
410-TD-003-001

Object Modeling Technique Tutorial

for the ECS Project

August 1995

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

Paul Fingerman /s/

Paul Fingerman, Systems Engineer
EOSDIS Core System Project

SUBMITTED BY

Edward Lerner /s/

Edward Lerner, Science and Communications
Development Office (SCDO) Manager
EOSDIS Core System Project

8/3/95

Date

8/3/95

Date

Hughes Information Technology Corporation

Landover, Maryland

This page intentionally left blank.

410-TD-003-001

Abstract

Object oriented methodology is a development paradigm that organizes a system as a collection
of objects, each of which has data structure and behavior, and which has meaning within the
context of the problem that is being modeled. This document provides a brief introduction into
the Object Modeling Technique tool as used in the CSMS/SDPS design specifications.

Keywords: object, modeling, techniques, OMT, CDR, class, attribute, review, guide, event, trace

iii 410-TD-003-001

This page intentionally left blank.

iv 410-TD-003-001

Contents

Abstract

Contents

1. Introduction

1.1 Purpose ...1-1	

1.2 Organization ...1-1	

2. Object Modeling Technique Tutorial

2.1 OMT...2-1	

2.2 OMT Diagram Tutorial ..2-2	

2.3 Event Trace Diagram Tutorial ...2-4	

2.4 State Transition Diagram Tutorial ...2-4	

Figures

2-1 Object Model Diagram Notation..2-2	

2-2 Example of Object Model Diagram ...2-3	

2-3 Example of Event Trace ..2-5	

3-4 Example of State Transition Diagram..2-6	

Acronyms and Abbreviations

v 410-TD-003-001

This page intentionally left blank.

vi 410-TD-003-001

1. Introduction

1.1 Purpose

This tutorial is provided to personnel participating in the Critical Design Review (CDR) of the
EOSDIS Core System (ECS). This document provides the reviewer with the background
necessary to interpret Object Modeling Technique (OMT) figures used frequently throughout the
design data package.

1.2 Organization

This paper is organized as follows:	

Section 1 provides the reader with pertinent information regarding the purpose and organization	
of the document.	

Section 2 provides the tutorial, including sample figures and explanatory text by which the user	
may become familiar with the tool and its output.	

Questions concerning distribution or control of this document should be addressed to:	

Data Management Office	
The ECS Project Office	
Hughes Information Technology Corporation	
1616 McCormick Drive	
Landover, MD 20785	

1-1 410-TD-003-001	

This page intentionally left blank.

1-2 410-TD-003-001	

2. Object Modeling Technique Tutorial

2.1 OMT

Object-oriented methodology is a development paradigm that organizes a system as a collection
of objects, each of which has data structure and behavior and which has meaning within the
context of the problem that is being modeled. The methodology being used on the ECS Program
is the Object Modeling Technique (OMT) set forth by Rumbaugh, et al in the book Object-
Oriented Modeling and Design. In object-oriented methodologies, the analysis and design are
developed in terms of graphical models. The foundation of OMT is the object model, in which
the complete static structure of the system is captured.

The following material provides a tutorial on how to read an OMT object model. The tutorial is
in the form of a walk-through of a sample model. Although the sample does not use all of the
available notation, it uses most of the notation that will be seen in models that have been
constructed for ECS. Before starting the walk-through, the following definitions have to be
understood.

•� Object: An abstraction of something in the problem at hand, characterized by a unique
name, distinct properties, and well defined behavior.

•� Class: A group of objects with the same meaning, properties (attributes), behaviors
(operations), and relationships (associations) with other objects.

•� Generalization: Objects can be generalized into a more generic object class. For
example, guides, program descriptions, and general system descriptions could be
generalized into a common class called documents. The document class is then called the
parent class of guides, program descriptions, and general system descriptions.

•� Attribute: a named property of a class, describing data values held by each object in the
class. Classes describe the data property (e.g., color). Each object holds a value (e.g.,
green) for each attribute defined for the class to which the object belongs.

•� Operation: a part of the behavior of a class. Collectively, all of a class' operations define
the things that objects of the class can do.

•� Link: a physical or conceptual connection between object instances -- an instance of an
association (see the next definition).

•� Association: a group of links with common structure and common meaning -- a set of
potential links.

•� Aggregation: The model also recognizes a specific kind of relationship, called
Aggregation. It indicates that objects of one class (the aggregate) are composed of
objects belonging to other classes (the components).

The following design document uses several types of modeling diagrams:

2-1 410-TD-003-001	

•� Object Model Diagrams depict the classes of objects which make up a design, their
attributes and operations, and how they are related to each other. In essence, the concepts
presented in the above list are presented diagrammatically (see Section 2.2).

•� Event Trace Diagrams depict a sequence of events that occur in a scenario. At the
preliminary design level, scenarios are concerned with the interactions that take place
among objects. Events, therefore, represent messages which are sent from one object to
another (see Section 2.3).

•� State Transition Diagrams are used occasionally in the design to show how the messages
affect the internal state of an object, and in particular, the events which cause state
transitions (see Section 2.4).

2.2 OMT Diagram Tutorial

Figure 2.2-1 shows the notation used by the ECS Object Models. The rectangular boxes in the
model denote classes. Each box, shown in full detail, consists of three sections. The name of the
class fills the top section, its attributes go in the middle section, and its operations in the bottom
section. Sometimes in high level drawings, only the top section of the box, showing the class
name, is shown. A class may be the generalization of several other classes. In Figure 2.2-1, the
"Parent Class" is the generalization of two other classes, each called a "Derived Class." Derived
classes always include the attributes and operations provided by their parent classes. The
diagrams, therefore, only show any additional attributes or operations which the derived class
may have.

Aggregation

Parent Class

Attributes

Operations

Association

Inheritance

Derived Class

Attributes

Operations

Derived Class

Attributes

Operations

Component Class

Attributes

Operations

Component Class

Attributes

Operations

Aggregate Class

Attributes

Operations

Multiplicity

Figure 2.2-1. Object Model Diagram Notation

Figure 2.2-1 also shows that there are two classes, each called a "Component Class", have been
aggregated into another class, called the "Aggregate Class". There may be design rules which
determine how many components of each class an aggregate may have. This is shown by
providing an indication of the "Multiplicity" in the diagram. In Figure 2.2-1, the left component

2-2 410-TD-003-001	

may occur any number of times (zero, one, or many), the right component must occur exactly
once. Finally, classes may have relationships, indicated by simple lines. On the design diagrams,
they are labeled with the name of the relationship, and they carry an indication of multiplicity.

Figure 2.2-2 shows an example, taken from the Production Planning CSCI, showing an excerpt
of the object classes supporting the management of production resources. All resources have a
common set of attributes providing an identification, a name, and their current state, as well as
operations to allocate and deallocate the resource and update its state. There is, therefore, a single
class called "PlResource" which acts as the parent for all types of production resources.

PlResource

- myResourceId
- myResourceName
- myResourceState

+ AddResource()
+ DeleteResource()
+ ModifyResource()
+ ProvideAvailableResource()
+ QueryResourceStatus()

PlString
- myComputerList
- myDiskList

+ AddComputer()
+ RemoveComputer()
+ AddDisk()
+ RemoveDisk()

PlComputer
- myComputerType
- myCpuList
- myDiskList
+ AddCpu()
+ AddDisk()
+ AddRam()
+ RemoveCpu()
+ RemoveDisk()
+ RemoveRam()

PlCpu
- myCpuName
- myCpuId
- myCpuType

PlDiskStorage

- myAvailableDiskSpace
- myMaxDiskSpace

+ CheckAvailableDiskSpace()
+ GetMaxDiskSpace()

PlLocalDisk PlNetworkDisk

PlRam

- myAvailableRam
- myRam

+ CheckAvailableRam()
+ GetMaxRam()

1+

Figure 2.2-2. Example of an Object Model Diagram

2-3 410-TD-003-001	

The diagram shows several types of resources, each a derived class. For example, strings
(represented by "PlString") may be associated with several computers and several network disks.
A computing platform ("PlComputer") consists of several components, namely several cpu
("PlCpu"), disks ("PlLocalDisk") and main memory ("PlRam"). It may also use several network
disks ("PlNetworkDisk"), and those disks might be attached to several computers.

2.3 Event Trace Diagram Tutorial

Figure 2.3-1 shows an example of a event trace diagram, again taken from the Production
Planning CSCI. The example shows a scenario in which a previously created plan is activated
(the example has been chosen for its simplicity). The first even occurs in the user interface, when
production planning staff selects a previously created plan and activates it. Correspondingly, the
diagram shows an arrow from the Planning User Interface to the Plan.

The software associated with the Plan object now will perform a number of operations, such as
verifying that the plan being activated is indeed valid, noting the differences between the
currently active plan and the new one, and creating new processing requests (or updating existing
ones) to implement the new plan. The result of this activity is a series of messages to the "DPR"
class. Each instance of this class represents a pending job and has associated with it any
information which must be provided as input to the processing CSCI when the PGE is initiated
through a request for data processing (hence the name of the class). Each message creates a new
instance of a pending job, or updates a currently existing pending job.

Concurrently, the planning CSCI monitors the inputs for which there are currently waiting jobs
(i.e., for which there is processing in the currently active plan). In essence, each of the pending
jobs waits for its inputs to become available. When they are, the pending job (i.e., the
corresponding instance of "DPR") is sent to the Processing CSCI. In the object design, interfaces
with external CSCI are typically represented as "Interface Classes". The "Processing Planning
Interface" is such an interface class. In the Planning CSCI object model, it is the target of the
DPR message.

2.4 State Transition Diagram Tutorial

Figure 2.4-1 shows an example of a state transition diagram. The rectangular box used to depict
object classes this time is used to show the possible states of the object. In the case of a
production plan ("PlPlan") there are two possible states:

•� The plan can be a "candidate plan", i.e., one that has been fully planned but has not been
activated. A candidate plan is created with the "create plan" command. This is the initial
state of a plan. This is indicated in the diagram by showing that there is no previous state
(i.e., with a filled black circle).

2-4 410-TD-003-001	

Planning Data Processing
User Plan Processing Planning

Interface Request (DPR) Interface

Activate Plan Command

Command - Create
Update DPR(s)

(condition: PGE(s) are
in current plan)

transmit DPR
(condition: all inputs

are available)

or

Figure 2.3-1. Example of an Event Trace Diagram

•� A candidate plan can be made an "active plan" via an "activate plan" command. In this
state, the plan receives alerts for on-demand production requests and data arrival
notifications (DAN). It instructs DPR objects to transmit the corresponding data
processing request message when the job is ready (as discussed in the scenario in Section
2.3). This is the final state of a plan. The plan is terminated when another plan is
activated, or when this plan is canceled. The final state of an object is indicated by the
symbol shown to the left of Activate Plan.

The diagram shows that during the creation of the candidate plan, the plan object interacts with a
number of other objects: with "Data Processing Requests" to obtain information about the PGE
in the plan; with "Resource Management" to determine the availability of resources needed by
those PGE, and with the data server (represented by the "Data Server Interface" class) to store
the candidate plan. Successful creation of the plan (or failure) also display a response on the
planning user interface.

2-5 410-TD-003-001	

Data
Processing

Request
Resource

Management

Data
Server

Interface

Data
Processing
Requests

PIPlan

Active
Plan

Candidate
Plan

receive command �
“create plan”

receive command
“activate plan”

activate
another plan

receive
cancel plan
command

alert
on-demand

production request

command to send DPR

query
PGEs

in the plan

query
available
resources

send
candidate

plan

DAN
arrival

all DPR
completed

Planning
User

Interface

display
plan creation

response

Figure 2.4-1. Example of a State Transition Diagram

2-6 410-TD-003-001	

Acronyms and Abbreviations

CDR Critical Design Review	

CSCI computer software configuration item	

ECS EOSDIS Core System	

OMT Object ModelingTechnique	

AB-1 410-TD-003-001	

This page intentionally left blank.

AB-2 410-TD-003-001	

	1. Introduction
	1.1 Purpose
	1.2 Organization
	2. Object Modeling Technique Tutorial
	2.1 OMT
	2.2 OMT Diagram Tutorial
Figure
	2.3 Event Trace Diagram Tutorial
	2.4 State Transition Diagram Tutorial

