
Mode Management Service
Alex Kirn

akirn@eos.hitc.com

16 April 1996

706-CD-003-001 Day 2 Book B AK1-1

706-CD-003-001 Day 2 Book B AK1-2

Mode Management Service Outline

• Driving Requirements

• Software Design

• Physical Design

• User Interfaces

• Data Model

• Object Model

• Mode Management Service Initiation Event Trace

• Reference data

• HP OpenView and Agent Functionality

• Main Loop and Callback Routines

706-CD-003-001 Day 2 Book B AK1-3

Driving Requirements

• ECS shall support simultaneous production and testing

activities

• ECS shall provide the capability to initiate a new mode of

execution

• ECS shall be capable of monitoring and controlling each

mode of operation

706-CD-003-001 Day 2 Book B AK1-4

MCIMACI

Management Agent Services

Mode
Management

Fault
Management

Performance
Management

Security
Management

Trouble
Ticketing

Management
Data Access

Billing /
Accounting

Management
DBMS

Accountability
Management

Report
Generation
Management

Physical
Configuration
Management

Management
Framework (HPOV)

User Comment
Survey

Backup and
Restore

MLCI

Change Request
Management

License
Management

SW Distribution
Management

SW Change
Management

Baseline
Management

Training
Management

Inventory/
Logistics/
Maintenance
Management

Policies &
Procedures
Management

Enterprise Framework
(Tivoli)

MMS Software Architecture
Overview

706-CD-003-001 Day 2 Book B AK1-5

MMS Software Architecture
Overview (cont.)

Active
Modes

List

HPOV
COTS

Mode
Management

Service SubAgent

Deputy
Agent

Master
Agent

p/o MCI p/o MACI

events

gets

traps,
sets

Active
Modes

Active
Modes

(NFS/DFS)

706-CD-003-001 Day 2 Book B AK1-6

MMS Software Architecture

Active
Modes

List

HP OpenView Windows (ovw)
COTS

Mode Management
Service (MMS)

Application
main()

MsAgDeputy

ovwAPI’s

snmpAPI’s

snmp over UDP

ovwInit()

ovsnmpopen()

snmp via the DOF

Managed host
Traps and Sets

Managed hostSNMPGets
Active
Modes

706-CD-003-001 Day 2 Book B AK1-7

MMS Physical Design

Active
Modes

List

HPOV
COTS

Mode
Management

Service SubAgent
Deputy
Agent

Master
Agent

ovw API’s

snmp

DOF

Active
Modes

Active
Modes

(NFS/DFS)

Managed HostManager Host

Managed
Application

snmp
API’s

706-CD-003-001 Day 2 Book B AK1-8

MMS Multi-Session View

Management
Console

Management
Console

Management Station

ovwdb
daemon

OVwSessionId = ops:0 OVwSessionId = ts1:0

NFSNFS

object
database

map
database

active
modes

list

Mode
Management

Service

socket

socket

socket socket

706-CD-003-001 Day 2 Book B AK1-9

User Interface

• CDS Browser: manual configuration of CDS namespace for
adding/removing mode hierarchies

• HP OpenView GUI:
– MMS seamlessly incorporated into HPOV’s standard user

interface
– Mode Activation/Deactivation
– Monitoring: status propagation, event notification
– Control: Life-cycle; startup, shutdown, suspend, resume

706-CD-003-001 Day 2 Book B AK1-10

Data Model
• Active Modes List

– Maintained on the manager host
– Maintained by Mode Management Service
– Accessed by Mode Management Service, SubAgent, and

MDA
– one per DCE cell
– Format:

» modeIdentifier1 <simTime> <deltaTime>
» For Example:

• ops
• ts1 98:256:13:40:00 +1120:08:22:15
• ts3 96:298:04:45:00
• tr1

» simTime format: yy:ddd:hh:mm:ss
» deltaTime format: +/-dddd:hh:mm:ss

• + future, - past

706-CD-003-001 Day 2 Book B AK1-11

• The following object model will be reviewed

Model Name Diagram Name Document Reference

MMS Mode_Mgmt_Object_Model 305 Vol29, Section 6.1.3

Object Model

706-CD-003-001 Day 2 Book B AK1-12

• The following event trace will be reviewed

Model Name Diagram Name Document Reference

Mode Activation Mode_Activation_Event_Trace Contained Within

Dynamic Model

706-CD-003-001 Day 2 Book B AK1-13

Mode Activation Event Trace

706-CD-003-001 Day 2 Book B AK1-14

Event Trace Description

• Assumptions
• The Mode Management Service (MMS) has already been

initiated.
• The mode entered is “ts1”. (The application will prompt

the user for a simulation time after the mode identifier has
been entered and validated for all non-ops modes.)

• Event Flow
• The operator selects an action from within the HPOV GUI

to Activate a new mode.
• Upon instantiation the MsMmModeInit object prompts for

the mode identifier and then validates the entry.
• The valid mode is then set in the MSMmMode base class

and added to the current active modes file.
• An activate mode ovsnmp API call is issued to the Deputy

Agent.

706-CD-003-001 Day 2 Book B AK1-15

• The Deputy Agent uses the DOF to send the call to the
MsAgDiscoverer.

• MsAgDiscoverer issues a DiscoverNow() call to load the mode
specific configuration files based on the active modes as listed in
the active modes file.

• The information in these files is loaded into the MsAgTeVerExec
tables (along with the mode, and simulation time if provided). The
executable object(s) are then registered within HPOV and
displayed on the appropriate submaps as symbols. (This step and
subsequent steps are detailed in the Agent Startup Event Flow).

Event Trace Description (cont.)

706-CD-003-001 Day 2 Book B AK1-16

ovw Background
• Terminology

– Object - an ovw object represents a real world entity, e.g. a host, an
application, a program, a process, etc.

– Symbol - an ovw symbol is the graphical representation of an object that
can be displayed on a map or submap.

• Functionality
– Object information (which is configurable) is stored locally in the ovw

Object Database.
– An object can be represented by multiple symbols, however a single

symbol can represent only one object.
– ovw triggers events and executes callbacks based on predefined actions

(similar to X-windows main loop processing).
– Each mode will be represented in a separate HPOV session.
– Each HPOV Session will contain it’s own copy of the ovw GUI. They all

share the same ovw object Database and ovw map database. The ovwGUI
API calls will determine which session to display a symbol on based the
associated object’s mode.

– Note: trapd filtering capabilities will not be available until HPOV4.1. Our
ability to filter realtime events based on mode will be limited until that
time.

706-CD-003-001 Day 2 Book B AK1-17

Design Notes

• HPOV <-> Agent correlation
– Agents/SubAgents only recognize Application, Program,

Process level management commands.
– HPOV will have ovw symbols that represent system and

subsystem level entities.
– HPOV custom code applications must convert requests

to agent level management commands.
– When the SubAgent finds an application that is new it will

send an event to HPOV to add an object to the ovw
Object database.

– The ovw object will be populated with all of the appl,
prog, or exec associated information. (e.g. tableIndex,
tableID, execName, execID, parentID, hostname, mode,
etc.)

– A corresponding symbol will be added to the applicable
submap.

706-CD-003-001 Day 2 Book B AK1-18

MMS Main Loop

Basic MMS Callbacks:

ovwActivateMode()
ovwDeactivateMode()
ovwShutdownExec()
ovwSuspendExec()
ovwResumeExec()

Basic Main Loop Structure:

main(argc, argv)
{

......
ovw initializations
......
ovsnmp initializations
......
add callbacks
......
mainEventLoop(....)

}

main() is executed is entered when “Start MMS” is selected from the HPOV GUI. Until that time all
other MMS options will be greyed out from them HPOV menus. After the mainEventLoop() has
been entered, the MMS options will be activated. When an option is selected the callback will be
invoked.

706-CD-003-001 Day 2 Book B AK1-19

Callback Overview

OVwActivateMode()
{
 // instantiate a mode init object

MsMmModeInit newMode;

// call member function to tell agent to activate this new mode
newMode.ActivateMode();

}

OVwDeactivateMode()
{

// instantiate a mode term object with the mode to deactivate
MsMmModeTerm killMode(RWCString mode);

// call member function to see if valid and tell agent to deactivate mode
killMode.DeactivatMode();

}

706-CD-003-001 Day 2 Book B AK1-20

Callback Overview (cont.)
OVwSuspendExec(ovwObject *objectptr)
{
 // create an application level object pointer if needed

ovwObject *appObject;
EcTint seconds;

// obtain number of seconds until suspend
ovwAPIGUI(“Enter Number of seconds until suspend: “, &seconds);

// system and subsystem level ovwObjects need to be broken
// down into application level objects.
if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”)
{

traverse down system or subsystem object tree, then
for each (appObject = objectptr->application level object) do
{

// create a suspend object for each application level ovw object
MsMmSuspend suspendObj(appObject->nTblID, appObject->rowIndex,
 appObject->hostID, appObject->seconds);
// issue suspend to agent
suspendObj.supendExec();

}
}
else
{

// create a suspend object for the (app, prog, or process level) ovw object
MsMmSuspend suspendObj(objectptr->nTblID, objectptr->rowIndex,
 objectptr->hostID, objectptr->seconds);
// issue suspend to agent
suspendObj.supendExec();

}
}

706-CD-003-001 Day 2 Book B AK1-21

Callback Overview (cont.)
OVwStartupExec(ovwObject *objectptr)
{
 // create an application level object pointer if needed

ovwObject *appObject;
EcTint seconds;
RWTime deltaTime = 0;
RWTime simTime;

// look for a simTime or deltaTime in the active modes file
GetSimDelta(objectptr->mode, &deltaTime, &simTime);

// if no delta entry and there is a simtime entry then calcualte delta time
if (!deltaTime && simTime) {

deltaTime = CalculateDelta(simTime);
SaveDelta(deltaTime);

}
// system and subsystem level ovwObjects need to be broken
// down into application level objects.
if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”) {

traverse down system or subsystem object tree, then
for each (appObject = objectptr->application level object) do {

// create a startup object for each application level ovw object
MsMmStartup startupObj(appObject->nTblID, appObject->rowIndex,
 appObject->hostID, appMode->mode,

 deltaTime);
// issue startup to agent
startupObj.startupExec();

}
}
else {

// create a startup object for the (app, prog, or process level) ovw object
MsMmStartup startupObj(objectptr->nTblID, objectptr->rowIndex,
 objectptr->hostID, appMode->mode,

 deltaTime);
// issue starrtup to agent
startupObj.startupExec();

}
}

706-CD-003-001 Day 2 Book B AK1-22

Callback Overview (cont.)
OVwShutdownExec(ovwObject *objectptr)
{
 // create an application level object pointer if needed

ovwObject *appObject;
EcTint seconds;

// obtain number of seconds until shutdown
ovwAPIGUI(“Enter Number of seconds until shutdown: “, &seconds);

// system and subsystem level ovwObjects need to be broken
// down into application level objects.
if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”)
{

traverse down system or subsystem object tree, then
for each (appObject = objectptr->application level object) do
{

// create a shutdown object for each application level ovw object
MsMmShutdown shutdownObj(appObject->nTblID, appObject->rowIndex,
 appObject->hostID, appObject->seconds);
// issue shutdown to agent
shutdownObj.shutdownExec();

}
}
else
{

// create a shutdown object for the (app, prog, or process level) ovw object
MsMmShutdown shutdownObj(objectptr->nTblID, objectptr->rowIndex,
 objectptr->hostID, objectptr->seconds);
// issue shutdown to agent
shutdownObj.shutdownExec();

}
}

706-CD-003-001 Day 2 Book B AK1-23

Callback Overview (cont.)

OVwResumeExec(ovwObject *objectptr)
{
 // create an application level object pointer if needed

ovwObject *appObject;

// system and subsystem level ovwObjects need to be broken
// down into application level objects.
if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”)
{

traverse down system or subsystem object tree, then
for each (appObject = objectptr->application level object) do
{

// create a resume object for each application level ovw object
MsMmResume resumeObj(appObject->nTblID, appObject->rowIndex,
 appObject->hostID);
// issue resume to agent
resumeObj.resumeExec();

}
}
else
{

// create a resume object for the (app, prog, or process level) ovw object
MsMmResume resumeObj(objectptr->nTblID, objectptr->rowIndex,
 objectptr->hostID);
// issue resume to agent
resumeObj.resumeExec();

}
}

706-CD-003-001 Day 2 Book B AK1-24

Work Flow Analysis

• Testing of Data Server Modification within
operational environment

– Allocate Mode Identifier
– Develop Plan / Identify Resources
– Configure System
– Activate System for new mode
– Initiate Test
– Return System to Desired State

706-CD-003-001 Day 2 Book B AK1-25

Test
Notification

DAAC
Resource
Manager

1

Initiate
test

7

Test
Completion

DAAC
Computer Operator /

Database Administrator

2

Mode
Allocation

4

Configure
system for
test. Load

updated SW
and test
drivers

5

Notify

Configure/
Install

Initiate/
Status/
Control

3 6

1 2

1 0

8

9

Status/
Control

NotifyNotify

MSS/DSS MSS/DSSMSS/DSSMSS/PLS

Develop
resource

plan to
implement

test

MSS

Evaluate
test plan.
Identify

Resources

Read

Read

Develop

Assist

MSS/PLS

Configure

1 1

1 0

DAAC
Resource Planner

SMC
Resource Manager

Assigns

706-CD-003-001 Day 2 Book B AK1-26

Mode Management Support
Points of View I

DAAC Resource
Manager

SMC Resource
Manager

Computer Operator /
Database Administrator

Receives notification to test
a data server modification
from Test Plan Originator.

1

Informs SMC of intended
test and resource plan

SMC is notified
of intended plan

5

ECS Subsystems

Uses Planning
Subsystem tools

DAAC Resource
Planner

Assigns Mode Identifier2

3 Evaluate Test Plan to
identify required resources,
View current system
resource status using
HPOV.

Creates HP OpenView map
and loads map into HP
OpenView

6
Uses MSS HP
OpenView

Develops a resource plan
to implement test,
Coordinates resource plan
with Resource Manager,
Enters resources into
planning tool as a ground
event for Test.

4

706-CD-003-001 Day 2 Book B AK1-27

Mode Management Support
Points of View II

ECS Subsystems

Computer
Operator
configures (sets
up) resources
according to
resource plan.

Database
Manager sets up
a hierarchical-
based partition
within the
databases based
on mode
identifier

 Computer
Operator copies
names of support
data sets into
established
structure

Notify SMC of start of
test

SMC is notified of
start of test

8

7

Data Server
Subsystem
receives modified
application and
test driver

DAAC Resource
Manager

SMC Resource
Manager

DAAC Resource
Planner

Computor Operator/
Database

Administrator

Figure 5.2.5.3-2 Points of View

706-CD-003-001 Day 2 Book B AK1-28

Mode Management Support
Points of View III

ECS Subsystems

Test driver
executes
updated Data
Server
application.
Data Server
application(s)
register within
DCE CDS under
specified test
mode

Establishes a new HPOV
Session. Initiates Mode
Management Service
(MMS) from within HP
OpenView window

Selects “Activate Mode”
from HPOV GUI. MMS
prompts for mode
identifier, if non-ops
mode it then prompts for
simulation time.
Resource Manager
enters requested
information.

Symbols register within
the mode specific session
and submap for each
executable. Operator
selects Test Driver
symbol and clicks startup.

9 Uses MSS HP
OpenView with
custom
developed
MMS
application.

DAAC Resource
Manager

DAAC Resource
Planner

Computer Operator/
Database

Administrator

SMC Resource
Manager

Figure 5.2.5.3-3 Points of View

MSS Agent
Service
acknowledges
new mode and
loads mode
specific
executable info.

706-CD-003-001 Day 2 Book B AK1-29

Mode Management Support
Points of View IV

ECS Subsystems

Displays icon(s) on map in
test mode window

Monitors and
controls Data Server
test application

Monitors and controls Data
Server test application

Data Server
application(s) register
with HP OpenView

Test executes according
to test driver; all data
and process interactions
isolated to test mode

Test reads input data
from file; writes data to
archiver; and updates
metadata database.
Then it searches
metadata database for
the same data; loads
data from archiver;
writes data to output
file

1 0

HP OpenView detects
termination of Data Server
application. Icon(s) reflect
change of state.
Reconfigure system to
desired state.

Acknowledges test
completion.
Reconfigure System
to Desired State

After test completes, test
driver terminates Data
Server application

Notifies SMC of end of test
SMC is notified of
end of test

1 2

1 1

DAAC Resource
Manager

DAAC Resource
Planner

Computer Operator/
Database Administrator

SMC Resource
Manager

