instance of RDegState means that a resource is
broken. Derived classes can represent how a resource is degraded.

RPlan (plan) - This is a base class that models the allocations of plans to resources.

RPlanPool (plan pool) - An instance of this class provides a storage mechanism for retrieval of
plans (indexing by plan name). Derived classes can provide special queries that are
typically process non-specific. For example, fill a given collection with all of the activities
in the activity pool that have different allocations on two plans.

RResource (class modeling an entity with state through time) - RResource is a class that models
an entity that has state through time. State is kept in RRsStateLists. Each RResource may
have more than one RRsStateList. These state lists contain information which is mapped to
a particular name (a “plan”). State lists usually contain things derived from RRsState. In
other words, each resource object may maintain state information for multiple plans
simultaneously. There is an additional, plan-independent state list that each RResource
maintains. This state list may be used to hold plan independent information such as state
that applies across all plans. RResource objects maintain a notion of a “current” state list.

RRsPool (resource pool) - An instance of this class provides a storage mechanism for quick
retrieval of resources (indexing by resource ID). Derived classes can provide special

4-281 305-CD-026-002

queries that are typically process non-specific. For example, fill a given collection with all
resources of a given type that have no state for a given time interval.

RRsState (base class for resource state) - Abstract class used to establish protocol for any kind
of resource state.

RRsStateList (resource state list) - An HEpochIntervalList with a name. An important
difference between this class and an HEpochIntervalList is that this class empties() its
contents upon destruction (unlike a vanilla HObjCollection, which clears() it's contents).

RSchOpp (a scheduling opportunity) - Each scheduling opportunity has a time interval and a
resource id, representing an possible allocation of an activity to that resource and interval.

RSchRqst (resource scheduling request) - This class is a list of scheduling opportunities, which
are specified as instances of RSchOpp, with an activity id specifying the activity to be
allocated using the opportunities and a parameter indicating how many of the opportunities
must be satisfied for the entire scheduling request to be satisfied. Only derivations of
RSchOpp should be added to this class, and the add behavior of HObjList has been
overridden to enforce this.

RSimpleAct (simple scheduling activity) - Each instance of this class models something
happening on a resource in the system. Simple activities add allocations to the concept of
Activity.

Customization of the Resource Model Hierarchy

The Planning design takes advantage of Delphi by utilizing the object-oriented mechanisms of
inheritance. Elements of the Resource Model hierarchy have been customized for the Planning
problem domain. Derived resources have been designed to customize resource state and override
or add specialized algorithms and constraints. Some derived resources add scheduling operations
which take activities and check constraints and generate resource state through time.

4.5.5.3.4.3 Timeline Class Library

The Timeline Class Library (see Figure 4.5-3) provides mechanisms to support the displays of
time-ordered information in a graphical manner. The generic Delphi timeline contains a two­
dimensional, composite region displaying resources and their use versus time. Each display is
composed of rectangular subregions that represent resources aligned down the vertical axis to be
viewed over time, and time across the horizontal axis. Scrollable windows are utilized to allow the
user to manipulate the displays to view the required resource profiles. Events for any period of time
are modeled and displayed. Each event is indicated on the display with a text-label, color and state
information, all of which can be customized for the specific application. The Timeline is a
powerful visualization device allowing the user to navigate hundreds of resources profiles. Each
event on the timeline can be compressed, expanded, edited, unallocated from its resource, locked
and unlocked. Visually the user sees more detailed information the shorter the timespan being
viewed, thus allowing a zoom cycle capability for all Timeline displays. Use of interactive point­
and-click devices speed the user through birds-eye views of schedules down to the component parts
and resources allocated to a single user request on the timeline. The timespan is adjustable and has
no technical limits (although practical limits may insist only a portion of large schedules be viewed
at any time).

4-282 305-CD-026-002

The Timeline Class Library provides class implementations for drag-and-drop features between
subregions, event manipulation, and supports multiple views of events. The use of color to convey
importance, hierarchy, or groupings can be defined by the Customer, and color changing functions
are provided with the Timeline classes. Scroll bars and multiple windows are supported. A time
probe that anchors the center of focus of the display and provides default values of the time window
of interest to other Delphi components, such as schedule Activity Editors, is also provided. The
Timeline classes establish a generic structure for events.

4-283 305-CD-026-002

Offpage

Xtl

DManager

DFrameAbs

DXCMap

DXglCMap DFontXScalable

TLRegion

TLColorMapper

TLPatternMapper

TLFilterMapper

HTImeProbeList

TLPanel

TLLabelRegion

TLMainRegion

TLZoomBar

TLRsScroll

DContextX

TLRsScrollTimer

TLTimeScaleAbs

TLTile TLStipple

DContextX TLStipple

TLTimeBox

DXFontX DContextX

TLTimeProbeView

DRegion DContextX

HTimeProbe

TLVertLine

TLBoxVIew

TLEventSubRegion TLEvent

DXRectangle

TLAbsBoxView

TLBitMap

DRegion DContextX

TLLableItem

TLCmplxLblI

TLEventView

TLSubRegion

TLTimeScale

TLTimeBox

TLTimeScaleAbs

TSModeAbs

DMenuBarDPulldownMenu

TLPatternMapping

TLStipple

PlDXtl

PlDXtlAppl

SrmCliNoid

Offpage

Offpage

Offpage

Offpage

Offpage Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage Offpage

Offpage Offpage

Offpage

Offpage Offpage

Offpage

Offpage Offpage

Offpage

Offpage

Offpage

Offpage Offpage

Offpage

Offpage

Offpage

Offpage Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

OffpageOffpage

Offpage

Offpage

OffpageOffpage

4-284
305-C

D
-026-002

Figure 4.5-3. Delphi Timeline Object Model

Customization of the Timeline Class Hierarchy

The Timeline is one of the primary visualization tools within the Planning Workbench. The
Timeline will provide a GANTT style view of the requested allocation of PGEs. In the Timeline,
horizontal boxes will represent PGEs, and the boundaries of the boxes will represent start and end
times. The Timeline enables the user to view in an instant the breadth of system resource utilization
over time. Information displayed on the box (textual, color, graphical, etc.) will aid the user to
search for individual PGEs. Several instances of the Timeline can be viewed simultaneously to
compare the results of various scheduling algorithms.

4.5.5.3.4.4 Planning Class Library

The Planning Class Library provides the display and integration structure to all Delphi scheduling
applications. This library provides the interface slots to allow a developer to build up from the
foundation of the components of Delphi into a coordinated scheduling environment. Additional
capabilities provided within the Planning Class Library are: error message display and logging,
distribution of resource states and coordination of schedule modifications, resource editing,
scheduling activity creation, deletion, and dissemination, (planning synchronization across
multiple users).

4.5.5.4 Use Of Delphi In The Planning Workbench

4.5.5.4.1 Planning Workbench Architecture

Delphi takes advantage of a client-server model to allocate various display and algorithmic
functions to separate physical processes. As applied to the Planning Workbench, this model is
illustrated in Figure 4.5-4 below.

4-285 305-CD-026-002

(Subsystem)

System Resource Model

Planning
Workbench

UI

Production
Plan

Timeline

PDPS Database

Production
Request

Editor

Planning Workbench

(Subsystem)

(Subsystem)

(Subsystem)

(Subsystem)

(Subsystem)

client of

client of

is built from

interfaces to

interfaces to

4-286
305-C

D
-026-002

(Subsystem)

ResourcePlanning
Workbench

converts
resource

plan

Figure 4.5-4. Planning Workbench Architecture

At the heart of Delphi and thus the Planning Workbench is the System Resource Model. This is
the key server process in the Delphi client server model. All interfaces to persistent data required
for the Planning Workbench are maintained within the Resource Model. The persistent data items
relevant to the Planning Workbench are the Plans, Resources and Activities. The persistent data is
maintained in the PDPS database. The Resource Model retrieves data from the database to
describe the Resources and Activities and previously generated Plans, the Resource model stores
data in the database to describe new or modified Plans.

The clients of the System Resource Model are also shown in Figure 4.5-4. The Planning
Workbench UI is the key client within the Planning subsystem, this contains the planning
algorithm responsible for generating the plan. The Planning algorithm is implemented within the
framework of the Delphi System Scheduling Interface which encapsulates the protocol for
planning algorithms.

The Planning Workbench interfaces with the Resource Planning Workbench to convert a Resource
Plan into ground events in the Production Plan. These ground events are taken into consideration
by the Planning Workbench and are planned around.

The Production Planning timeline display is shown in Figure 4.5-4 to represent the basic view
available for the operators. This is the main graphical display used in the Planning Workbench
showing DPRs planned on specific resources against time. This view is also available within the
Resource Planning Workbench, but ground events are displayed instead of DPRs.

To complete the picture, Figure 4.5-4 also shows the Production Request Editor interfacing to the
PDPS database. The production request editor is the originator of the Data Processing Requests
objects within the database from which the planned activities are created.

The main areas of the Planning Workbench high level model that were presented as abstractions in
Section 4.3 and are as follows:

PlResource:	 This class maps to a number of classes which are specializations of the Delphi
classes. The PlDRResource class and PlDSResource class specialize from the
RRsource SResource classes respectively. These classes are used within the
Delphi System Resource Model as described in Section 4.5.5.4.2

PlPlan:	 This class maps to the PlDRPlan class, which is a specialization of the RPlan
class within Delphi. The RPlan class contains basic operations to manage and
copy plans, these are some of the key features that are implemented in Delphi
which give considerable reuse advantage to the ECS Planning Subsystem.

PlActivity:	 This class maps to the PlDRActivity, PlDRSimpleAct classes, specializations of
the RActivity, RSimpleAct classes within Delphi.

PlResourceManager	 This class again maps to a number of classes which are specializations of Delphi
classes. The Planning subsystem specializations are PlDSsiScheduler, PlDSAl­
locator, PlDSsiOppGen these classes are the key classes in implementing the
Delphi System Scheduling Interface as described in Section 4.5.5.4.3

4-287 305-CD-026-002

There are in addition a number of the utility classes for collections, lists etc. that are provided by
Delphi, and the lower level HCL class libraries which will be reused and specialized within the
Planning Workbench application.

In order to give a more complete picture of these methods and to illustrate the Delphi reuse this is
described in more detail here, first by describing the System Resource Model, then the System
Scheduling Interface within the Production Plan Editor responsible for performing the planning
algorithm.

4.5.5.4.2 Planning Workbench System Resource Model

In order to describe the Delphi scheduling approach the System Resource Model should first be
described. The object model diagram for the System Resource Model is shown in figure 4.5-5.

The System Resource Model Srm class is responsible for maintaining the resource model for the
Planning subsystem. It controls additions, deletions, and updates to the resource model and
manages distribution of model changes to interested clients. When the Srm is initialized, all
required pools are created: the resource pool, the scheduling resource pool, the activity pool, and
the plan pool. The Srm then waits in the background for client messages which contain requests
for information about or updates to the resource model pools.

4-288 305-CD-026-002

4-289
305-C

D
-026-002

SrmAppl

Srm

SrmAgent

SrmCatalog SaAllocator

HNoidAgent

RActIdFactAbs

SrmNoid

remoteSchd(const char*,const HEpochInterval&,HObjCollection*)

createNoids()
createAgent()
createSchedulePool()
createPlanPool()
createResourcePool()
createActivityPool()

loadConfig()
saveAct(const char*)
saveState(const char*)
savePlan(const char*)
run()
init()

allocMove(int,int,int,const char*,const char*,const HEpochInterval&,const
HEpochInterval&, SaAllocator*)

RResource

RRsPool

RActivity

allocRemove(const char*,const HEpochInterval&,int,int)

RActPool

RPlanPool

RPlan
SResource

SRsPool

allocForce(const char*,const HEpochInterval&,int,int)
allocCheck(const char*,const HEpochInterval&,int,int)

allocRqst(const
char*,HObjCollection*,HObjCollection*,HObjCollection*,SaAllocator*)

allocAct(const char*,const HEpochInterval&,int,RActivity*,SaAllocator*)
alloc(const char*,const HEpochInterval&,int,int,SaAllocator*)
snapPlan(HAddress*,const char*,const HEpochInterval&)
copyPlan(HAddress*,const char*,const char*,HEpochInterval*)
deletePlan(HAddress*,const char*)

degrade(const HEpochInterval&,const char*)
findGaps(const HEpochInterval&,HObjCollection&,const char*)

findStates(const HEpochInterval&,HObjCollection&,const char*,int)

hasState(const HEpochInterval&,const char*)
addState(RRsState*,const char*)

myName
myId

clearPlan(HAddress*,const char*,HEpochInterval*,HVList*)
newPlan(HAddress*,const char*,HVList*)
upgradeRs(HAddress*,int,const HEpochInterval&,const char*)
degradeRs(HAddress*,int,const HEpochInterval&,const char*)
endTransaction()
activeClient(HAddress*,int)
remClientInterest(HAddress*,HObjList*)
addClientInterest(HAddress*,HObjList*,int)
setClientInterest(HAddress*,HObjList*,int)
addClient(HAddress*)
remClient(HAddress*)
lockAct(int,RAll*)
chgAct(HAddress*,RActivity*)
delAct(HAddress*,int)
setActId(RActivity*)
newAct(HAddress*,RActivity*)

remClient(HAddress*)
addClient(HAddress*)

whenAllCol(RSimpleAct*,HEpochIntervalList*,const char*)
remAll(RSimpleAct*,const HEpochInterval&,const char*)
forceAll(RSimpleAct*,const HEpochInterval&,const char*)
checkAll(RSimpleAct*,const HEpochInterval&,const char*)
all(RSimpleAct*,const HEpochInterval&,const char*)

addRs(SResource*)
addAct(RActivity*)

myPriority
myId
myName

copyAllAct(RPlan*,const HEpochInterval&)
copyAllRs(RPlan*,const HEpochInterval&)
copyAct(RSimpleAct*,RPlan*,const HEpochInterval&)
copyRs(RResource*,RPlan*,const HEpochInterval&)
createStateLists(HVList*)
totalTime(HEpochInterval&)

myName

hasState(const HEpochInterval&,const char*)
addState(RRsState*,const char*)

nextIdLocal()
theActivityId()

myMaxId
myMinId allocate(HObjCollection&,HObjCollection&,HObjCollection&)

myMsgTypes

handleAllocAct(HMsgConn*,HAddress*,SMsgAllocAct*)
handleAlloc(HMsgConn*,HAddress*,SMsgAlloc*)
handlePlanNew(HMsgConn*,HAddress*,SMsgPlanNew*)
handleRsUpgrade(HMsgConn*,HAddress*,SMsgRsUpgrade*)
handleRsDegrade(HMsgConn*,HAddress*,SMsgRsDegrade*)
handleActDel(HMsgConn*,HAddress*,SMsgActDel*)
handleActNew(HMsgConn*,HAddress*,SMsgActNew*)
handleMessage(HMsgConn*,HAddress*,HMessage*)

remClient(HAddress*)
lockAct(int,RAll*)
chgAct(HAddress*,RActivity*)

PlDRResource
PlDSResource

addState(RRsState*,const char*)
hasState(const HEpochInterval&,const char*)
degrade(const HEpochInterval&,const char*)
findGaps(const HEpochInterval&,HObjCollection&,const char*)

findStates(const HEpochInterval&,HObjCollection&,const char*,int)
addRs(SResource*)

whenAllCol(RSimpleAct*,HEpochIntervalList*,const char*)
remAll(RSimpleAct*,const HEpochInterval&,const char*)
forceAll(RSimpleAct*,const HEpochInterval&,const char*)
checkAll(RSimpleAct*,const HEpochInterval&,const char*)
all(RSimpleAct*,const HEpochInterval&,const char*)

PlDRActivity

addAct(RActivity*)

PlDRPlan

copyAllAct(RPlan*,const HEpochInterval&)
copyAllRs(RPlan*,const HEpochInterval&)
copyAct(RSimpleAct*,RPlan*,const HEpochInterval&)
copyRs(RResource*,RPlan*,const HEpochInterval&)
createStateLists(HVList*)
totalTime(HEpochInterval&)

Offpage

e e

e

eOffpage

e

eOffpage

eOffpage

e
e

eOffpage

Figure 4.5-5. Planning Workbench System Resource Object Model

4.5.5.4.3 Planning Workbench System Scheduling Interface

This model describes the key portion of the Production Plan Editor within the Planning workbench
to describe the plan generation and resource allocation scheme. The System Scheduling Interface
(SSI) tool provides an application framework for performing generic scheduling. The SSI contains
a user interface which allows the user to select activities to schedule for a chosen plan. The SSI
communicates with the System Resource Model (SRM) to request the current state of the resource
model. The SSI maintains copies of the SRM pools for efficient local scheduling. After activities
are scheduled on local copies of resources, messages are sent to the SRM to update the central
resource model.

The object model diagram for the System Resource Model is shown in Figure 4.5-6. A generic
scenario that shows how activities are allocated to resources is given below.

4-290 305-CD-026-002

Ssi

DAppl

SsiMain

SsiAgent

SsiWin

SsiCatalog

SsiNoid
SsiOppGen

SsiPlan

SsiScheduler

create(const char*,int&,char**,XrmOptionDescRec*,unsigned int)

create(const char*,int&,char**,XrmOptionDescRec*,unsigned int)

makeWindow()

myWindow

createDisplay()

setup()
plan(const char*)

init()

myUnSchedList
mySchedList
myManager
myScheduler
mySrbNoid

myAppl
myPlanLabel

schedule(const char*,HObjCollection&)
unSchedule(const char*,HObjCollection&)

myRs

myCatalog
myOppGen
myAllocator
mySsiNoid

SaAllocator

myAgent

DWindow

copyAllAct(RPlan*,const HEpochInterval&)
copyAllRs(RPlan*,const HEpochInterval&)
copyAct(RSimpleAct*,RPlan*,const HEpochInterval&)
copyRs(RResource*,RPlan*,const HEpochInterval&)
totalTime(HEpochInterval&)

myName

RActState

myPlanList
myCurrPlan

myActId

whenAll(RSimpleAct*,HEpochInterval*,const char*,HObjCollection&)

remAll(RSimpleAct*,const HEpochInterval&,const char*)

opportunities(RActivity*,RSchRqst*) allocate(HObjCollection&,HObjCollection&,HObjCollection&)

forceAll(RSimpleAct*,const HEpochInterval&,const char*)
checkAll(RSimpleAct*,const HEpochInterval&,const char*)

registerAllocRem(int,RAll*,int)
registerAllocNew(int,RAll*,int)
registerAllocChg(int,RAll*,int)
registerRsStateChg(int,const char*,const HEpochInterval&)
affectedIntvl(HEpochInterval&)

SaComponent

myPlan
myIntvl

RSchOpp

RSchRqst

RActivity

installPlanClear(const char*,HEpochInterval*,HVList*)
installPlanDel(const char*)
installPlanNew(const char*,HVList*)
handlePlanSnap(HMsgConn*,HAddress*,SMsgPlanSnap*)

myActId

installAllocUpd(RUpdAllocAbs*)
installActChg(RActivity*)
installActDel(int)
installActNew(RActivity*)

myPriority
myParentId
myId
myName

whenAll(RSimpleAct*,HEpochInterval*,const char*,HObjCollection&)
remAll(RSimpleAct*,const HEpochInterval&,const char*)
forceAll(RSimpleAct*,const HEpochInterval&,const char*)
checkAll(RSimpleAct*,const HEpochInterval&,const char*)

myIntvl
myRsId

all(RSimpleAct*,const HEpochInterval&,const char*)

add(HObject*)
registerChgAct(RActivity*)

SaAllNImpct

registerDelAct(int)

registerNewAct(RActivity*)
registerDelRs(RResource*)
registerNewRs(RResource*)
registerAllocRem(int,RAll*,int)
registerAllocNew(int,RAll*,int)
registerAllocChg(int,RAll*,int)

SaAllImpct

registerRsStateChg(int,const char*,const HEpochInterval&)
registerPlanClear(const char*,HEpochInterval*,HVList*)
registerPlanDel(const char*)

removeAlloc(RSimpleAct*,RSchOpp*)
forceAlloc(RSimpleAct*,RSchOpp*)
checkAlloc(RSimpleAct*,RSchOpp*)

allocSimpAct(RSimpleAct*,RSchRqst*,HObjCollection&,HObjCollection&)
allocate(RSchRqst*,HObjCollection&,HObjCollection&)
allocate(HObjCollection&,HObjCollection&,HObjCollection&)

RSimpleAct registerPlanNew(const char*)

RAll

RActAll

myPlanName
myInterval

myRsId

SResource

SRsPool

SSimpRs
RResource

SUpdCatAbs

RRsStateList

RRsState

SaFastFit SaSurgStrike

RPlan

addAssoc(HObject*)
degrade(const HEpochInterval&,const char*)
addState(RRsState*,const char*)
addList(RRsStateList*)

myName
myId

RRsPool

RActPool

RPlanPool

PlDSaAllocator

PlDSSimpRs

allocate(HObjCollection&,HObjCollection&,HObjCollection&)
allocate(RSchRqst*,HObjCollection&,HObjCollection&)

allocSimpAct(RSimpleAct*,RSchRqst*,HObjCollection&,HObjCollection&)
removeAlloc(RSimpleAct*,RSchOpp*)
forceAlloc(RSimpleAct*,RSchOpp*)
checkAlloc(RSimpleAct*,RSchOpp*)

whenAll(RSimpleAct*,HEpochInterval*,const char*,HObjCollection&)

remAll(RSimpleAct*,const HEpochInterval&,const char*)
forceAll(RSimpleAct*,const HEpochInterval&,const char*)

checkAll(RSimpleAct*,const HEpochInterval&,const char*)

PlDRResource

addAssoc(HObject*)
degrade(const HEpochInterval&,const char*)

PlDRSimpleAct

PlDSsiOppGen

opportunities(RActivity*,RSchRqst*)

SsiScheduler

schedule(const char*,HObjCollection&)
unSchedule(const char*,HObjCollection&)

PlDSsi

makeWindow()
create(const char*,int&,char**,XrmOptionDescRec*,unsigned int)

PlDSsiWin

plan(const char*)
setup()
init()
createDisplay()

PlDRPlan

copyAllAct(RPlan*,const HEpochInterval&)

copyAllRs(RPlan*,const HEpochInterval&)
copyAct(RSimpleAct*,RPlan*,const HEpochInterval&)

copyRs(RResource*,RPlan*,const HEpochInterval&)

Offpage

Offpage

e

Offpage

e

e

e

e

e

e

eOffpage

eOffpage

e

e

e

eOffpage

e
e

e

eOffpage

eOffpage

eOffpage eOffpage

e

eOffpage

eOffpage

eOffpage

Offpage

Starts

created by

managed by

created by

Figure 4.5-6. Planning Workbench System Scheduling Object Model

4-291 305-CD-026-002

4.5.5.4.4 Scheduling an Activity

4.5.5.4.4.1 Abstract

This scenario describes the system response to a production planner scheduling an Activity (for
example a Data Processing Request). After selecting a set of Production Requests the production
planner will prompt the System Scheduling Interface (SSI) to schedule all the Data Processing
Requests associated to the Data Processing. If possible, the activity will be scheduled on the
appropriate resource and the System Resources Model will be notified of any changes to resources.

4.5.5.4.4.2 Interfaces With Other Subsystems and Segments

4.5.5.4.4.3 Stimulus

A production planner initiates the schedule function from the Production Planning Workbench.

4.5.5.4.4.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlDSsi

• PlDSsiScheduler

• RSchRqst

• PlDSsiOppGen

• PlDSaAllocator

• SsiNoid

4.5.5.4.4.5 Beginning System, Segment and Subsystem State(s)

Steady state, up and running.

4.5.5.4.4.6 Ending State

No change in the state of the system.

4.5.5.4.4.7 Scenario Description

1.	 The production planner starts the planning workbench utility, the standard user
authentication process applies (see scenario 4.4.17).

2. An PlDSsiScheduler is created

3. The PlDSsiScheduler iterates through an ordered list of activities to be scheduled.

4.	 The production planner selects an activity to be scheduled which is sent to
PlDSsiScheduler. .

5.	 The PlDSsiScheduler creates an instance of the Scheduling Request (RSchRqst) which
corresponds to the selected activity (RSimpleAct).

6. The PlDSsiScheduler creates an instance of an Opportunity Generator (PlDSsiOppGen).

7.	 The PlDSsiScheduler passes the Scheduling Request (RSchRqst) and the selected activity
to the Opportunity Generator.

4-292 305-CD-026-002

8.	 The Opportunity Generator finds a resource on which the selected activity can be
scheduled. This resources information is stored in the Scheduling Requests (RSchRqst).

9. The PlDSsiScheduler creates an instance of a Resource Allocator (PlDSaAlloctor).

10. The PlDSsiScheduler passes the Scheduling Request to the Resource Allocator and asks the
Resource Allocator to allocate the activity from the resource information stored in the
Scheduling Request.

11. The PlDSsiScheduler notifies the System Resource Model (through the SsiNoid) of the
changes to the resource on which the activity is scheduled.

4.5.5.4.4.8 Event Trace

See Figure 4.5-7.

4-293 305-CD-026-002

PlDSsi PlDSsiScheduler RSchRqst PlDSsiOppGen PlDSaAllocator SsiNoid

4-294
305-C

D
-026-002

RSchRqst

PlDSsiScheduler

opportunities

PlDSsiOppGen

allocate

requestSMsgSend

PlDSaAllocator

schedule

Figure 4.5-7. Delphi Schedule Event Trace

4.5.6 PDPS Database CSC

The Planning and Data Processing Subsystem (PDPS) requires that much of its data be stored in a
repository in order for data processing and planning activities to be managed over time. This data
is known as “persistent”, as it must "persist" beyond the termination of the programs that reference
it. The repository for the persistent data is a relational database management system (RDBMS).

Objects in the OMT model having persistent attributes are manifested in the RDBMS as tables.
The columns in a table represent the attributes of the corresponding object, and the rows
correspond to individual instances of the object. In addition, operations that manipulate the
attributes may be stored in the database as "stored procedures."

Associations between objects in the OMT model are manifested in the RDBMS as table relations.
The most common type of table relation is the foreign key relation. Every table in a RDBMS has
a primary key, i.e. one or more columns which uniquely determine a row in the table. A primary
key of one table that appears as a column in some other table is called a foreign key in the second
table. The presence of a foreign key creates an implicit link from the table in which it appears to
the table in which it is the primary key. Such a link implies that operations affecting one table may
also affect the other, thus reflecting the association in the OMT model.

The design of the PDPS RDBMS involves mapping the OMT model, which is a conceptual or
“logical” model of the subsystem objects and functions, to a real-world or “physical”
implementation of these objects and functions.

4.5.6.1 Database Logical Design

The Logical Model of the PDPS, which uses OMT methodologies, is the model of record. This
OMT model, however, is wholly logical. That is, it cannot alone serve as the blueprint for
implementation-level work, as there is no direct correlation between the object-oriented concepts
of classes, association, and methods to a RDBMS. Thus, a “physical,” or real-world, design
equivalent of the object model must be specified.

The physical design equivalent of OMT in a RDBMS implementation is an Entity-Relationship
Diagram (ERD). Persistent objects required by the PDPS subsystem are stored as tables in the
RDBMS. Attributes of persistent objects are mapped to database table columns using an OMT-ER
matrix. A catalogue of this mapping documents traceability from the object model to the ERD and
includes any derived tables that are created in the process of this mapping.

The following logical rules are used during this mapping of OMT models to ERDs:

Rule 1 Objects without persistent attributes are not mapped to the ERD.

Rule 2 Objects with persistent attributes are mapped to tables.

Rule 3	 Attributes associated with these objects are mapped to table columns. The maximum
length of a column value must be specified. A column may be designated "null" or
"not null," the latter indicating that a value must be supplied for it when a new row is
inserted in the table. If a column is designated "null," then it may have a default value
associated with it.

Rule 4 Every table has a primary key.

Rule 5	 Any attributes having non-scalar data types, such as arrays or lists, are exploded into
derived tables.

4-295 305-CD-026-002

Rule 6 Any derived objects are annotated.

Rule 7 Associations in the OMT model are mapped to primary or foreign key relations.

4.5.6.2 Transformation of the ERD to T-SQL

The information contained in the mapping of the OMT model to the ERD is entered into an
appropriate ERD CASE tool, such as S-Designor Enterprise for Powerbuilder. The tool uses the
information in the ERD to automatically generate low-level Data Definition Language (DDL) in
Transact SQL (e.g. create table, create indexes, create primary/foreign key relationships, etc.).

4.5.6.3 The Design of Normalized Tables

Normalized RDBMS tables are tables that meet widely-accepted database design criteria involving
escalating levels of design constraint. At zero normal form all data resides in a single repository;
there are zero constraints on how data is stored. Each level of normalization adds an additional
constraint to information storage. For the PDPS database, the normalization rules in use will
constrain the data to a third-normal form level of design.

A table is in third normal form if it satisfies the following three criteria:

1st NF: Any populated column in the table has a discrete value.

Result:	 A column in a table that is used to store information about input data can store
information about one input data item or a pointer to a list of input items somewhere
else in the database, but it cannot store a list of input data information.

2nd NF:	 Satisfies first normal form and has a primary key. Every column not part of the primary
key is fully dependent on the entire primary key.

Result:	 Any row in a table can be uniquely identified by the column(s) constituting the primary
key. If the primary key involves more than one column, then every part of the primary
key is essential for distinguishing between any two rows in the table.

3rd NF:	 Satisfies second normal form and every column that is not part of the primary key
depends directly on the primary key.

Result:	 There can be no partial or transitive dependencies for any non-key columns within a
table. That is, it must not be possible to uniquely determine the value of a non-key
column solely by referring to some other non-key column or columns without having
to consult the primary key.

4.5.6.4 Database Interface

The PDPS Database CSC includes interface classes responsible for mapping persistent data in
object-oriented applications to the Relational Database Management System. These classes will
be used to retrieve object information from the database, manipulate it, and store it back into the
relational database. This interface also manages the connections between the client and server.

This interface is implemented using Rogue Wave's DBtools.h++, a C++ class library for
interfacing with relational database management systems such as Sybase. A fuller description of
this interface may be found in the Release B SDPS Data Processing Subsystem Design
Specification for the ECS Project..

4-296 305-CD-026-002

4.5.6.5 Objects implemented by this component

PlDBMSProxyAgent

4.5.7 On-Demand Manager CSC

4.5.7.1 Purpose and Description

The On-Demand Manager is used to manage the on-demand production requests received from the
Data Server. Upon receipt of a production request the On-Demand Production Request class
verifies that resource usage thresholds are not exceeded and that the data is available to generate
the product. If all criteria is satisfied then the production request is added to the list of On-Demand
requests maintained by the manager, the processing request is submitted to Processing subsystem
and the product is produced. Based on certain threshold values a replan may be triggered.
Additional possible On-Demand notifications are a request to modify or cancel a production
request or a request for the status of a production request.

4.5.7.2 Objects implemented by this component

PlDPRB

PlOnDemandExceed

PlOnDemandManagerNB

PlOnDemandPRNB

PlOnDemandReplanValues

PlPGE

PlPlanGenerationUIB

PlPopupMessage

PlPRCollectionNB

PlProductionRequestB

PlReplanCriteria

PlRescUseThreshNB

PlSubscriptionSubmitIF

4.5.7.3 Candidate Products

This is a custom component required to interface with ECS specific services.

4.5.8 Resource Planning Workbench CSC

4.5.8.1 Purpose and Description

The Resource Planning Workbench allows the Resource Planner to submit reservations for
hardware resources and allocate and plan their use. Reservations may be made for activities that
include major ECS data processing services as well as ground events. Ground events include
activities such as maintenance, test, and training. The hardware resources include CPUs, storage
devices, (sub)networks, as well as platforms that are made up of CPUs and storage devices. A list

4-297 305-CD-026-002

of resources is configuration managed by MSS. Reports of planned versus actual resource usage
can be generated and timelines for the resource plans may be displayed. This application is
separate and distinct from the Production Planning Workbench. It's plan, however, is used as input
to the Production Planning Workbench, so that production plans can take into account planned
resource usage.

4.5.8.2 Objects implemented by this component

PlComputer

PlDiskPartition

PlNetwork

PlResource

PlResourceConfigeration

PlResourceManager

PlRpActivityType

PlRpComplexResourceReservation

PlRpCPU

PlRpDevice

PlRpDiskPartition

PlRpExecutable

PlRpPlatform

PlRpPublishedPlan

PlRpResource

PlRpResourcePlan

PlRpResourcePlanningUI

PlRpResourcePool

PlRpResourceReservation

PlRpResourceReservationPool

PlRpResourceState

PlRpResourceTimeline

PlRpService

PlRpString

PlRpSubNetwork

PlService

PlString

4.5.8.3 Candidate products

This is a custom component required to interface with ECS specific services.

4-298 305-CD-026-002

4.6 PLANG CSCI Management and Operation
The following sections discuss the management and operation of the Planning CSCI. Specifically,
the manner in which the CI is managed at the local and system levels is discussed. The approach
to the development of operator interfaces for the Planning CI is then described. Finally, the
approach to reporting for the Planning CI is described.

Before examining management and operation of the Planning CI at the system level, the local level
management view of this CI is considered. That is, the operations and management of the CI with
short range considerations. These include the subscription submittal activities, the production
request editor, and the AI&T-developed PGE profile editor. These CSCs are used to create or
update data structures local to the planning process. With longer range implications are the
Subscription Manager, the On-Demand Manager, and the Planning Workbench.

4.6.1 PLANG CSCI Operation

A key consideration to remember is that operations personnel will not be required to routinely
insert individual data processing requests as has been done in the past for some systems. That is,
once the instructions for processing a type of data with a particular PGE have been inserted into
the Planning database, the error-prone, repetitive entry of data processing instructions for each data
product is avoided. Data processing will be primarily data driven. Plans are constructed based upon
the data that is expected to arrive from external sources or based upon the intent to reprocess
existing data with revised algorithms. As data arrives at the DAAC, the Planning subsystem will
be made aware via subscriptions of the existence of the data and processing will begin when all
necessary data files have arrived and are staged.

Production Request Editor

Typical of local management activities is the Production Request Editor CSC which provides the
capability to define and modify PRs that are used as a part of the planning process. This interface
is used by operations personnel to enter the production requests that are the starting point of the
planning process. The PRs do not need to be added/created for each job to be run, but only for each
job type or class to be run. The actual job stream or script is built up from this using information
contained in the planning database, and submitted as a part of the planning and processing activity.

Subscription Submittal

The Subscription Submittal CSC permits the operations personnel to efficiently enter subscriptions
to Data Server/Ingest for one of the types of data needed by a PGE for processing. Subscriptions
for Planning Data Availability Schedules (PDAS) and FOS Detailed Activity Schedules (DAS) are
also made. This CSC is a non-persistent or utility type application that is typically used during the
algorithm integration and test phase for the PGE. At that time, the planning database is initialized
with the information needed to plan and schedule the execution of the PGE during normal
operations. After the subscription has been entered, no further operator interaction is ordinarily
required to insure that the subscription notifications are transmitted to the Planning CI. This CSC
allows operations to view current outstanding subscriptions, and to modify or delete them as
required. This use of the CSC is no longer required for most Datatypes since the Production
Request Editor and the On-Demand Manager automatically create and delete subscriptions as
necessary. The only data that still need manual subscription entry are PDASs and DASs.

4-299 305-CD-026-002

Planning Workbench

The Planning Workbench CSC includes a collection of utilities to enable the operations personnel
to perform the planning function for the DAAC. These include capabilities to create candidate
plans, activate a candidate plan, update and cancel an active plan. This utility allows the operations
personnel to have control over the production. Operations personnel control on-demand production
requests through resource usage thresholds. Priorities are assigned to data processing requests
through production strategies, which are entered in the Planning Workbench CSC.

The Planning Workbench CSC allows operations personnel to devise plans for routine production
data processing and reprocessing. The production scheduling personnel selects Production
Requests from the Planning database and includes them into the planning process. Candidate plans
are developed based on the predicted availability of the necessary input data, PGE processing
characteristics, planned availability of resources at the DAAC, and priorities and policies
established by the local DAAC management. The Planning Workbench CSC allows the production
scheduling personnel to create multiple candidate plans for evaluation, select the candidate plan
that conforms best with the DAAC system operations plans, and to retain the plan for future
modification. The Planning Workbench provides the capability to activate the current plan which
thereafter guides the activities of Processing. This CSC also includes the capabilities to update or
modify an existing active plan or to cancel an active plan.

In addition to being able to view plans from the local DAAC, operations personnel can import
plans from other DAACs. The Planning Workbench CSC will identify all data dependencies
between the plans, so an operator can easily identify any conflicts.

A concept of the Planning Workbench CSC is to take advantage of the human capabilities to
distinguish a 'good' plan from a less optimal plan. The capabilities provided here allow the
operations personnel to generate multiple candidate plans for comparison and evaluations. The
operations personnel can devise these plans by varying certain system planning strategy
parameters such as priority allowing the planning manager to automatically construct several plans
and select from among them the one that is most suitable for the needs of that DAAC.

Another feature of the Planning Workbench CSC is the Limited Automatic Replan capability
where the operations personnel can be notified when an event occurs that might suggest a replan.
Events such as notification of late data arrival, a change in a Resource Plan, or an excessive number
of On-Demand Requests can trigger this notification to the operator. All of these notifications can
be turned off, and all have operator-specified thresholds that can be set. The goal is to increase the
automation of the Planning Subsystem so these events don't need to be constantly monitored.

A key feature here is that each DAAC may construct the planning procedures that most readily fit
with existing operations procedures. For example, a planning cycle operations concept developed
earlier suggested that a 30 day and a 10 day candidate plan could be prepared by the DAAC
operations personnel to establish basic long and short term plans for processing objectives. The
Active Plan is assumed to be prepared from the latest 24-hours of the 10 day plan. However, this
concept of operations is only one possibility. The operations personnel at each DAAC can prepare
the processing plans that meet their needs best, e.g., a sequence of one week plans might be
desirable for another DAAC. In addition, the operations personnel may easily adjust the priorities
associated with a type of processing (routine, reprocessing, or, for the AM-1 Release, On-Demand
processing) a type of user, PGE type or with individual products. This capability allows the

4-300 305-CD-026-002

operations personnel to quickly respond to changing priorities determined through NASA
procedures.

During the planning activity, the Planning CI attempts to allocate data processing jobs to one of
the several processors that it has knowledge of as being available for processing. The Planning CI
may allocate a job to a specific processor or to one of a pool of processors, depending on the needs
of the particular algorithm. In general, a pool of processors is available for data processing.
However, processors may be removed from service occasionally for a maintenance or upgrade
operation referred to as a “ground event”. The Production Planning Workbench is made aware of
these ground events via the latest Resource Plan. This Resource Plan is created using the Resource
Planning Workbench as described below. The Planning Workbench takes the ground events
planned during resource planning into account when it creates its Production Plan, and plans
around them.

Subscription Management

The Subscription Manager CSC manages the interface with Data Server/Ingest for the receipt of
subscription notifications. These notifications are provided to Planning as a part of the process
leading to the activation of PGEs. The notifications indicate to Planning that a granule of data
needed by a PGE has become available at Data Server/Ingest, for example, as the result of a Level
0 data set arriving from SDPF or EDOS. When all data required for processing has arrived, the
Planning CI will release the PGE to the Processing CI for activation.

This approach employs the common subscription notification scheme. It automates the process of
communicating with Data Server/Ingest CI for potential data arrivals. The Subscription
Management CSC is persistent - it is continually active and awaiting notifications. It isolates the
interfaces to Data Server/Ingest to a single element for receipt of notifications, simplifying the
management of the system. Predictions on the arrival time of required data are generated by
Planning, using the FOS Detailed Activity Schedule, empirical EDOS processing times and
resource management information. These are used to identify delayed data arrivals, allowing the
operations personnel to react to and resolve the situation. In addition, in order to produce a realistic
plan, the DAS is also used to extract mode information since certain PGEs may have different run
characteristics based on the instrument mode.

On-Demand Manager

The On-Demand Manager CSC manages the handling of an on-demand production request from
the Data Server, passing it on to processing for the production of the requested product. An on­
demand production request is considered to be any non-routine production request for which the
system is tasked. Upon receipt of a production request the On-Demand Manager verifies that the
input data is either currently available or is scheduled to be available. The On-Demand Manager
also checks that the resource usage time necessary to generate the product is not more than is
allowed for a single on-demand production request, and further that the cumulative usage time for
the resources used does not exceed a certain threshold for the entire processing period. If all the
above tests are passed satisfactorily then the production request is submitted to processing and is
added to the production queue to be produced. Additional requests can be made to modify or cancel
a production request, or to status a request.

Resource Planning Workbench

4-301 305-CD-026-002

The Resource Planning Workbench CSC provides the capabilities for allocating hardware
resources to the major ECS data processing services and to other activities. These other activities
include maintenance, test, etc. and are sometimes referred to as ground events. Hardware resources
are platforms (made up of a list of CPUs and disks) , (sub)networks, storage devices. The list of
possible hardware resources and their approved usages is maintained under configuration control
in the MSS Configuration Management (CM) System. The Resource Planning Workbench copies
this configuration from MSS into its own database and allows for configuration changes. In
addition to providing functionality for allocating resources to activities, capabilities are provided
to allow resources to be shared by multiple activities, to publish resource plans, to generate reports
showing the planned versus actual resource usages, and to run executables (or scripts) as pre or
postprocesses to the actual activities.

The planning / allocation of the resources to services and activities is the responsibility of the
Resource Planner (operations staff). The Resource Planner determines the allocation using
resource requests submitted by the various parties who have needs for DAAC resources, e.g. for
training, test or routine production. When this process has been completed, the resource plan is
committed. The commit process makes the plan available to the Planning Workbench CSC so that
the activities impacting processing can be incorporated into the production plan.

A principal of operation underlying the planning of resources is that resources are routinely
allocated to specific system services. For example, the processors that are used for production
processing are normally allocated to that purpose on a long term basis. It is on an exception basis
that they are allocated to other activities.

4.6.2 System Management Strategy

The system management strategy as revealed by the PLANG CI is discussed in the following
paragraphs.

4.6.2.1 System Management and Operations Philosophy

The primary design consideration for the Planning CI from the point of view of system
management and operations is that operator interactions with Planning be simplified and
automated as much as possible. In addition, the Planning CI provides operations with the needed
flexibility to respond to unexpected tasks as they arise. In part, the objectives of simplification and
flexibility are accomplished through well designed GUIs that aid in developing the needed
timelines.

4.6.2.2 PLANG CI and the System

The Planning CSCI is a part of the ECS System. It is integrated with the other ECS components
via the common management interfaces to participate in the ECS enterprise. The following
paragraphs address certain system management topics from the point of view of the Planning
CSCI.

Startup & Shutdown

The Planning CSCI is integrated with the system management interfaces for startup and shutdown.
Via these interfaces, the operations personnel will control the initialization of the Planning CSCI
including planning database initialization. The controlled startup and shutdown insures that the

4-302 305-CD-026-002

necessary coordination and synchronization of activities, within the Planning CSCI and with other
subsystems, is enforced. Adhering to these procedures ensures the highest availability and
reliability for this critical component of the ECS system.

Fault Handling and Recovery

The Planning CI is integrated with the system management components to address fault handling.
By providing these fault messages to the appropriate operations personnel via a unified interface,
the consistent handling of component and system faults may be addressed. This permits the
personnel responsible for address faults to inspect the information at hand from across the system
and to aid him/her in identifying the appropriate cause of the fault. This scheme insures that faults
are addressed quickly and accurately, enabling the planning and processing of science data to
proceed without unnecessarily long delays.

System Maintenance Operations and Ground Events

Of particular importance to the Planning CSCI from the point of view of system management is
the scheduling and coordinating of ground events (e.g., maintenance activities, software upgrades,
or for testing activities) with processing. The data processing resources are, from the point of view
of system management, another resource that will occasionally be required for ground events.
From the Planning CSCI point of view, these resources are typically dedicated to the science data
processing activity and are therefore mostly reserved for planning and processing. The Planning
CSCI supports these views of the data processing resources through the planning process. The
system Resource Manager will identify (usually well in advance) the ground event that requires the
resources that are typically dedicated to the planning and processing activities. The Resource
Manager provides these requirements to the Planning CSCI for incorporation with its planning
activities. These ground events are dealt with by Planning as high priority activities whose resource
requirements are to be satisfied. After these events are planned for, the time allocations are locked­
in, not to be changed by subsequent planning and scheduling actions.

In a similar manner, as new hardware resources are introduced into the system to support science
data processing, these resources are identified to the Planning CSCI as potential data processing
platforms but which are indefinitely scheduled out-of-service until the resources are fully
integrated and tested and released for use by processing. During the I&T phase for these new
platforms, they are scheduled accordingly. In this way, the Planning CI cooperates in the system­
level management of the data processing resources.

4.6.2.3 Interfaces

The interfaces of the PLANG CSCI and the support and coordination required for system
management and operations is discussed in the following paragraphs.

MSS

The Planning subsystem interfaces with the MSS for management related activities. The Planning
subsystem is responsible for sending MSS fault management data and resource utilization data.
The Planning Subsystem will exchange mode management information, and will receive event
notifications from MSS. In addition, for Resource Planning, the Planning Subsystem will receive
a configuration management resource information with which to initialize it's database from MSS
as well as the actual times of ground events from the MSS log.

4-303 305-CD-026-002

Data Server/Ingest

The Planning subsystem interacts with the Data Server/Ingest via the subscription interface to
achieve the system objectives of responsive and efficient data processing. The subscription
notification scheme for interfacing with Data Server/Ingest is a very flexible and robust approach
for signaling the presence of data to be processed. It removes operations effectively from the loop
of coordinating transfers of data. This simplification greatly improves the reliability of an interface
requiring operator interactions. An additional function of the Data Server interface is the transfer
of On-Demand production requests for processing. Finally, the PLANG CI interface with the Data
Server/Ingest for staging of data prior to processing is an automated approach that, again, removes
operations from the roll of handling data transfers thereby making more reliable and timely the
movement of data for data processing.

Processing

The major interfaces with the PLANG CI are to the Data Processing subsystem’s PRONG CI
which are in most cases implemented through the planning database. Interfacing through the
database provides a simple and reliable scheme for the transfer of schedule information from one
CI to the other. The separation between the planning activity and the processing management
activity insures that as the requirements and technology evolve on either side of the separation, the
impacts to the other side of the interface can be controlled and limited.

AI&T

The AI&T activities in relation to the Planning activity are limited. AI&T activities populate
portions of the Planning database as a part of the installation of the science software at the DAAC.
This pre-operational activity provides for the people intensive effort of understanding the planning
and processing needs of the science software and then imbedding that extracted information into
the planning databases.

4.6.3 Operator Interfaces

This subsection describes the operator user interfaces provided by the Production Planning CSCI
to operations personnel. A general description of the framework and methodology employed for
the development of these interfaces can be found in Section 6.5 of the detailed design overview
(305-CD-020-002). This subsection augments that information with additional design information
which is specific to the Production Planning CSCI.

The operator user interfaces will be developed from a combination of COTS graphical user
interface (GUI) libraries and custom code. Hughes Delphi Scheduling Library will provide some
components for reuse, such as the Timeline, but these will have to be customized with Production
Planning code. In addition, custom graphical interfaces will be created with the aid of Integrated
Computer Solutions' Builder Xcessory. Builder Xcessory enables the developer to manage Motif
graphical user interface projects by providing a WYSIWYG, drag and drop, visual develop
environment. Once an interface is constructed, Builder Xcessory will generate C++ code which
represents the GUI and encapsulates the C-based Motif Widget set. The generated C++ code can
then be combined with other Production Planning specific code.

4-304 305-CD-026-002

4.6.3.1 Off-The-Shelf Interfaces

As discussed in Section 4.5.5, the Production Planning CSCI will reuse part of the Hughes Delphi
Class Library to develop graphical user interfaces for the Production Planning subsystem.

4.6.3.2 Production Planning User Interfaces

This section is intended primarily to describe the data that may be displayed to facilitate the
Operations of the Planning utilities. The precise determination of the GUI will be decided by
surveying the wishes of the users of the interfaces and demonstrating prototypes. The discussion
below does describe some interaction between the operator and interface, this discussion is only
preliminary and used to illustrate one of many possible arrangements.

Production Request Editor

The Production Request Editor is a utility which provides operations personnel with the capability
to define and modify Production Requests (PRs) that are used as part of the planning process. The
GUI for the Production Request Editor will be constructed with the aid of Builder Xcessory and
combined with custom code which interfaces to the Planning database for storage of PRs.

Upon invoking the Production Request Editor, the operator may be presented with a main window
which serves to create new PRs and display stored PRs. The information to be displayed consists
of two parts:

1) A product selection sub-section for choosing a unique product

- Any of the information associated with the products that is stored within the PDPS
database may be displayed to facilitate the selection. This information includes Product
Name, Product Version, Instrument, Platform for the product. A table format may be
suitable for this information. The default PGE that generates a selected product may also
be displayed.

2) A Production Request sub-section for defining the PR to generate the selected product.

- A production period which consists of starting and ending dates and times is required. In
addition, an editable text field displays the priority of the PR. The operator can accept the
default priority for the PR or enter a new value. Once the PR production period and priority
are specified, the operator is encouraged to enter a comment to aid in uniquely identifying
the PR for later recall.

3)	 A Production Request sub-section for defining Production Request Collections and
determining the cost of the collection in terms of resource utilization.

- This feature is especially useful for Reprocessing Requests since it will allow the operator
to specify a set of Production Requests to include in a reprocessing campaign. The costing
feature will help to determine the impact of a large (e.g., 6 months) Reprocessing Request
on the system.

If the operator chooses, he or she can override the default PGE by selecting another version. The
operator would be presented with a new window which provides a list of PGEs corresponding to
the selected instrument and product type.

The operator can invoke a dialog for overriding specific parameters for the chosen PGE. A dialog
can present the operator with a list of parameters and values for modification.

4-305 305-CD-026-002

There is also a utility for reviewing, editing, and deleting previously defined PRs.

The second set of functions available from the Production Request Editor is to review / modify the
Data Processing Request which fulfill the Production Request. This interface is being prototyped
within the IR-1 development and may be used to illustrate the data that can be displayed.

Production Strategies User Interface

The production strategies user interface allows the operator to have control over the strategies used
to determine priorities of the Data Processing Requests that are in a plan. Each plan will have a
particular set of production strategies that are keyed to it, but the same production strategies can be
used in multiple plans.

Production strategies work on two levels. First the operator can update lists of DPR attributes (such
as PR type, user type or PGE) so that each value an attribute can have is tied to a particular priority.
Next the operator can change the weight that each attribute's priority is given. A weight is also
given to the priority selected by the user who entered the request. In this way, a priority can be
calculated for each DPR. Finally, there are a number of deltas that can be added to the calculated
priority based on certain conditions. For example, an operator may select to increase the priority
of all jobs that produce data that is needed by other DAACs or that have been waiting in the
Production Queue for more than a day. The final priority of the DPR is used when producing a
candidate plan.

Resource Planning

There are two GUIs for the Resource Planning which include windows for entering resource
reservations and a timeline for displaying resource plans. To initialize the resource configuration
using MSS configuration management tools requires a simple button push from the operator using
the Resource Planning Workbench.

When the operator invokes the Resource Reservation Editor application, a window appears which
allows the operator to specify a new resource reservation. The operator fills in the event
description, the activity type, the start and stop date/times, the request priority, any comments and
the list of resources needed by this ground event; the system fills in the originator's name and the
reservation identifier. The sponsor for this request uses this same tool to validate it; the systems
fills in the sponsor's name. Finally, the resource manager approves the request again using this
same tool.

The Resource Planning Workbench is again used to commit the approved requests and generate a
timeline display of the Resource Plan. See the Production Planning Workbench for a more
complete description of the Delphi Timeline displays. A report can be generated of the resource
reservations in the Resource Plan. Like a Production Plan, the Resource Plan can be published to
the Data Server to be viewed by outside parties.

Production Planning Workbench

The GUI for the Production Planning Workbench includes windows for creating plans and a
timeline for displaying plans. When the operator invokes the application, a window appears which
allows the operator to specify the name of a new plan or select a plan which was previously created.
To create a new plan, a window is provided to define the plan parameters. The operator first enters
the plan name and then enters the starting and ending dates and times. In addition the operator can
enter comments to describe the plan.

4-306 305-CD-026-002

After the plan parameters are initially defined, a window may be presented which allows the
operator to select the Production Requests to be included in the plan. This window could include
two lists: a list initially full of unscheduled Production Requests and a list initially empty of
scheduled Production Requests. The operator can choose Production Requests and use arrow
buttons to move the selected entries back and forth between the scheduled and unscheduled list.

A timeline window is available to display scheduled events in a graphical format. As described in
previous sections, the timeline is built on the hierarchy established in the Hughes Delphi Timeline
Class Library and is tailored to Production Planning needs. The timeline is a GANTT chart which
displays resources and their use versus time. When the timeline appears, it is first populated by
ground events which have previously been defined by the Resource Reservation Editor. As the
operator schedules Production Requests for a plan, the corresponding DPRs appear in the timeline
window. If the operator unschedules a Production Request, the corresponding DPRs will be
removed from the timeline. See Section 4.5.5 for a further description of the timeline.

Several instances of the Production Workbench can be invoked to compare the results of different
plans in order to select the best plan to submit for production. Furthermore, plans from other
DAACs can be imported and displayed. The Production Planning Workbench will identify all data
dependencies between these plans so that any conflicts can be resolved by the operator.

On-demand Resource Usage Threshold User Interface

This GUI allows the operator to update the resource usage thresholds for on-demand production
requests. There will be different thresholds for different resources (such as CPU time or disk
space). In addition, the operator can update the threshold for a single production request, or the
cumulative threshold for all on-demand production requests received within a particular time
period.

Subscription Request Editor

The Subscription Request Editor contains a window from which an operator can enter product
subscriptions to the Data Server. Two lists could be provided: one list containing unsubscribed
products and the second list contains subscribed products. With the use of arrow buttons, the
operator would be able to select and move products between the subscribed and unsubscribed
product lists. In the AM-1 Release, it will not be necessary for an operator to manually submit
subscriptions. Subscriptions for production requests will be automatically generated after a new
Production Request is entered into the Production Request Editor.

4.6.4 Reports

A variety of ad-hoc and canned reports will be available to the DAAC operations staff to assist in
monitoring of the activities associated with the Planning CSCI. These reports are readily accessible
given that Planning CSCI persistent data is maintained in the PDPS Database, a SYBASE
RDBMS. Also, ECS application management information is maintained in the MSS database,
which is used to log system events. The canned reports will include the following:

1)	 Candidate Plan Characteristics Report- This report will be associated with each generated
candidate plan and will contain summary information to be used to establish the quality of
the produced candidate plan. Information contained in this report will include the
following:

4-307 305-CD-026-002

a) 	 Definitions of inputs, i.e. Resources, Production Requests, and Priority Information,
and other planning data used to create the candidate plan.

b) 	 Candidate Plan planned results. This will include the number of science data products
produced, number of DPRs executed, estimated time to meet all planned activities,
estimated resource utilization.

2)	 Production and Data Processing Request Status Reports - These reports will indicate the
status associated with a Production Request and its associated Data Processing Requests.
This information would indicate whether a given Production Request is active or inactive
in the current activated Production Plan. If the Production Request is active, the last
reported job status for the associated Data Processing Requests would be provided.

3)	 Planning Workload and Processing Turn-Around Reports - These reports will provide
tracking information on planned vs. actual processing results. The information provided
will include job statistics for a Data Processing Request to allow comparisons in planned
vs. actual resource consumption, planned start and end time vs. actual start and end time,
planned resource, i.e machine, allocation vs. actual resource, i.e. machine, allocation, etc.

4)	 Planning Management Reports - These reports will provide the operations staff information
on Planning application software events which have occurred. This information will be
available from the MSS database.

Other ad-hoc reports can be defined to assist the Production Planning Operations staff in
performing their activities. The PDPS Database is the repository used to maintain information on
Production Requests and associated Data Processing Requests, Data Subscriptions, PGE Profiles,
etc. These reports can be used to track the modifications and provide historical information on
these data objects. Because of the use of a consistent RDBMS throughout ECS, the sharing of
information between different databases is simplified and will allow for consistent definitions for
any number of reports.

4-308 305-CD-026-002

5. Planning Subsystem Hardware CI

This section describes the functionality and architecture of the Planning Subsystem (PLS)
Hardware Configuration Item (PLNHW CI). Because of the close coupling of scheduling/queuing
functions with planning (i.e., use of the PDPS database), this section also addresses the scheduling/
queuing hardware within the Data Processing Subsystem (DPS) Science Processing Hardware
Configuration Item (SPRHW CI).

The PLNHW CI consists of one or more Production Planning/Management workstation(s) or
server(s) which run the Planning Workbench software and the PDPS database. A Production
Planning/Management workstation supports the planning operations staff in performing their
routine production planning and management functions. A workstation is provided for operations
personnel to access production planning GUIs via the Planning Workbench application. These
functions include candidate plan creation, plan activation, entry of production request information
and report generation.

The Planning Subsystem is responsible for maintaining the Planning and Data Processing (PDPS)
database. This database serves both planning and scheduling. Planning uses the database in
support of the Planning Workbench application used for production planning and resource
planning activities. Scheduling uses the database in support of the AutoSys application which runs
the production schedule.

The scheduling/queuing hardware in the SPRHW CI consists of one or more Queuing Server(s)
which run AutoSys and the AutoSys database. Production Monitor Stations run the AutoSys
AutoExpert display GUIs.

The scheduling/queuing portion of the DPS is responsible for maintaining the AutoSys database.
An active plan is loaded into the AutoSys database from the Planning Subsystem. AutoSys then
proceeds to execute this production schedule (the result of activating this plan). AutoSys uses both
the PDPS database and its own database during its execution of the production schedule.

Both the PDPS and AutoSys databases are implemented using Sybase. The PDPS database is used
for the persistent storage of critical data while the AutoSys database contains the current data for
executing a daily production schedule.

5.1 Hardware Design Drivers
Drivers for sizing the hardware to support these functions include:

• database transaction rates,

• job throughput,

• volume of production status to display,

• the need for a fail-soft science processing architecture,

• replication of critical data.

5-1 305-CD-026-002

The primary drivers for sizing the PDPS database are data criticality, support of science
processing's fail-soft environment, and the volume of database transactions. The PDPS data is
critical because it consists of invaluable PGE information and run-time statistics used for the
creation of future plans. The PDPS database supports AutoSys in execution of the production
schedule. If the database fails, the launching of production jobs by AutoSys will stop. The PDPS
database also needs to support multiple database accesses from both planning and processing.

The primary drivers for sizing the AutoSys database are support of science processing's fail-soft
environment, job throughput, and the display of production status. AutoSys launches jobs which
stage data, run PGEs, report PGE status, and destage data. If AutoSys fails, no new production
jobs will be executed and production will eventually stop. AutoSys must also be able to execute
enough jobs (throughput) to process the daily production schedule within the allocated time frame
(8 or 24 hours which varies by DAAC). AutoSys' production status also needs to be displayed
without saturating the person monitoring production.

5.1.1 Key Trade-Off Studies and Prototypes

Most of the analysis with respect to scheduling/queuing hardware has focused on COTS suitability.
Since these aspects are of primary importance to the planning and scheduling design on the whole,
the studies and prototypes have not focused on hardware issues alone, but examine the planning
and scheduling design options and requirements as an integrated system.

Scheduling/Queuing Management Cots-AutoSys COTS software comes bundled with Sybase,
and supports direct query/command access to the database. A limited C language API structure
implementation exists. "Job Boxes" allow grouping of smaller, related jobs. Both data-availability
("file watcher") and inter-job dependencies are handled easily. Reporting capabilities are limited
(e.g., only start and stop time reported). The system has fault tolerance capacity with the ability to
run backup or "shadow" processors. (Primary and secondary hardware capacity is discussed in
Section 5.3 on fail-over and recovery.)

A simulation of a CERES chain of PGEs was run across three machines, representative of the class
of systems expected to satisfy planning and scheduling execution requirements:

• Sun SPARC 10,

• HP 735, and

• SGI Indigo.

The following aspects were tested: inter-job dependencies, file-watchers, cross-platform
execution, and the usefulness of the console GUI and the alert manager. All features performed as
expected. A test of a series of two second sleep jobs was run on one platform to determine where
overhead might be present in the system. Although some latency was found to occur in the early
stages of job execution, the cost in time was found to be negligible when compared to the total
estimated times for a real ECS job.

5-2 305-CD-026-002

Database - A study of relational and object-relational DBMS' was performed. As a result of this
DBMS study, four DBMS' were selected for further evaluations: Illustra 2.3.1, Objectstore 3.1,
Sybase SQL Server 10, and UniSQL. Hands-on experience was gained while testing and
evaluating the products for functionality and maturity. Tests were conducted on a Sun/Sparc 20
running Solaris 2.3. Three sizes of input data, with a maximum size of 3 million granules
(instances), were used to test the products' performance scalability. Subsequent evaluations have
resulted in selection of the Sybase DBMS as the common COTS for the ECS (SDPS & CSMS).

5.1.2 Sizing and Performance Analysis

Database transaction rates were modeled for the PDPS database by estimating the number of
updates, inserts, and reads made to the database when performing certain functions. These
functions include:

• Creating Data Processing Requests to be added to AutoSys database (DPRs),

• Release of DPR jobs for execution,

• Updating Data Processing Request Job

• Getting DPR Job Status

• Data Initialization

• Local Data Management

• Data Staging

• Data Destaging

• Initiate PGE execution

• Monitor Execution

• Execute Post Processing

• Plan Creation/Activation

• Subscription Notification

• On-Demand Production Request.

Also accounted for in the PDPS database sizing are the added transactions due to database
replication.

AutoSys job throughput was estimated based upon AutoSys' customer experience. The job
throughput was then extrapolated for several different class machines assuming the use of AutoSys'
high availability option which replicates its database. These machines were then matched to
DAAC sites based upon production scheduling needs (PGE activations) and hours of operation.
Each DAAC site has a different number of PGE activations. The five DAAC sites can be broken
into two groups; sites with a lower number of PGE activations per day and sites with a higher
number of PGE activations per day.

Workstations and X-terminals used to display production status were sized based on the number
of PGE activations and the number of instruments associated with the PGE activations. RAM
requirements were calculated based upon the number of jobs being displayed by the AutoSys
AutoCons and AutoExpert GUIs.

5-3 305-CD-026-002

The DAAC Specific Volumes contain full details on site configuration as well as sizing and
rationale. The sizing and performance analyses apply to LaRC, GSFC, JPL, EDC, and NSIDC for
Release B. (ASF and ORNL do not have ECS production operations, therefore, no hardware
support for the Planning Subsystem is required at these sites.)

5.1.3 Scalability, Evolvability, Migration to Release B

With respect to the Planning Subsystem and the Queuing Server(s), general growth and
evolvability strategies are not complex. The basic strategy, generally applied to client server
configurations, is application of technology refresh through "swap-out" of selected components.
Due to Planning's importance to the DAACs, this would have to be performed in parallel to DAAC
operations, with initial application of new hardware technology (servers, workstations, disk, etc.)
applied within the AI&T area (with later transition to operations support). With respect to
salability and evolvability issues outside of general technology refresh, the following growth paths
are applicable to the Planning and Queuing Servers and supported by the current design:

•	 SMP Servers-The number of CPUs populating the server(s) depends upon DAAC specific
performance requirements. The benefits to this approach would be "rightsizing" of the
server platform at a site to meet initial requirements, with an in place upgrade capability to
meet out-year performance requirement growth due to reprocessing demands.

•	 Disk Requirement Growth-The current Planning Subsystem design allows for both
standard and RAID disk application without rework of the core design. This can be
accomplished through the application of channel adapted disk capacity upgrades (e.g.,
larger RAID units), or through network adapted disk servers addressable by the DBMS
servers.

5.2 HWCI Structure
A generic block diagram of the Planning hardware is shown in Figure 5-1.

5-4 305-CD-026-002

Planning
(DBMS)

Server(s)

802.3

SCSI
or other

Host
BUS

FDDI

Production Planner
Workstation

SCSI

or other
Host
BUS

Host Disk

Host Disk

RAID Disk
Host Attached

(RAID or Non-RAID
Based on Site
Requirements)

Planning Server Component

Production Planning and Queuing Management Component

<CSMS ESN LANS>
LAN Technologies and

Connectivity Per Site
Requirements

Figure 5-1. Planning Block Diagram

The Planning Subsystem components maintain status and database information on: production
plans, ground resources, resource status, resource load, etc. The Planning Subsystem coordinates
the Data Processing Subsystem activities through data processing requests. The Release B
Planning Subsystem hardware configuration consists of SMP servers and workstations.

5-5 305-CD-026-002

5.2.1 Connectivity

The intra-DAAC data interfaces will be implemented as follows: data interfaces will be of the
channel type (e.g., SCSI II); Control interfaces will be of the network type (e.g., FDDI, Ethernet).

The Planning Subsystem network connectivity is illustrated in Figure 5-2. The Planning
Subsystem will connect directly to the FDDI production network. This figure highlights the
primary components of the Planning HWCI. The server will contain a dual attached station (DAS)
card and the workstation will contain single attached station (SAS) card. All hosts will be
connected to FDDI concentrators, which will in turn be connected to the FDDI switch via a
physically wired FDDI ring. Refer to Volume 0 for a general description of DAAC networks, and
to the DAAC Specific volumes for LaRC, GSFC, JPL, EDC, and NSIDC for details on specific
CSMS topologies.

(for Processing, Reprocessing, AI&T)

FDDI Concentrator

Science
Processor

FDDI
Switch

AIT
Server

AIT
Work

Station(s)
Planning
Server(s)

Queuing
Work

Station

FDDI Concentrator

QA
Work

Station(s)

Science
Processor

Science
Processor

Planning
Work

Station

(Does Not Reflect Unit Counts, Which Are DAAC Site Specific)

Figure 5-2. Planning Generic Network Connectivity

5.2.2 HWCI Components

The planning and scheduling functions are implemented on the following hardware:

• PDPS DBMS Server

• Queuing Server

• Production Planning/Management workstation

• Production Monitor Station

Each of these components is discussed in the paragraphs that follow and are elaborated on in
Table 5-1.

5-6 305-CD-026-002

PDPS DBMS Server Hardware Component-The PDPS DBMS Server consists of a server class
machine maintaining the PDPS database. Sets of PDPS DBMS servers (one primary, the other
backup) are provided for each DAAC site whose complement requires science data processing.
The relative size of these servers is DAAC specific and time frame specific. For purposes of
discussing this design generically, two servers are assumed. One provided by the PLNHW CI,
acting as the primary DBMS server, and the second provided by the SPRHW HWCI acting as the
production queue and/or secondary DBMS server as necessary. Note that this redundant
configuration is consistent with a DAAC site with larger numbers of PGE activations per day.

PDPS DBMS Server Hardware Component-The Queuing Server consists of a server class
machine maintaining the AutoSys database. Sets of Queuing servers (one primary, the other
backup) are provided for each DAAC site whose complement requires science data processing.
The size of these servers is DAAC specific and time frame specific. For purposes of discussing
this design generically, two servers are assumed. One provided by the scheduling/queuing
hardware in the SPRHW CI, running the AutoSys Event Processor, and the second provided by the
PLNHW CI running the AutoSys Shadow Event Processor. Note that this redundant configuration
is consistent with a DAAC site with larger numbers of PGE activations per day.

5-7 305-CD-026-002

Table 5-1. PLNHW Logical Components and Equipment Classes
Component

Name
Class/Type Comments

PDPS DBMS Server

Queuing Server

SMP Server or SMP
Workstation

• For lower volume job activation sites:
SMP workstations with 2 CPUs.
One pair of workstations provided to Data Processing
Subsystem (Queuing Server) to assure fail-soft
operation.
One pair of workstations provide to Planning
Subsystem (PDPS DBMS Server) to ensure data
integrity.

• For higher volume job activation sites:
SMP Server with 2 to 12 CPUs.
depending on production volume (job activations).
One server each are provided to Data Processing
Subsystem (Queuing Server) and the Planning
Subsystem (PDPS DBMS Server) to assure fail soft
operations and data integrity.

• Interfaces with other subsystems via the ESN LAN.
Disk Storage Array
(Host Attached)

• Disk storage of candidate and active plans, as well as
PDPS DBMS tables and working space and AutoSys
database.
For lower volume job activation sites:
Queuing Server SMP workstation pair share disk
array.
array.
For higher volume job activation sites:
Queuing Server and PDPS DBMS Server
array.

Production Planning/
Management

Production Monitor
Station

Workstation and/or X­
terminal

• Production Planning/Management Workstation and/or
X-terminal support display of Planning Workbench
GUIs.

• Interfaces with the PDPS DBMS Server component via
ESN LAN interfaces or runs concurrently with local
PDPS DBMS server at lower volume job activation
sites.

• Production Monitor Workstation and/or X-terminal
support display of AutoSys AutoExpert GUIs.
Interfaces with the Queuing Server component via
ESN LAN interfaces or runs concurrently with local
Queuing Server at lower volume job activation sites.

Varies by site

PDPS DBMS SMP workstation pair share disk

share disk

Production Planning/Management Workstation Hardware Component-This component
contains the hardware necessary to support DAAC operations users staff performing routine
production planning and management operations. This component consists of a workstation or X­
terminal.

5-8 305-CD-026-002

5.3 Fail-over and Recovery Strategy
The Product Generation function has the following RMA requirements:

(1)Availability: 0.96

(2)Mean Down Time: < 4 hours.

This function is supported by the Production Planning/Management and PDPS workstation(s) and
server(s) along with other subsystem hardware including Data Processing's, Queuing server(s) and
X-terminal displays, and the science processors as well. The RMA requirement is readily met
(reference: Availability Models / Predictions; 515-CD-002-002). However, the PDPS DBMS
Server's data and functionality is critical and requires additional backup capability.

PDPS DBMS Server Architecture-The basic approach to Planning Subsystem fail-over and
recovery strategy for Release B is to provide Sybase replication for the PDPS DBMS server.
Sybase replication provides a form of redundancy to protect against hardware failure and to
provide a degree of fault tolerance. Replication is the capability to maintain a replicate of all data
stored on a database device. Replication provides non-stop recovery in the event of disk failure.
A Sybase procedure is executed to cause an SQL Server database device to be duplicated, i.e., all
writes to the device are copied to a separate physical device. If one of the devices fail, the other
contains an up-to-date copy of all transactions. RAID mirroring of databases could be used to
replicate the database in order to maximize disk resources and performance but this requires
manual intervention to restart the Sybase SQL server upon a failure of the primary Sybase SQL
server. Replicating all devices such as the master device, user databases, and transaction logs
provides a non-stop recovery from hardware failure, but requires more disk space and provides a
reduction in overall performance. In the event of media failure, the replicated database and SQL
backup server can take over, typically without any downtime or, in this application, interruption of
processing. When the damaged device is repaired or replaced, it is resynchronized with the
undamaged copy. Replication ensures the safety of PDPS database. The Sybase replication of the
PDPS DBMS allows the secondary server to continue with the PDPS DBMS responsibilities
should the primary PDPS DBMS fail, thereby supporting a fail-soft science processing
environment.

The ECS system also provides the capability of tape backup for all critical information (software
configuration files, database configuration information, etc.) and will be performed at regular
intervals.

Queuing Server Architecture-The fail-over and recovery strategy for the scheduling/queuing
functions is handled by AutoSys. AutoSys runs in a Dual Data Server Mode which replicates
AutoSys' database on separate disk. When a disk or database failure occurs in the primary
database, AutoSys continues by using the backup database. Also, the primary Queuing Server runs
the AutoSys Event Processor while the secondary Queuing Server runs the AutoSys Shadow Event
Processor. The Shadow Event Processor remains dormant and periodically checks the Event
Processor's status. When the Shadow Event Processor detects that the Event Processor has
malfunctioned, the Shadow Event Processor takes charge of the execution of the production
schedule. This allows the continued launching of production jobs and supports the science
processing's fail-soft requirement.

5-9 305-CD-026-002

Figure 5-3 functionally shows the primary and secondary server concept. The gray areas indicate
the primary server and the primary disk.

Database Logic

DML RDBMS

PRIMARY SERVER

DBMS Data Mirror of
DBMS Data

Database Logic

DML RDBMS

SECONDARY SERVER

Figure 5-3. Primary and Secondary Server Concept Overview

5-10 305-CD-026-002

Appendix A. Requirements Trace

The Interim Release 1 (Ir1), TRMM Development (Release A) and AM-1 Development (Release
B) Level 4 requirements listed in Table A-1 reflect the RTM requirements database
RELB_CDR_030196. The Object Classes listed are from the CDR version of OMT and are
described throughout this document., as are the CSCs , CIs and subsystem listed.

Table A-1. Requirements Trace (1 of 14)
L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

S-PLS-00005 The PLANG CI shall accept priority Production Requests
for the generation of specific Data Products.

PlDataTypeCatalogue
PlProductionRequestB
PlProductionRequestUI

S-PLS-00010 The PLANG CI shall accept Production Requests for
specific Data Products with associated time windows that
are to be routinely generated.

PlProductionRequestB
PlDataTypeCatalogue
PlProductionRequestUI

S-PLS-00020 The PLANG CI shall generate Data Processing Requests
from Production Requests.

PlDataGranule
PlDataTypeReq
PlPGE
PlDataTypeB
PlDataTypeCatalogue
PlProductionRequestB
PlProductionRequestUI
PlDPRB

S-PLS-00040 The PLANG CI shall reject a Production Request if an
invalid product identifier has been specified.

PlDataTypeCatalogue
PlProductionRequestB
PlProductionRequestUI

S-PLS-00050 The PLANG CI shall reject a Production Request if an
unauthorized User Identifier is specified.

PlUser
PlProductionRequestUI
PlProductionRequestB
PlDataTypeCatalogue

S-PLS-00060 The PLANG CI shall support the capability to display a
response message to the operations staff, indicating the
acceptance / rejection status of Production Requests and
the reasons for rejection (if applicable).

PlProductionRequestB
PlProductionRequestUI

S-PLS-00070 The PLANG CI shall accept
reprocessing of Data Products from currently available
input data.

PlReprocessingStrategyNB
PlReprocPRNB

S-PLS-00100 The PLANG CI shall accept Production Requests for On-
Demand Data Products.

PlOnDemandManagerNB
PlOnDemandPRNB

S-PLS-00110 The PLANG CI shall reject a Production Request for On-
Demand Data Products if the processing completion
deadline (specified in the Production Request) cannot be
met.

PlOnDemandPRNB

Production Requests for

A-1 305-CD-026-002

Table A-1. Requirements Trace (2 of 14)

S-PLS-00120 The PLANG CI shall validate
On-Demand Data Products against a pre-approved list of
acceptance criteria.

PlOnDemandManagerNB
PlOnDemandPRNB

S-PLS-00130 The PLANG CI shall send a response message to the
Data Server
received Production Request for On-Demand Data
Products (" accepted", "rejected", "deferred") and reason
for rejection of a request

PlOnDemandPRNB

S-PLS-00140 Upon acceptance of a Production Request for an On-
Demand Data Product, the PLANG CI shall immediately
forward its corresponding Data Processing Requests to
the PRONG CI if predefined resource thresholds are not
exceeded and if the input data is available.

PlOnDemandManagerNB
PlOnDemandPRNB

S-PLS-00150 The PLANG CI shall defer On-Demand Production
Requests for future plan generation consideration when
these On-Demand Production Requests are estimated to
exceed a predefined resource threshold.

PlOnDemandPRNB
PlOnDemandManagerNB

S-PLS-00160 If a Production Request for an On-Demand Data Product
exceeds a predefined resource usage threshold, the
PLANG CI shall notify the operations staff that the
Production Request has been

PlOnDemandPRNB
PlOnDemandManagerNB

S-PLS-00165 The PLANG CI shall allow the operator to specify the
resource usage thresholds used to accept or defer On-
Demand Production Requests.

PlRescUseThreshNB
PlOnDemandPRNB
PlOnDemandManagerNB

S-PLS-00170 The PLANG CI shall accept updates (modifications/
cancellations) to
Data Products.

PlOnDemandPRNB

S-PLS-00180 The PLANG CI shall validate updates (modifications /
cancellations) to existing Production Requests.

PlPGE
PlDPRB
PlDataGranule
PlDataTypeB
PlDataTypeReq
PlProductionRequestB
PlProductionRequestUI
PlDataTypeCatalogue

S-PLS-00190 The PLANG CI shall forward a response message to the
Data Server indicating acceptance / rejection status of the
updates to the Production Request for On-Demand Data
Products .

PlOnDemandPRNB

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

Production Requests for

confirming the acceptance status of the

(if applicable).

deferred.

for On-Demand Production Requests

A-2 305-CD-026-002

Table A-1. Requirements Trace (3 of 14)

S-PLS-00200 The PLANG CI shall accept updates (modifications /
cancellations) to Production Requests entered by the
operations staff.

PlDataTypeB
PlDPRB
PlDataGranule
PlDataTypeCatalogue
PlPGE
PlProductionRequestB
PlProductionRequestUI
PlDataTypeReq

S-PLS-00220 The PLANG CI shall support the display of a response
message to the operations staff, indicating the
acceptance /rejection status of updates to a Production
Request.

PlProductionRequestUI

S-PLS-00230 The PLANG CI shall provide production rules (via GUI) to
break up large reprocessing Production Requests.

PlReprocPRNB
PlReprocessingStrategyNB

S-PLS-00260 For each Production Request being processed, the
PLANG CI shall interact with the appropriate instance of
the SDSRV CI to determine
needed to satisfy the request exist.

PlProductionRequestUI
DsClESDTReference
DsClESDTReferenceCollect
or
PlDataTypeB
PlProductionRequestB
DsClQuery

S-PLS-00300 The PLANG CI shall accept ground events to describe the
allocation of data processing resources to non-production
tasks.

PlRpResourceReservation
PlGroundEvent

S-PLS-00310 The PLANG CI specification of ground events shall
include priorities, dependencies, and estimated duration.

PlRpResourceReservation
PlGroundEvent

S-PLS-00400 The PLANG CI shall maintain Product Generation
Executives (PGEs) information that identifies the Science
Software, the order of execution, the conditions for
execution, the processing environment, and the input /
output data types and locations.

PlUserParameters
PlPGE
PlDataTypeReq
PlDataTypeB
PlResourceRequirement
PlPGEProfile

S-PLS-00405 The PLANG CI shall allow the conditions for execution of
Product Generation Executives (PGEs) to include
intermediate results such as metadata fields of input data.

PlMetadataChecks

S-PLS-00407 The PLANG CI shall maintain Product Generation
Executives (PGEs) information necessary to support the
production of tile or spatial-based output Granules.

PlTileScheduledNB
PlOrbitScheduledNB

S-PLS-00410 The PLANG CI shall support the capability to display (via
GUI) a list of PGEs maintained in its PGE information
database.

PlPGEProfile

S-PLS-00420 The PLANG CI shall support the capability to browse (via
GUI) the information maintained on a specific PGE.

PlPGEProfile

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

the Granules whether

A-3 305-CD-026-002

Table A-1. Requirements Trace (4 of 14)

S-PLS-00430 The PLANG CI shall support the capability to (a) allow
(authorized) operations staff
delete) of PGE information in the Planning PGE
information database, (b) maintain a record of updates
made.

PlPGEProfile

S-PLS-00440 The PLANG CI shall maintain Production Rules that
define the
priorities and preferences) to be used when preparing a
Production Plan.

PlProductionRequestB
PlDPRB

S-PLS-00445 The PLANG CI shall maintain multiple Production
Strategies defined by sets of
when preparing a Production Plan.

PlPGEPriorityNB
PlUserPriorityNB
PlProdStratUINB
PlProdStratNB

S-PLS-00450 The PLANG CI shall support the capability that allows the
operations staff
Production Rules (via GUI).

PlProductionRequestB
PlProductionRequestUI

S-PLS-00455 The PLANG CI shall support the capability that allows the
operations staff
Production Strategies (via GUI).

PlPGEPriorityNB
PlProdStratNB
PlUserPriorityNB
PlProdStratUINB

S-PLS-00457 The PLANG CI GUI shall conform to the guidelines in
version 5.1 of the ECS User Interface Style Guide.

PLANG

S-PLS-00458 To the extent possible, the PLANG CI COTS GUI shall be
configured to conform to the guidelines in version 5.1 of
the ECS User Interface Style Guide.

PLANG

S-PLS-00460 The PLANG CI shall maintain lists of Granules needed to
satisfy Production Requests.

PlProductionRequestB
PlDataTypeB
PlDataTypeReq
PlDPRB
PlDataGranule
PlPGE

S-PLS-00465 The PLANG shall maintain lists of input Granules in order
to support the production of tile or spatial-based output
Granules

PlTileScheduledNB
PlOrbitScheduledNB

S-PLS-00470 The PLANG CI shall maintain information on the
following:
Requests received, b. current processing status of all
Data Processing Requests generated, c. detected
processing fault data.

PlDataGranule
PlDataTypeB
PlDataTypeCatalogue
PlProductionRequestB
PlPGE
PlDataTypeReq
PlDPRB

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

updates (enter / modify /

production strategy (rules defining production

Production Rules to be used

to update (enter/ modify/ delete) the

to update (enter/ modify/ delete) the

a. current processing status of all Production

A-4 305-CD-026-002

Table A-1. Requirements Trace (5 of 14)

S-PLS-00475 The PLANG CI shall maintain information on all
Candidate and Active Plans generated.

PlGroundActivity
PlDPRB
PlDPRs
PlGroundEvents
PlPGEActivity
PlPlanB
PlPlanningWorkbenchUI
PlResourceManager
PlActivePlan
PlGroundEvent

S-PLS-00490 The PLANG CI shall maintain Planning system fault data
using fault isolation tools provided by the LSM.

EcEvent

S-PLS-00604 The PLANG CI shall receive advertisements from the
IOS.

PlDataTypeB

S-PLS-00606 The PLANG CI shall send advertisement subscriptions to
the IOS.

To be deleted, see table A-2.

S-PLS-00611 The operations staff shall manually submit (to the Data
Server) Data Subscriptions for the Data Availability
Schedules (DAS) of any remote ECS sites, any IP and
any ODC that makes a DAS available

PlDASNB

S-PLS-00615 The operations staff shall manually submit (to the Data
Server) Data Subscriptions for FOS plans and schedules.

PlFOSDASFile

S-PLS-00631 The PLANG CI shall receive Data Availability Schedule
Notices indicating arrival of Data Availability Schedules
(DAS) for any remote ECS site, any IP, and any ODC that
makes a Data Availability Schedules available.

PlDASNB

S-PLS-00635 The PLANG CI shall receive Data Availability Schedule
Notices indicating arrival of FOS plans and schedules

PlFOSDASFile

S-PLS-00651 The PLANG CI shall accept Data Availability Schedules
(DAS), for remote ECS sites, IPs, and ODCs, based on
the Data Availability Schedule Notices received.

PlDASNB

S-PLS-00652 The PLANG CI shall support the capability to retrieve FOS
plans and schedules from the Data Server.

PlFOSDASFile

S-PLS-00654 The PLANG CI shall create a Data Availability Schedule
(DAS) for EDOS based on FOS plans and schedules.

PlDataTranferHistory

S-PLS-00656 The PLANG CI shall send a response message to Data
Server upon receiving FOS plan and schedule, confirming
the receiving of the data

PlFOSDASFile

S-PLS-00665 The PLANG CI shall notify the operations staff (via GUI),
about the arrival of any Data Availability Schedule Notice
corresponding to a DAS.

PlDASNB

S-PLS-00670 The PLANG CI shall provide (to the operations staff) the
capability to enter, via GUI, "plan creation requests" that
initiate creation of Candidate Plans.

PlPlanningWorkbenchUI
PlPlanB

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-5 305-CD-026-002

Table A-1. Requirements Trace (6 of 14)

S-PLS-00680 The PLANG CI shall provide the capability to generate
multiple Candidate Plans.

PlPlanB
PlPlanningWorkbenchUI

S-PLS-00690 The PLANG CI shall create a Candidate Plan specifying a
timeline for PGE execution that will
Requests for Standard Products.

PlGroundActivity
PlPlanB
PlPGEActivity
PlPlanningWorkbenchUI
PlProductionRequestB
PlDPRs
PlDPRB
PlGroundEvents
PlGroundEvent

S-PLS-00700 The PLANG CI shall create a Candidate Plan specifying a
timeline for PGE execution that will satisfy
Requests for Reprocessing and On-Demand Data
Products.

PlPRCollectionNB

S-PLS-00710 The PLANG CI shall create a Candidate Plan based on
the following:
1.
estimated runtimes,
2.
3.
4.
5.
Processing.

PlGroundEvents
PlResourceManager
PlProductionRequestB
PlPlanningWorkbenchUI
PlPGEActivity
PlGroundEvent
PlGroundActivity
PlDPRs
PlDPRB
PlPlanB

S-PLS-00720 The PLANG CI shall create a Candidate Plan based on
the data availability schedules for remote ECS sites,
EDOS,

PlDASNB

S-PLS-00730 The PLANG CI shall have the capability to plan algorithm
and calibration coefficient test
environment.

PlGroundEvent
PlPlanningWorkbenchUI
PlPlanB

S-PLS-00740 The PLANG CI shall have the capability to schedule
algorithm test Data Processing Requests that do not
interfere with the operational production environment.

PlResourceRequirement
PlResourceManager
PlPlanningWorkbenchUI
PlPlanB
PlPGEActivity
PlDPRs
PlDPRB

S-PLS-00741 The PLANG CI shall seperate AI&T activities from the
operational production environment.

PlPGEActivity
PlDPRB
PlPlanB
PlPlanningWorkbenchUI
PlResourceRequirement
PlDPRs

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

satisfy Production

Production

Outstanding production requests, their priorities and

Ground events, their priority and estimated duration,
Planning production rules,
Mutual PGE accessibility of shared data,
Completion notification status messages from Data

the IPs, and ODCs, as needed.

in the test time

A-6 305-CD-026-002

Table A-1. Requirements Trace (7 of 14)

S-PLS-00760 The PLANG CI shall send electronic copies of the
Candidate Plans and corresponding metadata to the
designated local Data Server for storage and distribution.

PlPlanningWorkbenchUI
PlPlanMetadataFile
PlPlanBinaryReportFile
PlPlanB
PlPlanASCIIReportFile
PlPublishedPlan

S-PLS-00770 The PLANG CI shall provide (to the operations staff) the
capability to enter, via GUI, a "Plan cancellation" request,
indicating cancellation of the currently Active Plan.

DpPrScheduler
PlPlanningWorkbenchUI
PlPGEActivity
PlActivePlan
PlDPRB

S-PLS-00780 The PLANG CI shall generate Data Processing Request
cancellations against previously submitted Data
Processing Requests (if so directed by the operations
staff), or upon activation of a new plan that no longer
requires those requests.

DpPrScheduler
PlPlanningWorkbenchUI
PlPlanB
PlDPRB
PlPGEActivity

S-PLS-00790 The PLANG CI shall send a Data Processing Request
cancellation to the instance of the PRONG CI that
received the original Data Processing Request.

PlPlanningWorkbenchUI
PlPlanB
PlDPRs
PlDPRB

S-PLS-00800 The PLANG CI shall provide to the operations staff
capability to enter, via GUI, a "plan activation request" that
identifies which Candidate Plan is to be activated.

PlDPRs
PlPlanningWorkbenchUI
PlPGEActivity
PlResourceManager
PlPlanB
PlDPRB

S-PLS-00811 The PLANG CI shall reconcile any outstanding Data
Processing Requests in the current Active Plan with the
Data Processing Requests in the Candidate Plan to be
activated.

PlActivePlan
PlDPRB

S-PLS-00825 The PLANG CI shall have the capability to identify all
available input data (as specified in the Active Plan) that
is currently awaiting quality assurance information.

PlSubscriptionManager

S-PLS-00827 The PLANG CI shall update the quality assurance status
of input data (if applicable) to reflect an expired QA
timeout period if its quality assurance information has not
been received within specified time periods._

PlSubscriptionManager

S-PLS-00830 The PLANG CI shall send Data Processing Requests
(specified in an Active Plan) to a processing resource that
can perform the processing, if the following applies:
a.
available
b.
applicable)

PlDataGranule
PlDPRB
DpPrScheduler
PlSubscriptionManager

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

the

All required input data (including metadata) is

Its input data has passed quality assurance (if

A-7 305-CD-026-002

Table A-1. Requirements Trace (8 of 14)

S-PLS-00840 The PLANG CI shall send electronic copies of the Active
Plan and corresponding metadata to the designated local
Data Server for storage and distribution.

PlPlanB
PlPlanASCIIReportFile
PlPlanBinaryReportFile
PlPlanMetadataFile
PlPlanningWorkbenchUI
PlPublishedPlan

S-PLS-00845 The PLANG CI shall support the capability to retrieve
stored plans and their corresponding metadata from the
Data Server based on specific queries.

PlPlanGenerationUIB

S-PLS-00850 The PLANG CI shall have the capability to generate data
availability schedules (and the corresponding metadata)
that reflect the Data Products expected to be generated in
the Production Plan.

PlDASNB

S-PLS-00860 The PLANG CI shall send the
and the corresponding metadata to the designated Data
Server.

PlDASNB

S-PLS-00870 The operations staff shall manually submit Data
Subscriptions for PGE input data to the appropriate Data
Servers.

PlSubscriptionSubmitIF
PlDataTypes
PlDataTypeB
IoAdAdvertisingSrv_C
IoAdServiceAdvertisement_
C
IoAdServiceCollection_C

S-PLS-00872 The operations staff shall manually submit Data
Subscriptions for L0 data to the Ingest Subsystem.

PlDataTypeB
PlDataTypes
PlSubscriptionSubmitIF

S-PLS-00875 The PLANG CI shall receive Subscription Notices
indicating availability of subscribed data.

PlDataGranule
PlDataTypes
DsClESDTReference
EcMpMsgPsngCtrl
EcUrUR

S-PLS-00880 The operations staff shall manually cancel Data
Subscriptions
used, once they determine that the input data is not
required by any other PGE.

DsClSubscription
PlDataTypeB
PlDataTypes
PlSubscriptionSubmitIF

S-PLS-01000 The PLANG CI shall receive a Data Processing Request
Response message, acknowledging acceptance of the
Data Processing Request forwarded to

PlActivities
DpPrScheduler
PlDPRB

S-PLS-01010 The PLANG CI shall receive "Complete Notification"
status messages, indicating the completion status of Data
Processing Requests.

DpPrScheduler
PlDPRB
PlActivities

S-PLS-01020 The PLANG CI shall receive responses to Data
Processing Request cancellations indicating the
completion status of the cancellation requests.

DpPrScheduler
PlActivities
PlDPRB

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

data availability schedules

for input data to PGEs that are no longer

the PRONG CI.

A-8 305-CD-026-002

Table A-1. Requirements Trace (9 of 14)

S-PLS-01030 The PLANG CI shall update the Active Plan with the
current processing status of each Data Processing
Request listed.

PlPlanB
DpPrScheduler
PlPGEActivity
PlPlanningWorkbenchUI
PlDPRB
PlActivities

S-PLS-01040 The PLANG CI shall send the current processing status of
Production Requests (for On-Demand Data Products)
the originating Data Server.

PlOnDemandManagerNB

S-PLS-01200 The PLANG CI shall provide the operations staff with the
capability to perform the following on-line functions, via
GUI:
a.
b.
standard products,
c.
d.
information,
e.
f.
g.
h.
status,
i.
and data processing request status reports / resource
utilization reports / planning workload status reports /
management reports,

PlPlanningWorkbenchUI

S-PLS-01210 The PLANG CI shall provide the operations staff with the
capability to perform the following on-line functions, via
GUI: a. Entry/query/update/ cancellation of Production
Requests for Reprocessing, b. Query/update/cancellation
of Production Requests for On-Demand Data Products.

PlProductionRequestB
PlProductionRequestUI

S-PLS-01220 The PLANG CI shall have the capability to accept a
request from the operations staff for scheduling algorithm
and calibration coefficient test time in the test
environment.

PlGroundEvent
PlPlanB
PlPlanningWorkbenchUI

S-PLS-01230 The PLANG CI shall support the display (via GUI) of
warning messages to the operations staff indicating
revised completion times if processing will not complete
per original schedule.

PlPlanningWorkbenchUI

S-PLS-01240 The PLANG CI shall support the display (via GUI) of
Planning hardware and software detected faults to the
operations staff.

EcEvent

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

to

Entry of product requests for standard products,
Query / update / cancellation of production requests for

Query status of production requests,
Query / update of production rules and PGE

Entry of plan creation requests,
Entry of plan activation requests,
Entry of plan cancellation requests,
Query candidate / active plans and corresponding

Entry of requests for processing log reports / production

A-9 305-CD-026-002

Table A-1. Requirements Trace (10 of 14)

S-PLS-01245 The PLANG CI shall provide capability to make available
(for review by all affected instrument teams) information
related to product generation delays and production
faults.

PlPlanMetadataFile
PlPlanningWorkbenchUI
PlPlanBinaryReportFile
PlPlanASCIIReportFile
PlPublishedPlan
PlPlanB

S-PLS-01250 The PLANG CI shall record detected hardware and
software errors in a Planning processing log.

EcEvent

S-PLS-01260 The PLANG CI shall support the capability to generate
Planning processing log reports (periodically and on
request) for a specified time period.

DpPrDbInterface

S-PLS-01270 The PLANG CI shall support the generation of Data
Processing Request Status reports (upon request) that
will provide Data Processing Request information based
on the report generation parameters and the time period
specified.

PlPlanB
PlPlanningWorkbenchUI
PlDPRs
PlDPRB

S-PLS-01280 The PLANG CI shall support the generation of Production
Request Status reports (upon request) that will provide
Production Request information based on the report
generation parameters and the time period specified.

PlProductionRequestB
PlProductionRequestUI
PlDataGranule
PlDataTypeB
PlDataTypeCatalogue
PlDataTypeReq
PlPGE
PlDPRB

S-PLS-01290 The PLANG CI shall support the generation of resource
utilization reports (periodically and on request).

MsRgManagerB

S-PLS-01300 The PLANG CI shall support the capability to generate
PLANG CI processing workload and processing
turnaround time reports (periodically and on request).

MsRgRepWriterB

S-PLS-01320 The PLANG CI shall make all reports generated available
for review.

MsRgRepWriterB

S-PLS-01330 The PLANG CI shall restrict the functions available to
operators depending on operations role, (e.g., to permit
the resource manager role to enter ground events, but to
restrict that role from being able to enter production
requests).

ECSSecurity

S-PLS-01400 The PLANG CI shall accept the fault isolation tools for the
PLANG CI.

PLANG

S-PLS-01410 The PLANG CI shall forward faults detected in the
Planning system to MSS.

PLANG

S-PLS-01430 The PLANG CI shall send to MSS product scheduling,
processing status

PLANG

S-PLS-01440 The PLANG CI shall collect Fault Management Data and
provide it to the MSS.

PLANG

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

and data quality information.

A-10 305-CD-026-002

Table A-1. Requirements Trace (11 of 14)

S-PLS-01450 The PLANG CI shall collect Configuration Management
Data and provide it to the MSS.

PLANG

S-PLS-01460 The PLANG CI shall collect Accounting Management
Data and provide it to the MSS.

PLANG

S-PLS-01470 The PLANG CI shall collect Accountability Management
Data and provide it to the MSS.

PLANG

S-PLS-01480 The PLANG CI shall collect Performance Management
Data and provide it to the MSS.

PLANG

S-PLS-01490 The PLANG CI shall collect Security Management Data
and provide it to the MSS.

PLANG

S-PLS-01500 The PLANG CI shall collect Scheduling Management
Data and provide it to the MSS.

PLANG

S-PLS-01600 The PLANG CI design and implementation shall have the
flexibility to accommodate Planning expansion up to a
factor of 3 in its capacity with no changes to its design,
and up to a factor of 10 without major changes to its
design.
transparent to existing algorithms or product
specifications.

PLANG

S-PLS-01610 The PLANG CI shall be developed with configuration
controlled APIs that will be capable of supporting
development and integration of new algorithms
developed at DAAC to support DAAC value-added
production.

PLANG

S-PLS-02000 The PLANG CI shall be able to accept scheduling
information on external events which affect processing
resources and operations

PlRpResourceReservation

S-PLS-02010 The PLANG CI shall identify scheduling conflicts. PlPlanB

S-PLS-02020 The PLANG CI shall be able to
personnel priorities and planned execution times of jobs
causing scheduling conflicts within and between DAACs.

PlTimeLineDisplay

S-PLS-02030 The PLANG CI shall identify conflicts in plans caused by
cross-DAAC data dependencies.

PlPlanB

S-PLS-02040 The PLANG CI shall be able to display (via GUI) cross-
DAAC

PlPlanB

S-PLS-02050 The PLANG CI shall be able to provide plans to PLANG
CIs at other sites.

PlExportedPlanNB

S-PLS-02060 The PLANG CI shall be able to account for cross-DAAC
data dependencies in the plans it generates.

PlPlanB

S-PLS-02070 The PLANG CI shall be able to integrate multiple DAAC
plans to produce a coordinated plan.

PlTimelineDisplay

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

Such expansion in capacity or capability shall be

operations provide

data dependencies.

A-11 305-CD-026-002

Table A-1. Requirements Trace (12 of 14)

S-PLS-02080 The PLANG CI shall provide the operations and
management staff at a site the ability to send routine
scheduling information to other sites.

PlExportedPlanNB

S-PLS-02090 The PLANG CI shall able to receive routine scheduling
information from other sites.

PlExportedPlanNB

S-PLS-02100 The PLANG CI shall provide the operations and
management staff at a site the ability to send scheduling
request information to other sites.

PLANG

S-PLS-02110 The PLANG CI shall able to receive scheduling request
information from other sites.

PLANG

S-PLS-02120 The PLANG CI shall provide the operations and
management staff at a site the ability to send schedule
conflict alert information to other sites.

PLANG

S-PLS-02130 The PLANG CI shall able to receive schedule conflict alert
information from other sites.

PLANG

S-PLS-02140 The PLANG CI shall provide the operations and
management staff at a site the ability to send emergency
scheduling information to other sites.

PLANG

S-PLS-60010 The PLNHW CI shall support the hardware resource
requirements of the PLANG CI and its interface
requirements with the operations staff performing
planning functions.

PLNHW

S-PLS-60200 The maximum down time of the PLNHW CI shall not
exceed twice the required MDT in 99 percent of failure
occurrences.

PLNHW

S-PLS-60320 The PLNHW CI shall support transactions per day, as
specified for each release and corresponding DAAC sites
in Appendix E, Table E-1 of the current version of 304-
CD-002 for Release A
current version of 304-CD-005 for Release B.

PLNHW

S-PLS-60330 The PLNHW CI shall provide local storage in support of
the DAAC-specific requirements as specified in Appendix
E, Table E-9 of the current version of 304-CD-005.

PLNHW

S-PLS-60380 The PLNHW CI design and implementation shall have the
flexibility to accommodate planning workload expansion
up to a factor of 3 in its capacity with no changes in its
design and up to a factor of 10 without major changes to
its design.

PLNHW

S-PLS-60410 The PLNHW CI shall be capable of operating in a 24 hour
per day, 7 days a week mode.

PLNHW

S-PLS-60420 PLNHW CI functions shall have an operational availability
of .96 as a minimum and Mean Down Time of < 4 hours
during times of staffed operations.

PLNHW

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

and Table E-1 of Appendix E of the

A-12 305-CD-026-002

Table A-1. Requirements Trace (13 of 14)

S-PLS-60450 The PLNHW CI elements and components shall include
the on-line (operational mode) and off-line (test-mode)
fault detection and isolation capabilities required to
achieve the specified operational availability
requirements.

PLNHW

S-PLS-60610 The PLNHW CI shall interface with the ISS. PLNHW

S-PLS-60630 The PLNHW CI shall provide maintenance interfaces to
support the function of System Maintenance.

PLNHW

S-PLS-60640 The PLNHW CI shall provide operations interfaces to
support the function of System Maintenance.

PLNHW

S-PLS-61010 The PLNHW CI shall support test activities throughout the
development phase.

PLNHW

S-PLS-61020 The following testing shall be performed on the PLNHW
CI:
a.
b.
c.
d.

PLNHW

S-PLS-61040 Internal testing shall be performed on the PLNHW CI
which includes tests of hardware functions, and
integration testing with other SDPS subsystems.

PLNHW

S-PLS-61050 Internal testing shall be performed on the PLNHW CI to
verify the internal interfaces to the Data Server, and
Ingest subsystems.

PLNHW

S-PLS-61080 The PLNHW CI shall be capable of supporting end-to-end
test and verification activities of the EOS program
including during the pre-launch, spacecraft verification,
and instrument verification phases.

PLNHW

S-PLS-61150 The PLNHW CI shall be capable of being monitored
during testing.

PLNHW

S-PLS-61210 The operating system for each Unix platform in the
PLNHW CI shall conform to the POSIX.2 standard.

PLNHW

S-PLS-61220 Each PLNHW CI POSIX.2 compliant platform shall have
the following utilities installed at a minimum: perl, emacs,
gzip, tar, imake, prof, gprof, nm.

PLNHW

S-PLS-61230 Each PLNHW CI POSIX.2 compliant platform shall have
the following POSIX.2 user Portability Utilities installed at
a minimum: man, vi.

PLNHW

S-PLS-61240 Each PLNHW CI platform shall have the following
POSIX.2 Software Development utilities installed: make,
imake.

PLNHW

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

Unit testing
Subsystem testing
Integration & Testing
End-to- End testing

A-13 305-CD-026-002

Table A-1. Requirements Trace (14 of 14)

S-PLS-61260 Each PLNHW CI POSIX.2 compliant platform shall have
the following Unix shells installed at a minimum: C shell,
Bourne shell, Korn shell.

PLNHW

S-PLS-61350 Each PLNHW CI POSIX.2 compliant platform shall have
a screen capture utility.

PLNHW

S-PLS-61530 The PLNHW CI shall contain the
and interface resources to support the planning functions
for the TRMM mission instruments of CERES and LIS.

PLNHW

S-PLS-61610 Each PLNHW CI workstation platform shall provide a hard
media device with a capacity of TBD GB for software and
system maintenance and upgrade support.

PLNHW

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

processing, storage,

Table A-2 identifies proposed/pending requirements changes which have not been approved and/or were not
yet in the RELB_CDR_030196 version of the requirements database.

A-14 305-CD-026-002

Table A-2. Intended Changes to CDR Requirements Baseline (1 of 10)
L4 Rqmt ID L4 Requirement Text

Intended Change
Reason for Change Object Class, CSC, or CI

S-PLS-00110 The PLANG CI shall
reject a Production
Request for On-
Demand Data Products
if the processing
completion deadline
(specified in the
Production Request)
cannot be met.

Not currently receiving
completion deadline as part of
On-Demand Production
Requests.

PlOnDemandPRNB

S-PLS-00120 The PLANG CI shall
validate
Requests for On-
Demand Data Products
against a pre-approved
list of acceptance
criteria.

All identified acceptance criteria
checked prior to receipt of On-
Demand Production Requests
by Planning Subsystem

PlOnDemandManagerNB
PlOnDemandPRNB

S-PLS-00180 The PLANG CI shall
validate updates
(modifications /
cancellations) to
existing Production
Requests provide the
capability to create new
production requests
from existing production
requests.

This modification and deletion of
S-PLS-0200 reflect how system
will actually work.
PR is actually the deletion of old
PR and entry of a new PR.

PlProductionRequest,
PlProductionRequestUI

S-PLS-00200 The PLANG CI shall
accept updates
(modifications /
cancellations) to
Production Requests
entered by the
operations staff.

See above comment for S-PLS­
00180.

PlDataTypeB
PlDPRB
PlDataGranule
PlDataTypeCatalogue
PlPGE
PlProductionRequestB
PlProductionRequestUI
PlDataTypeReq

S-PLS-00230 The PLANG CI shall
provide production rules
(via GUI) to break up
large reprocessing
Production Requests.

This functionality is redundant
with that of decomposing
Production Requests (PRs) to
Data Processing Requests
(DPRs).

PlReprocPRNB
PlReprocessingStrategyNB

S-PLS-00300 The PLANG CI shall
accept ground events to
describe the allocation
of data processing
resources to non­
production tasks.

Not consistent with current
resource planning concept.

PlRpResourceReservation
PlGroundEvent

Production

Modification of

A-15 305-CD-026-002

Table A-2. Intended Changes to CDR Requirements Baseline (2 of 10)

New The PLANG CI shall
provide the capability to
display a site resources
plan covering an
operator specified time
interval, in text report
and timeline display
format, to a resolution of
one minute which
describes the exclusive
allocation of planned
site resources to default
activities and ground
events.

Implement resource planning. PlRpResourcePlan,
PlRpResourceReservation
PlRpTimeline

New The PLANG CI shall
provide the capability to
display a site resources
plan covering an
operator specified time
interval, in text report
and timeline display
format, to a resolution of
one minute which
describes the shared
allocation of planned
site resources to default
activities and ground
events.

Implement resource planning. PlRpResourcePlan,
PlRpResourceReservation,
PlRpTimeline

New The PLANG CI shall,
when a ground event is
scheduled,
display (via GUI)
conflicts with previously
scheduled ground
events.

Implement resource planning. PlRpResourceReservation,
PlRpResourceState,
PlRpResource

New The PLANG CI shall
provide the capability to
receive MSS site
configuration
management
information for resource
planning.

Implement resource planning. PlRpResource, Baseline
Manager

L4 Rqmt ID L4 Requirement Text
Intended Change

Reason for Change Object Class, CSC, or CI

identify and

A-16 305-CD-026-002

Table A-2. Intended Changes to CDR Requirements Baseline (3 of 10)

New The PLANG CI shall
provide the capability to
maintain a list of
planned site resources
via GUIs with the
specific capabilities to
add, update, delete, and
query on site resources.

Implement resource planning. PlRpResourcePlanningUI,
PlRpResource

New The PLANG CI shall
provide the capability to
associate a default
activity to a planned site
resource.

Implement resource planning. PlRpResource

New The PLANG CI shall be
capable of setting up
dependencies between
services and hardware
resources.

Implement resource planning,
allow more extensive use of
resoruce plan by production
planning.

PlRpService, PlRpResource

New The PLANG CI shall
provide the capability to
enter via GUIs site
resource requests, to
support ground events.

Implement resource planning. PlRpResourceReservation

New The PLANG CI shall
provide the capability to
maintain site resource
requests, via GUIs, with
the specific capabilities
to add, update, delete,
and query on site
resource requests.

Implement resource planning. PlRpResourceReservation

New The PLANG CI shall
provide the capability to
review site resource
requests, via GUIs, for
the purpose of
validation and to set or
update the site resource
request validation
status field.

Implement resource planning. PlRpResourceReservation

L4 Rqmt ID L4 Requirement Text
Intended Change

Reason for Change Object Class, CSC, or CI

A-17 305-CD-026-002

Table A-2. Intended Changes to CDR Requirements Baseline (4 of 10)

New The PLANG CI shall
provide the capability to
review site resource
requests, via GUIs, and
to set the status of the
site resource request in
one of the following
states:
1)
2)
3)
4) Rejected.

Implement resource planning. PlRpResourceReservation

New The PLANG CI shall
provide the capability to
generate a planned site
resource report.

Implement resource planning. PlRpResourceReservation,
PlRpResourcePlan

New The PLANG CI shall
provide the capability to
generate site resource
request reports.

Implement resource planning. PlRpResourcePlan

New The PLANG CI shall
provide the capability to
generate reports
providing a comparison
of planned vs. actual
resource usage.

Implement resource planning. PlRpResourceReservation,
PlRpResourcePlan

New The PLANG CI shall be
able to provide site
resource plans to
PLANG CI's at other
sites

Implement resource planning.
Enable cross-DAAC planning.

PlRpPublishedPlan

New The PLANG CI shall be
able to import saved site
resource plans.

Implement resource planning. PlRpPublishedPlan

New The PLANG CI shall be
able to save site
resource plans to a file.

Implement resource planning. PlRpPublishedPlan

New The PLANG CI shall
provide the capability to
initiate a site ground
event
with a resource request
in the resource plan at
the planned for time.

Implement resource planning. PlRpExecutatable,
PlGroundEventExecutable,
PlResourceReservation

New The PLANG CI shall log
the start time of ground
events it executes.

Implement resource planning. PlResourceReservation

L4 Rqmt ID L4 Requirement Text
Intended Change

Reason for Change Object Class, CSC, or CI

New
Validated
Approved

script associated

A-18 305-CD-026-002

Table A-2. Intended Changes to CDR Requirements Baseline (5 of 10)

New The PLANG CI shall log
the end time of ground
events it executes.

Implement resource planning. PlResourceReservatio

S-PLS-00405 The PLANG CI shall
allow the conditions for
execution of Product
Generation Executives
(PGEs) to include the
values of intermediate
results such as
metadata fields of input
data.

Clarification. PlMetadataChecks

S-PLS-00410 The PLANG CI shall
support the capability to
display (via GUI) a list of
PGEs maintained in its
PGE information
database.

Redundant with report
generation capabilities.

PlPGEProfile

S-PLS-00420 The PLANG CI shall
support the capability to
browse (via GUI) the
information maintained
on a specific PGE.

Capabilities provided by AITTL. PlPGEProfile

S-PLS-00430 The PLANG CI shall
support the capability to
(a) allow (authorized)
operations staff
updates (enter / modify /
delete) of PGE
information in the
Planning PGE
information database,
(b) maintain a record of
updates made.

Capabilities provided by AITTL. PlPGEProfile

S-PLS-00465 The PLANG shall
maintain lists of input
Granules in order to
support the production
of tile or spatial-based
output Granules

Not consistent with current
design.

PlTileScheduledNB
PlOrbitScheduledNB

S-PLS-00490 The PLANG CI shall
maintain Planning
system fault data using
fault isolation tools
provided by the LSM log
planning system faults
to MSS.

Clarification. EcEvent

L4 Rqmt ID L4 Requirement Text
Intended Change

Reason for Change Object Class, CSC, or CI

A-19 305-CD-026-002

Table A-2. Intended Changes to CDR Requirements Baseline (6 of 10)

S-PLS-00611 The operations staff
shall manually submit
(to the Data Server)
Data Subscriptions for
the Data Availability
Schedules (DAS) of any
remote ECS sites, any
IP and any ODC that
makes a DAS available

Prodcedural requirement, not
linked to any functional
requirements.

PlDASNB

S-PLS-00615 The operations staff
shall manually submit
(to the Data Server)
Data Subscriptions for
FOS plans and
schedules.

Prodcedural requirement, not
linked to any functional
requirements.

PlFOSDASFile

S-PLS-00606 The PLANG CI shall
send advertisement
subscriptions to the
IOS.

Interface is no longer needed or
used.

S-PLS-00690 The PLANG CI shall
create a Candidate Plan
specifying a timeline for
PGE execution that will
satisfy Production
Requests for Standard
Products consistent
with available and
allocated processing
resources.

Clarification. PlGroundActivity
PlPlanB
PlPGEActivity
PlPlanningWorkbenchUI
PlProductionRequestB
PlDPRs
PlDPRB
PlGroundEvents
PlGroundEvent

S-PLS-00700 The PLANG CI shall
create a Candidate Plan
specifying a timeline for
PGE execution that will
satisfy
Requests for
Reprocessing and On-
Demand Data Products
consistent with
available and allocated
processing resources.

Clarification. PlPRCollectionNB

New The PLANG CI shall be
able to provide a high­
level, aggregate view of
production plans.

Increase tool usability.

L4 Rqmt ID L4 Requirement Text
Intended Change

Reason for Change Object Class, CSC, or CI

Production

A-20 305-CD-026-002

Table A-2. Intended Changes to CDR Requirements Baseline (7 of 10)

S-PLS-00741 The PLANG CI shall be
capable of seperateing
AI&T activities from the
operational production
environment.

Clarification. PlPGEActivity
PlDPRB
PlPlanB
PlPlanningWorkbenchUI
PlResourceRequirement
PlDPRs

S-PLS-00870 The operations staff
shall manually submit
Data Subscriptions for
PGE input data to the
appropriate Data
Servers.

Prodcedural requirement, not
linked to any functional
requirements.

PlSubscriptionSubmitIF
PlDataTypes
PlDataTypeB
IoAdAdvertisingSrv_C
IoAdServiceAdvertisement_
C
IoAdServiceCollection_C

S-PLS-00872 The operations staff
shall manually submit
Data Subscriptions for
L0 data to the Ingest
Subsystem.

Prodcedural requirement, not
linked to any functional
requirements.

PlDataTypeB
PlDataTypes
PlSubscriptionSubmitIF

S-PLS-00880 The operations staff
shall manually cancel
Data Subscriptions
input data to PGEs that
are no longer used,
once they determine
that the input data is not
required by any other
PGE.

Prodcedural requirement, not
linked to any functional
requirements.

DsClSubscription
PlDataTypeB
PlDataTypes
PlSubscriptionSubmitIF

S-PLS-01030 The PLANG CI shall
update the Active Plan
with the current
processing received
status of each Data
Processing Request
listed.

Clarification based on current
design.

PlPlanB
DpPrScheduler
PlPGEActivity
PlPlanningWorkbenchUI
PlDPRB
PlActivities

L4 Rqmt ID L4 Requirement Text
Intended Change

Reason for Change Object Class, CSC, or CI

for

A-21 305-CD-026-002

Table A-2. Intended Changes to CDR Requirements Baseline (8 of 10)

S-PLS-01200 The PLANG CI shall
provide the operations
staff with the capability
to perform the following
on-line functions, via
GUI:
a.
requests for standard
products,
b.
cancellation of
production requests for
standard products,
c.
production requests,
d.
production rules and
PGE information,

Clarification made in light of
resource planning design.

PlPlanningWorkbenchUI

S-PLS-01240 The PLANG CI shall
support the display (via
GUI) of Planning
hardware and software
detected faults to the
operations staff.

Only software faults are logged
with this mechanism.
faults are logged via HP
Openview.

EcEvent

S-PLS-01450 The PLANG CI shall
collect Configuration
Management Data and
provide it to the MSS.

Interface is no longer needed or
used.

PLANG

S-PLS-02010 The PLANG CI shall be
able to identify
scheduling conflicts in
site production plans.

Clarification PlPlanB

S-PLS-02030 The PLANG CI shall
identify conflicts in site
production plans
caused by cross-DAAC
data dependencies.

Clarification PlPlanB

S-PLS-02040 The PLANG CI shall be
able to display (via GUI)
cross-DAAC
dependencies in
production plans.

Clarification PlPlanB

S-PLS-02050 The PLANG CI shall be
able to provide site
production plans to
PLANG CIs at other
sites.

Clarification PlExportedPlanNB

L4 Rqmt ID L4 Requirement Text
Intended Change

Reason for Change Object Class, CSC, or CI

Entry of product

Query / update /

Query status of

Query / update of

Hardware

data

A-22 305-CD-026-002

Table A-2. Intended Changes to CDR Requirements Baseline (9 of 10)

S-PLS-02060 The PLANG CI shall be
able to account for
cross-DAAC data
dependencies in the site
production plans it
generates.

Clarification PlPlanB

S-PLS-02070 The PLANG CI shall be
able to integrate
multiple DAAC site
production plans to
produce a coordinated
plan.

Clarification PlTimelineDisplay

S-PLS-02200 The PLANG CI shall
have the capability to
automatically extract
pertinent scheduling
information based on
operator supplied
criteria temporal
subsets from a
production or resource
plan and save them to a
file,

Clarification based on design. PlPublishedPlan

New The PLANG CI shall
have the capability to
extract subsets based
on user selected
Production Requests
and save them to a file.

Clarification based on design. PlPublishedPlan

New The PLANG CI shall
provide a list of replan
events which will cause
the user to be notified
and given the option to
replan.

Implementing Limited automatic
replan capability.

PlReplanCriteriaUI,
PlReplanCriteria

New The PLANG CI shall
consider the creation of
a new resource plan to
be a replan event if it
changes the availability
of hardware resources
less than a configurable
amount of time in the
future.

Implementing Limited automatic
replan capability.

PlResourceChange

L4 Rqmt ID L4 Requirement Text
Intended Change

Reason for Change Object Class, CSC, or CI

A-23 305-CD-026-002

Table A-2. Intended Changes to CDR Requirements Baseline (10 of 10)

New The PLANG CI shall
consider the arrival of a
new Predicted Data
Availability Schedule to
be a replan event if it
indicates a delay in the
predicted arrival of data
by more than a
configurable (for that
particular data type)
amount of time.

Implementing Limited automatic
replan capability.

PlDASDifferent, PlDASDelta

New The PLANG CI shall
consider the submission
of an On-Demand
Prodution Request to be
a replan event if the
resource requirements
exceed predefined
thresholds.

Implementing Limited automatic
replan capability.

PlOnDemandExceed,
PlOnDemandReplanValues

New The PLANG CI shall
have the capability of
providing an estimate of
the resource usage for a
production request prior
to the inclusion of that
request in a production
plan.

Implementing Limited automatic
replan capability.

PlProductionRequestUI

New The PLANG CI shall
require confirmation of
the selection of a
version of a PGE for
which a more recent
version exists.

New capability to minimize
human error in entry of
Production Requests.

PlProductionRequestUI

L4 Rqmt ID L4 Requirement Text
Intended Change

Reason for Change Object Class, CSC, or CI

A-24 305-CD-026-002

Abbreviations and Acronyms

ADSRV advertising service CSCI

AHWGP Ad Hoc Working Group on Production

AI&T algorithm integration and test

AITTL algorithm integration and test tools (CSCI)

AM-1 EOS AM Project (morning spacecraft series)

ASCII American Standard Code for Information Exchange Interchange

CASE computer aided software engineering

CDR Critical Design Review

CERES Clouds and Earth's Radiant Energy System

configuration item

COTS commercial off-the-shelf (hardware or software)

CPU central processing unit

CSC computer software component

CSCI computer science configuration item

CSMS Communications and Systems Management Segment (ECS)

DAAC distributed active archive center

DAS Detailed Activity Schedule (created by FOS)

DAT Data Availability Times

DBMS database management system

DDSRV document data server

DEV developed code

DPR data processing request

ECS EOSDIS Core System

EDF ECS development facility

EDOS EOS Data and Operations System

EOS Earth Observing System

EOSDIS EOS Data and Information System

ESDT Earth science data types

ESN EOSDIS Science Network (ECS)

FDDI fiber distributed data interface

GB gigabyte (109)

GC global change

AB-1 305-CD-026-002

CI

GUI graphic user interface

FOS Flight Operations Segment (ECS)

HCL Hughes class library

HTML Hyper-Text Markup Language

HWCI hardware configuration item

I/O input/output

L0 Level 0 data

LAN local area network

LaRC Langley Research Center (DAAC)

MB megabyte (106)

MSFC Marshall Space Flight Center (DAAC)

MSS Management Subsystem

NOAA National Oceanic and Atmospheric Administration

OO object oriented

OODCE Object Oriented Distributed Computing Environment

OPR On-demand Production Requests

PDAS Planning Data Availability Schedule (created by PLANG)

PDPS planning and data processing system

PDR Preliminary Design Review

PGE Product Generation Executive

PLANG production planning CSCI

PR production request

RAID redundant array of inexpensive disks

RDBMS relational database management system

RMA reliability, maintainability, availability

SCSI Small Computer System Interface

SDPF Sensor Data Processing Facility (GSFC)

SDPS Science Data Processing Segment (ECS)

TRMM Tropical Rainfall Measuring Mission (joint US-Japan)

user interface

UNIX POSIX operating system

WAIS Wide Area Information Server

WWW World Wide Web

AB-2 305-CD-026-002

U/I

	1.��Introduction
	1.1 Identification
	1.2 Purpose and Scope
	1.3 Status and Schedule
	1.4 Organization

	2.��Related Documentation
	2.1 Parent Documents
	2.2 Applicable Documents

	3.��Subsystem Overview
	3.1 Context
	Figure 3.1-1. Context Diagram

	3.2 Subsystem Overview
	3.2.1 Use of COTS within the Planning and Data Pro...
	3.2.2 Summary of Changes to the Planning Subsystem...
	Figure 3.2-2. Graphical Schedule Displays Provided...

	3.2.3 Key Design Drivers
	3.2.4 Planning Subsystem Use of Key Design Mechani...
	3.2.5 Subsystem Structure

	4.��PLANG - Production Planning CSCI
	4.1 CSCI Overview
	Figure 4.1-1. CSCI Overview
	Figure 4.1-2. Planning SCSI Component Diagram
	4.1.1 PDPS Database
	4.1.2 Production Request Editor
	4.1.3 Production Planning Workbench
	4.1.4 Planning Subscription Editor
	4.1.5 Subscription Manager
	4.1.6 On-Demand Manager
	4.1.7 Resource Planning Workbench

	4.2 CSCI Object Model
	4.2.1 PGE Profile View
	Figure 4.2-1. PGE Profile View

	4.2.2 Production Request View
	Figure 4.2-2. Production Request View

	4.2.3 Subscription Submission View
	4.2.4 Production Planning View
	4.2.5 Production Planning User Interface View
	4.2.6 Publishing Plans View
	4.2.7 Resource Planning View
	4.2.8 Resource Management View
	4.2.9 Plan Activation View
	4.2.10 Subscription Manager View
	4.2.11 Data Activity Times View
	4.2.12 DBMS Proxy Agent View
	4.2.13 On-Demand Manager View
	Figure 4.2-3. Subscription Submission View

	4.3 Production Planning Class Descriptions
	4.3.1 DmLmClRequestServer Class
	4.3.2 DpPrScheduler Class
	4.3.3 DsClCommand Class
	4.3.4 DsClESDTReference Class
	4.3.5 DsClESDTReferenceCollector Class
	4.3.6 DsClQuery Class
	4.3.7 DsClRequest Class
	4.3.8 DsClSubscription Class
	4.3.9 EcEvent Class
	4.3.10 EcMpMsgCb Class
	4.3.11 EcPfClient Class
	4.3.12 EcPfManagedServer Class
	4.3.13 EcRequest Class
	4.3.14 EcUrUR Class
	4.3.15 GlCallback Class
	4.3.16 GlParameterList Class
	4.3.17 IoAdProduct Class
	4.3.18 IoAdProductList Class
	4.3.19 IoAdProductSearchCommand Class
	4.3.20 IoAdProvider Class
	4.3.21 IoAdService Class
	4.3.22 PlActivePlan Class
	4.3.23 PlActivities Class
	4.3.24 PlActivity Class
	4.3.25 PlAlternateDataGranuleNB Class
	4.3.26 PlAlternateNB Class
	4.3.27 PlCluster Class
	4.3.28 PlComputer Class
	4.3.29 PlDASDelta Class
	4.3.30 PlDASDifferent Class
	4.3.31 PlDASNB Class
	4.3.32 PlDATRecord Class
	4.3.33 PlDBMSProxyAgent Class
	4.3.34 PlDPRB Class
	4.3.35 PlDPRs Class
	4.3.36 PlDataAvailabilityTimes Class
	4.3.37 PlDataDependencies Class
	4.3.38 PlDataGranule Class
	4.3.39 PlDataScheduled Class
	4.3.40 PlDataSchedules Class
	4.3.41 PlDataSource Class
	4.3.42 PlDataSourceFactory Class
	4.3.43 PlDataTranferHistory Class
	4.3.44 PlDataTypeB Class
	4.3.45 PlDataTypeCatalogue Class
	4.3.46 PlDataTypeReq Class
	4.3.47 PlDiskPartition Class
	4.3.48 PlEDASModeRecordNB Class
	4.3.49 PlEDASRecordNB Class
	4.3.50 PlEntryScreenNB Class
	4.3.51 PlExportedPlanNB Class
	4.3.52 PlFOSDASFile Class
	4.3.53 PlFile Class
	4.3.54 PlGroundActivity Class
	4.3.55 PlGroundEvent Class
	4.3.56 PlGroundEventAllocation Class
	4.3.57 PlGroundEventExecutable Class
	4.3.58 PlGroundEvents Class
	4.3.59 PlImportedActivity Class
	4.3.60 PlInstModeRecords Class
	4.3.61 PlInstrumentModes Class
	4.3.62 PlMetaDataChecks Class
	4.3.63 PlNetwork Class
	4.3.64 PlOnDemandExceed Class
	4.3.65 PlOnDemandManagerNB Class
	4.3.66 PlOnDemandPRNB Class
	4.3.67 PlOnDemandReplanValues Class
	4.3.68 PlOrbitModelNB Class
	4.3.69 PlOrbitScheduledNB Class
	4.3.70 PlOtherTypes Class
	4.3.71 PlOutputYield Class
	4.3.72 PlPDASFile Class
	4.3.73 PlPDASMetaData Class
	4.3.74 PlPDASRecords Class
	4.3.75 PlPGE Class
	4.3.76 PlPGEActivity Class
	4.3.77 PlPGECollection Class
	4.3.78 PlPGEPriorityNB Class
	4.3.79 PlPGEProfile Class
	4.3.80 PlPRCollectionNB Class
	4.3.81 PlPRPriorityNB Class
	4.3.82 PlPerformance Class
	4.3.83 PlPgeFactory Class
	4.3.84 PlPlanASCIIReportFile Class
	4.3.85 PlPlanB Class
	4.3.86 PlPlanBinaryReportFile Class
	4.3.87 PlPlanGenerationUIB Class
	4.3.88 PlPlanMetadataFile Class
	4.3.89 PlPlanningWorkbenchUI Class
	4.3.90 PlPopupMessage Class
	4.3.91 PlProdStratNB Class
	4.3.92 PlProdStratUINB Class
	4.3.93 PlProductionPlannersUI Class
	4.3.94 PlProductionRequestB Class
	4.3.95 PlProductionRequestUI Class
	4.3.96 PlPublishedPlan Class
	4.3.97 PlReplanCriteria Class
	4.3.98 PlReplanCriteriaUI Class
	4.3.99 PlRescUseThreshNB Class
	4.3.100 PlRescUseThreshUINB Class
	4.3.101 PlResource Class
	4.3.102 PlResourceChange Class
	4.3.103 PlResourceManager Class
	4.3.104 PlResourceRequirement Class
	4.3.105 PlRoutineArrival Class
	4.3.106 PlService Class
	4.3.107 PlSourcetoDsHistoryNB Class
	4.3.108 PlString Class
	4.3.109 PlSubMsgCb Class
	4.3.110 PlSubscriptionManager Class
	4.3.111 PlSubscriptionSubmitIF Class
	4.3.112 PlTile Class
	4.3.113 PlTileScheduledNB Class
	4.3.114 PlTimeLineDisplay Class
	4.3.115 PlTimeScheduled Class
	4.3.116 PlTimer Class
	4.3.117 PlUserParameters Class
	4.3.118 PlUserPriorityNB Class

	4.4 PLANG Dynamic Model
	4.4.1 Production Request Scenario
	4.4.2 Data Availability Scenario
	4.4.3 Subscription Submission Scenario
	4.4.4 Subscription Withdrawal Scenario
	4.4.5 Plan Creation Scenario
	4.4.6 Assigning a Priority to an Activity Scenario...
	4.4.7 Publishing a Plan Scenario
	4.4.8 Importing a Plan from the Data Server Scenar...
	4.4.9 Plan Activation Scenario
	4.4.10 Statusing a Plan Scenario
	4.4.11 Canceling a Plan Scenario
	4.4.12 Deleting a Plan Scenario
	4.4.13 Subscription Notification Scenario
	4.4.14 Subscription Notification with Spatial Base...
	Figure 4.4-13. Subscription Notification with Spat...

	4.4.15 Subscription Notification with Alternate In...
	4.4.16 Data Availability Times Scenario
	Figure 4.4-15. Data Availability Times Schedule

	4.4.17 Limited Automatic Replan based on a New DAS...
	4.4.18 User Logon and Authentication Scenario
	4.4.19 On-Demand Production Request Scenario (Proc...
	4.4.20 Limited Automatic Replan based on an On-dem...
	4.4.21 On-Demand Production Request Scenario (Dela...
	Figure 4.4-19. On-Demand Production Request Scenar...

	4.4.22 Entering and Approving a Resource Reservati...
	Figure 4.4-20. Entering and Approving a Resource R...

	4.4.23 Creating a New Resource Plan

	4.5 CSCI Structure
	4.5.1 Planning Subscription Editor CSC
	4.5.2 Production Request Editor CSC
	4.5.3 Subscription Manager CSC
	4.5.4 Production Planning Workbench CSC
	4.5.5 Planning Object Library
	4.5.6 PDPS Database CSC
	4.5.7 On-Demand Manager CSC
	4.5.8 Resource Planning Workbench CSC

	4.6 PLANG CSCI Management and Operation
	4.6.1 PLANG CSCI Operation
	4.6.2 System Management Strategy
	4.6.3 Operator Interfaces
	4.6.4 Reports

	Figure 4.2-6. Publishing Plans View
	Figure 4.2-4. Production Planning View
	Figure 4.2-5. Production Planning User Interface V...
	Figure 4.2-7. Resource Planning View
	Figure 4.2-8. Resource Management View
	Figure 4.2-9. Plan Activation View
	Figure 4.2-10. Subscription Manager View
	Figure 4.2-11. Data Activity Times View
	Figure 4.2-12. DBMS Proxy Agent View
	Figure 4.2-13. On-Demand Manager View
	Figure 4.4-2. Data Availability Scenario
	Figure 4.4-1. Production Request Scenario
	Figure 4.4-3. Subscription Submission Scenario
	Figure 4.4-4. Subscription Withdrawal Scenario
	Figure 4.4-5. Plan Creation Scenario
	Figure 4.4-6. Assigning a Priority to an Activity ...
	Figure 4.4-7. Publishing a Plan Scenario
	Figure 4.4-8. Importing a Plan from the Data Serve...
	Figure 4.4-9. Plan Activation Scenario Scenario
	Figure 4.4-10. Statusing a Plan Scenario
	Figure 4.4-11. Cancelling a Plan Scenario
	Figure 4.4-12. Subscription Notifications Scenario...
	Figure 4.4-14. Subscription Notification with Alte...
	Figure 4.4-16. Limited Automatic Replan Based on a...
	Figure 4.4-17. On-Demand Production Request Scenar...
	Figure 4.4-18. Limited Automatic Replan Based on a...
	Figure 4.4-21. Create Resource Plan Scenario
	Figure 4.4-22. Commit Resource Plan Scenario
	Figure 4.5-1. Delphi Scheduler Object Model
	Figure 4.5-2. Delphi Resource Object Model
	Figure 4.5-3. Delphi Timeline Object Model
	Figure 4.5-4. Planning Workbench Architecture
	Figure 4.5-5. Planning Workbench System Resource O...
	Figure 4.5-6. Planning Workbench System Scheduling...
	Figure 4.5-7. Delphi Schedule Event Trace

	5.��Planning Subsystem Hardware CI
	5.1 Hardware Design Drivers
	5.1.1 Key Trade-Off Studies and Prototypes
	5.1.2 Sizing and Performance Analysis
	5.1.3 Scalability, Evolvability, Migration to Rele...

	5.2 HWCI Structure
	Figure 5-1. Planning Block Diagram
	5.2.1 Connectivity
	Figure 5-2. Planning Generic Network Connectivity

	5.2.2 HWCI Components

	5.3 Fail-over and Recovery Strategy
	Figure 5-3. Primary and Secondary Server Concept O...

	Appendix A. Requirements Trace
	Abbreviations and Acronyms

