
305-CD-011-001

EOSDIS Core System Project

Release A SDPS Data Processing
Subsystem Design Specification

for the ECS Project

July 1995

Hughes Information Technology Corporation

Landover, MD

Release A SDPS Data Processing

Subsystem Design Specification

for the ECS Project

July 1995

Prepared Under Contract NAS5-60000
CDRL Item 046

SUBMITTED BY

_Parag N. Ambardekar /s/__________________7/28/95__
Parag Ambardekar, Release A CCB Chairman Date
EOSDIS Core System Project

Hughes Information Technology Corporation
Landover, Maryland

305-CD-011-001

This page intentionally left blank.

305-CD-011-001

Preface

This document is one of sixteen comprising the detailed design specifications of the SDPS and
CSMS subsystem for Release A of the ECS project. A complete list of the design specification doc­
uments is given below. Of particular interest are documents number 305-CD-004, which provides
an overview of the subsystems and 305-CD-018, the Data Dictionary, for those reviewing the ob­
ject models in detail. A Release A SDPS and CSMS CDR Review Guide (510-TP-002) is also
available.

The SDPS and CSMS subsystem design specification documents for Release A of the ECS Project
include:

305-CD-004	 Release A Overview of the SDPS and CSMS Segment System Design
Specification

305-CD-005 Release A SDPS Client Subsystem Design Specification

305-CD-006 Release A SDPS Interoperability Subsystem Design Specification

305-CD-007 Release A SDPS Data Management Subsystem Design Specification

305-CD-008 Release A SDPS Data Server Subsystem Design Specification

305-CD-009 Release A SDPS Ingest Subsystem Design Specification

305-CD-010 Release A SDPS Planning Subsystem Design Specification

305-CD-011 Release A SDPS Data Processing Subsystem Design Specification

305-CD-012 Release A CSMS Segment Communications Subsystem DesignSpecification

305-CD-013	 Release A CSMS Segment Systems Management Subsystem Design
Specification

305-CD-014 Release A GSFC Distributed Active Archive Center Implementation

305-CD-015 Release A LaRC Distributed Active Archive Center Implementation

305-CD-016 Release A MSFC Distributed Active Archive Center Implementation

305-CD-017	 Release A EROS Data Center Distributed Active Archive Center
Implementation

305-CD-018 Release A Data Dictionary for Subsystem Design Specification

305-CD-019 Release A System Monitoring and Coordination Center Implementation

iii 305-CD-011-001

Object models presented in this document have been exported directly from CASE tools and in

some cases contain too much detail to be easily readable within hard copy page constraints. The

reader is encouraged to view these drawings on line using the Portable Document Format (PDF)

electronic copy available via the ECS Data Handling System (ECS) at URL http://edhs1.gs­

fc.nasa.gov.

This document is a contract deliverable with an approval code 2. As such, it does not require formal

Government approval, however, the Government reserves the right to request changes within 45

days of the initial submittal. Once approved, contractor changes to this document are handled in

accordance with Class I and Class II change control requirements described in the EOS Configu­

ration Management Plan, and changes to this document shall be made by document change notice

(DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Corporation

1616 McCormick Drive

Landover, MD 20785

iv 305-CD-011-001

Abstract

This document describes the Release A Detailed Design for the SDPS Data Processing Subsystem.
It defines the Data Processing Subsystem computer software and hardware architectural design, as
well as the subsystem design based on Level 4 requirements. The subsystem is divided into 3
CSCIs and 3 HWCIs:

a. Processing (PRONG) CSCI

b. Science Data Processing Toolkit (SDPTK) CSCI

c. Algorithm Integration and Test (AITTL) CSCI

d. Science Processing (SPRHW) HWCI

e. Algorithm Quality Assurance (AQAHW) HWCI

f. Algorithm Integration and Test (AITHW) HWCI

Keywords: Processing, SDPS, PDPS, Release A, OMT, Scheduling, AI&T, AutoSys, AutoXpert

v 305-CD-011-001

This page intentionally left blank.

vi 305-CD-011-001

Change Information Page

List of Effective Pages

Page Number Issue
Title Final

iii through xx Final

1-1 and 1-2 Final

2-1 and 2-2 Final

3-1 through 3-8 Final

4-1 through 4-212 Final

5-1 and 5-2 Final

6-1 and 6-2 Final

7-1 through 7-58 Final

8-1 through 8-20 Final

9-1 and 9-2 Final

10-1 and 10-2 Final

A-1 through A-28 Final

AB-1 and AB-2 Final

Document History

Document Number Status/Issue Publication Date CCR Number
305-CD-011-001 Final July 1995 95-0474

vii 305-CD-011-001

This page intentionally left blank.

viii 305-CD-011-001

Contents

Preface

Abstract

1. Introduction

1.1 Identification ...1-1

1.2 Purpose and Scope ..1-1

1.3 Status and Schedule ..1-1

1.4 Organization..1-1

2. Related Documentation

2.1 Parent Documents ...2-1

2.2 Applicable Documents..2-1

2.3 Information Documents Referenced ...2-2

3. DPS - Data Processing Subsystem

3.1	 Subsystem Overview ..3-1

3.1.1 Introduction and Context...3-1

3.1.2 Data Processing Subsystem Context ...3-2

3.2	 Subsystem Overview ..3-5

3.2.1 Subsystem Structure..3-5

3.2.2 Subsystem Design Rationale...3-6

3.2.2.1 Performance..3-7

4. PRONG - Processing CSCI

4.1 CSCI Overview...4-1

4.1.1 Processing CSCI Design Rationale ...4-1

4.1.1.2 Resource Management ..4-3

4.1.1.3 Quality Assurance ...4-5

4.1.1.4 Processing Error Architecture ... 4-6

4.1.1.5 Processing/Planning Interfaces.. 4-7

4.1.1.7 Processing/Data Server Interfaces ... 4-8

4.1.2 Processing CSCI Design Modifications since PDR....................................... 4-8

4.1.3 COTS Strategy ... 4-9

ix 305-CD-011-001

4.1.4 COTS Selection..4-10

4.1.4.1 Platinum Technology's AutoSys..4-10

4.1.4.2 AutoSys Integration into the Processing CSCI Detailed Design.......4-11

4.1.4.3 Platinum Technology's AutoXpert ...4-13

4.2 CSCI Context ...4-14

4.3	 CSCI Object Model..4-30

4.3.1 Processing CSCI Component View ...4-31

4.3.2 COTS Manager View...4-31

4.3.3 Data Management View...4-32

4.3.4 PGE Execution Management View..4-33

4.3.5 Resource Management View ...4-33

4.3.6 Quality Assurance Monitor View ..4-36

4.3.7 Data Pre-Processing View..4-36

4.4	 Class Descriptions..4-39

4.4.1 COTS Class ..4-40

4.4.2 DpPrComputer Class..4-40

4.4.3 DpPrCotsManager Class ..4-44

4.4.4 DpPrDataManagement Class ...4-47

4.4.5 DpPrDataManager Class ..4-47

4.4.6 DpPrDataMap Class...4-51

4.4.7 DpPrDiskAllocation Class ...4-54

4.4.8 DpPrDiskPartition Class ..4-56

4.4.9 DpPrExecutable Class ..4-59

4.4.10 DpPrExecutionManager Class ...4-62

4.4.11 DpPrJobManagement Class ...4-64

4.4.12 DpPrPcf Class ..4-64

4.4.13 DpPrPge Class..4-66

4.4.14 DpPrPgeExecutionManagement Class...4-69

4.4.15 DpPrQaMonitor Class ..4-70

4.4.16 DpPrResource Class...4-73

4.4.17 DpPrResourceConfiguration Class ..4-74

4.4.18 DpPrResourceManagement Class ..4-75

4.4.19 DpPrResourceManager Class...4-75

4.4.20 DpPrScheduler Class..4-78

4.4.21 DpPrString Class ..4-81

4.4.22 DpPrUnusedData Class ..4-82

4.4.23 DsClCommand Class ...4-83

4.4.24 DsClESDTReference Class..4-83

4.4.25 DsClESDTReferenceCollector Class...4-84

x 305-CD-011-001

4.4.26 DsClRequest Class ...4-84

4.4.27 DsClSubscription Class..4-85

4.4.28 EOSVIEW Class ..4-85

4.4.29 GlCallBack Class ...4-86

4.4.30 GlParameter Class ..4-86

4.4.31 GlParameterList Class..4-87

4.4.32 GlUR Class...4-87

4.4.33 IoAdAdvertisingSrv_C Class...4-88

4.4.34 IoAdServiceAdvertisement Class ..4-88

4.4.35 IoAdServiceCollection_C Class...4-89

4.4.36 MsDAAC Class..4-89

4.4.37 MsManager Class...4-90

4.4.38 MsMgCallBacks Class ...4-90

4.4.39 PlDPR Class ...4-91

4.4.40 PlDataGranule Class ..4-91

4.4.41 PlDataType Class ...4-92

4.4.42 PlDataTypes Class..4-92

4.4.43 PlGroundEvent Class ...4-93

4.4.44 PlPge Class...4-93

4.4.45 PlResourceUI Class..4-94

4.4.46 DpPpAttitudePacket Class ...4-94

4.4.47 DpPpAttitudePackets Class..4-96

4.4.48 DpPpAttitudeProcessingSet Class..4-98

4.4.49 DpPpEphemRecord Class ...4-100

4.4.50 DpPpEphemRecords Class ...4-101

4.4.51 DpPpEphemerisData Class ...4-101

4.4.52 DpPpEphemerisRecord Class ...4-102

4.4.53 DpPpEphemerisRecords Class..4-104

4.4.54 DpPpFdfData Class ...4-106

4.4.55 DpPpFdfProcessingSet Class ..4-108

4.4.56 DpPpFdfTrmmDefinitiveOrbitData Class ..4-110

4.4.57 DpPpLevelZeroData Class..4-112

4.4.58 DpPpPreProcessing Class ...4-113

4.4.59 DpPpPreprocessingData Class ..4-113

4.4.60 DpPpQaParametersClass...4-114

4.4.61 DpPpQacList Class ...4-115

4.4.62 DpPpSdpfLevelZeroDatasetFile Class..4-116

4.4.63 DpPpSdpfLevelZeroProductionData Class...4-120

4.4.64 DpPpSdpfLevelZeroSfduFile Class ..4-124

xi 305-CD-011-001

4.4.65 DpPpTrmmOnBoardAttitudeData Class...4-128

4.4.66 DpPpTrmmScAncillaryData Class ...4-131

4.4.67 DpPpTrmmScOaData Class..4-134

4.5 CSCI Dynamic Model...4-136

4.5.1 Scenario Assumptions ...4-137

4.5.1.1 Interfaces ..4-137

4.5.1.2 System and Subsystem States...4-138

4.5.2 Job Management Scenarios...4-138

4.5.2.1 Create Data Processing Request (DPR) or Ground Event Job4-139

4.5.2.2 Release Data Processing Request (DPR) Job4-141

4.5.2.3 Cancel Data Processing Request or Ground Event Job....................4-144

4.5.2.4 Update Data Processing Request Job ...4-147

4.5.2.5 Get Data Processing Request Job Status ..4-148

4.5.3 Data Management Scenarios...4-150

4.5.3.1 Data Initialization ...4-150

4.5.3.2 Local Data Management...4-152

4.5.3.3 Data Staging ...4-155

4.5.3.4 Failure of Data Staging...4-157

4.5.3.5 Data Destaging ...4-160

4.5.3.6 Failure of Destaging ...4-161

4.5.3.7 Failure of Data Server Communication..4-163

4.5.4 Execution Management Scenarios ..4-166

4.5.4.1 Initiate Execution..4-169

4.5.4.2 Monitor Execution..4-171

4.5.4.4 Failure of Execution ...4-176

4.5.4.5 Failure of Processing Resource ..4-179

4.5.5 Resource Management Scenarios..4-181

4.5.5.1 Resource Management Configuration Initialization.........................4-182

4.5.5.2 Modify the Resource Management Information4-183

4.5.5.3 Query the Resource Management List ...4-185

4.5.6 Quality Assurance Scenarios...4-187

4.5.6.1 Q/A Subscription Submittal ...4-188

4.5.6.2 Q/A Subscription Withdrawal ..4-189

4.5.6.3 Q/A Get Data ..4-190

4.5.6.4 Q/A Visualize Data...4-192

4.5.6.5 Q/A Metadata Update...4-193

4.5.7 Data Pre-Processing Scenarios..4-194

4.5.7.1 Scenario for Producing O/A Data Set and Level Zero Data Set4-195

4.6 CSCI Structure ..4-197

xii 305-CD-011-001

4.6.1 COTS CSC ..4-197

4.6.1.1 Purpose and Description...4-197

4.6.2 COTS Management CSC ..4-202

4.6.2.1 Purpose and Description...4-202

4.6.2.2 Object Model Mapping...4-202

4.6.2.3 Candidate Products ...4-202

4.6.3 Resource Management CSC..4-203

4.6.3.1 Purpose and Description...4-203

4.6.3.2 Object Model Mapping...4-203

4.6.3.3 Candidate Products ...4-204

4.6.4 Data Management CSC...4-204

4.6.4.1 Purpose and Description...4-204

4.6.4.2 Object Model Mapping...4-204

4.6.4.3 Candidate Products ...4-204

4.6.5 PGE Execution Management CSC..4-204

4.6.5.1 Purpose and Description...4-204

4.6.5.2 Object Mapping ..4-204

4.6.5.3 Candidate Products ...4-204

4.6.6 Data Pre-Processing CSC..4-205

4.6.6.1 Purpose and Description...4-205

4.6.6.2 Object Model Mapping...4-206

4.6.6.3 Candidate Products ...4-206

4.6.7 Quality Assurance Monitor CSC...4-206

4.6.7.1 Purpose and Description...4-206

4.6.7.2 Object Model Mapping...4-206

4.6.7.3 Candidate Products ...4-206

4.7 Processing CI Management and Operations ...4-206

4.7.1 Processing CSCI and the System Management Strategy4-208

4.7.1.1 System Management and Operations Philosophy4-208

4.7.1.2 Processing CSCI and the System ...4-208

4.7.2 Operator Interfaces..4-210

4.7.2.1 Off-The-Shelf Interfaces...4-210

4.7.2.2 Processing CSCI User Interfaces..4-211

4.7.3 Reports ..4-211

5. SDPTK - Science Data Processing Toolkit CSCI

5.1 CSCI Overview...5-1

xiii 305-CD-011-001

6. DPREP - Science Data Pre-Processing CSCI

6.1 CSCI Overview...6-1

7. AITTL - Algorithm I&T CSCI

7.1 CSCI Overview ..7-1

7.2 CSCI Context ...7-3

7.3	 CSCI Object Model...7-4

7.3.1 Analysisenvironment Class ...7-6

7.3.2 CMscript Class ..7-7

7.3.3 DpAtMgr Class ...7-8

7.3.4 DpAtMgrBinaryFileEnvironmentGui Class ...7-9

7.3.5 DpAtMgrCheckHdfFile Class..7-10

7.3.6 DpAtMgrCheckPcfGui Class...7-10

7.3.7 DpAtMgrCheckProhibFuncCom Class..7-11

7.3.8 DpAtMgrCheckProhibFuncGui Class..7-11

7.3.9 DpAtMgrChecklistData Class..7-12

7.3.10 DpAtMgrCmdLineData Class..7-14

7.3.11 DpAtMgrCom Class...7-16

7.3.12 DpAtMgrGuiActivityData Class..7-16

7.3.13 DpAtMgrInstrConfigData Class ..7-19

7.3.14 DpAtMgrLogData Class ..7-21

7.3.15 DpAtMgrProhibFuncListData Class ..7-23

7.3.16 DpAtPgeRegTool Class ...7-24

7.3.17 DpAtProcGui Class ..7-24

7.3.18 DpPrAITManualIF Class ...7-25

7.3.19 DsClCommand Class ...7-26

7.3.20 DsClESDTReferenceCollector Class...7-26

7.3.21 DsClRequest Class ...7-27

7.3.22 EosView Class..7-27

7.3.23 FORTRAN77codechecker Class..7-28

7.3.24 Generalvisualizationtool Class...7-28

7.3.25 Instrument-specificscript Class ..7-29

7.3.26 MgrGui Class ...7-29

7.3.27 Postscriptfileviewer Class ..7-31

7.3.28 Text-graphicsviewer Class ...7-31

7.3.29 Webbrowser Class..7-32

7.3.30 Windowsemulator Class...7-32

7.3.31 xterm Class...7-33

xiv 305-CD-011-001

7.4 CSCI Dynamic Model..7-33

7.4.1 AIT Manager GUI Scenarios ...7-33

7.4.1.1 Display Main AIT Manager GUI ..7-34

7.4.1.2 Select a TOOLS Menu Item ..7-35

7.4.1.3 Select a UTILITIES Menu Item ...7-37

7.4.1.4 Select a Checklist Item ..7-38

7.4.1.5 Submit Staging or Destaging Request ...7-39

7.5	 CSCI Functional Model ...7-41

7.5.1 Viewing Science Software Documentation..7-41

7.5.2 Checking Coding Standards ...7-41

7.5.3 Analyzing the Code..7-42

7.5.4 Examining the Data..7-43

7.5.5 Comparing Data Files...7-43

7.5.6 Measuring Resource Requirements..7-45

7.5.7 Updating the Data Server ...7-45

7.5.8 Updating the PGE Database...7-46

7.5.9 Writing Reports and Maintaining Logs ...7-47

7.5.10 Manually Staging Inputs ..7-47

7.5.11 Displaying Product Metadata ...7-48

7.6	 AITTL Operational Scenarios..7-48

7.6.1 Engineering Version for AM-1 ..7-50

7.6.2 Launch-Ready Version for TRMM..7-50

7.6.3 Science Software Upgrade ...7-51

7.7	 AITTL Structure ..7-51

7.7.1 Documentation Viewing Tools ..7-52

7.7.2 Standards Checkers ..7-52

7.7.3 Code Analysis Tools ..7-52

7.7.4 Data Visualization Tools..7-53

7.7.5 ECS HDF Visualization Tools ...7-53

7.7.6 HDF File Comparison Utility...7-53

7.7.7 Binary File Comparison Environment ...7-53

7.7.8 Profiling Tools..7-53

7.7.9 PGE Processing GUI..7-53

7.7.10 Update PGE Database GUI ..7-53

7.7.11 Report Generation Tools ..7-53

7.7.12 SDP Toolkit-related Tools ...7-53

7.7.13 Product Metadata Display Tool..7-54

7.8	 CSCI Management and Operation ...7-54

7.8.1 System Management Strategy..7-54

xv 305-CD-011-001

7.8.2 Operator Interfaces...7-55

7.8.2.1 Off-The-Shelf Interfaces..7-55

7.8.2.2 Algorithm Integration & Test CSCI User Interfaces.........................7-55

7.8.3 Reports ...7-56

8. SPRHW - Science Processing HWCI

8.1 HW Design Drivers...8-1

8.1.1 Key Trade-off studies and Prototypes...8-3

8.1.1.1 HWCI Alternatives ...8-3

8.1.2 Sizing and Performance Analysis ...8-7

8.1.2.1 Static Analysis Results ...8-8

8.1.2.2 Dynamic Model Results ..8-10

8.1.2.3 Phasing ..8-11

8.1.2.4 RAM Requirements...8-12

8.1.3 Scalability, Evolvability and Migration to Release B8-13

8.1.4 Algorithm Parallelization ...8-14

8.2	 HWCI Structure ...8-14

8.2.1 Connectivity ...8-15

8.2.2 HWCI Components ..8-16

8.3	 Failover and Recovery strategy ...8-17

8.3.1 Network Failure Recovery ...8-17

8.3.2 Data Processing Subsystem Failure Recovery ...8-18

8.4 Data Processing Hardware Provided Capacity ..8-19

8.5 Pertinent References ..8-20

9. QAHW - Algorithm Quality Assurance HWCI

9.1 HWCI Overview ...9-1

9.2 HWCI Design Rationale ...9-1

9.3 HWCI Structure ..9-1

10. AITHW - Algorithm Integration & Test HWCI

10.1 HWCI Overview ..10-1

10.2	 HWCI Design Rationale ..10-1

10.2.1 Key Trades and Analyses...10-1

10.2.2 Scalability Strategies ..10-1

10.3	 HWCI Structure ...10-1

10.3.1 Connectivity (Classes of Interfaces) ..10-2

10.3.2 HWCI Components ..10-2

xvi 305-CD-011-001

Figures

3.1-1. Data Processing Subsystem Context Diagram ...3-3

4.1-1. Scheduling Jobs using AutoSys.. 4-12

4.1-2. Initiating Processing Components using AutoSys.. 4-13

4.2-1. Processing CSCI Context Diagram ...4-15

4.2-2. Processing CSCI Event Flow Summary..4-16

4.3-1. Processing CSCI Component View...4-31

4.3-2. COTS Manager View ..4-32

4.3-3. Data Management View ..4-33

4.3-4. PGE Execution Management View...4-34

4.3-5. Resource Management View...4-35

4.3-6. Quality Assurance Monitor View..4-36

4.3-7. Data Pre-Processing View...4-37

4.3-8. Data Pre-Processing View (TRMM Definitive Orbit) ..4-38

4.3-9 Data Pre-Processing View (TRMM OnBoard Attitude)4-39

4.5-1. Create Data Processing Request Job Event Trace ..4-142

4.5-2. Create Ground Event Job Event Trace ...4-143

4.5-3. Release Data Processing Request Job Event Trace ..4-144

4.5-4. Job Box Execution Event Trace ...4-145

4.5-5. Cancel Data Processing Request Job Event Trace ...4-146

4.5-7. Update Data Processing Request Job Event Trace...4-148

4.5-8. Get Data Processing Request Job Status Event Trace..4-149

4.5-9. DpPrDataMap Initialization ...4-152

4.5-10. Local Data Management (Data Staging Required)...4-154

4.5-11. Local Data Management (Local Data Movement) ...4-155

4.5-12. Local Data Management (Data Resides on Science Processing Resource)4-156

4.5-13. Data Staging Event Trace ..4-158

4.5-14. Failure of Data Staging Event Trace ..4-159

4.5-15. Deallocate Data Event Trace ..4-162

4.5-16. Data Destaging Event Trace ...4-162

4.5-17. Failure of a Data Destaging Event Trace..4-164

4.5-18. Failure of Data Server Communication Event Trace ...4-166

4.5-19. PGE State Transition Diagram ...4-168

4.5-20. Initiate Execution Event Trace ...4-171

4.5-21. Case 1: Monitor Resource Health Trace...4-173

4.5-22. Case 2: Monitor Performance Trace...4-174

4.5-23. Case 3: Monitor Status Return Trace ...4-174

4.5-24. Execution Post Processing Event Trace ...4-176

4.5-25. Failure of Execution Event Trace...4-178

xvii 305-CD-011-001

4.5-26. Failure of Processing Resource Event Trace..4-181

4.5-27. Initialization of Resource Configuration Information Event Trace......................4-183

4.5-28. Modify Resource Information Event Trace..4-186

4.5-29. Query of Resource Management Information Event Trace4-187

4.5-30. Q/A Subscription Submittal Event Trace ..4-189

4.5-31. Q/A Subscription Withdrawal Event Trace ...4-190

4.5-32. Q/A Subscriptions Event Trace ...4-191

4.5-33. Visualize Science Data Event Trace...4-193

4.5-34. Update Q/A Metadata Event Trace ..4-194

4.5-35. Creating Ephemeris File Event Trace...4-198

4.5-36. Creating Attitude File Event Trace...4-199

4.6-1. PDPS Software Architecture ..4-200

4.6-2 Interaction of AutoSys' Database, Event Processor, and Remote Agent4-203

7.2-1. Algorithm Integration and Test Tools Context Diagram..7-4

7.3-1. Algorithm Integration and Test IR-1 Object Model...7-5

7.3-2. Algorithm Integration and Test Support for Data Server I/F Object Model7-6

7.4-1. Display AI&T Main GUI Event Trace Diagram...7-35

7.4-2. Run Tools Menu Event Trace Diagram...7-36

7.4-3. Run Utility Menu Item Event Trace Diagram...7-38

7.4-4. Select Checklist Item Event Trace Diagram..7-39

7.4-5. Submit Staging Request Event Trace Diagram ...7-40

7.4-6. Submit Destaging Request Event Trace Diagram ...7-41

7.5-1. Data Flow Diagram: View Documentation ...7-42

7.5-2. Data Flow Diagram: Check Standard..7-42

7.5-3. Data Flow Diagram: Analyze Code...7-43

7.5-4. Data Flow Diagram: Examine Data...7-44

7.5-5. Data Flow Diagram: Compare Files..7-44

7.5-7. Data Flow Diagram: Update Data Server..7-46

7.5-8. Data Flow Diagram: Update PGE Database..7-47

7.5-9. Data Flow Diagram: Manage Reports ...7-48

7.5-10. Data Flow Diagram: Manually Stage Data..7-49

7.5-11. Data Flow Diagram: Display Product Metadata..7-49

8-1. Topology of Data Processing and Planning Subsystems..8-2

8-2. Data Flow Block Diagram..8-9

8-3. NASA ESDIS Phasing Factors..8-12

8-4. Science Processing Block Diagram...8-15

8-5. PDPS Network Connectivity In Release A (Generic Hardware Units).................8-16

9-1. Algorithm QA Block Diagram ...9-2

10.3-1. Algorithm Integration & Test Block Diagram ..10-2

xviii 305-CD-011-001

Tables

3.1-1. Subsystem Interfaces ..3-3

4.2-2. PRONG__events Event Flow Summary ...4-16

4.5-1. Processing CSCI Interfaces With Other Subsystems ..4-138

4.6-1. Processing CSCI Components..4-200

5.1-1. SDPTK Computer Software Components..5-2

7-1. AITTL Computer Software Components ..7-51

8-1. Platform Recommendation for IR-1 and Release A...8-4

8-2. Processing Support Activities for the Release A ECS Sites8-5

8-3.	 Static Analysis Summary Results of January 1995 Baseline Data-Release

A AHWGP Requirements ..8-8

8-4.	 Release B Processing, I/O, and Network Bandwidth Static Analysis

Requirements for Epoch k (3Q99) (January 1995 Baseline)..................................8-9

8-5. Two Shift Operation Performance and Capacity 11

8-6.	 Dynamic Model Processing and Capacity Summary for Release A TRMM

CERES at LaRC ..8-11

8-7.	 Dynamic Model Processing and Capacity Summary for Release B at LaRC

and GSFC ..8-13

8-8. SPRHW Logical Components and Equipment Classes...8-17

xix 305-CD-011-001

This page intentionally left blank.

xx 305-CD-011-001

1. Introduction

1.1 Identification
This Release A SDPS Data Processing Subsystem Design Specification for the ECS Project,
Contract Data Requirement List (CDRL) Item 046, with requirements specified in Data Item
Description (DID) 305/DV2, is a required deliverable under the Earth Observing System Data and
Information System (EOSDIS) Core System (ECS), Contract NAS5-60000. This publication is
part of a series of documents comprising the Science and Communications Development Office
design specification for the Communications and System Management segment (CSMS) and the
Science Data Processing Segment (SDPS) for Release A.

1.2 Purpose and Scope
The Release A SDPS Data Processing Subsystem Design Specification defines the progress of the
design. It defines the Data Processing Subsystem computer software and hardware architectural
design, as well as subsystem design based on Level 4 requirements.

This subsystem is on an incremental development track. It is released and reviewed in the form of
Evaluation Packages (EP), and is therefore not part of the formal Release A Critical Design Re­
view. The overview material for these components has been included in this document for infor­
mation purposes only.

This document reflects the June 21, 1995 Technical Baseline maintained by the contractor config­
uration control board in accordance with the ECS Technical Direction No. 11 dated December 6,
1994.

1.3 Status and Schedule
This submittal of DID 305/DV10 meets the milestone specified in the Contract Data Requirements
List (CDRL) of NASA Contract NAS5-60000. A previous version of this submittal was reviewed
during the CSMS Preliminary Design Review (PDR) and reflects changes to the design which re­
sulted from that review. The PDR also triggered a number of follow up actions in response to Re­
view Item Discrepancies (RID) the results of which have been incorporated into this Critical
Design Review (CDR) version of this document.

1.4 Organization
The document is organized to describe the Release A SDPS Data Processing subsystem design as
follows:

Section 1 provides information regarding the identification, scope, status, and organization of this
document.

Section 2 provides a listing of the related documents, which were used as source information for
this document.

Section 3 provides an overview of the subsystem, focusing on the high-level design concept. This
provides general background information to put the Data Processing subsystem into context.

1-1 305-CD-011-001

Section 4 contains the design and structure of the Processing (PRONG) computer software
configuration item (CSCI). One of the CSCIs comprising the Data Processing subsystem.

Section 5 contains the structure of the Science Data Processing Toolkit (SDPTK) computer
software configuration item (CSCI). This section contains references to other design documents
where the SDP Toolkit design has been represented in more detail. One of the CSCIs comprising
the Data Processing subsystem.

Sections 6 contains the structure of the Science Data Pre-Processing (DPREP) computer software
configuration item (CSCI) comprising the Data Processing subsystem. This CSCI has been
consumed into the PRONG CSCI.

Sections 7 contains the structure of the Algorithm Integration & Test (AITTL) computer software
configuration item (CSCI). One of the CSCIs which comprise the Data Processing subsystem.

Section 8 contains the structure of the Science Processing (SPRHW) hardware configuration item
(HWCI). One of the HWCIs of the Data Processing subsystem.

Section 9 contains the structure of the Algorithm Quality Assurance (AQAHW) hardware
configuration item (HWCI). One of the HWCIs of the Data Processing subsystem.

Section 10 contains the structure of the Algorithm Integration and Test (AITHW) hardware
configuration item (HWCI). One of the HWCIs of the Data Processing subsystem.

The section Abbreviations and Acronyms contains an alphabetized list of the definitions for
abbreviations and acronyms used in this document.

1-2 305-CD-011-001

2. Related Documentation

2.1 Parent Documents
The parent document is the document from which the scope and content of this Data Processing
Subsystem Design Specification is derived.

194-207-SE1-001 System Design Specification for the ECS Project

2.2 Applicable Documents
The following documents are referenced within this Data Processing Subsystem Design
Specification, or are directly applicable, or contain policies or other directive matters that are
binding upon the content of this document.

209-CD-001-001	 Interface Control Document Between EOSDIS Core System (ECS) and
the NASA Science Internet

209-CD-002-001	 Interface Control Document Between EOSDIS Core System (ECS) and
ASTER Ground Data System

209-CD-003-001	 Interface Control Document Between EOSDIS Core System (ECS) and
EOS-AM Project for AM-1 Spacecraft Analysis Software

209-CD-004-001	 Data Format Control Document for the Earth Observing System (EOS)
AM-1 Project Data Base

209-CD-005-002	 Interface Control Document Between EOSDIS Core System (ECS) and
Science Computing Facilities (SCF)

209-CD-006-002	 Interface Control Document Between EOSDIS Core System (ECS) and
National Oceanic and Atmospheric Administration (NOAA) Affiliated
Data Center (ADC)

209-CD-007-002	 Interface Control Document Between EOSDIS Core System (ECS) and
TRMM Science Data and Information System (TSDIS)

209-CD-008-002	 Interface Control Document Between EOSDIS Core System (ECS) and
the Goddard Space Flight Center (GSFC) Distributed Active Archive
Center (DAAC)

209-CD-009-002	 Interface Control Document Between EOSDIS Core System (ECS) and
the Marshall Space Flight Center (MSFC) Distributed Active Archive
Center (DAAC)

209-CD-010-001	 Interface Control Document Between EOSDIS Core System (ECS) and
the Langley Research Center (LaRC) Distributed Active Archive Center
(DAAC)

209-CD-011-002	 Interface Control Document Between EOSDIS Core System (ECS) and
the Version 0 System

2-1 305-CD-011-001

305-CD-003-002	 Communications and System Management Segment (CSMS) Design
Specification for the ECS Project

308-CD-001-004 Software Development Plan for the ECS Project

313-CD-002-002	 EOSDIS Core System (ECS) Internal Interface Control Document for
Science Data Processing Segment (SDPS)

313-CD-003-002	 Communications and System Management Segment (CSMS) Internal
Interface Control Document for the ECS Project

423-41-03	 Goddard Space Flight Center, EOSDIS Core System (ECS) Contract
Data Requirements Document

440-TP-008-001 The ECS Science and Technology Lab (STL) Prototyping

194-00569TPW

194-430TPW-001

2.3 Information Documents Referenced
The following documents are referenced herein and amplify or clarify the information presented in
this document. These documents are not binding on the content of the Data Processing Subsystem.

Document Number AutoSys User Manual - v3.1

Document Number AutoSys Xpert User Guide - Beta

2-2 305-CD-011-001

3. DPS - Data Processing Subsystem

3.1 Subsystem Overview

3.1.1 Introduction and Context

The Data Processing Subsystem is the collection of hardware and software components which are
responsible for the management of the data processing resources at a provider site. These manage­
ment responsibilities can be divided into the following general functional areas:

a.	 Managing the generation of Data Products and the operational environment used to
produce these products.

b.	 Providing an Algorithm Integration and Test Environment for the introduction of science
software into the EOSDIS environment.

The Data Processing Subsystem supports these functional areas through the following mecha­
nisms:

a.	 It provides a batch processing environment to support the generation of data products. It
manages, queues and executes Data Processing Requests on the processing resources at a
provider site. A Data Processing Request can be defined as 1 processing job. Each Data
Processing Request encapsulates all of the information needed to execute this processing
job. Data Processing Requests are submitted from the Planning Subsystem; which in turn
have been triggered by arrival of data or or internally through Planning itself (e.g.,
reprocessing). Data Processing Requests use Product Generation Executives (PGEs) to
perform this processing. PGEs will result from the integration and test of delivered science
algorithms [ref.: ECS White Paper 193-00118] and also user specific methods into the
subsystem. They will be encapsulated in the ECS environment through the SDP Toolkit.
The Data Processing subsystem also provides the Operational interfaces needed to monitor
the execution of the science software (PGEs). More information on the execution of PGEs,
and the support environment being provided to monitor the generation of data products is
provided in Section 4, the Processing CSCI.

b.	 It supports the execution of science algorithms through the SDP Toolkit. The SDP Toolkit
is a set of tools developed to standardize and provide a common interface for each science
algorithm to the EOSDIS environment.

The following documents provide guidance on the roles and responsibilities of the SDP
Toolkit to support the execution of science software:

333-CD-001-002 SDP Toolkit Users Guide for the ECS Project

193-801-SD4-001 PGS Toolkit Requirements Specification for the ECS Project, FINAL,
10/93 [AKA GSFC 423-06-02]

c.	 It supports the preliminary processing of data sets, i.e., L0 and ancillary data products,
which are required by the science algorithms, but are not in the proper format for use.

3-1 305-CD-011-001

d.	 It provides the Algorithm Integration and Test environment used to integrate new science
algorithms, new versions of existing science algorithms and user methods into the EOSDIS
environment. The algorithm or method will be acquired by the system through an ingest
client which will reflect local site policies on the acceptance of software for integration.
Once acquired, the algorithm/method and its associated data files (test, calibration, etc.)
will be registered in the local site Configuration Management (CM) system as part of the
archival by the Data Server Subsystem. These activities are defined in more detail in
Section 7, the Algorithm I&T CSCI.

3.1.2 Data Processing Subsystem Context

A context diagram illustrating the relationships between the Data Processing Subsystem and the
other SDPS subsystems is shown in Figure 3.1-1. The key interfaces shown are:

a.	 The Planning interface is responsible for determining what processing activities are
required to generate the data products as specified in a Production Request (Standard).
These processing activities and associated information are defined and delivered as Data
Processing Request(s) to the Data Processing Subsystem. One Production Request may
result in 1 or more Data Processing Requests being sent to the Data Processing Subsystem.
After the receipt of a Data Processing Request, the Data Processing subsystem will deliver
processing status to Planning, when requested. Also, provided by the Data Processing
Subsystem in an unrelated off-line activity is information used to plan the execution of a
PGE. This information is determined by the Algorithm Integration & Test services and
provided to Planning through the adding of data to the PDPS Database.

b.	 The Data Server interface is for requesting access to data required as an input to a PGE and
for requesting that generated output data be transferred to the Data Server. Also, The Data
Server is used to archive PGEs and associated data which require staging.

c. The Ingest interface is for requesting access to Level 0 data required as an input to a PGE.

d. The MSS/LSM interface provides access to common ECS system management services.

In Table 3.1-1, where an exact number is unavailable, the data volume is estimated as low (less
than 1 MB), medium (between 1 MB and 1 GB), or high (greater than 1 GB) per use defined in the
frequency column.)

Processing requirements are driven by the frequency of Production Requests and their associated
Data Processing Requests which vary by site. Therefore, processing volume and resulting capacity
requirements are discussed in the DAAC specific documents of this DID.

3-2 305-CD-011-001

Data
Processing

Processing
Operations

Planning Data
Server

MSS

Ingest

A I & T
Ops

Scheduling Commands:
Schedule Job Command, Cancel Job Command, Update Job Command,

Release Job Command

This System

DPR Information,
Scheduling Commands,
PGE Profile Information

Processing Status,
PGE Profile Information

AI&T Operation Commands,
Processing Operation Commands

Processing Ops
Command Responses,

Processing Display
Updates

Subscription, ACQUIRE and
INSERT Commands,

Output Data (Destaged Data)

ACQUIRE Command Response
INSERT Command Response,

Subscription Notification,
Staged Data (PGE,Metadata,Level0 to Level4 Data,

Ancillary Data, Calibration Coefficient)

System Management Information
(Fault,Configuration,Accounting,

Performance, Security)

Lifecycle Commands,
Resource Fault Info,

System Resource
Utilization Info

ACQUIRE
Command

Level ZeroData,
ACQUIRE
Command
Response

Data Products
Visualized Images

A I & T
Commands

Figure 3.1-1. Data Processing Subsystem Context Diagram

Table 3.1-1. Subsystem Interfaces (1 of 3)
Source Destination Data Types Data Volume Frequency

Data
Processing

Data Server Acquire Commands (Staging
Requests)

low as required for
processing

Data
Processing

Data Server Subscription Requests low as required for
processing

Data
Processing

Data Server standard products high as required for
processing

Data
Processing

Data Server Metadata high as required for
processing

Data
Processing

Data Server q/a data medium as required for
processing

Data
Processing

Data Server Science Algorithms low as requested

Data
Processing

Planning Schedule Job Command
Response

low In Response to
Schedule Job
Command

Data
Processing

Planning Cancel Job Command
Response

low In Response to
Cancel Job
Command

3-3 305-CD-011-001

Table 3.1-1. Subsystem Interfaces (2 of 3)
Source Destination Data Types Data Volume Frequency

Data
Processing

Planning Release Job Command
Response

low In Response to
Release Job
Command
Response

Data
Processing

Planning Update Job Command
Response

low In Response to
Release Job
Command
Response

Data
Processing

Planning Processing Status low In Response to
Request For Job
Status

Data
Processing

Planning PGE Profile Information low as required

Data
Processing

MSS System Management
Information (Accounting,
Scheduling, Fault,
Accountability, Security, and
Performance)

low as required

Data
Processing

Operations Processing Operations
Information

low in response to
request

Data
Processing

Operations AI&T Operations Information low in response to
request

Planning Data
Processing

Schedule Job Command low in response to
activating a Plan

Planning Data
Processing

Cancel Job Command low in response to
activating a Plan

Planning Data
Processing

Release Job Command low in response to
activating a Plan

Planning Data
Processing

Update Job Command low in response to
activating a Plan

Planning Data
Processing

Processing Status low in response to
activating a Plan.

Planning Data
Processing

PGE Profile Information low as required

Data Server Data
Processing

Standard Products high in response to
staging request

Data Server Data
Processing

Metadata medium in response to
staging request

Data Server Data
Processing

Ancillary Data high in response to
staging request

Data Server Data
Processing

Calibration Data medium in response to
staging request

Data Server Data
Processing

Orbit/Attitude Data medium in response to
staging request

Data Server Data
Processing

Algorithms low in response to
staging request

3-4 305-CD-011-001

Table 3.1-1. Subsystem Interfaces (3 of 3)
Source Destination Data Types Data Volume Frequency

Data Server Data
Processing

Science Software Delivery low as required

MSS Data
Processing

resource fault information low as required

MSS Data
Processing

resource performance utilization
information

low as required

Operations Data
Processing

Processing Operations
Commands

low as required

Operations Data
Processing

AI&T Operations Commands low as required

3.2 Subsystem Overview
The following sections summarize the hardware and software structure of the Data Processing Sub­
system and provide the design rationale used during the Detailed Design process.

3.2.1 Subsystem Structure

The Data Processing Subsystem is divided into the following CSCIs and HWCIs:

•	 PRONG – Processing CSCI—The Processing CSCI provides the services required to
manage and monitor the Science Data Processing environment which is used to generate
data products using Science Software (PGEs) provided by the instrument teams. These
services are discussed further in Section 4, the Processing CSCI.

•	 SDPTK – SDP Toolkit CSCI—The SDP Toolkit CSCI provides a set of software libraries
which are used to integrate Science Software into the EOSDIS environment. By promoting
the POSIX standard, these libraries allow the Science Data Processing environment to
support the generation of data products in a heterogeneous computer hardware
environment. The following documents provide guidance on the roles and responsibilities
of the SDP Toolkit to support the execution of science software:

333-CD-001-002 SDP Toolkit Users Guide for the ECS Project, 11/94

193-801-SD4-001 PGS Toolkit Requirements Specification for the ECS Project,
FINAL, 10/93 [AKA GSFC 423-16-02]

•	 AITTL – Algorithm I&T CSCI—The Algorithm I&T CSCI is a set of tools which
are used to integrate and test new science software, new versions of science
software and user methods into the Science Data Processing operational
environment. These services are discussed further in Section 7, the Algorithm
I&T CSCI.

•	 SPRHW – Science Processing HWCI—The Science Processing HWCI is the collection of
hardware resources being provided to support the generation of data products in a secure,
monitored environment. These services are discussed further in Section 8, the Science
Processing HWCI.

3-5 305-CD-011-001

•	 AQAHW – Algorithm QA HWCI—The Algorithm QA HWCI is the collection of
hardware resources being provided to support DAAC manual quality assurance activities.
These services are discussed further in Section 9, the Algorithm QA HWCI.

•	 AITHW – Algorithm Integration & Test HWCI—The Algorithm Integration & Test HWCI
is the collection of hardware resources being provided to support the integration and testing
of Science Software in a secure, monitored environment. These services are discussed
further in Section 10, the Algorithm Integration & Test HWCI.

3.2.2 Subsystem Design Rationale

The division of the subsystem into its current CSCIs and HWCIs has been driven by many different
factors, but two are of particular importance:

a. Science algorithm development support.

b. Efficient use of the Science Data Processing Environment.

Because of the need to support the development of science algorithms, the SDP Toolkit is an early
deliverable. Therefore, a need arose to group this software at a CSCI level for accountability rea­
sons. The SDP Toolkit is an extensive software library with multiple language bindings. It is being
incorporated into the science software to avoid the duplicate development of commonly used tools,
in addition to providing a standard interface for integration of science software into the ECS. In
particular, the library provides interfaces for accessing ECS data products, product metadata, an­
cillary data and processing parameter information. This Toolkit was needed by the Instrument
Teams at an early date to support development, testing and early integration of science software.

The Processing CSCI was developed to provide a means of monitoring and managing the batch
generation of scientific data products. DAAC Science Data Processing is not a real-time, automat­
ically invoked, single data stream, uniform process such as spacecraft telemetry processing. Sci­
ence data must be collected, stored, prepared, and "batched" for generation of lower-level data
products. Processing occurs post (Satellite) pass and must be planned on the basis of data quality
and availability, and the availability of appropriate system resources. The appropriate planning of
the generation of data products is performed by the Planning Subsystem (see Planning Subsystem
Detailed Design Specification for more details.). In support of Science Data Processing, the Pro­
cessing CSCI provides the following capabilities to SDPS:

1. Provides effective resource management for efficient use of hardware resources.

2.	 Supports error recovery mechanisms to allow the generation of data products in an operator
attended or unattended processing environment.

3.	 Provides mechanisms to support many different Science Processing hardware
configurations which are needed to support the differing aspects of data processing which
occurs at each DAAC site.

4.	 Provides data pre-processing support functions for the introduction of Level 0, Ancillary
data, Orbit and Attitude data into the ECS. This data may be received in formats which are
not usable by the science software, and therefore, must undergo reformatting and/or other
types of preparation.

The Algorithm I&T CSCI, on the other hand, is the grouping of tools and support functions related
to the integration of science software and user methods into the ECS. This CSCI is a standalone

3-6 305-CD-011-001

function and requires special attention to support a secure, standalone Algorithm I&T environ­
ment.

The division of the Hardware CSCIs was driven by the need to support a Science Data Processing
environment which would not be affected by the Algorithm I&T environment. The hardware to
support the Science Data Processing Environment is grouped as the Science Processing HWCI.
The Algorithm I&T environment is grouped as the Algorithm Integration & Test HWCI. The Al­
gorithm QA HWCI was created to support DAAC manual quality assurance activities. This HWCI
must support the display of generated data products and the updating of quality assurance metadata
associated with a data product.

3.2.2.1 Performance

The Data Processing subsystem design has been prepared to meet the overall performance objec­
tives of the TRMM Release period. The performance for the subsystem for a given workload is
determined by both the hardware and the software designs for the system. The workload for the
TRMM Release period as estimated from the Technical Baseline is relatively modest. The hard­
ware platforms to be provided at the TRMM Release period will, therefore, be sized to meet the
workload that the system will be exposed to during the EOS-AM1 Release period, which is signif­
icantly more challenging.

The performance of the PRONG CSCI of the Processing subsystem will be strongly affected by
the COTS products, Platinum Technology's AutoSys and AutoXpert scheduling tools, that have re­
cently been procured. Prior to the release of the request for proposals for this tool, several such
packages, including AutoSys were evaluated by HAIS. Certain performance measures were taken,
and this information has been used in the design of the platforms to be used to support this element
of the Processing subsystem. Informal prototyping activities of the AutoSys and AutoXpert pack­
ages have been initiated and will continue after CDR, both to evaluate details of the COTS imple­
mentation and to evaluate the performance of the COTS package. Results of this evaluation will be
analyzed and may influence the details of the hardware sizing for the platforms that will support
the PRONG CSCI.

Details concerning the performance of the platforms supporting the PRONG CSCI, including con­
siderations of the RMA requirements, are included in the sections in this document devoted to the
associated hardware platforms. It should be noted that the design for the PRONG CSCI and asso­
ciated software reflects the high reliability option for AutoSys and AutoXpert, including redundant
processors and high reliability Sybase servers. This will insure that the mean time to restore service
is within the 30 minute recovery time required.

In addition, the design of the Planning and Data Processing subsystem software have been prepared
to minimize needless disk I/O. This is accomplished by retaining on local disk the output files of
one PGE, and scheduling the execution of another PGE that use those files to occur soon after­
wards. In this way, needless disk I/O and network loading is avoided, insuring that the ECS per­
formance goals can be met with the least cost.

3-7 305-CD-011-001

This page intentionally left blank.

3-8 305-CD-011-001

4. PRONG - Processing CSCI

4.1 CSCI Overview
The Processing CSCI is responsible for the initiation, managing, and monitoring of the execution
of science software algorithms. These science software algorithms are identified to the Processing
CSCI through a PGE. From the ECS Glossary, a PGE is defined as "a set of one or more compiled
binary executables and/or command language scripts; it is the smallest unit that can be scheduled
for the Product Generation System (PGS, now the Planning and Data Processing Subsystems) pro­
cessing." A PGE is equivalent to one processing job which requires the use of the Data Processing
Subsystem's hardware and software resources. Generally, a PGE will be used for the generation of
ECS Data Products, but a PGE may be defined to perform other types of processing, such as pre­
processing of input data or the quality assurance processing of generated Data Products. PGEs that
generate data products and perform quality assurance are provided by the Instrument Teams and
algorithm developers. The Processing CSCI is informed of the required execution of a PGE
through a Data Processing Request message received from the Planning CSCI. The Processing
CSCI will not initiate the execution of a PGE until all necessary data required as an input to the
PGE is available. Available in this context means that the data exists at a Data Server, not neces­
sarily the on-site Data Server.

In support of the execution of the science software algorithms, the Processing CSCI has the fol­
lowing responsibilities:

a. Manages the science software algorithm execution process.

b. Manages Science Data Processing computer hardware resources efficiently.

c. Manages the flow of data required to execute a science software algorithm.

d. Manages the flow of data produced by the execution of a science software algorithm.

e.	 Provides an Operational interface to allow monitoring of processing status, and manual
intervention, when necessary, into Science Data Processing operations environment,
including processing queue control.

f.	 Provides an Operational interface to support the quality assurance of generated data
products.

4.1.1 Processing CSCI Design Rationale

The Processing CSCI detailed design, as presented, is meant to provide a framework to build a ro­
bust science data processing system. This detailed design has taken the concepts expressed in the
Data Processing Subsystem sections of the SDPS System Design Specification and the SDPS Pre­
liminary Design Specification and expanded, improved, and modified these concepts to reflect the
current state of the Processing CSCI design.

This detailed design represents a significant step in providing a basis to continue into the Imple­
mentation phase. By developing the use-case scenarios (see Section 4.5, Processing CSCI Dynam­
ic Model), the design has established the boundaries of the Processing CSCI software, allowed the
identification of problem areas, and the resolution of these problem areas. These scenarios will now

4-1 305-CD-011-001

be used as guidance for implementation.

The Processing CSCI design rationale has been influenced by a set of design drivers. These design
drivers have greatly influenced the decisions which have been made as the design has matured
since the System Design Specification and the Preliminary Design Specification for the ECS
Project. The following design drivers have been identified:

a.	 Separation of Planning and Processing—The roles and responsibilities of the Planning
CSCI and Processing CSCI have been separated to support future evolving aspects of these
functions.

b.	 Data Driven System—The Processing CSCI does not activate a Data Processing Request
which requires execution until data is available to support the execution of the PGE
associated with Data Processing Request.

c.	 Priority Driven Data Processing—As a Data Processing Request is input into the
Processing CSCI, this Data Processing Request has an assigned priority which is
determined in the Planning CSCI. This priority is based on the production rules used to
generate the production plan which is currently active. This priority is reflected by the
production policies at a DAAC.

d.	 Development of user interfaces—The amount of support to provide the different classes of
users, i.e., Operations, Instrument Teams, and remote users, has influenced how
information is to be provided to each type of user. The need to support a secure operations
environment is quite evident.

e.	 Exception handling—The capabilities to support recovery from the faults associated with
the failure of a resource or a PGE are provided to support efficiency in the science data
processing environment.

g.	 Extent of automation vs. manual supported operations—To support an efficient Science
Data Processing environment, a number of decisions have been made in the design to
reflect the need to increase the amount of automated decision making required. This is
driven by the need to support the generation of data products in an attended (by Operations
staff) or unattended mode.

h.	 Dynamic aspects of Planning and Processing—Both Planning and Processing software
must have the capability to react to real-time events, i.e., PGE failures, resource failures,
etc., which have affected the active production plan and the queue of Data Processing
Request Jobs awaiting execution in Processing.

Each of these design drivers has impacted the framework of the Processing CSCI design. To em­
phasize their impact in the different functional areas affecting the design, a description of the de­
sign in certain areas and the underlying factors affecting the design has been provided. These
descriptions are in the following sections:

a. The division of the Planning and Processing CSCIs

b. Resource Management

c. Quality Assurance

d. Processing Error Architecture

e. Processing/Planning Interface

4-2 305-CD-011-001

f. Processing/MSS Interface

g. Processing/Data Server Interface

The information provided in the following sections on the above listed topics is meant to summa­
rize important aspects of the Processing CSCI detailed design. More information on these areas and
the resulting impact to the detailed design is contained in the Section 4.5, Processing CSCI Dynam­
ic Model, which contains a set of scenarios used to define the roles and responsibilities of the Pro­
cessing CSCI.

4.1.1.1 The Division of the Planning and Processing CSCIs

The division of the Planning and Processing CSCIs was influenced by the following factors:

a.	 Follows Client/Server Architecture—Planning acts as the Client, and Processing acts as the
Server. Planning is responsible for developing a Production plan and informing Processing
which activities must be executed as listed in the Production plan.

b.	 Increases Fault Tolerance of the Planning and Data Processing Subsystems—By separating
the Planning services from the Processing services, an increase in the fault tolerance of the
Planning and Data Processing Subsystem software is achieved. The failure of the Planning
subsystem will not cause an immediate breakdown in production processing. Processing
will be able to continue with production processing until the processing queues are
depleted. Also, a failure of the Processing CSCI or Processing Hardware will not cause the
Planning subsystem to fail. Although the flow of information from Planning to Processing
and Processing to Planning will be interrupted, this should not affect the overall production
plan.

c.	 Evolvability of the roles and responsibilities of Planning as ECS becomes operational—
The separation of Planning services from Processing services allows for different
configurations of Planning services and Processing services. For example, there may be
some special event which would result in the Planning services of a DAAC creating a
Production plan for itself as well as other DAACs. By separating Planning from Processing,
this becomes an easier problem to resolve.

Each of the above items has influenced the separation of Planning services from Processing servic­
es. This separation will support the general concept of the changing roles of Planning and Process­
ing as ECS matures.

4.1.1.2 Resource Management

The Resource Management capabilities as presented in the Processing CSCI detailed design have
been influenced by the following design drivers:

a.	 Efficient use of computer resources is required to support Production Processing—The
Processing CSCI is responsible for the allocation of resources, i.e., disk space, memory,
and CPU, to execute a PGE. To perform this role, Processing relies on MSS to provide up
to date (pseudo-real-time) information on the health and overall availability of Data
Processing Hardware resources. This information is provided by MSS SNMP monitoring
agents which will be located on each science processing resource platform.

4-3 305-CD-011-001

The Processing CSCI allocates disk space, memory, and CPU to support the execution of a
PGE. The PGE resource profile information for allocating disk space, memory and CPU
are established during the AI&T time frame and will undergo updates as the science
software matures in the science data processing environment

Before a PGE begins execution, all required resources must be available. This means that
enough disk space and sufficient CPU must exist to support execution. These resources will
be allocated to only support the execution of a given PGE. Also, as required through the
Planning CSCI, all input data is available before initiating the PGE. This will alleviate any
deadlock situation where a PGE is awaiting some input data file or awaiting the use of a
given resource currently in use by another PGE. Also, as determined through ECS dynamic
modeling results, it seems that a majority of PGEs, as currently defined, will be executed
individually on a CPU. This has been shown to provide an optimal solution. Even though
this is the current direction, no Processing CSCI or COTS decision precludes the
availability of the time-sharing of CPUs for multiple PGEs.

Also, during execution monitoring, Processing will monitor the use of the allocated disk
space, memory, and CPU as a method of fault detection.

b.	 Automated recovery from resource faults—Processing plays a limited role in resource fault
recovery. Processing is responsible for protecting the state data maintained in the
Processing software and for insuring that the execution of a PGE can resume upon the
recovery of a resource. When a resource has failed, the Processing CSCI will inform MSS
of the failure and update the resource management information associated with the failed
resource to indicate that the resource can not be allocated for processing. Also, MSS will
inform Processing that a resource is unavailable and when the resource is available again
for processing. This interface is intended to be two way.

c.	 Reporting of resource fault and other information—Processing supports fault reporting in
two distinct ways:

1.	 During PGE execution—While a PGE is executing, information is collected from the
execution of the science software through the use of a Status Message File.
Processing will inform MSS about resource-specific faults. To recover from a
resource fault, the Processing CSCI may determine if the PGE can be executed on
another resource which is capable of supporting the execution of the PGE. This will
be done by allowing the Data Processing Request Jobs to re-queue into the queue
supporting the other resource. For a science software fault, Processing will use
return code information provided by the PGE to determine the necessary steps to
take for recovery purposes.

2.	 Processing SW specific—If an event for which Processing is responsible (i.e., data
staging, data destaging, execution environment monitoring) indicates a possible
resource-specific fault, Processing will inform MSS.

d.	 Logging of resource fault and other information—Resource fault and usage information
will be logged for accounting, performance, and accountability purposes. The resource
usage characteristics for a PGE will be updated and used for future Production planning
purposes. Fault information will be used to determine if faults are re-occurring frequently.

4-4 305-CD-011-001

The logging of resource management data is performed by MSS. Processing will assist by
providing system management information to MSS.

4.1.1.3 Quality Assurance

This section briefly describes quality assurance and the support provided by SDPS. The support
provided for DAAC Manual quality assurance activities by the Processing CSCI is still at a con­
ceptual level and is evolving as requirements generated through Instrument Team input are under­
stood. Four types of quality assurance will be supported by SDPS.

a.	 In-Line Q/A—This service is provided through the production environment. This is the
automated quality assurance processing which can be provided by a PGE executing a
quality assurance algorithm. At this time, a PGE could exist which only performs
automated quality assurance on a generated product, or the quality assurance algorithm
may be one part of a PGE which generates a data product. These quality assurance PGEs
will be provided by Instrument Team algorithm developers.

b.	 DAAC Manual Q/A—DAAC manual Q/A capabilities can be supported through the use of
the Data Server subscription service. The DAAC Q/A position would have to manually
subscribe to the desired data product. The Data Server would provide notification to the
DAAC Q/A monitor when a selected data product has been generated and is available for
review. Also, this could allow DAAC Q/A to be de coupled from the generation and initial
storage of the data product. DAAC Q/A activities would not necessarily have to occur when
the product is generated.

c.	 SCF Q/A—This service is provided through use of the Data Server subscription service. A
user who wishes to perform Q/A on a product can request a copy of the product whenever
the product is generated by placing a subscription for the data product.

d.	 User Q/A—User quality assurance activities occur as a data product is used to support
research. The ability of the remote user to update quality assurance information is
necessary. For existing data, a user can query for and request data directly.

By using the Data Server subscription service, the Processing CSCI lessens the dependency on
man-in-the-loop activities affecting the generation of data products. Processing SW is being de­
signed under the assumption that Data Processing must be able to generate products while in an
attended or unattended mode. If the Q/A position is manned when the product is generated, the
product can be reviewed while still on the Data Processing subsystem storage device. Otherwise,
the Q/A position may have to request the product from the Data Server. To allow DAAC manual
Q/A to work efficiently, Data Processing will require knowledge of what type of Q/A the product
will require. As the requirements for DAAC manual quality assurance activities become under­
stood and stable, further attempts to automate these activities will be supported.

The Processing CSCI will support an interface for visual display of a data product through the use
of data visualization tools, such as EOSVIEW and IDL. Processing will also support an interface
to allow for the update of the Q/A metadata which is associated with a data product.

The design approach was chosen for the following reasons:

a.	 Based on the Data Processing design approach of allowing for manned and unmanned
modes of operations.

4-5 305-CD-011-001

b.	 Follows Q/A approach for making products available for SCF review. No new paradigm to
support DAAC manual Q/A has been introduced. This leads to maximum reuse of already
developed software capabilities.

c.	 Allows man-in-the-loop Q/A activities at the DAAC without serious impact on the
processing resources. This approach would not require manual intervention before
processing of other data products continues. If Q/A position is unmanned, the data products
requiring Q/A review are stored at the Data Server and await review.

4.1.1.4 Processing Error Architecture

This section provides a brief description of the Error Architecture approach adopted by the Pro­
cessing CSCI and follows the common error handling approach adopted across all SDPS applica­
tions. Error Architecture refers to the mechanisms used for error detection, reporting and recovery
that are incorporated into the design of the Processing CSCI. It provides details on how the Pro­
cessing CSCI will react when an error or exception, i.e., hardware or software, occurs during
steady-state processing of a Data Processing Request and the execution of a PGE.

This Processing CSCI Error Architecture approach was influenced by the following factors:

a.	 Detection of different types of errors, i.e., Science Software (PGE) execution errors,
Processing Hardware errors, and Processing Software errors.

1.	 The detection of science software errors which occur during the execution of a PGE are
captured by the SDP Toolkit, and are propagated to the Processing CSCI through the use
of a PGE return code status. The Processing CSCI will have knowledge of the error
associated with a given return code, and as a result of this return code, may initiate a
corrective measure, such as alerting the operations staff or restarting the PGE job with
updated diagnostic flags to initiate the capture of detailed diagnostic information. The
definition of these return codes and the resulting corrective measures are an ongoing
activity. Dialogue with Release A instrument teams, i.e., CERES, have led to some initial
definitions. These are currently being defined with more detail and will be supplied to all
instrument teams for more feedback.

As a result of an unsuccessful return code, the running of dependent Data Processing
Request jobs which were dependent on PGE that failed would not be executed. This
information would be made available to the Operations staff through the use of the
Processing Operations Interface. Please see Section 4.1.3, COTS Selection, for more
information on the Processing Operations Interface. The Processing Operations Interface
is provided by the selected COTS product.

2.	 Although MSS will also detect science processing hardware errors, the detection of
Processing HW and Processing SW errors can occur in the Processing SW. Processing
HW error detection will be supported by a group of MSS interfaces used to support fault
tolerance and provide resource management information.

b.	 These errors must be reported to different user classes depending on the nature of the error,
i.e., IT/Algorithm Developer, DAAC Operations personnel. The IT/Algorithm Developer
users are interested in the detailed error information associated with the execution of a PGE
for the purposes of debugging a problem. This information will be logged in Status
Message Files which are created and maintained during PGE execution by the SDP Toolkit.

4-6 305-CD-011-001

While the DAAC Operations personnel is interested in whether a PGE was successfully
executed, the detailed error information will not be provided for review, unless requested.
Rather, the DAAC Operations personnel will be alerted to the unsuccessful processing, and
the alert information will be captured in the processing log for later use.

c.	 Recovery actions from errors will differ on the type of error. The recovery from an error
will depend on the type of error. In almost all severe error cases, the recovery action will
be to terminate the event which has suffered the error. This approach is also required to
support minimal human interaction by the Operations staff. This helps support the concept
of Production Processing occurring in an unattended mode.

d.	 Human interaction requirements to support Production Processing must be minimized. To
support this, almost all errors will be logged and the Operations staff will be alerted.
Depending on whether Production Processing is occurring in an attended operations mode
or unattended operations mode, the operations staff will have the capability to manually
intervene to correct the error condition. Otherwise, the activity will be terminated by
Processing, and a new processing activity will be initiated.

e.	 Isolation of errors so as not to affect other Processing activities. Science SW processing is
terminated to isolate the cause of the error. Also, Processing HW may be taken off-line to
correct the resource problems to support the isolation of the error condition.

4.1.1.5 Processing/Planning Interfaces

This section provides a brief description of the relationship between the Planning and Processing
CSCIs.

The interface between the Planning and Processing CSCIs occurs through a common shared data­
base, known as the PDPS Database. The PDPS Database is an RDBMS, SYBASE, and contains
all data which is persistent to applications associated with Planning, Processing, and Algorithm In­
tegration and Test. The decision to share a common database was driven by the many common data
structures which were apparent in the Preliminary Design Specifications developed for the Plan­
ning and Data Processing Subsystems.

When a Data Processing Request is planned for execution, as represented in the activated produc­
tion plan which is created and maintained by Planning CSCI components, the knowledge of this
Data Processing Request is transferred into the Processing CSCI domain. This involves adding the
definition of a series of jobs representing the Data Processing Request to the COTS product being
used to manage production by the Processing CSCI. Please see Section 4.1.3 for more information
on the selected COTS product. As these jobs run, the Planning CSCI is capable of polling on the
COTS product to retrieve status information for a given job.

4.1.1.6 Processing/MSS Interfaces

This section provides a brief description of the relationship between the Processing and MSS CS-
CIs. A high-level description of the interfaces between MSS and Processing is provided.

The Processing CSCI is dependent on the MSS to provide life cycle services. These services con­
sist of information related to the following activities:

a. Startup of the Processing CSCI software components.

4-7 305-CD-011-001

b. Shutdown of the Processing CSCI software components.

MSS provides proxy agents which will be used to communicate startup and shutdown commands
to all ECS applications. It is currently envisioned that the MSS proxy agent initiates the PDPS Da­
tabase. The startup of the PDPS Database will then initiate the startup of the Processing CSCI
COTS components. The COTS components will then initiate the custom Processing CSCI compo­
nents on an as needed basis.

Also, MSS provides mechanisms which enable the Processing CSCI components to provide sys­
tem management information, such as system-wide event information, resource fault information,
and ECS application fault information, to MSS for logging purposes and to initiate system-wide
error recovery activities.

In support of system resource configuration management, MSS provides resource configuration in­
formation to the Processing CSCI which allows the Processing CSCI to logically manage the allo­
cation of resources to support science data production. MSS will support the monitoring of science
software by providing fault isolation and performance tools which provide feedback on the utili­
zation of the science data processing resources.

4.1.1.7 Processing/Data Server Interfaces

The Processing CSCI has an interface to the Science Data Server CSCI to support the staging (Ac­
quiring of data from the Science Data Server CSCI) and destaging (Insertion of data to the Science
Data Server CSCI) of data. At this time, this interface is being viewed as a classic client/server in­
terface with the Processing CSCI acting as the client. The Processing CSCI requests the Science
Data Server CSCI to stage or destage data as required to support the generation of a data product.
The Processing CSCI will inform the Science Data Server CSCI where the data should be staged
(what resource) or where the data should be destaged (copied) from. The Science Data Server CSCI
uses an FTP PUSH to copy the data to the science processing resources to support staging of data
and uses an FTP PULL to copy the data from the science processing resources to support destaging
of data. When the Science Data Server CSCI has completed this task, the Science Data Server
CSCI informs the Processing CSCI that the data has been staged or destaged successfully. The Pro­
cessing CSCI is responsible for determining whether data should be deleted from the science pro­
cessing resources. When data is destaged, it is considered a copy operation, not a move operation.

4.1.2 Processing CSCI Design Modifications since PDR

After the Preliminary Design Specification, a COTS product(s) has been selected which will fulfill
the majority of Level 3 and Level 4 requirements. This COTS product has had a tremendous impact
on the detailed design as presented here. The following information will summarize these design
modifications and their rationale. The selected COTS products are Platinum Technology's Auto-
Sys and AutoXpert. They will be integrated into PDPS to provide the basis for the monitoring and
management of ECS' science data production facility.

All design decisions have been driven by a desire to minimize custom code development, tempered
by the need to provide proper encapsulation of the COTS to insure later flexibility of adding or
modifying the underlying COTS product as ECS matures and evolves.

As a result of these efforts, some design elements which were mapped to the Planning CSCI at PDR
have since moved to the Processing CSCI. This has resulted in a clearer division of the roles and

4-8 305-CD-011-001

responsibilities of the Planning and Processing CSCIs. As a side effect, the Planning and Process­
ing CSCIs are now more loosely coupled. This will ensure greater flexibility in the future.

The following summarizes the design decisions and provides a top-level view of the current Plan­
ning and Data Processing Subsystem Architecture.

1.	 PDPS will share a common database, i.e., one instance of a SYBASE RDBMS. This will
allow PDPS to eliminate the large amount of common persistent data structures which
existed in the PDPS preliminary design. For detailed information on the PDPS Database,
please refer to Section 4.6.6, PDPS Database CSC, in the Planning Subsystem Preliminary
Design Specification

2.	 The Production Management CSC which was mapped to the Planning CSCI has been
divided between the Planning and Processing CSCIs. As presented at PDR, the Production
Management CSC provided two important functions; managing of subscription
notifications from the Data Server and Ingest and managing the active plan by receiving
status feedback from the Processing CSCI. Since the AutoXpert product provides
mechanisms for monitoring and managing the active plan, it was decided to encapsulate the
COTS products into a single COTS CSC within the PRONG CSCI. This will provide a
more consistent and simpler design with fewer interfaces needed between the Planning and
Processing CSCI. Therefore, active plan management is now within the Processing CSCI,
whereas, the management of subscription notifications remains in the Planning CSCI.

3.	 The interface between the Planning and Processing CSCIs has been modified. This change
involves when a Data Processing Request is made visible to the Processing CSCI. At PDR,
the approach amounted to not providing a Data Processing Request to the Processing CSCI
until all the data subscriptions, sometimes called data dependencies, were fulfilled for a
Data Processing Request. Because of the selection of AutoSys and its capabilities to
manage job dependencies, this approach has been changed to consist of all Data Processing
Requests being fed into AutoSys at the beginning of the day. The Data Processing Requests
which do not have all data dependencies fulfilled would be kept in a "HELD" state until the
dependencies are fulfilled. Upon the meeting of all data dependencies, the Planning CSCI
would release the job.

4.	 The software components of the Science Data Pre-Processing CSCI as defined in the
Preliminary Design Specification have been mapped into the Processing CSCI or Ingest
CSCI, based on what is the optimal location to perform these operations. Within the
Processing CSCI, the Science Data Pre-Processing functions have been mapped to a CSC
called Data Pre-Processing.

4.1.3 COTS Strategy

This COTS Strategy section summarizes the objectives and technical approach which was taken to
determine the optimal COTS solution required to support the job scheduling functions associated
with the Processing CSCI management of the science processing resources. There were four ob­
jectives which influenced the decision on the type of COTS products selected;

1) Minimize custom code development

To insure an adequate solution for the Release A time frame, the COTS solution must
minimize the amount of custom code development which is required to provide the

4-9 305-CD-011-001

complete Planning and Data Processing Subsystem software solution. This is
necessary to mitigate the schedule risk associated with Release A which because of
time constraints, will not support a large growth in custom code development.

2) Reach COTS decision to support Release A Detailed Design and Implementation Phase.

An early decision on the COTS product was required to insure that the required
modifications to the Planning and Processing CSCI design could be made to support
CDR and to ultimately support the Release A software development schedule.

3) Ease of integration into ECS software applications.

The selected COTS product must support command line or API style interfaces to
support the extensive integration efforts which must occur to meet ECS
requirements.

4) Scalability to Release B processing load.

The selected COTS product must be capable of supporting large numbers of jobs, i.e.,
20,000, per day. This is necessary to support the Release B processing load.

The adopted technical approach consisted of the following steps:

1)	 Collecting information about the different types of COTS which could be used to support
ECS Planning and Processing functions;

a) Vendor teleconferences and meetings

b) Customer teleconferences

c) Vendor site visits

2)	 Determining different types of software architecture given the COTS products and the
unique ECS Planning and Processing requirements.

3)	 Analyzing the different classes of COTS packages to determine viability in ECS given the
previously defined objectives.

The information gained in this process was used during the preparation of the RFP (Request For
Proposal). This RFP was divided into mandatory, optional, and implementation features sections.
The responses to these proposals were analyzed and scored based on the information provided by
the vendor for each of these sections.

4.1.4 COTS Selection

The following sections provide information on the COTS products selected to support the Process­
ing CSCI in performing management and monitoring activities associated with ECS' science data
production environment. The product selected was Platinum Technology's AutoSys and AutoX­
pert products. A summary of the AutoSys' capabilities and a scenario which explains the set of ac­
tions taken to initiate a job is provided.

4.1.4.1 Platinum Technology's AutoSys

AutoSys is a job scheduling software application used to automate operations in a distributed
UNIX environment. AutoSys performs automated job control functions required for scheduling,
monitoring, and reporting on jobs that reside on any machine attached to a network. In ECS, the
machines for which AutoSys will be responsible are the Science Processing hardware resources.

4-10 305-CD-011-001

In AutoSys, a job is defined as any UNIX command or shell script plus a variety of qualifying at­
tributes which include conditions specifying when and where the job should be run.

AutoSys provides a complete system solution to support job scheduling. This includes an Operator
Console, which allows human intervention into the AutoSys job stream, and provides various
mechanisms for monitoring the AutoSys job stream. Provided with the interface are capabilities to
view job definitions, change the state of a job, modify the job definition, and alter job dependency
information. Also provided with the Operations interface is an alarm manager. The alarm manager
can be used to assist in monitoring jobs and to react to fault situations. These alarms can be set
through the definition of a job. More details on the underlying components of AutoSys software
are contained in Section 4.6, CSCI Structure. More information about the AutoSys Operator Con­
sole is contained in Section 4.7.2, Operator Interfaces.

4.1.4.2 AutoSys Integration into the Processing CSCI Detailed Design

For the Processing CSCI, AutoSys provides the job scheduling engine for the Processing CSCI.
AutoSys' Event Processor will manage all the events that occur in the science data production en­
vironment. AutoSys' Database will become part of the PDPS Database using the AutoSys provided
table schema. For detailed design, the current assumption is that the AutoSys provided processes
will manage the processing environment when the production facility is operating in a steady state
manor. For start up and shutdown, some development code is needed to assist in establishing com­
munication connections, initializing the PDPS database, assuring the availability of other entities,
i.e., Data Server, and alerting operations and other applications about startup and initialization
problems. After the completion of startup and upon the completion of adding the daily job schedule
to AutoSys, AutoSys will begin managing and monitoring the execution of jobs.

To support the execution of jobs, AutoSys will require additional help in the following areas:

a.	 Resource Management—Allocation of sufficient resources, i.e., disk storage, to support
execution. Currently, AutoSys provides no mechanisms for managing disk storage. This is
a potential enhancement that will be added to their product. Also, the monitoring of
resources will not be done by AutoSys. This is a MSS and Processing joint responsibility.

b.	 Data Management—Manages the staging, destaging, and retention of data on Processing
resources.

c. PGE Execution Management—Initiates and monitors execution of a PGE.

The following paragraphs briefly illustrates the operational concepts of the new Processing CSCI
design. They discuss the following:

a. How a job schedule is created

b. How jobs are prepared and initiated, and

c. How post-processing takes place.

These applications will be initiated by AutoSys at the Job level. For each PGE, a series of prepa­
ration, execution, and post-execution jobs will be defined. The preparation jobs will manage the
staging of data (if necessary) and allocation of resources to support execution. The execution job
will be used to initiate and monitor the execution of the PGE. The post-execution job will be used
to destage and deallocate resources.

4-11 305-CD-011-001

To accomplish the set-up of these jobs, AutoSys' capabilities to create and manage job dependen­
cies and to create job boxes, which consist of a series of related jobs, will be used. For each Data
Processing Request, which contains the data required to support the execution of one PGE, re­
ceived from Planning, a corresponding job box, which contains a series of jobs to allocate resourc­
es, stage data, execute the PGE, destage data, and deallocate resources, will be created. In Figure
4.1-1, the diagram shows the steps involved in providing job information to AutoSys. The Produc­
tion Planning Workbench component of the Planning CSCI is the initiator of this activity. The Pro­
duction Planning Workbench component will use the Scheduler (DpPrScheduler) public class
which is being created to provide an interface to AutoSys. This class will encapsulate AutoSys de­
fined capabilities and will manage the information flow from Planning to AutoSys. Through the
use of API and command line interfaces, the Scheduler class will provide job definitions to the Au­
toSys Database. Also, through the DpPrScheduler, the Planning CSCI will be able to request the
status for the jobs associated with a Data Processing Request.

Create Job Schedule

AutoSys

PDPS Database

AutoSys
Database

Post-Exec Execution Job Preparation Job

Production
Planning Workbench

DPR
Info,
Plan
Info

Job
Scheduler

AutoSys
Job Info

AutoSys
Job
Info

Job Box

Figure 4.1-1. Scheduling Jobs using AutoSys

Each of these jobs will actually consist of a command which initiates a process or processes to per­
form the task desired. The process will perform the desired functions and gracefully terminate. The
successful completion of their task will result in the next dependent job being released until all jobs

4-12 305-CD-011-001

within the job box have completed. Besides managing normal operations through these mecha­
nisms, failures which occur within a job box could result in the execution of special fault recovery
jobs when necessary.

The Processing CSCI custom components will be initiated by AutoSys to perform support activi­
ties, such as resource allocation, staging and destaging data, and interfacing with the PGE. Figure
4.1-2 shows the series of steps and resulting actions performed by the Processing CSCI compo­
nents.

Initiate Preparation Job

PDPS Database

AutoSys

AutoSys
Job
Info

Job Box

Data Prep Job Execution Job Post-Exec

Initiate Data Preparation
Activities

Data Manager
-- Prepare Input Data
-- Allocate Resources

Data Resource Data Server
Perform
Data
Staging
(OODCE)

AutoSys
Database

Job

Job
PGE Prep Job

Job

Job

Figure 4.1-2. Initiating Processing Components using AutoSys

AutoSys also provides logging and report generation in order to capture information on job results
and status changes. This information will provide information previously mapped to the Processing
Log (DpPrProcessingLog) as presented in the Preliminary Design Specification.

4.1.4.3 Platinum Technology's AutoXpert

This product provides mechanisms to monitor and manage the job schedule which currently is be­
ing processed in AutoSys. This product is a GUI which provides different methods of viewing the
progress of the job schedule, determining corrective measures when required, and providing capa­
bilities to play what-if simulations to determine the affects of modifying the active job schedule.
AutoXpert allows the job schedule to be represented at many different levels of abstraction. This
concept is an important concept given the large numbers of jobs expected to executed per day at a
given DAAC site. These abstract views include a time-line, gantt chart, and job data flows. As part

4-13 305-CD-011-001

of these views, jobs which are not following predicted behaviors will be color coded which will
allow the operations staff to intervene, if necessary. More information about the AutoSys Operator
Console and the AutoXpert GUI capabilities is contained in Section 4.6.2, Operator Interfaces.

AutoXpert provides additional capabilities to perform simulations using the current active job
schedule. These capabilities will assist the operations staff in judging the downstream effects of the
failure of a job, the unavailability of a resource, the late arrival of data, and a job running longer
than predicted. These capabilities are provided and can be used in real-time for projections, but also
in a simulation mode, where the schedule can be sped up or other job information can be changed
to judge what the impact would be. These additional capabilities will help assist DAAC operations
personnel in determining what impact production anomalies will have against the active plan and
may be used to determine if a replan of production is necessary.

In terms of the PDPS Preliminary Design Specification, AutoXpert provides functions which were
previously mapped to the Production Management CSC in the Planning CSCI. Since these func­
tions are being provided by the AutoSys and AutoXpert products, it seemed desirable to map the
COTS product to one CSCI. This decision eliminated the need to represent interfaces between Au­
toSys and AutoXpert across CSCI and Subsystem boundaries.

4.2 CSCI Context
The Processing CSCI interfaces with the following external actors, SDPS and CSMS subsystems
to fulfill its responsibilities (see Figure 4.2-1):

a.	 Planning Subsystem—The Planning Subsystem is responsible for creating a production
plan for the Processing CSCI. The Production plan information is conveyed to the
Processing CSCI through the use of Data Processing Requests. Each Data Processing
Request represents one processing job to be performed by a Data Processing Subsystem
computer resource. Processing will provide status information to Planning to assist in
production management activities of the Planning CSCI.

b.	 Data Server Subsystem—To support the creation of ECS Data Products, the Processing
CSCI needs the capability of requesting and receiving data (Data Staging) from any of the
Data Server resources which has the responsibility of maintaining the data. Also, the
Processing CSCI needs the capability of transferring data (Data Destaging) to any Data
Server resource for archiving of a generated data product.

c.	 Operations Interface—To support the management and monitoring of the execution of a
PGE and the creation of ECS Data Products, a HMI interface is provided. This interface
will provide services to support the collection of status for a Data Processing Request, the
cancellation, suspension/resumption and/or modification of a Data Processing Request,
and monitoring of the health of Data Processing Subsystem hardware resources. Also, this
interface will be used to support manual quality assurance operations performed at the
DAAC.

d.	 SDP Toolkit Interface—To support PGE execution, the Processing CSCI provides
information on the location of input data and the location of where the generated output
data products are to be maintained. While a PGE is executing, the Processing CSCI
monitors the execution of the PGE and informs the operations staff of current status. Status
may include current processing event history (what is happening, i.e., data staging,

4-14 305-CD-011-001

execution). Also, monitoring will be needed to make sure that the processing activity is
executing properly. Upon completion of the execution of a PGE, the Data Processing CSCI
will inform Planning and will initiate the transfer of the generated data product (if
necessary) to the Data Server.

e.	 CSMS Interface(s)—The Processing CSCI relies on CSMS services to assist in
communications and resource management activities and provides system management
information to CSMS for Fault, Accounting, Security, Performance, and Accountability
purposes. Also, CSMS will provide support for the monitoring of Processing resources and
the execution of Science Algorithms.

f.	 Ingest CSCI—To support science data production, the Processing CSCI must be capable of
acquiring necessary input data, the Ingest CSCI's hardware resources are the location of the
Level 0 data, and other additional products when first input into ECS.

The Event Flow Diagram (Figure 4.2-2) shows the interactions which occur at the C++ Class Level
with Objects which exist in other CSCIs. Table 4.2-2 summarizes the Event Flow.

Processing

Operations

Planning

Data
Server

MSS

Ingest

Interoperability

Scheduling Commands:
Schedule Job Command, Cancel Job Command, Update Job Command,

Release Job Command

This System

DPR Information,
Scheduling Commands,
PGE Profile Information

Processing Status,
PGE Profile Information

Processing Operation Commands

Processing Ops
Command Responses,

Processing Display
Updates

Subscription, ACQUIRE & INSERT Commands,
Destaged Data (Level 1 to Level 4 Data Products,

Metadata, Intermediate Data Products,
Science SW Runtime Information)

ACQUIRE Command Response
INSERT Command Response,

Subscription Notification,
Staged Data (PGE, Metadata, Level 0 to Level 4 Data,

Ancillary Data, Calibration Coefficient)

System Management Information
(Fault, Configuration, Accounting,

Performance, Security)

Lifecycle Commands,
Resource Fault Info,
System Resource

Utilization Info

ACQUIRE command
"Staging Request"

Level Zero Data,
ACQUIRE command

response

Advertisement

Figure 4.2-1. Processing CSCI Context Diagram

4-15 305-CD-011-001

PLANG

PRONG

MSSMSS

SDSRV

SDSRV

PLANG

GLOBAL

PLANG

ADSRV

AgentRequestAndResponseString,
Get Status, Get performance info,
Log Event, LogEvent, MsEvent,
MsManager, MsMgCallBacks,

SetMsMgCallBackObj

Submit performance log entry,
~MsMgCallBacks

DsClCommand,
DsClESDTReferenceCollector,
DsClESDTRerferenceCollector,

DsClRequest, DsClSubscription, Insert,
Inspect, SetStatusCallBack

SetStatusCallback, Submit, Withdraw,
ctor

Get Priority
Get User Parameter Time Information Pge Name Command DprBackDeps

GetMyPge, Select Subscribed Types,
SelectSubscribedTypes,

SelectUnsubscribedTypes, Success

GetFirstServiceAd,
GetServiceCollector,

IoAdAdvertisingSrv C, Search

GlCallBack, GlParameter,
GlParameterList, Insert

SetQaSubscription

CancelDprJob, CancelGEvnt,
CreateDprJob, CreateGEvnt,

ReleaseDprJob,
Return NewPriority and NewTimeInfo,

Return Pge

Return Requested Information,
UpdateDprJob

DestageRequestReturn,
StageRequestReturn

Log entry completed,
Performance Info returned,

return Callback,
return Resource Status,
return Status Response

Time Info,
Machine,

PLANG

GLOBAL

MSS

Figure 4.2-2. Processing CSCI Event Flow Summary

Table 4.2-2. PRONG__events Event Flow Summary (1 of 15)

Sender Receiver Event Name Detailed Signature

PRONG MSS AgentRequestAnd-
ResponseString

PRONG MSS AgentRequestAnd-
ResponseString

Status Returned
Asynchronously

PRONG MSS AgentRequestAnd-
ResponseString

Agent Response sent
asynchronously

PRONG MSS AgentRequestAnd-
ResponseString

Agent Response Sent
Asynchronously

PLANG PRONG CancelDprJob

4-16 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (2 of 15)

PLANG PRONG CancelGEvnt

PLANG PRONG CreateDprJob

PLANG PRONG CreateGEvnt

GLOBAL PRONG DestageRequestReturn

GLOBAL PRONG DestageRequestReturn

GLOBAL PRONG DestageRequestReturn Destage Data

PRONG SDSRV DsClCommand

PRONG SDSRV DsClCommand

PRONG SDSRV DsClCommand

PRONG SDSRV DsClCommand

PRONG SDSRV DsClCommand

PRONG SDSRV DsClCommand

PRONG SDSRV DsClCommand

PRONG SDSRV DsClCommand

PRONG SDSRV DsClCommand

PRONG SDSRV DsClCommand

PRONG SDSRV DsClCommand

PRONG SDSRV DsClCommand

PRONG SDSRV DsClCommand

PRONG SDSRV DsClCommand

PRONG SDSRV DsClESDTReferenceC­
ollector

PRONG SDSRV DsClESDTReferenceC­
ollector

Create a collector for the
dataserver

PRONG SDSRV DsClESDTReferenceC­
ollector

PRONG SDSRV DsClESDTReferenceC­
ollector

Sender Receiver Event Name Detailed Signature

4-17 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (3 of 15)

PRONG SDSRV DsClESDTReferenceC­
ollector

PRONG SDSRV DsClESDTReferenceC­
ollector

PRONG SDSRV DsClESDTRerferenceC­
ollector

Create a collector for the
dataserver

PRONG SDSRV DsClRequest

PRONG SDSRV DsClRequest
The constructor places
one command in the re­
quest

PRONG SDSRV DsClRequest
The constructor places
one command in the re­
quest

PRONG SDSRV DsClRequest

PRONG SDSRV DsClRequest

PRONG SDSRV DsClRequest

PRONG SDSRV DsClRequest

PRONG SDSRV DsClRequest

PRONG SDSRV DsClRequest

PRONG SDSRV DsClRequest

PRONG SDSRV DsClRequest

PRONG SDSRV DsClRequest

PRONG SDSRV DsClRequest

PRONG SDSRV DsClRequest

PRONG SDSRV DsClSubscription

PRONG SDSRV DsClSubscription

PRONG MSS Get Status (notify)

PRONG MSS Get performance info (lookup)

PRONG ADSRV GetFirstServiceAd

PRONG ADSRV GetFirstServiceAd

Sender Receiver Event Name Detailed Signature

4-18 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (4 of 15)

PRONG ADSRV GetFirstServiceAd

PRONG PLANG GetMyPge

PRONG PLANG GetMyPge

PRONG ADSRV GetServiceCollector

PRONG ADSRV GetServiceCollector

PRONG ADSRV GetServiceCollector

PRONG GLOBAL GlCallBack ctor(callbackFnPtr)

PRONG GLOBAL GlCallBack

PRONG GLOBAL GlCallBack

PRONG GLOBAL GlCallBack

PRONG GLOBAL GlCallBack

PRONG GLOBAL GlParameter

PRONG GLOBAL GlParameter

PRONG GLOBAL GlParameterList

PRONG GLOBAL Insert [Add an entry to DB]

PRONG GLOBAL Insert [Add an entry into DB]

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert [Add an entry to DB]

PRONG GLOBAL Insert [Add an entry to DB]

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert [Add an entry to DB]

Sender Receiver Event Name Detailed Signature

4-19 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (5 of 15)

PRONG GLOBAL Insert End of iterations

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert

PRONG GLOBAL Insert End of Iterations

PRONG GLOBAL Insert End of iterations

PRONG SDSRV Insert [Add an entry to DB]

PRONG SDSRV Insert [Add an entry into DB]

PRONG SDSRV Insert

PRONG SDSRV Insert

PRONG SDSRV Insert

PRONG SDSRV Insert

PRONG SDSRV Insert [Add an entry to DB]

PRONG SDSRV Insert [Add an entry to DB]

PRONG SDSRV Insert

PRONG SDSRV Insert

PRONG SDSRV Insert

PRONG SDSRV Insert [Add an entry to DB]

PRONG SDSRV Insert End of iterations

Sender Receiver Event Name Detailed Signature

4-20 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (6 of 15)

PRONG SDSRV Insert

PRONG SDSRV Insert

PRONG SDSRV Insert

PRONG SDSRV Insert

PRONG SDSRV Insert

PRONG SDSRV Insert

PRONG SDSRV Insert

PRONG SDSRV Insert End of Iterations

PRONG SDSRV Insert End of iterations

PRONG SDSRV Inspect

PRONG SDSRV Inspect

PRONG SDSRV Inspect

PRONG MSS Log Event

MSS PRONG Log entry completed

PRONG MSS LogEvent

PRONG MSS LogEvent

PRONG MSS LogEvent Log event for PGE return
condition

PRONG MSS LogEvent Communication Fault

PRONG MSS LogEvent

PRONG MSS LogEvent

PRONG MSS MsEvent

PRONG MSS MsEvent

PRONG MSS MsEvent

PRONG MSS MsEvent

PRONG MSS MsEvent

PRONG MSS MsEvent

Sender Receiver Event Name Detailed Signature

4-21 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (7 of 15)

PRONG MSS MsEvent

PRONG MSS MsManager

PRONG MSS MsManager

PRONG MSS MsManager

PRONG MSS MsManager

PRONG MSS MsMgCallBacks

PRONG MSS MsMgCallBacks

PRONG MSS MsMgCallBacks

PRONG MSS MsMgCallBacks

MSS PRONG Performance Info
returned

MSS PRONG Performance Info
returned

PLANG PRONG ReleaseDprJob

PLANG PRONG Return NewPriority and
NewTimeInfo

PLANG PRONG Return Pge

PLANG PRONG Return Requested
Information

PRONG ADSRV Search

PRONG ADSRV Search

PRONG ADSRV Search

PRONG PLANG Select Subscribed Types

PRONG PLANG SelectSubscribedTypes

PRONG PLANG SelectUnsubscribed-
Types

PRONG MSS SetMsMgCallBackObj

PRONG MSS SetMsMgCallBackObj

PRONG MSS SetMsMgCallBackObj

Sender Receiver Event Name Detailed Signature

4-22 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (8 of 15)

PRONG MSS SetMsMgCallBackObj

PRONG MSS SetMsMgCallBackObj

PRONG PLANG SetQaSubscription

PRONG PLANG SetQaSubscription

PRONG PLANG SetQaSubscription

PRONG SDSRV SetStatusCallBack

PRONG SDSRV SetStatusCallBack

PRONG SDSRV SetStatusCallback

PRONG SDSRV SetStatusCallback

PRONG SDSRV SetStatusCallback

PRONG SDSRV SetStatusCallback

PRONG SDSRV SetStatusCallback

GLOBAL PRONG StageRequestReturn

GLOBAL PRONG StageRequestReturn

GLOBAL PRONG StageRequestReturn

GLOBAL PRONG StageRequestReturn

PRONG SDSRV Submit

PRONG SDSRV Submit

see
DpPr_Submit_Staging/
Destaging_Request_To_
DataServer_Event_
Trace

PRONG SDSRV Submit

PRONG SDSRV Submit
Synchronous return.
Completion notification
returned asynchronously.

PRONG SDSRV Submit
Synchronous return.
Completion notification
returned asynchronously.

PRONG SDSRV Submit

PRONG SDSRV Submit

Sender Receiver Event Name Detailed Signature

4-23 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (9 of 15)

PRONG SDSRV Submit
Complete Notification to
be returned asynchro­
nously

PRONG SDSRV Submit

PRONG SDSRV Submit

PRONG SDSRV Submit

PRONG SDSRV Submit

PRONG SDSRV Submit

PRONG SDSRV Submit

PRONG SDSRV Submit

PRONG SDSRV Submit Complete notify
asynchronous

PRONG MSS Submit performance log
entry

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

Sender Receiver Event Name Detailed Signature

4-24 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (10 of 15)

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PRONG PLANG Success

PLANG PRONG UpdateDprJob

PRONG SDSRV Withdraw

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

Sender Receiver Event Name Detailed Signature

4-25 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (11 of 15)

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor
The constructor places
one command in the
request

PRONG SDSRV ctor

PRONG SDSRV ctor Create a collector for the
dataserver

PRONG SDSRV ctor

PRONG SDSRV ctor [iterate for all unused
data granules]

PRONG SDSRV ctor
The constructor places
one command in the
request

PRONG SDSRV ctor

PRONG SDSRV ctor Create a collector for the
dataserver

PRONG SDSRV ctor
The constructor places
one command in the
request

PRONG SDSRV ctor

Sender Receiver Event Name Detailed Signature

4-26 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (12 of 15)

PRONG SDSRV ctor Create a collector for the
dataserver

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor
The constructor places
one command in the
request

PRONG SDSRV ctor

PRONG SDSRV ctor Create a collector for the
dataserver

Sender Receiver Event Name Detailed Signature

4-27 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (13 of 15)

PRONG SDSRV ctor
The constructor places
one command in the
request

PRONG SDSRV ctor

PRONG SDSRV ctor Create a collector for the
dataserver

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor sequenceNumber:int)

PRONG SDSRV ctor (fileName:string

PRONG SDSRV ctor

PRONG SDSRV ctor (AcsTime:double

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

Sender Receiver Event Name Detailed Signature

4-28 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (14 of 15)

PRONG SDSRV ctor

PRONG SDSRV ctor (fileName:string)

PRONG SDSRV ctor QAParameters)

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor (AcsTime:double

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor (fieId:int)

PRONG SDSRV ctor (boxcarWindowSize:int

PRONG SDSRV ctor (fileNames:List<string>

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor (inputFiles:List<string>

PRONG SDSRV ctor (fileName:string)

PRONG SDSRV ctor (fileNames:List<string>

PRONG SDSRV ctor (boxcarWindowSize:int

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

Sender Receiver Event Name Detailed Signature

4-29 305-CD-011-001

Table 4.2-2. PRONG__events Event Flow Summary (15 of 15)

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

PRONG SDSRV ctor

Create a boxcarWindow-
Size number of
ephemeris records and
add to queue.

PRONG SDSRV ctor (boxcarWindowSize:int

PRONG SDSRV ctor

MSS PRONG return Callback

MSS PRONG return Resource Status

MSS PRONG return Resource Status

MSS PRONG return Resource Status

MSS PRONG return Status Response

PRONG MSS ~MsMgCallBacks

Sender Receiver Event Name Detailed Signature

4.3 CSCI Object Model
The Processing CSCI Object Model is actually composed of a number of differing views of com­
ponents which compose the Processing CSCI. These components provide different abstract views
of the Processing CSCI design to assist in developing an understanding of the design. The follow­
ing object model views will be presented and the underlying objects will be described:

1. Processing CSCI top-level CSC view

2. COTS Manager

3. PGE Execution Manager

4. Data Manager

5. Resource Manager

4-30 305-CD-011-001

6. Q/A Monitor

7. Data Pre-Processing

Besides the above listed Processing CSCI components, the Processing CSCI is dependent on the
PDPS Database for the management of Processing CSCI persistent data storage. More information
on the PDPS Database is contained in the PDPS Database CSC of the Planning CSCI Design Spec­
ification.

4.3.1 Processing CSCI Component View

This view of the Processing CSCI (Figure 4.3-1) represents the various components and the asso­
ciations of these components of the Processing CSCI.

PlDpr

Manages
DPR Jobs

DpPrJobManagement

(CSC)

Initializes and Requests Resource
Ensures Availability of Allocation and Execution
Resources and Data of PGEs

DpPrDataManagement

(Subsystem)

DpPrPgeExecutionManagement

(CSC)

Performs Pre-Processing
on Staged Data asAllocates Allocates

Resources Resources

DpPpPreProcessing

(CSC)

a PGE

DpPrResourceManagement

(CSC)

Figure 4.3-1. Processing CSCI Component View

4.3.2 COTS Manager View

The COTS Manager View (Figure 4.3-2) represents the classes used to manage the flow of infor­
mation to the COTS products. All ECS applications which need to pass information to the COTS
products, which include Planning CSCI components and other Processing CSCI components, will
interface to the COTS using these classes. This collection of classes provides the interface to Au­
toSys, and will take information provided and translate to the COTS supplied API and command

4-31 305-CD-011-001

line interfaces. Any application which requires an interface to AutoSys would be required to use
this interface. The following functions are provided through the COTS Manager:

1. Manages the start-up and shut-down of the AutoSys and AutoXpert products.

2.	 Provides the interface to AutoSys to add, modify, status, and cancel jobs (Planning CSCI
interfaces).

3. Provides additional management/monitoring mechanisms (if needed)

4.	 Provides the interface to allow the MSS CSCI to interact with AutoSys to alert AutoSys of
unavailable resources and external event information, and for AutoSys to provide
information to MSS (including Report/log information, if necessary).

PlDPR PlGroundEvent

Manages DPR Jobs Manages Ground Events

DpPrScheduler

DpPrCotsManager COTS

DpPrDataManagement

DpPrPgeExecutionManagement

PlPge

AddJobBox(PgeDeps:ListofPgeIds, Times:TimeInfo, Name:string)
AddJob(ToBox:DpPrJobId, Cmd:string, Parms:ListofParameters, Machine:string)
RemoveResource(Res:DpPrResource)
ModifyResource(OldRes:DpPrResource, NewRes:DpPrResource)
AddResource(ResInfo:DpPrResource)
GenerateReport(Command:String)
SendAlarm(Command:String)
GetJobInfo(Job:DpPrJobId, Cmd&:string, PgeDeps&:ListofPgeIds,
Parms&:ListofParameters,Times)
UpdatePriority(Job:DpPrJobId,Priority:DpPrJobPriority)
UpdateJobStatus(Job:DpPrJobId, Status:DpPrProcessingStatus)
GetJobStatus(Job:DpPrJobId)
CancelJob(Job:DpPrJobId)
ForceJob(Job:DpPrJobId)
StartJob(Job:DpPrJobId)
ReleaseJob(Job:DpPrJobId)
UpdateTimeInfo(Job:DpPrJobId,Times:TimeInfo)

CreateGEvntJob(Event:PlGroundEvent)
CancelGEvntJob(Event:PlGroundEvent)
CreateDprJob(Dpr:PlDpr)
ReleaseDprJob(Dpr:PlDpr)
UpdateDprJob(Dpr:PlDpr)
GetDprJobStatus(Dpr:PlDpr)
CancelDprJob(Dpr:PlDpr)

[DISTR OBJ]

(CSC)

(CSC)

+
+
+
+
+
+
+
+

+
+
+ : DpPrProcessingStatus
+
+
+
+
+

+
+
+
+
+
+ : DpPrProcessingStatus
+

Initializes

Ensures Availability
of Resources and Data

Manages
Jobs

Interfaces
Directly with

Allocates Resources
and Executes PGEs

Obtains Information
About Run Conditions

From

Figure 4.3-2. COTS Manager View

4.3.3 Data Management View

The Data Management View (Figure 4.3-3) represents the classes used to manage the flow of sci­
ence data to and from science processing resources. This includes the communication mechanisms
needed to interface with the Science Data Server CSCI and the Ingest CSCI. Also, these classes
provide additional functions to manage the retention of data on science processing resources which
is used to support many PGE executions.

4-32 305-CD-011-001

(CSC)

DpPrJobManagement

InitializesandEsuresAvailability
ofResourcesandData

PlDataGranule

myStopTime
myStartTime
myESDTParmVals
myUR
myAvailability
myActualAvailability
myPredictedAvailability

RegisterAvailability()
FindAssociatedDprs()
GetAvailability()
GetUR()
GetDataTypeName()

_ : Time
_ : Time
_ : GlParameterList
_ : GlUR
_ : Boolean
_ : Time
_ : Time

+
+
+ : Boolean
+

DpPrDataManager PlDPR

myInputDataInstanceList List

GetInputDataInstance

myOutputDataInstanceList List
myDprid
myPriority
myPredictedStart
myActualStart
myCompletionState

PlDPR()
~PlDPR()
Schedule()
Status()
Modify()
Release()
Cancel()
CheckAvailability()

DpPrDataMap

DsClESDTReferenceCollector

DsClESDTReferenceCollector
SetStatusCallback

DsClRequest

DsClRequest
~DsClRequest
Insert
Submit

DsClCommand

SetCategory
SetServiceName

DpPrResourceManagement

(CSC)

GlCallBack

GetOutputDataInstance()
GetCommandString()
GetNextInputData()

myMachine
myURid
myStatus
myNumberOfUses
myLocation

GetURid()
SetNumberOfUses()
GetNumberOfUses()
SetLocation()
GetLocation()
Delete()
Update()
Insert()
SetStatus()
GetStatus()
SetURid()
DpPrDataMap()
~DpPrDataMap()
GetMachine()
SetMachine()
Select()

myRequest
myDataMap
myStagingData
my DPR

MakeDataLocal(DPRid:int, Machine:string)
DeallocateData(DPRid:int, Machine:string)
InitializeData(DPRid:int)
StageRequestReturn()
DestageRequestReturn()

_

+

_
_
_
_
_
_

+
+
+
+
+
+
+
+

P [PERSISTENT CLASS]

+
+

_
: string = Null _

: string

_
: enum = None _

: int = 1
_ : string = Null

+ : string
+
+ : int
+
+ : string
+
+
+
+
+ : enum
+
+
+
+ : string
+
+

_ : DsClRequest
_ : DrPrDataMap
_ : List
_ : PlDPR

+ : void
+ : void
+ : void
+ : void
+ : void

locates

Allocates/
Deallocates
Resources

SubmitsRequestThrough

specifies
manages

builds

removes

contains

contains

GlUR

myReferenceType
myDataObjectClassName
myServiceName
myECSAddress
myApplicationInformation
myQualityOfServiceLevel
myProduceTime
myFidelityTime
myNumberOfUses
myNextUR

IsEqual
ToASCII
FromASCII

_
_
_
_
_
_
_
_
_
_

+
+
+

Figure 4.3-3. Data Management View

4.3.4 PGE Execution Management View

The PGE Execution Manager View (Figure 4.3-4) represents the classes used to support the exe­
cution of a PGE. While the COTS product will actually initiate the execution of the PGE, the sup­
porting preparation activities, such as creating the Process Control File, are provided through these
classes.

4.3.5 Resource Management View

The Resource Management View (Figure 4.3-5) represents the classes used to support the manage­
ment of science processing resources. These classes provide mappings of logical to the physical
resources to allow the Processing CSCI to manage and monitor science processing resources being
used to support science data production. This process provides additional resource management
and monitoring capabilities that are not currently provided by AutoSys. At this time, it is thought
that the interface to Resource Management is through AutoSys, i.e., AutoSys will signal or initiate
Resource Management when required. These additional functions will help determine whether all
required resources are available to support the execution of the PGE. Please note, that this is one
area where Platinum Technology has agreed to strengthen AutoSys' capabilities using PDPS input
to determine these additional capabilities.

DpPrUnusedData

myUnusedData_ : List

GetUnusedData()
DpPrUnusedData()

~DpPrUnusedData()

+ : List
+
+

4-33 305-CD-011-001

DpPrExecutionManager
myClientMachine

DpPrExecutionManager(Host:String)
~DpPrExecutionManager()
GetHostName()
GenProcessMetadata(Machine:String,Pge:DpPrPgeId,Job:DpPrJobId)
AllocateResources(Machine:String,Pge:DpPrPgeId,Job:DpPrJobId)
DeallocateResources(Job:DpPrJobId)
DeallocateResources(Machine:String,Pge:DpPrPgeId,Extent:enum
reclaim_type={FULL,PARTIAL}=PARTIAL)

_ : char[32]

+
+
+ : String
+ : DpPrStatus
+ : DpPrStatus
+ : DpPrStatus
+ : DpPrStatus

operates on

(CSC)
Allocates/
Deallocates
Resources

DpPrResourceManagement

4-34
305-C

D
-011-001

DpPrPge

DpPrExecutable

DpPrPcf

myShell
myState
myCommands
myEnvironment
myHost
myExecSet
myPgeID

DpPrPge(Pge:DpPrPgeId,Host:String,State:state_type=STANDBY,ComSet:String="1110 50")
~DpPrPge()
Stage(ElementType:enum component_type={EXEC,SMF,PCF},BasePath:String)
Destage(ElementType:enum component_type={EXEC,SMF,PCF}=PCF)
Execute(Commands:String"1110
50",Environment:String,Shell:String="PGS_PC_Shell.sh")
Suspend()
Resume()
GetID()
GetHost()
GetEnv()
GetCom()
GetShell()
Abort()
CheckStatus()
GetStatus()

myTarget
myLevel
myLocation
myName
myPermission
myShell

DpPrExecutable(Name:String,Target:String,Location:String,Level:layer_type,
Access:int=500,Shell:String="csh")
~DpPrExecutable()
SetNewLocation(NewLocation:String)
GetLevel()
GetLocation()
GetName()
GetPermission()
GetShell()
GetStatus(State:enum state_type)
GetTarget()

myName
myLocation
myPermission

DpPrPcf(Name:String,Location:String,Access:int=600)
GetName()
GetLocation()
GetPermission()
SetNewLocation(NewLocation:String)

~DpPrPcf()

MsMgCallBacks MsManager

PlDpr PlDataGranule

DsClRequest

DsClESDTRerenceCollector

DsClCommand

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

_ : char[240] = "PGS_PC_Shell.sh"
_ : enumstate_type={STANDBY,STARTING,STOPPING,RUNNING,SUSPENDED,STAGING,DESTAGING} =
_ : char[240] = "1110 50"
_ : char[240]
_ : char[30]
_ : DpPrListPtr
_ : DpPrPgeId
+
+
+ : DpPrStatus
+ : DpPrStatus
+

: DpPrStatus
+ : DpPrStatus
+ : DpPrStatus
+ : DpPrPgeId
+ : String
+ : String
+ : String
+ : String
+ : DpPrStatus
_
+ : state_type

_ : char[60]
_ : enum layer_type={OUTER,INNER,OTHER}
_ : char[240]
_ : char[60]
_ : int=500 = 500
_ : char[60]="csh" = "csh"
+

+
+
+ : layer_type
+ : String
+ : String
+ : int
+ : String
+ : DpPrStatus
+ : String

_
: char[60]_

: char[240] _
: int = 600

+
+ : String
+ : String
+ : int
+ : DpPrStatus
+

activates

1+

maps to

Activates
Agent

Through

Locates Specifies

Constructs

Submits
Request
Through

Builds

Figure 4.3-4. PGE Execution Management View

PlResourceUI

Builds
Configuration

DpPrComputer

DpPrString

DpPrDiskPartition

DpPrResource

DpPrResourceConfiguration

DpPrResourceManager

DpPrDiskAllocation

myComputerSet

~DpPrString()
DpPrString(Name:String,Id:DpPrId,State:state_type=ONLINE)

DpPrResourceConfiguration()
~DpPrResourceConfiguration()
GetResource()
SetResource()
ModifyResource()DeallocateResource(Machine:String,Paths:DpPrPathPtr &,Job:DpPrJobId)

DeallocateResource(Machine:String,Power:int,Job:DpPrJobId)
DeallocateResource(Machine:String,Job:DpPrJobId)
AllocateResource(Machine:String,Data:DpPrDataPtr &,Paths:DpPrPathPtr
&,Job:DpPrJobId)
AllocateResource(Machine:String,Paths:DpPrPathPtr &,Job:DpPrJobId)
AllocateResource(Machine:String,Power:int,Job:DpPrJobId)
GetAvailableResource(Machine:String,Data:DpPrDataPtr &,Paths:DpPrPathPtr &)
QueryResourceUsage(Machine:String,Usage:ResUse &)
QueryResourceUsage(Job:DpPrJobId,Usage:ResUse &)
QueryBadResources(Machine:String,Paths:DpPrPathPtr &)
QueryResourceStatus(Machine:String,Condition:ResStatus &)
ReportResource(Resource:ResElement &)
GetResource(Resource:ResElement &,ResourceSet:ResContainer &,Element:int)
GetResourceList(ResourceSet:ResContainer &,Type:enum)
UpdateResourceStatus()
DpPrResourceManager()
~DpPrResourceManager()

myPath
myLastSize
mySize
myUser
myType
myID

~DpPrDiskAllocation()
GetID()
GetPath()
GetFixedSize()
GetLastSize()
GetType()
CheckFile()
DpPrDiskAllocation(Sequence:DpPrId,Type:occupation_type,Path:String,Id:DpPrJobI
d,Size:unsigned)

myPartitionSize
myBlockSize
myAllocationList
mySysAllocation
myUserAllocation

DpPrDiskPartition(Device:DpPrId,Root:String,State:enum
state_type={OFFLINE,ONLINE})
~DpPrDiskPartition()
UpdateDiskStatus()
GetPartitionSize()
GetBlockSize()

GetStatus()
GetFree()
CheckAllocation(Margin:Leeway,Id,DpPrJobId,FilePath:String)
SetSysAllocation()
SetAllocation(Size:unsigned,Id:DpPrJobId,FilePath:String)

myOperatingSystem
myDiskSet
myPerProcessRam
myTotalRam
myTotalCpu
myPerProcessCpu
myCpuAllocation
myMaxDiskSpace

DpPrComputer(Name:String,Id:DpPrId,Memory:unsigned,Processing:int,
Storage:connection_type={LOCAL,MOUNT,REMOTE}=LOCAL)
~DpPrComputer()
UpdateMachineStatus()
GetRamLimit()
GetCpuLimit()
GetStatus()
SetAllocation(Count:int,Id:DpPrJobId)
GetOS()
GetProcessCpu()
GetDiskSpace(View:enum perspective_type={FREE,USER,TOTAL})
GetAllocation()
GetProcessRam()
SetProcessRam(NewLimit:unsigned)
SetProcessCpu(NewLimit:unsigned)
GetDevices(Range: enum connection_type={LOCAL,MOUNT})

myID
myName
myState

GetName()
GetID()

MsDAAC

MsManager

MsMgCallBacks

MsMgCallBacksMsManager

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

_ : DpPrListPtr

+

+
+
_ : DpPrStatus
_ : DpPrStatus
_ : DpPrStatus+ : DpPrStatus

+ : DpPrStatus
+ : DpPrStatus
+ : DpPrStatus

+ : DpPrStatus
+

: DpPrStatus

+ : DpPrStatus
+ : DpPrStatus
+ : DpPrStatus+

: DpPrStatus+

: DpPrStatus

+ : DpPrStatus
+ : DpPrStatus
+ : DpPrStatus
_ : DpPrStatus
+
+

_ : char[240]
_ : unsigned
_ : unsigned
_ : DpPrJobId
_ : enum occupation_type={SYSTEM,USER} = SYSTEM
_ : DpPrId

+
+ : DpPrId
+ : String
+ : unsigned
+ : unsigned
+ : occupation_type
+ : DpPrBoolean
+

_ : unsigned
_ : int = 1024
_ : DpPrListPtr

+

+
_ : unsigned
+ : unsigned
+ : unsigned
+
+
+ : DpPrStatus
+ : unsigned
+

: DpPrBoolean_ : unsigned
+

: DpPrStatus

_ : char[60]
_ : DpPrListPtr
_ : unsigned
_ : unsigned
_ : int
_ : unsigned
_ : int = 0

+

+
_
_
_
+ : DpPrStatus
+ : DpPrStatus
+ : String
+ : unsigned
+ : unsigned
+ : int
+ : unsigned
+ : DpPrStatus
+ : DpPrStatus
_ : const ListPtr &

_ : DpPrId
_ : char[20]
_ : enum resource_state_type={ONLINE,OFFLINE} = ONLINE

+ : String
+ : DpPrId

operates on

1+

consumed by

Activates
Agent

Through

Filters

Activates
Agent

Through

4-35
305-C

D
-011-001

GetUsage(Entity:enum occupation_type={SYSTEM,USER})
RelAllocation(Size:unsigned &,Id:DpPrJobId,FilePath:String)

: DpPrStatus

Figure 4.3-5. Resource Management View

4.3.6 Quality Assurance Monitor View

The Quality Assurance View (Figure 4.3-6) represents the classes used to support the DAAC op­
erations position used to perform DAAC manual quality assurance activities. These activities in­
clude visualization of science data products and updating quality assurance metadata.

DpPrQaMonitor

PlDataTypes

PlDataType

DsClESDTReference

GlUR

IoAdServiceCollection_C IoAdServiceAdvertisement

DsClSubscription

EOSVIEW

myMonitorCommandWindow

myDataTypeSelectionWindow

myMetaDataEditorWindow

myDataGranule

DisplayDataTypes()

SelectDataType()

SubmitSubscription(For:Advertisement)

WithdrawSubscription(For:Advertisement)

UpdateMetaData(For:Advertisement)

VisualizeData(Data:GlUR)

GetData(Data:GlUR)

GlParameterList

GlParameter

DsClCommand

DsClRequest

DsClESDTReferenceCollector

IoAdAdvertisingSrv_C

_

_

_

_ : PlDataGranule

+

+

+

+

+

+

+ : PlDataGranule

Selects From
Searches

Visualize Data
through

Is Created By

Is Created By
Creates

Creates

Creates
Gets Data

Using

Selects
Creates

PlDataGranule

Figure 4.3-6. Quality Assurance Monitor View

4.3.7 Data Pre-Processing View

The Data Pre-Processing View represents the classes used to support the pre-processing of ancil­
lary data which can then be used as inputs to a PGE. Data Preprocessing can be defined as prelim­
inary processing or application of operations on a data set which do not alter or modify its scientific
content. Preprocessing includes changes to the format of a data set by reordering the lower level
byte structure, reorganization of a data set (ordering data items within and between physical files),
preparing additional metadata based on lower level metadata, etc.

Figure 4.3-7, Data Pre-Processing View, represents an overall view of the classes and their under­
lying associations. For a more detail view, the TRMM Definitive Orbit Object model in Figure 4.3­
8 and the TRMM OnBoard Attitude Object model in Figure 4.3-9 have been provided.

4-36 305-CD-011-001

DpPpLevelZeroData

DpPpSdpfLevelZeroProductionData

DpPpSdpfLevelZeroDatasetFile

DpPpPreprocessingData

DpPpSdpfLevelZeroSfduFile

DpPpEphemerisData

DpPpTrmmScOaDataDpPpFdfData

Institutional Level Zero Data Sources

Ephemeris Source

DpPpTrmmOnBoardAttitudeData

DpPpTrmmScAncillaryData

myBeginningDateTime
myDataType
myDescriptor
myDiscipline
myEndingDateTime
myFieldId
myFileId
myFileSize
myGenerationDate
myMission
myMissionParameters
myProductInstance
myProductName
myProject
myRecordSize
mySequenceNumber

myDataId
myEndDate
mySatelliteId
mySecondsOfDayForEphemerisEnd
mySecondsOfDayForEphemerisStart
mySpaceCraftDataModeIndicator
mySpaceCraftInfo
myStartDate
myTapeId
myTimeSystemIndicator

Reformat()

mySpaceCraftInfo

PrepareAdditionalMetadata()

mySpaceCraftInfo

PrepareAdditionalMetadata()

myBeginningDateTime
myDataType
myDataVersion
myDescriptor
myDiscipline
myDpcio
myEndObjectDpcio
myEndObjectFileGroup
myEndObjectFileSpec
myEndingDateTime
myFileId
myFileIdDpcio
myFileSize
myGenerationDate
myMission
myMissionParameters
myObjectFileGroup
myObjectFileSpec
myProductInstance
myProductName
myProject
myRecordSize
mySdpfSystem
mySequenceNumber
myTotalFileCount

myBeginningDateTime
myDataType
myDescriptor
myDiscipline
myEndingDateTime
myFieldId
myFileId
myFileSize
myGenerationDate
myMission
myMissionParameters
myProductInstance
myProductName
myProject
myRecordSize
mySequenceNumber

myProductId
myProject
mySourceId

ExtractAdditionalMetadata()

DpPpFdfTrmmDefinitiveOrbitData

myDataId
myEndDate
mySatelliteId
mySecondsOfDayForEphemerisEnd
mySecondsOfDayForEphemerisStart
mySpaceCraftDataModeIndicator
mySpaceCraftInfo
myStartDate
myTapeId
myTimeSystemIndicator

ExtractAdditionalMetadata()
PrepareAdditionalMetadata()
Reformat()

myBeginningDateTime
myDataType
myDescriptor
myDiscipline
myEndingDateTime
myFieldId
myFileId
myFileSize
myGenerationDate
myInstrumentName
myMission
myMissionParameters
myProductInstance
myProductName
myProject
myRecordSize
mySequenceNumber
mySpaceCraftInfo

ExtractAdditionalMetadata()
PrepareAdditionalMetadata()
QaCheck()

myBeginningDateTime
myDataType
myDataVersion
myDescriptor
myDiscipline
myEndObjectFileGroup
myEndObjectFileSpec
myEndingDateTime
myFileId
myGenerationDate
myMission
myMissionParameters
myObjectFileGroup
myObjectFileSpec
myProductInstance
myProductName
myProject
myRecordSize
mySdpfSystem
mySequenceNumber
myTotalFileCount

ExtractAdditionalMetadata()
PrepareAdditionalMetadata()

myBeginningDateTime
myDataType
myDataVersion
myDescriptor
myDiscipline
myDpcio
myEndObjectDpcio
myEndObjectFileGroup
myEndObjectFileSpec
myEndingDateTime
myFileId
myFileIdDpcio
myFileSize
myGenerationDate
myMission
myMissionParameters
myObjectFileGroup
myObjectFileSpec
myProductInstance
myProductName
myProject
myRecordSize
mySdpfSystem
mySequenceNumber
myTotalFileCount

ExtractAdditionalMetadata()
PrepareAdditionalMetadata()

_
_
_
_
_
_
_
_
_
_

+
+
+

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

+
+
+

1+

1+

CorrespondsTo
1+

Figure 4.3-7. Data Pre-Processing View

4-37 305-CD-011-001

DpPpFdfTrmmDefinitiveOrbitData

mySpaceCraftInfo
myStartDate

mySatelliteId

mySecondsOfDayForEphemerisEnd
mySecondsOfDayForEphemerisStart

myEndDate

myTapeId
myTimeSystemIndicator

mySpaceCraftDataModeIndicator

myDataId

ExtractAdditionalMetadata()
PrepareAdditionalMetadata()
Reformat()

DpPpFdfTrmmDefinitiveOrbitData(fileNames:List<string>,
timeRanges:List<double>,
qaParams:DpPpQaParameters)

DpPpFdfProcessingSet

ephemRecord:DpPpEphemRecord*

qaParams:DpPpQaParameters
currentEphemerisRecord:DpPpEphemerisRecord*

advanceBoxcarWindow()
writeEphemerisRecord()
checkForGap()
checkForSpike()

DpPpFdfProcessingSet(fileNames:List<string>,
startTime:List<double>,
endTime:List<double>,
qaParams:DpPpQaParameters)

DpPpEphemRecords

ephemRecord:DpPpEphemRecord*

DpPpEphemRecord

ephemerisRecords:DpPpEphemerisRecord*

parseEphemRecord()

DpPpEphemerisRecords

getAverageEphemeris():List<double>
computeGap():double
refreshEphemerisRecords()

firstEphemerisRecord:DpPpEphemerisRecord*
lastEphemerisRecord:DpPpEphemerisRecord*
currentEphemerisRecord:DpPpEphemerisRecord*
previousEphemerisRecord:DpPpEphemerisRecord*

DpPpEphemerisRecord

time:double

getEphemeris()
getTime():double
setSpikeFlag(spikeFlag:int)

writeToNativeFile(fileId:int)
writeToHdfFile(fileId:int)

setGapFlag(gapFlag:int)

DpPpEphemerisRecord()

qaFlag:int
ephemeris:List<double>

DpPpEphemerisRecords(boxcarWindoxSize:int,index:int)

DpPpEphemRecord(ephemRecords:DpPpEphemRecord*)

getEphemRecord(fileId:int)
DpPpEphemRecords(fileIds:List<int>)

ephemerisRecords:DpPpEphemerisRecord*

addEphemerisRecord(ephemerisRecords:DpPpEphemerisRecord*)

_
_

_

_
_

_

_
_

_

_

+
+
+

+

_

_
_

+
+
+
+

_

_

+

+
+
+

_
_
_
_

_

+
+
+

+
+

+

+

_
_

+

+

+
+

_

+

50

n=boxcarWindowSize

DpPpQaParameters

spikeThreshold:float

boxcarWindowSize:int
gapThreshold:double

_

_
_

Figure 4.3-8. Data Pre-Processing View (TRMM Definitive Orbit)

4-38 305-CD-011-001

DpPpTrmmOnBoardAttitudeData

myDescriptor

mySequenceNumber

myBeginningDateTime

myGenerationDate

myEndingDateTime

myInstrumentName

myRecordSize

myProductInstance

mySpaceCraftInfo

myFieldId

myDataType

myDiscipline

myProject

myFileId

myMission
myMissionParameters

myFileSize

myProductName

ExtractAdditionalMetadata()
PrepareAdditionalMetadata()
QaCheck()

DpPpAttitudeProcessingSet

currentPacket:DpPpAttitudePacket*
attitudePackets:DpDpAtttiudePackets*
qacLists:List<DpPpQacList>*

advanceBoxcarWindow()
writeCurrentPacket()
checkForGap()
checkForSpike()
checkQacFlag()

DpPpAttitudeProcessingSet(fileNames:List<string>,
startTime:double,
endTime:double,
qaParams:DpPpQaParameters,
qacList:List<DpPpQacList*>)

DpPpQacList

qacTable:array[int,char]

DpPpQacList(fileIds:List<int>)
getQacFlag(recordNumber:int):char

DpPpAttitudePackets

previousPacket:DpDpAttitudePacket*
currentPacket:DpPpAttitudePacket*
lastPacket:DpPpAttitudePacket*
firstPacket:DpPpAttitudePacket*

refreshPackets()
computeGaps():double
getAverageAttitude():List<double>
getRecordNumber():int
addPacket(attitudePackets:DpPpAttitudePacket*)

DpPpAttitudePackets(boxcarWindowSize:int,
fileIds:List<int>)

DpPpAttitudePacket

time:double

writeToHdfFile(fileId:int)
writeToNativeFile(fileId:int)

setGapFlag(gapFlag:int)

getTime():double
setSpikeFlag(spikeFlag:int)

setQaFlag(qacFlag:int)
DpPpAttitudePacket(fileId:int)

DpPpQaParameters

boxcarWindowSize:int
gapThreshold:double
spikeThreshold:float

DpPpTrmmOnBoardAttitudeData(fileNames:List<string>,
timeRanges:List<double>,
qaParams:DpPpQaParameters)

qaParams:DpPpQaParameters

attitude:List<double>

getAttitude():List<double>

orientationMode:char
qaFlag:int
recordNumber:int

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_
_

_

_

+
+
+

_
_
_

+
+
+
+
+

_

+
+ _

_
_
_

+
+
+
+
+

+

_

+
+

+

+
+

+
+

_
_
_

+

_

_

+

_
_
_

n=number of housekeeping datasets

n=boxcarWindowSize

Figure 4.3-9. Data Pre-Processing View (TRMM OnBoard Attitude)

4.4 Class Descriptions
The following sections contain descriptions on the classes used in the Processing CSCI compo­
nents. This information includes descriptions of each class, its attributes, operations and PDL for
complex operations. For the Processing CSCI, the COTS product, AutoSys, is not represented
through the class descriptions. Information on AutoSys can be found in Section 4.2.4.

4-39 305-CD-011-001

4.4.1 COTS Class

The COTS class provides an abstract view of the COTS products and its respective role.
Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The COTS class has associations with the following classes:
Class: DpPrPgeExecutionManagement AllocatesResourcesandExecutesPGEs
Class: DpPrDataManagement EnsuresAvailabilityofResourcesandData
Class: DpPrCotsManager InterfacesDirectlywith

4.4.2 DpPrComputer Class

Parent Class: DpPrResource
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
This class is used to represent the set of computer hardware that is being used for science
software processing within the Processing System. All management activities for
controlling the use of processing resources are performed by this class.

Attributes:

myCpuAllocation - This attribute defines the number of processors which are currently
allocated to the processing of PGEs on this platform. This value is periodically adjusted to
account for the allocation and deallocation of processing resources for PGEs This value
cannot exceed the total number of CPUs that defined for this platform.
Data Type: int
Privilege: Private
Default Value: 0

myDiskSet - This attribute points to the set of objects which represent the attached storage

devices.

Data Type: DpPrListPtr

Privilege: Private

Default Value:

4-40 305-CD-011-001

myMaxDiskSpace

myOperatingSystem - This attribute defines the machine type and the current version of

the operating system which controls it.

Data Type: char[60]

Privilege: Private

Default Value:

myPerProcessCpu - This attribute defines the per process limit on processing time which

may be granted to an individual process. This limit is imposed by the underlying system

and may only be increased up to some system defined limit. Any PGE process which

exceeds this limit will not run to completion on this platform.

Data Type: unsigned

Privilege: Private

Default Value:

myPerProcessRam - This attribute defines the system defined limit on heap space for a

single process. No PGE may activate a process which uses more than the amount defined,

without risking the failure of that process.

Data Type: unsigned

Privilege: Private

Default Value:

myTotalCpu - This attribute represents the actual number of individual processors which

may be applied to the processing of one or more PGEs. Only individual processors may be

allocated to the processing effort for a single PGE.

Data Type: int

Privilege: Private

Default Value:

myTotalRam - The attribute defines the total RAM configuration for the object instance.

This value is used as a course gauge when selecting a computing platform, if a specific

platform is not chosen, whereas the per process RAM setting is considered to be a hard

limit.

Data Type: unsigned

Privilege: Private

Default Value:

Operations:

DpPrComputer - This constructor performs the creation and initialization of the Computer
object by establishing the identifiers and configuration settings for the associated Memory
and Processor capabilities. The attached storage configuration will also be determined
through the creation of disk device objects for the type of connection specified.

4-41 305-CD-011-001

Arguments: Name:String,Id:DpPrId,Memory:unsigned,Processing:int,

Storage:connection_type={LOCAL,MOUNT,REMOTE}=LOCAL

Return Type: Void

Privilege: Public

GetAllocation - The current processor allocation level is returned to the calling process.

Arguments:

Return Type: int

Privilege: Public

GetCpuLimit - The per process CPU time limit is acquired from the designated platform.

This value may be increased by authorized processes.

Arguments:

Return Type: Void

Privilege: Private

GetDevices - Returns a reference to a list of associated Disk Device objects. These objects

are constructed and initialized during the process. Either local, or both local and mounted

devices are returned based on the designated connection type.

Arguments: Range: enum connection_type={LOCAL,MOUNT}

Return Type: const ListPtr &

Privilege: Private

GetDiskSpace - Depending on the designator used to define the perspective, the requested

disk space value is returned to the calling process. The Max Disk Space attribute normally

contains the total disk space which can be allocated for user needs and therefore may not

be used as the return value unless the designator so indicates.

Arguments: View:enum perspective_type={FREE,USER,TOTAL}

Return Type: unsigned

Privilege: Public

GetOS - The value of the Operating System attribute is returned to the calling process.

Arguments:

Return Type: String

Privilege: Public

GetProcessCpu - The value of the Per Process Cpu attribute is returned to the calling

process.

Arguments:

Return Type: unsigned

Privilege: Public

GetProcessRam - The current value of the Per Process Ram attribute is returned to the

calling process.

Arguments:

4-42 305-CD-011-001

Return Type: unsigned

Privilege: Public

GetRamLimit - The per process Heap limit is obtained from the designated platform This

value will be the soft limit unless some authorized process increased the value.

Arguments:

Return Type: Void

Privilege: Private

GetStatus - The state of the designated platform is retrieved and returned to the calling

process. The return status is also used to update the object state.

Arguments:

Return Type: DpPrStatus

Privilege: Public

SetAllocation -

Arguments: Count:int,Id:DpPrJobId

Return Type: DpPrStatus

Privilege: Public

SetProcessCpu - The soft limit imposed by the system may be increased up to the

predefined hard limit; authorized users may increase this value beyond the hard limit.

Arguments: NewLimit:unsigned

Return Type: DpPrStatus

Privilege: Public

SetProcessRam - The default soft limit, that is imposed by the system, can be increased up

to the hard limit for that system; authorized users may increase the value beyond the hard

limit.

Arguments: NewLimit:unsigned

Return Type: DpPrStatus

Privilege: Public

UpdateMachineStatus - Acquire the current variable configuration settings for the object

and populate those attribute fields. This data consists of the per process CPU and memory

settings which may be modified by authorized processes. Also, the current user available

disk space is updated.

Arguments:

Return Type: Void

Privilege: Private

~DpPrComputer - This destructor will trigger the deletion of all dependent object

instances.

Arguments:

Return Type: Void

Privilege: Public

4-43 305-CD-011-001

Associations:

The DpPrComputer class has associations with the following classes:
Class: MsManager ActivatesAgentThrough
Class: DpPrDiskPartition
Class: DpPrString
Class: MsMgCallBacks

4.4.3 DpPrCotsManager Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
DpPrCotsManager is the class which interfaces directly with the scheduling COTS
package. This shields the rest of PRONG from knowledge of how to interact with the
COTS, and facilitates the possible exchange in the future with a different scheduling
package.

Attributes:

None

Operations:

AddJob - This operation takes the input parameters and creates a script which is used to create
a Job in the Scheduling COTS. The Job is added to the Job Box specified in the input
parameter ToBox.
Arguments: ToBox:DpPrJobId, Cmd:string, Parms:ListofParameters, Machine:string
Return Type: Void
Privilege: Public

AddJobBox - This operation takes data from the input parameters and creates a script

which is used to create a Job Box in the Scheduling COTS.

Arguments: PgeDeps:ListofPgeIds, Times:TimeInfo, Name:string

Return Type: Void

Privilege: Public

AddResource - This operation adds the Resource specified in the input parameters to the

list of available resources in the Scheduling COTS

Arguments: ResInfo:DpPrResource

Return Type: Void

Privilege: Public

4-44 305-CD-011-001

CancelJob - This operation sends a Cancel Job event to the Scheduling COTS to cancel

the given Job; if the Job is a Job Box, the enclosed Jobs will also be cancelled.

Arguments: Job:DpPrJobId

Return Type: Void

Privilege: Public

ForceJob - This operation sends a Force event to the Scheduling COTS; the given job will

be started even if all its dependencies have not been met.

Arguments: Job:DpPrJobId

Return Type: Void

Privilege: Public

GenerateReport - This operation executes the input command to generate various reports

based on the execution statistics collected so far. Status of jobs and resources, historical

run-time data, and job definitions ca be generated via this operation.

Arguments: Command:String

Return Type: Void

Privilege: Public

GetJobInfo - This operation takes the JobID as input and passes back (via references) the

PGE Dependencies, Parameters, Time Info and execution Command used by that Job.

Arguments: Job:DpPrJobId, Cmd&:string, PgeDeps&:ListofPgeIds,

Parms&:ListofParameters,Times

Return Type: Void

Privilege: Public

GetJobStatus - This operation returns the current processing status of the given Job.

Arguments: Job:DpPrJobId

Return Type: DpPrProcessingStatus

Privilege: Public

ModifyResource - This operation removes the Resource specified as OldRes in the input

parameters from the list of available resources in the Scheduling COTS, and adds the

Resource specified in NewRes.

Arguments: OldRes:DpPrResource, NewRes:DpPrResource

Return Type: Void

Privilege: Public

ReleaseJob - This operation sends an event to the Scheduling COTS to take the given Job

out on ON_HOLD status and allow it to run, if all other dependencies are satisfied.

Arguments: Job:DpPrJobId

Return Type: Void

Privilege: Public

4-45 305-CD-011-001

RemoveResource - This operation removes the specified Resource from the list of

available resources in the Scheduling COTS.

Arguments: Res:DpPrResource

Return Type: Void

Privilege: Public

SendAlarm - While most alarm are generated internally by the Scheduling COTS, this

operation allows for specific alarms to be generated by software from outside the COTS

package.

Arguments: Command:String

Return Type: Void

Privilege: Public

StartJob - This operation sends a Start Job event to the Scheduling COTS; the Job moves

into the STARTING state, but if there are PGE or Data dependencies which have not been

satisfied, the Job will WAIT until they are.

Arguments: Job:DpPrJobId

Return Type: Void

Privilege: Public

UpdateJobStatus - This operation replaces the Status of the Job specified with the value

specified in the input parameter Status.

Arguments: Job:DpPrJobId, Status:DpPrProcessingStatus

Return Type: Void

Privilege: Public

UpdatePriority - This operation modifies the Priority of the Job specified in the

Scheduling COTS to the value specified.

Arguments: Job:DpPrJobId,Priority:DpPrJobPriority

Return Type: Void

Privilege: Public

UpdateTimeInfo - This operation modifies the Time Information (see UpdateDprJob

above) in the Database for the given DPR.

Arguments: Job:DpPrJobId,Times:TimeInfo

Return Type: Void

Privilege: Public

Associations:

The DpPrCotsManager class has associations with the following classes:
Class: COTS InterfacesDirectlywith
Class: DpPrScheduler ManagesJobs

4-46 305-CD-011-001

4.4.4 DpPrDataManagement Class

The DpPrDataManagement class provides an abstract view of the DataManagement CSC and
its respective role.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The DpPrDataManagement class has associations with the following classes:
Class: DpPrResourceManagement AllocatesResources
Class: COTS EnsuresAvailabilityofResourcesandData
Class: DpPrScheduler Initializes
Class: DpPrJobManagement InitializesandEnsuresAvailabilityofResourcesandData

4.4.5 DpPrDataManager Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class defines attributes and operations for initializing and managing data granules
required by a PGE during its execution. It also ensures data availability before the
execution of a PGE. In case of input data is unavailable at our local system disk, it sends
request to DataServer to stage data at a specific location that allocated by Resource
Management. At the end of the successful execution of a PGE, it asks DataServer to destage
(archive) output data and asks Resource Management to deallocate the sources.

Attributes:

my DPR - This attribute contains an address of a DPR.
Data Type: PlDPR
Privilege: Private
Default Value:

4-47 305-CD-011-001

myDataMap - A list of DataMap entries.

Data Type: DrPrDataMap

Privilege: Private

Default Value:

myRequest - This attribute contains an address of request that will be sent to DataServer.

Data Type: DsClRequest

Privilege: Private

Default Value:

myStagingData - List of Data_map entries that are being staged at DataServer.

Data Type: List

Privilege: Private

Default Value:

Operations:

DeallocateData - After a PGE is completed, this operation is called (with DPRid) to decrement
the NumberOfUses by 1 for each data input granule indicates 1 less PGE uses this data, but
it is not necessary to physically delete from the disk until we run out resources. Then it
sends request to DataServer to destage (archive) output data.
Arguments: DPRid:int, Machine:string
Return Type: void
Privilege: Public
PDL:{
// Iterate through the input data granule list for a particular DPR
// select all input data entries from DataBase that match URid and
// machine and update the NumberOfUses field by decrementing this
// field by 1.

// Iterate through the output data granule list for a particular

// DPR

// Build request and submit request to DataServer to destage output

// data.

// After output data are successfully destaged,

// DestageRequestReturn operation is invoked to call

// ResourceManagement to deallocate resources for all output data.

// Return success code and end process.

DestageRequestReturn - This operation is called by CallBack after a destage request was

sent to DataServer. If output data is successfully archived, then it goes through all output

data entries, deallocate source, and remove them from Data_Map table in DataBase.

Arguments:

Return Type: void

4-48 305-CD-011-001

Privilege: Public

PDL:{

// Iterate through output data granule list, call

// ResourceManagement to deallocate resources allocated to each

// data.

}

InitializeData - This public operation is called to initialize data in the Database. When a

DPR is first created, this gets called. It goes to each of Data granule and gets a URid. Then

it searches through the DataMap table in the Database to find the URid that matches the

keyed UR. If it cannot find any entry, then it will create an entry and put it in the DataBase

with NumberOfUses field set to 1 (i.e. there is 1 DPR that needs this data granule). As it

goes along, if it finds an entry in DataBase that matches the searched URid, then it

increments the NumberOfUses field by 1 (i.e. there is one more DPR that needs this data

granule).

Arguments: DPRid:int

Return Type: void

Privilege: Public

PDL:{

// Iterate through the input data granule list,

// If there is entry in DataBase for this particular data, then

// increment the NumberOfUses field by 1.

// If no entry returned from DataBase, then add an entry with URid

// and NumberOfUses = 1 into DataBase.

// At the end of iteration, return success code and end process.

}

MakeDataLocal - This operation mainly initializes and ensures availability of data before

PGE is executed. First, it ensures that the required data for execution is available at our

local disk. If it is not located on our local system disk, it checks to see if this data is already

located on a nearby local system disk. If it is, then copy from nearby local disk to this local

disk. If it is still not out there anywhere, it then asks the Resource Management to allocate

some disk space on local disk and sends request to Data Server to stage data on local disk

at the location indicated by Resource Management.

Arguments: DPRid:int, Machine:string

Return Type: void

Privilege: Public

PDL:{

// Iterate through the Output Data granules list, and allocate

// resources for all of them.

// If anyone of them are not successfully allocated, return with

// error code and end process.

// Iterate through the Input data granules list, search in DataBase

4-49 305-CD-011-001

// for entry that matches the UR for a particular data granule and

// on a particular machine.

// If none of them returned, then search for the same UR but on any nearby machine.

// If there is an entry returned with nearby location, then copy

// data from this nearby local disk to this machine.

// Add this entry with URid and new location into DataBase

//

// If no entry return still, then

// Call Resource Management to allocate space for this data

// granule.

// Build the request to DataServer to stage data to the location

// indicated by Resource Management.

// Add this entry with URid and new location into DataBase with

// status = STAGING.

// If an entry return from DataBase, then update the NumberOfUses

// by 1.

// After finish iterating through the Input data granules list,

// submit requests that built to DataServer to stage all data at

// one time.

// StageRequestReturn operation is invoked when all staging data

// are successfully staged to set the status of all staging data

// to LOCAL.

// Return with success code and end process.

}

StageRequestReturn - This operation is called by CallBack after a stage request was sent

to DataServer. If data is successfully staged, then it goes through all staging data entries,

updates the Status to LOCAL.

Arguments:

Return Type: void

Privilege: Public

PDL:{

// Iterate through staging input data list, update the entry in

// DataBase by setting Status=LOCAL.

}

Associations:

The DpPrDataManager class has associations with the following classes:
Class: DpPrResourceManagement Allocates/DeallocatesResources - DpPrDataManager
calls DpPrResourceManagement to allocate/deallocate resources for input and output data
granules before and after the execution of a PGE.
Class: GlCallBack

4-50 305-CD-011-001

Class: DpPrJobManagement InitializesandEnsuresAvailabilityofResourcesandData

Class: DsClESDTReferenceCollector SubmitsRequestThrough - DataManager creates

requests to stage/destage data, and it submits those requests through

DsClESDTReferenceCollector class.

Class: DsClRequest builds - DpPrDataManger builds request that contains command to

stage/destage data at DataServer.

Class: PlDPR locates - DpPrDataManager locates the DPR entry in the DataBase that

associated to a provided DPRid.

Class: DpPrDataMap manages - DpPrDataManager manages and manipulates

DpPrDataMap objects as entries in Sybase DataBase.

Class: DpPrUnusedData removes - DpPrDataManager physically removes/deletes the data

on our local system disk that not being used by any PGE and also deletes the entries in

Sybase DataBase associated with them.

4.4.6 DpPrDataMap Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
Since this class is a persistent class, it defines attributes and operations for manipulating the
instances of objects as the entries in the Sybase DataBase. It can add, delete, update, and
select the entry(ies) in the Sybase DataBase.

Attributes:

myLocation - Indicates where, what path on a local machine that this data granule locates on.
Data Type: string
Privilege: Private
Default Value: Null

myMachine - Indicated where, what machine this data granule locates on for a particular

DPR.

Data Type: string

Privilege: Private

Default Value: Null

myNumberOfUses - A number indicates how many DPR use(s) this data granule in a day.

Data Type: int

Privilege: Private

Default Value: 1

myStatus - Indicates the status of data that currently stored in DataBase. The possible

values are: STAGING, LOCAL, NONE.

Data Type: enum

4-51 305-CD-011-001

Privilege: Private

Default Value: None

myURid - Identifier of an UR.

Data Type: string

Privilege: Private

Default Value:

Operations:

Delete - This operation physically deletes a row of DataMap from the DataBase.
Arguments:
Return Type: Void
Privilege: Public

DpPrDataMap - The default constructor for this class.

Arguments:

Return Type: Void

Privilege: Public

GetLocation - A public operation for other class(es) to use to get the Location attribute

value.

Arguments:

Return Type: string

Privilege: Public

GetMachine - A public operation for other class(es) to use to get Machine attribute value.

Arguments:

Return Type: string

Privilege: Public

GetNumberOfUses - A public operation for other class(es) to use to get NumberOfUses

attribute value.

Arguments:

Return Type: int

Privilege: Public

GetStatus - A public operation for other class(es) to use to get the Status attribute value.

Arguments:

Return Type: enum

Privilege: Public

GetURid - A public operation for other class(es) to use to get URId attribute value.

Arguments:

4-52 305-CD-011-001

Return Type: string

Privilege: Public

Insert - This public operation adds a DataMap row or entry into DataBase.

Arguments:

Return Type: Void

Privilege: Public

Select - This public operation deletes a row or entry from Data_map Sybase table.

Arguments:

Return Type: Void

Privilege: Public

SetLocation - A public operation for other class(es) to use to set the Location attribute

value.

Arguments:

Return Type: Void

Privilege: Public

SetMachine - A public operation for other class(es) to use to set Machine attribute value.

Arguments:

Return Type: Void

Privilege: Public

SetNumberOfUses - A public operation for other class(es) to use to set NumberOfUses

attribute value.

Arguments:

Return Type: Void

Privilege: Public

SetStatus - A public operation for other class(es) to use to set the Status attribute value.

Arguments:

Return Type: Void

Privilege: Public

SetURid - A public operation for other class(es) to use to set the URid attribute value.

Arguments:

Return Type: Void

Privilege: Public

Update - This operation updates a field value of a DataMap row in DataBase.

Arguments:

Return Type: Void

Privilege: Public

4-53 305-CD-011-001

~DpPrDataMap - The default destructor for this class.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DpPrDataMap class has associations with the following classes:
Class: DpPrDataManager manages - DpPrDataManager manages and manipulates
DpPrDataMap objects as entries in Sybase DataBase.
DpPrUnusedData (Aggregation)

4.4.7 DpPrDiskAllocation Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
This class is used to maintain the individual records of disk storage usage which are used
to maintain the integrity of storage allocations and deallocations. These records are
uniquely associated with a particular disk partition (i.e., file system) and computer.

Attributes:

myID - This is an internal identifier used to uniquely track individual allocations. The User
attribute, conversely, is not unique in that there may be many allocations for a single job.
Data Type: DpPrId
Privilege: Private
Default Value:

myLastSize - This value represents the latest size recorded for the file specified by the Path

attribute. It will be used to compare against the original allocation size to determine if a file

is exceeding its expected size.

Data Type: unsigned

Privilege: Private

Default Value:

myPath - This attribute defines the entire directory path to the file for which this allocation

is being made.

Data Type: char[240]

Privilege: Private

Default Value:

4-54 305-CD-011-001

mySize - The value represents the size specified for the original allocation request. It will

be used to compare against the actual size of the file represented by this allocation to check

for an unexpected increase in size.

Data Type: unsigned

Privilege: Private

Default Value:

myType - This attribute defines whether the disk space was allocated for system files or

user i.e., science software files.

Data Type: enum occupation_type={SYSTEM,USER}

Privilege: Private

Default Value: SYSTEM

myUser - This attribute holds the value of the identifier specified in the original allocation

request and represents the job that is associated with the file defined by the Path attribute.

Data Type: DpPrJobId

Privilege: Private

Default Value:

Operations:

CheckFile - This operation provides the means to check on the existence of the file, associated
with this allocation, before actually releasing the allocation.
Arguments:
Return Type: DpPrBoolean
Privilege: Public

DpPrDiskAllocation - This constructor will be used to create the object, as well as define

the values of the static attributes ID, Type, User, Size and Path; only the LastSize attribute

is considered to be dynamic.

Arguments: Sequence:DpPrId,Type:occupation_type,Path:String,Id:DpPrJobI

d,Size:unsigned

Return Type: Void

Privilege: Public

GetFixedSize - Retrieve the value of the Size attribute, which maintains the value of the

original resource allocation.

Arguments:

Return Type: unsigned

Privilege: Public

GetID - Retrieve the unique, sequence generated, identifier which is defined by the

attribute ID.

Arguments:

4-55 305-CD-011-001

Return Type: DpPrId

Privilege: Public

GetLastSize - This operation retrieves the value of the Last Size attribute.

Arguments:

Return Type: unsigned

Privilege: Public

GetPath - Retrieve the full filepath to the entity defined by this instance of the object.

Arguments:

Return Type: String

Privilege: Public

GetType - This operation identifies this object as being a normal user allocation, or a non­

user allocation which implies that the disk space held by the allocation cannot be used

directly for science processing purposes.

Arguments:

Return Type: occupation_type

Privilege: Public

~DpPrDiskAllocation - This deallocator will be used to remove the object.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DpPrDiskAllocation class has associations with the following classes:
Class: DpPrDiskPartition consumedby

4.4.8 DpPrDiskPartition Class

Parent Class: DpPrResource
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
This class is used to represent the set of disk storage devices that are being used to contain
the input and output data files which are respectively used and produced by the science
software, as well as the executable files which comprise the collective set of software
known as a PGE. All management activities for controlling the use of the disk resources are
performed by this class.

4-56 305-CD-011-001

Attributes:

myAllocationList - This pointer identifies the reference to a list of disk resource allocations
which are associated with this object.
Data Type: DpPrListPtr
Privilege: Private
Default Value:

myBlockSize - The block size is a fixed value imposed by the particular operating system.

It should be used to convert file sizes to units of bytes.

Data Type: int

Privilege: Private

Default Value: 1024

myPartitionSize - This attribute holds the amount of disk space allocated to the file

system. This value is fixed during file system creation.

Data Type: unsigned

Privilege: Private

Default Value:

mySysAllocation - This derived attribute will maintain the amount of disk resources which

are, by default, allocated to the system on startup. These resources are, in effect, reserved

for the duration of the system’s activation.

myUserAllocation - This derived attribute maintains the current amount of disk resources

which are presently allocated for the use of science processing.

Operations:

CheckAllocation - The disposition of a particular allocation is determined by comparing the
current use of resources with the amount originally allocated. A margin value will be used
to decide if the disposition is good or bad.
Arguments: Margin:Leeway,Id,DpPrJobId,FilePath:String
Return Type: DpPrBoolean
Privilege: Public

DpPrDiskPartition - This contructor will be used to create the object along with its

identification and initial state. Following object creation, all associated system allocations

will be created and linked to this object. The actual partition size and current allocation

amounts will be initialized.

Arguments: Device:DpPrId,Root:String,State:enum state_type={OFFLINE,ONLINE}

Return Type: Void

Privilege: Public

4-57 305-CD-011-001

GetBlockSize - The value of the Block Size attribute is returned to the calling process.

Arguments:

Return Type: unsigned

Privilege: Public

GetFree - Compute the total amount of unused space for this partition which is available

for immediate allocation.

Arguments:

Return Type: unsigned

Privilege: Public

GetPartitionSize - The value of the Partition Size attribute is returned to the calling

process.

Arguments:

Return Type: unsigned

Privilege: Public

GetStatus - The current state of the object is returned to the calling process.

Arguments:

Return Type: DpPrStatus

Privilege: Public

GetUsage - The current allocation amounts are obtained for the specified user type.

Arguments: Entity:enum occupation_type={SYSTEM,USER}

Return Type: unsigned

Privilege: Public

RelAllocation - Individual file allocations are released and the final size of the allocation

returned.

Arguments: Size:unsigned &,Id:DpPrJobId,FilePath:String

Return Type: DpPrStatus

Privilege: Public

SetAllocation - Individual resource allocations are generated for science processing uses.

The input allocation amount is the reserved amount. The actual amount used by this

allocation may be slightly more than the reserved amount to allow for efficient storage.

Arguments: Size:unsigned,Id:DpPrJobId,FilePath:String

Return Type: DpPrStatus

Privilege: Public

SetSysAllocation - During initialization of the object, an initial set of system allocations

will be created to account for system and software usage of this partition. This value is

assumed to be static for the current configuration of the resources.

Arguments:

Return Type: unsigned

4-58 305-CD-011-001

Privilege: Private

UpdateDiskStatus - The current allocation amounts are derived from the associated

allocations in order to update the allocation attributes.

Arguments:

Return Type: unsigned

Privilege: Private

~DpPrDiskPartition - This destructor will perform a recursive deletion of all dependent

allocation objects.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DpPrDiskPartition class has associations with the following classes:
Class: DpPrComputer
Class: DpPrDiskAllocation consumedby

4.4.9 DpPrExecutable Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
This class is used to maintain the state of the science software components which are
crucial to support the proper runtime operation of a PGE.

Attributes:

myLevel - The level of the object can be used to determine if it requires direct execution on the
part of the Processing System, or if it is indirectly executed from the PGE itself.
Data Type: enum layer_type={OUTER,INNER,OTHER}
Privilege: Private
Default Value:

myLocation - The disk location where the executable resides will be determined initially,

but may be modified to reflect a change in resource allocations.

Data Type: char[240]

Privilege: Private

Default Value:

4-59 305-CD-011-001

myName - The actual executable or Status Message File (SMF) name is identified by this

attribute.

Data Type: char[60]

Privilege: Private

Default Value:

myPermission - The system permission settings may need to be set by the Processing

System following the staging of the executable file or Status Message File (SMF). Note that

for the latter, the permission should be set to 400.

Data Type: int=500

Privilege: Private

Default Value: 500

myShell - For objects which are shell scripts, as is expected for the main PGE, this shell

may need to be explicitly invoked as part of the job command that the COTS Scheduler

issues. This attribute does not apply to binary executables and Status Message Files

(SMFs).

Data Type: char[60]="csh"

Privilege: Private

Default Value: "csh"

myTarget - This defines the required machine and operating system combination required

to execute this process. A null value indicates that the entity is capable of being run on any

platform. This value will be used to determine alternate resources for execution if the

initially allocated resource ever fails.

Data Type: char[60]

Privilege: Private

Default Value:

Operations:

DpPrExecutable - This constructor will provide for the creation of the object and the
initialization of static attributes.
Arguments: Name:String,Target:String,Location:String,Level:layer_type,
Access:int=500,Shell:String="csh"
Return Type: Void
Privilege: Public

GetLevel - The Level attribute is returned to the calling process.

Arguments:

Return Type: layer_type

Privilege: Public

4-60 305-CD-011-001

GetLocation - The current directory path, as defined by the Location attribute, is returned

to the calling process.

Arguments:

Return Type: String

Privilege: Public

GetName - The filename of the object, as defined by the Name attribute, is returned to the

calling process.

Arguments:

Return Type: String

Privilege: Public

GetPermission - The system permission settings, as defined by the Permission attribute,

are returned to the calling process.

Arguments:

Return Type: int

Privilege: Public

GetShell - The value of the Shell attribute is returned to the calling process.

Arguments:

Return Type: String

Privilege: Public

GetStatus - Retrieve the current last known state of the executable as defined by the State

attribute. This value is updated on a periodic basis.

Arguments: State:enum state_type

Return Type: DpPrStatus

Privilege: Public

GetTarget - The Target attribute value is returned to the calling process.

Arguments:

Return Type: String

Privilege: Public

SetNewLocation - To cover the possibility that initially provided disk resources may need

to be reallocated, this operation will allow for the update of the objects physical location.

Arguments: NewLocation:String

Return Type: Void

Privilege: Public

~DpPrExecutable - This destructor will perform an orderly cleanup and deletion of the

object.

Arguments:

Return Type: Void

4-61 305-CD-011-001

Privilege: Public

Associations:

The DpPrExecutable class has associations with the following classes:
Class: MsManager ActivatesAgentThrough
Class: MsMgCallBacks
Class: DpPrPge activates

4.4.10 DpPrExecutionManager Class

Parent Class: Not Applicable
Public: Yes Distributed Object: No
Purpose and Description:
The PrExecutionManager class is the interface class for other classes which require
execution services. Such services include the allocation of processing resources and disk
resources for the executable files, execution of science software, and deallocation of
associated resources.

Attributes:

myClientMachine - This attribute identifies the local machine where this object is running.
Data Type: char[32]
Privilege: Private
Default Value:

Operations:

AllocateResources - The resource allocations required to support the running of a PGE are
performed by this operation. Initial runs of a PGE on a specified Machine will trigger the
allocation of disk resources required to store the associated executables and runtime Status
Message Files (SMFs), and will initiate the staging of these files to the allocated locations.
Each activation of this operation will trigger the allocation of processing resources for the
specified Job run.
Arguments: Machine:String,Pge:DpPrPgeId,Job:DpPrJobId
Return Type: DpPrStatus
Privilege: Public

DeallocateResources - The processing resources allocated for a particular run of the PGE,

as specified by the Job identifier, will be released. All disk resources associated with the

PGE remain active.

Arguments: Job:DpPrJobId

Return Type: DpPrStatus

4-62 305-CD-011-001

Privilege: Public

DeallocateResources - Processing, and if specified all associated disk resources will be

reclaimed for a PGE on the machine indicated.

Arguments: Machine:String,Pge:DpPrPgeId,Extent:enum

reclaim_type={FULL,PARTIAL}=PARTIAL

Return Type: DpPrStatus

Privilege: Public

DpPrExecutionManager - This constructor will perform the initialization of the manager

object for the platform specified.

Arguments: Host:String

Return Type: Void

Privilege: Public

GenProcessMetadata - This operation will provide for the creation of processing metadata

that is associated with the just completed run of a PGE. This metadata will be inserted into

the Production History File to provide for the eventual association of this metadata with the

Product Output files created by the PGE. This operation will be activated during a post­

processing run of the management CSC.

Arguments: Machine:String,Pge:DpPrPgeId,Job:DpPrJobId

Return Type: DpPrStatus

Privilege: Public

GetHostName - The host name of the manager object is returned to the calling process.

Arguments:

Return Type: String

Privilege: Public

~DpPrExecutionManager - This destructor will effect the orderly cleanup and deletion of

the manager object.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DpPrExecutionManager class has associations with the following classes:
Class: DpPrResourceManagement Allocates/DeallocatesResources
Class: DpPrPge operateson

4-63 305-CD-011-001

4.4.11 DpPrJobManagement Class

The DpPrJobManagement class provides an abstract view of the JobManagement CSC and its
respective role.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The DpPrJobManagement class has associations with the following classes:
Class: DpPrDataManager InitializesandEnsuresAvailabilityofResourcesandData
Class: DpPrDataManagement InitializesandEnsuresAvailabilityofResourcesandData
Class: PlDpr ManagesDPRJobs
Class: DpPrPgeExecutionManagement RequestsResourceAllocationandExecutionofPGEs

4.4.12 DpPrPcf Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
This class is used to maintain the state of the Process Control File (PCF), which provides
critical runtime information to the PGE, while the science software is executing. Object
instances of this class only persist for the lifetime of a PGE run.

Attributes:

myLocation - This attribute defines the directory path as defined during the initial disk
resource allocation.
Data Type: char[240]
Privilege: Private
Default Value:

myName - This is the filename of the Process Control File (PCF) as defined by the Name

attribute,

Data Type: char[60]

Privilege: Private

4-64 305-CD-011-001

Default Value:

myPermission - This attribute defines the system permissions which need to be placed on

the PCF file once it has been stage to the local storage disk.

Data Type: int

Privilege: Private

Default Value: 600

Operations:

DpPrPcf - This constructor provides for the creation of the object and its initialization.
Arguments: Name:String,Location:String,Access:int=600
Return Type: Void
Privilege: Public

GetLocation - Retrieve the directory path of the Process Control File (PCF), as defined by

the Location attribute, and return it to the calling process.

Arguments:

Return Type: String

Privilege: Public

GetName - Retrieve the filename of the Process Control File (PCF), as defined by the

Name attribute, and return it to the calling process.

Arguments:

Return Type: String

Privilege: Public

GetPermission - Retrieve the system permission settings for the Process Control File

(PCF), as defined by the Permission attribute, and return it to the calling process.

Arguments:

Return Type: int

Privilege: Public

SetNewLocation - To cover the possibility that the initially allocated disk resources need

to be reallocated, this operation provides for the modification of the Location attribute.

Arguments: NewLocation:String

Return Type: DpPrStatus

Privilege: Public

~DpPrPcf - This destructor will perform an orderly cleanup and deletion of the object.

Arguments:

Return Type: Void

Privilege: Public

4-65 305-CD-011-001

Associations:

The DpPrPcf class has associations with the following classes:
Class: DpPrPge mapsto

4.4.13 DpPrPge Class

Parent Class: Not Applicable
Public: Yes Distributed Object: No
Persistent Class: True
Purpose and Description:
This class is used to maintain the state of the complete PGE and as such provides for the
insertion and deletion of the science software for the local machine and controls execution
of the PGE on that platform.

Attributes:

myCommands - The command string will be used to provide startup condition information to
the activation shell identified by the Shell attribute. The default command string is specific
to the default SDP Toolkit activation shell.
Data Type: char[240]
Privilege: Private
Default Value: "1110 50"

myEnvironment - This attribute may contain the value of zero or more environment

variable pairs which will be used to define the operating conditions for the science

software.

Data Type: char[240]

Privilege: Private

Default Value:

myExecSet - This pointer identifies a reference to a list of executable files (binaries and

shell scripts) as well as Status Message Files (SMFs).

Data Type: DpPrListPtr

Privilege: Private

Default Value:

myHost - This attribute identifies the host machine for this instance of the Pge object.

There will be a most one instance of this object per host.

Data Type: char[30]

Privilege: Private

Default Value:

myPgeID - This attribute is used to uniquely identify the science software which is

occupying a particular machine. The same identifier may be used as the value of the PgeId

4-66 305-CD-011-001

attribute for another instance of this object provided that the value of the Host attribute is

different.

Data Type: DpPrPgeId

Privilege: Private

Default Value:

myShell - This attribute defines the Processing shell which activates the science software's

outer PGE shell. The default shell is provided by the SDP Toolkit.

Data Type: char[240]

Privilege: Private

Default Value: "PGS_PC_Shell.sh"

myState - The state attribute maintains the last known state of the PGE object. Internal

activation of the CheckStatus operation will update this value on a periodic basis.

Data Type: enum

state_type={STANDBY,STARTING,STOPPING,RUNNING,SUSPENDED,STAGING,

DESTAGING}

Privilege: Private

Default Value: STANDBY

Operations:

Abort - This operation will be used to trigger the premature termination of the currently
running science software.
Arguments:
Return Type: DpPrStatus
Privilege: Public

CheckStatus - Used to perform periodic updates of the state information.

Arguments:

Return Type: Void

Privilege: Private

Destage - This operation effectively removes the specified science software files from the

local disk.

Arguments: ElementType:enum component_type={EXEC,SMF,PCF}=PCF

Return Type: DpPrStatus

Privilege: Public

DpPrPge - This contructor will be used to create the object instance and initialize the

attributes which distinguish it from other instances.

Arguments:

Pge:DpPrPgeId,Host:String,State:state_type=STANDBY,ComSet:String="1110 50"

Return Type: Void

4-67 305-CD-011-001

Privilege: Public

Execute - This operation triggers the creation of the Process Control File for the current run

of the PGE and updates the COTS Scheduler with the latest job definition information.

Arguments:Commands:String"111050",Environment:String,

Shell:String="PGS_PC_Shell.sh"

Return Type: DpPrStatus

Privilege: Public

GetCom - Retrieves the contents of the Commands attribute and returns it to the calling

process.

Arguments:

Return Type: String

Privilege: Public

GetEnv - Retrieves the contents of the Environment attribute and returns it to the calling

process.

Arguments:

Return Type: String

Privilege: Public

GetHost - Retrieves the value of the Host attribute and returns it to the calling process.

Arguments:

Return Type: String

Privilege: Public

GetID - Retrieves the value of the PgeId attribute and returns it to the calling process.

Arguments:

Return Type: DpPrPgeId

Privilege: Public

GetShell - Retrieves the name of the activation shell, as defined by the Shell attribute,

which will be used by the Processing System to cradle the science software.

Arguments:

Return Type: String

Privilege: Public

GetStatus - Retrieves the state of the object as currently defined by the State attribute.

Arguments:

Return Type: state_type

Privilege: Public

Resume - This operation will trigger the currently suspended science software process to

continue with its processing.

Arguments:

4-68 305-CD-011-001

Return Type: DpPrStatus

Privilege: Public

Stage - This operation will used to effect the transfer of science software executables and

Status Message Files (SMFs). Use of this operation requires that all of the required disk

resources be allocated ahead of time.

Arguments: ElementType:enum component_type={EXEC,SMF,PCF},BasePath:String

Return Type: DpPrStatus

Privilege: Public

Suspend - This operation will be activated in order to place the currently executing science

software into a suspended state.

Arguments:

Return Type: DpPrStatus

Privilege: Public

~DpPrPge - This destructor will be used to perform an orderly cleanup an deletions of all

dependent objects.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DpPrPge class has associations with the following classes:
Class: DsClCommand Builds
Class: DsClRequest Constructs
Class: PlDpr Locates
Class: PlDataGranule Specifies
Class: DsClESDTRerenceCollector SubmitsRequestThrough
Class: DpPrExecutable activates
Class: DpPrPcf mapsto
Class: DpPrExecutionManager operateson

4.4.14 DpPrPgeExecutionManagement Class

The DpPrPgeExecutionManagement class provides an abstract view of the
PgeExecutionManagement CSC and its respective role.

Parent Class: Not Applicable

Attributes:

None

4-69 305-CD-011-001

Operations:

None

Associations:

The DpPrPgeExecutionManagement class has associations with the following classes:
Class: DpPrResourceManagement AllocatesResources
Class: DpPpPreProcessing PerformsPre-ProcessingonStagedDataasaPGE
Class: DpPrJobManagement RequestsResourceAllocationandExecutionofPGEs
Class: COTS AllocatesResourcesandExecutesPGEs

4.4.15 DpPrQaMonitor Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
The DpPrQaMonitor is what the Quality Assurance (QA) position uses to subscribe to and
view data products created with QA metadata. The QA operator can enter and withdraw
subscriptions to data products, and will be notified via email when the product is available
for use. The operator can also modify the QA metadata used to process the subscribed-to
product for QA purposes. When the QA position receives email that a subscribed-to
product is available, the operator can obtain the product, use tools to visualize the data
(based on Data Type) or update the QA metadata used to produce the data.

Attributes:

myDataGranule - This attribute holds the data granule obtained by the GetData or
VisualizeData operations.
Data Type: PlDataGranule
Privilege: Private
Default Value:

myDataTypeSelectionWindow - This represents the GUI window to select the data type

for subscriptions.

Data Type:

Privilege: Private

Default Value:

myMetaDataEditorWindow - This attribute represents the MetaData Editor which the

QA position can use to update the QA MetaData associated with a subscribed-to data

product. The UpdateMetaData operation will bring up this Editor, allowing the operator to

select a subscribed-to data product. The operator can then change the QA MetaData for use

by the GetData or VisualizeData operations.

4-70 305-CD-011-001

Data Type:

Privilege: Private

Default Value:

myMonitorCommandWindow - myMonitorCommandWindow represents the main QA

Monitor GUI. It will allow the operator to choose the function desired from among

subscription submittal and withdrawal, metadata updating, data gathering and data

visualization.

Data Type:

Privilege: Private

Default Value:

Operations:

DisplayDataTypes - This operation displays for the operator a list of Data Types which can be
subscribed to. The operator can select a Data Type (see SelectDataType operation) and
submit or withdraw subscriptions to it.
Arguments:
Return Type: Void
Privilege: Public

GetData - This operation retrieves a product which had been subscribed to by the QA

Monitor position.

Arguments: Data:GlUR

Return Type: PlDataGranule

Privilege: Public

SelectDataType - This operation allows the QA operator to select a Data Type from among

a list of valid advertised Types. This can then be used in subscription submittal and

withdrawal.

Arguments:

Return Type: Void

Privilege: Public

SubmitSubscription - This operation allows the QA operator to subscribe to an advertised

Data Type. When a new instance of the Data Type arrives at the Data Server, QA will be

sent email notification.

Arguments: For:Advertisement

Return Type: Void

Privilege: Public

UpdateMetaData - This operation is used by the QA Monitor position to change the QA

MetaData associated with the given subscribed-to product. This operation will pop-up the

MetaData Editor and allow the user to update valid QA MetaData values.

4-71 305-CD-011-001

Arguments: For:Advertisement

Return Type: Void

Privilege: Public

PDL:{

// The Updated MetaData is inserted into a GlParameter, which is inserted into

// a GlParameterList.

//

// This ParameterList and the input Advertisement are used to create a

// DsClCommand, which is then used to create a DsClRequest.

//

// A DsClESDTReferenceCollector is created and used in a Submit call to the

// previously created DsClRequest. This actually sends the Updated MetaData

// to the Data Server.

//

}

VisualizeData - This operation will be used to produce a visual interpretation of the given

data product for QA purposes. Depending on the type of data requested, various tools will

be invoked to display these images.

Arguments: Data:GlUR

Return Type: Void

Privilege: Public

WithdrawSubscription - This operation allows the QA operator to "un-subscribe" to an

advertised Data Type that was previously subscribed to. New instances of the Data Type

arriving at the Data Server will not result in notification.

Arguments: For:Advertisement

Return Type: Void

Privilege: Public

Associations:

The DpPrQaMonitor class has associations with the following classes:
Class: DsClCommand Creates
Class: DsClRequest Creates
Class: DsClSubscription Creates
Class: IoAdAdvertisingSrv_C
Class: GlUR GetsDataUsing
Class: GlParameter IsCreatedBy
Class: GlParameterList IsCreatedBy
Class: IoAdServiceCollection_C Searches
Class: IoAdServiceAdvertisement Selects

4-72 305-CD-011-001

Class: PlDataTypes SelectsFrom

Class: EOSVIEW VisualizeDatathrough

4.4.16 DpPrResource Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
This base class is used to capture the similar features of the derived classes, and to provide
for future expansion.

Attributes:

myID - This base class attribute is inherited by the resource subclasses to uniquely identify
object instances.
Data Type: DpPrId
Privilege: Private
Default Value:

myName - This base class attribute is inherited by the resource subclasses to provide an

identifier which is more meaningful in human terms.

Data Type: char[20]

Privilege: Private

Default Value:

myState - This base class attribute is inherited by the resource subclasses to define the last

known operating state of each object instance.

Data Type: enum resource_state_type={ONLINE,OFFLINE}

Privilege: Private

Default Value: ONLINE

Operations:

GetID - Retrieve the ID attribute for this object instance.
Arguments:
Return Type: DpPrId
Privilege: Public

GetName - Retrieve the Name attribute for this object instance.

Arguments:

Return Type: String

4-73 305-CD-011-001

Privilege: Public

Associations:

The DpPrResource class has associations with the following classes:
Class: DpPrResourceManager operateson
DpPrResourceConfiguration (Aggregation)

4.4.17 DpPrResourceConfiguration Class

Parent Class: Not Applicable
Public: Yes Distributed Object: No
Purpose and Description:
This interface class is provided for the sole purpose of filtering hardware configuration
information from the CSMS system to the Processing and Planning system.

Attributes:

None

Operations:

DpPrResourceConfiguration - Construct the interface object and create the set of Planning
and Processing resource objects from the MSS configuration stores.
Arguments:
Return Type: Void
Privilege: Public

GetResource - Connect to MSS and filter out the subset of processing and planning

hardware.

Arguments:

Return Type: DpPrStatus

Privilege: Private

ModifyResource - Update the existing set of hardware resource information to represent

the latest configuration for Planning and Processing use.

Arguments:

Return Type: DpPrStatus

Privilege: Private

SetResource - Express the latest set of hardware information in terms of a Planning and

Processing configuration.

Arguments:

Return Type: DpPrStatus

4-74 305-CD-011-001

Privilege: Private

~DpPrResourceConfiguration - Destroy all resource object instances and then destroy

this instance.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DpPrResourceConfiguration class has associations with the following classes:
Class: PlResourceUI BuildsConfiguration
Class: MsDAAC Filters

4.4.18 DpPrResourceManagement Class

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The DpPrResourceManagement class has associations with the following classes:
Class: DpPrDataManager Allocates/DeallocatesResources
Class: DpPrDataManagement AllocatesResources
Class: DpPrPgeExecutionManagement AllocatesResources
Class: DpPrExecutionManager Allocates/DeallocatesResources

4.4.19 DpPrResourceManager Class

Parent Class: Not Applicable
Public: Yes Distributed Object: No
Purpose and Description:
This interface class provides an abstract set of operations for effectively managing the
collection of processing and storage resources. Proper use of these operations on the part
of the Processing System should provide for the same level of resources as were available

4-75 305-CD-011-001

to the Planning System during plan generation, thereby helping to ensure that what was
planned will be processed.

Attributes:

None

Operations:

AllocateResource - Perform an allocation of disk storage for a set of data items and return the
set of allocated storage paths. The allocation is performed for a particular machine and job
activation.
Arguments: Machine:String,Data:DpPrDataPtr &,Paths:DpPrPathPtr &,Job:DpPrJobId
Return Type: DpPrStatus
Privilege: Public

AllocateResource - Perform an allocation of disk storage for a predetermined set of storage

paths. The allocation is performed for a particular machine and job activation.

Arguments: Machine:String,Paths:DpPrPathPtr &,Job:DpPrJobId

Return Type: DpPrStatus

Privilege: Public

AllocateResource - Perform an allocation of processors for the amount requested. The

allocation is performed for a particular machine and job activation.

Arguments: Machine:String,Power:int,Job:DpPrJobId

Return Type: DpPrStatus

Privilege: Public

DeallocateResource - Perform a deallocation of disk storage resources for a particular job,

but only for those storage paths indicated.

Arguments: Machine:String,Paths:DpPrPathPtr &,Job:DpPrJobId

Return Type: DpPrStatus

Privilege: Public

DeallocateResource - Perform a deallocation of processing resources for the amount and

job indicated.

Arguments: Machine:String,Power:int,Job:DpPrJobId

Return Type: DpPrStatus

Privilege: Public

DeallocateResource - Perform a deallocation of both processing and disk storage

resources for a particular job.

Arguments: Machine:String,Job:DpPrJobId

Return Type: DpPrStatus

4-76 305-CD-011-001

Privilege: Public

DpPrResourceManager - This constructor will create the object instance for this class and

regenerate the resource objects from the persistent database storage.

Arguments:

Return Type: Void

Privilege: Public

GetAvailableResource - For a specific machine, retrieve the set of paths which may be

allocated for a particular set of data items; no actual allocation has occurred at this point.

Arguments: Machine:String,Data:DpPrDataPtr &,Paths:DpPrPathPtr &

Return Type: DpPrStatus

Privilege: Public

GetResource - Retrieve information about a particular resource object from the list of

objects.

Arguments: Resource:ResElement &,ResourceSet:ResContainer &,Element:int

Return Type: DpPrStatus

Privilege: Public

GetResourceList - Creates a pointer to the set of resource objects specified by the resource

type.

Arguments: ResourceSet:ResContainer &,Type:enum

Return Type: DpPrStatus

Privilege: Public

QueryBadResources - Retrieve the set of failed disk allocations for a particular machine.

Arguments: Machine:String,Paths:DpPrPathPtr &

Return Type: DpPrStatus

Privilege: Public

QueryResourceStatus - Retrieve the available resource status information for a particular

machine.

Arguments: Machine:String,Condition:ResStatus &

Return Type: DpPrStatus

Privilege: Public

QueryResourceUsage - Determine general resource usage by machine

Arguments: Machine:String,Usage:ResUse &

Return Type: DpPrStatus

Privilege: Public

QueryResourceUsage - Determine general resource usage by job.

Arguments: Job:DpPrJobId,Usage:ResUse &

Return Type: DpPrStatus

4-77 305-CD-011-001

Privilege: Public

ReportResource - Generate a summary report containing all available information about

a particular resource object.

Arguments: Resource:ResElement &

Return Type: DpPrStatus

Privilege: Public

UpdateResourceStatus - Trigger the status update operation for each resource object to

get a current assessment of the entire resource pool.

Arguments:

Return Type: DpPrStatus

Privilege: Private

~DpPrResourceManager - This destructor will update the persistent database storage

with the current information contained in the resource objects, then effect the deletion of

all resource objects before releasing itself.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DpPrResourceManager class has associations with the following classes:
Class: MsManager ActivatesAgentThrough
Class: MsMgCallBacks
Class: DpPrResource operateson

4.4.20 DpPrScheduler Class

Parent Class: Not Applicable
Public: YesDistributed Object: Yes
Purpose and Description:
DpPrScheduler provides operations to manage science software on a DPR level.

Attributes:

None

Operations:

CancelDprJob - This operation cancels the Job Box and all jobs associated with the input
DPR. The Data Manager is contacted to release all resources reserved for the DPR, and to
update its data as to the number of DPRs requiring a given data file.

4-78 305-CD-011-001

Arguments: Dpr:PlDpr

Return Type: Void

Privilege: Public

CancelGEvntJob - This operation is used by Planning to cancel a previously scheduled

Ground Event.

Arguments: Event:PlGroundEvent

Return Type: Void

Privilege: Public

CreateDprJob - This operation is used to convert a Data Processing Request (DPR) into a

series of "jobs" to be processed by the Scheduling COTS package. Planning creates a DPR

and passes it to the DpPrScheduler via this operation. The information in the DPR is used

to create a "Job Box", containing all the steps necessary to successfully run the PGE

associated with the DPR. Individual jobs are created for setup of execution resources and

for ensuring that all necessary input data is local, as well as running the PGE itself and

deallocating the resources and data requirements associated with the DPR. These jobs are

entered into the Scheduling COTS software (via the DpPrCotsManager class) to be started

when a) All PGE Dependencies have been satisfied, and b) All external data is available at

the Data Server.

Arguments: Dpr:PlDpr

Return Type: Void

Privilege: Public

PDL:{

// Call the Data Manager to InitializeData, passing it the input DPR ID.

//

// Get the PGE associated with the DPR so that the User Parameters, Time

// Information, the PGE's name, the Command used to invoke the PGE, the

// DPRs that this one is dependent upon and the machine on which the PGE

// is to run, are available.

//

// Call the DpPrCotsManager operation AddJobBox, passing it the DPR

// dependencies, PGE Name and Time Information. This creates a holder

// for the various jobs which make up a DPR.

//

// Call the DpPrCotsManager operation AddJob to create a job in the Box which

// will call the ExecutionManager to Allocate resources for the PGE.

//

// Call the DpPrCotsManager operation AddJob to create a job in the Box which

// will call the DataManager to MakeDataLocal; all data needed to run the PGE

// will be placed on local storage.

//

// Call the DpPrCotsManager operation AddJob to create a job in the Box which

// will call the ExecutionManager to create the PCF and environment files for

// the PGE; this uses the User Parameters obtained above.

4-79 305-CD-011-001

//

// Call the DpPrCotsManager operation AddJob to create a job in the Box which

// will actually execute the PGE; this uses the Command obtained above.

//

// Call the DpPrCotsManager operation AddJob to create a job in the Box which

// will call the ExecutionManager to deallocate the resources it had allocated

// for the PGE.

//

// Call the DpPrCotsManager operation AddJob to create a job in the Box which

// will call the DataManager to update its information about how many PGEs

// need to use a certain piece of data. This may result in destaging of data

// no longer needed by any PGE.

//

}

CreateGEvntJob
Arguments: Event:PlGroundEvent

Return Type: Void

Privilege: Public

GetDprJobStatus - This operation returns Processing Status in the Scheduling COTS of

the Job Box associated with the DPR. Values can include ON_HOLD, STARTING,

WAITING, RUNNING, SUCCESS or FAILURE.

Arguments: Dpr:PlDpr

Return Type: DpPrProcessingStatus

Privilege: Public

ReleaseDprJob - This operation is used by Planning to inform the Scheduler that all input

data required from the Data Server is available. At this time, the Scheduler releases the Job

Box via the CotsManager, which allows the jobs associated with the DPR to start

processing when all the PGE Dependencies have been satisfied (i.i., if all the PGE

Dependencies are satisfied but Planning has not called this operation, the DPR cannot

processed).

Arguments: Dpr:PlDpr

Return Type: Void

Privilege: Public

UpdateDprJob - This operation is used by Planning to modify a DPR's Priority or Time

Information only. Time Information includes minimum and/or maximum start times, end

times, and total predicted processing times. These are used for error detection (i.e., if a DPR

is taking much longer that predicted to run, an Alarm can be raised). Planning modifies the

DPR and passes it to the Scheduler, which contacts the Scheduling COTS (through the

CotsManager) to update the information.

Arguments: Dpr:PlDpr

Return Type: Void

4-80 305-CD-011-001

Privilege: Public

Associations:

The DpPrScheduler class has associations with the following classes:
Class: DpPrDataManagement Initializes
Class: PlDPR ManagesDPRJobs
Class: PlGroundEvent ManagesGroundEvents
Class: DpPrCotsManager ManagesJobs
Class: PlPge ObtainsInformationAboutRunConditionsFrom

4.4.21 DpPrString Class

Parent Class: DpPrResource
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
String is an abstract representation of one or more actual machines

Attributes:

myComputerSet - This pointer attribute references the collection of Computer resources
which are associate with this object instance.
Data Type: DpPrListPtr
Privilege: Private
Default Value:

Operations:

DpPrString - Destroy the object instance; this action does not affect the resource object
instances which are pointed to by this object.
Arguments: Name:String,Id:DpPrId,State:state_type=ONLINE

~DpPrString - Construct the object instance and define the pointer the collection of

Computer resources.

Arguments:

Return Type: Void

Privilege: Public

4-81 305-CD-011-001

Associations:

The DpPrString class has associations with the following classes:
Class: DpPrComputer

4.4.22 DpPrUnusedData Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class is a collection of unused data granules that are candidates to be deleted from our
local disk whenever we run out of disk space.

Attributes:

myUnusedData - List of Data_Map entries that not being used (i.e., entries with
NumberOfUses = 0) and subject to be deleted from DataBase.
Data Type: List
Privilege: Private
Default Value:

Operations:

DpPrUnusedData
Arguments:

Return Type: Void

Privilege: Public

GetUnusedData - This operation selects all unused entries for a particular machine with

NumberOfUses = 0 from DataBase.

Arguments:

Return Type: List

Privilege: Public

~DpPrUnusedData
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DpPrUnusedData class has associations with the following classes:
Class: DpPrDataManager removes - DpPrDataManager physically removes/deletes the

4-82 305-CD-011-001

data on our local system disk that not being used by any PGE and also deletes the entries
in Sybase DataBase associated with them.

4.4.23 DsClCommand Class

This is a Data Server Public Class. Please see Data Server Detailed Design Specification for more
information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The DsClCommand class has associations with the following classes:
Class: DpPrPge Builds
DsClRequest (Aggregation)
Class: DpPrQaMonitor Creates

4.4.24 DsClESDTReference Class

This is a Data Server Public Class. Please see Data Server Detailed Design Specification for more
information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The DsClESDTReference class has associations with the following classes:
Class: PlDataType

4-83 305-CD-011-001

DsClESDTReferenceCollector (Aggregation)

4.4.25 DsClESDTReferenceCollector Class

This is a Data Server Public Class. Please see Data Server Detailed Design Specification for more
information.

Parent Class: Not Applicable

Attributes:

None

Operations:

DsClESDTReferenceCollector
Arguments:

SetStatusCallback
Arguments:

Associations:

The DsClESDTReferenceCollector class has associations with the following classes:
Class: DpPrDataManager SubmitsRequestThrough
Class: DpPrPge SubmitsRequestThrough

4.4.26 DsClRequest Class

Parent Class: Not Applicable

Attributes:

None

Operations:

DsClRequest
Arguments:

Insert
Arguments:

4-84 305-CD-011-001

Submit
Arguments:

~DsClRequest
Arguments:

Associations:

The DsClRequest class has associations with the following classes:
Class: DpPrDataManager builds
DsClESDTReferenceCollector (Aggregation)
Class: DpPrQaMonitor Creates
Class: DpPrPge Constructs

4.4.27 DsClSubscription Class

This is a Data Server Public Class. Please see Data Server Detailed Design Specification for more
information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The DsClSubscription class has associations with the following classes:
Class: DpPrQaMonitor Creates

4.4.28 EOSVIEW Class

Please note this is an Abstract class used to represent the EOSVIEW Data visualization tool.

Parent Class: Not Applicable

4-85 305-CD-011-001

Attributes:

None

Operations:

None

Associations:

The EOSVIEW class has associations with the following classes:
Class: DpPrQaMonitor VisualizeDatathrough

4.4.29 GlCallBack Class

This is a Global Public Class. Please see CSS Detailed Design Specification for more information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The GlCallBack class has associations with the following classes:
Class: DpPrDataManager

4.4.30 GlParameter Class

This is a Global Public Class. Please see CSS Detailed Design Specification for more information.

Parent Class: Not Applicable

Attributes:

None

4-86 305-CD-011-001

Operations:

None

Associations:

The GlParameter class has associations with the following classes:
Class: DpPrQaMonitor IsCreatedBy
GlParameterList (Aggregation)

4.4.31 GlParameterList Class

This is a Global Public Class. Please see CSS Detailed Design Specification for more information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The GlParameterList class has associations with the following classes:
Class: DpPrQaMonitor IsCreatedBy

4.4.32 GlUR Class

This is a Global Public Class. Please see CSS Detailed Design Specification for more information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

4-87 305-CD-011-001

Associations:

The GlUR class has associations with the following classes:
Class: PlDataGranule contains
Class: DpPrQaMonitor GetsDataUsing
Class: PlDataType

4.4.33 IoAdAdvertisingSrv_C Class

This is an Interoperability Public Class. Please see Interoperability Detailed Design Specification
for more information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The IoAdAdvertisingSrv_C class has associations with the following classes:
Class: IoAdServiceCollection_C Creates
Class: DpPrQaMonitor

4.4.34 IoAdServiceAdvertisement Class

This is an Interoperability Public Class. Please see Interoperability Detailed Design Specification
for more information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

4-88 305-CD-011-001

Associations:

The IoAdServiceAdvertisement class has associations with the following classes:
Class: DpPrQaMonitor Selects
IoAdServiceCollection_C (Aggregation)

4.4.35 IoAdServiceCollection_C Class

This is an Interoperability Public Class. Please see Interoperability Detailed Design Specification
for more information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The IoAdServiceCollection_C class has associations with the following classes:
Class: IoAdAdvertisingSrv_C Creates
Class: DpPrQaMonitor Searches

4.4.36 MsDAAC Class

This is an MSS Public Class. Please see MSS Detailed Design Specification for more information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

4-89 305-CD-011-001

Associations:

The MsDAAC class has associations with the following classes:
Class: DpPrResourceConfiguration Filters

4.4.37 MsManager Class

This is an MSS Public Class. Please see MSS Detailed Design Specification for more information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The MsManager class has associations with the following classes:
Class: DpPrComputer ActivatesAgentThrough
Class: DpPrExecutable ActivatesAgentThrough
Class: DpPrResourceManager ActivatesAgentThrough

4.4.38 MsMgCallBacks Class

This is an MSS Public Class. Please see MSS Detailed Design Specification for more information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The MsMgCallBacks class has associations with the following classes:
Class: DpPrComputer

4-90 305-CD-011-001

Class: DpPrExecutable

Class: DpPrResourceManager

4.4.39 PlDPR Class

This is a Planning CSCI Public Class. Please see Planning Detailed Design DSpecification for
more information.

Parent Class: Not Applicable
Public: Yes Distributed Object: No
Purpose and Description:
This class describes an individual run of a PGE.

Attributes:

None

Operations:

None

Associations:

The PlDPR class has associations with the following classes:
Class: DpPrScheduler ManagesDPRJobs
Class: DpPrDataManager locates
Class: PlDataGranule specifies
Class: DpPrJobManagement ManagesDPRJobs
Class: DpPrPge Locates

4.4.40 PlDataGranule Class

This is a Planning CSCI Public Class. Please see Planning Detailed Design Specification for more
information.

Parent Class: Not Applicable

Attributes:

None

4-91 305-CD-011-001

Operations:

None

Associations:

The PlDataGranule class has associations with the following classes:
Class: PlDataType
Class: GlUR contains
Class: PlDPR specifies
Class: DpPrPge Specifies

4.4.41 PlDataType Class

This is a Planning CSCI Public Class. Please see Planning Detailed Design DSpecification for
more information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The PlDataType class has associations with the following classes:
Class: DsClESDTReference
Class: GlUR
Class: PlDataGranule
PlDataTypes (Aggregation)

4.4.42 PlDataTypes Class

Parent Class: Not Applicable

Attributes:

None

4-92 305-CD-011-001

Operations:

None

Associations:

The PlDataTypes class has associations with the following classes:
Class: DpPrQaMonitor SelectsFrom

4.4.43 PlGroundEvent Class

This is a Planning CSCI Public Class. Please see Planning Detailed Design DSpecification for
more information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The PlGroundEvent class has associations with the following classes:
Class: DpPrScheduler ManagesGroundEvents

4.4.44 PlPge Class

This is a Planning CSCI Public Class. Please see Planning Detailed Design DSpecification for
more information.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

4-93 305-CD-011-001

Associations:

The PlPge class has associations with the following classes:
Class: DpPrScheduler ObtainsInformationAboutRunConditionsFrom

4.4.45 PlResourceUI Class

This is a Planning CSCI Public Class. Please see Planning Detailed Design DSpecification for
more information.

Parent Class: Not Applicable

Attributes:

None

Operations:

4.4.46 DpPpAttitudePacket Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
This class represents a single instance of the attitude packet found in the Level Zero
Housekeeping dataset.

Attributes:

attitude - The euler angles and rates.
Data Type: double array
Privilege: Private
Default Value:

orientationMode - The spacecraft orientation mode.

Data Type: char

Privilege: Private

Default Value:

qaFlag - The data quality flag for the attitude.

Data Type: int

Privilege: Private

Default Value:

4-94 305-CD-011-001

recordNumber - The record number of the attitude packet in the sequence of packets found

in the Level Zero Housekeeping dataset.

Data Type: int

Privilege: Private

Default Value:

time - The timestamp of the attitude.

Data Type: double

Privilege: Private

Default Value:

Operations:

DpPpAttitudePacket
Arguments: fileId:int

Return Type: Void

Privilege: Private

getAttitude - Retrieves the attitude from the attitude packet.

Arguments:

Return Type: Void

Privilege: Private

getTime - Retrieves the timestamp from the attitude packet.

Arguments:

Return Type: Void

Privilege: Private

setGapFlag - Sets the gap flag in the attitude data quality summary flag.

Arguments: gapFlag:int

Return Type: Void

Privilege: Private

setQaFlag - Sets the attitude data quality summary flag to the QAC flag.

Arguments: qacFlag:int

Return Type: Void

Privilege: Private

setSpikeFlag - Sets the spike flag in the attitude data quality summary flag.

Arguments: spikeFlag:int

Return Type: Void

Privilege: Private

4-95 305-CD-011-001

writeToHdfFile - Appends an attitude packet to the attitude dataset being written in HDF

format.

Arguments: fileId:int

Return Type: Void

Privilege: Private

writeToNativeFile - Appends an attitude packet to the attitude dataset being written in the

hardware format native to the host machine.

Arguments: fileId:int

Return Type: Void

Privilege: Private

Associations:

The DpPpAttitudePacket class has associations with the following classes:
Class: DpPpAttitudePackets
Class: DpPpAttitudeProcessingSet

4.4.47 DpPpAttitudePackets Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
This class represents the set of attitude packets involved in data quality processing.

Attributes:

currentPacket - The current attitude packet undergoing data quality processing.
Data Type: structure
Privilege: Private
Default Value:

firstPacket - The first attitude packet in the data quality processing queue.

Data Type: structure

Privilege: Private

Default Value:

lastPacket - The last attitude packet in the data quality processing queue.

Data Type: structure

4-96 305-CD-011-001

Privilege: Private

Default Value:

previousPacket - The attitude packet preceding the current packet in the data quality

processing queue.

Data Type: structure

Privilege: Private

Default Value:

Operations:

DpPpAttitudePackets -
Arguments: boxcarWindowSize:int, fileIds:List<int>
Return Type: Void
Privilege: Private

addPacket - Places the initial set of attitude packets in the data quality processing queue.

This number is determined by the boxcar averaging window size.

Arguments: attitudePackets:DpPpAttitudePacket*

Return Type: Void

Privilege: Private

computeGaps - Computes the difference in time between the current and previous attitude

packets.

Arguments:

Return Type: Void

Privilege: Private

getAverageAttitude - Computes the average attitude from the attitude packets in the data

quality processing queue.

Arguments:

Return Type: Void

Privilege: Private

getRecordNumber - Determines the record number of the attitude packet.

Arguments:

Return Type: Void

Privilege: Private

refreshPackets - Advances attitude packets in the data quality processing queue by one in

preparation for the next data quality processing sequence.

Arguments:

Return Type: Void

4-97 305-CD-011-001

Privilege: Private

Associations:

The DpPpAttitudePackets class has associations with the following classes:
Class: DpPpAttitudePacket
Class: DpPpAttitudeProcessingSet

4.4.48 DpPpAttitudeProcessingSet Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
Coordinates the data quality processing of the attitude data and building of the attitude
datasets.

Attributes:

attitudePackets - The set of attitude packets in the data quality processing queue.
Data Type: structure
Privilege: Private
Default Value:

currentPacket - The attitude packet currently being processed; processing includes

reformatting, data quality checking and appending to the attitude dataset.

Data Type: structure

Privilege: Private

Default Value:

qaParams - These are the quality assurance parameters that define tolerances for the data

quality check. Quantities outside these tolerances are said to have bad quality.

Data Type: structure

Privilege: Private

Default Value:

qacLists - This is a set of pointers to the QAC tables, a pointer to each QAC list retrieved

from a Level Zero Housekeeping file.

Data Type: int array

Privilege: Private

4-98 305-CD-011-001

Default Value:

Operations:

DpPpAttitudeProcessingSet
Arguments: fileNames:List<string>, startTime:double, endTime:double,

qaParams:DpPpQaParameters, qacList:List<DpPpQacList*>

advanceBoxcarWindow - Advances the boxcar averaging window a single attitude

packet. This window contains the set of attitude packets used in data quality processing

operations.

Arguments:

Return Type: Void

Privilege: Private

checkForGap - Checks for gaps in the attitude timeline.

Arguments:

Return Type: Void

Privilege: Private

checkForSpike - Checks euler angle and rate quality by searching for deviations from the

trend.

Arguments:

Return Type: Void

Privilege: Private

checkQacFlag - This retrieves the QAC flag for the specified attitude packet from the

appropriate QAC table.

Arguments:

Return Type: Void

Privilege: Private

writeCurrentPacket - Appends an attitude packets to the end of the attitude dataset.

Arguments:

Return Type: Void

Privilege: Private

Associations:

The DpPpAttitudeProcessingSet class has associations with the following classes:
Class: DpPpAttitudePacket
Class: DpPpAttitudePackets

4-99 305-CD-011-001

Class: DpPpQacList

Class: DpPpTrmmOnBoardAttitudeData

4.4.49 DpPpEphemRecord Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
This class represents the FDF ephemeris record being processed into ephemeris records.

Attributes:

ephemerisRecords - The set of ephemeris data parsed from a single FDF ephemeris record.
Data Type: structure array
Privilege: Private
Default Value:

Operations:

DpPpEphemRecord
Arguments: ephemRecords:DpPpEphemRecord*

Return Type: Void

Privilege: Private

parseEphemRecord - Extracts up to 50 ephemeris records from an FDF ephemeris record.

Arguments:

Return Type: Void

Privilege: Private

Associations:

The DpPpEphemRecord class has associations with the following classes:
Class: DpPpEphemRecords
Class: DpPpEphemerisRecords
Class: DpPpFdfProcessingSet

4-100 305-CD-011-001

4.4.50 DpPpEphemRecords Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
This class represents the FDF ephemeris records from which the ephemeris dataset is
derived.

Attributes:

ephemRecord - The FDF ephemeris record in 'EPHEM' format.
Data Type: structure
Privilege: Private
Default Value:

Operations:

DpPpEphemRecords -
Arguments: fileIds:List<int>
Return Type: Void
Privilege: Private

getEphemRecord - Brings a single FDF ephemeris format record into core for parsing into

ephemeris records.

Arguments: fileId:int

Return Type: Void

Privilege: Private

Associations:

The DpPpEphemRecords class has associations with the following classes:
Class: DpPpEphemRecord
Class: DpPpFdfProcessingSet

4.4.51 DpPpEphemerisData Class

Parent Class: DpPpPreprocessingData
Private

4-101 305-CD-011-001

Persistent Class:

Purpose and Description:

The ephemeris data is generalized based on its source; the spacecraft ancillary data that is

downlinked from the spacecraft (Consultative Committee for Space Data Systems

(CCSDS)-formatted and part of the L0 Production Data File for TRMM, and assumed to

be CCSDS-formatted and part of the L0 PDS for EOS-AM), and FDF-generated ephemeris

products.

Attributes:

mySpaceCraftInfo - Name and information about the spacecraft.
Data Type: structure
Privilege: Private
Default Value:

Operations:

PrepareAdditionalMetadata - The Preprocessing "Prepare" operation prepares metadata for
the SDP Toolkit. Metadata that are not explicitly available may be derived from other lower
level metadata (e.g., orbit number of O/A data files staged, etc.).
Arguments:
Return Type: Void
Privilege: Private

Associations:

The DpPpEphemerisData class has associations with the following classes:
None

4.4.52 DpPpEphemerisRecord Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
This class represents a single instance of an ephemeris record as retrieved from the FDF
ephemeris record.

4-102 305-CD-011-001

Attributes:

ephemeris - The satellite position and velocity vectors.
Data Type: double array
Privilege: Private
Default Value:

qaFlag - The data quality summary flag for the ephemeris.

Data Type: int

Privilege: Private

Default Value:

time - The timestamp of the ephemeris.

Data Type: double

Privilege: Private

Default Value:

Operations:

DpPpEphemerisRecord
Arguments:

Return Type: Void

Privilege: Private

getEphemeris - Retrieves the ephemeris from the ephemeris record.

Arguments:

Return Type: Void

Privilege: Private

getTime - Retrieves the timestamp from the ephemeris record.

Arguments:

Return Type: Void

Privilege: Private

setGapFlag - Sets the gap flag in the ephemeris data quality summary flag.

Arguments: gapFlag:int

Return Type: Void

Privilege: Private

setSpikeFlag - Sets the spike flag in the ephemeris data quality summary flag.

Arguments: spikeFlag:int

Return Type: Void

Privilege: Private

4-103 305-CD-011-001

writeToHdfFile - Appends an ephemeris record to the ephemeris dataset being written in

HDF format.

Arguments: fileId:int

Return Type: Void

Privilege: Private

writeToNativeFile - Appends an ephemeris record to the ephemeris dataset being written

in the hardware format native to the host machine.

Arguments: fileId:int

Return Type: Void

Privilege: Private

Associations:

The DpPpEphemerisRecord class has associations with the following classes:
Class: DpPpEphemerisRecords
Class: DpPpFdfProcessingSet

4.4.53 DpPpEphemerisRecords Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
This class represents the set of ephemeris records involved in data processing, and is a
subset of ephemeris records parsed from an FDF ephemeris record.

Attributes:

currentEphemerisRecord - The current ephemeris record undergoing data quality
processing.
Data Type: structure
Privilege: Private
Default Value:

firstEphemerisRecord - The first ephemeris record in the data quality processing queue.

Data Type: structure

Privilege: Private

Default Value:

4-104 305-CD-011-001

lastEphemerisRecord - The last ephemeris record in the data quality processing queue.

Data Type: structure

Privilege: Private

Default Value:

previousEphemerisRecord - The ephemeris record preceding the current ephemeris

record in the data quality processing queue.

Data Type: structure

Privilege: Private

Default Value:

Operations:

DpPpEphemerisRecords
Arguments: boxcarWindoxSize:int,index:int

Return Type: Void

Privilege: Private

addEphemerisRecord - Places the initial set of ephemeris records in the data quality

processing queue. This number is determined by the boxcar averaging window size.

Arguments: ephemerisRecords:DpPpEphemerisRecord*

Return Type: Void

Privilege: Private

computeGap - Computes the difference in time between the current and previous

ephemeris records maintained in the data quality processing queue.

Arguments:

Return Type: Void

Privilege: Private

getAverageEphemeris - Produces the average ephemeris from those ephemeris records in

the data quality processing queue.

Arguments:

Return Type: Void

Privilege: Private

refreshEphemerisRecords - Advances ephemeris records in the data quality processing

queue by one in preparation for the next data quality processing sequence.

Arguments:

Return Type: Void

Privilege: Private

4-105 305-CD-011-001

Associations:

The DpPpEphemerisRecords class has associations with the following classes:
Class: DpPpEphemRecord
Class: DpPpEphemerisRecord
Class: DpPpFdfProcessingSet

4.4.54 DpPpFdfData Class

Parent Class: DpPpEphemerisData
Private
Persistent Class:
Purpose and Description:
This class represents all ephemeris data products generated by FDF for both TRMM and
EOS-AM. For TRMM, the definitive orbit data from FDF comes via SDPF.

Attributes:

myDataId - The data ID is a bit configuration assigned to a particular mission. The FDF
assigns the number in the mission unique ICD.
Data Type: char
Privilege: Private
Default Value:

myEndDate - End date of ephemeris file.

Data Type: double

Privilege: Private

Default Value:

mySatelliteId - Identifies the satellite the ephemeris is based on.

Data Type: char

Privilege: Private

Default Value:

mySecondsOfDayForEphemerisEnd - The seconds of day count.

Data Type: double

Privilege: Private

Default Value:

mySecondsOfDayForEphemerisStart - The seconds of day count.

Data Type: double

Privilege: Private

4-106 305-CD-011-001

Default Value:

mySpaceCraftDataModeIndicator - The spacecraft data mode indicator is a mission

dependent designation of the kind of data. The meaning of the data mode indicator for FDF

products will be standardized.

Data Type: char

Privilege: Private

Default Value:

mySpaceCraftInfo - Information about the spacecraft.

Data Type: structure

Privilege: Private

Default Value:

myStartDate - Start date of the ephemeris file.

Data Type: double

Privilege: Private

Default Value:

myTapeId - The tape identifier is always "standard" and is stored as the characters

STANDARD.

Data Type: char

Privilege: Private

Default Value:

myTimeSystemIndicator - The time system (atomic time, universal time coordinated

(UTC)) used in the ephemeris file.

Data Type: char

Privilege: Private

Default Value:

Operations:

Reformat - The SDP Toolkit ephemeris tools require data to be in an uniform format
independent of the source (FDF or spacecraft). The Preprocessing reformat functions
perform the needed operations to convert data to a format acceptable to the SDP Toolkit.
The data can also be converted to HDF-EOS. The most efficient format to handle
ephemeris data is TBD.
Arguments:
Return Type: Void
Privilege: Private

4-107 305-CD-011-001

Associations:

The DpPpFdfData class has associations with the following classes:
None

4.4.55 DpPpFdfProcessingSet Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
Coordinates the reduction of FDF EPHEM format records to ephemeris dataset format and
the data quality processing of the ephemeris.

Attributes:

currentEphemerisRecord - The ephemeris record currently being processed; processing can
include reformatting, data quality checking and appending to the ephemeris dataset.
Data Type: structure
Privilege: Private
Default Value:

ephemRecord - The FDF ephemeris record in 'EPHEM' format.

Data Type: structure

Privilege: Private

Default Value:

ephemerisRecords - The set of ephemeris records in the data quality processing queue.

Data Type: structure array

Privilege: Private

Default Value:

qaParams - These are the quality assurance parameters that define tolerances for the data

quality check. Quantities outside these tolerances are said to have bad data quality.

Data Type: structure

Privilege: Private

Default Value:

4-108 305-CD-011-001

Operations:

DpPpFdfProcessingSet
Arguments: fileNames:List<string>, startTime:List<double>, endTime:List<double>,

qaParams:DpPpQaParameters

advanceBoxcarWindow - Advances the boxcar averaging window a single ephemeris

record. This window contains the set of ephemeris records used in data quality processing

operations.

Arguments:

Return Type: Void

Privilege: Private

checkForGap - Checks for gaps in the ephemeris timeline.

Arguments:

Return Type: Void

Privilege: Private

checkForSpike - Checks satellite position and velocity vector quality by searching for

deviation from the trend.

Arguments:

Return Type: Void

Privilege: Private

writeEphemerisRecord - Appends an ephemeris record to the end of the ephemeris

dataset.

Arguments:

Return Type: Void

Privilege: Private

Associations:

The DpPpFdfProcessingSet class has associations with the following classes:
Class: DpPpEphemRecord
Class: DpPpEphemRecords
Class: DpPpEphemerisRecord
Class: DpPpEphemerisRecords
Class: DpPpFdfTrmmDefinitiveOrbitData

4-109 305-CD-011-001

4.4.56 DpPpFdfTrmmDefinitiveOrbitData Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
This class represents TRMM definitive orbit products from FDF provided by SDPF.

Attributes:

myDataId - The data ID is a bit configuration assigned to a particular mission. The FDF
assigns the number in the mission unique ICD.
Data Type: char array
Privilege: Private
Default Value:

myEndDate - End date of the ephemeris file.

Data Type: double

Privilege: Private

Default Value:

mySatelliteId - Identifies the satellite the ephemeris is based on.

Data Type: char array

Privilege: Private

Default Value:

mySecondsOfDayForEphemerisEnd - The seconds of day count.

Data Type: double

Privilege: Private

Default Value:

mySecondsOfDayForEphemerisStart - The seconds of day count.

Data Type: double

Privilege: Private

Default Value:

mySpaceCraftDataModeIndicator - The spacecraft data mode indicator is a mission

dependent designation of the kind of data. The meaning of the data mode indicator for FDF

products will be standardized.

Data Type: structure

Privilege: Private

Default Value:

4-110 305-CD-011-001

mySpaceCraftInfo - Information about the spacecraft.

Data Type: structure

Privilege: Private

Default Value:

myStartDate - Start date of the ephemeris file.

Data Type: double

Privilege: Private

Default Value:

myTapeId - The tape identifier is always "standard" and is stored as the characters

STANDARD.

Data Type: char array

Privilege: Private

Default Value:

myTimeSystemIndicator - The time system (atomic time, universal time coordinated

(UTC)) used in the ephemeris file.

Data Type: char array

Privilege: Private

Default Value:

Operations:

ExtractAdditionalMetadata - Additional metadata are extracted in addition to metadata
extraction at ingest to support certain services.
Arguments:
Return Type: Void
Privilege: Private

PrepareAdditionalMetadata - The Preprocessing "Prepare" operation prepares metadata

required by the SDP Toolkit. Metadata that are not explicitly available may be derived from

other lower level metadata (e.g., orbit number of L0 data files staged, etc.).

Arguments:

Return Type: Void

Privilege: Private

Reformat - The SDP Toolkit ephemeris tools require data to be in an uniform format

independent of the source (FDF or spacecraft). The Preprocessing reformat functions

perform the needed operations to convert data to a format acceptable to the SDP Toolkit.

The data can also be converted to HDF-EOS. The most efficient format to handle

ephemeris data is TBD.

Arguments:

4-111 305-CD-011-001

Return Type: Void
Privilege: Private

Associations:

The DpPpFdfTrmmDefinitiveOrbitData class has associations with the following classes:
DpPpFdfData (Aggregation)
Class: DpPpFdfProcessingSet

4.4.57 DpPpLevelZeroData Class

Parent Class: DpPpPreprocessingData
Private
Persistent Class:
Purpose and Description:
The L0 products can be generalized based on the institutional source i.e., from TRMM
spacecraft via SDPF and EOS-AM spacecraft via EDOS.

Attributes:

mySpaceCraftInfo - Name and information about the spacecraft.
Data Type: structure
Privilege: Private
Default Value:

Operations:

PrepareAdditionalMetadata - The Preprocessing "Prepare" operation prepares metadata
required by the SDP Toolkit. Metadata that are not explicitly available may be derived from
other lower level metadata (e.g. orbit number of L0 data files staged, etc.).
Arguments:
Return Type: Void
Privilege: Private

4-112 305-CD-011-001

Associations:

The DpPpLevelZeroData class has associations with the following classes:
Class: DpPpSdpfLevelZeroProductionData

4.4.58 DpPpPreProcessing Class

The DpPrPreProcessing class provides an abstract view of the PreProcessing CSC and its
respective role.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The DpPpPreProcessing class has associations with the following classes:
Class: DpPrPgeExecutionManagement PerformsPre-ProcessingonStagedDataasaPGE

4.4.59 DpPpPreprocessingData Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
This is a superclass that is a generalization of all ephemeris, L0 and external ancillary data.

Attributes:

myProductId - Name of the product for identification.
Data Type: char
Privilege: Private

4-113 305-CD-011-001

Default Value:

myProject - This identifies the name of the project.

Data Type: char

Privilege: Private

Default Value:

mySourceId - The source ID of the file.

Data Type: char

Privilege: Private

Default Value:

Operations:

ExtractAdditionalMetadata - Additional metadata are extracted in addition to metadata
extraction at ingest to support certain services.
Arguments:
Return Type: Void
Privilege: Private

Associations:

The DpPpPreprocessingData class has associations with the following classes:
None

4.4.60 DpPpQaParameters Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
This class represents the set of data quality processing parameters.

Attributes:

boxcarWindowSize - The number of ephemeris point to be included in the boxcar averaging
window used to detect spikes in the ephemeris data.
Data Type: int
Privilege: Private

4-114 305-CD-011-001

Default Value:

gapThreshold - The maximum duration of time over which the lack of ephemeris data can

be tolerated.

Data Type: double

Privilege: Private

Default Value:

spikeThreshold - The maximum tolerable deviation of an ephemeris point from the normal

trend.

Data Type: float

Privilege: Private

Default Value:

Operations:

None

Associations:

The DpPpQaParameters class has associations with the following classes:
None

4.4.61 DpPpQacList Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
This class represents the QAC list found in the Level Zero housekeeping dataset.

Attributes:

qacTable - This table contains the QAC flags referenced by sequential record number as
ordered in the Level Zero Housekeeping dataset.
Data Type: int array
Privilege: Private
Default Value:

4-115 305-CD-011-001

Operations:

DpPpQacList -
Arguments: fileIds:List<int>
Return Type: Void
Privilege: Private

getQacFlag - This lookups the QAC flag in the qacTable given the attitude packet record

number.

Arguments: recordNumber:int

Return Type: Void

Privilege: Private

Associations:

The DpPpQacList class has associations with the following classes:
Class: DpPpAttitudeProcessingSet

4.4.62 DpPpSdpfLevelZeroDatasetFile Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
The SDPF Data Set Files are elements of a data product transferred in file format to the
consumer. They are based on 24-hour data sets (6 hours in the case of Precipitation Radar
APID) containing data generated by the TRMM spacecraft. A Data Set File consists of a
Data Set File Header, a unique data set, and quality and accounting information for errored
source data units. The 24-hour data are sorted and merged. The data packets received on
virtual channels VC0, VC1 and VC11 (all housekeeping APIDs) will be contained within
a single file, ordered by time only with redundant data removed, followed by a Quality and
Accounting Capsule (QAC) list. Each QAC will contain information for a corresponding
packet in the data set that was in error. Data packets received on all other VCs will be sorted
by APID with one APID per file. The packets are sorted into forward source sequence count
order, with redundant data removed, followed by the QAC list. Again, each QAC will
contain information for a corresponding packet in the data set that was in error. There will
be a Missing Data Units List (MDUL) at the end of each file. One Detached SFDU Header
may reference multiple data set files.

4-116 305-CD-011-001

Attributes:

myBeginningDateTime - This field indicates the data start time for this file.
Data Type: double
Privilege: Private
Default Value:

myDataType - This parameter identifies the data type of the data file (e.g., LZ means Level

Zero, OR means orbit, AT means attitude, etc.).

Data Type: char

Privilege: Private

Default Value:

myDataVersion - Indicates the data version.

Data Type: char

Privilege: Private

Default Value:

myDescriptor - This parameter identifies the name of the instrument or sensor that

collected the data, or further identified the type of data (e.g., SCR means spacecraft

housekeeping, etc.).

Data Type: char

Privilege: Private

Default Value:

myDiscipline - Indicates the name of the discipline (e.g., Space Physics, etc.).

Data Type: char

Privilege: Private

Default Value:

myEndObjectFileGroup - This statement terminates the aggregation unit describing the

attributes of a group of data files within the product.

Data Type: char

Privilege: Private

Default Value:

myEndObjectFileSpec - This statement terminates the aggregation unit describing an

individual file within a data product.

Data Type: char

Privilege: Private

Default Value:

myEndingDateTime - This field indicates the data stop time for the file.

Data Type: double

4-117 305-CD-011-001

Privilege: Private

Default Value:

myFileId - System file name for the specific data file described within the File_spec object.

Data Type: int

Privilege: Private

Default Value:

myGenerationDate - The time indicates the date and time of the generation of the data by

the source system.

Data Type: double

Privilege: Private

Default Value:

myMission - This parameter indicates the mission or investigation which includes the

sensors producing the data.

Data Type: char

Privilege: Private

Default Value:

myMissionParameters - Contains mission specific parameters.

Data Type: structure

Privilege: Private

Default Value:

myObjectFileGroup - Opens an aggregation of file group parameters; the attributes which

characterize a set of data files within the product data.

Data Type: char

Privilege: Private

Default Value:

myObjectFileSpec - This statement opens an aggregation of file specific parameters: the

attributes which characterize a particular data file within a file group. Each file group may

contain multiple file specs, one for each specific data file.

Data Type: char

Privilege: Private

Default Value:

myProductInstance - Serial number of this instance of the SDPF to uniquely identify the

data product.

Data Type: int

Privilege: Private

Default Value:

4-118 305-CD-011-001

myProductName - Name of the SDPF product which defines the collection of files

comprising the product.

Data Type: char

Privilege: Private

Default Value:

myProject - This name identifies the name of the project.

Data Type: char

Privilege: Private

Default Value:

myRecordSize - This parameter specifies the record size in bytes for this file.

Data Type: int

Privilege: Private

Default Value:

mySdpfSystem - ASCII string specifying the name of the SDPF mission serviced by the

mission.

Data Type: char

Privilege: Private

Default Value:

mySequenceNumber - Sequence number created by SDPF to uniquely identify the data

product.

Data Type: int

Privilege: Private

Default Value:

myTotalFileCount - This parameter indicates the total number of files for this product.

Data Type: int

Privilege: Private

Default Value:

Operations:

ExtractAdditionalMetadata - Additional metadata are extracted in addition to metadata
extraction at ingest to support certain services.
Arguments:
Return Type: Void
Privilege: Private

PrepareAdditionalMetadata - The Preprocessing "Prepare" operation prepares metadata
required by the SDP Toolkit. Metadata that are not explicitly available may be derived from

4-119 305-CD-011-001

other lower level metadata (e.g. orbit number of L0 data files staged, number of L0 data

files staged, pairing Standard Formatted Data Unit (SFDU) and Data Set File for TRMM

processing, etc.).

Arguments:

Return Type: Void

Privilege: Private

Associations:

The DpPpSdpfLevelZeroDatasetFile class has associations with the following classes:
Class: DpPpSdpfLevelZeroSfduFile CorrespondsTo - Each SDPF generated SFDU file
corresponds to a Data Set File.
DpPpSdpfLevelZeroProductionData (Aggregation)

4.4.63 DpPpSdpfLevelZeroProductionData Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
The L0 data from SDPF for CERES and LIS instruments for the TRMM spacecraft is a
collection of Consultative Committee for Space Data Systems (CCSDS)-formatted
telemetry packets. It will consist of L0 header and quality information parameters. The
telemetry data packets contain instrument science data, spacecraft ancillary data and
housekeeping or engineering data. The SDPF L0 Production Data Files correspond to
separate Application Process Identifiers (APIDs). The SDPF L0 structure can be found in
SDPF-TRMM Consumer ICD. This SDPF-generated production data is based on 24-hour
data sets (6 hour data set for Precipitation Radar APID). The Production Data consists of
an optional Standard Formatted Data Unit (SFDU) and Data Set File.

Attributes:

myBeginningDateTime - This field indicates the data start time for this file.
Data Type: double
Privilege: Private
Default Value:

myDataType - This parameter identifies the data type of the data file (e.g., LZ means L0,

OR means orbit, AT means attitude, etc.).

Data Type: char

4-120 305-CD-011-001

Privilege: Private

Default Value:

myDataVersion - Indicates the data version.

Data Type: char

Privilege: Private

Default Value:

myDescriptor - This parameter identifies the name of the instrument or sensor that

collected the data, or further identifies the type of data (e.g., SCR means spacecraft

housekeeping, etc.).

Data Type: char

Privilege: Private

Default Value:

myDiscipline - Indicates the name of the discipline (e.g., Space Physics, etc.)

Data Type: char

Privilege: Private

Default Value:

myDpcio - Data products content identifier object. To describe a "detached SFDU header"

file, this DPCIO applies to a file group, and provides labels for the files within that file

group.

Data Type: char

Privilege: Private

Default Value:

myEndObjectDpcio - This statement terminates the aggregation unit describing the

"detached SFDU header."

Data Type: char

Privilege: Private

Default Value:

myEndObjectFileGroup - This statement terminates the aggregation unit describing the

attributes of a group of data files within the product.

Data Type: char

Privilege: Private

Default Value:

myEndObjectFileSpec - This statement terminates the aggregation unit describing an

individual file within a data product.

Data Type: char

Privilege: Private

Default Value:

4-121 305-CD-011-001

myEndingDateTime - This field indicates the data stop time for this file.

Data Type: double

Privilege: Private

Default Value:

myFileId - System file name for the specific data file described within the File_spec object.

Data Type: char

Privilege: Private

Default Value:

myFileIdDpcio - This parameter when used with the DP_CIO indicates the system file

name for the detached SFDU headers.

Data Type: char

Privilege: Private

Default Value:

myFileSize - This parameter when used with DP_CIO indicates the length in bytes of the

DP_CIO.

Data Type: int

Privilege: Private

Default Value:

myGenerationDate - This time indicates the date and time of the generation of the data by

the source system.

Data Type: double

Privilege: Private

Default Value:

myMission - This parameter indicates the mission or investigation which includes the

sensors producing the data.

Data Type: char

Privilege: Private

Default Value:

myMissionParameters - Contains mission specific parameters.

Data Type: structure

Privilege: Private

Default Value:

myObjectFileGroup - Opens an aggregation of file group parameters; the attributes which

characterize a set of data files within the product data.

Data Type: char

Privilege: Private

Default Value:

4-122 305-CD-011-001

myObjectFileSpec - This statement opens an aggregation of file specific parameters: the

attributes which characterize a particular data file within a file group. Each file group may

contain multiple file specs, one for each specific data file.

Data Type: char

Privilege: Private

Default Value:

myProductInstance - Serial number of this instance of the SDPF to uniquely identify the

data product.

Data Type: int

Privilege: Private

Default Value:

myProductName - Name of the SDPF product which defines the collection of files

comprising the product.

Data Type: char

Privilege: Private

Default Value:

myProject - This name identifies the name of the project.

Data Type: char

Privilege: Private

Default Value:

myRecordSize - This parameter specifies the record size in bytes for this file.

Data Type: int

Privilege: Private

Default Value:

mySdpfSystem - ASCII string specifying the name of the SDPF mission service by the

mission.

Data Type: char

Privilege: Private

Default Value:

mySequenceNumber - Sequence number created by SDPF to uniquely identify the data

product.

Data Type: int

Privilege: Private

Default Value:

myTotalFileCount - This parameter indicates the total number of files for this product.

Data Type: int

Privilege: Private

Default Value:

4-123 305-CD-011-001

Operations:

None

Associations:

The DpPpSdpfLevelZeroProductionData class has associations with the following classes:
Class: DpPpLevelZeroData

4.4.64 DpPpSdpfLevelZeroSfduFile Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
The SFDU (optional) consists of standard labels that uniquely identify and link a Data Set
File to its description. The SFDU is referred to as Detached SFDU Header. There is one
SFDU Header for each SDPF L0 product. The Detached SFDU Header consists of an
SFDU Exchange Data Unit (EDU) Label, a Contents Identifier Object (CIO), and a
Reference Identifier Object. One Detached SFDU Header may represent multiple Data Set
Files.

Attributes:

myBeginningDateTime - This field indicates the data start time for this file.
Data Type: double
Privilege: Private
Default Value:

myDataType - This parameter identifies the data type of the data file (e.g., LZ means Level

Zero, OR means orbit, AT means attitude, etc.).

Data Type: char

Privilege: Private

Default Value:

myDataVersion - Indicates the data version.

Data Type: char

Privilege: Private

Default Value:

4-124 305-CD-011-001

myDescriptor - This parameter identifies the name of the instrument or sensor that

collected the data, or further identifies the type of data (e.g., SCR means spacecraft

housekeeping, etc.).

Data Type: char

Privilege: Private

Default Value:

myDiscipline - Indicates the name of the discipline (e.g., Space Physics, etc.).

Data Type: char

Privilege: Private

Default Value:

myDpcio - Data products content identifier object. To describe a "detached SFDU header"

file, the DPCIO applies to a file group, and provides labels for the files within that file

group.

Data Type: char

Privilege: Private

Default Value:

myEndObjectDpcio - This statement terminates the aggregation unit describing the

detached SFDU header.

Data Type: char

Privilege: Private

Default Value:

myEndObjectFileGroup - This statement terminates the aggregation unit describing the

attributes of a group of data files within the product.

Data Type: char

Privilege: Private

Default Value:

myEndObjectFileSpec - This statement terminates the aggregation unit describing an

individual file within a data product.

Data Type: char

Privilege: Private

Default Value:

myEndingDateTime - This field indicates the data stop time for this file.

Data Type: double

Privilege: Private

Default Value:

myFileId - System file name for the specific data file described within the File_spec object.

Data Type: char

Privilege: Private

Default Value:

4-125 305-CD-011-001

myFileIdDpcio - This parameter when used with the DP_CIO indicates the system file

name for the detached SFDU headers.

Data Type: char

Privilege: Private

Default Value:

myFileSize - This parameter when used with DP_CIO indicates the length in bytes of the

DP_CIO.

Data Type: int

Privilege: Private

Default Value:

myGenerationDate - This time indicates the date and time of the generation of the data by

the source system.

Data Type: double

Privilege: Private

Default Value:

myMission - This parameter indicates the mission or investigation which includes the

sensors producing the data.

Data Type: char

Privilege: Private

Default Value:

myMissionParameters - Contains mission specific parameters.

Data Type: structure

Privilege: Private

Default Value:

myObjectFileGroup - Opens an aggregation of file group parameters; the attributes which

characterize a set of data files within the product data.

Data Type: char

Privilege: Private

Default Value:

myObjectFileSpec - This statement opens an aggregation of file specific parameters: the

attributes which characterize a particular data file within a file group. Each file group may

contain multiple file specs, one for each specific data file.

Data Type: char

Privilege: Private

Default Value:

myProductInstance - Serial number of this instance of the SDPF to uniquely identify the

data product.

Data Type: int

4-126 305-CD-011-001

Privilege: Private

Default Value:

myProductName - Name of the SDPF product which defines the collection of files

comprising the product.

Data Type: char

Privilege: Private

Default Value:

myProject - This name identifies the name of the project.

Data Type: char

Privilege: Private

Default Value:

myRecordSize - This parameter specifies the record size in bytes for this file.

Data Type: int

Privilege: Private

Default Value:

mySdpfSystem - ASCII string specifying the name of the SDPF mission service by the

mission.

Data Type: char

Privilege: Private

Default Value:

mySequenceNumber - Sequence number created by SDPF to uniquely identify the data

product.

Data Type: int

Privilege: Private

Default Value:

myTotalFileCount - This parameter indicates the total number of files for this product.

Data Type: int

Privilege: Private

Default Value:

Operations:

ExtractAdditionalMetadata - Additional metadata are extracted in addition to metadata
extraction at ingest to support certain services.
Arguments:
Return Type: Void
Privilege: Private

4-127 305-CD-011-001

PrepareAdditionalMetadata - The Preprocessing "Prepare" operation prepares metadata

required by the SDP Toolkit. Metadata that are not explicitly available may be derived from

other lower level metadata (e.g. orbit number of L0 data files staged, number of L0 data

files staged, pairing Standard Formatted Data Unit (SFDU) and Data Set File for TRMM

processing, etc.).

Arguments:

Return Type: Void

Privilege: Private

Associations:

The DpPpSdpfLevelZeroSfduFile class has associations with the following classes:
Class: DpPpSdpfLevelZeroDatasetFile CorrespondsTo - Each SDPF generated SFDU file
corresponds to a Data Set File.
DpPpSdpfLevelZeroProductionData (Aggregation)

4.4.65 DpPpTrmmOnBoardAttitudeData Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
This class represents attitude data within the TRMM spacecraft ancillary data contained in
the SDPF-generated L0 data set.

Attributes:

myBeginningDateTime - See DpPpTrmmScAncillaryData class for description of all
attributes.
Data Type: double
Privilege: Private
Default Value:

myDataType
Data Type: char
Privilege: Private
Default Value:

myDescriptor
Data Type: char

4-128 305-CD-011-001

Privilege: Private
Default Value:

myDiscipline
Data Type: char
Privilege: Private
Default Value:

myEndingDateTime
Data Type: double
Privilege: Private
Default Value:

myFieldId -
Data Type: char
Privilege: Private
Default Value:

myFileId -
Data Type: char
Privilege: Private
Default Value:

myFileSize
Data Type: int
Privilege: Private
Default Value:

myGenerationDate
Data Type: double
Privilege: Private
Default Value:

myInstrumentName -
Data Type: char
Privilege: Private
Default Value:

myMission
Data Type: char
Privilege: Private
Default Value:

myMissionParameters
Data Type: structure

4-129 305-CD-011-001

Privilege: Private
Default Value:

myProductInstance
Data Type: char
Privilege: Private
Default Value:

myProductName
Data Type: char
Privilege: Private
Default Value:

myProject
Data Type: char
Privilege: Private
Default Value:

myRecordSize
Data Type: int
Privilege: Private
Default Value:

mySequenceNumber
Data Type: int
Privilege: Private
Default Value:

mySpaceCraftInfo
Data Type: structure
Privilege: Private
Default Value:

Operations:

ExtractAdditionalMetadata - Additional metadata are extracted in addition to metadata
extraction at ingest to support certain services.
Arguments:
Return Type: Void
Privilege: Private

PrepareAdditionalMetadata - The Preprocessing "Prepare" operation prepares metadata
for the SDP Toolkit. Metadata that are not explicitly available may be derived from other

4-130 305-CD-011-001

lower level metadata (e.g. orbit number of O/A data files staged, etc.).

Arguments:

Return Type: Void

Privilege: Private

QaCheck - The onboard orbit data are quality checked based on FDF provided

specifications. Notifications to Ingest CI is made to get repaired orbit data if onboard orbit

data do not satisfy FDF specifications.

Arguments:

Return Type: Void

Privilege: Private

Associations:

The DpPpTrmmOnBoardAttitudeData class has associations with the following classes:
DpPpTrmmScOaData (Aggregation)
Class: DpPpAttitudeProcessingSet

4.4.66 DpPpTrmmScAncillaryData Class

Parent Class: Not Applicable
Private
Persistent Class:
Purpose and Description:
This class represents data within the TRMM spacecraft ancillary packet contained in the
SDPF generated L0 data.

Attributes:

myBeginningDateTime - This field indicates the data start time for this file.
Data Type: double
Privilege: Private
Default Value:

myDataType - This parameter identifies the data type of the data file (e.g., LZ means L0,

OR means orbit, AT means attitude, etc.)

Data Type: char

Privilege: Private

Default Value:

4-131 305-CD-011-001

myDescriptor - This parameter identifies the name of the instrument or sensor that

collected the data, or further identifies the type of data (e.g., SCR means Spacecraft

Housekeeping, etc.)

Data Type: char

Privilege: Private

Default Value:

myDiscipline - Indicates the name of the discipline (e.g., Space Physics, etc.)

Data Type: char

Privilege: Private

Default Value:

myEndingDateTime - This field indicates the data end time for this file.

Data Type: double

Privilege: Private

Default Value:

myFieldId - This parameter when used with DP_CIO indicates the system file name for

the detached SFDU headers.

Data Type: char

Privilege: Private

Default Value:

myFileId - System file name for the specific data file described within the file specification

object.

Data Type: char

Privilege: Private

Default Value:

myFileSize - This parameter when used with DP_CIO indicates the length in bytes of the

DP_CIO.

Data Type: int

Privilege: Private

Default Value:

myGenerationDate - This time indicates the date and time of the generation of the data by

the source system.

Data Type: double

Privilege: Private

Default Value:

myMission - This parameter indicates the mission or investigation which includes the

sensors producing the data.

Data Type: char

Privilege: Private

4-132 305-CD-011-001

Default Value:

myMissionParameters - Contains mission specific parameters.

Data Type: structure

Privilege: Private

Default Value:

myProductInstance - Serial number of this instance of the SDPF product.

Data Type: char

Privilege: Private

Default Value:

myProductName - Name of the SDPF product which defines the collection of files

comprising the product.

Data Type: char

Privilege: Private

Default Value:

myProject - This name identifies the name of the project.

Data Type: char

Privilege: Private

Default Value:

myRecordSize - This parameter specifies the record size in bytes for this file.

Data Type: int

Privilege: Private

Default Value:

mySequenceNumber - Sequence number created by SDPF to uniquely identify the data

product.

Data Type: int

Privilege: Private

Default Value:

Operations:

None

Associations:

The DpPpTrmmScAncillaryData class has associations with the following classes:
DpPpSdpfLevelZeroDatasetFile (Aggregation)

4-133 305-CD-011-001

4.4.67 DpPpTrmmScOaData Class

Parent Class: DpPpEphemerisData
Private
Persistent Class:
Purpose and Description:
This class represents orbit/attitude data within the TRMM spacecraft ancillary packet
contained in the SDPF generated Level zero data.

Attributes:

myBeginningDateTime - This filed indicates the data start time for this file.
Data Type: double
Privilege: Private
Default Value:

myDataType - This parameter identifies the data type of the data file (e.g., LZ means L0,

OR means orbit, AT means attitude, etc.).

Data Type: char

Privilege: Private

Default Value:

myDescriptor - This parameter identifies the name of the instrument or sensor that

collected the data, or further identifies the type of data (e.g., SCR Spacecraft,

Housekeeping, etc.).

Data Type: char

Privilege: Private

Default Value:

myDiscipline - Indicates the name of the discipline (e.g., Space Physics, etc.).

Data Type: char

Privilege: Private

Default Value:

myEndingDateTime - This field indicates the data end time for this file.

Data Type: double

Privilege: Private

Default Value:

myFieldId - This parameter when used with DP_CIO indicates the system file name for

the detached SFDU headers.

Data Type: char

Privilege: Private

Default Value:

4-134 305-CD-011-001

myFileId - System file name for the specific data file described within the file specification

object.

Data Type: char

Privilege: Private

Default Value:

myFileSize - This parameter when used with DP_CIO indicates the length in bytes of the

DP_CIO.

Data Type: int

Privilege: Private

Default Value:

myGenerationDate - This time indicates the date and time of the generation of the data by

the source system.

Data Type: double

Privilege: Private

Default Value:

myMission - This parameter indicates the mission or investigation which includes the

sensors producing the data.

Data Type: char

Privilege: Private

Default Value:

myMissionParameters - Contains mission specific parameters.

Data Type: structure

Privilege: Private

Default Value:

myProductInstance - Serial number of this instance of the SDPF product.

Data Type: char

Privilege: Private

Default Value:

myProductName - Name of the SDPF product which defines the collection of files

comprising the product.

Data Type: char

Privilege: Private

Default Value:

myProject - This name identifies the name of the project.

Data Type: char

Privilege: Private

Default Value:

4-135 305-CD-011-001

myRecordSize - This parameter specifies the record size in bytes for this file.

Data Type: int

Privilege: Private

Default Value:

mySequenceNumber - Sequence number created by SDPF to uniquely identify the data

product.

Data Type: int

Privilege: Private

Default Value:

Operations:

All Operations inherited from parent class

Associations:

The DpPpTrmmScOaData class has associations with the following classes:
DpPpTrmmScAncillaryData (Aggregation)

4.5 CSCI Dynamic Model
As part of the PDPS detailed design process, the group of existing scenarios which were developed
for the Preliminary Design Specification have been updated. As a result of the changes in the
boundaries of Planning and Processing and the selection of AutoSys and AutoXpert products, the
scenarios have undergone a great deal of modification. The basic scenario for initiation of a job as
performed by AutoSys is presented in Section 4.1.4 and accompanying Figures 4.1-1 and 4.1-2.
This information should be referenced as these other scenarios are reviewed. Before the scenarios,
an introduction section has been provided which provide a list of assumptions used in developing
the scenarios. These assumptions explain the interfaces and the given state of the ECS system and
subsystems.

The Processing CSCI Dynamic Model is represented by a group of scenarios and event traces
which have been developed to further refine the role, responsibilities and activities of the Process­
ing CSCI during SDPS operations. The scenarios provide an abstract section to describe the system
context of the processing, and a detailed scenario description of the required Processing CSCI ac­
tivities. Event Traces have been developed for each scenario to show the interactions between the
objects involved in the scenario. There may be more than one event trace for each scenario depend­
ing on the complexity of processing represented in the scenario. Because of the COTS-intensive
aspects of the Processing CSCI design, the scenarios provide descriptions of events which occur in
the custom code which is being developed to support the COTS' products. In the scenario, a brief
description of the COTS activities is provided, but within the event traces, the COTS is treated as
a black box. Each scenario provides a listing of the classes from the object model referenced in the
scenario. The scenarios have been grouped around significant Processing CSCI functional areas.

4-136 305-CD-011-001

These groupings are as follows:

a.	 Job Management Scenarios—These scenarios are presented to explain certain concepts to
understand the integrated view between AutoSys and the Processing CSCI custom
components. A scenario is provided which describes how information provided in a Data
Processing Request is used to create the jobs required to execute a PGE. Also provided are
scenarios which described the Processing CSCI activities involved with the input of a daily
schedule of Data Processing Requests from Planning, providing status information to
Planning, activating jobs for execution, updating job information, and canceling of jobs.

b.	 Data Management Scenarios—These scenarios describe the Processing CSCI activities
which occur to support the following activities:

1. Staging and destaging of data from and to the Data Server.

2. Retaining of data on Science Production Hardware to support further production

3. Deletion of data not required to support further production.

4.	 Movement of data from one production resource to another to support further
production.

5. Support for pre-processing of data for production.

c.	 PGE Execution Management Scenarios—These scenarios describe the activities which
occur to initiate and manage the execution of a PGE.

d.	 Resource Management Scenarios - These scenarios describe activities related to the
management of Processing CSCI hardware resources.

e. 	 Quality Assurance Scenarios - These scenarios present high-level view of the activities
which will support the DAAC manual quality assurance activities.

4.5.1 Scenario Assumptions

The following information details ECS system assumptions which should be followed while re­
viewing these scenarios. These assumptions define information on Processing CSCI interfaces as
well as subsystem and system state information. Unless specified otherwise, this information re­
mains consistent for each scenario. For the event traces, the Job Scheduling COTS is represented
as a class. This is an abstract class and is used to represent the stimuli which result in Processing
CSCI activities.

4.5.1.1 Interfaces

Table 4.5-1 shows the service of processing CSCI interfaces with other subsystems.

4-137 305-CD-011-001

Table 4.5-1. Processing CSCI Interfaces With Other Subsystems

Subsystem Service

CSS Supplies the communication mechanisms used between ECS Applications. These
mechanisms are based on OODCE services. Processing CSCI uses these mecha­
nisms to communicate with MSS, Data Server, and Ingest.

MSS 1) Provides services to startup and shutdown ECS applications. MSS would initiate ac­
tivities to startup and shutdown the PDPS Database, AutoSys' Database, AutoSys'
Event Processor, and other required components needed at startup. Also, in the event
of a shutdown, MSS would shutdown the components in the required order.
2) Provides services to log system events, i.e. Fault and exception handling information,
in order to notify all impacted parties.

Data Server Provides services to stage (Acquire) and destage (Insert) data from Processing hard­
ware. Also, the Q/A Monitor Operations position requires subscription services of the
Data Server.

Ingest Same as Data Server. Ingest is a specialized Data Server

Planning Provides Data Processing Request information to Processing. The interface mecha­
nisms occur through AutoSys provided command-line interfaces and APIs and through
the PDPS Database.

4.5.1.2 System and Subsystem States

During these scenarios, all ECS application components are considered to be operating in a steady
state fashion, unless specified otherwise. Some of the scenarios do deal with failure situations and
the results of these failures.

4.5.2 Job Management Scenarios

These scenarios describe the activities associated with managing the AutoSys job schedule. The
activities discussed include creation of the job schedule, cancellation of a job, modification of a job
or providing of status of a job. Also, the scenarios explain the interface which exists between the
Planning CSCI and the COTS (AutoSys) component of the Processing CSCI. Each of these activ­
ities is initiated by a Planning CSCI component. A brief overview of Planning CSCI activities fol­
lows.

The Production Planner (Operations Person) is responsible for the creation of candidate production
plans. These plans provide predicted views of science data production based on certain criteria,
such as resource availability schedules and different standard production priorities. Once the Pro­
duction Planner decides on the best candidate plan, this candidate plan is activated. (See the Plan­
ning Subsystem Detailed Design Specification for more information on these Planning activities).
According to current DAAC Operations' strategies, a section of this active plan, known as the daily
job schedule, will be fed into the AutoSys Database at the beginning of the day. These jobs are the
jobs which will be processed for a particular day. Since the Preliminary Design Specification, an
important change has taken place in the interface between the Planning and Processing CSCIs. This
change involves when a Data Processing Request is made visible to the Processing CSCI. At PDR,
the approach amounted to not providing a Data Processing Request to the Processing CSCI until
all the data dependencies were fulfilled for that Data Processing Request. Because of the selection
of AutoSys and its capabilities to manage job dependencies, this approach has been changed to

4-138 305-CD-011-001

consist of all Data Processing Requests being fed into AutoSys at the beginning of the day. The
Data Processing Requests which do not have all data dependencies fulfilled would be kept in a
"HELD" state until the dependencies are fulfilled. Upon the meeting of all data dependencies, the
Planning CSCI would release the job. To limit the reach of the AutoSys specific interfaces, a layer
of software, sometimes referred to as Glue Software, has been developed to promote the integration
of AutoSys with ECS custom software applications. This allows Planning and Processing CSCI
component data structures and operation primitives to be associated with AutoSys specific primi­
tives with limited impact to the overall implementation of these components. In the Processing CS-
CI, this Glue Software is represented by the classes which are part of the Job Management
component. One of these classes, DpPrCotsManager, encapsulates the AutoSys specific command­
line interfaces and APIs used to communicate with AutoSys.

4.5.2.1 Create Data Processing Request (DPR) or Ground Event Job

4.5.2.1.1 Abstract

Prior to the activation of a plan, a candidate plan is created and deemed acceptable to be used as
the predicted science data production plan. The Production Planner (Operations Person) activates
the Production Planning Workbench. In a previous session with the workbench, the Production
Planner had created a candidate plan which will now be activated. By choosing the Activate Plan
command, the Production Planner initiates the Activate Plan operation. All Data Processing Re­
quests and Ground Events which reside in the part of the active plan for the chosen daily schedule
time frame will be added to the AutoSys job schedule for further processing.

A Ground Event Job is the method used by Planning to make resources unavailable to support pro­
duction. A Ground Event is input by the Resource Planner who uses Planning CSCI software to
make a Resource Availability Schedule. This schedule is made available to the Planning CSCI and
is used as an input to the Production Plan. To schedule a resource for maintenance, system test, or
some other defined ground event, a ground event job is input into the AutoSys Job Schedule.

For a given Data Processing Request or Ground Event, an AutoSys Job Box, which contains a col­
lection of related jobs required to successfully process the Data Processing Request/Ground Event,
is created. These jobs will be added to the AutoSys job stream. Job definition and dependency in­
formation, such as priority, start times, required resources and the execution status of other jobs,
will be used to determine when a job should begin processing.

The series of steps in the following scenario description are repeated for each Data Processing Re­
quest/Ground Event which is scheduled for processing on a particular day.

4.5.2.1.2 Stimulus

Production Planner initiates daily job schedule process. The operations CreateDPRjob and Create-
GEvnt associated with the class DpPrScheduler are used to communicate with the AutoSys com­
ponents. The DpPrScheduler and associated classes encapsulate the specific command-line
interfaces and APIs used to communicate with AutoSys.

4.5.2.1.3 Desired Response

A series of jobs required to execute a PGE are created. These jobs perform the following activities:

a. Data Staging (DPR only)

4-139 305-CD-011-001

b. Resource Allocation

c. Execution of the PGE (DPR only)

d. Data Destaging (DPR only)

f. Resource Deallocation

Log Information to record the event will be collected and stored for review at a later time. These
jobs will be added to the AutoSys Database and will become part of the AutoSys job stream.

4.5.2.1.4 Participating Classes from the Object Model

a. PlDpr

b. DpPrScheduler

c. DpPrCotsManager

d. Cots

e. DpPrDataManager (DPR only)

f. PlPge (DPR only)

g. PlGroundEvent (Ground Event only)

4.5.2.1.5 Description

1)	 When the CreateDPRJob operation is initiated on the DpPrScheduler, the following steps
will occur:

a)	 The DpPrScheduler will retrieve information as needed from the PlDpr and
associated PlPge to perform the following steps for each DPR:

(1) Create a series of jobs in AutoSys' job schedule (part of AutoSys' database
schema) which parallel the requested DPR processing; these jobs are
organized into a "job box" which represents the DPR at a higher level.

(2) Create dependency information in AutoSys

(3)	 Create other pre and post processing events or jobs which will initiate
additional Processing software, such as Data Management, PGE Execution
Management, or Resource Management CSC operations.

b)	 The jobs added are considered "on hold" until Planning, through the Job Scheduler
class, performs a release job operation. Planning will immediately release the job
(see Release Data Processing Request (DPR) Job scenario).

c) END OF SCENARIO.

2)	 When the CreateGEvnt operation is initiated on the DpPrScheduler, the following steps
will occur:

a)	 The DpPrScheduler will retrieve information as needed from the PlGroundEvent to
perform the following steps:

(1)	 Create a series of jobs in AutoSys' job schedule (part of AutoSys' database
schema) which parallel the requested Ground Event processing; these jobs

4-140 305-CD-011-001

are organized into a "job box" which represents the Ground Event at a higher
level.

b)	 The Job Box is scheduled to start based on the time information from the Ground
Event.

c) END OF SCENARIO.

4.5.2.1.6 Event Traces

4.5.2.2 Release Data Processing Request (DPR) Job

4.5.2.2.1 Abstract

When a Data Processing Request is fed into AutoSys through the CreateDPRJob operation on the
DpPrScheduler class, the resulting job box is set in the "HELD" state in the AutoSys Database.
This results in the jobs not being processed, or managed, until the job box (referred to herein as the
"DPR job") is released. The Planning CSCI will release a DPR job when all the data subscriptions
for that DPR are fulfilled. Therefore, for all Data Processing Requests which have no outstanding
data subscriptions, the DPR jobs will be initiated as "HELD" and then immediately released. Other
DPR jobs which have outstanding data subscriptions will reside in the "HELD" state until Planning
has been notified that the data is available from the Science Data Server.

When the Planning CSCI has determined that no outstanding data subscriptions exist for a DPR
job, that DPR job is released by using the ReleaseDPRJob operation in the DpPrScheduler class.
The result of this operation will be that the DPR job and the individual jobs within it become active
in the AutoSys job stream, and will be processed accordingly. The Scheduling COTS product ex­
amines the released job to see if it has any dependencies on previous jobs; if so, and those depen­
dencies have not been satisfied, the current DPR is prevented from running until they are. If those
dependencies have been met, the jobs in the job box start executing. (See Figure 4.5-1 and Figure
4.5-2.)

The series of steps in the following scenario description are repeated for each Data Processing Re­
quest which is scheduled for processing for on a particular day.

4.5.2.2.2 Stimulus

Upon receipt of the last outstanding Subscription Notification for a Data Processing Request, the
Planning CSCI will use the ReleaseDPRJob operation in the DpPrScheduler class. The DpPr-
Scheduler and related classes encapsulate the AutoSys specific command-line interfaces and APIs
to used to communicate with AutoSys.

4-141 305-CD-011-001

PlDpr DpPrScheduler DpPrCotsManager Cots DpPrDataManager PlPge

Return Pge

Success

CreateDprJob(Dpr)

Initialize Data(DPR)

Success

GetMyPge

Get User Parameter, Time Information, Pge Name, Command, DprBackDeps, Machine

AddJobBox(PgeDeps:DprBackDeps,
Times:TimeInfo,Name:PgeName)

Add JobBox(status=HELD)

OK

AddJob(ToBox:PgeName,
Cmd: ExecutionMgr.Allocate,

Machine: machine)

Add Job

OK

AddJob(ToBox: PgeName,
Cmd:DataMgr.MakeDataLocal,

Machine: machine)
Add Job

OK

AddJob(ToBox: PgeName,
Cmd: ExecutingMgr.execute,

Machine: machine
Parms: User Parameters) Add Job

OK

AddJob(ToBox: PgeName,
Cmd: PGS_PC_Shell.sh PgeName,

Machine: machine)
Add Job

AddJob(ToBox: PgeName,
Cmd: ExecutionMgr.Deallocate,

Machine: machine)
Add Job

OK

OK

AddJob(ToBox: PgeName,
Cmd: DataMgr.Deallocate,

Machine: machine)

Add Job

OK

Figure 4.5-1. Create Data Processing Request Job Event Trace

See DataManagement
Event Trace for
InitializeData

Return Requested Information

OK

OK

OK

OK

OK

OK

OK

4-142 305-CD-011-001

PlGroundEvent DpPrScheduler DpDrCotsManager Cots

CreateGEvnt(GroundEvent)

Success

OK

OK

AddJobBox(Times:GroundEventTimes,
Name:GroundEventName)

AddJob(ToBox:GroundEventName,
Cmd:ExecutionMgr.Allocate,

Machine:GroundEventMachine)

AddJob(ToBox: PgeName,
Cmd: ExecutionMgr.Deallocate,

Machine: machine)

OK

OK

OK

OK

Add JobBox

Add Job

Add Job

Figure 4.5-2. Create Ground Event Job Event Trace

4.5.2.2.3 Desired Response

The specified DPR job and the individual jobs within it are activated in the AutoSys job stream and
processed accordingly. Log Information to record the event will be collected and stored for review
at a later time.

4.5.2.2.4 Participating Classes from the Object Model

a. PlDpr

b. DpPrScheduler

c. DpPrCotsManager

d. Cots

e. DpPrDataManager

f. DpPrExecutionManager

g. DpPrExecutable

4-143 305-CD-011-001

4.5.2.2.5 Description

1)	 When the ReleaseDPRJob operation is initiated on the DpPrScheduler, the following steps
will occur:

a)	 The DpPrScheduler will release the job in the AutoSys Database. Figure 4.5-3,
Release Data Processing Request Event Trace, shows the events to needed to
support this step.

2)	 If the DPR Job's dependencies on prior jobs have been fulfilled, the Job Box will begin to
execute. Figure 4.5-4, Job Box Execution, shows the events to needed to support this step.

3) END OF SCENARIO.

4.5.2.2.6 Event Traces

PlDpr DpPrScheduler DpPrCotsManager COTS

(Dpr)
ReleaseDprJob

SendEvent for Job=Dpr
JOB_OFF_HOLD

Success

ReleaseJob(Dpr)

Success See Job_Box_Execute
Event Trace

Success

Figure 4.5-3. Release Data Processing Request Job Event Trace

4.5.2.3 Cancel Data Processing Request or Ground Event Job

4.5.2.3.1 Abstract

This scenario describes the processing required to cancel further processing of a Data Processing
Request or Ground Event. The Planning CSCI will cancel a DPR job/Ground Event job when the
job's associated Request/Event is no longer relevant. This could occur when the Production Plan
has been modified or when the processing of a particular Production Request has been discontin­
ued. The result of the cancellation is that the processing of the job will be halted. No further pro­
cessing for this job will be performed unless the job is re-created and added back into the AutoSys
job stream.

For Data Processing Request jobs, if the PGE associated with the Data Processing Request was ex­
ecuting at the time of cancellation, this execution will be terminated. If the PGE was not executing,
but the data staging process was in progress, this process will also be terminated, and all resources
reserved to process this PGE will be freed.

4-144 305-CD-011-001

COTS DpPrDataManager DpPrExecutionManager DpPrCotsManager DpPrExecutable

See ExecutionManager
Event Trace for

AllocateResources

See DataManager
Event Trace for
MakeDataLocal

See ExecutionManager
Event Trace for

Execute

See DataManager
Event Trace for
DeallocateData

See ExecutionManager
Event Trace for

DeallocateResources

AllocateResources(PGE)

Success

MakeDataLocal
(DPR,Machine)

Success

Execute (PGE)

Success

ModifyJob(CommandLine)
(if necessary)

Modify Command Line in PGE Execution Job

Success

Success

Execute PGE on Client Machine

Success

DeallocateResources(PGE)

Success

DeallocateData
(DPR,Machine)

Success

Figure 4.5-4. Job Box Execution Event Trace

A Ground Event Job is the method used by Planning to make resources unavailable to support pro­
duction. A Ground Event is input by the Resource Planner who uses Planning CSCI software to
make a Resource Availability Schedule. This schedule is made available to the Planning CSCI and
is used as an input to the Production Plan. To schedule a resource for maintenance, system test, or
some other defined ground event, a ground event job is input into the AutoSys Job Schedule.

4.5.2.3.2 Stimulus

The initiation of the CancelDPRJob or CancelGEvnt operation on the JobScheduler class.

4.5.2.3.3 Desired Response

The following actions will occur during Cancel Data Processing Request processing:

a.	 The execution of the PGE associated with the Data Processing Request will be terminated,
if executing, or canceled, if awaiting execution.

b. The COTS operations display will be updated.
c.	 If allocation of resources had occurred to support the execution of the PGE or the

implementation of the Ground Event, the allocated resources will be freed.
d. Log Information to record the event will be collected and stored for review at a later time

4-145 305-CD-011-001

4.5.2.3.4 Participating Classes From the Object Model

a. PlDpr (DPR only)

b. DpPrScheduler

c. DpPrCotsManager

d. Cots

e. DpPrDataManager (DPR only)

f. DpPrExecutionManager

g. PlGroundEvent (Ground Event only)

4.5.2.3.5 Scenario Description

a) When the CancelDPRJob or CancelGEvnt operation is initiated on the DpPrScheduler, the
following steps will occur:

1) The DpPrScheduler will cancel the job in the AutoSys Database.

2)	 If the PGE associated with Data Processing Request is executing, the PGE is terminated.
No attempt is made to complete execution. By indicating cancellation, Planning has
indicated that the processing should not be accomplished.

3)	 If resources (such as disk space or CPU time) have been reserved for the PGE or Ground
Event, these will be deallocated so another job can use them.

b) END OF SCENARIO.

4.5.2.3.6 Event Traces

Figure 4.5-5, Cancel Data Processing Request Job Event Trace, show the steps required to cancel
a Data Processing Request job. Figure 4.5-6, Cancel Ground Event Job Event Trace, show the steps
required to cancel a Ground Event job. The Ground Event Job is used to take resources out of the
active job schedule so that maintenance, system test, or special events can be supported.

PlDpr DpPrScheduler DpPrCotsManager DpPrDataManager COTS DpPrExecutionManager

GetMyPge

CancelDprJob(Dpr)

See ExecutionManager
Event Trace for

Deallocate()

Success

CancelJob(Dpr)
SendEvent for Job=Dpr : KILLJOB

Success

Success

DeallocateData(Dpr)

Success

Deallocate (Pge)

See DataManager
Event Trace for
DeallocateData

Figure 4.5-5. Cancel Data Processing Request Job Event Trace

4-146 305-CD-011-001

PlGroundEvent DpPrScheduler DpPrCotsManager COTS DpPrExecutionManager

CancelGEvnt(GroundEvent CancelJob
(GroundEvent) SendEvent for

Job=GroundEvent: KILLJOB

Success

Success

Success

Deallocate (GroundEvent)
See ExecutionManager

Event Trace for
Deallocate()

Figure 4.5-6. Cancel Ground Event Job Event Trace

4.5.2.4 Update Data Processing Request Job

4.5.2.4.1 Abstract

This scenario describes the processing required to update the AutoSys job definition associated
with a Data Processing Request. This process is initiated through the UpdateDPRJob operation in
the DpPrScheduler class. The job definition information available for modification includes prior­
ity information and time information, such as start times, predicted execution times and ending
time restrictions. Other Data Processing Request information can only be modified through a Plan­
ning CSCI interface.

4.5.2.4.2 Stimulus

The Planning CSCI will use the UpdateDPRJob operation in the DpPrScheduler class. The DpPr-
Scheduler and associated classes encapsulate the AutoSys specific command-line interfaces and
APIs to used to communicate with AutoSys.

4.5.2.4.3 Desired Response

The job definition of the Data Processing Request which resides in the AutoSys Database will be
modified. AutoSys will add a log entry to its database to record this event.

4.5.2.4.4 Participating Classes from the Object Model

a. PlDpr

b. DpPrScheduler

c. DpPrCotsManager

d. Cots

4.5.2.4.5 Description

a)	 When the UpdateDPRJob operation is initiated on the DpPrScheduler, the following steps
will occur:

4-147 305-CD-011-001

1) The DpPrScheduler will update the job definition associated with the Data Processing Request
in the AutoSys Database.

b) END OF SCENARIO.

4.5.2.4.6 Event Trace

Figure 4.5-7 shows the update data processing request job event trace.

PlDpr DpPrScheduler DpPrCotsManager Cots

NewTimeInfo

Success

UpdateDprJob(Dpr)

Get Priority & Time Info

Return NewPriority and

Success

Success

Success

Success

UpdatePriority
(Dpr,NewPriority)

UpdateJob(Job=Dpr,
Priority=NewPriority)

UpdateTimeInfo
(Dpr,NewTimeInfo)

UpdateJob(Job=Dpr,
Times=NewTimeInfo)

Figure 4.5-7. Update Data Processing Request Job Event Trace

4.5.2.5 Get Data Processing Request Job Status

4.5.2.5.1 Abstract

This scenario describes the processing required to provide status information about the processing
of a Data Processing Request to the Planning CSCI. The status of a Data Processing Request is pro­
vided during the AutoSys defined life of a Data Processing Request. This status information will
provide the Planning CSCI a mechanism to judge the actual performance of the active plan com­
pared to the predicted plan activities. Also, this will be used by Planning as a means of updating
the Plan to determine the next group of activities to be provided to AutoSys.

4-148 305-CD-011-001

4.5.2.5.2 Stimulus

The Planning CSCI will use the GetDPRJobStatus operation in the DpPrScheduler class. The Dp-
PrScheduler and associated classes encapsulate the AutoSys specific command-line interfaces and
APIs to used to communicate with AutoSys.

4.5.2.5.3 Desired Response

The status of the DPR job in the AutoSys job stream will be returned to Planning.

4.5.2.5.4 Participating Classes from the Object Model

a. PlDpr

b. DpPrScheduler

c. DpPrCotsManager

d. Cots

4.5.2.5.5 Description

a. When the GetDPRJobStatus operation is initiated on the DpPrScheduler, the following steps
will occur:

1. Retrieve job status information from the AutoSys database.

2. Create Status Report.

3. Return Status Report to the Planning CSCI.

b. End of Scenario

4.5.2.5.6 Event Traces

Figure 4.5-8 shows the get data processing request job status event trace.

PlDpr DpPrScheduler DpPrCotsManager Cots

GetDprJobStatus(Dpr)

GetJobStatus(Dpr)

Return Status

Return Status

Return Status

AutoStatus (Job=Dpr)

Figure 4.5-8. Get Data Processing Request Job Status Event Trace

4-149 305-CD-011-001

4.5.3 Data Management Scenarios

These scenarios describe the activities associated with the Data Management component of the
Processing CSCI. These scenarios describe the Processing CSCI activities which occur to support
the following activities:

1. Staging and destaging of data from and to the Science Data Server CSCI.

2. Retaining of data on Science Production Hardware to support further production

3. Deletion of data not required to support further production.

4. Movement of data from one production resource to another to support further production.

These scenarios explain the interface which exists between the Processing CSCI and the Science
Data Server CSCI. Data Staging and Destaging are services used to interface with the Science Data
Server to coordinate the transfer of data. Data Staging defines the transfer of data from the Science
Data Server CSCI to the Processing CSCI, and Data Destaging defines the transfer of data from the
Processing CSCI to the Science Data Server CSCI. The protocol used to provide these services
consists of the Processing CSCI requesting the transfer of data from the Science Data Server to Pro­
cessing or from Processing to the Science Data Server. The Science Data Server is responsible for
the movement of the data. Any data requiring transfer from the Science Data Server to Processing,
or from Processing to the Science Data Server will be transferred using this approach. This data
includes PGE scripts, algorithm executables, PGE status message files, PGE process control files,
metadata, calibration data files, ancillary data products, or ECS Data Products. At this time, the
Processing design is based on the assumption that all data staging occurs prior to the start of PGE
execution. Also, PGE execution is not considered complete until destaging of the output data prod­
ucts occurs.

As a result of the initiation of data staging by Processing, the Science Data Server will initiate an
FTP PUSH operation to copy the data to the science processing hardware. As a result of the initi­
ation of data destaging by Processing, the Science Data Server will initiate an FTP PULL operation
to copy the data from the science processing hardware to the Data Server subsystem hardware.

Please note that the Processing CSCI uses the Science Data Server CSCI provided services to stage
data from the Ingest subsystem as well as the Data Server Subsystem. Also, the Processing CSCI
interfaces with Data Servers at different DAAC locations to stage and destage data.

4.5.3.1 Data Initialization

4.5.3.1.1 Abstract

The Processing CSCI has the responsibility to manage data that is currently residing on the science
processing hardware resources and to retain data that is required to support the execution of mul­
tiple PGEs. To manage this data, the Processing CSCI must retain knowledge of the current loca­
tion of data. The location may be at the Data Server or on some local science Processing hardware
resource. To retain knowledge of the current location of data and other characteristics that are used
to define a data object, the Processing CSCI has established a persistent class referred to as the Dp-
PrDataMap. The persistence of this class is retained through the use of the PDPS Database. When
this class is required to support a Processing CSCI operation, this class is created and information
is extracted from the PDPS Database. More information on the PDPS Database and the extraction
of data is contained in the Planning Subsystem Detailed Design Specification. The information re­

4-150 305-CD-011-001

tained in this class is used during different Processing CSCI operations to determine if staging or
destaging of a given data object is required.

The initialization of the class DpPrDataMap occurs when the CreateDPRJob operations of DpPr-
Scheduler class is activated. Part of the CreateDPRJob operation will consist of creating the DpPr-
DataMap for a Data Processing Request.

4.5.3.1.3 Stimulus

When the Planning CSCI adds a Data Processing Request to AutoSys' daily job schedule, the Dp-
PrScheduler will abstract data from the Data Processing Request which will be retained in the Dp-
PrDataMap class. The persistence of this data will be managed through the PDPS Database.

4.5.3.1.4 Desired Response

The initialization of the DpPrDataMap class which contains information on the characteristics of
data that a PGE associated with a Data Processing Request requires for execution.

4.5.3.1.5 Participating Classes From the Object Model

• DpPrScheduler

• DpPrDataManager

• DpPrDataMap

• PlDPR

• PlDataGranule

• GlUR

4.5.3.1.8 Scenario Description

a)	 When the CreateDPRJob operation is initiated on the DpPrScheduler, the following steps
will occur:

1)	 The DpPrScheduler will retrieve information as needed from the PDPS database to
perform the following steps for each job:

(a)	 Create a DpPrDataMap used to retain information on the input data required
to support the execution of the PGE associated with the Data Processing
Request.

b) END OF SCENARIO.

4.5.3.1.9 Event Trace

Figure 4.5-9 shows the DpPrDataMap Initialization.

4-151 305-CD-011-001

DpPrScheduler DpPrDataManager PlDPR PlDataGranule DpPrDataMap

InitializeData(DPRId)

[Add an entry into DB]

[Update an entry in DB]

return success code

Figure 4.5-9. DpPrDataMap Initialization

4.5.3.2 Local Data Management

4.5.3.2.1 Abstract

The Processing CSCI has the responsibility to ensure that all input data are available and reside on
the science processing hardware resources before the execution of PGEs. The Processing CSCI al­
locates sufficient resources to support output data that will be produced by a PGE even before en­
suring that all input data are local. If our science Processing hardware resource can accommodate
all output data, then it proceeds with determining the availability of input data. To manage this task,
the Processing CSCI must determine if data is located locally on the platform that the PGE is using
for execution, or on some other local science Processing hardware resource, or data is not available
on our science Processing hardware resource at all. If the data resides on this platform, no further
actions need to be done. If the location of data is on some other local science Processing hardware
resource, then a location is allocated by Resource Management and the data will be copied from
some other resource platform to this platform at the new location provided by Resource Manage­
ment. This new location and other characteristics of this data are stored in PDPS Database. In the
case that the data is not available on our science Processing hardware resource at all, the Resource
Management allocates space for this data on this platform. The processing CSCI then builds a Data
Server request including ACQUIRE command(s) that will be used to request the staging of data to
a science processing resource. Also this new location provided by Resource Management and other
characteristics of this data are stored in PDPS Database. The localization of the data occurs when

Iterate for each Data Granule

PlDPR()

GetInputDataList():
List*<PlDataGranule*>

GetNextInputData():
PlDataGranule*

PlDataGranule()

GetUR():GlUR*

DpPrDataMap(URId:string)

Select(URId)

return (Result = False)

Insert()

Update(NumberOfUses)

~PlDataGranule()

~PlDPR()

~DpPrDataMap

SetNumberOfUses()

4-152 305-CD-011-001

the ReleaseDPRjob operation of DpPrScheduler class is activated.

4.5.3.2.2 Stimulus

When the Planning CSCI releases a Data Processing Request to AutoSys' daily job schedule, Au­
toSys will kick off a job which invokes MakeDataLocal of DpPrDataManager class.

4.5.3.2.3 Desired Response

This activity will result in the initiation of a persistent data structure used to retain knowledge
about the location of data on the Science Processing Hardware resources.

4.5.3.2.4 Participating Classes From the Object Model

• COTS

• DpPrDataManager

• DpPrResourceManager

• PlDPR

• DpPrDataMap

• PlDataGranule

4.5.3.2.5 Scenario Description

a)	 When the ReleaseDPRJob operation is initiated on the DpPrScheduler, the following steps
will occur:

1)	 The AutoSys will kick off a job that invokes MakeDataLocal operation of
DpPrDataManager class to perform the following steps for each job:

(a)	 Iterate through the output data granule list, call DpPrResourceManager to
allocate resource for each output data.

(b)	 If all output data granules are allocated successfully, iterate through the
input data granule list, determine if data is available at science processing
hardware resource or not.

(c)	 If data is resident on this local science processing hardware resource, the
PDPS Database entry will be updated.

(d) 	 If data is not resident on this local science processing hardware resource, but
is located on some other local science processing hardware resource, then
ask DpPrResourceManager to allocate space for this data on this local
resource and copy data from nearby resource to this local resource at the new
location. Go to PDPS Database and add an entry for this data with new
location and other characteristic information.

(e)	 If data is not located anywhere on our local science processing hardware
resource, then ask DpPrResourceManager to allocate space for this data on
this local resource, and request Data Server to stage data to our local science
processing hardware resource (see Data Staging section). Go to PDPS

4-153 305-CD-011-001

Database and add an entry for this data with new location, status is set to
STAGING, and other characteristic information.

b) END OF SCENARIO.

4.5.3.2.6 Event Trace

Figures 4.5-10 through 4.5-12 show the Local Data Management.

COTS DpPrDataManager DpPrResourceManager PlDPR DpPrDataMap DsClRequest DsSubmittedRequest GlCallBack PlDataGranule

return successful code

(see Allocate Resource Event Trace

[see DpPr_Submit_Staging_Request_To_Dataserver_Event_Trace]

(Iterate for all
staging data granule)

Synchronous return. Completion notification returned asynchronously.
Ask the request to insert itself

into the collector and submit itself

(see Allocate Resource Event Trace

[Add an entry to DB]

[Update an entry to DB]

end of iteration

[Update an entry in DB]

iterate for each Data Granule

ctor(DPRId)

ctor(set Attributes

ctor(URId,Location=NULL)

MakeDataLocal(DPRid, MachineId)

PlDPR()

return PlDPR

GetOutputDataList()

return (List*<PlGranule*>)

AllocateResource(Machine, DataPtr, &PathPtr)

return Location

GetInputDataList()

return (List * <PlDataGranule*>)

DpPrDataMap()

GetNextInputData()

return PlDataGranule*

AllocateResource(MachineId, DataPtr, &PathPtr)

return Location

DpPrDataMap()

Insert()

DpPrDataMap(URId,Location=NULL)

Update(NumberOfUses)

~DpPrDataMap()

Update(Status = LOCAL)

~DpPrDataMap()

~PlDPR()

GlCallBack()

invoke()

SetNumberOfUses()

SetNumberOfUses()

Submit(DsClSDTCollector&):GlStatus

StageRequestReturn

Select(URId, machineId)

return(Result = False)

Select(URid, Location != NULL)

return (Result = False)

GetUR():GlUR*

ctor(callbackFnPtr)

Figure 4.5-10. Local Data Management (Data Staging Required)

4-154 305-CD-011-001

COTS DpPrDataManager DpPrResourceManager PlDPR DpPrDataMap GlCallBack PlDataGranule

(see Allocate Resource Event Trace)

(see Allocate Resource Event Trace)

(call Shell-script to copy data from nearby machine to local machine)

[Iterate for each
data granule]

[Update an entry in DB

MakeDataLocal(DPRid, MachineId)

PlDPR(DPRId)
return PlDPR

GetOutputDataList()
return (List*<PlGranule*>)

AllocateResource(Machine, DataPtr, &PathPtr)

return Location
GetInputDataList()

return (List*<PlDataGranule*>)

GetNextInputData()

DpPrDataMap()

return (Result = False)
Select(URId, Location != NULL):Boolean

return (Result = True)

return successful code

return PlDataGranule*

Select(URId, MachineId):Boolean

AllocateResource(MachineId, DataPtr, &PathPtr)

return Location

DpPrDataMap()
Insert()

DpPrDataMap()

Update(NumerOfUses)

~DpPrDataMap()
~PlDPR()

GlCallBack(callbackFnPtr)

SetNumberOfUses()

Select(URId,Location = NULL)

GetUR():GlUR*

[Add entry into DB table]

Figure 4.5-11. Local Data Management (Local Data Movement)

4.5.3.3 Data Staging

4.5.3.3.1 Abstract

Data Staging is an internally generated Data Processing process which must occur prior to PGE
execution. Data Staging will be initiated when the COTS has initiated the Data Management Job
associated with the AutoSys job box created from a Data Processing Request. After determining
that there are sufficient resources required to support the execution of the PGE, the Data Manage­
ment services will initiate the data staging process. The Data Management services will use Sci­
ence Data Server CSCI provided public classes to request data staging. The Data Staging process
is the series of steps followed to transfer data from the Data Server subsystem to the Data Process­
ing subsystem. The staging of all data required by a PGE is completed prior to the execution of a
PGE.

4-155 305-CD-011-001

COTS DpPrDataManager DpPrResourceManager PlDPR DpPrDataMap GlCallBack

(see Allocate Resource Event Trace)

[iterate for
all data granules

Update entry in DB

Update entry in DB

end of iteration

MakeDataLocal(DPRid, MachineId)

PlDPR(DPRId)

return PlDPR

getOutputDataList()

return (List * <PlGranule*>)

return Location

GetInputDataList()

return (List * <PlGranule*>)

DpPrDataMap()

return (Result = True)

DpPrDataMap()

AllocateResource(Machine, DataPtr, &PathPtr)

Select(URId, MachineId):Boolean

Update(NumberOfUses)

~DpPrDataMap()

DpPrDataMap(URId,Location=NULL)

Update(NumberOfUses)

~DpPrDataMap()

GlCallBack(callbackFnPtr)

SetNumberOfUses()

SetNumberOfUses()

GetNextInputData()

return PlDataGranule*

GetUR():GlUR*

~PlDPR()

return successful code

Figure 4.5-12. Local Data Management (Data Resides on
Science Processing Resource)

4.5.3.3.2 Stimulus

As the jobs which are part of the job box associated with a Data Processing Request are executed,
one of the jobs which performs Data Management services will request data staging to be initiated
upon determining that sufficient resources are available to support data staging and PGE execution.

4.5.3.3.3 Desired Response

The data staging process will be initiated by issuing a request to the Science Data Server CSCI.
Part of this request will consist of an Acquire command which will be used to request the staging
of data to a science processing resource. Also provided with this request is a Callback Mechanism
which is provided by the Processing CSCI to the Science Data Server CSCI to return the success
or failure status of the staging operations.

4.5.3.3.4 Participating Classes From the Object Model

• DpPrDataManager

• DsClESDTReferenceCollector

• DsClRequest

4-156 305-CD-011-001

• DsClCommand

• PlDPR

• PlDataGranule

• GlCallBack

4.5.3.3.5 Scenario Description

a.	 When AutoSys determines that a Data Management job can be initiated, i.e., all the job
dependencies defined for this job have been fulfilled, the Data Management Job is executed
and the following activities occur:

1.	 Build a request to provide to the Science Data Server CSCI. This request will consist
of a series of commands which will be the Acquire commands needed to stage all of
the data required for the PGE associated with this Data Processing Request. The
Acquire commands are actually obtained from the PDPS Database and added to the
Science Data Server CSCI public class. After completing the building of the request,
the request is submitted to the Science Data Server CSCI. The Data Management
Job will wait until a notification is received back from the Science Data Server CSCI
that this request was fulfilled successfully or unsuccessfully.

2.	 When the Science Data Server CSCI activates the Callback mechanism to inform
the Processing CSCI of the success or failure of the request, the Data Management
Job will map the success or failure of the data staging operation to a return status
code and gracefully terminate. The return status code will be used by AutoSys to
determine the success or failure of this job. If the return code indicates success,
AutoSys will initiate the next dependent job, i.e., the PGE Preparation Job. If the
return code indicates failure, AutoSys will take appropriate error recovery activities,
such as alerting this operations staff. More information on the failure of data staging
contained in the Section 4.5.4, Failure of Data Staging scenario.

3.	 Logging of all information related to these events will occur through AutoSys and
MSS provided services used by the Data Management component of the Processing
CSCI.

b. End of Scenario.

4.5.3.3.6 Event Trace

Figure 4.5-13 shows the data staging event trace.

4.5.3.4 Failure of Data Staging

4.5.3.4.1 Abstract

The failure of data staging can occur for numerous reasons which are internal or external to the
domain of the Processing CSCI. In all cases, the Science Data Server CSCI will inform the Pro­
cessing CSCI of the failure of data staging. If the cause of the problem is within the science pro­
cessing resources, appropriate error recovery actions will be initiated which may lead to the re­
initiation of staging, informing Operations and awaiting manual intervention, or taking appropriate
termination activities.

4-157 305-CD-011-001

DpPrDataManager DsClESDTReferenceCollector DsClRequest PlDPR DsClCommand PlDataGranule

Iterate through
all Data Granule

Create a collector for the dataserver,
if it hasn't done already.

The constructor places one
command in the request

GetDataTypeName():string

GetCommandString(dataTypeName:string):string

GetUR():GlUR*

DsClESDTRerferenceCollector
(DataServer:GlUR,Client:GlClient)

SetStatusCallback(GlCallBack&)

DsClCommand

DsClRequest(DsClCommand*)

Insert(DsClCommand)

Figure 4.5-13. Data Staging Event Trace

4.5.3.4.2 Stimulus

The stimulus which triggers a Data Staging Failure occurs during the interaction of the Data Server
with the staging resources and is therefore an external event. This scenario will address the out­
come on Processing due to such an event. Using a callback mechanism which is provided by the
Processing CSCI, the Science Data Server CSCI will inform the Processing CSCI of the failure of
data staging. This failure information will be transferred into a status return code which is used to
inform AutoSys of the failure of the Data Management job.

4.5.3.4.3 Desired Response

When alerted to the failure of the Data Management Job through the status return code mechanism,
AutoSys will activate appropriate error recovery actions. Initially, this amounts to alerting the Op­
erations staff, logging information about the failure to AutoSys job log as well as the system log
retained by MSS.

4.5.3.4.4 Participating Classes from the Object Model

• GlCallBack

• DpPrDataManager

• COTS

4.5.3.4.5 Scenario Description

a.	 When the Science Data Server CSCI activates the Callback mechanism to inform the
Processing CSCI of the success or failure of the request, the Data Management Job will
map the success or failure of the data staging operation to a return status code and
gracefully terminate. The return status code will be used by AutoSys to determine the
success or failure of this job. If the status return code indicates failure, AutoSys will take
appropriate error recovery activities, such as the following:

1. Activate the alert mechanisms to inform the operations staff.

4-158 305-CD-011-001

2. Check the local resources for problems which may have caused the staging failure.

3. Log fault information to MSS.

4.	 Delete the input data that has been staged thus far, unless subsequent, near-term,
processing requires it.

5.	 Update the operational mode of the failed resource to "Off-Line" so that these
resources do not get allocated for subsequent processing until the resource problem
is corrected.

6. Deallocate the remaining resources initially allocated for this run of the PGE.

b. End of Scenario.

4.5.3.4.6 Event Trace

Figure 4.5-14 shows the failure of data staging event trace.

COTS DpPrDataManager DpPrResourceManager PlDPR DpPrDataMap DsClRequest DsSubmittedRequest GlCallBack PlDataGranule

return error code

DataServer returns with some errors|

(see Allocate Resource Event Trace

[see DpPr_Submit_Staging_Request_To_Dataserver_Event_Trace]

Synchronous return. Completion notification returned asynchronously.
Ask the request to insert itself

into the collector and submit itself

(see Allocate Resource Event Trace

[Add an entry to DB]

[Update an entry to DB]

end of iteration

iterate for each Data Granule

ctor(set Attributes)

MakeDataLocal(DPRid, MachineId)

PlDPR(DPRId)

return PlDPR

GetOutputDataList()

return (List*<PlGranule*>)

AllocateResource(Machine, DataPtr, &PathPtr)

return Location

GetInputDataList()

return (List * <PlDataGranule*>)

DpPrDataMap()

GetNextInputData()

return PlDataGranule*

AllocateResource(MachineId, DataPtr, &PathPtr)

return Location

DpPrDataMap()

Insert()

DpPrDataMap(URId,Location=NULL)

Update(NumberOfUses)

~DpPrDataMap()

~PlDPR()

GlCallBack(callbackFnPtr)

Invoke()

SetNumberOfUses()

Submit(DsClSDTCollector&):GlStatus

StageRequestReturn

Select(URId, machineId)

return(Result = False)

Select(URid, Location != NULL)

return (Result = False)

GetUR():GlUR*

Figure 4.5-14. Failure of Data Staging Event Trace

4-159 305-CD-011-001

4.5.3.5 Data Destaging

4.5.3.5.1 Abstract

Data Destaging is an internally generated Data Processing process which must occur after comple­
tion of PGE execution. Data Destaging will be initiated when the COTS has initiated the PGE Post-
Processing Job associated with the AutoSys job box created from a Data Processing Request. The
Data Management services will used Science Data Server CSCI provided public classes to request
data destaging. The Data Destaging process is the series of steps followed to transfer data from the
Processing CSCI to the Science Data Server CSCI. The destaging of all output data produced by a
PGE is completed after the execution of a PGE.

4.5.3.5.2 Stimulus

As the jobs which are part of the job box associated with a Data Processing Request are executed,
the PGE Post-Processing job will request data destaging to be initiated.

4.5.3.5.3 Desired Response

The data destaging process will be initiated by issuing a request to the Science Data Server CSCI.
Part of this request will consist of an Insert command which will be used to request the destaging
of data to a science processing resource. Also provided with this request is a Callback Mechanism
which is provided by the Processing CSCI to the Science Data Server CSCI to return the success
or failure status of the destaging operations.

4.5.3.5.4 Participating Classes From the Object Model

• COTS

• DpPrDataManager

• DpPrResourceManager

• DsClESDTReferenceCollector

• DsClRequest

• DsClCommand

• PlDPR

• PlDataGranule

• GlCallBack

4.5.3.5.5Scenario Description

a.	 When AutoSys determines that a PGE Post-Processing job can be initiated, i.e., all the job
dependencies defined for this job have been fulfilled, the PGE Post-Processing Job is
executed and the following activities occur:

1.	 Build a request to provide to the Science Data Server CSCI. This request will consist
of a series of commands which will be the Insert commands needed to destage all of
the data required for the PGE associated with this Data Processing Request. The
Insert commands are actually obtained from the PDPS Database and added to the
Science Data Server CSCI public class. After completing the building of the request,

4-160 305-CD-011-001

the request is submitted to the Science Data Server CSCI. The Data Management
Job will wait until a notification is received back from the Science Data Server CSCI
that this request was fulfilled successfully or unsuccessfully.

2.	 When the Science Data Server CSCI activates the Callback mechanism to inform
the Processing CSCI of the success or failure of the request, the PGE Post-
Processing Job will map the success or failure of the data destaging operation to a
return status code and gracefully terminate. The return status code will be used by
AutoSys to determine the success or failure of this job. If the return code indicates
success, AutoSys will conclude the processing for this job and move on to initiate
the next job awaiting execution. If the return code indicates failure, AutoSys will
take appropriate error recovery activities, such as alerting this operations staff. More
information on the failure of data staging contained in the Section 4.5.6, Failure of
Data Destaging scenario, or Section 4.5.7, Failure of Data Server Communication
scenario.

3.	 Logging of all information related to these events will occur through AutoSys and
MSS provided services used by the Data Management component of the Processing
CSCI.

b. End of Scenario.

4.5.3.5.6 Event Trace

Figure 4.5-15 shows the deallocate data event trace. Figure 4.5-16 shows the data destaging event
trace.

4.5.3.6 Failure of Destaging

4.5.3.6.1 Abstract

The failure of data staging or destaging can occur for numerous reasons which are internal or ex­
ternal to the domain of the Processing CSCI. In all cases, the Science Data Server CSCI will inform
the Processing CSCI of the failure situation. If the cause of the problem is within the science pro­
cessing resources, appropriate error recovery actions will be initiated which may lead to the re-ini­
tiation of staging or destaging, informing Operations and awaiting manual intervention, or taking
appropriate termination activities.

4.5.3.6.2 Stimulus

The stimulus which triggers a data staging or destaging failure occurs during the interaction of the
Science Data Server CSCI with the staging resources and is therefore an external event. This sce­
nario will address the outcome on the Processing CSCI due to such an event. Using a callback
mechanism which is provided by the Processing CSCI, the Science Data Server CSCI will inform
the Processing CSCI of the failure of data staging or destaging. This failure information will be
transferred into a status return code which is used to inform AutoSys of the failure of the PGE or
Post-Processing job.

4-161 305-CD-011-001

COTS DpPrDataManager PlDPR PlDataGranule DpPrDataMap GlCallBack DsClRequest DpPrResourceManager

DeallocateData
(DPRId, Machine)

iterate for all
data granules

iterate for all output data granules

end of iterations

iterate for all output data granules
and delete from DB

end of iterations

[see DpPr_Submit_Destaging_Request_To_DataServer_Event_Trace]

end of iterations

Update entry in DB

PlDPR(DPRId)

return PlDPR

GetInputDataList()

return (List*<PlDataGranule*>)

GetNextInputData()

return PlDataGranule*

GetUR()

return GlUR*

DpPrDataMap()

Select(URId, Machine)

SetNumberOfUses()

Update(NumberOfUses)

~DpPrDataMap()

GetOutputDataList()

return(List*<PlDataGranule*>)

GetNextOutputData()

return PlDataGranule*

Submit(DsClESDTCollector &):GlStatus

DestageRequestReturn

~DpPrDataMap()

GlCallBack(callbackFnPtr)

~PlDPR()

DeallocateResource(Machine,PathPTR,JobId)

return successful code

Deallocate resource
for output granules

return successful code

Figure 4.5-15. Deallocate Data Event Trace

DpPrDataManager DsClESDTReferenceCollector DsClRequest PlDPR DsClCommand PlDataGranule

Iterate through
all Data Granule

Create a collector for the dataserver,
if it hasn't done already.

The constructor places one
command in the request

GetDataTypeName():string

GetCommandString(DataTypeName:string):string

GetDservUR():GlUR*

DsClESDTReferenceCollector
(DataServer:GlUR,client:GlClient)

SetStatusCallback(GlCallBack&)

DsClCommand()

DsClRequest(DsClCommand*)

Insert(DsClCommand)

Figure 4.5-16. Data Destaging Event Trace

4-162 305-CD-011-001

4.5.3.6.3 Desired Response

When alerted to the failure of the PGE Post-Processing Job through the status return code mecha­
nism, AutoSys will activate appropriate error recovery actions. Initially, this amounts to alerting
the Operations staff, logging information about the failure to AutoSys job log as well as the system
log retained by MSS.

On failing to destage all of the output data produced by the execution of the current PGE, the Op­
erations should attempt to determine if the problem lies with the local resources and if so, should
take steps to identify the failed resources in order to prevent similar problems during subsequent
processing. In any event, deallocation of resources should not occur for this process until the data
are recovered and destaging has been performed.

4.5.3.6.4 Participating Classes from the Object Model

• DpPrDataManager

• GlCallBack

• COTS

4.5.3.6.5 Scenario Description

a.	 When the Science Data Server CSCI activates the Callback mechanism to inform the
Processing CSCI of the success or failure of the request, the Data Management Job will
map the success or failure of the data destaging operation to a return status code and
gracefully terminate. The return status code will be used by AutoSys to determine the
success or failure of this job. If the status return code indicates failure, AutoSys will take
appropriate error recovery activities, such as the following:

1. Activate the alert mechanisms to inform the operations staff.

2.	 Check the local resources for problems which may have caused the destaging
failure.

3. Log fault information to MSS.

4.	 Update the operational mode of the failed resource to "Off-Line" so that these
resources do not get allocated for subsequent processing until the resource problem
is corrected and the generated outputs of the PGE are destaged successfully.

b. End of Scenario.

4.5.3.6.6 Event Trace

Figure 4.5-17 shows the failure of a data destaging event trace.

4.5.3.7 Failure of Data Server Communication

4.5.3.7.1 Abstract

The failure of Data Server Communication during staging or destaging of data is handled similarly
to the handling of the failure of staging. All appropriate error recovery actions will be tried includ­
ing initiating the data staging or destaging again, suspending further processing of the PGE job def­
inition (i.e., Data Processing Request) and awaiting Operations intervention, or possibly

4-163 305-CD-011-001

terminating further processing of the PGE job definition and submitting a communications fault to
MSS.

COTS DpPrDataMap

iterate for all
data granules

iterate for all output data granules

[see DpPr_Submit_Destaging_Request_To_DataServer_Event_Trace]

end of iterations

Update entry in DB

CallBack Notification NEVER received after reasonable time

PlDPR(DPRId)

return PlDPR

GetInputDataList()

return (List*<PlDataGranule*>)

GetNextInputData()

return PlDataGranule*

GetUR()

return GlUR*

DpPrDataMap()

Select(URId, Machine)

SetNumberOfUses()

Update(NumberOfUses)

~DpPrDataMap()

GetOutputDataList()

return(List*<PlDataGranule*>)

GetNextOutputData()

return PlDataGranule*

Submit(DsClESDTCollector &):GlStatus

GlCallBack(callbackFnPtr)

~PlDPR()

return error code

DpPrDataManager PlDPR PlDataGranule GlCallBack DsClRequest

DeallocateData
(DPRId, Machine)

Figure 4.5-17. Failure of a Data Destaging Event Trace

4.5.3.7.2 Stimulus

The stimulus which triggers a Data Server Communication Failure occurs external to the Process­
ing CSCI. This scenario will address the outcome on Processing when such an event occurs during
Process Control File (PCF) destaging.

4.5.3.7.3 Desired Response

A single Process Control File (PCF) is created by the PGE Execution Management services and
may undergo minor modifications during the execution of the current PGE. On failing to destage
the Process Control File (PCF) due to a failure of the communication channels between Processing
and Data Server, the Execution Management services should be able to determine if the problem
lies with the local resources. If so, steps should be taken to identify the failed resources in order to
prevent similar problems during subsequent processing. However, since the PCF may still remain
on the failed resource, if deallocation cannot be achieved after several attempts, the resource is tak­
en off-line to allow for operator intervention. In any event, deallocation of resources should not
occur for this process until the PCF is recovered and destaging has completed successfully.

4-164 305-CD-011-001

4.5.3.7.4 Participating Classes from the Object Model

• COTS

• DpPrPge

• DpPrExecutionManagement

• DpPrResourceManagement

• PlDataGranule

• PlDpr

• DsClESDTReferenceCollector

• DsClRequest

• DsClCommand

• MsMgCallBacks

• MsManager

• MsEvent

4.5.3.7.5 Scenario Description

a.	 After the COTS Scheduler has activated the destaging of the Process Control File (PCF) to
support post-processing of a PGE, the following activities may occur:

1.	 With the data successfully copied to the Data Server, deallocation of Processing
resources may proceed.

2.	 The Execution Management service issues a request to destage the Process Control
File (PCF) to support the SCF analysis of a failed, or suspect processing attempt.

3.	 If an event, which is external to the Processing CSCI, causes the communication
with the Data Server to become disrupted, the Data Server will not be able to fulfill
the destaging request. The end result is that the Execution Management "callback"
routine will not be activated by the Data Server and Execution Management,
therefore, will not receive a complete notification.

4.	 If a problem occurs during the destaging effort, the Execution Management
destaging services will time-out and conclude that the destage operation has failed.
Resource Management services will then be called upon to perform a check on the
local resources for problems which may have caused the destaging failure.

5.	 Deallocate the remaining processing resources initially allocated for this run of the
PGE, leaving allocated those resources where output data may still reside.

6.	 If it is discovered that local resources were the cause of the destaging failure, a
resource fault will be logged with MSS, otherwise a communications fault will be
logged.

7. Update the COTS Scheduler interface to indicate a failure during Post-processing.

b. End of Scenario.

4-165 305-CD-011-001

4.5.3.7.6 Event Trace

Figure 4.5-18 shows the failure of data server communication event trace.

COTS DpPrPge DpPrExecutionManager DpPrResourceManager PlDataGranule PlDPR DsClESDTReferenceCollector DsClRequest DsClCommand MsMgCallBacks

Communication
Fault

Complete Notification to be returned asynchronously
Callback Notification NEVER

received after reasonable time

Agent Response Sent Asynchronously

Iterate for all URs

End of iterations

DeallocateResources()

Destage()

QueryResourceStatus()

GetDataTypeName()

GetCommandString()

GetUR()

DsClESDTReferenceCollector()

SetStatusCallBack()

DsClCommand()

DsClRequest()

Insert()

Submit()

return PCF
NOT Destaged

MsMgCallBacks()

MsManager()

SetMsMgCallBackObj()

AgentRequestAndResponseString()

return Resource Status
return Local
Resource OK

DeallocateResource()

return Processor
deallocated

return partially deallocated
Processing Resources

MsEvent()

LogEvent()

Figure 4.5-18. Failure of Data Server Communication Event Trace

4.5.4 Execution Management Scenarios

Execution Management services are used to initiate and monitor the execution of a PGE. All sup­
port for PGE execution, i.e., SDP Toolkit interfaces, production history generation, resource mon­
itoring, etc., will be provided by these services. The execution of a PGE is performed on Data
Processing subsystem's resources and is initiated by the Processing CSCI.

The execution of a PGE is initiated when the following conditions are met:

a.	 Data Processing subsystem resources are available to support the successful execution of
the PGE.

b.	 The priority and resource information assigned to the Data Processing Request has
positioned the Data Processing Request, within the COTS Scheduler, as the next request to
execute.

Conceptually, a PGE is defined as any processing job that requires Data Processing subsystem re­
sources. Therefore, a PGE can define different types of processing; science software, quality as­
surance, or science pre-processing. If there are standard types of processing jobs that are performed
periodically, these jobs are planned and submitted to Processing from Planning. Of course, there

4-166 305-CD-011-001

may be exceptions, such as operations staff intervention in processing of a PGE, where this is not
followed. Most PGEs will be defined as science software PGEs.

The execution of a science software PGE will result in the generation of data products. These data
products are of two types:

a.	 Intermediate—This data is used to support the execution of other PGEs. Even though this
data may only be required for a finite period of time, to facilitate the generation of relatively
long term products, all such data files will be archived at the Data Server.

b.	 Final Data Product—This data is defined as Level 1, Level 2, Level 3, or Level 4 data
products. These products can be defined as Intermediate data to support the production of
other products. For example, a Level 1 product is used to create a Level 2 product. The
Level 2 product is a Final Data Product, but could also be used to create a Level 3 product.

Before initiating the execution of the PGE, the Processing CSCI provides information to the PGE
about the location and names of input data and the destination and names of output data. Currently,
this information is provided through a data mapping mechanism known as a Process Control File
(PCF). This file contains information linking the logical representation of data to its physical coun­
terpart, i.e., logical unit numbers to file paths. This data mapping represents the only interface be­
tween the Processing CSCI and the SDP Toolkit API. As such, this interface will be used to provide
metadata to the PGE, through the SDP Toolkit, to be associated with the data products.

During execution, the Processing CSCI performs a monitoring role. Periodically, the Processing
CSCI collects information on executing PGE(s). This information includes execution errors and
warnings generated from the science software, as well as certain runtime performance statistics.
Also, the Processing CSCI monitors the resources being used by the PGE. By comparing current
resource usage data with the nominal resource usage data prepared by the Algorithm Integration
and Test Team, the Processing CSCI can determine if a resource fault exists, or that a PGE fault
has occurred. The Processing CSCI may terminate a PGE if such runtime information indicates that
the PGE is not performing within the nominal bounds defined at AI&T, or if resource faults are
occurring. To support the monitoring of the PGE, the Processing CSCI will use services provided
by MSS.

Currently, no unique services have been identified to provide support for the PGEs which are not
science software.

Figure 4.5-19 shows a state transition diagram for the execution of a PGE. This diagram should be
reviewed while reading the scenarios and event traces.

The scenarios provided for Execution Management are defined as the following

a.	 Initiate Execution—This scenario provides information on the required activities for
initiation of the execution of a PGE. See scenario "Execution Management: Initiate PGE
Execution" for more information.

b.	 Monitor Execution—These scenarios provides information on the required activities to
monitor PGE execution. See scenarios "Execution Management: Monitor Resource",
"Execution Management: Monitor Performance," and "Execution Management: Monitor
Status Return" for more information.

4-167 305-CD-011-001

4-168
305-C

D
-011-001

DpPrPge

Active Process

Respond

Listen

Running Suspended

Command

Offline

Staging
Destaging

Starting

Stopping

COTS Scheduler

COTS Scheduler

Online

do: execute pge do: wait

do: process request

do: load executables
do: remove executables

do: satisfy job dependencies

do: release job dependencies

not
ready

done/awaken

status returned

reset

dependencies complete/
execute job

create pge delete pge

stage

destage

done/sleep

run

continue
[initialization
incomplete]

continue
[initialization
complete]

aborted

completed

suspend

resume

Figure 4.5-19. PGE State Transition Diagram

c.	 Execution post-processing—This scenario provides information on the required activities
for PGE execution post-processing. See scenario "Execution Management: PGE Execution
Post-Processing" for more information.

d.	 Failure of Execution—This scenario provides information on the required activities
following failure of PGE execution. See scenario "Execution Management: Failure of PGE
Execution" for more information.

e.	 Failure of Data Server Communications—This scenario provides information on the
required activities following failure of communications during Data Server contact. See
scenario "Execution Management: Failure of Data Server Communications" for more
information.

f.	 Failure of Processing Resource—This scenario provides information on the required
activities following failure of a processing resource. See scenario "Execution Management:
Failure of Processing Resource" for more information.

4.5.4.1 Initiate Execution

4.5.4.1.1 Abstract

When it is determined by the COTS Scheduler that the processing of a PGE can proceed, PGE
preparation activities can begin. These activities consist of resource allocation and SDP Toolkit
initialization.

Currently, the SDP Toolkit requires the creation of a Process Control File (or PCF), which acts as
the interface between the science algorithm and the Processing CSCI. The data mappings con­
tained within the PCF contain all of the information needed for the SDP Toolkit to access the data
requested by the science algorithm. Since only one Process Control File is associated with a given
PGE, it must be created and populated with new mapping information for each unique run of the
PGE.

In addition to the input data that is staged for the PGE, SDP Toolkit and algorithm specific Status
Message Files (SMFs) must also be staged to provide for the error and status reporting needs of the
PGE. However, before any data item can be staged, the necessary disk resources must first be mar­
shaled for the current PGE. This occurs through an allocation process which is managed by the Re­
source Management services.

4.5.4.1.2 Stimulus

The stimulus to initiate PGE execution is received as a request from the COTS scheduler package.
The events which occur just prior to the start of PGE execution signal the completion of resource
allocation, data staging and SDP Toolkit initialization for this task.

4.5.4.1.3 Desired Response

The execution of a PGE job will be triggered by the COTS scheduling package.

4.5.4.1.4 Participating Classes from the Object Model

• COTS

• DpPrExecutable

4-169 305-CD-011-001

• DpPrPcf

• DpPrPge

• DpPrExecutionManager

• DpPrResourceManager

• PlDataGranule

• PlDpr

• DsClESDTReferenceCollector

• DsClRequest

• DsClCommand

4.5.4.1.5 Scenario Description

a.	 When the COTS scheduler has requested the initialization of a PGE, the following
activities are done:

1.	 Perform the resource preparation activities required to support the staging of data
and PGE, as well as the processing of the PGE (e.g., allocate disk space, CPU(s)).

2.	 If not already resident on the local host, stage the actual PGE executables and
associated Status Message Files (SMFs) which were delivered along with the
science algorithm.

3.	 Construct the Process Control File, for this instance of the PGE, to create the
mapping of logical identifiers to physical file and runtime parameter values.

4.	 Update the Process Control Table with "live" information to complete the mapping
of logical identifiers to physical file and parameter values.

5.	 Send Event to the COTS scheduler signifying the completion of the initialization
phase.

6.	 Log the success or failure to initialize the execution phase of the PGE execution.
(i.e., job status is "Success," or "Failure").

7.	 With all job dependencies satisfied, the COTS scheduler issues a start processing
request to begin the actual PGE job execution.

b. End of "Execution Management (Initiate Execution)".

4.5.4.1.6 Event Trace

Figure 4.5-20 shows the initiate execution event trace diagram.

4-170 305-CD-011-001

COTS DpPrExecutable DpPrPcf DpPrPge DpPrPgeExecutionManager DpPrResourceManager PlDataGranule PlDPR DsClESDTRerenceCollector DsClRequest DsClCommand

COTS DpPrExecutable DpPrPcf DpPrPge DpPrPgeExecutionManager DpPrResourceManager PlDataGranule PlDPR DsClESDTRerenceCollector DsClRequest DsClCommand

Data staged by DpPr Data Manager

Resouces were
pre-allocated
for the PCF

Allocate processing
resources

Stage Executables

PGE SW currently
not local

Execute PGE

Create Pcf

Actual PGE software activated by the COTS Scheduler

Iterate for all URs

End of Iterations

AllocateResources()

AllocateResource()

Completed allocation

Stage()

DpPrExecutable()

Executables ready

Executables loaded

Processing resources allocated

Execute()

DpPrPcf()

PCF ready

Send Event to release job

GetDataTypeName()

GetCommandString()

GetUR()

DsClESDTReferenceCollector()

SetStatusCallback()

DsClCommand()

DsClRequest()

Submit()

Insert()

Figure 4.5-20. Initiate Execution Event Trace

4.5.4.2 Monitor Execution

4.5.4.2.1 Abstract

Execution Management services will monitor the execution of a PGE and the resources that the
PGE is using during execution. To monitor the execution of the PGE at runtime, the Execution
Management services will obtain performance status information through a MSS defined method.
To obtain the termination status of a PGE, the final state of processing will be returned to the COTS
Scheduler upon completion of the PGE's execution.

The definition of the status condition codes used by the PGEs will be determined through ECS in­
teraction with Instrument Team algorithm developers. Once a complete set of status condition
codes is defined and distributed to Instrument Team sites, all science algorithm developers will be
required to return one of these condition codes at the terminus of their processing. This will further
require science algorithm developers to handle error conditions gracefully to ensure that this criti­
cal section of code always gets invoked.

Resource monitoring will consist of the monitoring of the usage of resources, e.g., CPU, disk
space, and memory by the PGE. During AI&T, the PGE resource usage data will be established.
These data are likely to include averages and maximums of the CPU, memory, and disk space that
a PGE uses during execution. This information will be updated as the PGE is used in the production

4-171 305-CD-011-001

environment. During execution, resource monitoring will alert operations if the PGE has reached
some percentage over the average, or maximum allowed. Resource monitoring also will continu­
ously check on the health of the resources being used. Resources will be monitored jointly by MSS
and Processing.

All of the information acquired through monitoring will be captured through the COTS logging
mechanisms.

4.5.4.2.2 Stimulus

The Execution Management services will perform these monitoring activities on periodic basis for
selected PGE runs.

4.5.4.2.3 Desired Response

The execution of a PGE will be monitored to check for anomalies which might develop with the
resources, the performance of the algorithm, or with the algorithm itself. If conditions warrant, the
execution of the PGE may be terminated by operations personnel.

4.5.4.2.4 Participating Classes from the Object Model

• COTS

• DpPrPge

• DpPrExecutable

• DpPrExecutionManager

• DpPrResourceManager

• DpPrComputer

• MsMgCallBacks

• MsManager

• MsEvent

4.5.4.2.5 Scenario Description

a. During PGE execution, Execution Management Services will do the following:

Case 1: Monitor Resource Health during PGE execution

1. 	 Check the health of the resources being used by the PGE. This is an MSS provided
service.

2.	 If the state of the resources being used by the currently executing PGE are failing or
have failed, terminate execution of the PGE gracefully.

3. The COTS Scheduler log is updated with the final state of the PGE.

4.	 An exception record has been submitted to the MSS Event log to indicate that the
PGE has been aborted.

Case 2: Monitor performance during PGE execution

1. Check on the performance of the currently executing PGE.

4-172 305-CD-011-001

2.	 If the usage of the resources is not following the established performance
characteristics for the PGE, terminate execution of the PGE gracefully.

3. The COTS Scheduler log is updated with the final state of the PGE.

4.	 An exception record has been submitted to the MSS Event log to indicate that the
PGE has been aborted.

Case 3: Monitor status return following PGE execution

1. 	 The executing PGE continually updates the Toolkit Status Message Log with
algorithm, or SDP Toolkit specific status information.

2.	 The PGE, upon detecting a fatal error condition, updates the Toolkit Status Message
Log and exits gracefully, returning a predefined condition code to the COTS
Scheduler.

3.	 This information is captured by the COTS Scheduler to determine the reason for the
PGE failure.

4. The COTS Scheduler log is updated with the final state of the PGE.

5.	 An exception record has been submitted to the MSS Event log to indicate that the
PGE has been aborted.

b. End of "Execution Management (Monitor Execution)."

4.5.4.2.6 Event Trace

Figure 4.5-21 shows the Case 1 monitor resource health trace. Figure 4.5-22 shows the Case 2
monitor performance trace. Figure 4.5-23 shows the Case 3 monitor status return trace.

COTS DpPrPge DpPrResourceManager DpPrComputer MsMgCallBacks MsManager MsEvent

Pge using
bad Resource

Agent Response sent asynchronously

Abort()

MsEvent()

LogEvent()

QueryResourceStatus()

GetStatus()

MsMgCallBacks()

MsManager()

SetMsMgCallBackObj()

AgentRequestAndResponceString()

Status response

return Status

return Status

Figure 4.5-21. Case 1: Monitor Resource Health Trace

4-173 305-CD-011-001

COTS DpPrPge DpPrExecutable MsMgCallBacks MsManager MsEvent

Agent Response sent asynchronously

return Status

MsEvent()

LogEvent()

GetStatus()

GetStatus()

MsMgCallBacks()

MsManager()

SetMsMgCallBackObj()

AgentRequestAndResponseString()

return Status
Response

return Status

Abort()

bad Status

Figure 4.5-22. Case 2: Monitor Performance Trace

COTS DpPrPge DpPrExecutionManager MsEvent

Log event for
PGE return condition

COTS activates running of Pge Job

Pge Job fails and returns Status code
Destage just the PCF
for debug support

Execute()

Destage()

return

DeallocateResources()

return Deallocation Status

MsEvent()

LogEvent()

Figure 4.5-23. Case 3: Monitor Status Return Trace

4.5.4.3 Execution Post-Processing

4.5.4.3.1 Abstract

Execution Management provides services that are needed upon the completion of PGE execution.
These services are used to initiate data destaging, creation of product history, deallocation of re­
sources, etc. All generated outputs, Intermediate and Final Data Products, SDP Toolkit Process

4-174 305-CD-011-001

Control and Status Message Log files, etc., will be destaged to the Data Server. The generated data
products may be required as input to another PGE and therefore may not be removed from the local
storage. The management of the data products will be necessary to insure that data staging of a data
product is not performed excessively. Execution Management services will be required to generate
processing-specific metadata. This metadata will be associated to a generated data product during
the process of destaging to the Data Server. Any clean-up, such as deletion of input data and output
data, may also be performed by the Processing CSCI during this phase.

4.5.4.3.2 Stimulus

The successful or unsuccessful completion of the execution of a PGE. The Execution Management
services will perform these activities for each PGE which has completed execution.

4.5.4.3.3 Desired Response

All processing required at the completion of PGE execution will be performed. This includes ini­
tiation of data destaging, and other clean-up activities.

4.5.4.3.4 Participating Classes from the Object Model

• COTS

• DpPrPge

• DpPrExecutionManager

• DpPrResourcemanager

• DpPrDataManager

4.5.4.3.5 Scenario Description

a.	 Upon completion of PGE execution, the Execution Management Services will do the
following:

1. Check the generated errors codes to determine if the PGE output is useful.

2.	 Generate processing-specific metadata for incorporation into a Production History
File, to facilitate its association with the output products during the destaging
operation. Production History File consists of information used to identify what
occurred during execution. This includes actual resource usage, input data
references, date and time of execution, and user define parameters. Most of the
information located in the Process Control File and the Data Processing Request
will be added to the Production History File.

3.	 If the PGE produced an output data product, i.e., Intermediate Data or Final Data
Product, initiate destaging of the data products. In addition, destage other non­
product data like Status Message Log files.

NOTE: The following two steps are performed internally by the COTS Scheduler as per the logic
imparted during the job definition phase.

4. Determine if the PGE's generated output data is required by another scheduled PGE

5. Determine if the PGE's input data is required by another scheduled PGE

4-175 305-CD-011-001

6.	 Destage the PGE's data mapping to preserve any runtime updates regarding
Intermediate temporary files created during this run of the PGE, or requests for the
transfer of runtime data files (this service, acquired through the SDP Toolkit,
provides a mechanism for the preservation of critical data files used during the
processing of the PGE).

7.	 If the input data is not needed to execute another PGE, deallocate the resources that
were used for the input data.

8.	 The COTS Scheduler Log is updated to indicate the current status of the PGE. (i.e.,
Processing Status is "Complete").

9. Deallocate the processing resources used by the PGE.

b. End of "Execution Management (Execution Post-Processing).

4.5.4.3.6 Event Trace

Figure 4.5-24 shows the execution post processing event trace.

COTS DpPrPge DpPrExecutionManager DpPrResourceManager DpPrDataManager

Deallocate Resources
used for process

GenProduction
History

History completed

DestageRequestReturn()

All data successfully destaged

DeallocateResources()

Storage Resources Deallocated

DeallocateResource()

Deallocation completed

Processing Resources Deallocated

DeallocateData()

Destage Data

Figure 4.5-24. Execution Post Processing Event Trace

4.5.4.4 Failure of Execution

4.5.4.4.1 Abstract

The failure of the execution of a PGE may be caused by either an external fault, such as a resource
failure, or by an internal fault due to a science algorithm error. In order to achieve the best response
to a failed PGE, that PGE must terminate gracefully and return a status condition code which con­
veys the reason for the failure. The COTS Scheduler will determine, from this code, what further
processing may be performed from the job interdependencies which are already defined, or
through human interaction with the Alarm Manager utility. If a resource failed, there may be an
attempt to move the PGE to similar resources in order to initiate execution of the PGE again. If the
PGE failed because of an internal fault, an attempt will be made to determine the cause of this fault

4-176 305-CD-011-001

through the status condition code. If there is hope that the PGE may execute properly, the COTS
Scheduler may initiate execution again.

4.5.4.4.2 Stimulus

The stimulus which causes a PGE to fail during execution comes from a fatal error condition that
occurs during processing of the algorithm. Whether internal, or external to the PGE, the fault
should be handled properly by the science software.

4.5.4.4.3 Desired Response

Upon detection of the fatal error condition, the error handling portion of the PGE should take-over
to redirect processing, or exit gracefully; the latter case is depicted in this scenario.

4.5.4.4.4 Participating Classes from the Object Model

• COTS

• DpPrExecutable

• DpPrPcf

• DpPrPge

• DpPrExecutionManager

• DpPrResourceManager

• DpPrDataManager

• MsEvent

• PlDataGranule

• PlDpr

• DsClESDTReferenceCollector

• DsClRequest

• DsClCommand

4.5.4.4.5 Scenario Description

a.	 When the PGE fails due to a fatal error condition during processing, the following activities
are performed:

1. Retrieve the error condition code from the PGE.

2.	 To signal that recovery attempts are underway, update the COTS Scheduler
Interface to display "PGE Failed".

3.	 Destage the Process Control File for this run to preserve a copy for SCF
investigation.

4.	 Destage whatever output data was produced. This data will not be archived
necessarily, but may be used for investigation into the cause of the malfunction (the
actual list of data to preserve is identified at runtime by the science software,
through interaction with the SDP Toolkit; if nothing else, the PGE should handle the
error to the point of being able to specify the set of data for post-mortem analysis).

4-177 305-CD-011-001

5.	 At this point, the resources are still allocated and all of the input data is still staged.
Just prior to resource deallocation, checks are performed on the health of the
allocated resources to determine if the fault was external or internal to the PGE.

(a)	 For the latter case, the COTS Scheduler proceeds with cleanup activities in
order to make room for subsequent processing. If the cause was due to
resource problems, the PGE may be re-initiated after sufficient resources are
re-allocated.

(b)	 If resources cannot be reallocated to re-initiate the PGE, then the job which
represents the Data Processing Request for this PGE gets reprioritized
within the COTS Scheduler, to be retried at a later time.

6. Deallocate all of the Resources used for this processing run.

7. Log a report on the health of currently allocated resources to MSS.

8.	 Also, send a message to the COTS Scheduler Log indicating that processing status
is "Failure".

b. End of "Execution Management (Failure of Execution)."

4.5.4.4.6 Event Trace

Figure 4.5-25 shows the failure of execution event trace.

COTS DpPrExecutable DpPrPcf DpPrPge DpPrExecutionManager DpPrResourceManager DpPrDataManager PlDataGranulePlDPRDsClESDTReferenceCollector DsClRequest DsClCommand

(Status Code returned from JOB

Iterate for all URs

End of iterations

Full Deallocation

Complete notify asynchronous

return Process Failed

Destage()

GetDataTypeName()

GetCommandString()

GetUR()

DsClESDTReferenceCollector()

SetStatusCallback()

DsClCommand()

DsClRequest()

Insert()

Submit()

~DpPrPcf()

Pcf removed
return Process Control Mapping destaged

DeallocateResources()

DeallocateResource()
return Deallocation

completed return Processing Resource deallocated

~DpPrExecutable()

return Executables removed
MsEvent()

LogEvent()

DeallocateData()

Partial Data Destaged for debug purposes

Figure 4.5-25. Failure of Execution Event Trace

4-178 305-CD-011-001

4.5.4.5 Failure of Processing Resource

4.5.4.5.1 Abstract

If a resource fails during execution of a PGE, the COTS Scheduler will attempt to re-initiate the
PGE using other suitable resources, if local policies so dictate. This will be done only if the re­
source information in the Data Processing Request is generic enough to allow this transferal. If the
resource information is tied to a particular computer because of the unique characteristics of this
computer, other error recovery actions, including Processing Operations staff intervention, may be
initiated.

4.5.4.5.2 Stimulus

The stimulus which causes a PGE to fail during execution, due to a problem with a resource, orig­
inates from a fatal error condition that is detected during processing of the algorithm. Most likely,
these type of external error conditions will not be overcome by the algorithm; the algorithm is still
expected to fail in a graceful manner to ensure the return of an appropriate error condition code.

4.5.4.5.3 Desired Response

The execution of a PGE will be terminated by the error handling component of the PGE; all PGEs
should contain a termination section built into the highest-level module of the PGE, through which
control ultimately passes and a final process status gets defined (e.g., at the end of a PGE shell
script). The resource which created the error condition should be replaced so that the PGE can be
reactivated.

4.5.4.5.4 Participating Classes from the Object Model

• COTS

• DpPrExecutable

• DpPrPcf

• DpPrPge

• DpPrExecutionManager

• DpPrResourceManager

• DpPrDataManager

• MsMgCallBacks

• MsManager

• MsEvent

4.5.4.5.5 Scenario Description

a.	 When the PGE fails due to a resource-induced fatal error condition during processing, the
following activities are performed:

1. Send a PGE condition code "Failed due to resource" to the COTS Scheduler

2.	 Signal that recovery efforts are under way - Update the COTS interface to display
"PGE Failed"

4-179 305-CD-011-001

3.	 Retrieve the error condition code from the PGE and activate the appropriate
recovery job (this is performed automatically through predefined job definitions).

4.	 Destage whatever output data was produced. This data will not be archived
necessarily, but may be used for investigation into the cause of the malfunction (the
actual list of data to preserve is identified at runtime through science software
interaction with the SDP Toolkit).

5.	 Destage the Process Control File (PCF) for this run to preserve a copy for SCF
investigation.

6.	 At this point, the resources are still allocated and all of the input data is still staged.
The Resource Management service is activated, as part of the data deallocation
phase, to perform a check on the health of the allocated resources to determine if the
fault was external or internal to the PGE.

(a)	 If the cause was due to resource problems, the PGE may be re-initiated after
sufficient resources are re-allocated. For the latter case, the Resource
Management service proceeds with cleanup activities in order to make room
for subsequent processing.

(b)	 If resources cannot be re-allocated to re-initiate the PGE, the Data
Processing Request for this PGE gets reprioritized within the COTS
Scheduler to be retried at a later time.

7. Update the operational mode of the wayward resource to "OFFLINE."

8. Log a report on the health of currently allocated resources to MSS.

9.	 Deallocate the Processing resources. All CPU resources will be reclaimed but
depending on the nature of the resource failure, only part of the PGE storage
resources may be deallocated.

(a)	 If the cause of the resource failure was due to one particular disk device (i.e.,
file system) on the local host then simply deallocate that resource if it was
allocated for the failed PGE. Only those PGE constituents which were
resident on that resource will need to be restaged

(b)	 If however the entire host contributed to the resource problems, then all
resources for that host will have to be deallocated. This means that all
executables and Status Message Files for the PGE will have to be restaged
to a different host for a subsequent run.

10.	 Send a message to the COTS Scheduler Log indicating that processing status is
"Failure".

b. End of Scenario.

4.5.4.5.6 Event Trace

Figure 4.5-26 shows the failure of processing resource event trace.

4-180 305-CD-011-001

COTS DpPrExecutable DpPrPcf DpPrPge DpPrExecutionManager DpPrResourceManager DpPrDataManager MsMgCallBacks MsManager MsEvent

Local Disk
Device Failure

Data on bad device is
not available for destaging

Full

Destage "selected"
Output Data

Destage Process
Control Mapping

Delete Pcf

Deallocate Processing
Resources

Destroy or
Remove

return Process Failed

DeallocateData()

return Partial Data saved for destaging

Destage()

~DpPrPcf

return Pcf removed

return Process Control Mapping destaged

DeallocateData()

QueryResourceStatus()

~MsMgCallBacks()

SetMsMgCallBackObj()

return Data
Deallocated

DeallocateResources()

Destage()

~PrExecutable()

return Executable removed

return Destaging
completed

DeallocateResource()

returm completed
deallocation

return Full Processing Deallocation performed

AgentRequestAndResponseString()

return Callback

MsEvent()

LogEvent()

Figure 4.5-26. Failure of Processing Resource Event Trace

4.5.5 Resource Management Scenarios

Resource Management services are provided to manage and monitor the Data Processing sub­
system resources which are used exclusively in the production environment. These services will be
used to maintain the information needed to track the health and availability of these resources and
coordinate their allocation and deallocation within the Data Processing subsystem.

Resource Management services include the following activities:

a.	 Initialization of Resource Management Information—This activity occurs at system
initialization and on the update of resource availability information as it is received from
MSS. This is the interface which will be used, in conjunction with MSS, to provide the
initial resource configuration and updated resource information. See scenario "Resource
Management: Initialization of Resource Management Information".

b.	 Modification of Resource Management Information—This activity occurs when resources
are allocated or deallocated to support data staging/destaging and PGE execution. See
scenario "Resource Management: Modification of Resource Management Information."

c.	 Query Resource Management Information—This activity occurs whenever Data
Management is checking for available resources, or when processing resources are needed
to stage a PGE and its components to a local resource. See scenario "Resource
Management: Query Resource Management Information" for more details.

4-181 305-CD-011-001

4.5.5.1 Resource Management Configuration Initialization

4.5.5.1.1 Abstract

The Planning and Data Processing resource characteristics are collected, maintained and used to
determine whether or not sufficient resources are available to support the Data Processing sub­
system production, such as the execution of PGEs and the staging of data for Data Processing Re­
quests. The initialization of these resources is accomplished through interaction with MSS to create
a working model of only those resources which may be used by Planning and Processing.

4.5.5.1.2 Stimulus

The stimulus for the initialization of the Resource Management Configuration is as follows:

The initialization of the Resource Management information is performed at Planning subsystem
start-up through manual interaction with the Planning workbench and at production plan activation
time.

4.5.5.1.3 Desired Response

A list of resources will be created and the data necessary to manage the resources, such as current
state (OFFLINE, ONLINE, etc.) and characteristics (e.g., amount of usable disk space) will be re­
corded.

4.5.5.1.4 Participating Classes From the Object Model

• ResourceManager

• PlResourceUI

• DpPrResourceConfiguration

• MsDAAC

• DpPrString

• DpPrComputer

• DpPrDiskPartition

• DpPrDiskAllocation

4.5.5.1.5 Scenario Description

a.	 Through manual interaction with a Planning provided User Interface (UI), the Resource
Manager activates the method to build the resource configuration.

b.	 Through the iterative application of a filtering method on MSS services, current DAAC
resource information which applies to Planning and Processing can be retrieved.

1.	 Create the appropriate resource objects using the configuration information
obtained from MSS. Initialize data for each resource in the Data Processing
subsystem.

(a)	 Initialize Computer resource information—Retrieve machine type,
operating system, number of CPUs, total RAM and current state.

4-182 305-CD-011-001

(b)	 Initialize Disk Device resource information—Retrieve file system base
paths, block size, total partition size and current state.

(c)	 Initialize Disk Allocation information—Retrieve all of the system uses for
this Disk Device.

2.	 Create a String object and associate it with this Computer resource, or add the
resource to the String if it's already defined.

b. End of Resource Management (Initialization of Resource Configuration Information).

4.5.5.1.6 Event Trace

Figure 4.5-27 shows the initialization of resource configuration information event trace.

Resource Manager

Resource Manager PlResourceUI DpPrResourceConfiguration MsDAAC DpPrString DpPrComputer DpPrDiskPartition DpPrDiskAllocation

BuildConfiguration()

for which computer
is member

of the Disk device

Add Computer to
existing string

Iterate for all Disk
devices connected

to computer

Iterate for all systems
uses of the Disk device

Create String

Iterate for all Disk devices
connected to computer

Iterate for all system uses

DpPrResourceConfiguration()

ApplyFilter()

FirstResource()

DpPrComputer()

DpPrString()

ApplyFilter()

NextResource()

DpPrComputer()

DpPrString()

End of iterations

End of iterations

DpPrDiskPartition()

DpPrDiskAllocation()

DpPrDiskPartition()

DpPrDiskAllocation()

Figure 4.5-27. Initialization of Resource Configuration Information
Event Trace

4.5.5.2 Modify the Resource Management Information

4.5.5.2.1 Abstract

The modification of the Resource Management information is performed whenever resources are
used to support the Processing CSCI, such as at the beginning, or end of the execution of a COTS
Scheduler defined job (i.e., Data Processing Request), or the beginning or end of the staging or de­

4-183 305-CD-011-001

staging of data. The state of a resource may also change as a result of system error conditions, or
as a resource is scheduled to be out of service.

4.5.5.2.2 Stimulus

The stimuli for the modification of the Resource Management List is the following:

a. Data Staging.

b. Data Destaging.

c. PGE Execution.

d. Resource Update Information obtained through MSS contact.

4.5.5.2.3 Desired Response

The entry of the resource to be modified will be updated to indicate current state of allocation, and/
or changed resource characteristics.

4.5.5.2.4 Participating Classes From the Object Model

• COTS

• DpPrPge

• DpPrExecutionManager

• DpPrResourceManager

• DpPrDataManager

• MsMgCallBacks

• MsManager

4.5.5.2.5 Scenario Description

a.	 Whenever the COTS Scheduler executes a job to allocate or deallocate resources, or if an
update to the status of resources has been acquired through MSS, do the following:

1. If a Resource status update has been obtained from MSS then

(a) Update the State of the Resource.

Resource State = {ONLINE,OFFLINE, etc.}

2. If Allocation of resources required for data staging and PGE Execution then

(a)	 Update allocation information for the resources involved in the current
processing.

(1) Allocate disk space to support Data staging and Output Generation.

(2)	 Allocate disk space required to support the hosting of the PGE's
executables and runtime Status Message Files (SMFs). This step will
only be necessary if the runtime files were not already resident due to
first time run of the PGE, or prior resource problems which
necessitated the removal of the files following a prior run.

4-184 305-CD-011-001

(3)	 Allocate the disk space required to support the Process Control File
(PCF) for this run of the PGE.

(4) Allocate the CPU(s) required to support PGE Execution.

(b) If Allocation failed due to resource problems then

(1) Obtain a resource status update from the MSS agent.

(2)	 Update the local resource status information and return an error
condition to the COTS Scheduler.

(3)	 Depending on the error condition, re-allocation of resources may be
performed to support the current processing (see 2a).

3. Following data destaging, if deallocation of resources required then

(a)	 Update information for the resources involved in the processing that just
completed. If the same PGE will be executing again on the same host, disk
space for the PGE's constituents (e.g., executable files) may not be
deallocated.

(1) Deallocate disk space to support Data staging and Output Generation.

(2)	 Deallocate disk space required to support the Process Control File
(PCF).

(3) Deallocate the CPU(s) required to support PGE Execution.

b. End of Resource Management: Modify Resource Management Information.

4.5.5.2.6 Event Trace

Figure 4.5-28 shows the modify resource information event trace.

4.5.5.3 Query the Resource Management List

4.5.5.3.1 Abstract

A query of the Resource Management information is performed to determine if resources are avail­
able to support the execution of a PGE. This scenario may also occur when checking to see if re­
source faults have occurred during PGE execution.

4.5.5.3.2 Stimulus

The stimuli for the query of the Resource Management information is the following:

This operation is performed whenever an allocation of processing resources is requested as a pre­
lude to the execution of a PGE.

4-185 305-CD-011-001

COTS DpPrPge DpPrExecutionManager DpPrResourceManager DpPrDataManager MsManager MsMgCallBacks

Allocate processing
resources

Stage executables

Execute PGE

PGE SW is
currently not local

MakeDataLocal()

Data Resource Allocation failed

MakeDataLocal()

Data Resources successfully allocated

AllocateResources()

Stage()

return Staged Executables

return Allocated Processing Resource

Execute()

Allocation failed
machine down

Allocate
Processors

Status Returned Asynchronously

Data Staged Locallly

AllocateResource()

return Resource Status

Allocation error

AllocateResource()

return AllocatedDiskSpace

AllocateResource()

Processors allocated

MsMgCallBacks()

MsManager()

SetMsMgCallBackObj()

AgentRequestAndResponseString()

Figure 4.5-28. Modify Resource Information Event Trace

4.5.5.3.3 Desired Response

The information being requested for a set of resources will be produced.

4.5.5.3.4 Participating Classes From the Object Model

• COTS

• DpPrExecutionManager

• DpPrResourceManager

• DpPrComputer

• DpPrDiskPartition

Allocate Space

Different Machine Used

Allocate Data
Resources

Re-allocate Data
in different machine

Disk Space Allocated

4-186 305-CD-011-001

4.5.5.3.5 Scenario Description

a.	 When the Execution Management services are performing the initiation of staging and
execution of a PGE, determine whether the appropriate resources will be available to
support PGE execution.

1.	 Query for information on the set of resources required by the PGE.

(a) Resource State {ONLINE, OFFLINE, etc.}

(b) Number of available processors

(c) Amount of available disk space

(d) Memory configuration for the machine

2. End of Resource Management (Query of Resource Management Information).

4.5.5.3.6 Event Trace

Figure 4.5-29 shows the query of resource management information event trace.

COTS DpPrExecutionManager DpPrResourceManager DpPrComputer DpPrDiskPartition

AllocateResources()

QueryResourceStatus()

GetStatus()

Resource Allocations
proceed as NORMAL

Status check completed

GetStatus()

AllocateResource()

Iterate for all disk devices
connected to computer

return Status

return Status

Figure 4.5-29. Query of Resource Management
Information Event Trace

4.5.6 Quality Assurance Scenarios

The Quality Assurance Scenarios represent a high-level view of how DAAC manual quality assur­
ance activities can be supported by the Processing CSCI. Since the process of DAAC manual qual­
ity assurance is still not a well understood process, the information presented in the scenarios will
be limited, but will provide a starting point on what the Processing CSCI will support. The general
approach to supporting DAAC manual quality assurance activities is to build on the support that
SDPS is providing for SCF and user quality assurance activities. These activities are supported by
providing data visualization tools, subscription submittal and withdrawal functions, and by allow­
ing the updating of quality assurance metadata by authorized personnel. These activities are sup­

4-187 305-CD-011-001

ported through Client provided functions. Any additional unique functions which are required only
for DAAC manual quality will be provided by the Processing CSCI.

4.5.6.1 Q/A Subscription Submittal

4.5.6.1.1 Abstract

A Q/A position can subscribe to data products generated by the Processing CSCI's execution of a

PGE. The Data Server then informs Q/A when the product has been generated and is available for

review. This allows Q/A to be decoupled from the generation and initial storage of the data product.

It also means that Q/A activities do not have to occur as soon as the product is generated.

4.5.6.1.2 Stimulus

Starting of the Q/A Monitor Command GUI with the intent of submitting a subscription will ini­
tiate the processing in this scenario.

4.5.6.1.3 Desired Response

The following actions will occur on the subscription request input:

a. The Data Server will be notified that Q/A wishes to subscribe to a data product.

b. The Data Server enters the subscription request.

c. The fact that the product is subscribed to is recorded in the PDPS database.

4.5.6.1.4 Participating Classes From the Object Model

a. DpPrQaMonitor

b. PlDataTypes

c. PlDataType

d. AdCollection

e. Advertisement

f. DsClSubscription

4.5.6.1.5 Scenario Description

a.	 The Q/A position brings up the Monitor Command Window and selects Display Data

Types for Subscription.

b.	 The Data Type Selection Window comes up, displaying the data types which are not

currently subscribed to.

c.	 The Q/A position selects the data type for subscription; the Data Type Selection Window

goes away.

d. The Q/A position selects to Submit the Subscription from the Monitor Command Window.

e.	 A subscription (Data Server Client public class) is created with a command type of Submit

and submitted to the Data Server.

f.	 The myQaSubscription flag in the Data Type information recorded in the PDPS database

is set to TRUE.

4-188 305-CD-011-001

4.5.6.1.6 Event Trace

Figure 4.5-30 shows the Q/A subscription submittal event trace.

QA Position DpPrQaMonitor PlDataTypes PlDataType IoAdAdvertisingSrv_C IoAdServiceCollection_C IoAdServiceAdvertisement_C
(Staff)

SelectDataType

(Advertisement)

DisplayDataTypes

SelectUnsubscribedTypes

IoAdServiceAdvertisement_C
SubmitSubscription

DsClSubscription()

SetQaSubscription(True)

Submit()

PlDataType()

IoAdAdvertisingSrv_C()

GetServiceCollector()

Search(PlDataTypeName,"Insert")

GetFirstServiceAd

Figure 4.5-30. Q/A Subscription Submittal Event Trace

4.5.6.2 Q/A Subscription Withdrawal

4.5.6.2.1 Abstract

A Q/A position can withdraw subscriptions to data products generated by the Processing CSCI's
execution of a PGE. The Data Server no longer informs Q/A when products of that data type have
been generated.

4.5.6.2.2 Stimulus

Starting of the Q/A Monitor Command GUI with the intent of withdrawing a subscription will ini­
tiate the processing in this scenario.

4.5.6.2.3 Desired Response

The following actions will occur on the subscription withdrawal input:

a.	 The Data Server will be notified that Q/A wishes to withdraw its subscription to a data
product.

b. The Data Server enters the subscription withdrawal request.

c. The fact that the product is no longer subscribed to is recorded in the PDPS database.

4.5.6.2.4 Participating Classes From the Object Model

a. DpPrQaMonitor

b. PlDataTypes

c. PlDataType

d. AdCollection

4-189 305-CD-011-001

e. Advertisement

f. DsClSubscription

4.5.6.2.5 Scenario Description

a.	 The Q/A position brings up the Monitor Command Window and selects Display Data
Types for Subscription Withdrawal.

b.	 The Data Type Selection Window comes up, displaying the currently subscribed-to data
types.

c.	 The Q/A position selects the data type for withdrawal; the Data Type Selection Window
goes away.

d.	 The Q/A position selects to Withdraw the Subscription from the Monitor Command
Window.

e.	 A subscription (Data Server Client public class) is created with a command type of
withdraw and submitted to the Data Server.

f.	 The myQaSubscription flag in the Data Type information recorded in the PDPS database
is set to FALSE.

4.5.6.2.6 Event Trace

Figure 4.5-31 shows the Q/A subscription withdrawal event trace.

QA Position DpPrQaMonitor
(Staff)

DisplayDataTypes

WithdrawSubscription

PlDataTypes PlDataType IoAdServiceCollection_C IoAdServiceAdvertisement_C IoAdAdvertisingSrv_C

SelectSubscribedTypes

SelectDataType

IoAdServiceAdvertisement_C

(Advertisement)
DsClSubscription()

SetQaSubscription(False)

Withdraw()

PlDataType()

IoAdAdvertisingSrv_C()

GetServiceCollector()

Search(PlDataTypeName,"Insert")

GetFirstServiceAd

Figure 4.5-31. Q/A Subscription Withdrawal Event Trace

4.5.6.3 Q/A Get Data

4.5.6.3.1 Abstract

When a product has been generated by a PGE and is available for review, the Data Server checks
to see if there are any Q/A subscriptions to that data. If there are, the Data Server sends e-mail to
the Q/A position stating that the product has been generated and is available for review.

4-190 305-CD-011-001

Then, when the Q/A position is ready to review the product, it starts up the Q/A Monitor Command
GUI and can request the data from the Data Server.

4.5.6.3.2 Stimulus

Entering the GetData command in the Q/A Monitor Command GUI will initiate the processing in
this scenario.

4.5.6.3.3 Desired Response

The following actions will occur upon the stimulus of this scenario:

a. Q/A enters a request for subscribed-to data.

b. The data is retrieved from the Data Server and returned to the Q/A position.

4.5.6.3.4 Participating Classes From the Object Model

a. DpPrQaMonitor

b. DsClESDTReference

c. PlDataGranules

d. PlDataGranule

4.5.6.3.5 Scenario Description

a.	 The Q/A position selects to Retrieve Data from the Monitor Command Window, using the
UR obtained in the e-mail message.

b. The correct instance of the data type is retrieved from the Data Server.

4.5.6.3.6 Event Trace

Figure 4.5-32 shows the Q/A subscriptions event trace.

Qa Position
(Staff) DpPrQaMonitor DsClESDTReference PlDataGranules PlDataGranule

GetData(UR)

ctor(UR)

Return Data

Inspect(esdtParmList)

MatchInstances(StartTime, StopTime)

ctor(Instance)

Figure 4.5-32. Q/A Subscriptions Event Trace

4-191 305-CD-011-001

4.5.6.4 Q/A Visualize Data

4.5.6.4.1 Abstract

When a product has been generated by a PGE and is available for review, the Data Server checks
to see if there are any Q/A subscriptions to that data. If there are, the Data Server sends e-mail to
the Q/A position stating that the product has been generated and is available for review.

Then, when the Q/A position is ready to review the product, it starts up the Q/A Monitor Command
GUI and can choose to visualize the data. This will retrieve the data from the Data Server and in­
voke EOSVIEW to display a visual interpretation of the product.

4.5.6.4.2 Stimulus

Entering the Visualize Data command in the Q/A Monitor Command GUI will initiate the process­
ing in this scenario.

4.5.6.4.4 Desired Response

The following actions will occur upon the stimulus of this scenario:

a. Q/A enters a request to visualize subscribed-to data.

b. The data is retrieved from the Data Server and returned to the Q/A position.

c. EOSVIEW is invoked to display a visual rendition of the product.

4.5.6.4.4 Participating Classes From the Object Model

a. DpPrQaMonitor

b. DsClESDTReference

c. PlDataGranules

d. PlDataGranule

e. EOSVIEW

4.5.6.4.5 Scenario Description

a.	 The Q/A position selects to Visualize Data from the Monitor Command Window, using the
UR obtained in the e-mail message.

b. The correct instance of the data type is retrieved from the Data Server.

c. EOSVIEW is invoked with the data retrieved from the Data Server.

4.5.6.4.6 Event Trace

Figure 4.5-33 shows the visualize science data event trace.

4-192 305-CD-011-001

Qa Position
(Staff) DpPrQaMonitor DsClESDTReference PlDataGranules PlDataGranule EOSVIEW

VisualizeData(UR)

ctor(UR)

Inspect(esdtParmList)

MatchInstances(StartTime, StopTime)

ctor(Instance)

OpenEOSVIEW(Instance)

Figure 4.5-33. Visualize Science Data Event Trace

4.5.6.5 Q/A Metadata Update

4.5.6.5.1 Abstract

Q/A specifies metadata associated with data products to which it subscribes. This metadata de­
scribes format, amount, sampling information, etc. Q/A has the option of changing or updating the
Q/A metadata associated with any data product.

4.5.6.5.2 Stimulus

Entering the Update Metadata command in the Q/A Monitor Command GUI will initiate the pro­
cessing in this scenario.

4.5.6.5.3 Desired Response

The following actions will occur upon the stimulus of this scenario:

•	 The quality assurance metadata is updated, the metadata update will be stored with the
product at the appropriate Data Server.

4.5.6.5.4 Participating Classes From the Object Model

a. DpPrQaMonitor

b. PlDataTypes

c. PlDataType

d. AdCollection

e. Advertisement

f. DsClESDTReferenceCollector

g. GlParameter

h. GlParameterList

4-193 305-CD-011-001

i. DsClCommand

j. DsClRequest

4.5.6.5.5 Scenario Description

a.	 The Q/A position brings up the Monitor Command Window and selects Display Data
Types for MetaData Update.

b.	 The Data Type Selection Window comes up, displaying the currently subscribed-to data
types.

c.	 The Q/A position selects the data type for which the Metadata is to be updated; the Data
Type Selection Window goes away.

d. The Q/A position selects to Update Metadata from the Monitor Command Window.

e.	 The Metadata Editor Window comes up, showing the current values for the fields which
are valid for the user to change. The user can update any or all these fields, followed by
selecting the Update function.

f. The Metadata Editor Window goes away.

g.	 The Q/A Monitor constructs and submits a request to the Data Server to update the existing
Metadata for the product with the new Metadata.

4.5.6.5.6 Event Trace

Figure 4.5-34 shows the update Q/A metadata event trace.

QA Position
PlDataTypes PlDataType

GlParameter GlParameterList DsClCommand DsClRequest

IoAdAdvertisingSrv_C

Multiple Parameters

DisplayDataTypes Select
Subscribed

Types

Search(PlDataTypeName,"Insert")

IoAdServiceAdvertisement_C()

UpdateMetaData

PlDataType()

GlParameter()

GlParameterList()

Insert(Parameter)

DsClCommand(Advertisement,ParameterList)

DsClRequest(Command)

DsClESDTReferenceCollector()

Submit(ESDTReferenceCollector)

GetFirstServiceAd()

IoAdAdvertisingSrv_C()

GetServiceCollector()

DpPrQaMonitor IoAdServiceCollection_C IoAdServiceAdvertisement_C
(Staff)

SelectDataType

(Advertisement)

Iterate for

if necessary

Figure 4.5-34. Update Q/A Metadata Event Trace

4.5.7 Data Pre-Processing Scenarios

The following scenario creates a preprocessed object by transforming a given data class. The scope

4-194 305-CD-011-001

of the scenarios includes all events impinging on or generated by certain objects in the Data Pre-
Processing CSC. The software used to create pre-processed data to be used by a PGE should be
thought of as a PGE. This PGE will be input into the Processing CSCI through the normal mecha­
nisms provided to the Planning CSCI.

4.5.7.1 Scenario for Producing O/A Data Set and Level Zero Data Set

4.5.7.1.1 Abstract

Consider an example of CERES data preprocessing using SDPF-generated L0 data, and FDF-gen­
erated definitive orbit data. Level 0 CERES data received from SDPF will be received by the Ingest
CSCI at the Goddard (GSFC) DAAC. The FDF-generated ephemeris data could arrive later than
L0 data. Metadata are extracted for both ephemeris and L0 data and archived for later use. The at­
titude data along with position data are used to earth-locate each CERES footprint and calculate
viewing geometry.

The ephemeris data from FDF will be in binary format as described in the FDF Generic Data Prod­
ucts Format ICD, 533-FDD-91/028, June 1991. There are two ways to handle the preprocessing of
FDF-generated ephemeris file. Either it could be reformatted to HDF-EOS, appropriate metadata
created and archived in the Data Server. If conversion to HDF is likely to degrade performance of
the CERES algorithm, then it is stored in the Data Server in the original format. When a CERES
Product Generation Executive (PGE) requests this ephemeris data, with information from the Plan­
ning subsystem, the data are retrieved from the Data Server, reformatted to the format of the hard­
ware where the PGE will be executed. Appropriate metadata are prepared for the SDP Toolkit, and
then staged for processing. This staged data is a new preprocessed object called "O/A Data Set".

When a CERES PGE requests L0 data, with information from the Planning subsystem, the Level
0 data and metadata are retrieved from the Data Server, and then staged for processing. This staged
data is a new preprocessed object called "L0 Data Set".

4.5.7.1.2 Stimulus

Initiation of Pre-Processing Job by COTS.

4.5.7.1.3 Desired Response

Generation of pre-processed emphemeris and attitude data sets.

4.5.7.1.4 Participating Classes From the Object Model

4.5.7.1.5 Scenario Description

Scenario for Creating an Attitude File

a. Identify L0 Housekeeping data sets to process

b. Establish L0 Housekeeping data set processing order ("remove overlaps")

c. Find a boxcar averaging window number of attitude telemetry packets

d. Check the QAC list to determine quality flagging of telemetry packets

e. Initialize boxcar averaging of roll, pitch and yaw angles and their rates

1. Check boxcar average to look for outliers in the angles and rates

4-195 305-CD-011-001

2. Write an attitude archive record

f. Find the next attitude telemetry packet

g. Check the QAC list to determine quality flagging of telemetry packets

h. Advance boxcar

1. Check boxcar average to look for outliers in the angles and rates

2. Write an attitude archive record

i. Exhaust attitude telemetry packets

j. Check the QAC list to determine quality flagging of telemetry packets

k. Terminate boxcar

1. Check boxcar average to look for outliers in the angles and rates

2. Write an attitude archive record

Scenario for Creating an Ephemeris File

a. Identify FDF data sets to process

b. Establish FDF data set processing order ("remove overlaps")

c. Read an FDF EPHEM format record

d. Unpack the FDF EPHEM format record orbital position and velocity vectors

e. Initialize boxcar averaging of the position and velocity vectors

1. Check boxcar average to look for outliers in position and velocity vector

2. Write ephemeris archive record

f.	 Advance boxcar

1. Check boxcar average to look for outliers in position and velocity vector

2 Write ephemeris archive record

g.	 Exhaust unpacked data points

h. Read next FDF EPHEM record

j. Unpack the FDF EPHEM format record orbital position and velocity vectors

k. Check for gaps in the position and velocity vector timelines

l. Advance boxcar

1. Check boxcar average to look for outliers in position and velocity vector

2. Write ephemeris archive record

m. Exhaust FDF EPHEM format records

n. Terminate boxcar

1. Check boxcar average to look for outliers in position and velocity vector

2. Write ephemeris archive record

4-196 305-CD-011-001

4.5.7.1.6 Event Traces

Figure 4.5-35 shows the creating ephemeris file event trace. Figure 4.5-36 shows the creating
attitude file event trace.

4.6 CSCI Structure
This section provides details on the underlying software structure of the Processing CSCI. The dif­
ferent components of the CSCI are defined, and a brief summary of the software architecture of the
Planning and Data Processing Subsystems is provided.

The software architecture for the Planning and Data Processing Subsystems can be divided into
three major layers of software:

a.	 PDPS User Interface Layer-contains the GUI applications used by the Operations staff to
initiate Planning, Processing, and Algorithm Integration & Test activities.

b.	 PDPS Application Layer—contains the functional components for Planning, Processing,
and Algorithm Integration & Test. These components work in collaboration with the GUI
applications to perform Operations staff activities.

c.	 PDPS Persistent Data Layer—contains the persistent data structures required by Planning,
Processing, and the Algorithm Integration & Test CSCIs. This data is retained within an
SYBASE RDBMS. These data structures include the AutoSys Database schemas as well
as the schemas required to support the Planning, Processing and Algorithm Integration &
Test CSCI applications.

Figure 4.6-1 provides a diagram of the PDPS software architecture.

The Processing CSCI is decomposed into a number of CSCs. The CSCs correspond either to an
application, or a class category describing a logically related set of functionality. The table below
briefly outlines the CSCs defined for the Processing CSCI. Table 4.6-1 provides a brief description
for each Processing CSC as well as a mapping to Custom or OTS software.

4.6.1 COTS CSC

4.6.1.1 Purpose and Description

The COTS CSC represents the COTS products, AutoSys and AutoXpert. A description of the com­
ponents of AutoSys and the capabilities provided by AutoSys and AutoXpert are summarized in
the following section.

There are three primary components of AutoSys:

a. AutoSys Database

b. Event Processor

c. Remote Agent

The AutoSys Database is the data repository for all system events as well as all job, monitor, and
report definitions. This database is an RDBMS. For ECS, the RDBMS is SYBASE.

4-197 305-CD-011-001

(Parent)

Generate TRMM
AttitudeDatasets

TRMM Attitude Event Trace

COTS DpPpTrmmOnBoardAttitudeData DpPpAttitudeProcessingSet DpPpQacList DpPpAttitudePackets DpPpAttitudePacket

4-198
305-C

D
-011-001

(inputFiles:List<string>,timeRanges:List<double>,DpPpQaParameters)

(fileNames:List<string>,startTime:double,endTime:double,
qaParams:DpPpQaParameters,qacLists:List<DpPpQacList>)Create boxcarWindowSize

number of instances.

(fileName:string)
Create as many instances

as housekeeping files.

(fileId:int)

(attitudePackets:DpPpAttitudePacket*)

Add boxcarWindowSize number of packets to queue.

recordNumber:int

(recordNumber:int):char

(qaFlag:int)

():list<double>

():list<double>

():list<double>

Get atttitude from current packet.

(spikeFlag:int)

():double

():double

Get times from current and preceding packets

(gapFlag:int)

(fileId:int)

(fileId:int)

Delete instance at
beginning of boxcar.

(fileId:int)

Extract the next packet and
place at end of boxcar.

Go back up to the checkQacFlag event and iterate
until the set has been processed.

(boxcarWindowSize:int,fileIds:List<int>)

Delete all instances.

Initiate advance of boxcar
by one attitude packet.

Advance packets through queue by one.

Append current attitude packet with
quality flag to attitude dataset.

Check for gap preceding current
attitude packet.

Check for attitude deviation in
current attitude packet.

Initialize attitude quality
status with QAC flag.

Get current attitude packet record number.

Lookup attitude packet QAC
flag in QAC table.

Set attitude quality status
to QAC flag.

Average attitude over boxcar window.

Get attitude from packets in boxcar.

Set spike flag after comparing average
and current attitudes.

Duration between current and
preceding packets decides gap.

Set gap flag.

ctor()

ctor()

ctor()

ctor()

addPacket()

checkQacFlag()

getRecordNumber()

getQacFlag()

setQaFlag()

checkForSpike()

getAverageAttitude()

getAttitude()

getAttitude()

setSpikeFlag()

computeGap()

checkForGap()

getTime()

setGapFlag()

writeCurrentPacket()

writeToNativeFile()

writeToHdfFile()

advanceBoxcarWindow()

refreshPackets()

dtor()

ctor()

dtor()

dtor()

dtor()

dtor()

ctor()

Figure 4.5-35. Creating Ephemeris File Event Trace

(Parent)

Generate TRMM
Ephemeris Datasets

TRMM FDF Processing Trace

COTS DpPpFdfTrmmDefinitiveOrbitData DpPpFdfProcessingSet DpPpEphemRecords DpPpEphemRecord DpPpEphemerisRecords DpPpEphemerisRecord

4-199
305-C

D
-011-001

(inputFiles:List<string>,timeRanges:List<double>,
qaParams:DpPpQaParameters)

(fileNames:List<string>,startTime:double,endTime:double,
qaParams:DpPpQaParameters)

(boxcarWindowSize:int,index:int)

(fileId:int)

(ephemerisRecords:DpPpEphemerisRecord*)

():List<double>

():List<double>

():List<double>

(spikeFlag:int)

():double

():double
Get times from current and preceding

ephemeris records.

(gapFlag:int)

(fileId:int)

Delete instance at
beginning of boxcar.

(fileId:int)
Extract the next ephemeris record

and place at end of boxcar.

Go back up to checkForSpike event and iterate
until the ephemeris set has been processed.

Delete all instances

(fileIds:List<int>)

Check for ephemeris deviation in
current ephemeris record.

Check for gap preceding the
current ephemeris record.

Get ephemeris from current record.

(ephemRecords:DpPpEphemRecord*)

(fileId:int)

Initiate advance of boxcar
by one ephemeris record.

Advance records through queue by one.

Append current ephemeris record with
quality flag to ephemeris dataset.

Set gap flag.

Duration between current and
preceding records decides gap.

Get ephemeris from records in boxcar.

Average ephemeris over boxcar window.

Create boxcarWindowSize number of queue records.

Place boxcarWindowSize number of records in queue.

Parse ephemeris records from EPHEM record.

Create 50 element ephemeris record
buffer for unpacked EPHEM record.

(index:int)

ctor()

ctor()

ctor()

ctor()

getEphemRecord()

addEphemerisRecord()

checkForSpike()

getAverageEphemeris()

getEphemeris()

getEphemeris()

setSpikeFlag()

checkForGap()

computeGap()

getTime()

setGapFlag()

writeEphemerisRecord()

writeToNativeFile()

writeToHdfFile()

advanceBoxcarWindow()

refreshEphemerisRecords()

dtor()

ctor()

dtor()

dtor()

dtor()

dtor()

ctor()

parseEphemRecord()

dtor()

ctor()

dtor()

Figure 4.5-36. Creating Attitude File Event Trace

PDPS Database

PDPS Persistent Data Layer
Planning Data
Processing Data
COTS schemas
AI&T Data

SYBASE RDBMS

PDPS Application Layer

AI&T Planner
Production

Processing Ops

PDPS User Interface Layer

Planning Applications

Processing Applications

AI&T Applications
COTS

Figure 4.6-1. PDPS Software Architecture

Table 4.6-1. Processing CSCI Components (1 of 2)
CSC Description Type (Custom=DEV; off-the­

shelf=OTS)

COTS This CSC is used to represent the COTS prod­
ucts, AutoSys and AutoXpert. AutoSys has three
major components; AutoSys Database, Event
Processor, and the AutoSys Remote Agent. Au­
toSys is responsible for providing job manage­
ment functions for the Processing CSCI. Also,
AutoSys provides two GUIs; the Operator Con­
sole and AutoXpert. See section 4.1.3 for more
information on AutoSys and AutoXpert capabili­
ties.

OTS

COTS Man­
agement

Provides services required to interface with the
COTS product, AutoSys. All unique AutoSys
command-line interfaces and APIs are encapsu­
lated into this collections of classes.

DEV

Resource
Management

Provides services for the management of Sci­
ence Processing Hardware resources. A low-lev­
el component used by the PGE Execution
Management and Data Management CSCs to al­
locate, deallocate, and monitor the using of Sci­
ence Processing Hardware resources.

DEV

Data Manage­
ment

Provides services to manage the data required to
support the execution of a PGE.

DEV

4-200 305-CD-011-001

Table 4.6-1. Processing CSCI Components (2 of 2)

PGE Execu­
tion Manage­
ment

Provides services required to prepare a PGE for
execution and perform post-processing activities.

DEV

Data Pre-Pro­
cessing

Provides data pre-processing services to prepare
ephemeris, O/A, and other ancillary data to be
used by the PGE.

DEV

Quality Assur­
ance Monitor
Interface

The HMI used for performing DAAC manual
quality assurance activities.

DEV

CSC Description Type (Custom=DEV; off-the­
shelf=OTS)

The Event Processor is the heart of AutoSys; it interprets and processes all the events it reads from
the AutoSys Database. Sometimes called the event-daemon, the Event Processor is the program,
running as a UNIX process, which actually runs AutoSys—it schedules and starts jobs. When start­
ed, the Event Processor continually scans the database for events to be processed. When it finds
one, it checks whether the event satisfies the starting conditions for any job in the database. Based
on this information, the Event Processor first determines what actions are to be taken, then instructs
the appropriate process (or Remote Agent) to perform the actions. These actions might be the start­
ing or stopping of jobs, checking for resources, monitoring existing jobs, or initiating corrective
procedures.

The Remote Agent is a temporary process started by the Event Processor in order to perform a spe­
cific task on a remote machine. It starts the UNIX command specified for a given job, sends infor­
mation about the task as event to the database, then exits. If the Remote Agent is unable to transfer
the information, it waits and then tries again.

To support fault tolerance, AutoSys provides a high availability option which consists of a shadow
database server plus a shadow event processor. In the event of a failure of the primary AutoSys
Database or Event Processor, the shadow AutoSys Database or Event processor will take over its
assigned role.

AutoSys is completely event-driven; i.e., to become activated by the Event Processor, an event
must occur for a job. For example, the starting data and time have arrived, a prerequisite job has
been completed, or a prerequisite file has been received. These events may come from a number
of sources, such as:

a. Jobs changing states, such as starting, finishing successfully, finishing unsuccessfully, etc.

b. Data and Time.

c. Internal AutoSys verification agents, such as detected errors.

d	 Events sent with the sendevent command (AutoSys API) - either from the command line,
or from user applications.

The following diagram, pictured in Figure 4-6.2 provides a sample scenario which describes the
interactions between the three primary components of AutoSys; the AutoSys Database, the Event
Processor, and the Remote Agent. This explains the steps taken to initiate a job which is defined
in AutoSys. The scenario steps are the following:

4-201 305-CD-011-001

a.	 From the RDBMS, the Event Processor reads a new event - a "start job" whose start time
has arrived. It reads the appropriate job definition from the database, and based on that
definition, determines what action to take (e.g. run the associated command line on Science
Processor).

b.	 The Event Processor communicates with the Remote Agent on the Science Processor. As
the Remote Agent receives the instructions from the Event Processor, the connection
between the two processes is dropped. Therefore, even if the Event Processor disappears
the remote machine is unaffected.

c.	 The Remote Agent performs such resource checks, such as ensuring that the minimum
specified number of processes are available, then "forks" a child process, which will
actually run the specified command.

d. The UNIX command completes and exits. The Remote Agent captures this exit code.

e.	 The Remote Agent communicates the event (exit code, status, etc.) directly to the RDBMS.
If the RDBMS is unavailable for any reason, the Remote Agent will go into a wait/resend
cycle until the message is delivered.

Only two AutoSys processes need to be running; i.e., the Event Processor and the RDBMS. When
these two components are running, AutoSys is fully operational. The Remote Agent is started on
a remote machine on an "as needed" basis. As soon as it completes its assigned task, it exits. Please
note that the Remote Agent gets started on the remote machine by the Event Processor talking to
the internet daemon (INETD) on the remote machine.

For details on the capabilities on AutoXpert, please see Section 4.1.4.3, Platinum Technology's
AutoXpert. In terms of the PDPS Preliminary Design Specification, AutoXpert provides functions
which were previously mapped to the Production Management CSC in the Planning CSCI. Since
these functions are being provided by the AutoSys and AutoXpert products, it seemed desirable to
map the COTS product to one CSCI. This decision eliminated the need to represent interfaces be­
tween AutoSys and AutoXpert across CSCI and Subsystem boundaries.

4.6.2 COTS Management CSC

4.6.2.1 Purpose and Description

The COTS Manager is a collection of classes used to interface with AutoSys. This is a part of the
Production Planning Workbench application. This collection of classes encapsulates the unique
AutoSys command-line interfaces and APIs and provides operations required by Planning to cre­
ate, modify, cancel, release, and request status of jobs which exist in the AutoSys Database. Oper­
ations are also provided to notify AutoSys of an external events such as resource fault information.

4.6.2.2 Object Model Mapping

Please refer to Section 4.3.3 for the Cots Management CSC Object Model.

4.6.2.3 Candidate Products

There are no candidate products for this CSC. This is a custom component required to interface
with ECS specific services.

4-202 305-CD-011-001

AutoSys

1

Event
Processor

AutoSys
RDBMS

Remote
Agent

UNIX
Job PDPS

Server

Science
Processor

RDBMS

- Events
- JobDef

Event Proc.

- Read DBMS
- Determine

Actions
- Initiate Job

Remote Agent

- Receive
Instructions

- Initiates Job
- Waits for

Exit Code
- Completes

and Exits

Unix Job

- Run Unix
command

- Completes
and Exits

2

3

4

Figure 4.6-2 Interaction of AutoSys' Database, Event Processor, and
Remote Agent

4.6.3 Resource Management CSC

4.6.3.1 Purpose and Description

The Resource Management CSC provides the services required for managing the Science Process­
ing Hardware resources used for the generation of data products. This CSC manages the storage
devices and computers which comprise the Science Processing Hardware resources. These Servic­
es support the allocation and deallocation of resources required for the execution of a PGE. Also
provided are operations to initialize a logical mapping of the Science Processing Hardware re­
sources. Currently, AutoSys provides some resource management capabilities. These services will
augment the capabilities of AutoSys.

4.6.3.2 Object Model Mapping

Please refer to Section 4.3.6 for the Resource Management CSC Object Model.

4-203 305-CD-011-001

4.6.3.3 Candidate Products

As stated before, AutoSys provides some limited resource management capabilities. ECS is com­
mitted to working with the vendor to influence the future direction of their product to meet the
needs of the ECS science processing environment management.

4.6.4 Data Management CSC

4.6.4.1 Purpose and Description

This application manages the staging, destaging, and retention of data on Science Processing Hard­
ware resources. The interface to the Science Data Server CSCI to stage (acquire) and destage (in­
sert) data is provided by this application. This is a distinct application which is initiated as
precursor job for a PGE. This job would be initiated by AutoSys when the dependencies defined
for this job have been met. This application interfaces with the PDPS Database to retain persistent
data on what data currently resides on Science Processing Hardware Resources.

4.6.4.2 Object Model Mapping

Please refer to Section 4.3.4 for the Data Management CSC Object Model.

4.6.4.3 Candidate Products

There are no candidate products for this CSC. This is a custom component required to interface
with ECS specific services.

4.6.5 PGE Execution Management CSC

4.6.5.1 Purpose and Description

This application performs preparation and post-processing activities to support the execution of the
PGE. These activities include the following:

a. Staging the executables and binaries which define the PGE, if required.

b.	 Creating the Process Control File (PCF) used to support the PGE. PCF contains input and
output data information.

c.	 Preparing the Production History File to be destaged (inserted) into the Science Data
Service CSCI with the science data products. The Production History File will contain
information used as inputs to the PGE (the Data Processing Request information) as well
as resource utilization information.

d. Deallocation of resources at the completion of data destaging.

4.6.5.2 Object Mapping

Please refer to Section 4.3.5 for the Data Management CSC Object Model.

4.6.5.3 Candidate Products

There are no candidate products for this CSC. This is a custom component required to interface
with ECS specific services.

4-204 305-CD-011-001

4.6.6 Data Pre-Processing CSC

4.6.6.1 Purpose and Description

The Data Pre-Processing CSC provides a set of services which allow the use of Orbit and Attitude
(O&A) data, Level O, and Ancillary data products as inputs into the generation of EOSDIS data
products. The services provided will modify the format of the data for which the PGE is expecting.

Data Preprocessing can be defined as preliminary processing or application of operations on a data
set which do not alter or modify its scientific content. Preprocessing includes changes to the format
of a data set by reordering the lower level byte structure, reorganization of a data set (ordering data
items within and between physical files), preparing additional metadata based on lower level meta­
data, etc. There is a clear need for preprocessing. Data coming from various sources will be in nu­
merous formats, containing a variety of metadata information that may or may not be suitable
during certain stages of data handling. Due to a large number of potentially heterogeneous data
sets, it is unlikely that they will be acceptable to services within ECS in their original form. As data
move within the system, these incompatibilities can create obstacles to the smooth and efficient
processing of data. The Preprocessing functions act on these data, and by introducing consistency
make product generation seamless. It is important to distinguish Preprocessing as a logical group
of processing functions and the Preprocessing CSC that contains some of these functions.

The data that needs preprocessing are:

•	 External ancillary data that are required as input for the generation of Standard Products.
These data are non-EOS data (e.g., data from the National Oceanic and Atmospheric
Administration (NOAA)).

•	 Attitude data contained in the spacecraft ancillary packet within Level Zero (L0) data from
the Sensor Data Processing Facility (SDPF) for Tropical Rainfall Measuring Mission
(TRMM).

•	 Orbit/Attitude (O/A) data contained in the spacecraft ancillary packet within L0 data from
EOS Data and Operations Systems (EDOS) for EOS-AM.

• L0 Data Header received from EDOS for EOS-AM.

•	 Repaired orbit data generated by the Flight Dynamics Facility (FDF) for EOS-AM as
replacement for defective onboard orbit data. For TRMM, the definitive orbit is FDF­
generated but comes via SDPF.

The major functions that will be performed by Data Pre-Processing CSC are:

•	 Reformat FDF ephemeris data sets to Hierarchical Data Format with EOS extensions
(HDF-EOS) format.

•	 Prepare additional metadata required by the Science Data Processing (SDP) Toolkit. The
Preprocessing functions will derive any additional metadata from existing metadata to
provide to the SDP Toolkit.

• Provide the SDP Toolkit L0 header and O/A data in a compatible format.

•	 Extract additional metadata (in addition to metadata extraction at ingest) to support services
on certain ancillary data sets as necessary.

4-205 305-CD-011-001

4.6.6.2 Object Model Mapping

Please refer to section 4.3.8 for the Data Pre-Processing CSC Object Model.

4.6.6.3 Candidate Products

There are no candidate products for this CSC. This is custom software.

4.6.7 Quality Assurance Monitor CSC

4.6.7.1 Purpose and Description

The Quality Assurance Monitor CSC is defined as the services required for DAAC manual quality
assurance activities. The Quality Assurance Monitor software provides the Human-Machine Inter­
face (HMI) and other support activities necessary to support DAAC manual quality assurance. This
application is a completely separate from AutoSys. These DAAC manual quality assurance activ­
ities occur in a non real-time environment, i.e., there are no inherent dependencies between the per­
formance of DAAC manual quality assurance activities and the active daily job schedule. Any
quality assurance dependencies are handled through the Planning CSCI subscription Manager
component. This application requires capabilities to subscribe to data and to be notified of the
availability of data which exists at a Science Data Server CSCI. Also, this application uses public
classes provided by the Science Data Server CSCI to update quality assurance metadata for a given
science data product.

4.6.7.2 Object Model Mapping

Please refer to Section 4.3.7 for the Data Pre-Processing CSC Object Model.

4.6.7.3 Candidate Products

There are no candidate products for this CSC. This is a custom component required to interface
with ECS specific services.

4.7 Processing CI Management and Operations
The following sections discuss the management and operation of the Processing CSCI, addressing
how the CSCI is managed at the local and system levels. The Processing CSCI in relation to the
system management strategy is discussed in Section 4.7.1. The approach to the development of op­
erator interfaces for the Processing CSCI is then described in Section 4.7.2. Finally, the approach
to reporting for the Processing CSCI is described in Section 4.7.3. This section addresses the op­
erations and management activities as they relate to the Processing CSCI of the Processing Sub­
system. The other major software component of the Subsystem, the AITTL CSCI, is discussed in
Section 7.6.

The role of Production Management is discussed by providing information on the following topics:

• Operations activity level

• Interaction with Planning CSCI

• Use of AutoSys and AutoXpert for queue management and monitoring

• Resource Management

4-206 305-CD-011-001

• QA Monitoring

Use of AutoSys and AutoXpert

A significant management concept for the Processing CSCI is the use of the AutoSys and AutoX­
pert job scheduling and monitoring software packages as a central component of the subsystem.
These tools provide significant capabilities for the scheduling, execution, and monitoring of the
production processing workload. The tools provide a reliable, off-the-shelf mechanism to define
the processing tasks in an extremely flexible fashion, meeting all of the needs of the science soft­
ware for controlling complex processing flows from one executable to another within a PGE. Ca­
pabilities such as AutoSys' 'Job Boxes' provide the needed mechanisms for job dependency
definition. This capability to address complex job dependencies insures that DAAC management
has the ability, now and for future instruments, to support the data processing schemes of science
software developers. Additionally, these tools provide for job error handling, logging of job status
and some resource management capabilities, which are extended as required by ECS custom soft­
ware.

The operator interface provided by AutoXpert provides three views of the processing activities: the
Timeline view depicting the development of processing over time, the Job Network view depicting
the relationships between jobs and job boxes, and the Resource view which depicts the allocation
of processing activities to processors within the system. Note that the AutoXpert provides the ca­
pability to perform limited 'what-if' capabilities to assess the impact of delayed processing on
downstream activities. In addition, within AutoSys, the operators are able to modify job character­
istics of individual jobs, such as the modification of priorities associated with a job. These tools
provide significant capabilities for operations to manage and control processing activities within
the ECS.

Operations Activity Level

A key design consideration for the Processing CSCI is that the operations personnel will interact
with individual science data processing jobs on an exception basis only. No interactions is required
of the operations personnel for normal operations, except for those required by the science software
itself. No operations actions are required to start or stop a job, or to stage or destage data files. Op­
erations personnel are provided with job monitoring tools through the AutoXpert system allowing
them to observe the progress of the job through the system. Operations personnel are expected to
monitor processing for anomalies that may require their attention. The AutoXpert tool provides
alerts to operations for predefined conditions, such as processing jobs that have run beyond the ex­
pected end time.

Interaction with the Planning CSCI

The Processing CSCI is matched with the Planning CSCI to manage and control the significant sci­
ence data processing activities allocated to the DAACs. The preparation or definition of processing
activities to be accomplished is performed by the Planning CSCI. When the planning for the pro­
cessing tasks has been completed and the necessary data has arrived to initiate the processing, the
Planning CSCI releases the processing task to the Processing CSCI for subsequent management
through the processing activities. This cooperative management of the planning and execution ac­
tivities is a key feature of the management of science data processing.

4-207 305-CD-011-001

Resource Management

The Processing CSCI provides resource management capabilities to control the allocation of pro­
cessing tasks to processors. This capability allocates and deallocates processing resources as re­
quired for PGE Execution Management and Data Management CSCs. This capability maintains
information on the processors allocated to the Processing CSCI for use in the management of sci­
ence data processing. As tasks terminate and processors become available for other activities, the
resource management function keeps track of the state of the processors. The Processing CSCI
monitors the use of resources by the PGEs during their execution. This information is used to
project the performance of the PGEs for the purpose of planning future processing.

QA Monitoring

The Processing CSCI includes tools to support quality assurance monitoring of the products gen­
erated during science processing. These capabilities include subscription services to access the data
files that are to be quality checked, data visualization tools, and interfaces to update metadata for
the products with QA information. This collection of utilities are a part of the essential items need­
ed to manage the data quality checking operations that are an aspect of the end-to-end science data
processing activity.

4.7.1 Processing CSCI and the System Management Strategy

The system management strategy as supported by the Processing CSCI is discussed in the follow­
ing paragraphs.

4.7.1.1 System Management and Operations Philosophy

A primary design consideration for the Processing CSCI from the point of view of system manage­
ment and operations is that operator interactions with Processing be simplified and automated as
much as possible. In addition, the Processing CSCI provides operations with the needed flexibility
to respond to unexpected tasks as they arise. The objectives of simplification and flexibility are at­
tained, in large part, through the use of the AutoSys/AutoXpert scheduling tool.

4.7.1.2 Processing CSCI and the System

The following paragraphs discuss key features of the Processing CSCI in relation to system man­
agement.

Processors and Job Allocation

A key design feature of the Processing Subsystem is that only a single science processing job or
PGE is allocated to a processor at a time. Because most processing systems are operated in a multi­
processing mode (i.e., multiple jobs simultaneously submitted for processing with swapping be­
tween jobs), the following paragraphs how this decision was reached.

Of the more than 120 PGEs evaluated (through AHWGP provided materials) for Release A and B,
four are I/O-limited and the remainder are compute-limited. In most cases, then, there is no advan­
tage to dispatching more than one PGE on the same processor at the same time. The multi-process­
ing scheduling algorithm employed by most operating systems is sensitive to the I/Os that a
processing task performs - when a task that has access to the processor attempts to perform a disk
I/O, the task will be swapped out while the I/O completes and another task waiting for the processor
is swapped in. Other factors are reflected in task scheduling but this is a key factor. This scheme

4-208 305-CD-011-001

works well as long as a mixture of I/O-bound and CPU-bound jobs are submitted together for ex­
ecution—the jobs can overlap I/Os with CPU activity thereby resulting in a net speedup in process­
ing. For the job mix anticipated for the ECS, however, the unbalanced mix does not provide the
overlapped I/O and CPU jobs as most tasks would be waiting for the processor.

However, information is maintained for each PGE describing the PGE characteristics. These char­
acteristics include information describing the degree to which the PGE is I/O-limited or CPU-lim­
ited. Because the information is available describing PGE characteristics, operations may modify
the process scheduling control parameters to allow a collection of jobs with a mixture of CPU-lim­
ited and I/O-limited jobs to be allocated to a single processor. The decision to make this change in
job allocation strategy can be made during operations based on actual experience with the PGE ex­
ecution characteristics.

Resource Management and MSS

The Processing CSCI includes capabilities to control the processing resources available to it for
science processing. Configuration information received from MSS is used to define the resources
available. The current schedule of ground events (e.g., hardware maintenance activities) is also
used as a part of the job scheduling process by reserving particular processors for ground events.
The Processing CSCI then participates with the MSS in the management of the system processing
resources to provide significant flexibility for resource management.

Data Staging and Destaging

The Processing CSCI, in conjunction with the Planning CSCI, provides for management of science
data files between related processing jobs. In the general case, a science processing PGE requires
several data files, which must be staged from the Data Server/Ingest prior to job execution. How­
ever, most processing jobs require data files that are the product of another PGE. For example, a
Level 1a processing job might produce a Level 1a data file that is used as input to a Level 2 pro­
cessing job. The Processing CSCI attempts to schedule processing jobs so that data files do not
need to stage input files from the Data Server if the files have recently been produced and reside
on processor local disks. This eliminates needless delays for data file staging. By providing this
broader view of data file management, the Processing CSCI contributes to improved systems man­
agement.

Enterprise Management and Processing

As with the other components of the ECS, the Processing CSCI contributes to the enterprise man­
agement approach to system management. The Processing CSCI interacts with the MSS for startup
and shutdown procedures. The Processing CSCI uses MSS provided services for the detection and
management of faults. It also cooperates with MSS for other enterprise capabilities including log­
ging of events and providing system management information, such as accounting information.
The Processing CSCI also receives information from the MSS for resource management, as dis­
cussed earlier. In this way the Processing CSCI participates with the other ECS CSCIs to provide
a systematic approach to system management.

PGE Interactions

To include the PGEs into the system management approach, the Processing CSCI provides access
to the PGE for management of the PGE execution. The PGE Process Control File that is used by
the PGE to receive control information is constructed by the Processing CSCI based upon direc­

4-209 305-CD-011-001

tions received from the science software developers at the AI&T event. The Processing CSCI also
provides an interface to the Data Server staging the PGE if necessary. This scheme incorporates
the PGE into the system management scheme.

4.7.2 Operator Interfaces

This subsection describes the operator user interfaces provided by the Processing CSCI to opera­
tions personnel. A general description of the framework and methodology employed for the devel­
opment of these interfaces can be found in Section 4.7. of the Detailed Design Overview (305-CD­
001-001). This subsection augment that information with additional design information which is
specific to the Processing CSCI.

The operator user interfaces for the science data production environment are COTS provided in­
terfaces. In addition, the operator user interface for the DAAC Quality Assurance operations posi­
tion will be a ECS custom application. This custom graphical interface will be created with the aid
of the Integrated Computer Solutions' Builder Xcessory. Builder Xcessory enables the developer
to manage Motif graphical user interface projects by providing a WYSIWYG, drag and drop, vi­
sual development environment. Once an interface is constructed, Builder Xcessory will generate
C++ code which represents the GUI and encapsulates the C-based Motif Widget set. The generated
C++ code can then be combined with other Processing CSCI specific code.

4.7.2.1 Off-The-Shelf Interfaces

The Job Scheduling COTS products, AutoSys and AutoXpert, provide GUIs to interface with their
applications. The AutoSys GUI, known as the Operator Console, provides capabilities to manage
and monitor a schedule of jobs. The GUI provides visibility to the job stream as well as supporting
alarm and monitoring mechanisms. Also provided is a set of job interfaces which allow the opera­
tor to interact with a job. These interfaces support job creation, modification, cancellation, suspen­
sion, and modification. More information on the AutoSys product can be found in Section 4.1.4
and the underlying subsections.

AutoXpert is another GUI which used in conjunction with AutoXpert can provide three different
abstract views of the current production schedule. These three graphical views are called TimeS­
cape, JobScape, and HostScape. All three views offer intuitive GUI controls and full-color to illus­
trate job status and activity in real-time/projection and simulation modes

TimeScape graphically displays the timing and duration of currently running jobs. Jobs are dis­
played in a Gannt style ribbon graph that shows both starting and ending times. This type of rep­
resentation gives you a comprehensive view of how job dependencies affect job duration and how
modifications to the current stream of events will affect overall job execution. TimeScape provides
real-time monitoring, projection, and simulation. In real-time/projection mode, TimeScape shows
real-time execution alongside projections based on past runs. Projections compare the current run
to previous runs and provide a prediction of how current events will affect the future. In addition,
the duration of a job can be modified and the downstream impact to the job schedule can be deter­
mined. Also, the completion status of a job can be changed to determine the impact on dependent
jobs. In simulation mode, an entire schedule of jobs can be sped up to determine how the schedule
will be followed.

JobScape gives a detailed representation of job flow from a logical, or dependency, point of view.

4-210 305-CD-011-001

It depicts jobs in a flow diagram, showing the starting conditions for a each job. The flow of the
job steam can be followed visually, step by step. Simulations in JobScape also provide a valuable
means for testing jobs before they are activated. By running in simulation mode, the job definition
can be checked for errors.

HostScape provides a view of jobs that are currently executing and the resources being used to ex­
ecute the job. HostScape continually verifies whether AutoSys can start jobs on each machine and
notifies the console if a machine is unavailable.

Each of these views can assist the operations staff in providing production management oversight.
The capabilities of viewing the job stream abstractly were originally mapped to the Production
Management CSC of the Planning CSCI. Because of the capabilities of AutoXpert to provide this
capability, these capabilities are now mapped to the Processing CSCI. Additional capabilities to
perform what-ifs on the daily job schedule are also provided. These capabilities will be helpful in
determining the downstream affects of production anomalies, i.e., a job running longer than pre­
dicted or a job failure, would have on the job schedule.

More information on AutoSys and AutoXpert product can be found in Section 4.1.4 and the under­
lying subsections.

4.7.2.2 Processing CSCI User Interfaces

This section is intended to describe the data that may be displayed for the operations of the Pro­
cessing CSCI's applications. The exact definition of the GUI will be decided by requesting user
suggestions and through demonstrating prototypes.

Quality Assurance Monitor

The Quality Assurance Monitor is a utility which provides the operations staff with the capability
to perform quality assurance activities which are defined as data visualization, updating quality as­
surance metadata, and subscribing to data. The GUI for the Quality Assurance Monitor will be con­
structed with custom code which interfaces to the PDPS Database for storage of outstanding
quality assurance subscriptions. The subscription editor would contain a single view which would
allow an operator to enter product subscriptions to the Science Data Server. Two lists could be pro­
vided: one list containing unsubscribed products and the second list containing subscribed prod­
ucts. Functions would be provided to assist the operator in adding or deleting subscriptions to these
products.

As part of the GUI, utilities would be provided to initiate data visualization tools, such as EOS-
VIEW, which will be used to visualize a science data product and to update quality assurance meta­
data for a data product. The update of the quality assurance metadata would occur through the use
of public classes provided by the Data Server.

4.7.3 Reports

A variety of ad-hoc and canned reports will be available to the DAAC operations staff to assist in
the monitoring of the activities associated with the Processing CSCI. These reports are readily ac­
cessible given that the Processing CSCI persistent data is maintained in the PDPS Database, a SY-
BASE RDBMS. Also, ECS application management information is maintained in the MSS
database, which is used to log system events. The canned reports will include the following:

4-211 305-CD-011-001

a.	 Planning Workload and Processing Turn-Around Reports—These reports will provide
tracking information on planned vs. actual processing results. The information provided
will include job statistics for a Data Processing Request to allow comparisons in planned
vs. actual resource consumption, planned start and end time vs. actual start and end time,
planned resource, i.e., machine, allocation vs. actual resource, etc.

b.	 Processing Management Reports—These reports will provide the operations staff
information on Processing application software events which have occurred. This
information will be available from the MSS database.

c.	 Job Status/Event Reports—These reports will provide information on the history of the
AutoSys job schedule. All status and event changes for a job will be logged in the AutoSys
Database. Any information associated with a job can reported on.

d.	 Resource Allocation Report—These reports will track the ability of the Processing CSCI
Resource Management CSC to effectively manage the Science Processing Hardware
resources.

e.	 Quality Assurance Report—These reports will be used to track what products have been
Q/A'ed vs. the products awaiting Q/A.

f.	 DPR Job Status Report—These reports will capture the current state of all the jobs which
have been created to support the processing of one PGE.

g.	 PGE Resource Profile Report—These reports will capture information on the actual usage
of resources which have been used by a PGE. This information will be fed back into the
PDPS Database to update the current PGE Resource Profile.

Other ad-hoc reports can be defined to assist the Production Planning Operations staff in perform­
ing their activities. The PDPS Database is the repository used to maintain information on Produc­
tion Requests and associated Data Processing Requests, Data Subscriptions, PGE Profiles, etc.
These reports can be used to track modifications and provide historical information on these data
objects. Because of the use of a consistent RDBMS throughout ECS, the sharing of information
between different databases is simplified and will allow for consistent definitions for any number
of reports.

4-212 305-CD-011-001

5. SDPTK - Science Data Processing Toolkit CSCI

5.1 CSCI Overview
The Science Data Processing Toolkit is on the Incremental Track and has been documented else­
where. See the following references for SDPTK CSCI details.

333-CD-001-002 SDP Toolkit Users Guide for the ECS Project

193-801-SD4-001 PGS Toolkit Requirements Specification for the ECS Project, FINAL,
[AKA GSFC 423-16-02]

175-WK-001-001 Draft HDF-EOS Primer for Version 1 EOSDIS

Table 5.1-1 provides a list of the Computer Software Components in the SDPTK CSCI, indicating
which components will be mapped to COTS and which will be custom. EOS-HDF is described in
the "Draft HDF-EOS Primer for Version 1 EOSDIS." The remaining CSCs are documented in Sec­
tion 6 of the "SDP Toolkit Users Guide for the ECS Project" and Section 6 of the "PGS Toolkit
Requirements Specification for the ECS Project."

5-1 305-CD-011-001

Table 5.1-1. SDPTK Computer Software Components

CSC Description Type (Custom = DEV;
off-the-shelf = OTS)

Ancillary Data Access Provides subsetting and parameter searches
to several data sets, i.e., NMC, Digital
Elevation Model, DIgital CHart of the World.

DEV

Celestial Body Position Provides position vector of planetary and
stellar bodies.

DEV

Coordinate System
Conversion

Provides conversion between platform frame
and a variety of other reference frames, i.e.,
Earth Centered Inertial.

DEV

Constant and Unit
Conversions

Provides access to a table of standard
scientific constants and unit conversions.

DEV

Ephemeris Data Access Provides access to TRMM and EOS platform
ephemeris; simulated or actual.

DEV

Geo Coordinate
Transformation

Provides transformation of geocentric lat./long
coordinates to a variety of standard projec­
tions.

DEV

Input/Output Provides opens and closes of files through
information in a process control file.

DEV

Memory Management Provides users access to dynamic and shared
memory allocation.

DEV

Meta Data Access Provides access to metadata configuration file
(contents of ECS core metadata standard).

DEV

Process Control Provides access to process control information
supplied by the user and by the production sys­
tem, including file handles and file attributes.

DEV

Status Message File
(Error/Status)

Provides access to status message files
created by user and by the production system.

DEV

Time Date Conversion Provides conversions between Toolkit internal
time and various standard time systems.

DEV

Math Package Provides a mathematics and statistics library
for science algorithm development and product
production.

COTS

Graphics Library Provides a library of graphics routines for
visual display of EOS products and quality da­
ta.

COTS

EOS-HDF Provides an extension to NCSA HDF API - This
API includes support for grid, point and swath
data structures.

DEV

5-2 305-CD-011-001

6. DPREP - Science Data Pre-Processing CSCI

6.1 CSCI Overview
The Science Data Pre-Processing CSCI has been absorbed into the designs of the Processing CSCI
of the Data Processing Subsystem and the Ingest CSCI of the Ingest Subsystem. See Section 4 of
this document and Section 4 of the Ingest Subsystem volume.

6-1 305-CD-011-001

This page intentionally left blank.

6-2 305-CD-011-001

7. AITTL - Algorithm I&T CSCI

7.1 CSCI Overview
The purpose of the Algorithm Integration and Test Tools (AITTL) Computer Software Configura­
tion Item (CSCI) is to provide the software tools required to integrate and test (I&T) the science
software at the Distributed Active Archive Center (DAAC). The science software will be devel­
oped by a Science Computing Facility (SCF), which may be at a different location than the DAAC.

The division of responsibilities between the DAAC and the SCF is generally the following: The
SCF is responsible for developing the science software and ensuring that the generated products
are scientifically correct. The DAAC is responsible for integrating the science software into the
production environment, ensuring that the software will run safely (i.e., will not interfere with the
production environment or with other product generation), and running the software in a produc­
tion mode. The machine on which the science software is developed at the SCF is liable to be of a
different class than the machine on which the software is run at the DAAC.

The developer/operator division that is characteristic of the science software lifecycle causes the
DAAC I&T personnel to have certain special requirements. The I&T team needs to be able to do
the following things:

•	 Receive a science software delivery from the SCF. The delivery will be made either
electronically or on hard media.

•	 Examine the science software delivery for correctness and completeness. This includes:
examining accompanying documentation, verifying that prescribed coding standards have
been followed, and running preliminary static and dynamic diagnostic tools to check for
potential errors. The delivered files must also be placed under configuration control.

• Compile and link the delivered source files.

•	 Run test cases. For the most part, these test cases will be supplied by the SCF as part of
the delivery. Also supplied by the SCF, for each test case, will be a set of required input
files and a corresponding set of output files. Since some of the input files may already
reside at the DAAC, the I&T personnel also need the ability to manually stage inputs from
the data servers. The DAAC I&T team will re-run each test case and compare their outputs
with those supplied by the SCF. Because the SCF and DAAC machines may have
different precision, the file comparison utility needs to be more sophisticated than the
usual Unix "diff" tool: it needs to be able to screen out differences that are due only to
differences in precision. In addition, the ability to examine product metadata is required.

•	 Diagnose errors. This requires access to: interactive debuggers, screen dump utilities, data
visualization tools, and so on.

•	 Collect resource requirement statistics. This includes: CPU time, memory requirements,
disk space requirements, and so on. The collection of such statistics is required both as a
"sanity check", to make sure that the measured requirements match the expected values,
and also for the PGE database, which is used by the Planning and Processing systems to
execute the science software properly.

7-1 305-CD-011-001

•	 Update the system databases once the science software has completed acceptance testing.
This includes: adding the source code and documentation to the data server, so that they
may be distributed to requesting users, and adding the resource requirement information
to the PGE database.

• Write reports and maintain the I&T log.

• Write additional ad-hoc test tools.

Satisfaction of these requirements is distributed across several systems. The ingest client for sci­
ence software will be supplied by the Ingest Subsystem (INS) of the Science Data Processing Seg­
ment (SDPS). Configuration management and problem tracking tools will be provided by the
Management Subsystem (MSS) of the Communications and System Management Segment
(CSMS). Compilers, linkers, debuggers, and other development and operating system tools will be
furnished by the Algorithm Integration and Test Hardware Configuration Item (AITHW) of the
Data Processing Subsystem (DPS) of SDPS, since such utilities are so closely wedded to the pro­
cessing platforms. In addition, some of the standards checking and profiling requirements will
probably be satisfied by AITHW as well, since certain of these capabilities will be found in com­
pilers and development environments. The remaining requirements will be satisfied by AITTL.

The AITTL-supplied tools therefore fall into the following categories:

• Tools to view science software documentation.

• Tools to check compliance of science software to ESDIS-specified coding standards.

• Code analysis tools.

• Data visualization tools.

• HDF file comparison tool.

• Binary file comparison environment.

• Profiling tool.

• Tool to register science software files in the processing system.

• Tool to kickoff execution of PGEs.

• Tools for writing reports and maintaining the I&T logs.

• Tools for checking Process Control Files and for prohibited functions.

• Tools to display product metadata.

Most of the functions for the Algorithm Integration & Test CSCI are being developed as working
prototypes and delivered for Interim Release 1(IR-1). The release A design approach is based on
using the IR-1 release as a basis for which to add Release A capabilities. Since AITTL CSCI is very
operations oriented, as much feedback from DAAC Operations who have used the IR-1 AITTL
tools, will be incorporated into the Release A AITTL capabilities. As in IR-1, the Job Scheduler
COTS product, AutoSys, can be used to manage the execution of jobs on AITTL HW. These jobs
represent the execution of a PGE or associated preparation or post-processing jobs. More informa­
tion is included on AutoSys in Section 4 of this document. Included in the previously provided in­
formation is material related to AutoSys' Operations interfaces. Presented as part of the design are
object model representations of the GUI interfaces being developed for AITTL.

The formation of the AITTL design material is the following:

7-2 305-CD-011-001

a. Section 7.2—AITTL Context.

b. Section 7.3—AITTL Object Model.

c.	 Section 7.4—AITTL Dynamic Model focussing on AIT Manager GUI scenarios,
including some detailed event traces.

d.	 Section 7.5—AITTLlFunctional Model representing the many tool dependent data flows
for AITTL.

f.	 Section 7.6—AITTL Operational Scenarios, presents some operational scenarios showing
how the AITTL tools may be used in the integration and test process, rather than the usual
dynamic model;

g. Section 7.7—AITTL Structure which defines the CSC components of the AITTL CSCI.

h.	 Section 7.8—AITTL Management and Operation defines some management and
operations concepts used in developing the AITTL CSCI design.

For additional information on science software integration and test procedures, see also: 205-CD­
002-001, Science User's Guide and Operations Procedures Handbook for the ECS Project, Part 4,
and JU9403V1, Science Software Integration and Test. For information on the ESDIS science soft­
ware coding standards and guidelines, see: 423-16-01, Data Production Software and Science
Computing Facility (SCF) Standards and Guidelines.

7.2 CSCI Context
The context diagram for the AITTL CSCI is shown in Figure 7.2-1.

AITTL has interfaces with two other ECS subsystems: the Data Server Subsystem and the Plan­
ning Subsystem.

The purpose of the interface with the Data Server is to archive a tested delivery (Science Software
Archive Package) and to manually stage inputs (Data File). The Data Server also provides infor­
mation about science software that is already archived on the data server (Data Server Informa­
tion). Requests for data transfers (Data Transfer Request) and other information (Data Server
Request) are sent to the Data Server.

The purpose of the interface with Planning is to update the PGE database, a database containing
resource requirements and other information about each product generation executive (PGE) of the
science software. This information is needed by the system to plan and execute the PGEs correctly
and efficiently. Information about PGEs that are already recorded in the database (PGE Database
Information) are received from Planning. The required information about a PGE (PGE Profile) is
sent to Planning to be placed in the database, as are requests to update or get information from the
database (PGE Database Request).

The primary interface for AITTL is with the operator(s) responsible for integration and test. The
operator sends commands (I&T Tool Command) to the various tools, supplies the standards check­
ers with the desired standards (Standards) and guidelines (Guidelines), supplies the file compari­
son utility with thresholds (File Comparison Threshold) to filter out differences due to precision
differences, provides metadata (Science Software Metadata) about the science software delivery to
the utility that updates the data server with the new science software, and enters information into
reports (Report Information) and into the integration and test log (Log Information). The tools dis­

7-3 305-CD-011-001

play various results (I&T Tool Results), science software documentation (Displayed Document),
and integration and test reports (Displayed I&T Report) for the operator to examine.

Finally, the tools send hardcopy of science software documentation (Printed Document), as well
as integration and test reports and tool results (Printed I&T Report) to the printer.

Algorithm
Integration and

Test Tools

Data
Server

Planning

Operator

Authorized
User

Printer

This System

Data Server Information,
Data File

Science Software Archive Package,
Data Server Request,
Data Transfer Request

Log Display
Command

Displayed
I&T Log

PGE Database Information

PGE Profile,
PGE Database Request

Printed Document,
Printed I&T Report

Standards, Guidelines,
File Comparison Threshold,
Science Software Metadata,

Report Information, Log Information,
I&T Tool Command

I&T Tool Results,
Displayed Document,
Displayed I&T Report

Figure 7.2-1. Algorithm Integration and Test Tools Context
Diagram

7.3 CSCI Object Model
This section gives the object model for the AIT Manager GUI. This GUI is used by the DAAC op­
erator to check in and verify the science software code as delivered by the SCFs. The GUI runs
instrument-specific compilation and execution scripts, configuration management scripts, custom
code checking, file display and comparison tools, and COTS tools such as office automation and
analysis environment programs. The AIT Manager GUI contains a graphical checklist of AI&T
steps in delivery and testing of science software, and a display of a log file.

Figure 7.3-1 shows the algorithm integration and test IR-1 object model. Figure 7.3-2 shows the
algorithm integration and test support for data sever I/F object model.

7-4 305-CD-011-001

7-5
305-C

D
-011-001

DpAtMgrCheckPcfGui

DpAtMgrCom

DpAtMgrCmdLineData

DpAtMgrProhibFuncListData

DpAtMgrCheckProhibFuncCom DpAtMgrCheckProhibFuncGui

myLanguage
myProhibFuncList
myNumProhibFuncs

ReadProhibFuncs(EcTChar*, EcTChar**)
GetProhibFuncs(EcTChar**)
$DpAtProhibFuncListData(EcTChar*)
GetNumProhibFuncs(EcTInt)

DpAtMgrCheckHdfFile

MgrGui

DpAtMgr

DpAtMgrInstrConfigData

DpAtMgrChecklistData

DpAtMgrLogData

DpAtMgrGuiActivityData

myActivityRequest
mySelectedArea
myMenuSelection
myText
myProgramReturnValue

$DpAtMgrGuiActivityData()
PutSelectedArea(EcTInt)
PutMenuSelection(EcTInt*)
GetSelectedArea()
GetMenuSelection()
PutActivityRequest(EcTInt)
GetActivityRequest()
GetProgramReturnValue()
PutProgramReturnValue(EcTInt)

myNumScripts
myScriptOptions
myLogFileLogical
myChecklistFileLogical
myScriptFileLogicals
myScriptLabels

ReadFile()
WriteToFile()
GetLogFileLogical()
GetChecklistFileLogical()
$DpAtMgrInstrConfigData()
WriteMotifRcFile()

myInstrumentName
myInstrConfigLogical
myStaticMotifRcFileLogical

PutInstrumentName(EcTChar*)
PutInstrConfigLogical(PGSt_PC_Logical)
GetInstrumentName()
GetInstrConfigLogical()
$DpAtMgrCmdLineData()
WriteToFile()
GetStaticMotifRcFileLogical()
PutStaticMotifRcFileLogical(PGSt_PC_Logical)

DpAtMgrBinaryFileEnvironmentGui

xterm

Windows emulator

myNumItems
myItemIsChecked
myCurrentIndex
myActivityFlag
myLabels
myItemIds

$DpAtMgrChecklistData()
SaveToFile()
PutCurrentIndex(EcTInt)
GetCurrentIndex()
ChangeItemState()
GetActivityFlag()
PutActivityFlag(EcTInt)
CurrentIndexIsChecked()

Processor(DpAtMgrGuiActivityData, DpAtMgrChecklistData, DpAtMgrLogData)
Checklist(DpAtMgrChecklistData,EcTBoolean*)
Log(DpAtMgrLogData,DpAtMgrChecklistData)
File(EcTInt*)
Options(EcTInt*)

Analysis environment

EosView

Instrument-specific script
Web browser

Text-graphics viewer

Postscript file viewer

FORTRAN 77 code checker

General visualization tool

UTILITY menu items

DpAtPgeRegTool

DpAtProcGui

myHelpFIleLogicals

RUN menu items

CM script

Help(EcTInt*)

myDate
myTime
myChecklistIndex
myAnnotation
myItemId
myFileHandle
myActivityFlag

$DpAtMgrLogData()
PutChecklistIndex(EcTInt)
GetActivityFlag()
WriteLogEntry()
ReadLogEntry(EcTInt)
FindLogEntryGui()
EditLogAnnotation()
PutActivityFlag(EcTInt)

myMotifRcFileData

SpawnProgram(EcTChar*)
RunProgram(EcTChar*)
Processor(DpAtMgrGuiActivityData,DpAtMgrChecklistData,DpAtMgrLogData)
DisplayReturnValue(EcTChar*,EcTInt)

App

_ : EcTChar* = "\0"
_ : EcTChar**
_ : EcTInt = 0

_
+
+
+

_ : EcTInt = 0
_ : EcTInt = 0
_ : EcTInt*
_ : EcTChar*
_ : EcTInt = 0

+
+
+
+ : EcTInt
+ : EcTInt*
+
+ : EcTInt
+ : EcTInt
+

_ : EcTInt = 0
_ : EcTChar**
_ : PGSt_PC_Logical = 0
_ : PGSt_PC_Logical = 0
_ : PGSt_PC_Logical*
_ : EcTChar**

+ : EcTInt
+ : EcTInt
+ : PGSt_PC_Logical
+ : PGSt_PC_Logical
+
+ : EcTInt

_ : EcTChar* = "\0"
_ : PGSt_PC_Logical = 0
_ : PGSt_PC_Logical = 0
+
+
+ : EcTChar*
+ : PGSt_PC_Logical
+
+
+ : PGSt_PC_Logical
+

_ : EcTInt = 0
_ : EcTBoolean*
_ : EcTInt = 0
_ : EcTInt = 0
_ : EcTChar*
_ : EcTInt*

+
+ : EcTInt
+
+ : EcTInt
+ : EcTInt
+ : EcTInt
+
+ : EcTBoolean

+ : EcTInt
+ : EcTInt

+ : EcTInt
+ : EcTInt

_ : PGSt_PC_Logical*

+ : EcTInt

_ : DpTAtMgrDate
_ : DPTAtMgrTime
_ : EcTInt = 0
_ : EcTChar*
_ : EcTInt = 0
_ : PGSt_IO_Gen_FileHandle
_ : EcTInt = 0
+
+
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : EcTInt

_ : EcTChar**

+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : EcTInt

GetChecklistFileLogical

GetInstrConfigLogical
GetStaticMotifRcFileLogical

Processor
ctor

PutActivityFlag
GetActivityFlag
WriteLogEntry
ReadLogEntry

FindLogEntryGui

GetActivityFlag
SaveToFile

ChangeItemState
CurrentIndexIsChecked

EditLogAnnotation

PutSelectedArea
PutMenuSelection
GetActivityRequest

PutProgramReturnValue

Processor
ctor()

PutActivityFlag
PutCurrentIndex

GetSelectedArea
GetMenuSelection
PutActivityRequest

GetProgramReturnValue

ctor ctor

ctor

GetLogFileLogical

ctor

RunProgram

SpawnProgram
SpawnProgram

SpawnProgram
SpawnProgram

RunProgram

RunProgram

RunProgram

SpawnProgram

SpawnProgram

SpawnProgram
SpawnProgram

SpawnProgram

ctor

RunProgram

TOOL menu items

Figure 7.3-1. Algorithm Integration and Test IR-1 Object Model

DpPrAITManualIF

myManualIFWindow

Stage(Item:GlUR)
Destage(Item:GlUR)

_

+
+

Submits Request Through

DsClESDTReferenceCollector

DsClRequest

Builds

DsClCommand

Figure 7.3-2. Algorithm Integration and Test Support for Data Server I/F Object
Model

7.3.1 Analysisenvironment Class

Parent Class: Not Applicable
Public: No Distributed Object: No

7-6 305-CD-011-001

Purpose and Description:

This is an Abstract Class. It represents the following tools, SPARWORKS on a Sun

machine or CASEVision for an SGI machinge. This association is used to show how the

tool can be initiated from the GUI. It is callable from the UNIX command line and initiates

analysis environment.

Attributes:

None

Operations:

None

Associations:

The Analysisenvironment class has associations with the following classes:
Class: MgrGui SpawnProgram

7.3.2 CMscript Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is an Abstract Class. It represents a Script for use with CM tool (ClearCase). It is
callable from the Unix command line.

Attributes:

None

Operations:

None

Associations:

The CMscript class has associations with the following classes:
Class: MgrGui RunProgram

7-7 305-CD-011-001

7.3.3 DpAtMgr Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
General processor of AIT Manager Kicks off COTS, custom and instrument-specific
scripts Calls checklist, log, other processors

Attributes:

myHelpFIleLogicals - PCF file logicals for Help files to display
Data Type: PGSt_PC_Logical*
Privilege: Private
Default Value:

Operations:

Checklist - Checklist processor Called by DpAtMgr.Processor() Input:
DpAtMgrChecklistData instance
Arguments: DpAtMgrChecklistData,EcTBoolean*
Return Type: EcTInt
Privilege: Public

File - File menu processor Called by DpAtMgr.Processor() Input: menuSelection, ...

Arguments: EcTInt*

Return Type: EcTInt

Privilege: Public

Help - Help menu processor

Arguments: EcTInt*

Return Type: EcTInt

Privilege: Public

Log - Log processor Called by DpAtMgr.Processor()

Arguments: DpAtMgrLogData,DpAtMgrChecklistData

Options - Options menu processor Called by DpAtMgr.Processor() Input: menuSelection,

...

Arguments: EcTInt*

Return Type: EcTInt

Privilege: Public

7-8 305-CD-011-001

Processor - Main processor for data returned by GUI

Arguments: DpAtMgrGuiActivityData, DpAtMgrChecklistData, DpAtMgrLogData

Return Type: EcTInt

Privilege: Public

Associations:

The DpAtMgr class has associations with the following classes:
Class: DpAtMgrChecklistData
GetActivityFlagSaveToFileChangeItemStateCurrentIndexIsChecked
Class: DpAtMgrGuiActivityData
GetSelectedAreaGetMenuSelectionPutActivityRequestGetProgramReturnValue
Class: DpAtMgrCom Processorctor
Class: DpAtMgrLogData
PutActivityFlagGetActivityFlagWriteLogEntryReadLogEntryFindLogEntryGuiEditLog
Annotation

7.3.4 DpAtMgrBinaryFileEnvironmentGui Class

Parent Class: MgrGui
Public: NoDistributed Object: No
Purpose and Description:

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DpAtMgrBinaryFileEnvironmentGui class has associations with the following classes:
None

7-9 305-CD-011-001

7.3.5 DpAtMgrCheckHdfFile Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is an Abstract Class. It is used to represent the IDL program to compare two HDF files,
and also to display metadata. It is callable from the Unix command line.

Attributes:

None

Operations:

None

Associations:

The DpAtMgrCheckHdfFile class has associations with the following classes:
Class: MgrGui RunProgram

7.3.6 DpAtMgrCheckPcfGui Class

Parent Class: MgrGui
Public: No Distributed Object: No
Purpose and Description:
DpAtMgrCheckPcfGui is the GUI for checking Process Control Files (PCFs) for valid
syntax and required contents.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DpAtMgrCheckPcfGui class has associations with the following classes:
None

7-10 305-CD-011-001

7.3.7 DpAtMgrCheckProhibFuncCom Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This is an Abstract Class used to represent a.Prohibited function checker. This is the Unix
command line version

Attributes:

None

Operations:

None

Associations:

The DpAtMgrCheckProhibFuncCom class has associations with the following classes:
Class: DpAtMgrCheckProhibFuncGui
Class: DpAtMgrProhibFuncListData

7.3.8 DpAtMgrCheckProhibFuncGui Class

Parent Class: MgrGui
Public: No Distributed Object: No
Purpose and Description:
Input GUI for prohibited function checker

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DpAtMgrCheckProhibFuncGui class has associations with the following classes:
Class: DpAtMgrCheckProhibFuncCom

7-11 305-CD-011-001

7.3.9 DpAtMgrChecklistData Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
Stores data for AIT Manager checklist

Attributes:

myActivityFlag - Flag to indicate activity received from GUI =0, No activity =1,
myCurrentIndex changed state selected/not selected =2, "Save Checklist" button pushed
Data Type: EcTInt
Privilege: Private
Default Value: 0

myCurrentIndex - Current index of checklist item If myActivityFlag=1 received from

GUI, this item changed state from/to checked/unchecked

Data Type: EcTInt

Privilege: Private

Default Value: 0

myItemIds - Array of checklist identifiers, numbered consecutively One for each checklist

item

Data Type: EcTInt*

Privilege: Private

Default Value:

myItemIsChecked - Array of states for checklist items =EcDFalse, item is not checked

=EcDTrue, item is checked

Data Type: EcTBoolean*

Privilege: Private

Default Value:

myLabels - Array of checklist labels to display on GUI screen One label for each checklist

item

Data Type: EcTChar*

Privilege: Private

Default Value:

myNumItems - Number of items for this checklist

Data Type: EcTInt

Privilege: Private

Default Value: 0

7-12 305-CD-011-001

Operations:

$DpAtMgrChecklistData - Constructor for class DpAtMgrChecklist data Reads checklist
data from file
Arguments:
Return Type: Void
Privilege: Public

ChangeItemState - Changes state myItemIsChecked[myCurrentIndex] from/to

checked/unchecked

Arguments:

Return Type: EcTInt

Privilege: Public

CurrentIndexIsChecked - Returns EcDTrue if myCurrentIndex is checked; EcDFalse if

not

Arguments:

Return Type: EcTBoolean

Privilege: Public

GetActivityFlag - Get value of myActivityFlag

Arguments:

Return Type: EcTInt

Privilege: Public

GetCurrentIndex - Gets index (ID) of current checklist item

Arguments:

Return Type: EcTInt

Privilege: Public

PutActivityFlag - Set value of myActivityFlag

Arguments: EcTInt

Return Type: Void

Privilege: Public

PutCurrentIndex - Sets index (ID) of current checklist item

Arguments: EcTInt

Return Type: Void

Privilege: Public

SaveToFile - Saves checklist data to a file

Arguments:

Return Type: EcTInt

Privilege: Public

7-13 305-CD-011-001

Associations:

The DpAtMgrChecklistData class has associations with the following classes:
Class: DpAtMgr GetActivityFlagSaveToFileChangeItemStateCurrentIndexIsChecked
Class: DpAtMgrInstrConfigData GetChecklistFileLogical
Class: MgrGui PutActivityFlagPutCurrentIndex
Class: DpAtMgrCom ctor

7.3.10 DpAtMgrCmdLineData Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
Stores all data which may be specified on the initial AIT Manager command line.

Attributes:

myInstrConfigLogical - Logical ID in Process Control File (PCF) for instrument
configuration data for this AIT Manager session
Data Type: PGSt_PC_Logical
Privilege: Private
Default Value: 0

myInstrumentName - Name of instrument for this AIT Manager session

Data Type: EcTChar*

Privilege: Private

Default Value: "\0"

myStaticMotifRcFileLogical - PCF file logical for user-editable static Motif menu data

for this AIT Manager session *****This file is in the same format as the Motif resources

file It contains all menu labels, sub-menu labels, etc. *except* the Run menu data, plus any

user preferences such as colrs, fonts, etc.

Data Type: PGSt_PC_Logical

Privilege: Private

Default Value: 0

Operations:

$DpAtMgrCmdLineData - Constructor for DpAtMgrCmdLineData
Arguments:
Return Type: Void

7-14 305-CD-011-001

Privilege: Public

GetInstrConfigLogical - Gets instrument configuration file logical ID for PCF

Arguments:

Return Type: PGSt_PC_Logical

Privilege: Public

GetInstrumentName - Gets instrument name

Arguments:

Return Type: EcTChar*

Privilege: Public

GetStaticMotifRcFileLogical - Gets static motif resources file logical for PCF

Arguments:

Return Type: PGSt_PC_Logical

Privilege: Public

PutInstrConfigLogical
Arguments: PGSt_PC_Logical

Return Type: Void

Privilege: Public

PutInstrumentName - Puts instrument name into storage

Arguments: EcTChar*

Return Type: Void

Privilege: Public

PutStaticMotifRcFileLogical
Arguments: PGSt_PC_Logical

Return Type: Void

Privilege: Public

WriteToFile - Writes command line configuration for this AIT Manager session to file

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DpAtMgrCmdLineData class has associations with the following classes:
Class: DpAtMgrInstrConfigData GetInstrConfigLogicalGetStaticMotifRcFileLogical
Class: DpAtMgrCom ctor

7-15 305-CD-011-001

7.3.11 DpAtMgrCom Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is an Abstract Class used to represent the Main program module for invoking the AIT
Manager. It is the main program, callable from the Unix command line.

Attributes:

None

Operations:

None

Associations:

The DpAtMgrCom class has associations with the following classes:
Class: MgrGui Processorctor()
Class: DpAtMgr Processorctor
Class: DpAtMgrChecklistData ctor
Class: DpAtMgrCmdLineData ctor
Class: DpAtMgrGuiActivityData ctor
Class: DpAtMgrInstrConfigData ctor
Class: DpAtMgrLogData ctor

7.3.12 DpAtMgrGuiActivityData Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class is the interface between the GUI/Motif code and the external code. GUI
callbacks are accesses of this class's data through its operations.

Attributes:

myActivityRequest - GUI activity requested by calling module =0, take no action =1,
redisplay entire GUI =2, redisplay checklist only =3, redisplay log only =4, destroy entire
GUI =5, edit current log entry
Data Type: EcTInt
Privilege: Private

7-16 305-CD-011-001

Default Value: 0

myMenuSelection - Index of item selected on menus myMenuSelection[0] = main menu

item index myMenuSelection[0]=0, File menu myMenuSelection[0]=1, Options menu

myMenuSelection[0]=2, Tools menu myMenuSelection[0]=3, Run menu

myMenuSelection[0]=4, Utilities menu myMenuSelection[0]=5, Help menu

myMenuSelection[1] = sub menu item index myMenuSelection[1]=0, 1st sub menu item

etc myMenuSelection[2] = sub sub menu item index myMenuSelection[2]=0, 1st sub sub

menu item

Data Type: EcTInt*

Privilege: Private

Default Value:

myProgramReturnValue - Return value from program selected from Tools, Run or Help

menu

Data Type: EcTInt

Privilege: Private

Default Value: 0

mySelectedArea - Portion of GUI that the user clicked on =0, no selection =1, main menu

=2, checklist =3, log

Data Type: EcTInt

Privilege: Private

Default Value: 0

myText - Text written by user into GUI Used to annotate log

Data Type: EcTChar*

Privilege: Private

Default Value:

Operations:

$DpAtMgrGuiActivityData - Constructor for DpAtMgrGuiActivityData
Arguments:
Return Type: Void
Privilege: Public

GetActivityRequest - Get value of myActivityRequest

Arguments:

Return Type: EcTInt

Privilege: Public

7-17 305-CD-011-001

GetMenuSelection - Get value of myMenuSelection

Arguments:

Return Type: EcTInt*

Privilege: Public

GetProgramReturnValue - Get value of myProgramReturnValue

Arguments:

Return Type: EcTInt

Privilege: Public

GetSelectedArea - Get value of mySelectedArea

Arguments:

Return Type: EcTInt

Privilege: Public

PutActivityRequest - Set value of myActivityRequest

Arguments: EcTInt

Return Type: Void

Privilege: Public

PutMenuSelection - Set value of myMenuSelection

Arguments: EcTInt*

Return Type: Void

Privilege: Public

PutProgramReturnValue - Set value of myProgramReturnValue

Arguments: EcTInt

Return Type: Void

Privilege: Public

PutSelectedArea - Set value of mySelectedArea

Arguments: EcTInt

Return Type: Void

Privilege: Public

Associations:

The DpAtMgrGuiActivityData class has associations with the following classes:
Class: DpAtMgr
GetSelectedAreaGetMenuSelectionPutActivityRequestGetProgramReturnValue
Class: MgrGui
PutSelectedAreaPutMenuSelectionGetActivityRequestPutProgramReturnValue
Class: DpAtMgrCom ctor

7-18 305-CD-011-001

7.3.13 DpAtMgrInstrConfigData Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
Stores instrument-specific configuration data

Attributes:

myChecklistFileLogical - Checklist file PCF logical for this instrument configuration
Data Type: PGSt_PC_Logical
Privilege: Private
Default Value: 0

myLogFileLogical - Log file PCF logical for this instrument configuration

Data Type: PGSt_PC_Logical

Privilege: Private

Default Value: 0

myNumScripts - Number of scripts available for this instrument configuration

Data Type: EcTInt

Privilege: Private

Default Value: 0

myScriptFileLogicals - Script file PCF logicals for this instrument configuration, one for

each script

Data Type: PGSt_PC_Logical*

Privilege: Private

Default Value:

myScriptLabels - Script labels for this instrument configuration, for display on GUI

menu, one for each script

Data Type: EcTChar**

Privilege: Private

Default Value:

myScriptOptions - Command line options available for this instrument configuration, one

for each script

Data Type: EcTChar**

Privilege: Private

Default Value:

7-19 305-CD-011-001

Operations:

$DpAtMgrInstrConfigData - Constructor for DpAtMgrInstrConfigData
Arguments:
Return Type: Void
Privilege: Public

GetChecklistFileLogical - Gets myChecklistFileLogical

Arguments:

Return Type: PGSt_PC_Logical

Privilege: Public

GetLogFileLogical - Gets myLogFileLogical

Arguments:

Return Type: PGSt_PC_Logical

Privilege: Public

ReadFile - Read an instrument configuration file to set all the private data members of this

class

Arguments:

Return Type: EcTInt

Privilege: Public

WriteMotifRcFile - Reads the static Motif resources file, and writes its data and the Run/

script data to the dynamic Motif resources file

Arguments:

Return Type: EcTInt

Privilege: Public

WriteToFile - Write all private data members of this class to an instrument configuration

file

Arguments:

Return Type: EcTInt

Privilege: Public

Associations:

The DpAtMgrInstrConfigData class has associations with the following classes:
Class: DpAtMgrChecklistData GetChecklistFileLogical
Class: DpAtMgrCmdLineData GetInstrConfigLogicalGetStaticMotifRcFileLogical
Class: DpAtMgrLogData GetLogFileLogical
Class: DpAtMgrCom ctor

7-20 305-CD-011-001

7.3.14 DpAtMgrLogData Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
Stores data for AIT Manager instrument-specific log

Attributes:

myActivityFlag - Flag to indicate activity received from GUI =0, No activity =1, Checklist
item was checked =2, "NEXT" button pushed =3, "CANCEL" button pushed =4, "LAST"
button pushed
Data Type: EcTInt
Privilege: Private
Default Value: 0

myAnnotation - Annotation text for this log entry

Data Type: EcTChar*

Privilege: Private

Default Value:

myChecklistIndex - Index of checklist item which generated this log entry

Data Type: EcTInt

Privilege: Private

Default Value: 0

myDate - Date of this log entry

Data Type: DpTAtMgrDate

Privilege: Private

Default Value:

myFileHandle - Log file handle for input to read/write functions

Data Type: PGSt_IO_Gen_FileHandle

Privilege: Private

Default Value:

myItemId - Unique log entry ID

Data Type: EcTInt

Privilege: Private

Default Value: 0

myTime - Time of this log entry

Data Type: DPTAtMgrTime

Privilege: Private

Default Value:

7-21 305-CD-011-001

Operations:

$DpAtMgrLogData - DpAtMgrLogData constructor Reads last entry in log file
Arguments:
Return Type: Void
Privilege: Public

EditLogAnnotation - Edits or creates a log entry annotation is a text editor window

Arguments:

Return Type: EcTInt

Privilege: Public

FindLogEntryGui - GUI for searching for a text string in the log file entries (not the

annotations)

Arguments:

Return Type: EcTInt

Privilege: Public

GetActivityFlag - Get value of myActivity flag

Arguments:

Return Type: EcTInt

Privilege: Public

PutActivityFlag
Arguments: EcTInt

Return Type: EcTInt

Privilege: Public

PutChecklistIndex - Sets value of myChecklistIndex

Arguments: EcTInt

Return Type: Void

Privilege: Public

ReadLogEntry - Read a log entry from the log file

Arguments: EcTInt

Return Type: EcTInt

Privilege: Public

WriteLogEntry - Write a log entry to the log file

Arguments:

Return Type: EcTInt

Privilege: Public

7-22 305-CD-011-001

Associations:

The DpAtMgrLogData class has associations with the following classes:
Class: MgrGui
Class: DpAtMgrInstrConfigData GetLogFileLogical
Class: DpAtMgr
PutActivityFlagGetActivityFlagWriteLogEntryReadLogEntryFindLogEntryGuiEditLog
Annotation
Class: DpAtMgrCom ctor

7.3.15 DpAtMgrProhibFuncListData Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
Stores data for prohibited function checker

Attributes:

myLanguage - Computer language of code to check: C, Fortran 77, Fortran 90 or Ada
Data Type: EcTChar*
Privilege: Private
Default Value: "\0"

myNumProhibFuncs - Number of prohibited functions for this language

Data Type: EcTInt

Privilege: Private

Default Value: 0

myProhibFuncList - Array of names of prohibited functions for a given language

Data Type: EcTChar**

Privilege: Private

Default Value:

Operations:

$DpAtProhibFuncListData - Constructor
Arguments: EcTChar*
Return Type: Void
Privilege: Public

GetNumProhibFuncs - Gets number of prohibited functions from this class
Arguments: EcTInt

7-23 305-CD-011-001

Return Type: Void

Privilege: Public

GetProhibFuncs - Gets prohibited function list from this class storage

Arguments: EcTChar**

Return Type: Void

Privilege: Public

ReadProhibFuncs - Reads prohibited function list from a file

Arguments: EcTChar*, EcTChar**

Return Type: Void

Privilege: Private

Associations:

The DpAtMgrProhibFuncListData class has associations with the following classes:
Class: DpAtMgrCheckProhibFuncCom

7.3.16 DpAtPgeRegTool Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is an Abstract Class which represents the GUI for registering a PGE in the Data
Processing subsystem. It is callable from the Unix command line.

Attributes:

None

Operations:

None

Associations:

The DpAtPgeRegTool class has associations with the following classes:
Class: MgrGui RunProgram

7.3.17 DpAtProcGui Class

Parent Class: Not Applicable
Public: No Distributed Object: No

7-24 305-CD-011-001

Purpose and Description:

This is an Abstract Class used to represent the .GUI for starting a job in the Data Processing

subsystem. It is callable from the Unix command line.

Attributes:

None

Operations:

None

Associations:

The DpAtProcGui class has associations with the following classes:
Class: MgrGui RunProgram

7.3.18 DpPrAITManualIF Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class represents the Algorithm Integration & Test interface for the manual staging and
destaging of data, algorithms, executables, or other stored items which have Universal
References.

Attributes:

myManualIFWindow - This represents the GUI which will allow the AI&T position to
manually stage and destage data products, executables, algorithms, etc.
Data Type:
Privilege: Private
Default Value:

Operations:

Destage - This operation is used by the Algorithm Integration & Test position to destage a
piece of data, a PGE, an algorithm, or anything else which can be located by a UR.
Arguments: Item:GlUR
Return Type: Void
Privilege: Public

7-25 305-CD-011-001

Stage - This operation stages the item located by the input UR. This can be a data granule,

a PGE, an algorithm, or anything else located by a UR.

Arguments: Item:GlUR

Return Type: Void

Privilege: Public

Associations:

The DpPrAITManualIF class has associations with the following classes:
Class: DsClRequest Builds
Class: DsClESDTReferenceCollector SubmitsRequestThrough

7.3.19 DsClCommand Class

A Data Server Public Class. See Data Server Detailed Design Specification for more

details.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The DsClCommand class has associations with the following classes:
DsClRequest (Aggregation)

7.3.20 DsClESDTReferenceCollector Class

A Data Server Public Class. See Data Server Detailed Design Specification for more

details.

Parent Class: Not Applicable

7-26 305-CD-011-001

Attributes:

None

Operations:

None

Associations:

The DsClESDTReferenceCollector class has associations with the following classes:
Class: DpPrAITManualIF SubmitsRequestThrough

7.3.21 DsClRequest Class

A Data Server Public Class. See Data Server Detailed Design Specification for more

details.

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The DsClRequest class has associations with the following classes:
Class: DpPrAITManualIF Builds
DsClESDTReferenceCollector (Aggregation)

7.3.22 EosView Class

An Abstract class used to represent the EOSVIEW Data visualization tool.

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
EosView program; displays contents of ECS HDF files. THIS IS NOT A CLASS. It is
callable from the Unix command line.

7-27 305-CD-011-001

Attributes:

None

Operations:

None

Associations:

The EosView class has associations with the following classes:
Class: MgrGui SpawnProgram

7.3.23 FORTRAN77codechecker Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is an Abstract Class used to represent the .FORTRAN 77 code checker FORCHECK.
A FORTRAN 77 code checker is necessary because most compilers (and presumably
delivered F77 code) will not adhere strictly to the F77 ANSI standard. It is callable from
the Unix command line.

Attributes:

None

Operations:

None

Associations:

The FORTRAN77codechecker class has associations with the following classes:
Class: MgrGui SpawnProgram

7.3.24 Generalvisualizationtool Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is an Abstract Class used to represent the General data visualiztion tool IDL. It is
callable from the Unix command line.

7-28 305-CD-011-001

Attributes:

None

Operations:

None

Associations:

The Generalvisualizationtool class has associations with the following classes:
Class: MgrGui SpawnProgram

7.3.25 Instrument-specificscript Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is an Abstract Class used to represent Scripts written by users specific to an instrument
configuration. This is used for code check-in, compiling, running, etc. It is callable from
the Unix command line.

Attributes:

None

Operations:

None

Associations:

The Instrument-specificscript class has associations with the following classes:
Class: MgrGui RunProgram

7.3.26 MgrGui Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
MgrGui is the main AIT Manager Gui. This class is necessarily ill-defined since it will

7-29 305-CD-011-001

contain code generated by the GUI builder.

Attributes:

myMotifRcFileData - Data read from Motif resources file, including menu labels, and
program names and arguments where appropriate
Data Type: EcTChar**
Privilege: Private
Default Value:

Operations:

DisplayReturnValue - Displays value returned by system call on GUI
Arguments: EcTChar*,EcTInt
Return Type: EcTInt
Privilege: Public

Processor - Main AIT Manager GUI processor

Arguments: DpAtMgrGuiActivityData,DpAtMgrChecklistData,DpAtMgrLogData

Return Type: EcTInt

Privilege: Public

RunProgram - Run a program which is callable from the Unix command line Input: Unix

program name and options as a single string *****PDL***** Make system call to run

program Wait for program to execute Return same return value from program

Arguments: EcTChar*

Return Type: EcTInt

Privilege: Public

SpawnProgram - Spawns a Unix program or script. Immediately returns a return value

without waiting for program to execute.

Arguments: EcTChar*

Return Type: EcTInt

Privilege: Public

Associations:

The MgrGui class has associations with the following classes:
Class: DpAtMgrLogData
Class: DpAtMgrCom Processorctor()
Class: DpAtMgrChecklistData PutActivityFlagPutCurrentIndex
Class: DpAtMgrGuiActivityData
PutSelectedAreaPutMenuSelectionGetActivityRequestPutProgramReturnValue
Class: CMscript RunProgram

7-30 305-CD-011-001

Class: DpAtMgrCheckHdfFile RunProgram

Class: DpAtPgeRegTool RunProgram

Class: DpAtProcGui RunProgram

Class: Instrument-specificscript RunProgram

Class: Analysisenvironment SpawnProgram

Class: EosView SpawnProgram

Class: FORTRAN77codechecker SpawnProgram

Class: Generalvisualizationtool SpawnProgram

Class: Postscriptfileviewer SpawnProgram

Class: Text-graphicsviewer SpawnProgram

Class: Webbrowser SpawnProgram

Class: Windowsemulator SpawnProgram

Class: xterm SpawnProgram

7.3.27 Postscriptfileviewer Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is an Abstract Class used to represent the .PostScript file viewer Ghostview. It is
callable from the Unix command line.

Attributes:

None

Operations:

None

Associations:

The Postscriptfileviewer class has associations with the following classes:
Class: MgrGui SpawnProgram

7.3.28 Text-graphicsviewer Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is an abstract class used to represent the Text and graphics viewer Adobe Acrobat. It
is callable from the Unix command line.

7-31 305-CD-011-001

Attributes:

None

Operations:

None

Associations:

The Text-graphicsviewer class has associations with the following classes:
Class: MgrGui SpawnProgram

7.3.29 Webbrowser Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is an abstract class used to represent the WorldWideWeb browser Mosaic.. It is
callable from the Unix command line.

Attributes:

None

Operations:

None

Associations:

The Webbrowser class has associations with the following classes:
Class: MgrGui SpawnProgram

7.3.30 Windowsemulator Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is an abstract class used to Run SoftWindows DOS/Windows emulator. It is callable
from the Unix command line.

7-32 305-CD-011-001

Attributes:

None

Operations:

None

Associations:

The Windowsemulator class has associations with the following classes:
Class: MgrGui SpawnProgram

7.3.31 xterm Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is an Abstract class used to represent an UNIX xterm. CM (ClearCase) view is set
automatically since a view is already up when AIT Manager is invoked. It is callable from
the Unix command line.

Attributes:

None

Operations:

None

Associations:

The xterm class has associations with the following classes:
Class: MgrGui SpawnProgram

7.4 CSCI Dynamic Model

7.4.1 AIT Manager GUI Scenarios

This section gives scenarios for use of the AIT Manager GUI. These scenarios cover various oper­
ations which will be invoked from the AITTL Manager GUI. These operations include initiating
one of the many COTS tools which will be provided for integration and test activities.

7-33 305-CD-011-001

7.4.1.1 Display Main AIT Manager GUI

7.4.1.1.1 Abstract

This scenario occurs whenever the AIT Manager is invoked. Information used to set up the AI&T
Manager GUI is gathered from various input files. This information sets the various user prefer­
ences invoked for the GUI.

7.4.1.1.2 Stimulus

The initial stimulus is invoked by the Algorithm Integration and Test Operations staff who initiates
the AIT Manager program name and options from the Unix command line. Before this operation
can occur, the Configuration Management (ClearCase) view must have been set previously.

7.4.1.1.3 Desired Response

Main AIT Manager GUI, including checklist and log, is displayed on user's screen.

7.4.1.1.4 Participating Classes from the Object Model

DpAtMgrCom

DpAtMgrCmdLineData

DpAtMgrInstrConfigData

DpAtMgrChecklistData

DpAtMgrLogData

DpAtMgr

DpAtMgrGuiActivityData

DpAtMgrGui

7.4.1.1.5 Scenario Description

a. User logs into AIT development machine

b. User sets a CM (ClearCase) view

c. User types in AIT Manager executable name and options, if any

d.	 The default command line options are read from a file; instrument name, instrument
config file logical, and static Motif resources file logical.

e.	 If user typed in any command line options, these options overwrite the defaults, and the
new defaults are saved to a file.

f.	 The instrument configuration data is read from a file: script names, options, menu labels,
file logicals, checklist, and log file logicals.

g.	 The Static Motif resources file is read (all AIT Manager menu data except RUN menu:
menu names, locations, program names and options if applicable), and the dynamic Motif
resources file is written. This file consists of static motif resources data and instrument
config data for RUN menu item.

h. Checklist file data and the last log entry is read.

7-34 305-CD-011-001

i.	 Main AIT Manager GUI is displayed, using dynamic Motif resources file, checklist data
and last log entry data.

7.4.1.1.5 Event Trace

Figure 7.4-1 shows the display AI&T main GUI event trace.

User

Command line options
DpAtMgrCom DpAtMgrCmdLineData

DpAtMgrInstrConfigData

DpAtMgrChecklistData

DpAtMgrLogData

DpAtMgrGuiActivityData

DpAtMgr

MgrGui

ctor()

GetInstrConfigLogical()

GetChecklistFileLogical()

ctor()

ctor()

ctor()

GetStaticMotifRcFileLogical

ctor()

ctor()

GetLogFileLogical()

ctor()

Processor(DpAtMgrGuiActivityData, DpAtMgrChecklistData, DpAtMgrLogData)

GUI display

GetActivityRequest()

User

Figure 7.4-1. Display AI&T Main GUI Event Trace Diagram

7.4.1.2 Select a TOOLS Menu Item

7.4.1.2.1 Abstract

This scenario details what happens when the user selects TOOLS menu item xterm. The scenario
applies equally to the other TOOLS menu items, which are COTS programs (unless noted) useful
in the AIT environment:

a. General visualization (IDL)

b. Web browser (Mosaic)

c. Text-graphics viewer (Acrobat)

d. PostScript file viewer (Ghostview)

e. Windows emulator (SoftWindows)

f.	 Analysis environment (SPARCWorks on AIT Sun Workstation, CODEVision on AIT
SGI Workstation)

g. HDF file visualization (EosView, an ECS custom application)

h. Fortran 77 code checker (FORCHECK)

i. Dynamic memory leak detector

7-35 305-CD-011-001

7.4.1.2.2 Stimulus

User pulls down TOOLS menu, clicks on xterm.

7.4.1.2.3 Desired Response

Unix xterm is displayed. CM (ClearCase) view is automatically set by CM.

7.4.1.2.4 Participating Classes From the Object Model

DpAtMgrGui

7.4.1.2.5 Scenario Description

a. AIT Manager screen previously displayed

b. User pulls down TOOLS menu

c. User clicks on xterm

d. Unix xterm is displayed, which automatically has a CM (ClearCase) view set

e. status value is immediately returned indicating whether xterm was successfully spawned

f. User types commands into xterm

f. Other AIT Manager selections are always available during this time

g. xterm remains up until user kills it manually or logs off the machine

7.4.1.2.6 Event Trace

Figure 7.4-2 shows the run tools menu event trace.

MgrGui User

DpAtMgrGuiActivityData

Display GUI

Tool menu choice

SpawnProgram(EcTChar*)

xterm

PutProgramReturnValue(EcTInt) xterm window
Tool menu items

are permanently detached
after being spawned

Example applies to
all TOOLS menu items

Figure 7.4-2. Run Tools Menu Event Trace Diagram

7-36 305-CD-011-001

7.4.1.3 Select a UTILITIES Menu Item

7.4.1.3.1 Abstract

This scenario represents activities that occur when the user selects UTILITIES menu item DpAt-
MgrCheckHdfFile. It applies equally to other UTILITIES menu items, which are all ECS custom
programs:

PGE registration GUI (DpAtPgeRegTool)

CM scripts

DpAtMgrCheckPcfGui

DpAtMgrBinaryFileEnvironmentGui

DpAtMgrCheckProhibFuncGui

This scenario also applies to RUN menu items:

PGE execution GUI (DpAtProcGui)

Instrument-specific scripts

7.4.1.3.2 Stimulus

The Algorithm Integration and Test Operations Staff wants to compare versions of HDF files gen­
erated at the SCF to the HDF files generated at the DAAC with SCF Toolkit linked in.

7.4.1.3.3 Desired Response

HDF file checker GUI is displayed

7.4.1.3.4 Participating Classes from the Object Model

DpAtMgrCom

DpAtMgr

DpAtMgrGuiActivityData

DpAtMgrGui

DpAtMgrCheckHdfFil

7.4.1.3.5 Scenario Description

a. AIT Manager screen previously displayed

b. User pulls down UTILITIES menu

c. User clicks on HDF file checker

d. HDF file checker GUI is displayed

e. User makes GUI selections, to compare HDF files and/or display HDF metadata

f. Other AIT Manager selections are unavailable during this time

g. User quits from HDF file checker GUI

h. Return value from GUI triggers error handling, if necessary

i. AIT Manager waits for another user selection

7-37 305-CD-011-001

7.4.1.3.6 Event Trace

Figure 7.4-3 shows the run utility menu item event trace.

User
DpAtMgrCom DpAtMgr

Processor(DpAtMgrGuiActivityData, DpAtMgrChecklistData, DpAtMgrLogData)

Processor(DpAtMgrGuiActivityData,DpAtMgrChecklistData,DpAtMgrLogData)

DpAtMgrCheckHdfFile

DpAtMgrGuiActivityData MgrGui

UTILITY menu choice

PutSelectedArea(EcTInt=1)

PutMenuSelection(EcTInt*)

PutProgramReturnValue(EcTInt)

GetSelectedArea()

GetMenuSelection()

GetProgramReturnValue()

RunProgram(EcTChar*="DpAtMgrCheckHdfFile")

Return value

Display GUI

Return value display

Example applies to all
UTILITY and RUN

menu items

Error handling is done next

Figure 7.4-3. Run Utility Menu Item Event Trace Diagram

7.4.1.4 Select a Checklist Item

7.4.1.4.1 Abstract

The AIT Manager checklist is a display of items required for check-in, compilation, test execution,
etc. of science software. It is displayed as a line of text for each item, with a check box that is
checked or unchecked. Each item has a unique ID; the checklist is specific to an instrument con­
figuration. The checklist is manual, in that the user must check it with a mouse click; the program
does not check any boxes automatically. Each time a box is checked, the log is updated.

This scenario shows what happens when a box for an item is checked.

7.4.1.4.2 Stimulus

User wants to record that compile and link to SCF Toolkit was successful.

7.4.1.4.3 Desired Response

Box is displayed as checked; log is updated. Item is noted as checked in checklist file after AIT
Manager exits.

7.4.1.4.4 Participating Classes from the Object Model

DpAtMgrCom

DpAtMgr

DpAtMgrGuiActivityData

DpAtMgrGui

DpAtMgrChecklistData

7-38 305-CD-011-001

DpAtMgrLogData

7.4.1.4.5 Scenario Description

a. AIT Manager has been previously displayed

b.	 User separately compiles and links science software with SCF Toolkit, e.g., by
instrument-specific script or CM script

c. User clicks on check box for "Compile and link with SCF Toolkit" item

d. Checklist item state is changed from unchecked to checked internally

e. Checked box is displayed

f. New log entry is created, displayed on screen, and written to log file

7.4.1.4.6 Event Trace

Figure 7.4-4. shows the select checklist item event trace.

User
DpAtMgrCom DpAtMgr DpAtMgrGuiActivityData MgrGui

DpAtMgrChecklistData

DpAtMgrLogData

Processor(DpAtMgrGuiActivityData, DpAtMgrChecklistData, DpAtMgrLogData)

Processor(DpAtMgrGuiActivityData,DpAtMgrChecklistData,DpAtMgrLogData)

ChangeItemState()

WriteLogEntry()

Display GUI

GetSelectedArea()

Checklist item checked

PutSelectedArea(EcTInt=2)

PutActivityFlag(EcTInt=1)

PutCurrentIndex(EcTInt)

Figure 7.4-4. Select Checklist Item Event Trace Diagram

7.4.1.5 Submit Staging or Destaging Request

7.4.1.5.1 Abstract

These scenarios describe the functions provided to manually initiate the staging or destaging of da­
ta, i.e., Science software, Test Data, etc., which are archived in the Data Server archive, The steps
taken are very similar to activities performed in the Processing CSCI to automatically initiate stag­
ing or destaging by a software application. This will be added to the IR-1 provided functionality
for Release A.

7.4.1.5.2 Stimulus

DAAC Operations Staff initiates the staging or destaging of data.

7-39 305-CD-011-001

7.4.1.5.3 Desired Response

Data is staged or destaged.

7.4.1.5.4 Participating Classes from the Object Model

DpPrAITManualIF

DsCIESDTReferenceCollector

DsCIRequest

DSCICommand

7.4.1.5.5 Scenario Description

a. AIT Manager has been previously displayed

b.	 User Requests the staging or destaging of a given data item, using specified reference
materials as input guidance.

c. Data Server copies data to specified storage location.

d. Data Server informs AITTL when completed.

7.4.1.5.6 Event Trace

Figure 7.4-5 shows the submit staging request event trace. Figure 7.4-6 shows the submit destaging
request event trace.

AI&T Ops
(Staff) DpPrAITManualIF DsClESDTReferenceCollector DsClRequest DsClCommand

Stage(UR)

DsClESDTReferenceCollector
(UR)

Submit(DsClESDTReferenceCollector)

DsClRequest(DsClCommand)

DsClCommand("Acquire")

Figure 7.4-5. Submit Staging Request Event Trace Diagram

7-40 305-CD-011-001

AI&T Ops
(Staff) DpPrAITManualIF DsClESDTReferenceCollector DsClRequest DsClCommand

Destage(UR)

DsClESDTReferenceCollector
(UR)

Submit(DsClESDTReferenceCollector)

DsClRequest(DsClCommand)

DsClCommand("Insert")

Figure 7.4-6. Submit Destaging Request Event Trace Diagram

7.5 CSCI Functional Model
The sections which follow present a context diagram for each of the components of AITTL. These
components, or tools, correspond roughly to the requirements mappings found in 304-CD-002­
001, Science and Data Processing Segment (SDPS) Requirements Specification for the ECS
Project. They also correspond to the computer software components (CSCs) listed below in Sec­
tion 7.5, AITTL Structure.

7.5.1 Viewing Science Software Documentation

The context diagram for the tools to display and/or print science software documentation is shown
in Figure 7.5-1.

The operator issues a command (Document Viewing Command) to view a particular document on
the display (Displayed Document), or to print a hard copy (Printed Document) of a document. Soft­
copy of the document (Document) is stored online in the local integration and test area (Science
Software).

7.5.2 Checking Coding Standards

The context diagram for the standards checkers is shown in Figure 7.5-2.

The operator issues a command (Standards Checking Command) to check for compliance of a par­
ticular script (Shell Script) or source file (Source Code), or set of files, with certain standards and/
or guidelines. The operator also must supply the standards checkers with the required standards
(Standards) and guidelines (Guidelines) (only once, when the tools are configured). The results of
the check (Standards Checking Results) are displayed on the console. Reports may be generated as
well, which may be displayed (Displayed Standards Checking Reports), printed (Printed Stan­
dards Checking Reports), and saved as softcopy (Standards Checking Report).

7-41 305-CD-011-001

Printer

Printed Document

View
Documentation

Operator

This System

Document

Displayed Document

Document Viewing Command

Science
Software

Figure 7.5-1. Data Flow Diagram: View Documentation

I&T Results
Printer

Printed Stardards Standards Checking
Checking Reports Report

Check
Standards

This System

Source Code,
Shell Script

Standards Checking Results,
Displayed Standards

Checking Reports

Operator

Standards,
Guidelines,

Standards Checking Command

Science
Software

Figure 7.5-2. Data Flow Diagram: Check Standard

7.5.3 Analyzing the Code

The context diagram for the static and dynamic code checkers is shown in Figure 7.5-3.

The operator issues a command (Code Analysis Command) to make certain checks, either statically
on the source files (Source Code), or dynamically on the executables (Executable). The results

7-42 305-CD-011-001

(Code Analysis Results) of the checks are displayed on the console. Reports may also be generated,
and these may be displayed (Displayed Code Analysis Report), printed (Printed Code Analysis Re­
port), or saved as softcopy (Code Analysis Report).

I&T Results
Printer

Printed Code Code Analysis
Analysis Report Report

Analyze
Code

Operator

This System

Source Code,
Executable

Code Analysis Command

Code Analysis Results,
Displayed Code
Analysis Report

Science
Software

Figure 7.5-3. Data Flow Diagram: Analyze Code

7.5.4 Examining the Data

The context diagram for the data visualization tools is shown in Figure 7-5-4.

The operator issues a command (Data Visualization Command) to examine a particular data file.
The data visualization tools may display the data in the form of a data dump (Displayed Data
Dump), a two- or three-dimensional plot (Displayed Plot), or an image (Displayed Image). These
displays may also be printed (Printed Data Dump, Printed Plot, Printed Image) or saved as soft­
copy (Data Dump, Plot, Image).

7.5.5 Comparing Data Files

The context diagram for the file comparison utility is shown in Figure 7.5-5.

The operator issues a command (File Comparison Command) to find all differences between two
data files (Data Files to Compare). Normally, one of these files will have been generated by run­
ning a particular test case at the SCF, while the other will have been generated by running the same
test case at the DAAC. If there are precision differences between the SCF and DAAC processing
platforms, there will be corresponding differences between the two data files which should be ig­
nored. Therefore, the operator will also supply a threshold (File Comparison Threshold) for mask­
ing out these types of differences. The results (File Comparison Results) of the file comparison are
displayed on the console. Reports may also be generated, and these may be displayed (Displayed
File Comparison Report), printed (Printed File Comparison Report), or saved as softcopy (File
Comparison Report). Please note that this section applies directly to HDF files. For binary files,

7-43 305-CD-011-001

the ECS supplies a programming environment which the DAAC Operator used to write custom bi­
nary file comparison code.

I&T Results
Printer

Printed Data Dump, Data Dump,
Plot,

Examine
Data

Operator

This System

Printed Image

Data File

Displayed Data Dump,
Displayed Plot,

Displayed Image

Data Visualization
Command

Printed Plot, Image

Science
Software

Figure 7.5-4. Data Flow Diagram: Examine Data

I&T Results
Printer

Printed File
Comparison Report

Data Files To Compare

Compare
Files

Operator

This System

File Comparison
Report

File Comparison Results,
Displayed File

Comparison Report

File Comparison Threshold,
File Comparison Command

Science
Software

Figure 7.5-5. Data Flow Diagram: Compare Files

7-44 305-CD-011-001

7.5.6 Measuring Resource Requirements

The context diagram for the profiling tools is shown in Figure 7.5-6.

The operator issues a command (Profiling Command) to measure certain resource usage statistics,
such as CPU time, memory usage, I/O accesses, disk space requirements, etc., for a specified pro­
cess or procedure (Shell Script, Executable). The profiling results (Profiling Results) are displayed
on the console. Reports may also be generated, and these may be displayed (Displayed Profiling
Report), printed (Printed Profiling Report), or saved as softcopy (Profiling Report).

I&T Results

Printer

Printed Profiling Report Profiling Report

Measure
Resource

Requirements

Operator

This System

Profiling Results,
Displayed Profiling Report

Profiling Command

Shell Script,
Executable

Science
Software

Figure 7.5-6. Data Flow Diagram: Measure Resource Requirements

7.5.7 Updating the Data Server

The context diagram for the GUI for archiving the science software files on the data server is
shown in Figure 7.5-7.

The purpose of this tool is to allow the user to add a new or updated set of science software files to
the data server once the software has passed acceptance testing. This set of files will probably in­
clude not only the delivered files (Science Software), but also some of the reports (I&T Report)
generated during integration and test. The operator must also supply metadata (Science Software
Metadata) for the science software. The operator may issue various commands (Data Server Up­
date Command) to the update tool, such as commands to view the current contents of the data serv­
er, commands to add the new science software files to the data server, commands to update the
metadata, and so on.

7-45 305-CD-011-001

Update
Data

Server

Data
Server

Operator

I&T Results

Science
Software

This System

Science Software Archive Package,
Data Server Request

Data Server
Information

I&T Report

Science Software Metadata,
Data Server Update Command

Data Server Update Display

Figure 7.5-7. Data Flow Diagram: Update Data Server

Requests (Data Server Request) are sent to the data server to get information about its contents; the
data server responds with the requested information (Data Server Information), which is then dis­
played (Data Server Update Display) on the operator's console. Requests (Data Server Request) to
add a new set of science software files are also sent to the data server, along with the set of files
(Science Software Archive Package) to be archived; the data server responds with the status of the
request (Data Server Information), which is also displayed on the console (Data Server Update
Display).

7.5.8 Updating the PGE Database

The context diagram for the GUI for updating the PGE database is shown in Figure 7.5-8.

Information to be loaded into the PGE database is taken from the profiling reports (Profiling Re­
port) (see Section 7.3.6, Measuring Resource Requirements). The operator issues commands (PGE
Database Update Command) to add the information to the database (or to view the contents of the
database, or add, delete, or modify entries). The PGE Database is part of an overall Database re­
ferred to in the Planning and Processing CSCI design as the PDPS Database. The PDPS Database
is a shared database used by Planning, Processing and Algorithm Integration and Test to manage
their persistent data. These commands (PGE Database Request) are passed onto the PGE Database
by the GUI, along with the new or modified database entries (PGE Installation Package). Infor­
mation or status (PGE Database Information, PGE Installation Package) is returned by PGE Da­
tabase, and this information (PGE Database Update Display) is displayed on the operator's
console.

7-46 305-CD-011-001

I&T ResultsPlanning

PGE Profile,

Update
PGE

Database

Operator

This System
PGE Database Information

PGE Database Request

PGE Database Update Command

PGE Database Update Display

Profiling Report

Figure 7.5-8. Data Flow Diagram: Update PGE Database

7.5.9 Writing Reports and Maintaining Logs

The context diagram for tools to generate and maintain the integration and test reports and logs is
shown in Figure 7.5-9.

The operator issues commands (Report Management Command) to create/modify specified reports
(I&T Report) and logs (I&T Log), supplying the required information (Report Information, Log In­
formation) and/or using information from other manually- or tool-generated reports (I&T Report),
and using pre-generated report templates (I&T Templates). The operator may also display (Dis­
played I&T Report, Displayed I&T Log) or print (Printed I&T Report) any report or log, and any
authorized user may display the log.

7.5.10 Manually Staging Inputs

The context diagram for the tool for manually staging inputs is shown in Figure 7.5-10.

The operator issues commands (Data Staging Command) to manually stage a specified data file
from the data server. The request (Data Transfer Request) is passed onto the data server, which
returns the requested file (Data File), which is then placed in the staging area (Staged Data). Status
(Data Staging Status) is displayed on the operator's console.

7-47 305-CD-011-001

Manage
Reports

Authorized
User

Printer

Operator

I&T Results

I&T Templates

I&T Log

This System

I&T Report
Printed

I&T
Report

Log Display Command

Displayed I&T Log

Report Information,
Log Information,

Report Management Command

Displayed I&T Report,
Displayed I&T Log

I&T Report

Figure 7.5-9. Data Flow Diagram: Manage Reports

7.5.11 Displaying Product Metadata

The context diagram for the tool for displaying product metadata is shown in Figure 7.5-11.

The operator issues commands (Metadata Command) to display the product metadata (Displayed
Product Metadata) for a specified data file (Data File). The metadata may also be extracted into a
report, which may be displayed (Displayed Product Metadata Report), printed (Printed Product
Metadata Report), or saved as softcopy (Product Metadata Report).

7.6 AITTL Operational Scenarios
The following three operational scenarios are intended to give an idea of how the science software
integration and test process will be done, as well as illustrating where in the process the AITTL
tools might be used by the SCF and DAAC I&T personnel. These scenarios were developed by the
ECS Science Office and assume ECS Release A.

7-48 305-CD-011-001

Data
Server

Data File

Stage Data Staged Data

Figure 7.5-10. Data Flow Diagram: Manually Stage Data

I&T Results
Printer

Display
Product

Metadata

Operator

This System

Metadata Report

Data File

Metadata Command

Displayed Product Metadata,
Displayed Product Metadata Report

Printed Product Product Metadata Report

Science
Software

Figure 7.5-11. Data Flow Diagram: Display Product Metadata

Manually

Operator

This System

Data File

Data Transfer Request

Data Staging Command

Data Staging Status

7-49 305-CD-011-001

7.6.1 Engineering Version for AM-1

1)	 SCF sends 200 8-mm tapes containing test data files, expected test result files and
associated metadata file. These tapes contain 11,000 files averaging 50 MB each.

2)	 DAAC Ingest - Distribution Technician mounts the delivered tapes and transfers these
files to the Data Server/Archive.

3)	 DAAC Operations Supervisor has an Investigator Account opened for the SCF, an
Investigator Directory created, and a CM storage pool allocated specifically for use in
SSI&T.

4)	 The SCF transfers the science software (e.g., via ftp) to the Investigator Directory, and
checks the source, includes, makefiles, scripts and libraries into the CM storage pool.

5)	 DAAC Resource Planner reserves 1 CPU of a Processing Server during day shift for
use by SSI&T for the requested duration.

6)	 SCF remotely (e.g., via telnet) performs stand-alone testing of individual PGEs and
PGE chains, employing the various AITTL tools in a “batch” mode (e.g., the data
visualization tool is used to generate a graphics file, which is the transferred to the local
site for display). Test data files are requested as needed from the Data Server/Archive.

7)	 When standalone testing is complete, SCF labels the “Delivery” elements in the
SSI&T CM storage pool.

8)	 DAAC CM Administrator builds binary executables, checks out PGE scripts and
submits these to Data Server (along with appropriate metadata).

9)	 DAAC Production Planner/Scheduler enters the test PGE information (e.g., PGE ID
and Version No., resource profiles, inputs, activation rules) into the Planning Data
Base.

10) The SCF subscribes to the test PGE outputs.

11) DAAC System Tester requests test data from the Data Server and stages it to Ingest.

12)	 Processing is automatically performed, and the PGE output and processing log files are
automatically sent to the SCF.

13) SCF verifies PGE output.

14)	 The SCF checks the “Delivery” items out from the CM storage pool and transfers these
elements (employing a DCE client) from the Investigator Directory to the SCF.

15) The DAAC performs cleanup work.

The CM Administrator deletes the SSI&T storage pool. The DAAC Production Planner removes
the SSI&T PGEs from the planning Data Base and cancels the Production Request(s). The DAAC
closes the Investigator Account and removes the Investigator Directory.

7.6.2 Launch-Ready Version for TRMM

1)	 SCF requests that 11,000 previously delivered test data files be staged from deep
archive to Data Server/Archive on-line storage.

2) The Data Server/Archive retrieves these files from deep archive.

7-50 305-CD-011-001

3)	 DAAC Operations Supervisor has a User Account opened for the SCF, an Investigator
Directory created, and a CM storage pool allocated specifically for use in SSI&T.

4)-14) Steps 4-14 of the “Engineering Version for AM-1” scenario are performed.

15)	 The DAAC CM Administrator copies the “Delivery” elements from the SSI&T CM
storage pool to a Master CM storage pool. Then deletes the SSI&T CM storage pool.

16)	 The Production Planner/Scheduler enters Production Requests for product generation
using the Launch-ready PGEs.

(The DAAC and SCF complete the operations readiness activities, and the new PGE is promoted
to production status.)

7.6.3 Science Software Upgrade

1)	 SCF requests that 24 previously delivered test data files be staged from deep archive
to Data Server/Archive on-line storage.

2) The Data Server/Archive retrieves these files from deep archive.

3)	 DAAC Operations Supervisor has a User Account opened for the SCF, an Investigator
Directory created, and a CM storage pool allocated specifically for use in SSI&T.

4)-14) Steps 4-14 of the “Engineering Version for AM-1” scenario are performed.

15)	 The DAAC CM Administrator checks-in to the Master CM storage pool all of the
elements from the SSI&T CM storage pool which are labelled “Delivery.” The SSI&T
CM storage pool is deleted.

7.7 AITTL Structure
Table 7-1 provides a list of the Computer Software Components in the AITTL CSCI.

Note that all software is callable from the Unix command line; alternatively, it may be called from
the AIT Manager GUI. Command line versions are shown in brackets [], where they differ from
the GUI versions.

In implementing custom code, some SDP Toolkit functions are reused, primarily to track AIT con­
figuration files and manage temporary files.

Table 7-1. AITTL Computer Software Components (1 of 2)
CSC Description Implementation

Documentation
Viewing Tools

Tools for displaying and/or printing the
science software documentation

SoftWindows/MS Office
Ghostview

Standards
Checkers

Tools for checking if science software fol­
lows prescribed coding standards.

Native compilers
FORCHECK

Code Analysis
Tools

Tools for checking for code memory leaks,
etc.

CASEVision
SPARCWorks

Data Visualization
Tools

Diagnostic tools which display input,
output, and intermediate data files as data
dumps, plots, and/or images.

IDL

7-51 305-CD-011-001

Table 7-1. AITTL Computer Software Components (2 of 2)

ECS HDF
Visualization Tools

Provides the capability to view any
ECS-HDF formatted files.

EOSView

HDF File
Comparison Utility

Tool for finding differences between two
HDF files,

DpAtMgrCheckHdfFile

Binary File
Comparison
Environment

Tool for assisting DAAC user in writing
custom code to find differences between
two binary files

DpAtMgrBinaryFileEnvironmentGui

Profiling Tools Tools for measuring the resource
requirements of the science software

CASEVision

PGE Processing
GUI

GUI for executing science software DpAtProcGui

Update Data Server
GUI

GUI used for staging or destaging data. DpPrAITManualIF

Update PGE
Database GUI

GUI for registering a PGE with the
processing system

DpAtPgeRegTool

Report Generation
Tools

Tools for writing miscellaneous reports
and for maintaining the integration and
test log

SoftWindows/MS Office
DpAtMgrCom

SDP Toolkit­
related Tools

Tool to check Process Control File format;
tool to check that no prohibited functions
are used

DpAtMgrCheckPcfGui [pccheck.sh]
DpAtMgrCheckProhibFunc [DpAt-
MgrCheckProhibFuncCom]

Product Metadata
Display Tool

Tool for displaying the product metadata DpAtMgrCheckHdfFile

CSC Description Implementation

7.7.1 Documentation Viewing Tools

This CSC contains the tools that the integration and test personnel will use to view the science soft­
ware documentation. The tools only need to be able to display a document on a console and print
the document—there is no editing capability required. The list of formats that will be accepted is
given in 304-CD-002-001, Science and Data Processing Segment (SDPS) Requirements Specifi­
cation for the ECS Project (see requirements S-DPS-40100 and 40110).

The Microsoft Office automation tools, in conjunction with the SoftWindows Windows emulator
for Sun, is used here.

7.7.2 Standards Checkers

This CSC contains the standards checking tools. Native language compilers satisfy the require­
ments here, except in the case of FORTRAN 77. For that language, a COTS standards checker is
used, because most if not all compilers support a near-standard subset of ANSI FORTRAN 77; it
is expected that essentially all FORTRAN 77 science software will contain these extensions to the
ANSI standard.

7.7.3 Code Analysis Tools

These tools are for enabling DAAC personnel to determine the causes of such problems as memory
leaks. They include the powerful analysis environments SPARCWorks (on the Sun) and CASEVi­
sion (on the SGI).

7-52 305-CD-011-001

7.7.4 Data Visualization Tools

This CSC contains the data visualization tool IDL, required by the integration and test personnel
to examine input, output, and intermediate data files for diagnostic purposes (but not for QA).

7.7.5 ECS HDF Visualization Tools

This CSC is the ECS-developed EOSView tool for viewing ECS HDF files. The tool is reused from
the WKBCH CSCI.

7.7.6 HDF File Comparison Utility

This CSC contains the HDF file comparison utility. It is implemented by a custom IDL program,
which includes a GUI front end. Difference data may optionally be displayed as text, as a line graph
with tolerances, or printed.

The first time a given HDF standard product is compared, the DAAC user must manually input
data tolerances that s/he reads by eye from a text file delivered with the science software.

7.7.7 Binary File Comparison Environment

This CSC contains the binary file comparison environment. This is implemented by a GUI from
which the user can choose example code and function utilities to cut and paste for making a custom
file differencing tool, tailored to the particular binary file format. This format is also available from
the GUI, as delivered in a text file along with the science software.

7.7.8 Profiling Tools

This CSC contains the profiling (i.e., resource requirement measurement) tools. These tools must
satisfy any of the AITTL profiling requirements that are not satisfied by the development environ­
ments or operating systems supplied by the AITHW CI. CASEVision covers this.

7.7.9 PGE Processing GUI

This CSC contains the GUI used to execute a PGE, which is called DpAtProcGui.

7.7.10 Update PGE Database GUI

This CSC contains the GUI used to register a PGE in the processing system, which is called DpAt-
PgeRegTooli.

7.7.11 Report Generation Tools

This CSC contains the tools to write and maintain the integration and test reports and logs. All but
the log requirements are satisfied by SoftWindows/MS Office; the AIT Manager covers the need
for a log.

7.7.12 SDP Toolkit-related Tools

These tools (a) check the format of a delivered Process Control File and (b) determine whether any
prohibited functions are used, which might interfere with the processing system. Modules DpAt-
MgrCheckPcfGui (which is a wrapper on an existing SDP Toolkit utility) and DpAtMgrCheckPro­
hibFuncGui are used, respectively.

7-53 305-CD-011-001

7.7.13 Product Metadata Display Tool

This CSC contains the tool for displaying product metadata. It is implemented by DpAtMgrCheck-
HdfFile, the same tool as in "HDF File Comparison Utility" above.

7.8 CSCI Management and Operation

7.8.1 System Management Strategy

This section discuss the management and operation of the AITTL CSCI. It addresses how the CI
is managed at the local level and supports system level management and operations.

Three key concepts define the management and operations of this CSCI. These are that:

a. The AIT process is essentially standalone relative to the rest of the ECS system

b. AIT is operations and operational procedure driven.

c. The AITTL CSCI must support the flexibility of operations required of an I&T activity.

The following paragraphs discuss these features further, indicating how the AITTL CSCI supports
this view of management and operations.

Independent Operations

From the point of view of system management and operations, the AITTL operates in essentially
a standalone mode, apart from the rest of the ECS. Its purpose is to support the integration and test
of Science Software with the ECS system at the DAACs. This is a non-operational CSCI in the
sense that it is not involved with the handling or processing of science telemetry from EOS sup­
ported spacecraft or instruments. During the operational phases, hardware elements on which the
AITTL will run during integration and test (I&T) will be specially configured so that they do not
interfere with operations, and operations does not interfere with the test process.

The AITTL does not participate with the system management services provided through MSS for
operational enterprise management, such as fault management and startup & shutdown. Note how­
ever, that the hardware platforms on which the AITTL tool set is used during I&T will be moni­
tored via MSS agents for hardware faults. The tool set makes use of MSS provided configuration
management tools to place the science software under configuration management during the I&T
process for eventual migration into operational configuration control databases. The operational
procedures AITTL call for the use of ECS standard'trouble ticketing' utilities for recording of prob­
lems identified during I&T. Other system services, such as ingest and data server access, will be
used to establish the environment for the I&T process. But the I&T process and the AITTL CSCI
will be decoupled from the operational ECS system.

Operations Procedure Driven

A key concept for the operation involving AITTL is that the AIT process, as with almost any inte­
gration and test activity, is a people-intensive activity. It is driven by the operational procedures
established by the DAAC-AIT team in consultation with the science software developers. The
management of the AITTL is dictated by the management of AIT operations procedures. The tool
set supports this view in that it is a collection of tools that is called upon, one at a time, to address
one of the steps in the sequence of activities in the procedure. Evolution of the I&T operations pro­
cedures (as the result of increased understanding of the process and the software) is supported be­
cause there is no underlying assumption within the tool set implementation with regard to the

7-54 305-CD-011-001

details of the I&T operations procedures.

Flexibility of Operations

A critical feature of the AITTL CSCI is that it must exhibit great flexibility to support the dynamic
environment that is a part of the I&T process. The AIT process, particularly during the TRMM Re­
lease period, will be greatly constrained in the time allotment. The personnel (operations, ECS, and
science software) involved in the process must be able to adapt quickly to address unexpected sit­
uations as they arise during I&T. The tool set is flexible enough to support the many variations that
can be expected to occur during the many science software integration and test events. Again, be­
cause the tool set does not assume a particular operations procedure, the tools can be readily adapt­
ed to variations in the procedures, from one instrument team to another. The tool set can support
adaptation of the procedures'on-the-fly' as problems are detected and alternate approaches to the
I&T process are investigated. This is because the AITTL CSCI is a collection of tools that support
the I&T operations procedure—as the operations procedure is updated or modified, the tool set
support can be redirected.

7.8.2 Operator Interfaces

This subsection describes the operator user interfaces provided by the AITTL CSCI to DAAC op­
erations personnel. A general description of the framework and methodology employed for the de­
velopment of these interfaces can be found in Section 4.5. of the Detailed Design Overview (305-
CD-001-001). This subsection augments that information with additional design information
which is specific to the Algorithm Integration & Test CSCI.

The operator user interfaces for the algorithm integration & test environment are custom and COTS
provided interfaces. This custom graphical interface will be created with the aid of the Integrated
Computer Solutions' Builder Xcessory. Builder Xcessory enables the developer to manage Motif
graphical user interface projects by providing a WYSIWYG, drag and drop, visual development
environment. Once an interface is constructed, Builder Xcessory will generate C++ code which
represents the GUI and encapsulates the C-based Motif Widget set. The generated C++ code can
then be combined with other Processing CSCI specific code.

7.8.2.1 Off-The-Shelf Interfaces

The Job Scheduling COTS products, AutoSys and AutoXpert, provide GUIs to interface with their
applications. The AutoSys GUI, known as the Operator Console, provides capabilities to manage
and monitor a schedule of jobs. The GUI provides visibility to the job stream as well as supporting
alarm and monitoring mechanisms. Also provided is a set of job interfaces which allow the opera­
tor to interact with a job. These interfaces support job creation, modification, cancellation, suspen­
sion, and modification. More information on the AutoSys product can be found in Section 4.1.4
and the underlying subsections.

7.8.2.2 Algorithm Integration & Test CSCI User Interfaces

This section is intended to describe the data that may be displayed for the operations of the AITTL
CSCI's applications. The exact definition of the GUI will be decided by requesting user suggestions
and through demonstrating prototypes.

7-55 305-CD-011-001

AI&T Manager GUI

The AI&T Manager GUI is an interface which provides the operations staff with the capability to
perform various AI&T activities which are defined as data visualization, updating quality assur­
ance metadata, and subscribing to data. The AI&T Manager GUI will be constructed with custom
code which interfaces to the PDPS Database for storage of PGE Profile and other AI&T persistent
data.

As part of the GUI, utilities will be provided to initiate data visualization tools, such as EOSVIEW,
which will be used to visualize a science data product. Other tools needed to perform AI&T duties,
including standards checkers, memory analyzers, and office automation tools can also be invoked
from this tool. Also, provided is an interface to manually initiate the staging of data to or destaging
of data from the Science Data Server CSCI. Most of the GUI interfaces being developed for the
AITTL CSCI are being developed as prototypes for IR-1. Information gathered through the use of
these initial prototypes will be fed into the development of the Release A AITTL CSCI GUI.

7.8.3 Reports

A variety of ad-hoc and canned reports will be available to the DAAC operations staff to assist in
the monitoring of the activities associated with the Algorithm Integration & Test CSCI. These re­
ports are readily accessible given that the Algorithm Integration & Test CSCI persistent data is
maintained in the PDPS Database, a SYBASE RDBMS. Also, ECS application management infor­
mation is maintained in the MSS database, which is used to log system events. The canned reports
will include the following:

a.	 PGE Profile Reports—these reports will be used to catalog the resource profile
information associated with a PGE. This information, which includes generation size of
PGE Output data, CPU Wall Clock Time Used, CPU actual time Used, I/O Operations,
etc., is captured over a series of PGE executions. A profile will be captured for each type
of machine, i.e., Sun, SGI, etc., for which the PGE is to execute. Statistics will be collected
to establish standard deviations, variances, and averages of resource profile values. These
reports will be used to collate this information for a PGE, for a type of resource, or for a
given group of PGEs used to fulfill a Production Request.

b.	 I & T Activity Report—these reports will capture information about the activities which
have occurred and activities which are occurring in the Algorithm Integration and Test
environment.

c. 	 PGE Database Update Report—these reports will capture information to track the updates
which have occurred in the PGE Database.

d.	 PGE I&T Reports—these reports capture information on PGEs as they progress through
the AI&T process. These reports will be used to trouble shoot problems and will provide
tracking and trend analysis guidance.

1. Code Analysis Report

3. Standards Checker Report

3. File Comparison Reports

4. AI & T Discrepancy Reports

7-56 305-CD-011-001

5. Inspection Reports

6. Integration Reports

7. Acceptance Reports

e.	 Algorithm Integration & Test Management Reports—These reports will provide the
operations staff information on Algorithm Integration and Test application software
events which have occurred. This information will be available from the MSS database.

f. 	 Job Status/Event Reports—These reports will provide information on the history of the
AutoSys job schedule. All status and event changes for a job will be logged in the AutoSys
Database. Any information associated with a job can reported on.

Other ad-hoc reports can be defined to assist the Algorithm Integration & Test Operations staff in
performing their activities. The PDPS Database is the repository used to maintain information on
Production Requests and associated Data Processing Requests, Data Subscriptions, PGE Profiles,
etc. These reports can be used to track modifications and provide historical information on these
data objects. Because of the used of a consistent RDBMS throughout ECS, the sharing of informa­
tion between different databases is simplified and will allow for consistent definitions for any num­
ber of reports.

7-57 305-CD-011-001

This page intentionally left blank.

7-58 305-CD-011-001

8. SPRHW - Science Processing HWCI

The Data Processing Subsystem (DPS) consists of three (3) hardware CIs: (1) Science Processing,
(2) Algorithm Integration and Testing (AI&T), and (3) Quality Assessment and Monitoring
(AQAHW). DPS is responsible for managing, queuing, and executing processes on a specified set
of processing resources at each DAAC site.

The Science Processing HWCI (SPRHW) is the primary HWCI in the Processing Subsystem and
contains staging (working storage), input/output (I/O), and processing resources necessary to per­
form routine processing, subsequent reprocessing, and Algorithm Integration & Test (AI&T).
SPRHW CI consists of two components: (1) Science Processing, and (2) Processing Queue Man­
agement. The Science Processing component is broken up into processing "clusters" that are chains
of processing, I/O and staging resources configured to deal with unique processing requirements
to which they are designed, tuned and allocated. This does not imply that the only use of a process­
ing cluster, or a specific compute server on that cluster, is limited to one specific class of instrument
algorithms alone. The AI&T cluster is also a test and backup cluster and provides a "fail soft" en­
vironment for production processing.

The Data Processing Subsystem, in conjunction with the Planning Subsystem, plans for and allo­
cates resources to any task suited to the inventory of available resources Figure 8-1 depicts a logical
topology of the Data Processing Subsystem and Planning Subsystem showing their components
and major interconnections.

8.1 HW Design Drivers
For Release A sizing, Science Processing platform class(es) recommendations for ECS are prima­
rily based upon the CDR Technical Baseline containing Ad Hoc Working Group on Production
(AHWGP) capacities (January 1995), scalability of hardware, evolvability of hardware and soft­
ware, and cost/performance. Processor platform class(es) selection will be readdressed on an as
needed basis to meet Release A CDR and Release B goals at a minimum.

The overall hardware design for ECS is that of a heterogeneous computing environment. Recom­
mendations at this time are specifically for IR-1 and Release A, with a "Look Ahead" to Release
B for scalability and evolvability. The candidate hardware is tailored to DAAC unique instrument
processing needs.

Hardware recommendations are based upon: (1) Cost/Performance tradeoffs, (2) Analysis of AH-
WGP data incorporating ESDIS phasing and efficiency factors, (3) ECS Science and Technology
Lab Prototyping and (4) Trade Studies (i.e., Distributed and Parallel Processing, Production Plat­
form Families, Production Topologies). The hardware selection and the design will support a
phased procurement, heterogeneous architectures, use of heritage software, and multivendor plat­
forms.

8-1 305-CD-011-001

Planning Server(s)

Production
Planner

Client
Supported

PLANNING SUBSYSTEM

Algorithm
development
support

DATA PROCESSING SUBSYSTEM

QA monitors Client
Supported

Client
Supported

Science Processing / Production Queuing & Mgmt.

QA

AI&T

Production
Queuing
Control

Client
Supported

Science Processors

• Production planning and
queuing control & management
are supported in Release-A

• Homogenous use of SMP and uni­
processor class resources in Release-A

• Heterogenous long-term solution
• Host adapted st aging and working

storage solution for Release-A
• Pooled processing configuration

RAID

RAID

• CSMS ESN Supported
• Topology and technologies are

tuned to the needs of each site
configuration. (Representatively
shown here)

(Logical
"Strings")

Figure 8-1. Topology of Data Processing and Planning Subsystems

This section provides the HWCI design rationale for the proposed high end SMPs (SMP-H) for
LaRC, EDC, and GSFC and the uniprocessor workstations for MSFC The processing complement
for MSFC is designed and sized for the TRMM mission. The SMP supports sequential processing,
in addition to symmetric and distributed memory parallel processing paradigms. This platform is
analogous to "multiple workstations in a box," providing a coherent shared memory and containing

8-2 305-CD-011-001

identical processors with a single operating system. The cost/performance tradeoff (see Section
8.1.1.2.1), shows SMPs provide the best price/performance with more growth capacity. SMPs also
have very good scalability, relatively high I/O bandwidth (e.g., 1.3 GB/s Peak), and very high in­
terconnect bandwidths. A market survey has indicated that future SMP performance is increasing
at a faster rate than conventional MPPs.

8.1.1 Key Trade-off studies and Prototypes

8.1.1.1 HWCI Alternatives

Various candidate processor classes were evaluated for IR-1 and Release A including uniprocessor
workstations/servers, workstation farms/clusters, vector supercomputers, and parallel processors.
The parallel processor class includes: (1) Low-end symmetric multi-processors (SMP), or SMP-L,
(up to 8 CPUs), (2) High-end SMPs, or SMP-H (up to 12 or more CPUs), (3) Massively Parallel
Processors (MPP) (more than 64 processors), and (4) SMP clusters, consisting of more than one
fully populated SMP-H. These platform classes are briefly described below:

•	 Uniprocessor Workstation/Servers—This platform class is a low cost commodity item
configured with a single CPU often controlled directly by the user. By itself, the
workstation has limited scalability.

•	 Workstation Farms—A workstation farm is a cluster of workstations connected via Local
Area Network (LAN). This connectivity provides excellent scalability. However, low
network bandwidth and high latency are limitations of this class.

•	 Vector Supercomputers—Vector supercomputers were considered, but for IR-1 and
Release A their cost and suitability did not match the processing requirements for these
early releases. This category is a potential platform for Release B and will be re-evaluated
at that time.

•	 Symmetric Multiprocessors (SMPs)—The SMP class provides excellent cost/performance,
graceful degradation, and good scalability. This class is selected on the basis of a cost
effective solution that meets both performance and scalability requirements. Interconnect
bandwidths within the SMP are high. The SMP can process sequential science algorithms
with the capability to transition to parallel processing of these algorithms.

•	 Massively Parallel Processors (MPPs)—Massively parallel processors (MPPs) contain
numerous processors (usually more than 64) MPPs provide very high speed interconnects
and can provide multiple I/O channels.

The platform classes which suit the requirements for Releases IR-1, A and the initial phases of B
are the SMP for LaRC, EDC, and GSFC and the Uniprocessor Workstation/Server for MSFC (See
Table 8-1). Key trade studies were performed (See Section 8.1.1.2) to support the selection of hard­
ware platform classes. The SMP is proposed because it offers good price/performance, handles
parallelization of science software, is scalable and evolvable. Processing, disk storage, and input/
output requirements for each DAAC were based upon January 1995 technical baseline data and
evaluated with static analysis and dynamic modeling.

DAAC unique characteristics of the processor platforms are provided in the DAAC Unique Vol­
umes (for GSFC: DID-CD-305-014, for LaRC: DID-CD-305-015, for MSFC: DID-CD-305-016,
and for EDC: DID-CD-305-017) for the operational sites (i.e., MSFC, and LaRC) and development

8-3 305-CD-011-001

sites (i.e., GSFC and EDC) for Release A. Recommended quantities, configurations as well as ven­
dor/model identification (candidate) are discussed for each site in detail.

Table 8-1. Platform Recommendation for IR-1 and Release A

Site Platform Class Supporting

LaRC SMP-H (Minimum)
+ SMP-H(s)
+ Uniprocessor workstation (Queuing)

IR-1
Rel A
Rel A

MSFC Uniprocessor workstation
+Uniprocessor workstation
+Uniprocessor workstation (Queuing)

IR-1
Rel A
Rel A

EDC SMP-H (Minimum)
No Change in Science Processing
+Uniprocessor workstation (Queuing)

IR-1
Rel A
Rel A

GSFC SMP-H
+CPUs
+Uniprocessor workstation (Queuing)

IR-1/Rel A
Rel A
Rel A

8.1.1.2 Key Trades

The SPRHW design analysis for PDR was accomplished through a number of efforts: cost/per­
formance trade-off analysis, key design trade studies, prototyping, and joint analysis of require­
ments with the AHWGP.

8.1.1.2.1 Cost/Performance Tradeoff

A cost/performance trade-off has been performed for the various candidate processor platform
classes for the ECS Release-A sites discussed in Table 8-2. Representative vendor average list pric­
es are normalized to peak MFLOPs performance for each of the platform classes. The SMPs are
broken down into two categories: SMP-L (1 to 8 CPUs) and SMP-H (2 to 64 CPUs). The main dis­
tinction between the high- and low-end SMPs are processing power, scalability, and cost. SMPs
are further classified as minimum and maximum configurations, where minimum refers to the least
number of CPUs configured for the SMP (e.g., 1 CPU for SMP-L, and 2 CPUs for SMP-H) and
maximum refers to a fully populated SMP. The Dollars-Per-MFLOPs is taken as an average nor­
malized cost of the minimum and maximum SMP configurations.

Considering the AHWGP required processing performance capacities as a constraint, the most
cost-effective processor platform selection for the LaRC, and GSFC DAAC sites is the high-end
SMP (SMP-H). Although, the low-end SMP cost/performance ratio is less than the high-end, this
class of SMP cannot satisfy the MFLOPs nor the scalability for LaRC and GSFC. The SMP-H is
approximately 23% and 60% of the normalized cost (price/performance) of the Vector Supercom­
puter and the MPP, respectively. Comparison of price/performance is actually more favorable for
the Release A maximum configuration SMP-H. In addition to cost/performance factors, suitability,
operation in a distributed computing environment, and scalability to Release B are important fac­
tors in selecting a particular platform.

8-4 305-CD-011-001

The AHWGP required MFLOPs capacities by release and DAAC site are summarized in detail
within Section 8.1.2. Static and dynamic analysis overviews are provided. Given the analysis per­
formed to date, processing requirements for EDC can be satisfied by a low end SMP (SMP-L) for
IR-1 and Release A. However, it can be shown that to achieve the scalability for Release B, it is
more cost effective to procure a SMP-H. The MSFC processing requirements can easily be satis­
fied by an uniprocessor workstation class. The average list price of the workstations surveyed are
less than 1/3 the cost of a minimum configuration SMP-L.

Table 8-2. Processing Support Activities for the Release A ECS Sites

DAAC Release Activity

LaRC IR-1
Rel A

AI&T
Science Processing operations

MSFC IR-1
Rel A

AI&T
Science Processing operations

EDC IR-1
Rel A

AI&T
AI&T

GSFC IR-1
Rel A

AI&T
AI&T

This sizing effort was accomplished in conjunction with the performance requirements provided
within the January 1995 CDR Technical Baseline (covering IR-1 and Release A). This technical
baseline is derived from the set of January 1995 AHWGP data. Performance and capacity require­
ments are derived from the AHWGP data. A roll-up summary of AHWGP requirements are pro­
vided within the SDPS Requirements Specification for the ECS Project (Appendix E, 304-CD­
002-001). A comparison of science processor vendor platforms is made in the Production Platform
Families for the ECS Project technical paper (440-TP-007-001). Platform selection is based upon
price/ performance, suitability, operation in a distributed computing environment, and scalability.
Scalability is a crucial factor since performance and capacity requirements increase drastically in
Release B.

8.1.1.2.2 Trade Studies

The "Trade-off Studies Analysis Data for the ECS Project" document (Reference: 211-CD-001­
001) provides an overview of the related trade studies which are briefly described below.

• Distributed and Parallel Processing

• Production Topologies

• Production Platform Families

A Distributed and Parallel Processing Trade Analysis was performed examining the benefits of
distributed and parallel computing. The trade studies various processing alternatives for ECS sci­
ence algorithms and provides up-to-date information on processing technologies. This trade ana­
lyzes the applicability of using OSF/ Distributed Computing Environment (DCE), SMP, DMP
(including workstation cluster), and MPP for ECS science software.

8-5 305-CD-011-001

A Production Topologies Trade Analysis examines the advantages and disadvantages of distribut­
ing processing tasks from one or more instruments across one or more processing strings. The re­
sulting recommendation will provide a cost effective way of distributing processing to maximize
throughput, minimize data movement, and provide and retain the flexibility to evolve with chang­
ing processing requirements. This trade analyzes physical (not logical) processing topologies that
can impact hardware requirements, overall performance, network capacity, throughput, and stag­
ing storage. Recommendations for hardware selection based on cluster optimization alternatives
for Release B and beyond are made.

A Production Platform Families Design Trade study has been performed to recommend one or
more Science Processing HWCI platform processor class(es) based on the Technical Baseline/AH-
WGP data, scalability, risk, and cost. This trade provides the basis and rationale for Science pro­
cessing HWCI hardware class recommendation for IR-1 and Release A with projection to Release
B. The recommendations resulting from this study are the basis for the Data Processing procure­
ment process scheduled for early 1995.

Three major considerations are examined along with quantitative selection criteria to come up with
the final platform recommendations.

• Phased performance requirements

• Algorithm development, test and maintenance costs

• Architecture design impacts

This trade study is being conducted in two phases: (1) Static analysis (spreadsheet analysis) using
the November 1994 baseline and (2) Static analysis and dynamic modeling using the January 1995
baseline. Sizing of the processing platforms for Release A has been updated reflecting the new AH-
WGP data incorporated into the January 1995 Technical Baseline and completion of the static and
dynamic modeling. This trade study is being re-issued incorporating the updated set of results.

In addition, further refinements to the baseline through the AHWGP (especially for areas includ­
ing: QA, reprocessing, and Release B sizing changes) will result in repeated study analysis
throughout the Release A CDR phase and beyond. The analysis will be further refined based on
dynamic model results. Further detail regarding AHWGP data as applied to this design is discussed
in Section 8.1.2.

The AHWGP data provides the following classes of data by epoch and DAAC sites for each PGE:

• Volume at Initiation and Completion (MB)

• Staging and Destaging I/O (MB)

• Total I/O Requirements (MB)

• CPU Requirements (MFLOs)

• Input and Output Files per Execution

• Activations per Day

The following processing and I/O requirements are derived from AHWGP data in a static analysis:

• Processing (MFLOPs)

• Host Attached Backplane I/O

• Network I/O

8-6 305-CD-011-001

Relationships of the above latter set of processing and I/O requirements are described in Section
8.1.2.1.

In addition to the MFLOP processing requirements, the I/O bandwidth and disk volume capacities
are calculated using the results from static modeling and "time averaged" for epochs e (IR1/Release
A time frames) and k (Release B/C timeframes). The peak disk volume was derived from the AH-
WGP data by multiplying the volume at initiation by a factor of 2 (2 days worth of staging capac­
ity).

Dynamic modeling was performed for the Release A technical baseline two shift operation (i.e., 16
hours a day, 7 days a week) at LaRC for epoch e to evaluate performance and capacity require­
ments. Release B was evaluated for 24 hours a day, 7 days a week according to the January 1995
baseline. MSFC is a one shift operation and is similarly modeled.

This information was then analyzed (for each DAAC and instrument) and the following platform
classes are recommended: SMP configurations for LaRC, EDC and GSFC, and uniprocessor work­
station/server configurations for MSFC. The EDC and GSFC are provided hardware to support
AI&T activities for IR-1 and Release A. The SMP solution is viable for IR-1 and Release A (and
potentially Release B) because it offers a very flexible platform in which applications can run in
either a serial or parallel mode and the SMP, by definition, is a reasonably scalable system. It also
provides fast channel communications and is easy to administer.

8.1.1.2.3 Prototype Studies

Prototyping representative science algorithms at the ECS Science and Technology Laboratory
(STL) using processing alternatives provided input and rationale for the selection of platform class­
es for the Science Processing HWCI. The Science Software Execution Prototype used science al­
gorithms (e.g., Pathfinder, AVHRR/Land, SSM/I, SeaWinds) to study applicability of various
processing alternatives (DCE, SMP, DMP/Workstation cluster, and MPP). The features of this pro­
totyping effort incorporated distributed computing of Pathfinder AVHRR/Land using OSF/DCE
on physically distributed workstation cluster. Multiprocessing, using SMP, DMP/ workstation
cluster, of SSM/I and SeaWinds using automatic parallelization tools were demonstrated. SDP
Toolkit performance studies were also conducted. The Science Software Execution Prototype also
provided inputs for science software portability issues (e.g., 32 bits vs. 64 bit architectures). New
processing technologies were revealed including architectures and software tools. The science pro­
cessing prototyping activities provided hands-on experience with these newer technologies and
also the rationale for recommending the most appropriate hardware for the DAACs.

8.1.2 Sizing and Performance Analysis

The purpose of this sizing and performance analysis is to provide the basis for sizing the SPRHW
science processors (i.e., MFLOPs and I/O) and its Host attached disk storage, data server disk stor­
age, RAM complements and the network bandwidths between Data Processing and Data Server.
This analysis focuses on performance and capacity requirement Release A two shift operation (16
hours a day/7 days a week) at LaRC and compares resources required for 3 shifts (i.e., 24 hours a
day). (It should noted that the PDR sizing was based on 24 x7 hours, and the 16 x 7 for LaRC and
8 x 7 at MSFC constitutes a baseline change which affects subsystems sizing). Release B perfor­
mance and capacity requirements are analyzed to understand the extent of scalability and the mi­
gration path from Release A to Release B. Sizing analysis for the Production Queuing component

8-7 305-CD-011-001

is based on sizing analysis performed within the Planning Subsystem. The sizing of the worksta­
tion/servers is based on similar analysis of transaction requirements (as a function of AHWGP PGE
invocation needs) and COTS software loading.

Processing requirements discussed in this Release A CDR volume are based upon the January 1995
Technical Baseline/AHWGP data. New AHWGP data has been provided in June 1995 that affects
primarily MODIS data (i.e., level 3 MODIS) and to a lesser extent, CERES and MISR data. The
June data as of the date on this paper is being analyzed by the modeling and science teams, but has
not been applied to the design and sizing analysis described here. DAO data will be provided in
mid-August with the assessment of DAO processing and capacity being reported at the Release B
IDR.

Initially, spreadsheet or static analyses results are presented for Release A (Epoch e) and Release
B (Epoch k) sites. These are processing and data volume demands on a time average basis of two
shift operation (16 x 7) at LaRC and one shift operation at MSFC (8 x 7) for 1x processing. These
results are translated into average processing (MFLOPs), Input/output (I/O), and network band­
width requirements. Dynamic modeling results are also provided for the same Release A and Re­
lease B site and corresponding epochs. Resource impacts are compared to three shift (24 hours a
day, 7 days a week) at LaRC. Sensitivity analyses of number of CPUs and CPU processing
(MFLOPs) level are also evaluated.

8.1.2.1 Static Analysis Results

Static analysis of AHWGP data provides an assessment of processing and capacity demands on a
time-average basis for 16 X 7 operation at LaRC and 8 X 7 operation at MSFC. A roll-up summary
table of static analysis results based on the AHWGP requirements for the Release A operational
sites (LaRC and MSFC) during epoch e (1Q98) is provided in Table 8-3. Epoch e (1Q98), repre­
sents the stress case for Release A. In order to account for machine efficiency, processing
(MFLOPs) is multiplied by a factor of 4 for an assumed 25% machine efficiency. Phasing factors
are not applied to these values (i.e., 1 x).

Table 8-3. Static Analysis Summary Results of January 1995 Baseline Data-Release
A AHWGP Requirements

Instrument Site Processing
(MFLOPS

Back plane I/O
(MBps)

Network I/O
(MBps)

Archive I/O
(MBps)

CERES LaRC 4,693 1.8 0.6 0.2

LIS MSFC 5 0.1 0.5 0.1

Processing and static estimates of I/O bandwidth are derived from the AHWGP requirements. Ba­
sic data flow between science processors, host attached disk, and data handler working storage is
shown below in Figure 8-2. A synopsis of the static analysis key performance parameters is de­
scribed below. Full details are provided within the trade study technical paper.

S: Staging Volume

D: Destaging Volume

I: Processing I/O

8-8 305-CD-011-001

The relationships for processing, I/O, and network bandwidth requirements obtained from the stat­
ic AHWGP data are given by (example below for LaRC operational timelines):

Processing: MFLOPs = MFLOs x A/57,600 where A is activations over 16 hours

I/O at CPU: I/O at CPU = (2S + 2D + I) x A/57,600

Network Bandwidth: NW BW = (S + D) x A/57,600

MFLOPS, I/O and Network Bandwidth requirements are spread over 8 hours in the case of MSFC.

Data
Handler
Disk

CPU
Host
Disk

S

D

S

D

I

Figure 8-2. Data Flow Block Diagram

Given the TRMM CERES machine rated processing requirement in Table 8-3, and assuming CPUs
is rated at 300 MFLOPs, then 16 CPUs, on average, are necessary to meet TRMM CERES pro­
cessing requirements. The dominant PGE contributing to processing load is CERES 5AF, which
is activated once every hour. Backplane I/O, as given in Table 8-3, is relatively low. Static analysis
provides results that are time averaged over the operational hours dictated by the baseline, as com­
pared to dynamic modeling results that show peaks.

LIS processing and I/O requirements translate into a workstation class machine. MSFC LIS plat­
forms are sized for the LIS mission in total. All growth factors are applied in the initial delivery to
MSFC and are reflected in the sizing given. Numbers on provided capacity are adjusted to include
growth for the mission lifetime. LARC, is sized for one calendar year past launch.

Although Release A is the primary focus, Release B performance and capacity provides a "look
ahead" to evaluate scalability, and assess the impact of algorithm integration and test (AI&T). A
roll-up summary table OF AHWGP Requirements for release B operational sites, for selected in­
struments, are shown in Table 8-4 for epoch k (3Q99). In order to obtain machine rated MFLOPs,
the demand processing is multiplied by a factor of 4 to account for a 25% assumed efficiency.

Table 8-4. Release B Processing, I/O, and Network Bandwidth Static Analysis
Requirements for Epoch k (3Q99) (January 1995 Baseline)

Instrument/Site Processing (GFLOPs) Backplane I/O (MB/s) Network I/O (MB/s)

MISR/LaRC 13.84 (46 CPUs) 19.31 6.43

CERES/LaRC 11.32 (38 CPUs) 7.24 2.42

MODIS/GSFC 8.9 (30 CPUs) 121.7 40.72

MODIS/EDC 5.36 (18 CPUs) 194.72 65.14

8-9 305-CD-011-001

MISR and CERES instruments at the LaRC site requires the largest processing loads, 13.84 and
11.32 GFLOPs, respectively, for Release B. The purpose of investigating Release B requirement
during Release A CDR time period is to project a migration path and satisfy scalability and evolv­
ability to Release B and beyond.

8.1.2.2 Dynamic Model Results

8.1.2.2.1 Dynamic Model Background

The dynamic model (i.e., ECS Performance Model) is a Block Oriented Network Simulation
(BONeS) model used in conjunction with the AHWGP data to simulate processing. It is a resource
constrained model containing a pool of processors and a pool of disk storage.

BONes is a discrete-event simulation tool for analysis and design of communication networks and
distributed processing systems. Components of a distributed processing system are represented by
nodes, which have resources associated with them that get allocated as events request them. Stan­
dard production of instrument data within the Data Processing Subsystem (DPS) is simulated by
the Processing module in conjunction with the Event Driven Scheduler and the Data Handler,
where the Data Handler is representative of the Data Server design. The Data Handler stores and
retrieves data from the permanent archive, for routing data to the requesting subsystems, and man­
aging tiered storage resources. The scheduler monitors availability of data, requests data to be
staged from the data handler to Processing, routes newly created data to the appropriate data han­
dler or processing pool, and initiates execution of a process when all required inputs are present.
(It should be noted that the event driven scheduler is not intended to serve as a simulator of the
Planning Subsystem.) The Ingest module simulates the Ingest subsystem, which accepts data from
external systems and users and contains rolling storage of L0 instrument data.

8.1.2.2.2 Dynamic Modeling Runs

The Dynamic Model (ECS System Performance Model) was run to assess dynamic performance
of production processing for both Releases A and B. This model provides data with respect to peak
and average resource consumption while simulating a resource constrained environment, which is
not possible with static analysis alone. Static or spreadsheet analysis provides 24 hour time aver­
aged data.

Release A—Release A was evaluated for TRMM CERES at LaRC and LIS at MSFC during epoch
e. Both two shift operation (16 hours a day, 7 days a week) and three shift operation (24 hours a
day) were evaluated for Release A at LaRC.

LaRC Two Shift Operation (16/7) Performance and capacity are evaluated for two shift operation
(16 hours a day, 7 days a week) for TRMM CERES at LaRC during epoch e using a maximum of
24 CPUs each rated at 300 MFLOPs. Refer to the DAAC Specific Volumes (references given ear­
lier), for further details on this analysis and how it is applied to derive the specific configurations.
The dynamic modeling results are summarized below in Table 8-5.

8-10 305-CD-011-001

Table 8-5. Two Shift Operation Performance and Capacity

Max.No.CPUs MFLOPs/
CPU

Avg. No.
CPUs

Host Disk-
Max GB

Host Disk-
Avg.GB

DH Disk-
Max GB

DH Disk-
Avg.GB

24 300 10.1 31.5 5.7 19.9 1.1

LaRC Three Shift Operation (24/7) Three shift operation (24 hours a day/ 7 days a week) was also
analyzed using dynamic modeling results. Comparison of data processing resources is made of two
shift operation (16/7) vs. three shift operation (24/7).

Sensitivity analyses were conducted for 24 hour operation including the following cases:

a. 300, 600, and 900 MFLOPs machines

b. Maximum number of constraining CPUs.

A summary of a subset of the dynamic model processing and capacity results are presented in Table
8-6 Release A TRMM CERES at LaRC.

Table 8-6. Dynamic Model Processing and Capacity Summary for Release A TRMM
CERES at LaRC

Max No.
CPUs

MFLOPs/
CPU

Avg. No.
CPUs

Host Disk-
Max GB

Host Disk-
Avg GB

DH Disk-
Max GB

DH Disk-
Avg. GB

18 300 11.54 27.27 5.76 23.25 1.33

Sensitivity to maximum number of CPUs (i.e., 15, 18, 21) for 300 MFLOPs and 24 hour operation
was investigated. There was very little sensitivity to average number of CPUs required. However,
when 18 CPUs was run for two shift operation, processing could not catch up.

Two shift operation vs. three operation is a trade-off of staffing reduction vs. increasing the number
of CPUs. The hardware/cost penalty is 6 additional CPUs for two shift operation. This additional
hardware cost is mitigated by the fact that these additional CPUs will be used during release B.
Although two shift operation is baseline, this does not preclude processing during unattended op­
eration. Currently, checkpointing is not implemented in the system. If a process stops or a CPU
fails, these additional CPUs can provide contingency processing during unattended operation and
provide a catchup capability. Nominally, backup capability will be provided by the AI&T science
processor in the event of auction science processor failure.

8.1.2.3 Phasing

Application of the phasing factors to the AHWGP processing requirements is a very important step
in each DAACs platform class evaluation. Scalability becomes a heavily weighted criteria when
the processing at the DAAC ranges from low to high as science software is tested and integrated,
instruments are launched and calibrated, and standard production and reprocessing begins. An ex­
ample of how phasing is applied for CERES processing at LaRC and how the results enter into the
platform recommendation is described, and an explanation of phasing factors as applied to stan­
dard products follows.

Figure 8-3 summarizes and illustrates how phasing factors are applied to processing capacity based
on launch dates. This phasing is applied to each platform and its scheduled launch date and incor­

8-11 305-CD-011-001

porated into the Release schedule.

•	 0.3X for L-2 < t < L-1 For pre-launch AI&T starting at launch minus 2 years, AI&T
requires 0.3 of the processing estimate at launch during the period 1 to 2 years prior to
launch. X is defined as at-launch processing estimate for pre-launch AI&T.

•	 1.2X for L-1 < t < L+1 For pre-launch AI&T and system I&T, starting at launch minus 1
year, AI&T and system I&T requires 1.2 times the processing estimate at launch during the
year prior to launch. Standard instrument processing requirements begin from launch date
and last for the remainder of the life of the instrument. X is defined as at-launch processing
estimate for prelaunch AI&T and systems I&T.

•	 2.2X for L+1 < t < L+2 For post-launch AIT, standard processing, and reprocessing of
data, starting at launch plus 1 year, 2.2 X is required. X is defined as the standard processing
estimate for that period.

•	 4.2X for t > L+2 For post-launch AI&T, standard processing and reprocessing of data,
starting at launch plus 2 years, 4.2 X is required. X is defined as the standard processing
estimate for that period.

L = L a un c h D a t e

P
h

 a
 s

 i n
g

 F
 a

 c
 to

 r

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

4 .5

L- 2 L- 1 L L+ 1 L+ 2 L> 2

Figure 8-3. NASA ESDIS Phasing Factors

8.1.2.4 RAM Requirements

In general, RAM configuration sizing for SPRHW platforms, from workstations to large SMP class
platforms must take into account the following contributing factors:

• COTS / OTS package RAM nominal and peak utilization,

• custom infrastructure and PDPS process utilization estimates (part of the PDPS design),

•	 and, especially critical to the SPRHW Science Processors, the estimated requirements of
the science algorithm PGEs (nominal and peak).

8-12 305-CD-011-001

For platforms exclusive of processing, reprocessing and actual AI&T support, it is predicted that
the first two items above will provide for the core RAM sizing estimate. For the Science Proces­
sors, the third factor consisting of Science PGE requirements is likely to dwarf the ECS COTS/
OTS and custom process requirements.

Tall pole Science PGEs, in terms of processing and/or disk, may or may not translate into tall poles
as far at RAM requirements are concerned. The implementation of the PGE is the key. The PGE
RAM requirements in the near term for Release-A, will likely come from a combination of one or
more of the following types of data:

• Science heritage code estimates and/or actuals (analogous applications to planned PGEs),

• Estimates based on current PGE development,

• Estimates and/or measurements from early AI&T (prototyping and development).

The Science Processor configurations will take these factors into account over time, with better es­
timates and measurements used over time to refine the configuration. The planned or recommend­
ed configurations (with their inherent limitations and associated cost) will have ramifications to the
Science Team's engineering as well.

Where RAM information estimates are available, the DAAC Specific Volumes contain descriptive
rationale and configuration information.

8.1.3 Scalability, Evolvability and Migration to Release B

Release B was evaluated for LaRC, GSFC, EDC, MSFC, ASF JPL, ORNL, and NSFOC during
epoch k. The major processing loads occur at LaRC and GSFC. Both sites are three shift operation
(24 hours a day). Table 8-7 provides a summary of the core Release B requirements for hardware
support derived from this analysis.

Table 8-7. Dynamic Model Processing and Capacity Summary for Release B at
LaRC and GSFC

Site Max No.
CPUs

MFLOPs/
CPU

Avg. No.
CPUs

Host Disk
Max GB

Host Disk
Avg GB

DH Disk
Max GB

DH Disk
Avg Disk

LaRC/ MISR 48 300 46.4 560.3 534.9 103.3 13.8

LaRC/ CERES
AM-1

54 300 36.0 100.1 46.0 103.3 13.8

GSFC/ MODIS 53 300 34.5 83.3 35.7 97.9 15.7

These results in the above table show a dramatic increase in processing and storage requirements
for release B. In particular MISR host storage requirements are extremely high (i.e., 560 GB). Ad­
ditionally, MODIS I/O requirements are very high as can be seen in static analysis. Release B per­
formance and capacity requirements are very much higher than Release A.

High end SMPs are the appropriate choice for LaRC in Release A since the Release B requirements
are high and there is need for built in scalability (investment). The purpose of investigating Release
B requirements during Release A CDR time period is to project a migration path and satisfy scal­
ability and evolvability to Release B and beyond.

Scalability is the ability to increase processing capacity with minimum impact on both hardware

8-13 305-CD-011-001

and software. From a hardware standpoint, it is the ability to add on processors; from a software
standpoint, it is the ability to provide incrementally better performance with minimum tuning. This
ability to expand processing with minimum effect on existing operations can be achieved in several
ways, including but not limited to:

• adding new processing clusters

• adding CPUs to existing host computers

• adding computer systems to existing clusters

•	 adding subnetworks to support additional inter and/or intra-cluster I/O and
communications

• technology refresh

The ability to select a processor class which satisfies increasing performance requirements in in­
cremental releases and a spectrum of scientific missions including TRMM, AM-1, and PM-1 is one
of the major challenges of the design. Initially, processor performance requirements must satisfy
the TRMM mission with CERES and LIS instruments in Release A.

An SMP configuration provides reasonable scalability (up to 32 processors) and is more than ade­
quate for most sites included in Release A. For Release B, the scalability can be extended (prima­
rily at LaRC and GSFC) by employing clusters of SMPs within a high-speed network.

8.1.4 Algorithm Parallelization

The major consideration in selecting the processor class is the ability to run parallel programs es­
pecially when large processing requirements are called for Release B. An SMP provides the ability
to parallelize programs in shared memory (the easiest paradigm for parallel programs) in shared
memory and distributed memory modes. A variety of tools are available to parallelize science soft­
ware. The ECS Science and Technology Lab (STL) prototyping (Reference: 440-TP-008-001,
194-00569TPW, 194-430-TPW-001) of science processing has demonstrated parallel program de­
velopment based primarily on parallelization tools.

8.2 HWCI Structure
The SPRHW HWCI consists of two major components that support processing as well as produc­
tion queuing, monitoring and control. A Release A specific block diagram of the Science Process­
ing hardware is shown in Figure 8-4, which illustrates the two major logical components within
SPRHW, and the physical building blocks those components are constructed with.

The block diagram gives a psuedo-physical view of the SPRHW layout and how the physical
equipment classes relate and connect to one another. For Release A, the candidate architecture be­
ing recommended consists of pooled processing resources interconnected with CSMS provided
ESN LANs (subnetworked as necessary to meet site specific throughput requirements). The Pro­
duction Topologies Trade Study provides a discussion of this analysis and provides a view of the
options available for Release B and beyond, which requires a more sophisticated topology at the
larger processing sites.

Hardware requirements for the processing strings may range from small or medium single proces­
sor workstations, to SMP compute servers, or a cluster of SMPs. Unique algorithm I/O require­
ments may point to the selection of compute resources that offer the best solutions in terms of I/O

8-14 305-CD-011-001

subsystem growth and augmentation capability. Depending upon the volume and I/O requirements,
staging resources may be clustered, network attached or host attached (dedicated). The two sub­
sections that follow provide details regarding the interconnection between component equipment
classes as well as identifying the types of equipment classes required.

RAID Disk
Host Attached

Host Disk

Science
Processor

Operations Console
(if needed)

Working Storage
<as needed>

<CSMS ESN LANS>
802.3

FDDI

Production, Queuing Control
Host Workstation

SCSI

Host Disk

LAN Technologies and
Connectivity Per Site

Requirements

Queuing and Management Component

Processing Component

Figure 8-4. Science Processing Block Diagram

8.2.1 Connectivity

The intra DAAC data interfaces will be implemented as follows: disk interfaces will be of the chan­
nel type (e.g., SCSI II); control interfaces will be of the network type (e.g., FDDI, ethernet).

The Planning and Data Processing subsystem network connectivity is illustrated in Figure 8-5.
Both subsystems will connect directly to the same FDDI ring. Hosts (servers and workstations) will
contain single-attached station (SAS) cards and will be connected to an FDDI concentrator, which
will in turn be connected to the FDDI switch via a physically wired FDDI ring. (Refer to Section

8-15 305-CD-011-001

f

TBD of Volume 0 for a general description of DAAC networks, and to Section TBD of Volumes
X-Z for DAAC-specific topologies.)

(for Processing, Reprocessing, AI&T)

FDDI Concentrator

Science
Processor

FDDI
Switch

AIT
Server

AIT
Work

Station(s)
Planning
Server(s)

Queuing
Work

Station

FDDI Concentrator

QA
Work

Station(s)

Science
Processor

Science
Processor

(Does Not Reflect SPRHW Unit Counts, Which Are DAAC Site Speci ic)

Figure 8-5. PDPS Network Connectivity In Release A (Generic Hardware
Units)

8.2.2 HWCI Components

Table 8-8 provides a overview of the two major logical components within SPRHW, and the phys­
ical classes of hardware that support them. SPRHW consists of two logical components as shown
in the block diagram, Figure 8-4:

•	 a Processing Component that provides the site specific required AI&T, standard, reprocess­
ing and (future) on-demand processing capacity, and

•	 a Queuing and Management Component that provides workstation support for production
queuing, monitoring and control (automated and operations support based).

This table provides a generic and site independent view of the components and their physical build­
ing blocks. See the DAAC specific volumes for MSFC, GSFC, LaRC, and EDC configurations.
Not all sites are in the same state of operational readiness, nor are their core requirements similar,
therefore their complement will be different from site to site.

8-16 305-CD-011-001

Table 8-8. SPRHW Logical Components and Equipment Classes

Component
Name

Class/Type Comments

Processing SMP Science
Processor
(SMP-H, SMP-L)
(not at all sites)

• Provides science processing capacity for science soft­
ware integration and test, standard production, on-de­
mand production (future releases), as well as
reprocessing support.

• Large and/or small SMP processors with host attached
system disk and local console support.

• Supports two or more processors.
• Configuration and/or inclusion in site topology is based on

site processing requirements.
• Multiple units provided as needed to support capacity

needs and operational needs.

RAID Disk (Host
Attached)
(not at all sites)

• RAID storage for staging and destaging of science prod­
ucts.

• Support for interim and temporary files in addition to stag­
ing capacity for production data sets and dependency
datasets.

• Host attached in release A (e.g., host attached to SMP-H,
SMP-L, etc.). Possible network attached applications for
release B and beyond (including shared pooling between
DS, Ingest and Data Processing subsystems.

Host Disk (system
disk)

• System disk for O/S and other core functions.
• Basic disk in core system configurations.

Science Uni-
Processor
Workstation
(not at all sites)

• “Small” single processor workstations, providing science
processing capacity for science software integration and
test, standard production, on-demand production (future
releases), as well as reprocessing support.

• Configuration and/or inclusion in site topology is based on
site processing requirements.

• Multiple units provided as needed to support capacity
needs and operational needs.

DBMS Server
(Future & instru­
ment processing
specific)

• This class of equipment is under investigation for possible
support of embedded DBMS applications (future analysis)

• Predicted as not applicable for Release-A, but probable
application exist for inclusion in H/W topology for Release-
B

Queuing and
Management

OPS Workstation
(small)

• One or more operations workstations, on a site by site ba­
sis that support production queuing, monitoring and con­
trol.

• Provides workstation processing, I/O and disk resources
for control and monitoring of the Processing Component
production resources discussed above.

8.3 Failover and Recovery strategy

8.3.1 Network Failure Recovery

In general, network failure recovery does not inherently affect the core design of the SPRHW con­
figuration:

•	 The release A DPS configuration is built primarily on FDDI networks, therefore there is a
significant degree of fault tolerance in the physical communications system. Most media

8-17 305-CD-011-001

failures within the FDDI fabric will not result in any loss of service and no reconfiguration
would be necessary in these cases (due to the basic nature of FDDI).

•	 Given the inherent fault tolerance of FDDI, it was not required to have multiple physical
communications paths to each host. Hosts within the DPS will be generally be SAS
adapted.

•	 Failures within the hub/switch fabric will be handled by the CSMS subsystems and do not
require special consideration within the physical architecture of the DPS. The core design
discussed within this section take RMA analysis and requirements into account.

Within the CSMS ISS configuration for PDPS, there are three types of network failures that may
affect the PDPS subsystem. If the FDDI cable between a host and the FDDI concentrator is severed
or damaged, then a new cable would need to be installed. No other configuration would be re­
quired. If an individual port on the FDDI concentrator fails, then the attached host must be moved
to another port, again with no other configuration required. Finally, if the entire concentrator fails,
then it will have to be replaced, which can be done rapidly since the units require very little con­
figuration.

Note that the above failures result in service interruption only to the workstations. Since all servers/
processors are attached to two hubs, they will communicate as normal in the event of a cable or
concentrator fault, and the applications will be unaware of and unaffected by the event.

8.3.2 Data Processing Subsystem Failure Recovery

The Data Processing Subsystem function has the following RMA requirements for the Product
Generation function:

(1) Availability: 0.96

(2) Mean Down Time: <4 Hrs.

This function is supported by the Science Processor(s) and RAID disk storage. These RMA re­
quirements are met by the Product Generation function of the data processing subsystem. An anal­
ysis is provided in Availability Model/Predictions for the ECS Project, 515-CD-001-003.

The failover and recovery strategy for the Data Processing System is based upon software control
by the Planning Subsystem, and Queuing, and in conjunction with MSS. MSS orchestrates opera­
tions management control and Planning and Queuing schedules jobs, and keeps track of available
resources.

The AI&T processors are a part of SPRHW processing pool. AITHW just provides workstations
for management and control of the test process. The strategy employed is to make best use of avail­
able resources. for processing, reprocessing, test, etc., as needed. It is a resource pool, configured
in clusters. Failover is handled by the production queuing software as well as the planning software
and is controlled in conjunction with MSS. No special hardware is provided to facilitate this.
SPRHW is sized and configured to support processing, reprocessing and AI&T. There is no special
hardware provision to expedite switchover, it is software and operations procedure based.

Backup of the production science processor(s) will be provided by the SPRHW science processor
supporting Algorithm Integration and Test. (AI&T) at LaRC for Release A. The science processor
supporting AI&T is a development platform that has a lower priority than the production science
processors. In the event of a power supply failure, this component will be replaced by a spare,

8-18 305-CD-011-001

where the mean down time of less than 4 hours and a production computer availability of 0.95 can
be met. This is also true for the MSFC configuration. Host Disks are critical, therefore the config­
urations include RAID disks for LaRC and MSFC operational sites and GSFC and EDC develop­
ment sites.

If a CPU fails, the science processor can continue to operate using the other available CPUs in the
SMP with minor degradation in utilization. The failed CPU can be spared at the appropriate main­
tenance event, which is typically scheduled like any other activity by the Planning Subsystem.

Disk Mirroring and Primary and Secondary Servers

These recovery and failover strategies apply primarily to the Process Queuing component within
the SPRHW design. The component makeup of the Science Processing component does not utilize
these strategies. Similar strategies are applied to the Planning Server within the Planning Sub­
system discussed in Section 5.0. For a full description of these strategies, and how they support
failover and recovery of Planning (and Queuing) database servers, see Section 5.3.

8.4 Data Processing Hardware Provided Capacity
Section 8.1.2 provided summary information with respect to the AHWGP requirements, static and
dynamic analysis as well as phasing of the resultant capacities. Provided capacity, supplied in the
sizing discussed in that section, results in Release-A DAAC specific configurations supporting op­
erations at LaRC and MSFC, and early AI&T at GSFC and EDC. The DAAC Specific Volumes
for these sites provide a complete description of the provided capacities, associated rationale and
the resultant recommended configurations. The capacity sizing information, discussed in Section
8.1.2 as part of the overview on key trades is not repeated here. The following items are notewor­
thy:

• ESDIS phasing factors and machine efficiencies are applied,

• LaRC required MFLOPs capacities at IR-1 was projected ahead to 6 months after launch

• GSFC MFLOPs at IR-1 assumes 50% of 0.3 X phasing factor

•	 LaRC disk volume estimate based on DAAC manager estimate. EDC disk volume estimate
based on instrument team input.

• LaRC provided capacities supports 2 shift operation for Release A.

• MSFC provided capacities supports 1 shift operation for Release A.

Selected platform classes and corresponding vendors for the operational sites for Release A are:

• LaRC: High End SMP

• MSFC: Workstation Uniprocessor Class

For LaRC the SMP-H recommendation meets immediate performance requirements and was se­
lected because it is a minimum risk approach, providing a smooth transition from IR-1 to Release
A, requiring minimal regression testing. This solution provides the reasonably good scalability re­
quired for the releases considered.

The recommendation for the MSFC, is a uniprocessor workstation or server. A representative un­
iprocessor supporting 125 MFLOPs can readily support each site for the life of the contract based
on the processing requirements. Similarly, a second uniprocessor was provided in Release A to

8-19 305-CD-011-001

support fail-soft capability.

Selected platform classes and corresponding vendors for the development sites performing early I/
F and AI&T testing: are:

• GSFC: High End SMP

• EDC: High End SMP

The recommended platform for GSFC is a high-end SMP (SMP-H) configuration to support MO-
DIS for IR-1 and additional CPUs provided for the Release A timeframe. GSFC supports AI&T in
Release A and, therefore, does not require a backup processor.

The recommended platform for EDC is a SMP scalable to meet phased performance for AIT/I&T,
standard processing and reprocessing. The processing at EDC is split between the ASTER and
MODIS instruments. Considering the scalability, the EDC processor platform is sized from a min­
imum SMP-H for IR-1 to a large configuration to support the end of contract requirement. Since
EDC only supports AI&T for Release A, a second platform is not provided.

8.5 Pertinent References
1.	 The ECS Science and Technology Lab (STL) Prototyping, 440-TP-008-001, 194­

00569TPW, 194-430TPW-001

8-20 305-CD-011-001

9. QAHW - Algorithm Quality Assurance HWCI

9.1 HWCI Overview
Algorithm Quality Assurance HWCI (AQAHW) is the second of three HWCIs of the Data Pro­
cessing Subsystem. This HWCI contains hardware resources to support DAAC operations and us­
ers performing planned routine QA of product data. While the actual processing resources are
included within the SRPHW, this HWCI provides the basic facilities to control and enable QA as
a process within each DAAC facility (as needed per site specific science and operational policies).

This HWCI does not necessarily support the other primary forms of QA currently envisioned as
supported by ECS: in line QA and SCF based QA. These forms of QA are supported by other HW-
CIs as well as subsystems within the SDPS. (Capacity to directly support inline QA is supported
by the sizing of the SPRHW HWCI discussed in Section 8.0.)

9.2 HWCI Design Rationale
QA processing requirements are currently being jointly evaluated with the investigative teams.
Current operational assumptions include DAAC QA process performed at the sites in conjunction
with SCF-based QA. The current design baseline thus includes local QA monitors.

These local QA monitors are actually similar to Science User workstations equipped with core Cli­
ent subsystem functionality. These QA monitors, with one or more at a DAAC site, act as QA Cli­
ents to the Data Processing components and the Data Server. The current OPS concept, under
investigation, assumes that these QA monitors host Algorithm/Science Team supplied processes,
which use a subset of the ECS servers provided primarily by the Data Server and Client subsystems
to "pull" production data sets under the subscription mechanism. Depending upon the operational
requirements of the DAAC and the Science Teams (under investigation), this QA can involve full
or statistically determined "pull" loads from the production system through the Data Server. Dras­
tically different local data flows can result based on these requirements resulting in differing QA
monitoring workstation and communications configurations. These decisions are DAAC specific.

9.3 HWCI Structure
A block diagram of the Algorithm QA hardware is shown in Figure 9-1. At a minimum, the hard­
ware is configured for general user and subscription use (client support).

This HWCI contains the hardware necessary to support DAAC operations users performing
planned routine QA of product data (this occurs in parallel, and in conjunction with, routine auto­
mated QA supported by the algorithm and/or QA at the SCF performed by the science teams). This
HWCI consists of QA monitors and workstations ranging from X-Terminals, to small user work­
stations, to medium or large graphics workstations. The complement is site dependent and is a
function of the classes of production performed.

9-1 305-CD-011-001

QA
Workstation

SCSI

or other
Host
BUS

<ESN LAN>

Host Disk

Figure 9-1. Algorithm QA Block Diagram

The need for visualization support will be explored as product specific QA processes and require­
ments are worked jointly with the instrument teams. In later releases, the QA HWCI accesses the
services of the Data Server to perform subsetting. In general, QA positions within the component
are clients which may rely on Data Server subscription services to perform their routine missions.
This HWCI is supported by the Interoperability Subsystem’s and Client Subsystem’s services.
Low to medium bandwidth (e.g., 802.6, FDDI) LANs provided by CSMS provide the connectivity
with the Data Server, Ingest and Planning subsystem components as well as the Data Processing
subsystem’s string resources.

DAAC unique characteristics of the processor platforms are provided in the DAAC Unique Vol­
umes (for LaRC: DID-CD-305-015, for MSFC: DID-CD-305-016) for the operational sites (i.e.,
MSFC, and LaRC) for Release A. As warranted by the site OPS concepts and requirements, rec­
ommended quantities and configurations are discussed for each site in detail.

9-2 305-CD-011-001

10. AITHW - Algorithm Integration & Test HWCI

10.1 HWCI Overview
The Algorithm Integration & Test HWCI (AITHW) provides the hardware resources to support
DAAC operations users performing (and/or assisting instrument team members with) science Al­
gorithm Integration and Test (AI&T) (science software), systems validation and integration and
test. It is important to note that this HWCI provides the workstation based operations support hard­
ware and necessary server hardware, while the prime science software integration and test capacity
is provided within the SPRHW HWCI (the science uni-processor and/or SMP hardware). No sci­
ence processors are supplied by this HWCI to the DAAC configuration. Thus, the AITHW HWCI
just provides the operations support workstations to allow DAAC personnel to configure, control
and manage the AI&T processes engaged on the target science processors.

10.2 HWCI Design Rationale

10.2.1 Key Trades and Analyses

There are no key trades and analysis especially performed for the sizing and specification of this
hardware other than the site specific operations analysis currently underway for all segments and
all sites. Workstation and server types and counts will be matched to the needs of the DAAC site
and the system release in question.

10.2.2 Scalability Strategies

Since the contents of this HWCI consists only of operations workstations and small servers, there
is little need for elaborate scalability strategies:

•	 As AI&T operations expand due to more processing and/or additional mission support,
additional workstations can be added to the network topology.

•	 To support short term increases in AI&T activity, other operations workstations, already
within the configuration can be used since the ESN LANs provide full inter-connectivity.
Workstations from the Planning Subsystem and/or the AQAHW HWCI could be used
temporarily. (This is true for operations workstations in general, since most of them are not
“dedicated” for one and only one purpose, but may support windows into many operational
dialogs simultaneously.)

10.3 HWCI Structure
A block diagram of the AITHW HWCI is depicted in Figure 10.3-1. The major elements include
operator workstations and small servers equipped with a nominal quantity of host attached disk.
Significant disk allocations are not required within this HWCI since the processes that are con­
trolled through the use of these workstations will execute on science processors, provided by the
SPRHW HWCI, and configured with sizable resources. However, minimal local AI&T tasks may
be accomplished locally on the workstation.

10-1 305-CD-011-001

AI&T
Workstation

SCSI

or other
Host
BUS

<ESN LAN>

Host Disk

Figure 10.3-1. Algorithm Integration & Test Block Diagram

While equipped with workstations, this HWCI is supported by the Interoperability Subsystem’s
and Client Subsystem’s services. Low to medium bandwidth (e.g., 802.6, FDDI) LANs provided
by CSMS provide the connectivity with the Data Server, Ingest and Planning subsystem compo­
nents as well as the Processing subsystem’s string resources. The number and type of workstations
is site specific.

10.3.1 Connectivity (Classes of Interfaces)

The intra DAAC data interfaces will be implemented via ESN LANs and host adapters.

10.3.2 HWCI Components

This HWCI does not include any logical components due to its simple implementation. The HWCI
will include one or some number of the following physical equipment classes:

• Operations workstations with a nominal allocation of host attached disk,

• AI&T server with host attached disk

10-2 305-CD-011-001

Appendix A. Requirements Trace

The Interim Release 1 (Ir1) and TRMM Development (Release A) Level 4 requirements listed in
the following table reflect the state of the RTM database on July 15, 1995.

Table A-1. Requirements Trace (1 of 28)
L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

S-DPS-20040 The PRONG CI design and implementation shall have the
flexibility to accomodate Processing expansion up to a factor
of 3 in its capacity with no changes to the design, and up to a
factor of 10 without major changes to its design.
sion in capacity or capability shall be transparent to existing
algorithms or product specifications.

PRONG CI;

S-DPS-20100 The PRONG CI shall request information about the health
and availability of a Hardware Resource by using a Systems
Management Subsystem (MSS) provided Resource Man­
agement API (Application Program Interface).

DpPrResourceManager;
MsManager; COTS;

S-DPS-20120 The PRONG CI shall inform the MSS using a MSS provided
Fault Management API when a fault attributed to a MSS man­
aged resource has occurred.

PRONG CI; MsManager;
COTS;

S-DPS-20130 The PRONG CI shall provide Fault Management data to the
MSS using a MSS provided

PRONG CI; MsManager;
COTS;

S-DPS-20140 The PRONG CI shall provide Performance Management
data
agement API.

PRONG CI; MsManager;
COTS;

S-DPS-20160 The PRONG CI shall provide Accountability Management
data to the MSS using a
agement API.

PRONG CI; MsManager;
COTS;

S-DPS-20170 The operations staff shall have the capability to modify the
configuration of Data Processing subsystem Hardware re­
sources.

DpPrCotsManager;
COTS; DpPrPge; DpPrEx­
ecutionManager; DpPrRe­
sourceManager;
DpPrDataManager;
MsMgCallBacks; MsMan­
ager;

S-DPS-20180 The PRONG CI shall provide an interface to support the mod­
ification of the configuration of the Data Processing sub­
system Hardware resources.

DpPrCotsManager;
COTS; DpPrPge; DpPrEx­
ecutionManager; DpPrRe­
sourceManager;
DpPrDataManager;
MsMgCallBacks; MsMan­
ager;

Such expan­

SPRHW CI;

Fault Management API.

to the MSS using a MSS provided Performance Man­

MSS provided Accountability Man­

A-1 305-CD-011-001

Table A-1. Requirements Trace (2 of 28)

S-DPS-20190 The PRONG CI shall have the capability to modify the config­
uration of the Data Processing subsystem Hardware resourc­
es.

DpPrCotsManager;
COTS; DpPrPge; DpPrEx­
ecutionManager; DpPrRe­
sourceManager;
DpPrDataManager;
MsMgCallBacks; MsMan­
ager;

S-DPS-20210 The PRONG CI shall have the capability to determine the Op­
erational state of a Hardware or Software component.

PRONG CI; MSS ; COTS;

S-DPS-20220 The operations staff shall have the capability to request a
Data Processing Subsystem Resource Utilization Report
from the MSS based on time span, resource classification, or
operational role.

DpPrResourceManager;
MSS; COTS;

S-DPS-20230 The PRONG CI shall provide Security Management data to
the MSS using a MSS provided Security Management API.

PRONG CI; MSS; COTS;

S-DPS-20240 The PRONG CI shall provide Scheduling Management data
to the MSS using a MSS provided Scheduling Management
API.

PRONG CI; MSS; COTS;

S-DPS-20330 The PRONG CI shall accept a Cancel Data Processing Re­
quest message to delete a Data Processing Request from
the

DpPrExecutionManager,
PlDpr; DpPrScheduler;
DpPrDataManager;
PrCotsManager; Cots;

S-DPS-20340 The PRONG CI shall reject a Cancel Data Processing Re­
quest if the Cancel Data Processing Request is
from an unauthorized source.

DpPrExecutionManager,
PlDpr; DpPrScheduler;
DpPrDataManager;
PrCotsManager; Cots;

S-DPS-20400 The PRONG CI shall accept a Data Processing Request
(DPR) that requests the execution of a PGE.

PlDpr; PlPge; DpPrData-
Manager; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-20410 The PRONG CI shall validate the information associated with
the Data Processing Request.

PlDpr; PlPge; DpPrData-
Manager; DpPrScheduler;

S-DPS-20420 The PRONG CI shall reject a Data Processing Request if the
Data Processing Request is
source.

PlDpr; PlPge; DpPrData-
Manager; DpPrScheduler;

S-DPS-20430 The PRONG CI shall take a pre-determined error recovery
action if the PGE identified in the Data Processing Request is
not available for execution.

PlDpr; PlPge; DpPrData-
Manager; DpPrScheduler;

S-DPS-20440 The PRONG CI shall take a pre-determined error recovery
action if the level of validation required for execution in the
Data Processing Operational Environment has not been at­
tained by the PGE version identified in the Data Processing
Request .

PlDpr; PlPge; DpPrData-
Manager; DpPrScheduler;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

Processing Queue. Dp-

received
Dp-

received from an unauthorized

A-2 305-CD-011-001

Table A-1. Requirements Trace (3 of 28)

S-DPS-20460 The PRONG CI shall take a pre-determined error recovery
action if the resource which maintains the input data is not
available for data staging.

DpPrDataManager;
DsClESDTReferenceCol­
lector; DsClRequest;
DsClCommand; PlDPR;
PlDataGranule; GlCall-
Back;

S-DPS-20470 The PRONG CI shall take a pre-determined error recovery
action if the resource identified as the recipient of the Output
Data is not available for data destaging.

GlCallBack; DpPrData-
Manager; COTS;

S-DPS-20480 The PRONG CI shall take a pre-determined error recovery
action if the
is not available.

DpPrResouceManager;
GlCallBack; COTS;

S-DPS-20490 The
Requests

PlDpr; PlPge; DpPrData-
Manager; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-20500 The Processing shall queue the Data Processing Request
using the
cessing Request.

PlDpr; PlPge; DpPrData-
Manager; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-20510 The PRONG CI shall respond to the source of the Data Pro­
cessing Request with a Data Processing Request Response
upon the completion of

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-20520 The Data Processing Request Response shall include a rea­
son for rejection if the Data Processing Request was reject­
ed.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-20600 The PRONG CI shall be able to determine what data required
for PGE execution needs to be staged.

PlDpr; DpPrScheduler;
DpPrDataManager; DpPr-
DataMap; PlDPR; PlData-
Granule; GlUR;

S-DPS-20610 The PRONG CI shall be able to determine that an ECS Data
Product required for PGE execution requires

PlDpr; DpPrScheduler;
DpPrDataManager; DpPr-
DataMap; PlDPR; PlData-
Granule; GlUR;

S-DPS-20620 The PRONG CI shall be able to determine that the metadata
associated with a ECS Data Product required for PGE exe­
cution requires

PlDpr; DpPrScheduler;
DpPrDataManager; DpPr-
DataMap; PlDPR; PlData-
Granule; GlUR;

S-DPS-20630 The PRONG CI shall be able to determine that an Ancillary
Data Product required

PlDpr; DpPrScheduler;
DpPrDataManager; DpPr-
DataMap; PlDPR; PlData-
Granule; GlUR;

S-DPS-20640 The PRONG CI shall be able to determine that a Special
Data Product required for PGE execution requires staging.

PlDpr; DpPrScheduler;
DpPrDataManager; DpPr-
DataMap; PlDPR; PlData-
Granule; GlUR;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

computer resource required to execute the PGE

shall queue only validated Data Processing PRONG CI

Priority Information associated with the Data Pro­

validation and queue processing.

staging.

staging.

for PGE execution requires staging.

A-3 305-CD-011-001

Table A-1. Requirements Trace (4 of 28)

S-DPS-20650 The PRONG CI shall be able to determine that a Calibration
Coefficient Data File required for PGE execution requires
staging.

PlDpr; DpPrScheduler;
DpPrDataManager; DpPr-
DataMap; PlDPR; PlData-
Granule; GlUR;

S-DPS-20660 The PRONG CI shall be able to determine that a PGE
quires staging.

PlDpr; DpPrScheduler;
PlDPR; GlUR;

S-DPS-20670 The PRONG CI shall be able to determine that metadata as­
sociated with a PGE

PlDpr; DpPrScheduler;
PlDPR; GlUR;

S-DPS-20680 The PRONG CI shall support the movement of data from one
Data Processing subsystem controlled storage resource to
another Data Processing subsystem controlled storage re­
source.

DpPrDataManager; Dp-
PrCotsManager; COTS;
DpPrResourceManager;
PlDPR; DpPrDataMap; Pl-
DataGranule;

S-DPS-20690 The PRONG CI shall initiate the data staging process when
the disk space required to support successful data staging is
available.

DpPrDataManager;
DsClESDTReferenceCol­
lector; DsClRequest;
DsClCommand; PlDPR;
PlDataGranule; GlCall-
Back;

S-DPS-20700 The PRONG CI shall request data staging by sending a Data
Request to the SDSRV CI .

DpPrDataManager;
DsClESDTReferenceCol­
lector; DsClRequest;
DsClCommand; PlDPR;
PlDataGranule; GlCall-
Back;

S-DPS-20710 The PRONG CI shall accept a Data Request Status message
in response to the Data Request Message.

DpPrDataManager;

S-DPS-20720 The Data Request Status message shall inform the PRONG
CI on the success or failure of data staging.

DpPrDataManager;

S-DPS-20730 The PRONG CI shall provide the capability to terminate the
data staging process.

DpPrDataManager; Gl-
CallBack; DpPrCotsMan­
ager; COTS;

S-DPS-20740 The PRONG CI shall send an Data Request message to the
SDSRV CI to terminate the data staging process.

DpPrDataManager;

S-DPS-20750 The PRONG CI shall send a Complete Notification Status
message to the source of the Data Processing Request if the
data staging process was not completed successfully for the
Data Processing Request.

DpPrDataManager;

S-DPS-20760 The Complete Notification Status message shall contain er­
ror information if the message was sent as a result of the fail­
ure of data staging.

DpPrDataManager;

S-DPS-20770 The PRONG CI shall accept ECS Data Products from the
SDSRV CI.

DpPrDataManager;

S-DPS-20780 The PRONG CI shall accept metadata from the SDSRV CI. DpPrDataManager;
S-DPS-20790 The PRONG CI shall accept PGEs from the SDSRV CI. DpPrScheduler;
S-DPS-20800 The PRONG CI shall accept Calibration Coefficient data

from the SDSRV CI.
DpPrDataManager;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

re­

requires staging.

A-4 305-CD-011-001

Table A-1. Requirements Trace (5 of 28)

S-DPS-20810 The PRONG CI shall accept Special Data Products from the
SDSRV CI.

DpPrDataManager;

S-DPS-20820 The PRONG CI shall accept Ancillary Data Products from the
SDSRV CI.

DpPrDataManager;

S-DPS-20830 The PRONG CI shall send a Data Insert Request message to
the SDSRV CI CI to initiate the destaging of data.

DpPrCotsManager;
COTS; DpPrDataMan­
ager; DpPrResourceMan­
ager;
DsClESDTReference Col­
lector;DsClRequest;
DsClCommand; PlDPR;
PlDataGranule; GlCall-
Back;

S-DPS-20840 The Data Request Status message shall inform the
CI on the success or failure of data destaging.

DpPrDataManager; SD-
SRV CI;

S-DPS-20850 The PRONG CI shall destage Intermediate Data Products to
the SDSRV CI.

DpPrCotsManager;
COTS; DpPrDataMan­
ager; DpPrResourceMan­
ager;
DsClESDTReference Col­
lector;DsClRequest;
DsClCommand; PlDPR;
PlDataGranule; GlCall-
Back;

S-DPS-20860 The PRONG CI shall destage ECS Data Products to the SD-
SRV CI.

DpPrCotsManager;
COTS; DpPrDataMan­
ager; DpPrResourceMan­
ager;
DsClESDTReference Col­
lector;DsClRequest;
DsClCommand; PlDPR;
PlDataGranule; GlCall-
Back;

S-DPS-20870 The PRONG CI shall send a Complete Notification Status
message to the source of the Data Processing Request if the
data destaging process was not completed successfully for
the Data Processing Request.

DpPrDataManager;

S-DPS-20880 The Complete Notification Status message shall contain er­
ror information if the message was sent as a result of the fail­
ure of data destaging.

DpPrDataManager;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

PRONG

A-5 305-CD-011-001

Table A-1. Requirements Trace (6 of 28)

S-DPS-21000 The PRONG CI shall initiate execution of a PGE when the fol­
lowing is true:
a. When all input data required to execute the PGE is avail­

able on local Data Processing subsystem storage re­
sources.

b. When the computer hardware resources are available to
support execution of a PGE based on the
hardware resource information
Processing Request.

c. When the Priority Information associated with the Data
Processing Request has been fulfilled.

d. When
for the PGE are available to support the successful exe­
cution of the PGE.

e. When the maximum memory resources defined for the
PGE are available to support the successful execution of
the PGE.

f. When the CPU resources defined for the PGE are avail­
able to support the successful execution of the PGE.

DpPrCotsManager;
COTS; DpPrExecutables;
DpPrPcf; DpPrPge; Dp-
PrExecutionManager; Dp-
PrResourceManager;
PlDataGranule; PlDpr;
PlDpr; DsClESDTRefer­
enceCollector; DsClRe­
quest; DsClCommand;

S-DPS-21070 The PRONG CI shall allocate disk space to support the exe­
cution of a PGE.

DpPrCotsManager;
COTS; DpPrPge; DpPrEx­
ecutionManager; DpPrRe­
sourceManager;
DpPrDataManager;
MsMgCallBack; MsMan­
ager;

S-DPS-21080 The PRONG CI shall allocate memory to support the execu­
tion of a PGE.

DpPrCotsManager;
COTS; DpPrPge; DpPrEx­
ecutionManager; DpPrRe­
sourceManager;
DpPrDataManager;
MsMgCallBack; MsMan­
ager;

S-DPS-21090 The PRONG CI shall allocate CPU to support the execution
of a PGE.

DpPrCotsManager;
COTS; DpPrPge; DpPrEx­
ecutionManager; DpPrRe­
sourceManager;
DpPrDataManager;
MsMgCallBack; MsMan­
ager;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

computer
associated with the Data

maximum disk space requirements defined the

A-6 305-CD-011-001

Table A-1. Requirements Trace (7 of 28)

S-DPS-21120 The PRONG CI shall create a Process Control File to provide
information to the SDP Toolkit CI about the input data re­
quired to execute a PGE.

DpPrCotsManager;
COTS; DpPrExecutables;
DpPrPcf; DpPrPge; Dp-
PrExecutionManager; Dp-
PrResourceManager;
PlDataGranule; PlDpr;
PlDpr; DsClESDTRefer­
enceCollector; DsClRe­
quest; DsClCommand;

S-DPS-21130 The PRONG CI shall create a Process Control File to provide
information to the SDP Toolkit CI about the output data gen­
erated from the executing PGE.

DpPrCotsManager;
COTS; DpPrExecutables;
DpPrPcf; DpPrPge; Dp-
PrExecutionManager; Dp-
PrResourceManager;
PlDataGranule; PlDpr;
PlDpr; DsClESDTRefer­
enceCollector; DsClRe­
quest; DsClCommand;

S-DPS-21140 The PRONG CI shall create a
to physical file handles in the Process Control File for the in­
put data required to execute a PGE.

DpPrCotsManager;
COTS; DpPrExecutables;
DpPrPcf; DpPrPge; Dp-
PrExecutionManager; Dp-
PrResourceManager;
PlDataGranule; PlDpr;
PlDpr; DsClESDTRefer­
enceCollector; DsClRe­
quest; DsClCommand;

S-DPS-21150 The PRONG CI shall create a
to physical file handles in the Process Control File for the out­
put data generated from the executing PGE.

DpPrCotsManager;
COTS; DpPrExecutables;
DpPrPcf; DpPrPge; Dp-
PrExecutionManager; Dp-
PrResourceManager;
PlDataGranule; PlDpr;
PlDpr; DsClESDTRefer­
enceCollector; DsClRe­
quest; DsClCommand;

S-DPS-21160 The PRONG CI shall create a Status Message File to be
used by the SDP Toolkit CI to collect Toolkit status and error
information about the execution of a PGE.

DpPrCotsManager;
COTS; DpPrExecutables;
DpPrPge; DpPrExecution-
Manager; DpPrResource-
Manager; PlDpr;

S-DPS-21170 The PRONG CI shall create User Status Message Files to be
used by the SDP Toolkit CI during PGE execution if request­
ed through the data defining the characteristics of the PGE.

DpPrCotsManager;
COTS; DpPrExecutables;
DpPrPge; DpPrExecution-
Manager; DpPrResource-
Manager; PlDpr;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

of logical file handles mapping

of logical file handles mapping

A-7 305-CD-011-001

Table A-1. Requirements Trace (8 of 28)

S-DPS-21180 The PRONG CI shall allocate 1 shared memory attachment
to a PGE to support access to internal memory during execu­
tion.

DpPrExecutionManager;

S-DPS-21210 The PRONG CI shall monitor the use of disk space by a PGE
during execution.

DpPrCotsManager;
COTS; DpPrExecutables;
DpPrPge; DpPrExecution-
Manager; DpPrResource-
Manager;
MsMgCallBacks; MsMan­
ager; MsEvent;

S-DPS-21220 The PRONG CI shall take a predetermined error recovery ac­
tion if the maximum disk space requirements defined for that
PGE has been exceeded by an

DpPrCotsManager;
COTS; DpPrExecutables;
DpPrPge; DpPrExecution-
Manager; DpPrResource-
Manager;
MsMgCallBacks; MsMan­
ager; MsEvent;

S-DPS-21230 The PRONG CI shall take a predetermined error recovery ac­
tion if the maximum CPU time requirements defined for that
PGE has been exceeded by an

DpPrCotsManager;
COTS; DpPrExecutables;
DpPrPge; DpPrExecution-
Manager; DpPrResource-
Manager; DpPrComputer;
MsMgCallBacks; MsMan­
ager; MsEvent;

S-DPS-21240 The PRONG CI shall take a predetermined error recovery ac­
tion if the maximum memory usage requirements defined for
that PGE has been exceeded by an
value.

DpPrCotsManager;
COTS; DpPrExecutables;
DpPrPge; DpPrExecution-
Manager; DpPrResource-
Manager; DpPrComputer;
MsMgCallBacks; MsMan­
ager; MsEvent;

S-DPS-21320 The PRONG CI shall use a SDP Toolkit API to associate Pro­
cessing-Specific Metadata
Data Product.

DpPrExecutbale; Dp-
PrPcf; DpPrPge; DpPrEx­
ecutionManger;

S-DPS-21330 The PRONG CI shall provide Processing-Specific Metadata
to the SDP Toolkit to be associated with each Granule of a
generated Data Product.

DpPrExecutbale; Dp-
PrPcf; DpPrPge; DpPrEx­
ecutionManger;

S-DPS-21460 The PRONG CI shall use a SDP Toolkit API to associate Q/
A-Specific Metadata with each Granule of a Data Product.

DpPrQaMonitor; Pl-
DataTypes; PlDataType;
AdCollection; Advertise­
ment; DsClESDTRefer­
enceCollector;
GlParameter; GlParame­
terList; DsClCommand;
DsClRequest;

S-DPS-21490 The PRONG CI shall record the Q/A-Specific Metadata of
each input Data Product as part of the Q/A-Specific Metadata
of the Granule of a Data Product.

DpPrExecutable; Dp-
PrPcf; DpPrPge; DpPrEx­
ecutionManger;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

adaptable percentage value.

adaptable percentage value.

adaptable percentage

with each Granule of a generated

A-8 305-CD-011-001

Table A-1. Requirements Trace (9 of 28)

S-DPS-21500 The PRONG CI shall use algorithms provided by the scien­
tists to perform automated QA on generated Data Products.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;
DpPrDataManager;
PlPge;

S-DPS-21510 The PRONG CI shall support the capability to update Q/A
metadata as required by the execution of a PGE performing
automated Q/A.

DpPrExecutable; Dp-
PrPcf; DpPrPge; DpPrEx­
ecutionManger;

S-DPS-21520 The PRONG CI shall coordinate the deletion of the outputs of
a PGE which were temporarily stored in the SDSRV CI.

DpPrCotsManager; Cots;
DpPrDataManager; Dp-
PrResourceManager;
DsClESDTReferenceCol­
lector; DsClRequest;
DsClCommand; PlDPR;
PlDataGranule; GlCall-
Back;

S-DPS-21530 The PRONG CI shall assign a unique Granule Identifier to
each Granule of a generated Data Product.

DpPrDataManager; PlDat­
aGranule;

S-DPS-21540 The PRONG CI shall
PGE to the SDSRV CI.
Reqs for more details).

DpPrCotsManager; Cots;
DpPrDataManager; Dp-
PrResourceManager;
DsClESDTReferenceCol­
lector; DsClRequest;
DsClCommand; PlDPR;
PlDataGranule; GlCall-
Back;

S-DPS-21550 The PRONG CI shall not delete the output data generated by
a PGE until the Data Request Status message is received
from the SDSRV CI indicating that the output data was suc­
cessfully copied to the SDSRV CI resources.

DpPrDataManager;

S-DPS-21560 If the resource fails during the execution of a PGE, the
PRONG CI shall be capable of initiating the execution of the
PGE without having to regenerate that PGE's input data.

DpPrCotsManager; Cots;
DpPrExecutable; Dp-
PrPcf; DpPrPge; DpPrEx­
ecutionManager;
DpPrResourceManager;
DpPrDataManager;
MsMgCallBacks; MsMan­
ager; MsEvent;

S-DPS-21570 If a PGE fails abnormally during execution, the PRONG CI
shall be capable of initiating the execution of the PGE without
having to regenerate that PGE's input data.

DpPrCotsManager; Cots;
DpPrExecutable; Dp-
PrPcf; DpPrPge; DpPrEx­
ecutionManager;
DpPrResourceManager;
DpPrDataManager; PlDat­
aGranule; PlDpr; MsEv­
ent;
DsClESDTReferenceCol­
lector; DsClRequest;
DsClCommand;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

destage all output data generated by a
(SEE Data Staging and Destaging

A-9 305-CD-011-001

Table A-1. Requirements Trace (10 of 28)

S-DPS-21580 The PRONG CI shall send a Complete Notification Status
message to the source of the Data Processing Request at the
completion of PGE execution if the execution was terminated
by the PRONG CI or the outputs of the PGE did not require
destaging.

DpPrCotsManager; Cots;
DpPrPge; DpPrExecution-
Manager; DpPrResource-
Manager;
DpPrDataManager;

S-DPS-21590 Upon the completion of destaging, the PRONG CI shall send
a Complete Notification Status message to the source of the
Data Processing Request.

DpPrCotsManager; Cots;
DpPrPge; DpPrExecution-
Manager; DpPrResource-
Manager;
DpPrDataManager;

S-DPS-21700 The operations staff shall have the capability of terminating
the data staging process for a Data Processing Request.

DpPrDataManager;
DsClESDTReferenceCol­
lector; DsClRequest;
DsClCommand; PlData-
Granule; PlDpr; GlCall-
Back;

S-DPS-21710 The operations staff shall have the capability of terminating
the data destaging process for a Data Processing Request.

DpPrCotsManager; Cots;
DpPrDataManager; Dp-
PrResourceManager;
DsClESDTReferenceCol­
lector; DsClRequest;
DsClCommand; PlData-
Granule; PlDpr; GlCall-
Back;

S-DPS-21720 The operations staff shall have the capability of canceling the
processing of a Data Processing Request.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;
DpPrDataManager; Dp-
PrExecutionManager;

S-DPS-21750 The operations staff shall have the capability of modifying the
information associated with the Data Processing Request.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-21760 The operations staff shall have the capability of viewing the
Processing Queues.

DpPrCotsManager; Cots;

S-DPS-21770 The operations staff shall have the capability of requesting
the status of a Data Processing Request.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-21780 The operations staff shall have the capability of reporting re­
source management information.

DpPrCotsManager; Cots;
DpPrResourceManager;
DpPrExecutionManager;
DpPrComputer; DpPrDis­
kPartition;

S-DPS-21790 The operations staff shall have the capability of viewing a
Data Product.

DpPrQaMonitor; DsClES-
DTReference; PlData-
Granules; PlDataGranule;
EOSVIEW;

S-DPS-21800 The operations staff shall have the capability of viewing the
algorithms used to generate a Data Product.

DpPrQaMonitor;

S-DPS-21810 The operations staff shall have the capability of viewing the
ECS Data Products used to generate a Data Product.

DpPrQaMonitor;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-10 305-CD-011-001

Table A-1. Requirements Trace (11 of 28)

S-DPS-21820 The operations staff shall have the capability of viewing the
Calibration Coefficient Data used to generate a Data Product.

DpPrQaMonitor;

S-DPS-21830 The operations staff shall have the capability of viewing the
Ancillary Data Products used to generate a Data Product.

DpPrQaMonitor;

S-DPS-21840 The operations staff shall have the capability of viewing the
Status Information files associated with the generated Data
Product.

COTS;

S-DPS-21850 The operations staff shall have the capability of viewing all
metadata associated with the generation of a Data Product.

DpPrQaMonitor;

S-DPS-21880 The PRONG CI shall provide a User Interface to authorized
users.

Cots; DpPrScheduler; Dp-
PrDataManager; DpPrEx­
ecutionManager;
DpPrResourceManager;

S-DPS-21890 The PRONG CI shall provide a Processing Queue Display as
a visual display of the Processing Queues.

DpPrCotsManager; Cots;

S-DPS-21900 The PRONG CI shall update the Processing Queue Display
information when the Processing State of a queued Data Pro­
cessing Request is modified.

DpPrCotsManager; Cots;

S-DPS-21910 The PRONG CI shall update the Processing Queue Display
information with an alert message when a fault has occurred
during the queue processing of a Data Processing Request.

DpPrCotsManager; Cots;

S-DPS-21920 The PRONG CI shall update the Processing Queue Display
information with an alert message when a fault has occurred
during the data staging process.

DpPrDataManager;

S-DPS-21930 The PRONG CI shall update the Processing Queue Display
information with an alert message when a fault has occurred
during the execution of a PGE.

DpPrExecutionManager;

S-DPS-21940 The PRONG CI shall update the Processing Queue Display
information with an alert message when a fault has occurred
during the data destaging process.

DpPrDataManager;

S-DPS-21950 The PRONG CI shall log all alert messages which are used
to update the Processing Queue display information.

COTS;

S-DPS-21960 The PRONG CI shall provide a user interface to cancel the
processing of a Data Processing Request.

DpPrScheduler;

S-DPS-21970 The PRONG CI shall provide a user interface to modify the
Priority Information associated with a
quest.

DpPrScheduler;

S-DPS-21980 The PRONG CI shall provide a user interface to modify the
information associated with a Data Processing Request.

DpPrScheduler;

S-DPS-21990 The PRONG CI shall provide a user interface to suspend the
processing of a Data Processing Request.

DpPrScheduler;

S-DPS-22000 The PRONG CI shall provide a user interface to resume sus­
pended processing of a Data Processing Request.

DpPrScheduler;

S-DPS-22010 The PRONG CI shall provide a user interface to view the data
associated with the Data Processing Request.

DpPrScheduler;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

Data Processing Re­

A-11 305-CD-011-001

Table A-1. Requirements Trace (12 of 28)

S-DPS-22020 The PRONG CI shall provide a user interface to support the
manual Q/A of Data Products.

DpPrQaMonitor;

S-DPS-22030 The PRONG CI shall provide access to data visualization
tools to support the manual Q/A of Data Products.

DpPrQaMonitor; DsClES-
DTReferenc; PlDataGran­
ules; PlDataGranule;
EOSVIEW;

S-DPS-22040 The PRONG CI shall provide a user interface to support the
update of the Q/A metadata of a Data Product.

DpPrQaMonitor;

S-DPS-22050 The
sual display of a Data Product.

DpPrQaMonitor; EOS-
VIEW;

S-DPS-22060 The PRONG CI shall provide an interface to support the visu­
al display of the algorithms used to generate a Data Product.

DpPrQaMonitor;

S-DPS-22070 The PRONG CI shall provide an interface to support the visu­
al display of the ECS Data Products used to generate a Data
Product.

DpPrQaMonitor;

S-DPS-22080 The PRONG CI shall provide an interface to support the visu­
al display of
ate a Data Product.

DpPrQaMonitor;

S-DPS-22090 The PRONG CI shall provide an interface to support the visu­
al display of the Ancillary Data Products used to generate a
Data Product.

DpPrQaMonitor;

S-DPS-22100 The PRONG CI shall provide an interface to support the visu­
al display of the Status Information files associated with the
generated Data Product.

COTS; DpPrQaMonitor;

S-DPS-22110 The PRONG CI shall provide an interface to support the visu­
al display of all metadata associated with the generation of a
Data Product.

DpPrQaMonitor;

S-DPS-22120 The PRONG CI shall support a capability to alert the opera­
tions staff of a Data Product which is being stored temporarily
in the Data Server.

DpPrDataManager;

S-DPS-22130 The PRONG CI shall support a capability to alert the opera­
tions staff of a Data Product which requires quality assurance
activities.

DpPrQaMonitor;

S-DPS-22200 The PRONG CI shall accept a Processing Information Re­
quest to request the status of a Data Processing Request.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22210 The PRONG CI shall have the capability to provide status for
a Data Processing Request.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22220 The PRONG CI shall provide current DPR Processing State
data as part of the status information of a Data Processing
Request.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22230 The PRONG CI shall provide current queue position as part
of the status information of a Data Processing Request.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22240 The PRONG CI shall provide status information for the PGE
associated with the Data Processing Request if the PGE is
currently executing.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

PRONG CI shall provide an interface to support the vi­

the Calibration Coefficient Data used to gener­

A-12 305-CD-011-001

Table A-1. Requirements Trace (13 of 28)

S-DPS-22250 The PRONG CI shall have the capability of receiving the Sta­
tus Information File of an executing PGE from the Data Pro­
cessing Subsystem resource executing the PGE.

DpPrDataManager; COts;

S-DPS-22400 The PRONG CI shall accept Operations Commands to sus­
pend, resume, or cancel the processing of a Data Processing
Request.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22410 The PRONG CI shall accept an Operations Command to
modify a Data Processing Request.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22470 The PRONG CI shall update the DPR Processing State to
cancel when the Operation Command specifies cancellation.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22480 The PRONG CI shall terminate data staging if in progress
when the Data Processing Request is canceled.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22490 The PRONG CI shall deallocate the memory which was allo­
cated to the executing PGE associated with the canceled
Data Processing Request.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22500 The PRONG CI shall deallocate the disk storage which was
allocated to the executing PGE associated with the canceled
Data Processing Request.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22510 The PRONG CI shall deallocate the CPU which was allocat­
ed to the executing PGE associated with the canceled Data
Processing Request.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22520 The PRONG CI shall terminate the execution of the PGE if in
progress when the Data Processing Request is canceled.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22530 The PRONG CI shall terminate data destaging if in progress
when the Data Processing is canceled.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22540 The PRONG CI shall send a Complete Notification Status
message to the source of the Data Processing Request when
the Data Processing Request is canceled.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22620 The PRONG CI shall update the Priority Information associ­
ated with the Data Processing Request with the Priority Infor­
mation contained in the Operation Command which specifies
modify.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-22630 The PRONG CI shall perform queue processing for a Data
Processing Request which has updated Priority Information.

PlDpr; DpPrScheduler;
DpPrCotsManager; Cots;

S-DPS-30610 The DPREP CI shall assess the quality of onboard attitude
data contained in the TRMM spacecraft ancillary data by de­
tecting and noting in metadata for:
a) missing data
b) erroneous data (i.e., invalid Euler angle, invalid Euler an­

gle rate)

See Note 1; DpPpTrm­
mOnBoardAttitudeData;
DpPpCheckAttitudeQuali­
ty;

S-DPS-30700 The DPREP CI shall provide to the SDP Toolkit, at a mini­
mum, the following metadata with the ephemeris data files for
TRMM processing:
a. Time range,
b. Orbit number range,
c. Platform.

See Note 1; DpPpTrm­
mOnBoardAttitudeData;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-13 305-CD-011-001

Table A-1. Requirements Trace (14 of 28)

S-DPS-30720 The DPREP CI shall provide, at a minimum, the following
ephemeris data files to the SDP Toolkit for TRMM process­
ing:
a. Platform position velocity vectors
b. Platform attitude/attitude rate data (expressed as Euler

angles in radians and radians/s, respectively)

See Note 1; DpPpTrm­
mOnBoardAttitudeData;
DpPpGetAttitudePack­
et;DpPpFdfTrmmDefiniti­
veOrbitData;
DpPpGetEphemRecord;

S-DPS-30740 The DPREP CI shall provide to the SDP Toolkit orbit and at­
titude data in the native format of the host hardware for
TRMM processing.

See Note 1; DpPpTrm­
mOnBoardAttitudeData;
DpPpGetAttitudePacket;
DpPpFdfTrmmDefinitive-
OrbitData; DpP­
pGetEphemRecord;

S-DPS-30760 The DPREP CI shall provide to the SDP Toolkit orbit and at­
titude data in HDF-EOS format for TRMM processing.

See Note 1; DpPpTrm­
mOnBoardAttitudeData;
DpPpGetAttitudePacket;
DpPpArchiveAttitudeDa­
ta; DpPpFdfTrmmDefiniti­
veOrbitData;
DpPpGetEphemRecord;
DpPpArchiveEphemeris-
Data;

S-DPS-30800 The DPREP CI shall provide to the SDP Toolkit SDPF-gen­
erated L0 production data files with unique APIDs as defined
in the SDPF-ECS ICD.

See Note 1; DPPpPrepro­
cessingData; DpPpLev­
elZeroData;
DpPpSdpfLevelZeroPro­
ductionData;

S-DPS-30810 The DPREP CI shall provide to the SDP Toolkit SDPF-gen­
erated L0 production data files as two separate files: (a) A
Standard Format Data Unit (SFDU) header file, (b) Data Set
File as defined in the SDPF-ECS ICD.

See Note 1; DPPpPrepro­
cessingData; DpPpLev­
elZeroData;
DpPpSdpfLevelZeroPro­
ductionData; DpPpSdp­
fLevelZeroDatasetFile;
DpPpSdpfLevelZeroSfdu-
File;

S-DPS-31020 The DPREP CI shall provide, at a minimum, the following
metadata information to the SDP Toolkit with SDPF-generat­
ed L0 data:
a. Actual start time of staged L0 data
b. Actual end time of staged L0 data
c. Number of physical L0 data files staged
d. Start time of L0 data as requested by EOS investigators

through the planning/processing system
e. End time of L0 data as requested by EOS investigators

through the planning/processing system
f. APID of each L0 data file, of the L0 data files are APID­

unique
g. Orbit number of the staged L0 data file

See Note 1; DPPpPrepro­
cessingData; DpPpLev­
elZeroData;
DpPpSdpfLevelZeroPro­
ductionData; DpPpSdp­
fLevelZeroDatasetFile;
DpPpSdpfLevelZeroSfdu-
File;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-14 305-CD-011-001

Table A-1. Requirements Trace (15 of 28)

S-DPS-31620 The DPREP CI shall maintain and prepare on an ad hoc ba­
sis, at a minimum,
to the SDP Toolkit:
a. Digital terrain map data sets
b. Land/Sea data sets
c. Digital political map data sets

See Note 1; DpPrData-
Manager;

S-DPS-31700 The DPREP CI shall extract
FDF and external Ancillary Data sets, in addition to metadata
extraction by the INGST CI.

See Note 1; DpPpPrepro­
cessingData;

S-DPS-40010 The AITTL CI shall have the capability to receive a Science
Software Delivery from the SCF electronically via the net­
work.

INGST CSCI;

S-DPS-40020 The AITTL CI shall have the capability to receive a Science
Software Delivery from the Science Data Server.

SDSRV CSCI;

S-DPS-40030 The AITTL CI shall provide the operations staff with the capa­
bility to register a Subscription with the Data Server to be no­
tified when a new Science Software Delivery is received.

SDSRV CSCI;

S-DPS-40040 The AITTL CI shall provide the operations staff with the capa­
bility to request transfer of the Science Software Delivery files
from the Data Server to the local I&T area.

SDSRV CSCI;

S-DPS-40100 The AITTL CI shall provide the operations staff with the capa­
bility to display Science Software documentation stored in
any of the following formats: a) PostScript, b) ASCII, c) Hy­
pertext Markup Language (HTML), d) Microsoft Word, e)
WordPerfect, f) Adobe Acrobat Portable Document Format
(PDF).

Documentation Viewing
Tools;

S-DPS-40110 The AITTL CI shall provide the operations staff with the capa­
bility to print Science Software documentation stored in any
of the following formats: a) PostScript, b) ASCII, c) Hypertext
Markup Language (HTML), d) Microsoft Word, e) WordPer­
fect, f) Adobe Acrobat Portable Document Format (PDF).

Documentation Viewing
Tools;

S-DPS-40200 The AITTL CI shall have the capability to verify that Science
Software source code written in C complies with the ANSI
standard specification for C.

AITHW CI;

S-DPS-40210 The AITTL CI shall have the capability to verify that Science
Software source code written in FORTRAN77 complies with
the ANSI standard specification for FORTRAN77.

AITHW CI;

S-DPS-40230 The AITTL CI shall have the capability to verify that Science
Software source code written in FORTRAN 90 complies with
the ANSI standard specification for FORTRAN 90.

AITHW CI;

S-DPS-40250 The AITTL CI shall have the capability to verify that Science
Software source code written in Ada complies with the mili­
tary specification MIL-STD-1815-A.

AITHW CI;

S-DPS-40260 The AITTL CI shall have the capability to verify that Science
Software source code is POSIX-compliant.

Standards Checker Tools;
Static and Dynamic Code
Checker Tools;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

the following GFE static data sets for input

for TBD metadata attributes

A-15 305-CD-011-001

Table A-1. Requirements Trace (16 of 28)

S-DPS-40280 The AITTL CI shall have the capability to verify that Science
Software source code and Science Software scripts follow
the following SDP Toolkit usage requirements (from 194-809-
SD4-001, PGS Toolkit Users Guide for the ECS Project):

Standards Checker Tools;
Static and Dynamic Code
Checker Tools;

S-DPS-40295 The AITTL CI shall provide standards checking capabilities,
including, but not limited to:
a. Flagging whenever a bit operation is used on signed

numbers. (C only)
b. Flagging argument list mismatches (type and number of

arguments).

Standards Checker Tools;
Static and Dynamic Code
Checker Tools;

S-DPS-40320 The AITTL CI shall have the capability to verify that Science
Software source code includes headers as specified in 423­
16-01, Data Production Software and Science Computing
Facility (SCF) Standards and Guidelines.

Standards Checker Tools;
Static and Dynamic Code
Checker Tools;

S-DPS-40340 The AITTL CI shall have the capability to generate report files
describing the results of standards checking.

Report Generation Tools;

S-DPS-40400 The AITTL CI shall have the capability to determine if the Sci­
ence Software contains memory leaks.

AITHW CI; Static and Dy­
namic Code Checker
Tools;

S-DPS-40405 The AITTL CI shall have the capability to determine if the Sci­
ence Software contains out of bounds indexing.

AITHW CI; Static and Dy­
namic Code Checker
Tools;

S-DPS-40430 The AITTL CI shall have the capability to generate report files
describing the results of code analysis.

Report Generation Tools;

S-DPS-40700 The data visualization capability of the AITTL CI shall include
the capability to display data in hexadecimal, octal, decimal,
or ASCII form.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40710 The data visualization capability of the AITTL CI shall include
the capability to display data as a two- or three-dimensional
image.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40720 The data visualization capability of the AITTL CI shall include
the capability to display data as a two- or three-dimensional
plot.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40730 The data visualization capability of the AITTL CI shall include
the capability to difference data and to display the differences
as a two- or three-dimensional image or plot.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40740 The data visualization capability of the AITTL CI shall include
the capability to produce and play a "movie loop" of data in
two- or three-dimensional image or plot form.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40750 The data visualization capability of the AITTL CI shall include
the capability to display an arbitrary two-dimensional slice of
a three-dimensional image or plot.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40760 The data visualization capability of the AITTL CI shall include
the capability to rotate a three-dimensional image or plot
about an arbitrary axis.

Data Visualization Tools;
ECS HDF Visualization
Tools

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-16 305-CD-011-001

Table A-1. Requirements Trace (17 of 28)

S-DPS-40770 The data visualization capability of the AITTL CI shall include
providing the user with the option to specify the color table for
new or existing image displays.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40780 The data visualization capability of the AITTL CI shall include
providing the user with the option to specify the axis limits for
new or existing plot displays.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40790 The data visualization capability of the AITTL CI shall include
providing the operations staff with the option to specify the
parameter assigned to each axis in new or existing plot or im­
age displays.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40800 The data visualization capability of the AITTL CI shall include
the capability to display simultaneously multiple views of the
same or different data in different windows.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40810 The data visualization capability of the AITTL CI shall include
the capability to save any plot, image, or hex/decimal/octal/
ASCII dump to a file.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40820 The data visualization capability of the AITTL CI shall include
feature enhancement capabilities, including but not limited to
(1) histogram equalization and (2) edge enhancement.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40830 The data visualization capability of the AITTL CI shall include
the capability to read ASCII, binary, or HDF files.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40840 The data visualization capability of the AITTL CI shall include
the capability to allow the operations staff to specify a custom
input data format.

Data Visualization Tools;
ECS HDF Visualization
Tools

S-DPS-40900 The AITTL CI shall have the capability to find all differences
between two data files which are greater than some specified
absolute threshold.

File Comparison Utility
Tools;

S-DPS-40910 The AITTL CI shall have the capability to find all differences
between two data files which are greater than some specified
relative threshold.

File Comparison Utility
Tools;

S-DPS-40920 The AITTL CI shall have the capability to generate report files
describing the results of file comparisons.

File Comparison Utility
Tools; Report Generation
Tools;

S-DPS-40930 The file comparison capability of the AITTL CI shall include
the capability to read ASCII, binary, or HDF files.

File Comparison Utility
Tools;

S-DPS-40940 The file comparison capability of the AITTL CI shall include
the capability to allow the operations staff to specify a custom
data format.

File Comparison Utility
Tools;

S-DPS-41000 The AITTL CI shall have the capability to measure the CPU
time of a process.

AITHW CI;

S-DPS-41005 The AITTL CI shall have the capability to measure the wall
clock time of a process.

AITHW CI;

S-DPS-41010 The AITTL CI shall have the capability to measure the CPU
time of each procedure within a process.

AITHW CI;

S-DPS-41015 The AITTL CI shall have the capability to measure the wall
clock time of each procedure within a process.

AITHW CI;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-17 305-CD-011-001

Table A-1. Requirements Trace (18 of 28)

S-DPS-41020 The AITTL CI shall have the capability to measure the mem­
ory usage of a process.

AITHW CI;

S-DPS-41030 The AITTL CI shall have the capability to measure the disk
space usage of a process.

AITHW CI;

S-DPS-41035 The AITTL CI shall have the capability to count the number of
page faults for a process.

Profiling Tools;

S-DPS-41040 The AITTL CI shall have the capability to count the number of
I/O accesses made by a process to each of its input and out­
put data files.

Profiling Tools;

S-DPS-41050 The AITTL CI shall have the capability to generate report files
discussing the results of profiling activities.

AITHW CI; Profiling Tools;
Report Generation Tools;

S-DPS-41300 The AITTL CI shall provide to the operations staff, via a GUI,
the capability to display a list of PGE Database Entries.

PGE Database Update
GUI Tool; PLANG CI;

S-DPS-41310 The AITTL CI shall provide to the operations staff, via a GUI,
the capability to display a specific PGE Database Entry.

PGE Database Update
GUI Tool;

S-DPS-41320 The AITTL CI shall provide to the operations staff, via a GUI,
the capability to modify a specific PGE Database Entry.

PGE Database Update
GUI Tool;

S-DPS-41330 The AITTL CI shall provide to the operations staff, via a GUI,
the capability to add a new PGE Database Entry.

PGE Database Update
GUI Tool;

S-DPS-41340 The AITTL CI shall provide to the operations staff, via a GUI,
the capability to remove a specific PGE Database Entry.

PGE Database Update
GUI Tool;

S-DPS-41350 The AITTL CI shall provide to the operations staff, via a GUI,
cut, copy, and paste capability for a PGE Database Entry.

PGE Database Update
GUI Tool;

S-DPS-41400 The DAAC I&T environment shall include access to a config­
uration management tool supplied by MSS.

MSS CI;

S-DPS-41410 The DAAC I&T environment shall include access to a prob­
lem tracking tool supplied by MSS.

MSS CI;

S-DPS-41500 The AITTL CI shall provide the capability for operations staff
to write reports. This capability will include: (a) word process­
ing, (b) spreadsheet, (c) plotting, (d) drawing.

Report Generation Tools;

S-DPS-41510 The AITTL CI shall provide templates for reports to be written
by the operations staff. (NOTE: It is assumed that these tem­
plates will be developed by the Science Office.)

Report Generation Tools;

S-DPS-41520 The AITTL CI shall provide the capability for operations staff
to keep a running log of integration and test activities on-line.

Report Generation Tools;

S-DPS-41530 The AITTL CI shall provide the capability for authorized users
to examine the integration and test logs and other reports.

Report Generation Tools;

S-DPS-41895 The AITTL CI shall provide to the operations staff the capa­
bility to retrieve a specified data file from local DAAC storage.

AITHW CI; ???

S-DPS-41900 The AITTL CI shall provide to the operations staff, via a GUI,
the capability to retrieve a specified data file from a specified
Data Server.

Manual Staging GUI Tool;

S-DPS-42000 The AITTL CI shall provide the operations staff with the capa­
bility to view the metadata associated with a data file.

Product Metadata Display
Tool;

S-DPS-42005 The AITTL CI shall provide the operations staff with the capa­
bility to edit the metadata associated with a data file.

SDSRV CI;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

PLANG CI;

PLANG CI;

PLANG CI;

PLANG CI;

PLANG CI;

A-18 305-CD-011-001

Table A-1. Requirements Trace (19 of 28)

S-DPS-42010 The AITTL CI shall provide the operations staff with the capa­
bility to write the metadata associated with a data file to a re­
port file.

Product Metadata Display
Tool; Report Generation
Tools;

S-DPS-42100 The operations staff shall place a Science Software Delivery
Package in a non-public directory accessible to the hardware
scheduled to be used for I&T.

Operational;

S-DPS-42110 The operations staff shall read and/or review all documenta­
tion included in the Delivery Package.

Operational;

S-DPS-42120 The operations staff shall perform automated checking of all
source code included in the Delivery Package against estab­
lished coding standards and guidelines.

Operational;

S-DPS-42130 The operations staff shall perform automated checking of all
scripts included in the Delivery Package against established
coding standards and guidelines.

Operational;

S-DPS-42140 The operations staff shall have the capability to perform static
analyses of source code for (at a minimum) argument mis­
matches and variables set before used.

Operational;

S-DPS-42150 The operations staff shall have the capability to examine all
test data and expected test results files included in the Deliv­
ery Package to verify completeness and correct format.

Operational;

S-DPS-42160 The operations staff shall have the capability to examine all
coefficient files included in the Delivery Package to verify
completeness and correct format.

Operational;

S-DPS-42170 The operations staff shall have the capability to compile all
FORTRAN77, FORTRAN 90 and C source code included in
the Delivery Package.

Operational;

S-DPS-42175 The operations staff shall have the capability to compile all
Ada source code included in the Delivery Package for
CERES.

Operational;

S-DPS-42180 The operations staff shall check source code, coefficient files,
test plans, test data, expected test results and other docu­
mentation into the Configuration Management tool.

Operational;

S-DPS-42190 The operations staff (and others who are specifically autho­
rized) shall have the capability to check out source code, co­
efficient files, test plans, test data, expected test results and
other documentation from the Configuration Management
tool.

Operational;

S-DPS-42200 Whenever a Science Software Delivery is received by the
AITTL CI directly from the SCF via the network, the opera­
tions staff shall notify the SCF that the delivery has been re­
ceived successfully.

Operational;

S-DPS-42300 The operations staff shall have the capability to link
FORTRAN77, FORTRAN 90 and C object code with the SCF
version of the SDP Toolkit.

Operational;

S-DPS-42305 The operations staff shall have the capability to link Ada ob­
ject code for CERES with the SCF version of the SDP Toolkit.

Operational;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-19 305-CD-011-001

Table A-1. Requirements Trace (20 of 28)

S-DPS-42310 The operations staff shall link FORTRAN77, FORTRAN 90
and C object code with the DAAC version of the SDP Toolkit.

Operational;

S-DPS-42315 The operations staff shall link Ada object code for CERES
with the DAAC version of the SDP Toolkit.

Operational;

S-DPS-42320 The operations staff shall have the capability to link
FORTRAN77, FORTRAN 90 and C object code with other li­
braries.

Operational;

S-DPS-42325 The operations staff shall have the capability to link Ada ob­
ject code for CERES with other libraries.

Operational;

S-DPS-42330 The operations staff shall have the capability to run binary ex­
ecutables without impacting other ongoing DAAC activities.

Operational;

S-DPS-42340 The operations staff shall have the capability to perform dy­
namic analyses of source code for (at a minimum) memory
leaks, out of bounds indexing, and distribution of resource
demands.

Operational;

S-DPS-42350 The operations staff shall have the capability to execute perl,
C shell or Bourne shell scripts.

Operational;

S-DPS-42360 The operations staff shall have the capability of determining
the computing resources utilized by an execution of a PGE;
viz., PGE CPU time, system CPU time, elapsed time, percent
elapsed time, shared memory use, maximum memory used,
number of page faults, number of swaps, number of block in­
put operations, and number of block output operations.

Operational;

S-DPS-42370 The operations staff shall collect during I&T the performance
and resource utilization information needed for entry into or
update of the PGE data base.

Operational;

S-DPS-42500 The operations staff shall execute the Test Plans included in
the Delivery Package.

Operational;

S-DPS-42510 The operations staff shall have the capability of displaying
Data Products.

Operational;

S-DPS-42520 The operations staff shall have the capability of displaying
data in intermediate files

Operational;

S-DPS-42530 The operations staff shall have the capability of displaying
data in input files

Operational;

S-DPS-42540 The operations staff shall have the capability of displaying
data in coefficient files used to generate a Data Product.

Operational;

S-DPS-42550 The operations staff shall have the capability of displaying the
Ancillary Data used to generate a Data Product .

Operational;

S-DPS-42560 The operations staff shall have the capability of viewing the
Status Information files associated with the generated Data
Product.

Operational;

S-DPS-42570 The operations staff shall have the capability of displaying all
metadata associated with the generation of a Data Product.

Operational;

S-DPS-42580 The operations staff shall have the capability of comparing
data in two coefficient files.

Operational;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

used to generate a Data Product.

used to generate a Data Product.

A-20 305-CD-011-001

Table A-1. Requirements Trace (21 of 28)

S-DPS-42590 The operations staff shall have the capability of comparing
two Data Product files.

Operational;

S-DPS-42600 The operations staff shall have the capability of comparing
data in two intermediate files.

Operational;

S-DPS-42610 The operations staff shall enter new PGEs into the PGE Da­
tabase, along with their performance and resource utilization
information.

Operational;

S-DPS-42620 The operations staff shall update information the PGE Data­
base as necessary to reflect changes in performance and re­
source utilization resulting from a modification to a PGE.

Operational;

S-DPS-42630 The operations staff shall have the capability of run PGEs in
a parallel test or for a commissioning period, utilizing the
Planning and Processing Subsystems and the Product out­
put flagged as "test".

Operational;

S-DPS-42640 The operations staff shall have the capability to send the test
results to the SCF for analysis.

Operational;

S-DPS-42650 The operations staff shall have the capability to write ad hoc
test tools using the perl, C shell or Bourne shell script lan­
guages.

Operational;

S-DPS-42660 The operations staff shall have the capability to write ad hoc
test tools using the FORTRAN77, FORTRAN 90 and C pro­
gramming languages.

Operational;

S-DPS-42700 The operations staff shall have the capability to enter and
track discrepancy reports related to AI&T.

Operational;

S-DPS-42710 The operations staff shall have the capability to send to and
receive email messages from Science Software Developer
staff and ECS staff.

Operational;

S-DPS-42720 The operations staff shall have the capability to engage in
teleconferences with Science Software Developer staff and
ECS staff.

Operational;

S-DPS-42740 The operations staff shall reports on the status of I&T-related
discrepancy reports.

Operational;

S-DPS-42750 The operations staff shall have the capability of record each
step performed during I&T, the results and actions initiated, if
any.

Operational;

S-DPS-42760 The operations staff shall report on the status of the I&T ac­
tivities each PGE.

Operational;

S-DPS-42770 The operations staff shall have the capability of writing an In­
spection Report for each Science Software Delivery.

Operational;

S-DPS-42780 The operations staff shall have the capability of writing an In­
tegration

Operational;

S-DPS-42790 The operations staff shall have the capability of writing an Ac­
ceptance Test Report for each Science Software Delivery.

Operational;

S-DPS-60010 The SPRHW CI shall support the capability to manage,
queue, and execute processes on the processing resources
at each DAAC site.

SPRHW CI;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

Report for each Science Software Delivery.

A-21 305-CD-011-001

Table A-1. Requirements Trace (22 of 28)

S-DPS-60020 The SPRHW CI shall support the capability to stage and de­
stage data.

SPRHW CI;

S-DPS-60050 The SPRHW CI shall contain and/or provide access to stag­
ing (working storage), I/O and processing resources neces­
sary to perform routine processing.

SPRHW CI;

S-DPS-60060 The SPRHW CI shall have a Fail-Soft capability to meet RMA
requirements.

SPRHW CI;

S-DPS-60080 The SPRHW CI shall have provision for Initialization, Recov­
ery, and an orderly shutdown.

SPRHW CI;

S-DPS-60090 The SPRHW CI shall support startup and initialization
completed within 30 minutes (TBR)

SPRHW CI;

S-DPS-60100 The SPRHW CI shall support shutdown to be completed
within 30 minutes (TBR).

SPRHW CI;

S-DPS-60110 The SPRHW CI shall have a fault detection/fault isolation ca­
pability of major HWCI component failures without interfering
with operations.

SPRHW CI;

S-DPS-60120 The SPRHW CI shall have a status monitoring capability. SPRHW CI;
S-DPS-60135 The SPRHW CI design and implementation shall have the

flexibility to
to a factor of 3 in its capacity with no
and up to a factor of 10 without major changes to its design.

SPRHW CI;

S-DPS-60160 The SPRHW CI shall support collection and maintenance
Fault Management, configuration, performance, accountabil­
ity, and security of Processing CI hardware resources.

SPRHW CI;

S-DPS-60230 The SPRHW CI shall provide a phased capacity to support:
a. for

where X is defined as the at-launch processing estimate
b. for pre-launch AI&T and System I&T at-launch minus 1

year:
cessing estimate

c. for post-launch AIT, standard processing, and repro­
cessing,
defined as the standard processing estimate for that pe­
riod

d. for post-launch AIT, standard processing, and repro­
cessing, starting at launch plus 2 years: 4.2 X, where X
is defined as the standard processing estimate for that
period.

SPRHW CI;

S-DPS-60240 The SPRHW CI shall support a total
as derived from Table 1 (Appendix E Section E.1).

SPRHW CI;

S-DPS-60250 The SPRHW CI shall be able to support a data volume (GB/
Day)

SPRHW CI;

S-DPS-60330 The
porary and intermediate storage or multiple passes over input
Products as required by individual science software.

SPRHW CI;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

to be

accommodate Science Processing expansion up
changes in its design

for

0.3 X, pre-launch AI&T at launch minus 2 years:

1.2 X, where X is defined as the at-launch pro­

starting at launch plus 1 year: 2.2 X, where X is

processing requirement

derived from Table 1 (Appendix E Section E.1). as
SPRHW CI shall have the capacity to support I/O to tem­

A-22 305-CD-011-001

Table A-1. Requirements Trace (23 of 28)

S-DPS-60350 The SPRHW CI shall generate
within 24 hours after processing is initiated.

SPRHW CI;

S-DPS-60360 The SPRHW CI shall generate
within 24 hours after processing is initiated.

SPRHW CI;

S-DPS-60370 The SPRHW CI shall generate
within 24 hours after processing is initiated.

SPRHW CI;

S-DPS-60380 The SPRHW CI shall generate and make available to the us­
ers Level 4
availability to ECS of all necessary Level 3 and other input
data sets.

SPRHW CI;

S-DPS-60450 Each computer providing product generation capability shall
have an operational availability of 0.95 at a minimum.

SPRHW CI;

S-DPS-60480 The SPRHW CI shall have provision for the AIT science pro­
cessor to be a backup to the production science processor in
the event of a failure.

SPRHW CI;

S-DPS-60490 The SPRHW CI shall be capable of supporting system devel­
opment without impact to normal operations.

SPRHW CI;

S-DPS-60500 The SPRHW CI shall be capable of supporting science soft­
ware test without impact to normal operations.

SPRHW CI;

S-DPS-60510 The SPRHW CI shall be capable of supporting system up­
grades while
quirements.

SPRHW CI;

S-DPS-60520 The SPRHW CI elements and components shall include the
on-line (operational mode) and off-line (test mode) fault de­
tection and isolation capabilities required to achieve the
specified operational availability requirements.

SPRHW CI;

S-DPS-60610 The SPRHW CI platforms shall have provision for interfacing
with

SPRHW CI;

S-DPS-60610 The SPRHW CI platforms shall have provision for interfacing
with

SPRHW CI;

S-DPS-60612 The SPRHW CI platforms shall have provision for interfacing
with Data Server.

SPRHW CI;

S-DPS-60615 The SPRHW CI platforms shall have provision for interfacing
with Ingest

SPRHW CI;

S-DPS-60617 The SPRHW CI platforms shall have provision for interfacing
with Planning.

SPRHW CI;

S-DPS-60710 The electrical power requirements for SPRHW CI equipment
shall be in accordance with ECS Facilities Plan (DID 302/
DV2)

SPRHW CI;

S-DPS-60740 The air conditioning requirements for the SPRHW CI equip­
ment shall be in accordance with the ECS Facilities Plan (DID
302/DV2).

SPRHW CI;

S-DPS-60750 The grounding requirements for SPRHW CI equipment shall
be in accordance with ECS Facilities Plan (DID 302/DV2).

SPRHW CI;

S-DPS-60760 The fire alarm requirements for SPRHW CI equipment shall
be in accordance with ECS Facilities Plan (DID 302/DV2).

SPRHW CI;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI
Level 1 Standard Products

Level 2 Standard Products

Level 3 Standard Products

Standard Products within one week after the

meeting specified operational availability re­

Local Area Networks (LANs). one or more

Local Area Networks (LANs). one or more

A-23 305-CD-011-001

Table A-1. Requirements Trace (24 of 28)

S-DPS-60770 The acoustical requirements for SPRHW CI equipment shall
be in accordance with ECS Facilities Plan (DID 302/DV2).

SPRHW CI;

S-DPS-60780 The physical interface requirements between SPRHW CI
equipment and the facility shall be in accordance with ECS
Facilities Plan (DID 302/DV2).

SPRHW CI;

S-DPS-60790 The footprint size and the physical layout of SPRHW CI
equipment shall be in accordance with the
ties Plan (DID 302/DV2).

SPRHW CI;

S-DPS-60910 The SPRHW CI shall support
development phase.

SPRHW CI;

S-DPS-60920 The following testing shall be performed on the SPRHW CI: SPRHW CI;
S-DPS-60930 The SPRHW CI shall provide test tools as designated in the

SDPS Test Tool Matrix.
SPRHW CI;

S-DPS-60940 The SPRHW CI shall be capable of simultaneously support­
ing the Independent Verification & Validation (IV&V) activities
and the ECS development activities, both before and after
flight operations begin.

SPRHW CI;

S-DPS-60950 The SPRHW CI
test and verification activities of the EOS program including
during the pre-launch, spacecraft verification, and instrument
verification phases.

SPRHW CI;

S-DPS-60960 The
ing and fault isolation.

SPRHW CI;

S-DPS-60970 The SPRHW CI shall be capable of being monitored during
testing.

SPRHW CI;

S-DPS-61040 The SPRHW CI computer platform shall provide a hard me­
dia device
tem maintenance

SPRHW CI;

S-DPS-61045 The SPRHW CI shall provide local consoles for maintenance
and operation.

SPRHW CI;

S-DPS-61110 The operating system for each Unix platform in the
SPRWHW CI shall conform to the POSIX.2 standard.

SPRHW CI;

S-DPS-61120 The SPRHW CI
following
tar, imake, prof, gprof, nm.

SPRHW CI;

S-DPS-61130 The SPRHW CI
following POSIX.2 user Portability Utilities installed at a min­
imum: man, vi.

SPRHW CI;

S-DPS-61140 The SPRHW CI
following POSIX.2 Software Development Utilities installed at
a minimum: make.

SPRHW CI;

S-DPS-61150 The SPRHW CI
following POSIX.2 C-Language Development Utilities in­
stalledat a minimum: lex, yacc.

SPRHW CI;

S-DPS-61160 The SPRHW CI
following Unix shells installed at a minimum: C shell, Bourne
shell, Korn shell.

SPRHW CI;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

and ECS Facili­

test activities throughout the

shall be capable of supporting end-to-end

SPRHW CI shall support end-to-end EOS system test­

with a capacity of TBD GB for software and sys­
and upgrade support.

POSIX.2 compliant platform shall have the
utilities installed at a minimum: perl, emacs, gzip,

POSIX.2 compliant platform shall have the

POSIX.2 compliant platform shall have the

POSIX.2 compliant platform shall have the

platform shall have the POSIX.2 compliant

A-24 305-CD-011-001

Table A-1. Requirements Trace (25 of 28)
L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

S-DPS-61170 The SPRHW CI POSIX.2 compliant platform shall have on­
line documentation or printed documentation for each in­
stalled tool.

SPRHW CI;

S-DPS-61171 The SPRHW CI shall have provision for a dynamic analyzer
to support the capability to check Science Software source
code for memory leaks.

SPRHW CI;

S-DPS-61172 The SPRHW CI POSIX.2 compliant platform shall have in­
stalled one or more development environment supporting the
following languages:
a. C
b. C++
c. FORTRAN 77
d. FORTRAN 90

SPRHW CI;

S-DPS-61173 Each development environment associated with the POSIX.2
compliant platform in the SPRHW CI shall have the capability
to compile and link strictly conformant POSIX-compliant
source code.

SPRHW CI;

S-DPS-61174 Each development environment associated with the POSIX.2
compliant platform in the SPRHW CI shall have the capabil­
ity to compile and link source code containing extensions
specified in the Data Production S/W and SCF Standards
and Guidelines.

SPRHW CI;

S-DPS-61175 Each development environment associated with the POSIX.2
compliant platform in the SPRHW CI shall have an interac­
tive source level debugger for ECS supported languages.

SPRHW CI;

S-DPS-61177 The SPRHW CI POSIX.2 compliant platform supporting
AI&T of CERES S/W shall have installed an ADA develop­
ment environment.

SPRHW CI;

S-DPS-70010 The AITHW CI shall provide hardware resources to opera­
tions staff for the monitor and control of Science Software In­
tegration and Test (AI&T) on SPRHW CI processing
resources.

AITHW CI;

S-DPS-70030 The AITHW CI shall provide hardware resources to opera­
tions staff for the monitor and control of Science Software
configuration management.

AITHW CI;

S-DPS-70030 The AITHW CI shall provide hardware resources to opera­
tions staff for the monitor and control of Science Software
configuration management.

AITHW CI;

S-DPS-70050 The Algorithm Integration and Test HWCI design and imple­
mentation shall have the flexibility to accommodate Algorithm
Integration and Test expansion up to a factor of 3 in its capac­
ity with no changes in its design and up to a factor of 10 with­
out major changes to its design.

AITHW CI;

S-DPS-70060 The AITHW CI shall have provision for Initialization, Recov­
ery, and an orderly shutdown.

AITHW CI;

S-DPS-70070 The AITHW CI shall have a status monitoring capability. AITHW CI;

A-25 305-CD-011-001

Table A-1. Requirements Trace (26 of 28)

S-DPS-70110 The operating system for each UNIX platform in the AITHW
CI shall conform to the POSIX.2 standard.

AITHW CI;

S-DPS-70120 The AITHW CI
following
tar, imake, prof, gprof, nm.

AITHW CI;

S-DPS-70130 The AITHW CI
following POSIX.2 User Portability Utilities installed at a min­
mum: man, vi.

AITHW CI;

S-DPS-70140 The AITHW CI
following POSIX.2 Software Development Utilities installed at
a minimum: make.

AITHW CI;

S-DPS-70150 The AITHW CI
following POSIX.2 C-Language Development Utilities in­
stalled at a minimum: lex, yacc.

AITHW CI;

S-DPS-70160 The AITHW CI
following Unix shells installed at a minimum: C shell, Bourne
shell, Korn shell.

AITHW CI;

S-DPS-70180 The AITHW CI
to support the capability to check Science Software source
code for memory leaks.

AITHW CI;

S-DPS-70183 The AITHW CI
line documentation or printed documentation for each in­
stalled tool.

AITHW CI;

S-DPS-70190 The AITHW CI
stalled one or more development environment supporting the
following languages:
a. C
b. C++
c. FORTRAN 77
d. FORTRAN 90

AITHW CI;

S-DPS-70220 Each development environment associated with the POSIX.2
compliant platform in the AITHW CI
to compile and link strictly conformant POSIX-compliant
source code.

AITHW CI;

S-DPS-70230 Each development environment associated with the POSIX.2
compliant
to compile and link
ified in the Data Production S/W and SCF Standards and
Guidelines.

AITHW CI;

S-DPS-70240 Each development environment associated with the POSIX.2
compliant platform in the AITHW CI
source level debugger for ECS supported languages.

AITHW CI;

S-DPS-70250 Each development environment associated with the POSIX.2
compliant
capture utility.

AITHW CI;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

POSIX.2 compliant platform shall have the
utilities installed at a minimum: perl, emacs, gzip,

POSIX.2 compliant platform ishall have the

shall have the POSIX.2 compliant platform

POSIX.2 compliant platform shall have the

platform shall have the POSIX.2 compliant

shall have provision for a dynamic analyzer

POSIX.2 compliant platform shall have on­

shall have in­POSIX.2 compliant platform

shall have the capability

shall have the capability platform in the AITHW CI
source code containing extensions spec­

an interactive shall have

a screen shall have platform in the AITHW CI

A-26 305-CD-011-001

Table A-1. Requirements Trace (27 of 28)

S-DPS-70260 The AITHW CI shall include
capability to measure the average and maximum
lowing:
a. CPU time,
b. memory usage,
c. disk space usage of a process.

AITHW CI;

S-DPS-70270 The AITHW CI profiling tools shall be accessible via an API
(application program interface).

AITHW CI;

S-DPS-70280 The AITHW CI profiling tools shall be accessible via a GUI
(graphical user interface).

AITHW CI;

S-DPS-70310 The AITHW CI platforms shall have provision for interfacing
with one or more Local Area Networks (LANs).

AITHW CI;

S-DPS-70710 The electrical power requirements for AITHW CI equipment
shall be in accordance with the ECS Facilities Plan (DID 302/
DV2).

AITHW CI;

S-DPS-70740 The air conditioning requirements for the AITHW CI equip­
ment shall be in accordance with the ECS Facilities Plan (DID
302/DV2).

AITHW CI;

S-DPS-70750 The grounding requirements for AITHW CI equipment shall
be in accordance with the ECS Facilities Plan (DID 302/DV2).

AITHW CI;

S-DPS-70760 The fire alarm requirements for AITHW CI equipment shall be
in accordance with the ECS Facilities Plan (DID 302/DV2).

AITHW CI;

S-DPS-70770 The acoustical requirements for AITHW CI equipment shall
be in accordance with the ECS Facilities Plan (DID 302/DV2).

AITHW CI;

S-DPS-70780 The physical interface requirements between AITHW CI
equipment and the facility shall be in accordance with the
ECS Facilities Plan (DID 302/DV2).

AITHW CI;

S-DPS-70790 The footprint size and the physical layout of AITHW CI equip­
ment shall be in accordance with the ECS Facilities Plan (DID
302/DV2).

AITHW CI;

S-DPS-80010 The AQAHW CI shall provide for hardware resources to sup­
port DAAC operations staff performing
data.

AQAHW CI;

S-DPS-80011 The AQAHW CI shall provide an operational availability of
TBD , at a minimum, and an MDT of TBDhours or less.

AQAHW CI;

S-DPS-80110 The operating system for each UNIX platform in the AQAHW
CI shall conform to the POSIX.2 standard.

AQAHW CI;

S-DPS-80120 The AQAHW CI POSIX.2 compliant platform shall have the
following
tar, imake, prof, gprof, nm.

AQAHW CI;

S-DPS-80130 The AQAHW CI POSIX.2 compliant platform ishall have the
following POSIX.2 User Portability Utilities installed at a min­
mum: man, vi.

AQAHW CI;

S-DPS-80140 The AQAHW CI POSIX.2 compliant platform
following POSIX.2 Software Development Utilities installed at
a minimum: make.

AQAHW CI;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI
the a set of profiling tools, with

of the fol­

routine QA of Product

utilities installed at a minimum: perl, emacs, gzip,

shall have the

A-27 305-CD-011-001

Table A-1. Requirements Trace (28 of 28)

S-DPS-80150 The AQAHW CI POSIX.2 compliant
following Unix shells installed at a minimum: C shell, Bourne
shell, Korn shell.

AQAHW CI;

S-DPS-80155 The AQAHW CI POSIX.2 compliant platform shall have on­
line documentation or printed documentation for each in­
stalled tool.

AQAHW CI;

L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI
platform shall have the

NOTES:
1.	 The requirements for the DPREP CSCI are being revised to reflect their allocation to PRONG

and INS CSCIs. The DPREP requirements stated here reflects those requirements prior to the
rewording and includes only those requirments allocated to PRONG CSCI for Release A.

A-28 305-CD-011-001

Abbreviations and Acronyms

ADSRV advertising service CSCI

AHWGP Ad Hoc Working Group on Production

AI&T algorithm integration and test

AITTL algorithm integration and test tools (CSCI)

AM-1 EOS AM Project (morning spacecraft series)

ASCII American Standard Code for Information Exchange Interchange

CASE computer aided software engineering

CDR Critical Design Review

CERES Clouds and Earth's Radiant Energy System

configuration item

COTS commercial off-the-shelf (hardware or software)

CPU central processing unit

CSC computer software component

CSCI computer science configuration item

CSMS Communications and Systems Management Segment (ECS)

DAAC distributed active archive center

DBMS database management system

DDSRV document data server

DEV developed code

DPR Data Processing Request

DPS Data Processing Subsystem

ECS EOSDIS Core System

EDF ECS development facility

ESDT Earth science data types

ESN EOSDIS Science Network (ECS)

FDDI fiber distributed data interface

GB gigabyte (109)

GC global change

GUI graphic user interface

HCL Hughes class library

HTML Hyper-Text Markup Language

AB-1 305-CD-011-001

CI

HWCI hardware configuration item

I/O input/output

L0 Level 0

LAN local area network

LaRC Langley Research Center (DAAC)

MB megabyte (106)

MSFC Marshall Space Flight Center (DAAC)

MSS Management Subsystem

NOAA National Oceanic and Atmospheric Administration

OO object oriented

PDPS planning and data processing system

PDR Preliminary Design Review

PGE product generation executive (formerly product generation executable)

PLANG production planning CSCI

PRONG processing CSCI

RAID redundant array of inexpensive disks

RDBMS relational database management system

RMA reliability, maintainability, availability

SCSI Small Computer System Interface

SDPF Sensor Data Processing Facility (GSFC)

SDPS Science Data Processing Segment (ECS)

TRMM Tropical Rainfall Measuring Mission (joint US-Japan)

user interface

UNIX POSIX operating system

WAIS Wide Area Information Server

WWW World Wide Web

AB-2 305-CD-011-001

U/I

	1. Introduction
	1.1 Identification
	1.2 Purpose and Scope
	1.3 Status and Schedule
	1.4 Organization

	2. Related Documentation
	2.1 Parent Documents
	2.2 Applicable Documents
	2.3 Information Documents Referenced

	3. DPS - Data Processing Subsystem
	3.1 Subsystem Overview
	3.1.1 Introduction and Context
	3.1.2 Data Processing Subsystem Context
	Figure 3.1-1. Data Processing Subsystem Context Diagram

	3.2 Subsystem Overview
	3.2.1 Subsystem Structure
	3.2.2 Subsystem Design Rationale

	4. PRONG - Processing CSCI
	4.1 CSCI Overview
	4.1.1 Processing CSCI Design Rationale
	4.1.2 Processing CSCI Design Modifications since PDR
	4.1.3 COTS Strategy
	4.1.4 COTS Selection
	Figure 4.1-1. Scheduling Jobs using AutoSys
	Figure 4.1-2. Initiating Processing Components using AutoSys

	4.2 CSCI Context
	Figure 4.2-1. Processing CSCI Context Diagram
	Figure 4.2-2. Processing CSCI Event Flow Summary

	4.3 CSCI Object Model
	4.3.1 Processing CSCI Component View
	Figure 4.3-1. Processing CSCI Component View

	4.3.2 COTS Manager View
	Figure 4.3-2. COTS Manager View

	4.3.3 Data Management View
	Figure 4.3-3. Data Management View

	4.3.4 PGE Execution Management View
	4.3.5 Resource Management View
	Figure 4.3-4. PGE Execution Management View
	Figure 4.3-5. Resource Management View

	4.3.6 Quality Assurance Monitor View
	Figure 4.3-6. Quality Assurance Monitor View

	4.3.7 Data Pre-Processing View
	Figure 4.3-7. Data Pre-Processing View
	Figure 4.3-8. Data Pre-Processing View (TRMM Definitive Orbit)
	Figure 4.3-9. Data Pre-Processing View (TRMM OnBoard Attitude)

	4.4 Class Descriptions
	4.4.1 COTS Class
	4.4.2 DpPrComputer Class
	4.4.3 DpPrCotsManager Class
	4.4.4 DpPrDataManagement Class
	4.4.5 DpPrDataManager Class
	4.4.6 DpPrDataMap Class
	4.4.7 DpPrDiskAllocation Class
	4.4.8 DpPrDiskPartition Class
	4.4.9 DpPrExecutable Class
	4.4.10 DpPrExecutionManager Class
	4.4.11 DpPrJobManagement Class
	4.4.12 DpPrPcf Class
	4.4.13 DpPrPge Class
	4.4.14 DpPrPgeExecutionManagement Class
	4.4.15 DpPrQaMonitor Class
	4.4.16 DpPrResource Class
	4.4.17 DpPrResourceConfiguration Class
	4.4.18 DpPrResourceManagement Class
	4.4.19 DpPrResourceManager Class
	4.4.20 DpPrScheduler Class
	4.4.21 DpPrString Class
	4.4.22 DpPrUnusedData Class
	4.4.23 DsClCommand Class
	4.4.24 DsClESDTReference Class
	4.4.25 DsClESDTReferenceCollector Class
	4.4.26 DsClRequest Class
	4.4.27 DsClSubscription Class
	4.4.28 EOSVIEW Class
	4.4.29 GlCallBack Class
	4.4.30 GlParameter Class
	4.4.31 GlParameterList Class
	4.4.32 GlUR Class
	4.4.33 IoAdAdvertisingSrv_C Class
	4.4.34 IoAdServiceAdvertisement Class
	4.4.35 IoAdServiceCollection_C Class
	4.4.36 MsDAAC Class
	4.4.37 MsManager Class
	4.4.38 MsMgCallBacks Class
	4.4.39 PlDPR Class
	4.4.40 PlDataGranule Class
	4.4.41 PlDataType Class
	4.4.42 PlDataTypes Class
	4.4.43 PlGroundEvent Class
	4.4.44 PlPge Class
	4.4.45 PlResourceUI Class
	4.4.46 DpPpAttitudePacket Class
	4.4.47 DpPpAttitudePackets Class
	4.4.48 DpPpAttitudeProcessingSet Class
	4.4.49 DpPpEphemRecord Class
	4.4.50 DpPpEphemRecords Class
	4.4.51 DpPpEphemerisData Class
	4.4.52 DpPpEphemerisRecord Class
	4.4.53 DpPpEphemerisRecords Class
	4.4.54 DpPpFdfData Class
	4.4.55 DpPpFdfProcessingSet Class
	4.4.56 DpPpFdfTrmmDefinitiveOrbitData Class
	4.4.57 DpPpLevelZeroData Class
	4.4.58 DpPpPreProcessing Class
	4.4.59 DpPpPreprocessingData Class
	4.4.60 DpPpQaParameters Class
	4.4.61 DpPpQacList Class
	4.4.62 DpPpSdpfLevelZeroDatasetFile Class
	4.4.63 DpPpSdpfLevelZeroProductionData Class
	4.4.64 DpPpSdpfLevelZeroSfduFile Class
	4.4.65 DpPpTrmmOnBoardAttitudeData Class
	4.4.66 DpPpTrmmScAncillaryData Class
	4.4.67 DpPpTrmmScOaData Class

	4.5 CSCI Dynamic Model
	4.5.1 Scenario Assumptions
	4.5.2 Job Management Scenarios
	Figure 4.5-1. Create Data Processing Request Job Event Trace
	Figure 4.5-2. Create Ground Event Job Event Trace
	Figure 4.5-3. Release Data Processing Request Job Event Trace
	Figure 4.5-4. Job Box Execution Event Trace
	Figure 4.5-5. Cancel Data Processing Request Job Event Trace
	Figure 4.5-6. Cancel Ground Event Job Event Trace
	Figure 4.5-7. Update Data Processing Request Job Event Trace
	Figure 4.5-8. Get Data Processing Request Job Status Event Trace

	4.5.3 Data Management Scenarios
	Figure 4.5-9. DpPrDataMap Initialization
	Figure 4.5-10. Local Data Management (Data Staging Required)
	Figure 4.5-11. Local Data Management (Local Data Movement)
	Figure 4.5-12. Local Data Management (Data Resides on Science Processing Resource)
	Figure 4.5-13. Data Staging Event Trace
	Figure 4.5-14. Failure of Data Staging Event Trace
	Figure 4.5-15. Deallocate Data Event Trace
	Figure 4.5-16. Data Destaging Event Trace
	Figure 4.5-17. Failure of a Data Destaging Event Trace
	Figure 4.5-18. Failure of Data Server Communication Event Trace

	4.5.4 Execution Management Scenarios
	Figure 4.5-19. PGE State Transition Diagram
	Figure 4.5-20. Initiate Execution Event Trace
	Figure 4.5-21. Case 1: Monitor Resource Health Trace
	Figure 4.5-22. Case 2: Monitor Performance Trace
	Figure 4.5-23. Case 3: Monitor Status Return Trace
	Figure 4.5-24. Execution Post Processing Event Trace
	Figure 4.5-25. Failure of Execution Event Trace
	Figure 4.5-26. Failure of Processing Resource Event Trace

	4.5.5 Resource Management Scenarios
	Figure 4.5-27. Initialization of Resource Configuration Information Event Trace
	Figure 4.5-28. Modify Resource Information Event Trace
	Figure 4.5-29. Query of Resource Management Information Event Trace

	4.5.6 Quality Assurance Scenarios
	Figure 4.5-30. Q/A Subscription Submittal Event Trace
	Figure 4.5-31. Q/A Subscription Withdrawal Event Trace
	Figure 4.5-32. Q/A Subscriptions Event Trace
	Figure 4.5-33. Visualize Science Data Event Trace
	Figure 4.5-34. Update Q/A Metadata Event Trace

	4.5.7 Data Pre-Processing Scenarios

	4.6 CSCI Structure
	4.6.1 COTS CSC
	Figure 4.6-1. PDPS Software Architecture

	4.6.2 COTS Management CSC
	Figure 4.6-2 Interaction of AutoSys' Database, Event Processor, and Remote Agent

	4.6.3 Resource Management CSC
	4.6.4 Data Management CSC
	4.6.5 PGE Execution Management CSC
	4.6.6 Data Pre-Processing CSC
	4.6.7 Quality Assurance Monitor CSC

	4.7 Processing CI Management and Operations
	4.7.1 Processing CSCI and the System Management Strategy
	4.7.2 Operator Interfaces
	4.7.3 Reports
	Figure 4.5-19. PGE State Transition Diagram
	Figure 4.5-35. Creating Ephemeris File Event Trace
	Figure 4.5-36. Creating Attitude File Event Trace

	5 . SDPTK - Science Data Processing Toolkit CSCI
	5.1 CSCI Overview

	6 . DPREP - Science Data Pre-Processing CSCI
	6.1 CSCI Overview

	7. AITTL - Algorithm I&T CSCI
	7.1 CSCI Overview
	7.2 CSCI Context
	Figure 7.2-1. Algorithm Integration and Test Tools Context Diagram

	7.3 CSCI Object Model
	Figure 7.3-1. Algorithm Integration and Test IR-1 Object Model
	Figure 7.3-2. Algorithm Integration and Test Support for Data Server I/F Object Model
	7.3.1 Analysisenvironment Class
	7.3.2 CMscript Class
	7.3.3 DpAtMgr Class
	7.3.4 DpAtMgrBinaryFileEnvironmentGui Class
	7.3.5 DpAtMgrCheckHdfFile Class
	7.3.6 DpAtMgrCheckPcfGui Class
	7.3.7 DpAtMgrCheckProhibFuncCom Class
	7.3.8 DpAtMgrCheckProhibFuncGui Class
	7.3.9 DpAtMgrChecklistData Class
	7.3.10 DpAtMgrCmdLineData Class
	7.3.11 DpAtMgrCom Class
	7.3.12 DpAtMgrGuiActivityData Class
	7.3.13 DpAtMgrInstrConfigData Class
	7.3.14 DpAtMgrLogData Class
	7.3.15 DpAtMgrProhibFuncListData Class
	7.3.16 DpAtPgeRegTool Class
	7.3.17 DpAtProcGui Class
	7.3.18 DpPrAITManualIF Class
	7.3.19 DsClCommand Class
	7.3.20 DsClESDTReferenceCollector Class
	7.3.21 DsClRequest Class
	7.3.22 EosView Class
	7.3.23 FORTRAN77codechecker Class
	7.3.24 Generalvisualizationtool Class
	7.3.25 Instrument-specificscript Class
	7.3.26 MgrGui Class
	7.3.27 Postscriptfileviewer Class
	7.3.28 Text-graphicsviewer Class
	7.3.29 Webbrowser Class
	7.3.30 Windowsemulator Class
	7.3.31 xterm Class

	7.4 CSCI Dynamic Model
	7.4.1 AIT Manager GUI Scenarios
	Figure 7.4-1. Display AI&T Main GUI Event Trace Diagram
	Figure 7.4-2. Run Tools Menu Event Trace Diagram
	Figure 7.4-3. Run Utility Menu Item Event Trace Diagram
	Figure 7.4-4. Select Checklist Item Event Trace Diagram
	Figure 7.4-5. Submit Staging Request Event Trace Diagram
	Figure 7.4-6. Submit Destaging Request Event Trace Diagram

	7.5 CSCI Functional Model
	7.5.1 Viewing Science Software Documentation
	7.5.2 Checking Coding Standards
	Figure 7.5-1. Data Flow Diagram: View Documentation
	Figure 7.5-2. Data Flow Diagram: Check Standard

	7.5.3 Analyzing the Code
	Figure 7.5-3. Data Flow Diagram: Analyze Code

	7.5.4 Examining the Data
	7.5.5 Comparing Data Files
	Figure 7.5-4. Data Flow Diagram: Examine Data
	Figure 7.5-5. Data Flow Diagram: Compare Files

	7.5.6 Measuring Resource Requirements
	7.5.7 Updating the Data Server
	Figure 7.5-7. Data Flow Diagram: Update Data Server

	7.5.8 Updating the PGE Database
	Figure 7.5-8. Data Flow Diagram: Update PGE Database

	7.5.9 Writing Reports and Maintaining Logs
	7.5.10 Manually Staging Inputs
	Figure 7.5-9. Data Flow Diagram: Manage Reports

	7.5.11 Displaying Product Metadata

	7.6 AITTL Operational Scenarios
	Figure 7.5-10. Data Flow Diagram: Manually Stage Data
	Figure 7.5-11. Data Flow Diagram: Display Product Metadata
	7.6.1 Engineering Version for AM-1
	7.6.2 Launch-Ready Version for TRMM
	7.6.3 Science Software Upgrade

	7.7 AITTL Structure
	7.7.1 Documentation Viewing Tools
	7.7.2 Standards Checkers
	7.7.3 Code Analysis Tools
	7.7.4 Data Visualization Tools
	7.7.5 ECS HDF Visualization Tools
	7.7.6 HDF File Comparison Utility
	7.7.7 Binary File Comparison Environment
	7.7.8 Profiling Tools
	7.7.9 PGE Processing GUI
	7.7.10 Update PGE Database GUI
	7.7.11 Report Generation Tools
	7.7.12 SDP Toolkit-related Tools
	7.7.13 Product Metadata Display Tool

	7.8 CSCI Management and Operation
	7.8.1 System Management Strategy
	7.8.2 Operator Interfaces
	7.8.3 Reports

	8. SPRHW - Science Processing HWCI
	8.1 HW Design Drivers
	Figure 8-1. Topology of Data Processing and Planning Subsystems
	8.1.1 Key Trade-off studies and Prototypes
	8.1.2 Sizing and Performance Analysis
	Figure 8-2. Data Flow Block Diagram
	Figure 8-3. NASA ESDIS Phasing Factors

	8.1.3 Scalability, Evolvability and Migration to Release B
	8.1.4 Algorithm Parallelization

	8.2 HWCI Structure
	Figure 8-4. Science Processing Block Diagram
	8.2.1 Connectivity
	Figure 8-5. PDPS Network Connectivity In Release A

	8.2.2 HWCI Components

	8.3 Failover and Recovery strategy
	8.3.1 Network Failure Recovery
	8.3.2 Data Processing Subsystem Failure Recovery

	8.4 Data Processing Hardware Provided Capacity
	8.5 Pertinent References

	9 . QAHW - Algorithm Quality Assurance HWCI
	9.1 HWCI Overview
	9.2 HWCI Design Rationale
	9.3 HWCI Structure
	Figure 9-1. Algorithm QA Block Diagram

	10. AITHW - Algorithm Integration & Test HWCI
	10.1 HWCI Overview
	10.2 HWCI Design Rationale
	10.2.1 Key Trades and Analyses
	10.2.2 Scalability Strategies

	10.3 HWCI Structure
	Figure 10.3-1. Algorithm Integration & Test Block Diagram
	10.3.1 Connectivity (Classes of Interfaces)
	10.3.2 HWCI Components

	Appendix A. Requirements Trace

