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Mode Management Service Outline

• Driving Requirements

• Software Design

• Physical Design

• User Interfaces

• Data Model

• Object Model

• Mode Management Service Initiation Event Trace

• Reference data

• HP OpenView and Agent Functionality

•  Main Loop and Callback Routines
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Driving Requirements

• ECS shall support simultaneous production and testing 

activities

• ECS shall provide the capability to initiate a new mode of 

execution

• ECS shall be capable of monitoring and controlling each 

mode of operation
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MMS Software Architecture 
Overview (cont.)
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MMS Software Architecture  

Active
Modes

List

HP OpenView Windows (ovw)
COTS

Mode Management 
Service (MMS)

Application
main()

MsAgDeputy

ovwAPI’s

snmpAPI’s

snmp over UDP

ovwInit()

ovsnmpopen()

snmp via the DOF 

Managed host
Traps and Sets

Managed hostSNMPGets
Active
Modes



706-CD-003-001  Day 2  Book B AK1-7

MMS Physical Design
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MMS Multi-Session View
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User Interface

• CDS Browser: manual configuration of CDS namespace for 
adding/removing mode hierarchies

• HP OpenView GUI:
– MMS seamlessly incorporated into HPOV’s standard user 

interface
– Mode Activation/Deactivation
– Monitoring: status propagation, event notification
– Control: Life-cycle; startup, shutdown, suspend, resume
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Data Model
• Active Modes List

– Maintained on the manager host
– Maintained by Mode Management Service
– Accessed by Mode Management Service, SubAgent, and 

MDA
– one per DCE cell
– Format:

» modeIdentifier1 <simTime> <deltaTime>
» For Example:

• ops
• ts1   98:256:13:40:00  +1120:08:22:15
• ts3   96:298:04:45:00
• tr1

» simTime format:  yy:ddd:hh:mm:ss
» deltaTime format:  +/-dddd:hh:mm:ss

• +  future, -  past
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• The following object model will be reviewed

Model Name Diagram Name Document Reference

MMS Mode_Mgmt_Object_Model 305 Vol29, Section 6.1.3   

Object Model
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• The following event trace will be reviewed

Model Name Diagram Name Document Reference

Mode Activation Mode_Activation_Event_Trace Contained Within

Dynamic Model
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Mode Activation Event Trace
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Event Trace Description

• Assumptions
• The Mode Management Service (MMS) has already been 

initiated.
• The mode entered is “ts1”.  (The application will prompt 

the user for a simulation time after the mode identifier has 
been entered and validated for all non-ops modes.)

• Event Flow
• The operator selects an action from within the HPOV GUI 

to Activate a new mode.
• Upon instantiation the MsMmModeInit object prompts for 

the mode identifier and then validates the entry.
• The valid mode is then set in the MSMmMode base class 

and added to the current active modes file.
• An activate mode ovsnmp API call is issued to the Deputy 

Agent.
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• The Deputy Agent uses the DOF to send the call to the 
MsAgDiscoverer.

• MsAgDiscoverer issues a DiscoverNow() call to load the mode 
specific configuration files based on the active modes as listed in 
the active modes file.

• The information in these files is loaded into the MsAgTeVerExec 
tables (along with the mode, and simulation time if provided).  The 
executable object(s) are then registered within HPOV and 
displayed on the appropriate submaps as symbols.  (This step and 
subsequent steps are detailed in the Agent Startup Event Flow).

Event Trace Description (cont.)
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ovw Background
• Terminology

– Object - an ovw object represents a real world entity, e.g. a host, an 
application, a program, a process, etc.

– Symbol - an ovw symbol is the graphical representation of an object that 
can be displayed on a map or submap.

• Functionality
– Object information (which is configurable) is stored locally in the ovw 

Object Database.
– An object can be represented by multiple symbols, however a single 

symbol can represent only one object.
– ovw triggers events and executes callbacks based on predefined actions 

(similar to X-windows main loop processing).
– Each mode will be represented in a separate HPOV session.  
– Each HPOV Session will contain it’s own copy of the ovw GUI.  They all 

share the same ovw object Database and ovw map database.  The ovwGUI 
API calls will determine which session to display a symbol on based the 
associated object’s mode.

– Note: trapd filtering capabilities will not be available until HPOV4.1.  Our 
ability to filter realtime events based on mode will be limited until that 
time.
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Design Notes

• HPOV <-> Agent correlation
– Agents/SubAgents only recognize Application, Program, 

Process level management commands.
– HPOV will have ovw symbols that represent system and 

subsystem level entities.
– HPOV custom code applications must convert requests 

to agent level management commands.
– When the SubAgent finds an application that is new it will 

send an event to HPOV to add an object to the ovw 
Object database.

– The ovw object will be populated with all of the appl, 
prog, or exec associated information.  (e.g. tableIndex, 
tableID, execName, execID, parentID, hostname, mode, 
etc.)

– A corresponding symbol will be added to the applicable 
submap. 
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MMS Main Loop

Basic MMS Callbacks:

ovwActivateMode()
ovwDeactivateMode()
ovwShutdownExec()
ovwSuspendExec()
ovwResumeExec()

Basic Main Loop Structure:

main(argc, argv)
{

......
ovw initializations
......
ovsnmp initializations
......
add callbacks
......
mainEventLoop(....)

}

main() is executed is entered when “Start MMS” is selected from the HPOV GUI.  Until that time all 
other MMS options  will be greyed out from them HPOV menus.  After the mainEventLoop() has 
been entered, the MMS options will be activated.  When an option is selected the callback will be 
invoked.
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Callback Overview

OVwActivateMode()
{
          // instantiate a mode init object 

MsMmModeInit newMode;

// call member function to tell agent to activate this new mode
newMode.ActivateMode();

}

OVwDeactivateMode()
{

// instantiate a mode term object with the mode to deactivate
MsMmModeTerm killMode(RWCString mode);

// call member function to see if valid and tell agent to deactivate mode
killMode.DeactivatMode();

}
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Callback Overview (cont.)
OVwSuspendExec(ovwObject *objectptr)
{
          // create an application level object pointer if needed

ovwObject *appObject;
EcTint seconds;

// obtain number of seconds until suspend
ovwAPIGUI(“Enter Number of seconds until suspend: “, &seconds); 

// system and subsystem level ovwObjects need to be broken
// down into application level objects.
if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”)
{

traverse down system or subsystem object tree, then
for each (appObject = objectptr->application level object) do
{

// create a suspend object for each application level ovw object
MsMmSuspend   suspendObj(appObject->nTblID, appObject->rowIndex,
                                                  appObject->hostID, appObject->seconds);
// issue suspend to agent
suspendObj.supendExec();

}
}
else
{

// create a suspend object for the (app, prog, or process level) ovw object
MsMmSuspend   suspendObj(objectptr->nTblID, objectptr->rowIndex,
                                                  objectptr->hostID, objectptr->seconds);
// issue suspend to agent
suspendObj.supendExec();

}
}
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Callback Overview (cont.)
OVwStartupExec(ovwObject *objectptr)
{
          // create an application level object pointer if needed

ovwObject *appObject;
EcTint seconds;
RWTime deltaTime = 0;
RWTime simTime;

// look for a simTime or deltaTime in the active modes file
GetSimDelta(objectptr->mode, &deltaTime, &simTime);

// if no delta entry and there is a simtime entry then calcualte delta time
if (!deltaTime && simTime)  {

deltaTime = CalculateDelta(simTime);
SaveDelta(deltaTime); 

}
// system and subsystem level ovwObjects need to be broken
// down into application level objects.
if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”) {

traverse down system or subsystem object tree, then
for each (appObject = objectptr->application level object) do  {

// create a startup object for each application level ovw object
MsMmStartup   startupObj(appObject->nTblID, appObject->rowIndex,
                                                  appObject->hostID, appMode->mode, 

                                      deltaTime);
// issue startup to agent
startupObj.startupExec();

}
}
else {

// create a startup object for the (app, prog, or process level) ovw object
MsMmStartup   startupObj(objectptr->nTblID, objectptr->rowIndex,
                                                  objectptr->hostID, appMode->mode, 

                         deltaTime);
// issue starrtup to agent
startupObj.startupExec();

}
}



706-CD-003-001  Day 2  Book B AK1-22

Callback Overview (cont.)
OVwShutdownExec(ovwObject *objectptr)
{
          // create an application level object pointer if needed

ovwObject *appObject;
EcTint seconds;

// obtain number of seconds until shutdown
ovwAPIGUI(“Enter Number of seconds until shutdown: “, &seconds); 

// system and subsystem level ovwObjects need to be broken
// down into application level objects.
if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”)
{

traverse down system or subsystem object tree, then
for each (appObject = objectptr->application level object) do
{

// create a shutdown object for each application level ovw object
MsMmShutdown   shutdownObj(appObject->nTblID, appObject->rowIndex,
                                                  appObject->hostID, appObject->seconds);
// issue shutdown to agent
shutdownObj.shutdownExec();

}
}
else
{

// create a shutdown object for the (app, prog, or process level) ovw object
MsMmShutdown   shutdownObj(objectptr->nTblID, objectptr->rowIndex,
                                                  objectptr->hostID, objectptr->seconds);
// issue shutdown to agent
shutdownObj.shutdownExec();

}
}
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Callback Overview (cont.)

OVwResumeExec(ovwObject *objectptr)
{
          // create an application level object pointer if needed

ovwObject *appObject;

// system and subsystem level ovwObjects need to be broken
// down into application level objects.
if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”)
{

traverse down system or subsystem object tree, then
for each (appObject = objectptr->application level object) do
{

// create a resume object for each application level ovw object
MsMmResume   resumeObj(appObject->nTblID, appObject->rowIndex,
                                                  appObject->hostID);
// issue resume to agent
resumeObj.resumeExec();

}
}
else
{

// create a resume object for the (app, prog, or process level) ovw object
MsMmResume   resumeObj(objectptr->nTblID, objectptr->rowIndex,
                                                  objectptr->hostID);
// issue resume to agent
resumeObj.resumeExec();

}
}
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Work Flow Analysis

• Testing of Data Server Modification within 
operational environment

– Allocate Mode Identifier
– Develop Plan / Identify Resources
– Configure System
– Activate System for new mode
– Initiate Test
– Return System to Desired State
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Mode Management Support
Points of View I
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Mode Management Support
Points of View II
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Mode Management Support
Points of View III
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Mode Management Support
Points of View IV
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