
305-CD-008-001

EOSDIS Core System Project

Release A SDPS Data Server
Subsystem Design Specification

for the ECS Project

July 1995

Hughes Information Technology Corporation

Landover, MD

Release A SDPS Data Server
Subsystem Design Specification

for the ECS Project

July 1995

Prepared Under Contract NAS5-60000
CDRL Item #046

SUBMITTED BY

Parag Ambardekar /s/ 7/28/95
Parag Ambardekar, Release A CCB Chairman Date
EOSDIS Core System Project

Hughes Information Technology Corporation
Landover, Maryland

305-CD-008-001

This page intentionally left blank.

305-CD-008-001

Preface

This document is one of sixteen comprising the detailed design specifications of the SDPS and
CSMS subsystem for Release A of the ECS project. A complete list of the design specification
documents is given below. Of particular interest are documents number 305-CD-004, which
provides an overview of the subsystems and 305-CD-018, the Data Dictionary, for those reviewing
the object models in detail. A Release A SDPS and CSMS CDR Review Guide (510-TP-002) is
also available.

The SDPS and CSMS subsystem design specification documents for Release A of the ECS Project
include:

305-CD-004	 Release A Overview of the SDPS and CSMS Segment System Design
Specification

305-CD-005 Release A SDPS Client Subsystem Design Specification

305-CD-006 Release A SDPS Interoperability Subsystem Design Specification

305-CD-007 Release A SDPS Data Management Subsystem Design Specification

305-CD-008 Release A SDPS Data Server Subsystem Design Specification

305-CD-009 Release A SDPS Ingest Subsystem Design Specification

305-CD-010 Release A SDPS Planning Subsystem Design Specification

305-CD-011 Release A SDPS Data Processing Subsystem Design Specification

305-CD-012	 Release A CSMS Segment Communications Subsystem Design
Specification

305-CD-013	 Release A CSMS Segment Systems Management Subsystem Design
Specification

305-CD-014 Release A GSFC Distributed Active Archive Center Implementation

305-CD-015 Release A LaRC Distributed Active Archive Center Implementation

305-CD-016 Release A MSFC Distributed Active Archive Center Implementation

305-CD-017	 Release A EROS Data Center Distributed Active Archive Center
Implementation

305-CD-018 Release A Data Dictionary for Subsystem Design Specification

305-CD-019 Release A System Monitoring and Coordination Center Implementation

Object models presented in this document have been exported directly from CASE tools and in
some cases contain too much detail to be easily readable within hard copy page constraints. The
reader is encouraged to view these drawings on line using the Portable Document Format (PDF)
electronic copy available via the ECS Data Handling System (ECS) at URL http://
edhs1.gsfc.nasa.gov.

iv 305-CD-008-001

This document is a contract deliverable with an approval code 2. As such, it does not require formal

Government approval, however, the Government reserves the right to request changes within 45

days of the initial submittal. Once approved, contractor changes to this document are handled in

accordance with Class I and Class II change control requirements described in the EOS

Configuration Management Plan, and changes to this document shall be made by Document

Change Notice (DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Corporation

1616 McCormick Drive

Landover, MD 20785

v 305-CD-008-001

Abstract

The Data Server Subsystem has the responsibility for storing earth science and related data in a
persistent fashion, providing search and retrieval access to this data, and supporting the
administration of the data and the supporting hardware devices and software products. As part of
its retrieval function, the subsystem also provides for the distribution of data electronically or on
physical media.

Keywords: data, server, SDSRV, STMGT, DDSRV, DDIST, DBMS, robotics, distribution,
subscription, hard, media, tapes, working, storage, archive, document, HTML, documents, types.

vi 305-CD-008-001

This page intentionally left blank.

vii 305-CD-008-001

Change Information Page

List of Effective Pages

Page Number Issue
Title Original

iii through xxiv Original

1-1 through 1-2 Original

2-1 through 2-4 Original

3-1 through 3-16 Original

4-1 through 4-312 Original

5-1 through 5-74 Original

6-1 through 6-96 Original

7-1 through 7-62 Original

8-1 through 8-6 Original

9-1 through 9-4 Original

10-1 through 10-6 Original

11-1 through 11-4 Original

12-1 through 12-4 Original

A-1 through A-36 Original

AB-1 through AB-4 Original

Document History

Document Number Status/Issue Publication Date CCR Number
305-CD-008-001 Final July 1995 95-0471

viii 305-CD-008-001

This page intentionally left blank.

ix 305-CD-008-001

Contents

Preface

Abstract

Change Information Page

1. Introduction

1.1 Identification ... 1-1

1.2 Scope ... 1-1

1.3 Document Organization .. 1-1

1.4 Status and Schedule .. 1-2

2. Related Documents

2.1 Parent Documents ... 2-1

2.2 Applicable Documents .. 2-1

2.3 Information Documents Not Referenced .. 2-2

3. Subsystem Overview

3.1 Introduction and Context .. 3-1

3.2 Subsystem Overview .. 3-1

3.2.1 Subsystem Structure ... 3-1

3.2.2 Subsystem Design Rationale ... 3-10

4. SDSRV - Science Data Server CSCI

4.1 CSCI Overview ... 4-1

4.2 CSCI Context .. 4-1

4.3 CSCI Object Model ... 4-5

4.3.1 DsAdDataTypeCollector Class ... 4-26

4.3.2 DsAdDescriptor Class ... 4-27

4.3.3 DsAdLog Class .. 4-28

4.3.4 DsAdRequestInterface Class ... 4-28

4.3.5 DsCeCERES Class .. 4-30

4.3.6 DsClAction Class .. 4-30

4.3.7 DsClCollector Class .. 4-32

x 305-CD-008-001

4.3.8 DsClCollectorVector Class ..4-33

4.3.9 DsClCommand Class ... 4-34

4.3.10 DsClDescriptor Class... 4-35

4.3.11 DsClESDTReference Class ... 4-37

4.3.12 DsClESDTReferenceCollector Class... 4-42

4.3.13 DsClESDTReferenceVector Class... 4-48

4.3.14 DsClNotificationReceiver Class .. 4-49

4.3.15 DsClQuery Class.. 4-51

4.3.16 DsClRequest Class... 4-55

4.3.17 DsClRequestVector Class ..4-57

4.3.18 DsClSubmittedRequest Class ..4-58

4.3.19 DsClSubscription Class ...4-62

4.3.20 DsClSubscriptionCollector Class ...4-65

4.3.21 DsClTypeInfo Class ...4-67

4.3.22 DsCnConfiguration Class ..4-69

4.3.23 DsCnDSSConfiguration Class ...4-71

4.3.24 DsCnDSSStartup Class ..4-71

4.3.25 DsCoCombination Class ..4-72

4.3.26 DsDbAccess Class ...4-73

4.3.27 DsDbAttributeToTableVector Class ..4-80

4.3.28 DsDbEngine Class ...4-81

4.3.29 DsDbGranuleToDbVector Class ...4-82

4.3.30 DsDbInterface Class ..4-83

4.3.31 DsDeCoreValid Class ..4-86

4.3.32 DsDeCoreValidVector Class ...4-88

4.3.33 DsDeDD Class ...4-89

4.3.34 DsDeDDVector Class ..4-90

4.3.35 DsDeESDTDescriptor Class ..4-91

4.3.36 DsDeESDTDescriptorSet Class ...4-96

4.3.37 DsDeEvent Class ...4-98

4.3.38 DsDeEventVector Class ..4-100

4.3.39 DsDeMathOp Class ..4-101

4.3.40 DsDeMetadataDef Class ...4-102

4.3.41 DsDeMetadataDefVector Class ..4-104

4.3.42 DsDeRange Class ..4-105

4.3.43 DsDeScienceParameter Class ...4-106

4.3.44 DsDeScienceParameterVector Class ..4-108

4.3.45 DsDeSeries Class ..4-109

4.3.46 DsDeService Class ..4-110

xi 305-CD-008-001

4.3.47 DsDeServiceVector Class ...4-111

4.3.48 DsDeStaticMetadata Class ..4-113

4.3.49 DsDeStaticMetadataVector Class ...4-114

4.3.50 DsDeValid Class ...4-115

4.3.51 DsDeValidVector Class ..4-116

4.3.52 DsDoReferencePaper Class ..4-118

4.3.53 DsFactory Class ..4-119

4.3.54 DsGeBrowseProduct Class ...4-120

4.3.55 DsGeDynamicLibrary Class ...4-121

4.3.56 DsGeECSDataProduct Class ..4-122

4.3.57 DsGeESDT Class ..4-124

4.3.58 DsGeESDTConfiguration Class ...4-128

4.3.59 DsGeESDTDynamicLibrary Class ...4-129

4.3.60 DsGeESDTEventTable Class ...4-131

4.3.61 DsGeESDTServiceProvider Class ..4-132

4.3.62 DsGeESDTWrapper Class ..4-133

4.3.63 DsGeScienceData Class ..4-134

4.3.64 DsGeSummaryProduct Class ..4-137

4.3.65 DsGeTypeID Class ...4-138

4.3.66 DsGvRadar Class ..4-140

4.3.67 DsLiLIS Class ...4-141

4.3.68 DsMdCatalog Class ..4-141

4.3.69 DsMdMetadata Class ..4-146

4.3.70 DsNmNMC Class ...4-150

4.3.71 DsNpAncillary Class ..4-150

4.3.72 DsNpCalibration Class ..4-151

4.3.73 DsNpCorrelative Class ..4-151

4.3.74 DsNpNonECSDataProduct Class ...4-152

4.3.75 DsNpOA Class ..4-153

4.3.76 DsNpPlatform Class ..4-153

4.3.77 DsNpVersion0 Class ...4-154

4.3.78 DsNsHistoricalData Class ...4-154

4.3.79 DsNsMPR Class ..4-155

4.3.80 DsNsNonECSDataProduct Class ..4-156

4.3.81 DsNsProdPlans Class ..4-156

4.3.82 DsNsProductionHistory Class ..4-157

4.3.83 DsNsQAStatistics Class ..4-158

4.3.84 DsNsScienceSoftwareArchivePackage Class ...4-158

4.3.85 DsPrRadar Class ...4-160

xii 305-CD-008-001

4.3.86 DsSbAction Class ...4-161

4.3.87 DsSbActionBase Class ..4-162

4.3.88 DsSbCallBackTimer Class ..4-164

4.3.89 DsSbEvent Class ...4-165

4.3.90 DsSbEventHandler Class ..4-166

4.3.91 DsSbEventTimer Class ...4-168

4.3.92 DsSbFactory Class ..4-168

4.3.93 DsSbRegisteredEvent Class ..4-169

4.3.94 DsSbSubscription Class ..4-171

4.3.95 DsSbSubscriptionInterface Class ..4-173

4.3.96 DsSbTimer Class ..4-175

4.3.97 DsSd24BitImage Class ...4-176

4.3.98 DsSd8BitImage Class ...4-176

4.3.99 DsSdCSDT Class ..4-177

4.3.100 DsSdGrid Class ...4-179

4.3.101 DsSdImage Class ..4-181

4.3.102 DsSdLookUpTable Class ..4-183

4.3.103 DsSdPoint Class ..4-183

4.3.104 DsSdRaw Class ...4-185

4.3.105 DsSdSwath Class ..4-185

4.3.106 DsSrClient Class ...4-187

4.3.107 DsSrCommand Class ..4-189

4.3.108 DsSrCommandBase Class ..4-189

4.3.109 DsSrCommandInfo Class ..4-191

4.3.110 DsSrConnection Class ..4-192

4.3.111 DsSrQueuedConnection Class ..4-195

4.3.112 DsSrRequest Class ..4-196

4.3.113 DsSrRequestBase Class ..4-198

4.3.114 DsSrRequestInfo Class ...4-200

4.3.115 DsSrRequestVector Class ...4-200

4.3.116 DsSrServer Class ..4-201

4.3.117 DsSrSession Class ...4-203

4.3.118 DsSrSubmittedRequestVector Class ...4-205

4.3.119 DsSrWorkingCollection Class ..4-206

4.3.120 DsSsSSMI Class ...4-208

4.3.121 DsTmTMI Class ..4-208

4.3.122 DsViVIRS Class ...4-209

4.3.123 EosHdf24BitImage Class ..4-210

4.3.124 EosHdf8BitImage Class ..4-210

xiii 305-CD-008-001

4.3.125 EosHdfGrid Class ...4-211

4.3.126 EosHdfLUT Class ...4-211

4.3.127 EosHdfPoint Class ..4-212

4.3.128 EosHdfSwath Class ...4-212

4.3.129 GlBinaryP Class ..4-213

4.3.130 GlDateP Class ...4-214

4.3.131 GlDoubleP Class ...4-215

4.3.132 GlLongP Class ..4-217

4.3.133 GlParameter Class ...4-218

4.3.134 GlParameterList Class ..4-220

4.3.135 GlStringP Class ...4-222

4.3.136 GlTimeP Class ..4-223

4.3.137 MSSLog Class ..4-225

4.3.138 RWTPtrOrderedVector Class ...4-225

4.4	 CSCI Dynamic Model ..4-226

4.4.1 SDSRV_Acquiring_an_ESDT ..4-227

4.4.2 SDSRV_Asynchronous_Status_Updates ..4-230

4.4.3 SDSRV_Auto-cancel_A_Subscription ...4-232

4.4.4 SDSRV_Canceling_a_Subscription ...4-234

4.4.5 SDSRV_Catalog_Deleting_a_Metadata_Entry ..4-236

4.4.6 SDSRV_Catalog_Insert_Collection_Metadata ...4-238

4.4.7 SDSRV_Catalog_Insertion_of_Metadata ...4-240

4.4.8 SDSRV_Catalog_Search ..4-242

4.4.9 SDSRV_Catalog_Updating_Metadata ...4-244

4.4.10 SDSRV_Changing_A_Request_Priority ...4-246

4.4.11 SDSRV_Client_Browsing ..4-248

4.4.12 SDSRV_Client_Connecting_to_a_Data_Server ...4-250

4.4.13 SDSRV_Client_Request_Submission ...4-252

4.4.14 SDSRV_Client_Searching ...4-254

4.4.15 SDSRV_Deleting_A_Queued_Request ..4-256

4.4.16 SDSRV_Ending_Session_No_Active_Request ...4-258

4.4.17 SDSRV_Fulfilling_a_One-time_Subscription ...4-260

4.4.18 SDSRV_Fulfilling_Open_Ended_Subscription ...4-262

4.4.19 SDSRV_Inserting_Composite_ESDT ..4-264

4.4.20 SDSRV_Inserting_New_ESDT ..4-266

4.4.21 SDSRV_Inserting_Single_ESDT ...4-268

4.4.22 SDSRV_Instantiating_an_ESDT ..4-270

4.4.23 SDSRV_Op_View_Queued_Requests ...4-272

4.4.24 SDSRV_Registering_a_Subscribable_Event ...4-274

xiv 305-CD-008-001

4.4.25 SDSRV_Returning_List_of_Subscriptions ..4-276

4.4.26 SDSRV_Server_Handling_A_Browse_Request ..4-278

4.4.27 SDSRV_Server_Handling_A_Search_Request ..4-280

4.4.28 SDSRV_Server_Request_Handling ...4-282

4.4.29 SDSRV_Startup_of_a_Science_Data_Server ...4-284

4.4.30 SDSRV_Submitting_a_Subscription ..4-286

4.4.31 SDSRV_Unregistering_a_Subscribable_Event ..4-288

4.4.32 SDSRV_Update_Server_Configuration ...4-290

4.4.33 SDSRV_Updating_a_Subscription ...4-292

4.4.34 SDSRV_Validating_Metadata ..4-294

4.5	 CSCI Structure ... 4-296

4.5.1 CSC Definitions ..4-297

4.5.2 CSCI Dynamic Architecture ...4-304

4.6	 SDSRV CSCI Management and Operation ... 4-307

4.6.1 System Management Strategy ...4-307

4.6.2 Operator Interfaces ..4-309

4.6.3 Standard SDSRV Reports ...4-311

5. DDSRV - Document Data Server CSCI 5-1

5.1 CSCI Overview ... 5-1

5.2 CSCI Context .. 5-1

5.3 CSCI Object Model ... 5-3

5.3.1 DsCdASCII Class .. 5-9

5.3.2 DsCdCSDT Class .. 5-10

5.3.3 DsCdHTML Class .. 5-12

5.3.4 DsCdKeyword Class ... 5-13

5.3.5 DsCdKeywordLocator Class .. 5-15

5.3.6 DsCdPDF Class .. 5-17

5.3.7 DsCdPostScript Class ... 5-18

5.3.8 DsCdRTF Class .. 5-20

5.3.9 DsCdTypeID Class ... 5-21

5.3.10 DsCsCSDT Class .. 5-21

5.3.11 DsCtAcquireCommand Class ... 5-22

5.3.12 DsCtClient Class ... 5-23

5.3.13 DsCtCommand Class .. 5-26

5.3.14 DsCtInsertCommand Class ... 5-27

5.3.15 DsCtRequest Class .. 5-29

5.3.16 DsCtSearchcommand Class .. 5-30

xv 305-CD-008-001

5.3.17 DsDoClient Class ...5-33

5.3.18 DsDoCommand Class ..5-34

5.3.19 DsDoRequest Class ..5-34

5.3.20 DsDoServer Class ..5-36

5.3.21 DsEsAlgorithmDescription Class ..5-37

5.3.22 DsEsAlgorithmDescriptionTypeID Class ..5-38

5.3.23 DsEsESDT Class ...5-39

5.3.24 DsEsGuide Class ..5-42

5.3.25 DsEsGuideTypeID Class ...5-43

5.3.26 DsEsProductionPlan Class ...5-44

5.3.27 DsEsProductionPlanTypeID Class ..5-46

5.3.28 DsEsReferencePaper Class ..5-47

5.3.29 DsEsReferencePaperTypeID Class ..5-48

5.3.30 DsEsTypeID Class ...5-49

5.3.31 DsGeCSDT Class ...5-50

5.3.32 DsGeESDT Class ...5-51

5.3.33 DsGeTypeID Class ..5-51

5.3.34 DsSdCSDT Class ...5-52

5.3.35 DsSdClient Class ...5-52

5.3.36 DsSdCommand Class ...5-53

5.3.37 DsSdESDT Class ...5-54

5.3.38 DsSdESDT Class ...5-54

5.3.39 DsSdRequest Class ..5-55

5.3.40 DsSdServer Class... 5-55

5.3.41 DsSdSession Class ...5-56

5.3.42 DsSeIndexer Class ...5-57

5.3.43 DsSeWWWServer Class ..5-57

5.3.44 DsSvServer Class ...5-58

5.4 CSCI Dynamic Model .. 5-60

5.4.1 Inserting a Document ...5-61

5.4.2 Searching for a Document ...5-65

5.4.3 Acquiring a Document ...5-65

5.4.4 Fault Scenario: HTTP Connection Failure ...5-65

5.5 CSCI Structure ... 5-67

5.5.1 DDSRV CSCs ...5-67

5.5.2 DDSRV CI Processes ...5-70

5.6 CSCI Management and Operation ... 5-71

5.6.1 System Management Strategy .. 5-71

5.6.2 Operator Interfaces ... 5-73

xvi 305-CD-008-001

5.6.3 Standard DDSRV Reports ..5-73

6. STMGT - Storage Management CSCI

6.1 CSCI Overview ... 6-1

6.2 CSCI Context .. 6-1

6.3	 CSCI Object Model ... 6-5

6.3.1 DsCnConfiguration Class .. 6-8

6.3.2 DsSdAdvertisement Class .. 6-8

6.3.3 DsStArchive Class ... 6-9

6.3.4 DsStArchivedFile Class .. 6-12

6.3.5 DsStCDROM Class .. 6-14

6.3.6 DsStDirectory Class .. 6-17

6.3.7 DsStFax Class ... 6-20

6.3.8 DsStFile Class ... 6-20

6.3.9 DsStFileDirectory Class .. 6-22

6.3.10 DsStNetworkResource Class .. 6-24

6.3.11 DsStPhysicalResource Class ... 6-25

6.3.12 DsStPrinter Class .. 6-25

6.3.13 DsStPullConfig Class ... 6-26

6.3.14 DsStPullList Class .. 6-27

6.3.15 DsStPullMonitor Class .. 6-29

6.3.16 DsStRequestManager Class .. 6-33

6.3.17 DsStReservation Class .. 6-35

6.3.18 DsStResource Class .. 6-38

6.3.19 DsStResourceConfig Class ... 6-41

6.3.20 DsStResourceManager Class .. 6-42

6.3.21 DsStResourcePolicy Class .. 6-45

6.3.22 DsStResourceQueue Class .. 6-48

6.3.23 DsStResourceSchedule Class .. 6-50

6.3.24 DsStSCacheConfig Class .. 6-53

6.3.25 DsStSchedulingConfig Class .. 6-54

6.3.26 DsStStagingDataList Class ... 6-54

6.3.27 DsStStagingDisk Class ... 6-57

6.3.28 DsStStagingFile Class ... 6-59

6.3.29 DsStStagingMonitor Class .. 6-61

6.3.30 DsStStorageResource Class ... 6-64

6.3.31 DsStTape Class .. 6-65

6.3.32 GlLog Class ... 6-67

6.3.33 GlNotification Class... 6-68

xvii 305-CD-008-001

6.4	 CSCI Dynamic Model .. 6-68

6.4.1 Aborting a Request for Service ... 6-69

6.4.2 Activating a Resource Reservation.. 6-69

6.4.3 Allocation of a Physical Resource, No Resource Available.......................... 6-69

6.4.4 Allocation of a Physical Resource, Resource Available................................ 6-70

6.4.5 Inserting Data into the Archive.. 6-70

6.4.6 Retrieving Data from the Archive, Checksum Error 6-70

6.4.7 Retrieving Data from the Archive, File not in Cache 6-70

6.4.8 Canceling a Resource Reservation... 6-71

6.4.9 Deallocation of a Physical Resource, Queued Requests................................ 6-71

6.4.10 Deallocation of a Physical Resource, Imminent Reservation for Resource .. 6-71

6.4.11 Deletion of Pull Disk Data with Operations Confirmation............................ 6-71

6.4.12 Deletion of Staging Disk Data ... 6-72

6.4.13 Setting the Operational State of a Tape Device ... 6-72

6.4.14 Submitting a Resource Reservation .. 6-72

6.5	 CSCI Structure ... 6-87

6.5.1 CSC Definitions ..6-87

6.5.2 CSCI Dynamic Architecture ...6-90

6.6	 CSCI Management and Operation ... 6-91

6.6.1 System Management Strategy... 6-91

6.6.2 Operator Interfaces.. 6-93

6.6.3 Standard STMGT Reports .. 6-94

7. DDIST - Data Distribution CSCI

7.1 CSCI Overview.. 7-1

7.2 CSCI Context ... 7-1

7.3	 CSCI Object Model ... 7-4

7.3.1 DsDdCDMedia Class ... 7-7

7.3.2 DsDdCDProcessor Class.. 7-7

7.3.3 DsDdDataItem Class .. 7-8

7.3.4 DsDdDistFile Class ..7-9

7.3.5 DsDdDistList Class ... 7-10

7.3.6 DsDdDistRequest Class .. 7-11

7.3.7 DsDdDistRequestC Class.. 7-12

7.3.8 DsDdDistRequestS Class .. 7-13

7.3.9 DsDdElectronicMedia Class ...7-16

7.3.10 DsDdLabeledMedia Class... 7-18

7.3.11 DsDdMedia Class.. 7-21

xviii 305-CD-008-001

7.3.12 DsDdOpsRequestC Class.. 7-23

7.3.13 DsDdPackingSlip Class ...7-24

7.3.14 DsDdPrivRequest Class .. 7-25

7.3.15 DsDdPullMedia Class ... 7-27

7.3.16 DsDdPullProcessor Class .. 7-29

7.3.17 DsDdPushMedia Class .. 7-29

7.3.18 DsDdPushProcessor Class .. 7-32

7.3.19 DsDdRequestList Class .. 7-33

7.3.20 DsDdRequestManager Class ... 7-34

7.3.21 DsDdRequestManagerC Class... 7-35

7.3.22 DsDdRequestManagerS Class ... 7-36

7.3.23 DsDdRequestProcessor Class .. 7-36

7.3.24 DsDdShippingLabel Class ... 7-38

7.3.25 DsDdTapeMedia Class .. 7-40

7.3.26 DsDdTapeProcessor Class ... 7-41

7.3.27 DsStResourceC Class... 7-41

7.3.28 EcNotification Class .. 7-42

7.3.29 EcUtLogger Class .. 7-42

7.3.30 MsUsProfile Class ... 7-43

7.4	 CSCI Dynamic Model .. 7-43

7.4.1 Distributed Creation of a New Distribution Request 7-44

7.4.2 Electronic Pull of Data ... 7-46

7.4.3 Electronic Push of Data ... 7-48

7.4.4 Physical Distribution to Tape... 7-50

7.4.5 User Abort of a Request Waiting for a Device ... 7-52

7.4.6 Tape Fault... 7-54

7.5	 CSCI Structure ... 7-56

7.5.1 Distribution Products CSC .. 7-56

7.5.2 Distribution Client Interface CSC.. 7-57

7.5.3 Distribution Request Management CSC.. 7-57

7.6	 CSCI Management and Operation .. 7-58

7.6.1 System Management Strategy.. 7-58

7.6.2 Operator Interfaces... 7-60

7.6.3 Standard DDIST Reports ... 7-61

xix 305-CD-008-001

8. ACMHW - Access Control and Management HWCI

8.1	 HW Design Drivers ... 8-1

8.1.1 Key Trade-off Studies and Prototypes.. 8-1

8.1.2 Sizing and Performance Analysis ... 8-2

8.1.3 Scalability, Evolvability, and Migration to Release B.................................... 8-2

8.2	 HWCI Structure .. 8-2

8.2.1 HWCI Connectivity .. 8-2

8.2.2 HWCI Components ... 8-4

8.2.3 Failover and Recovery Strategy... 8-5

9. WKSHW - Working Storage HWCI

9.1	 HW Design Drivers ... 9-1

9.1.1 Key Trade-off Studies and Prototypes .. 9-1

9.1.2 Sizing and Performance Analysis ... 9-2

9.1.3 Scalability, Evolvability, and Migration to Release B 9-2

9.2	 HWCI Structure .. 9-2

9.2.1 HWCI Connectivity .. 9-3

9.2.2 HWCI Component Description.. 9-3

9.2.3 Failover and Recovery Strategy... 9-4

10. DRPHW - Data Repository HWCI

10.1	 HWCI Design Rationale ... 10-1

10.1.1 Key Trades and Analysis .. 10-1

10.1.2 Scalability, Evolvability, and Migration to Release B 10-2

10.2	 HWCI Structure ... 10-3

10.2.1 HWCI Connectivity .. 10-4

10.2.2 HWCI Component Description ... 10-5

10.2.3 Failover and Recovery Strategy... 10-6

11. DIPHW - Distribution and Ingest Peripheral Management HWCI

11.1	 HWCI Design Rationale ... 11-1

11.1.1 Key Trades and Analysis .. 11-1

11.1.2 Scalability Strategies.. 11-2

11.2	 HWCI Structure ... 11-2

11.2.1 HWCI Connectivity .. 11-2

11.2.2 HWCI Component Description .. 11-3

11.2.3 Failover and Recovery Strategy ... 11-3

xx 305-CD-008-001

12. DDSRVHW - Document Data Server HWCI

12.1 HW Design Drivers .. 12-1

12.1.1 Key Trade-off Studies and Prototypes .. 12-1

12.1.2 Scalability, Evolvability, and Migration to Release B 12-1

12.2 HWCI Structure ... 12-1

12.2.1 HWCI Connectivity .. 12-1

12.2.2 HWCI Components.. 12-2

12.2.3 Failover and Recovery Strategy .. 12-2

Figures

3.1-1. Data Server Subsystem Context Diagram ...3-2

3.2.2. Subsystem Design Rationale ..3-10

3.2.2.1-1. Encapsulation of COTS in the Data Server Reference Architecture......................3-11

4.3-1. DsAdAdmin Object Model Diagram ...4-6

4.3-2. DsClCollector Object Model Diagram ..4-7

4.3-3. DsClESDT Object Model Diagram ...4-8

4.3-4. DsClQuery_Subscription Object Model Diagram... 4-9

4.3-5. DsClRequest Object Model Diagram.. 4-10

4.3-6. DsCnConfiguration Object Model Diagram.. 4-11

4.3-7. DsCsCSDT Object Model Diagram .. 4-12

4.3-8. DsDbWrapper Object Model Diagram ..4-13

4.3-9. DsDeESDTDescriptor Object Model Diagram ...4-15

4.3-10. DsGeECSDataProductsRelA Object Model Diagram... 4-17

4.3-11. DsGeGeneralESDT Object Model Diagram ... 4-18

4.3-12. DsMdMetadata Object Model Diagram .. 4-19

4.3-13. DsNpNonECSDataProduct Object Model Diagram.. 4-20

4.3-14. DsNpNonECSScienceData Object Model Diagram...4-21

4.3-15. DsNsNonScienceESDT Object Model Diagram ...4-22

4.3-16. DsSbSubscription Object Model Diagram .. 4-23

4.3-17. DsSrScienceServer Object Model Diagram ..4-24

4.3-18. GlParameter Object Model Diagram ...4-25

4.4-1. SDSRV_Acquiring_an_ESDT Dynamic Model ...4-229

4.4-2. SDSRV_Asynchronous_Status_Updates Dynamic Model 4-231

4.4-3. SDSRV_Auto-Cancel_A_Subscription Dynamic Model.....................................4-233

4.4-4. SDSRV_Canceling_a_Subscription Dynamic Model ..4-235

4.4-5. SDSRV_Catalog_Deleting_a_Metadata_Entry Dynamic Model4-237

4.4-6. SDSRV_Catalog_Insert_Collection_Metadata Dynamic Model4-239

xxi 305-CD-008-001

4.4-7. SDSRV_Catalog_Insertion_of_Metadata Dynamic Model 4-241

4.4-8. SDSRV_Catalog_Search Dynamic Model.. 4-243

4.4-9. SDSRV_Catalog_Updating_Metadata Dynamic Model4-245

4.4-10. SDSRV_Changing_A_Request_Priority Dynamic Model4-247

4.4-11. SDSRV_Client_Browsing Dynamic Model.. 4-249

4.4-12. SDSRV_Client_Connecting_to_a_Data_Server Dynamic Model4-251

4.4-13. SDSRV_Client_Request_Submission Dynamic Model4-253

4.4-14. SDSRV_Client_Searching Dynamic Model ... 4-255

4.4-15. SDSRV_Deleting_A_Queued_Request Dynamic Model4-257

4.4-16. SDSRV_Ending_Session_No_Active_Request Dynamic Model 4-259

4.4-17. SDSRV_Fulfilling_a_One-time_Subscription Dynamic Model4-261

4.4-18. SDSRV_Fulfilling_Open_Ended_Subscription Dynamic Model4-263

4.4-19. SDSRV_Inserting_Composite_ESDT Dynamic Model4-265

4.4-20. SDSRV_Inserting_New_ESDT Dynamic Model ...4-267

4.4-21. SDSRV_Inserting_Single_ESDT Dynamic Model ...4-269

4.4-22. SDSRV_Instantiating_an_ESDT Dynamic Model ..4-271

4.4-23. SDSRV_Op_View_Queued_Requests Dynamic Model......................................4-273

4.4-24. SDSRV_Registering_a_Subscribable_Event Dynamic Model4-275

4.4-25. SDSRV_Returning_List_Of_Subscriptions Dynamic Model4-277

4.4-26. SDSRV_Server_Handling_A_Browse_Request Dynamic Model4-279

4.4-27. SDSRV_Server_Handling_a_Search_Request Dynamic Model 4-281

4.4-28. SDSRV_Server_Request_Handling Dynamic Model ...4-283

4.4-29. SDSRV_Startup_Of_A_Science_Data_Server Dynamic Model 4-285

4.4-30. SDSRV_Submitting_a_Subscription Dynamic Model4-287

4.4-31. SDSRV_Unregistering_a_Subscribable_Event Dynamic Model 4-289

4.4-32. SDSRV_Update_Server_Configuration Dynamic Model4-291

4.4-33. SDSRV_Updating_a_Subscription Dynamic Model .. 4-293

4.4-34. SDSRV_Validating_Metadata Dynamic Model ...4-295

5.2-1. DDSRVContext Diagram ..5-2

5.3-1. DsDoServer Object Model Diagram ...5-5

5.3-2. DsDoDocumentServer Object Model Diagram ...5-6

5.3-3. DsDoESDT Object Model Diagram ..5-7

5.3-4. DsDoCSDT Object Model Diagram ..5-8

5.4-1. DDSRV_Insert Dynamic Model ... 5-62

5.4-2. DDSRV_Search Dynamic Model .. 5-63

5.4-3. DDSRV_Acquire Dynamic Model .. 5-64

5.4-4. Fault Scenario: HTTP Connection Failure .. 5-66

6.2-1. STMGT_events Event Flow Diagram ...6-2

6.2-2. CSCI Interfaces...6-4

xxii 305-CD-008-001

6.3-1. dsst Object Model Diagram ...6-6

6.3-2. dsstconfig Object Model Diagram ...6-7

6.4-1. ABORT_REQUEST Dynamic Model ..6-73

6.4-2. ACTIVATE_RESERVATION Dynamic Model ...6-74

6.4-3. ALLOCATEPHYSRES_NORESAVAIL Dynamic Model6-75

6.4-4. ALLOCATEPHYSRES_RESAVAIL Dynamic Model ...6-76

6.4-5. ARCHIVE_INSERT Dynamic Model ...6-77

6.4-6. ARCHIVE_RETRIEVE_CHECKSUMERROR Dynamic Model6-78

6.4-7. ARCHIVE_RETRIEVE_NOCACHEHIT Dynamic Model6-79

6.4-8. CANCEL_RESERVATION Dynamic Model ...6-80

6.4-9. DEALLOCATEPHYSRES_QUEUED_REQUESTS Dynamic Model6-81

6.4-10. DEALLOCATEPHYSRES_RESERVATION Dynamic Model6-82

6.4-11. DELETE_PULLDISKDATA_CONFIRMED Dynamic Model6-83

6.4-12. DELETE_STAGINGDISKDATA Dynamic Model ..6-84

6.4-13. SET_TAPESTATE Dynamic Model ..6-85

6.4-14. SUBMIT_RESERVATION Dynamic Model ..6-86

7.2-1. DDIST Event Flow Diagram ...7-2

7.2-2. DDIST CI Interfaces ..7-3

7.3-1. DsDdInterfaceClasses Object Model Diagram ... 7-5

7.3-2. DsDdManager Object Model Diagram ... 7-6

7.4.1-1. Creating a Distribution Request ...7-45

7.4.2-1. Electronic Pull of Data ...7-47

7.4.3-1. Electronic Push of Data ..7-49

7.4.4-1. Distribution via Tape .. 7-51

7.4.5-1. Abort a Request ..7-53

7.4.6-1. Handling a Tape Fault ..7-55

8.2-1. Access Control and Management HWCI Block Diagram8-3

8.2.1-1. Data Server Network Connectivity ..8-3

9.2-1. Working Storage HWCI Block Diagram ...9-3

10.2-1. Data Repository HWCI Block Diagram ...10-4

11.2-1. Distribution and Ingest Peripheral Management HWCI Block Diagram11-2

12.2.1-1. Access Control and Management HWCI Block Diagram12-2

xxiii 305-CD-008-001

Tables

3.1-1. Subsystem Interfaces ... 3-3

3.2.2.2-1. Data Server Subsystem System Management GUI .. 3-15

3.2.2.2-2. Data Server Subsystem Request Management GUI ... 3-16

4.2-1. SDSRV CI Interfaces.. 4-3

4.5-1. SDSRV's Components ..4-296

4.6-1. SDSRV Error Categories .. 4-308

4.6-2. Science Data Server Subsystem Administration Management GUI4-310

4.6.3-1. Standard Science Data Server Reports ..4-311

5.2-1. DDSRVContextevents Event Flow Summary Table.. 5-3

5.5.1. DDSRV Components .. 5-67

5.6-1. DDSRV Error Categories ... 5-72

5.6.2-1. Document Data Server Management GUI .. 5-73

5.6.3-1. Standard Document Data Server Reports ... 5-73

6.2-1. STMGT_events Event Flow Summary Table... 6-3

6.2-2. CSCI Interfaces .. 6-4

6.5-1. STMGT's Components .. 6-87

6.6.1.2-1. STMGT Error Categories ... 6-93

6.6.2-1. Storage Management GUI ... 6-94

6.6.3-1. Standard Storage Management Reports... 6-94

7.2-1. DDIST Event Flow Summary Table... 7-3

7.2-2. DDIST CI Interfaces ... 7-3

7.5-1. DDIST's Components ... 7-56

7.6.1.2-1. DDIST Error Categories .. 7-59

7.6.2-1. Data Distribution Management GUI ... 7-60

7.6.3-1. Standard Distribution Reports... 7-61

8.2.2-1. Access Control and Management HWCI Component Descriptions 8-5

9.2.2-1. Working Storage HWCI Component Descriptions... 9-4

10.2.2-1. Data Repository HWCI Component Descriptions .. 10-6

11.2.2-1. Distribution and Ingest Peripheral HWCI Component Descriptions................... 11-3

12.2.2-1. Access Control and Management HWCI Component Descriptions 12-2

Appendix. Requirements Trace A-1

Abbreviations and Acronyms AB-1

xxiv 305-CD-008-001

1. Introduction

1.1 Identification
This Release A SDPS Data Server Subsystem Design Specification for the ECS Project, Contract
Data Requirement List (CDRL) Item 046, with requirements specified in Data Item Description
(DID) 305/DV2, is a required deliverable under the Earth Observing System Data and Information
System (EOSDIS) Core System (ECS), Contract NAS5-60000. This publication is part of a series
of documents comprising the Science and Communications Development Office design
specification for the Communications and System Management Segment (CSMS) and the Science
and Data Processing Subsystem (SDPS) for Release A.

1.2 Scope
The Release A Data Server Subsystem Design Specification defines the design of the subsystem.
It defines the Data Server Subsystem computer software and hardware architectural design, as well
as subsystem design based on Level 4 requirements.

This document reflects the June 21, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with the ECS Technical Direction No. 11, dated
December 6, 1994.

1.3 Document Organization
The document is organized to describe the Release A Data Server Subsystem design as follows:

Section 1 provides information regarding the identification, scope, status, and organization of this
document.

Section 2 provides a listing of the related documents, which were used as source information for
this document.

Section 3 provides an overview of the Subsystem, focusing on the high-level design concept. This
provides general background information to put Data Server into context.

Section 4 describes the design of the Science Data Server (SDSRV) CSCI.

Section 5 describes the design of the Document Data Server (DDSRV) CSCI.

Section 6 describes the design of the Storage Management (STMGT) CSCI.

Section 7 describes the design of the Data Distribution (DDIST) CSCI.

Section 8 describes the design of the Access Control and Management (ACMHW) HWCI.

Section 9 describes the design of the Working Storage (WKSHW) HWCI.

Section 10 describes the design of the Data Repository (DRPHW) HWCI.

Section 11 describes the design of the Distribution and Ingest Peripheral Management (DIPHW)
HWCI.

Section 12 describes the design of the Document Data Server (DDSRVHW) HWCI.

1-1 305-CD-008-001

The appendix provides the Level 4 mapping matrix for use in verifying requirements.

Abbreviations and Acronyms contains an alphabetized list of the definitions for abbreviations and
acronyms used in this document.

1.4 Status and Schedule
This submittal of DID 305/DV2 meets the milestone specified in the Contract Data Requirements
List (CDRL) of NASA Contract NAS5-60000. The submittal was reviewed during the SDPS
Preliminary Design Review (PDR) and reflects changes to the design which resulted from that
review. The PDR also triggered a number of follow up actions in response to Review Item
Discrepancies (RID) the results of which have been incorporated into the Critical Design Review
(CDR) version of this document.

1-2 305-CD-008-001

2. Related Documents

2.1 Parent Documents
The parent document is the document from which the scope and content of this Data Server
Subsystem Design Specification is derived.

194-207-SE1-001 System Design Specification for the ECS Project

2.2 Applicable Documents
The following documents are referenced within this SDPS Design Specification, or are directly
applicable, or contain policies or other directive matters that are binding upon the content of this
volume.

209-CD-001-001	 Interface Control Document Between EOSDIS Core System (ECS) and
the NASA Science Internet

209-CD-002-001	 Interface Control Document Between EOSDIS Core System (ECS) and
ASTER Ground Data System

209-CD-003-001	 Interface Control Document Between EOSDIS Core System (ECS) and
EOS-AM Project for AM-1 Spacecraft Analysis Software

209-CD-004-001	 Data Format Control Document for the Earth Observing System (EOS)
AM-1 Project Data Base

209-CD-005-002	 Interface Control Document Between EOSDIS Core System (ECS) and
Science Computing Facilities (SCF)

209-CD-006-002	 Interface Control Document Between EOSDIS Core System (ECS) and
National Oceanic and Atmospheric Administration (NOAA) Affiliated
Data Center (ADC)

209-CD-007-002	 Interface Control Document Between EOSDIS Core System (ECS) and
TRMM Science Data and Information System (TSDIS)

209-CD-008-002	 Interface Control Document Between EOSDIS Core System (ECS) and
the Goddard Space Flight Center (GSFC) Distributed Active Archive
Center (DAAC)

209-CD-009-002	 Interface Control Document Between EOSDIS Core System (ECS) and
the Marshall Space Flight Center (MSFC) Distributed Active Archive
Center (DAAC)

209-CD-011-002	 Interface Control Document Between EOSDIS Core System (ECS) and
the Version 0 System

305-CD-003-002	 Communications and System Management Segment (CSMS) Design
Specification for the ECS Project

308-CD-001-004 Software Development Plan for the ECS Project

2-1 305-CD-008-001

313-CD-004-001	 Release A CSMS/SDPS Internal Interface Control Document for the
ECS Project

423-41-03	 Goddard Space Flight Center, EOSDIS Core System (ECS) Contract
Data Requirements Document

2.3 Information Documents Not Referenced
The following documents, although not referenced herein and/or not directly applicable, do
amplify and clarify the information presented in this document. These documents are not binding
on the content of the SDPS Design Specifications.

205-CD-002-002	 Science User's Guide and Operations Procedure Handbook for the ECS
Project. Part 4: Software Developer's Guide to Preparation, Delivery,
Integration, and Test with ECS

206-CD-001-002 Version 0 Analysis Report for the ECS Project

209-CD-010-001	 Interface Control Document Between EOSDIS Core System (ECS) and
the Langley Research Center (LaRC) Distributed Active Archive Center
(DAAC) Draft

194-302-DV2-001 ECS Facilities Plan for the ECS Project

101-303-DV1-001 Individual Facility Requirements for the ECS Project, Preliminary

194-317-DV1-001 Prototyping and Studies Plan for the ECS Project

318-CD-003-XXX Prototyping and Studies Progress Report for the ECS Project (monthly)

333-CD-003-001 SDP Toolkit Users Guide for the ECS Project

601-CD-001-003 Maintenance and Operations Management Plan for the ECS Project

604-CD-001-004 Operations Concept for the ECS Project: Part 1 -- ECS Overview

101-620-OP2-001 List of Recommended Maintenance Equipment for the ECS Project

194-703-PP1-001 System Design Review (SDR) Presentation Package for the ECS Project

193-801-SD4-001 PGS Toolkit Requirements Specification for the ECS Project

194-813-SI4-002 Planning and Scheduling Prototype Results Report for the ECS Project

194-813-SI4-003 DADS Prototype One FSMS Product Operational Evaluation

194-813-SI4-004	 DADS Prototype One STK Wolfcreek 9360 Automated Cartridge Sys
tem Hardware Characterization Report

813-RD-009-001 DADS Prototype Two Multi-FSMS Product Integration Evaluation

828-RD-001-002 Government Furnished Property for the ECS Project

193-WP-118-001 Algorithm Integration and Test Issues for the ECS Project

193-WP-611-001	 Science-based System Architecture Drivers for the ECS Project, Revi
sion 1.0

193-WP-623-001 ECS Evolutionary Development White Paper

194-WP-901-002	 EOSDIS Core System Science Information Architecture, White Paper,
Working Paper

2-2 305-CD-008-001

194-WP-902-002 ECS Science Requirements Summary, White Paper, Working Paper

194-WP-914-001	 CORBA Object Request Broker Survey for the ECS Project, White Pa
per, Working Paper

194-WP-918-001	 DADS Prototype One FSMS Product Operational Evaluation, White
Paper, Draft Report

194-WP-925-001 Science Software Integration and Test, White Paper, Working Paper

420-WP-001-001	 Maximizing the Use of COTS Software in the SDPS SDS Software De
sign, White Paper

193-TP-626-001 GCDIS/UserDIS Study ECS Technical Paper, Draft 0.2

194-TP-266-002	 Data Distribution Architecture Logical Object Model (LOM) for the
ECS Project, Version 2.01

194-TP-267-001	 Data Server Architecture Logical Object Model (LOM) for the ECS
Project, Version 2.00

194-TP-313-001 ECS User Characterization Methodology and Results

194-TP-316-002 Data Compression Study for the ECS Project

194-TP-548-001 User Scenario Functional Analysis [for the ECS Project]

194-TP-569-001	 PDPS Prototyping at ECS Science and Technology Laboratory,
Progress Report #4

222-TP-003-006 Release Plan Content Description for the ECS Project

430-TP-001-001	 SDP Toolkit Implementation with Pathfinder SSM/I Precipitation Rate
Algorithm, Technical Paper

440-TP-001-001 Science Data Server Architecture Study [for the ECS Project]

none	 Hughes Training, Inc., ECS User Interface Style Guide, White Paper,
Version 4.0

423-16-01	 Goddard Space Flight Center, Data Production Software and Science
Computing Facility (SCF) Standards and Guidelines

423-41-02	 Goddard Space Flight Center, Functional and Performance Require
ments Specification for the Earth Observing System Data and Informa
tion System (EOSDIS) Core System

540-022	 Goddard Space Flight Center, Earth Observing System (EOS) Commu
nications (Ecom) System Design Specification

560-EDOS-0211.0001	 Goddard Space Flight Center, Interface Requirements Document Be
tween EDOS and the EOS Ground System (EGS)

2-3 305-CD-008-001

This page intentionally left blank.

2-4 305-CD-008-001

3. Subsystem Overview

3.1 Introduction and Context
This subsystem has the responsibility for storing earth science and related data in a persistent
fashion, providing search and retrieval access to this data, and supporting the administration of the
data and the supporting hardware devices and software products. As part of its retrieval function,
the subsystem also provides for the distribution of data electronically or on physical media.

Figure 3.1-1 shows the subsystem context.

•	 The subsystem advertises its data types and the services it provides against this data with
the SDPS Interoperability Services.

•	 It stores data received through ingest by the SDPS Ingest Subsystem, or resulting from
processing in the SDPS Data Processing Subsystem, as well as historic data from FOS.

•	 It may issue production requests into the Planning Subsystem, and acquisition requests into
a DAR processing subsystem, as a result of data requests issued by Data Server clients. It
also supports the SDPS Planning Subsystem by storing data availability schedules.

•	 It accepts data search and access requests from any SDPS subsystem or other segment
provided that they are directed specifically at the data objects managed by the given
instance of the data server subsystem (all other search and access requests would be
funneled through the DIM and/or LIM services of the SDPS Data Management Subsystem)

•	 It provides the data resulting from these access requests through electronic transfer or on
physical media. The subsystem can also provide references to this data in the Universal
Reference format instead (as described in this documents Overview volume,
305-CD-004-01).

• It interfaces with MSS/SMC to provide subsystem status and log information.

3.2 Subsystem Overview

3.2.1 Subsystem Structure

The Data Server subsystem is decomposed into four CSCIs and four HWCIs. All eight of these
CIs are represented in Release A Data Server Subsystem configuration.

•	 Science Data Server CSCI (SDSRV) is a software component. It is responsible for
managing the access to and storage of a collection of earth science and related data (i.e.,
ancillary data), except documents.

•	 The Document Data Server CSCI (DDSRV) is a software component. It manages
document data. A separate document server is prompted by some of the unique aspects of
document management, and the desire to provide an off-the-shelf solution for Release A.
It is likely that DDSRV and SDSRV will be integrated into a single CSCI in a later release,
by taking advantage of advances in DBMS technology.

3-1 305-CD-008-001

3-2
305-C

D
-008-001

Data
Server

Ingest

Planning

Data
Processing

Client

Interoperability

Data
Management

MSS/
SMC

Other
DAACs

TRMM
(TSDIS)

V0
Gateway

SCF

FOS

ADCs
ODCs

IPs

13

16

7

17

1

11

6

4

3

12

15

5 2

10

14

18

8

26

20

21

25

23

19

24

22

9

Figure 3.1-1. Data Server Subsystem Context Diagram

Table 3.1-1. Subsystem Interfaces (1 of 5)
Flow
No.

Source Destination Data Types Data Volume Frequency

1 Data Server Client * Results Set medium-high in response to
request

1 Data Server Client * Session Mgmt
responses

low in response to
request

1 Data Server Client * Notifications low in response to
subscription

2 Data Server DAACs Standard Products high as required

2 Data Server DAACs Metadata medium-high as required

2 Data Server DAACs Ancillary Data high as required

2 Data Server DAACs Correlative Data high as required

2 Data Server DAACs Calibration Data high as required

2 Data Server DAACs Documents medium as required

2 Data Server DAACs Orbit/Attitude Data medium as required

2 Data Server DAACs Data Availability
Schedules

medium as required

2 Data Server DAACs Algorithms high as required

2 Data Server DAACs Special Products high as required

2 Data Server DAACs L0 Data high as required

2 Data Server DAACs QA Data medium as required

3 Data Server Data Mgmt Session Mgmt
Response

low in response to
request

3 Data Server Data Mgmt Search Results medium-high in response to
request

3 Data Server Data Mgmt Schema medium as required

3 Data Server Data Mgmt data dictionary medium as required

4 Data Server Interoperability Advertisement low when service/data
changes

4 Data Server Interoperability Subscription low as required

5 Data Server MSS/SMC Status low in response to
request

5 Data Server MSS/SMC Logs low in response to
request

6 Data Server Planning subscription notice low at fulfillment of
subscription

6 Data Server Planning data query response
(granule information)

medium in response to
request

7 Data Server Processing Standard Products high in response to
staging request

7 Data Server Processing meta data medium in response to
staging request

3-3 305-CD-008-001

Table 3.1-1. Subsystem Interfaces (2 of 5)
Flow
No.

Source Destination Data Types Data Volume Frequency

7 Data Server Processing L0 Data high in response to
staging request

7 Data Server Processing Ancillary Data high in response to
staging request

7 Data Server Processing Calibration Data medium in response to
staging request

7 Data Server Processing Orbit/Attitude Data medium in response to
staging request

7 Data Server Processing Algorithms high in response to
staging request

8 Data Server TRMM (TSDIS) Metadata medium - 2
day's worth of
archived data

daily

8 Data Server TRMM (TSDIS) Ancillary Data high - enough
to support 1
day of
processing
and 2 day's
worth of
reprocessing
(~10 Gbytes)

frequency depends
on data set

8 Data Server TRMM (TSDIS) Calibration Data medium included in ancillary
data

8 Data Server TRMM (TSDIS) Correlative Data medium included in ancillary
data

8 Data Server TRMM (TSDIS) Documents low as required

8 Data Server TRMM (TSDIS) Data Products 2 days worth
of archived
data (~50
Gbyte)

daily

8 Data Server TRMM (TSDIS) Data Availability Notice low daily

8 Data Server TRMM (TSDIS) Status low as required

9 TRMM (TSDIS) Data Server Product Orders low as requested

9 TRMM (TSDIS) Data Server Subscriptions low as requested

10 Data Server Version 0
Gateway

Results Set medium-high in response to
request

10 Data Server Version 0
Gateway

Session Mgmt
responses

low in response to
request

10 Data Server Version 0
Gateway

Product Request
Status

low as required

*23 Data Server ADCs/ODCs Metadata medium as required

*23 Data Server ADCs/ODCs Calibration Data,
Correlative Data,
Documents

medium-high as required

*23 Data Server ADCs/ODCs Algorithms medium-high as required

3-4 305-CD-008-001

Table 3.1-1. Subsystem Interfaces (3 of 5)
Flow
No.

Source Destination Data Types Data Volume Frequency

*23 Data Server ADCs/ODCs Data Products high as required

*23 Data Server ADCs/ODCs Schedule Adjudication
data

low as required

*23 Data Server ADCs/ODCs Status low as required

*24 Data Server IPs Ancillary Data medium as required (Media
Delivery to ASTER
GDS

*24 Data Server IPs Correlative Data medium as required (Media
Delivery to ASTER
GDS

*24 Data Server IPs DARs low frequency
dependent on user
input (ASTER only)

*24 Data Server IPs Level 0 - Level 4
Products

high dependent on user
input (Media
Delivery to ASTER
GDS

*24 Data Server IPs Metadata low dependent on user
input

*24 Data Server IPs Orbit/Attitude Data low-medium infrequent (only for
s/c anomalies (for
ASTER))

*24 Data Server IPs Schedule Adjudication
Data

low as required

*24 Data Server IPs Status low as required

*24 Data Server IPs Documents low as required

*24 Data Server IPs Calibration Data medium as required

*25 Data Server FOS Quick Look Images medium in response to
request

*25 Data Server FOS Historic Data medium in response to
request

*25 Data Server FOS DARs low as required

*26 Data Server SCF Status low as required

*26 Data Server SCF Metadata/updates low as required

*26 Data Server SCF Calibration data medium as required

*26 Data Server SCF Correlative data medium as required

*26 Data Server SCF Documents low as required

*26 Data Server SCF Algorithms/updates medium as required

26 Data Server SCF Standard Products medium daily as required for
QA

11* Client Data Server Search Requests low as requested

11* Client Data Server Access Requests low as requested

3-5 305-CD-008-001

Table 3.1-1. Subsystem Interfaces (4 of 5)
Flow
No.

Source Destination Data Types Data Volume Frequency

11* Client Data Server Session Mgmt
Requests

low as requested

11* Client Data Server Subscriptions low as requested

12 Data Mgmt Data Server Search requests low in response to
request

12 Data Mgmt Data Server Session Mgmt
Requests

low in response to
request

12 Data Mgmt Data Server Access requests low in response to
request

13 Ingest Data Server Standard Products high on reception

13 Ingest Data Server Metadata medium on reception

13 Ingest Data Server Ancillary Data high on reception

13 Ingest Data Server Correlative Data high on reception

13 Ingest Data Server Calibration Data medium on reception

13 Ingest Data Server Documents medium on reception

13 Ingest Data Server Orbit/Attitude Data medium on reception

13 Ingest Data Server Data Availability
Schedules

medium on reception

13 Ingest Data Server Algorithms high on reception

13 Ingest Data Server Special Products high on reception

13 Ingest Data Server L0 Data high on reception

13 Ingest Data Server Quick Look Data medium on reception

13 Ingest Data Server QA Data medium on reception

13 Ingest Data Server Resource Allocation /
Deallocation Requests

low on reception

14 Interoperability Data Server Notification low in response to
subscription

15 MSS/SMC Data Server Status requests low in response to
request

15 MSS/SMC Data Server Log Requests low in response to
request

16 Planning Data Server candidate plans /active
plans

medium as required for
archiving

16 Planning Data Server data query low as required

16 Planning Data Server Subscription Request low as required

17 Processing Data Server access requests low as required for
processing

17 Processing Data Server standard products high as required for
processing

17 Processing Data Server metadata medium as required for
processing

3-6 305-CD-008-001

Table 3.1-1. Subsystem Interfaces (5 of 5)
Flow
No.

Source Destination Data Types Data Volume Frequency

17 Processing Data Server Science Algorithms low as requested

17 Processing Data Server QA Data medium as required for
processing

18 Version 0 Data Server Inventory low as required

18 Version 0 Data Server Guide low as required

18 Version 0 Data Server Browse data medium as required

18 Version 0 Data Server Dependent Valids low as required

*19 ADCs/ODCs Data Server Product Requests low frequency
dependent on user
input

*19 ADCs/ODCs Data Server Status low as required

20 SCF Data Server QA Data request low as required

20 SCF Data Server QA Data Subscription low as required

*21 FOS Data Server historic data low as required for
archiving

*21 FOS Data Server DAR status low when status
changes

*21 FOS Data Server Status Info low in response to
request

*21 FOS Data Server Acquisition Plan
Schedule

medium as required

*22 IPs Data Server DAR Status low frequency based on
user input (ASTER
only)

In the table, where an exact number is unavailable, the data volume is estimated as low (less than 1 MB),

medium (between 1 MB and 1 GB), or high (greater than 1 GB) per use defined in the frequency column.

The frequency information will be updated as the interfaces are fully defined.

Entries marked with (*) represent interfaces that are beyond Release A.

•	 The Storage Management CSCI (STMGT) is a software component. It manages and
provides access to archive data. It also provides a stable interface to the other software
within the data server subsystem to insulate them from future changes in storage
technology of which ECS will want to take advantage.

•	 Data Distribution CSCI (DDIST) is a software component. It is responsible for providing
the distribution services to the data server.

•	 Access Control and Management HWCI (ACMHW) is a hardware component. It is
responsible for supporting the access to the data server.

•	 Working Storage HWCI (WKSHW) is a hardware component. It is responsible for
supporting the needs for temporary and buffer storage.

•	 Data Repository HWCI (DRPHW) is a hardware component. It is responsible for storing
and maintaining the permanent archive.

3-7 305-CD-008-001

•	 Distribution and Ingest Peripherals HWCI (DIPHW) is a hardware component. It provides
the hardware capabilities needed for data dissemination and ingest from the data server
through various mechanisms.

The following paragraphs provide a brief summary of the purpose of each CSCI and HWCI.

Science Data Server CSCI

The Science Data Server CSCI (SDSRV CSCI) expresses the “data are data” concept of the
architecture. By acting as the session manager and primary client interface to the data, the SDSRV
provides access to the data server holdings using methods and interfaces which remain consistent
regardless of how the data is stored. Access (searching, requesting) and instantiation (creation of
objects) of the data server data holdings are represented as Earth Science Data Type classes
(ESDTs). The Computer Science Data Type (CSDT) classes represent the physical organization
and storage implementation of the ESDTs.

ESDT and CSDT are implemented by combining off the shelf DBMS technology with software
developed to support the aspects that are unique to the ECS data and are not supported by the off
the shelf software directly. For example, the DBMS (perhaps with third party software extensions
which are also off-the-shelf) will support data types such as integer, floating point, string, arrays,
images, time, and various kinds of spatial objects. However, when building database support for
ECS products, software may need to be developed to support coordinate transformations which are
not supported by the off-the-shelf software.

Information which resides in a DBMS is defined in a formal fashion. The definition is called a
database schema. The DBMS uses it to interpret the queries and access requests it receives and
execute them. If all support needed by the ECS science data were available off-the-shelf within
the DBMS, the SDSRV software model would be very simple. It would consist, for the most part,
of the DBMS. The data objects, i.e., the ESDT, are defined in the schema and are not visible in the
software design of the SDSRV itself. The schema would implement the requirements of the ECS
Core Meta Data Model (with product unique extensions). The Core Meta Data Model would not
be reflected in the software design, only in the database schema.

In actual fact, the SDSRV needs to add software support for science data types, for example, when
manipulating it for distribution, or to implement browse, subsetting, and subsampling. As a result,
the SDSRV software design includes classes that represent portions of the ECS Core Meta Data
Model as well as other software object classes which are needed to implement other aspects of the
data server.

An example of this is the DsSrSession class. It provides clients with a uniform, stateful interface
with the data server (rollback and suspension, operations on working collections), independent of
the underlying servers for the ESDTs. The application of inheritance, polymorphism, and
specialization constructs in the design enables the data server to evolve the structure and behavior
of data holdings, as well as add new data types, supporting the design goal of being extensible.

3-8 305-CD-008-001

Document Data Server CSCI

The allocation of document search and retrieval to the Document Data Server CSCI enhances the
ability of the data server to respond to emerging technologies in this area. It is anticipated that the
Document Data Server CSCI will consist of primarily COTS and public domain software
components, and will provide World-Wide-Web style browsing and searching of document data
types.

Storage Management CSCI

The data server must be able to respond to policy changes regarding archiving of data vs. creation
of it when needed, or priorities in the allocation of resources, such as working storage, staging
disks, and the variety of persistent storage in the Data Repository HWCI. This requires that the
data server be “policy neutral”. The facilities to adapt the physical storage of data in the data
server to policy, while minimizing impact to availability, is provided by the Storage Management
CSCI (STMGT CSCI). This CSCI provides an isolation layer between the search and access views
of the archived data in the clients domain, and the physical storage mechanisms of the data internal
to the archive. Through the use of unique data identifiers, the STMGT CSCI externalizes its data
holdings to the SDSRV CSCI, while hiding the actual physical storage of its data. This allows the
STMGT CSCI to optimize its archive storage and data migration strategies, while maintaining a
consistent reference to the data for its clients.

The separation between the “push” and “pull” sides of the system into provider and consumer
domains is essential for the data server to meet its requirements for highly available and reliable
archival and distribution of data. The Data Distribution CSCI manages and provides access to the
resources in the data “pull” side of operations. This facilitates the scaling and customization of
distribution hardware, software, and operations for each operational site, while isolating the
changes required to access and manage site specific requirements to this CSCI.

Data Distribution CSCI

The Data Distribution CSCI (DDIST) orchestrates the delivery of data to its end destination (e.g.,
user, DAAC). DDIST receives tasking, in the form of distribution requests, from the Science Data
Server and Document Data Server CSCIs and coordinates the activities of the Storage Management
CSCI in transferring the data to the media specified by the requester. DDIST also supports
operator management of distribution by allowing operators to view, cancel, suspend/resume, and
change the priorities of requests.

When a distribution request is received by DDIST, the requesting CSCI - either Science Data
Server or Document Server - has already retrieved the data from the archive.

Distribution of this data can be via either electronic or physical media.

Electronic distribution may be requested via either push or pull. With push, DDIST uses network
resources managed by Storage Management to transfer the data to a remote destination specified
by the requester. For pull, the data is placed in an area managed by Storage Management, from
which the request originator can retrieve the data.

Physical media distribution can be via 8mm tape, 6250 bpi 9-track tape, or CD-ROM. DDIST uses
resources managed by Storage Management to transfer the data to the physical media.

3-9 305-CD-008-001

Access Management HWCI

The Access Management Hardware Component (ACMHW HWCI) provides administration tools
and functions and supports the majority of the Data Server's infrastructure requirements. This
component manages logical data server access, maintains client sessions, and intelligently routes
service requests to the appropriate Data Server subsystem component(s). This component is
designed for flexibility and hardware expandability in order to manage the large number of
sessions and processes in progress at any given time and to accommodate a heterogeneous group
of client server interfaces.

Distribution and Ingest Peripherals HWCI

In order to support the heterogeneous methods of data distribution as well as electronic and hard
media ingest of non time-critical data into the system, a Distribution and Ingest Peripherals HWCI
(DIPHW CSCI) has been established. This HWCI does not replace the Ingest Subsystem but,
instead focuses on ingestion management of electronic and physical media that does not require
the same RMA as EDOS data. This component also buffers files for media generation and
electronic deliver (“push”) to users, supports conventional or special output processing (e.g.
formatting, subsetting, compression, etc.) and provides file/disk management support for
electronic user's data (“pull”).

Working Storage HWCI

The Data Server must manage a large pool of very fast and fast random access storage as well as
some fast sequential access storage devices. These devices are managed by the Working Storage
HWCI (WKSHW). This component supplies the pool of storage used for temporary file and buffer
storage within the Data Server and it provides hardware to manage the associated storage
resources. Working Storage will house ingested data prior to migration to the Permanent Archive.
In addition, it will contain “subscribed data” an pre/post processed data & products awaiting
storage and/or distribution. This component will organize resources into storage tiers to provide
the level of service/access required by the data user.

Data Repository HWCI

The Data Repository HWCI (DRPHW) provides the permanent data storage and maintenance
functions for the Data Server. Multiple technologies can be instantiated into each DRPHW based
on storage and access requirements. This component is designed for expandability and evolvability
and will be sized to accommodate permanent storage and special access and storage requirements
of specific data sets on site by site basis.

3.2.2 Subsystem Design Rationale

3.2.2.1 The Role of COTS

The motivation to provide a solution that is mostly COTS yet responsive to the requirements of an
evolvable, heterogeneous system, provides the rationale for the data server reference architecture,
shown in Figure 3.2.2.1-1. To support evolvability and technology insertion of the DBMS and
FSMS data server components, the data server design encapsulates COTS solutions with wrapper
classes. Isolation of vendor specific interfaces to a well-defined set of interface classes eases the

3-10 305-CD-008-001

insertion of new technology by minimizing its impact on the design. Encapsulation of COTS
through wrappers also accommodates the heterogeneity among site specific configurations in the
data server, by loosely coupling the data server design with any one particular COTS solution.

In the following section, the role of the two major COTS components in the data server, the DBMS
and the FSMS, will be discussed.

Wrapper Classes

FSMS

ECS Protocol

Science Data Server CSCI

Data Type Services

DBMS

Storage Management CSCI

Wrapper Classes

Figure 3.2.2.1-1. Encapsulation of COTS in the Data Server Reference
Architecture

The Role of COTS Database Management Products

In addition to its traditional functions, the primary role of the DBMS in the data server will be to
provide the storage, ad hoc retrieval services, and maintenance utilities of persistent data in support
of the Earth Science Data Types, and to support information needed by the session and subscription
services in order to maintain stateful, nested sessions with clients, and persistent storage of
subscribed events and actions. In general, the traditional functions of a DBMS are to support:

• Data storage, retrieval, and update

• Schema services describing the structure and data items in the database

• Transaction control for ensuring performance of updates

• Concurrence control for multiple simultaneous update and retrieval

3-11 305-CD-008-001

• Recovery services for restoring the database

• Authorization services for secure access to data and operations on the data

• Distributed client/server communication

• Integrity services for ensuring updates conform to the constraints of the application

• Utility services for the general maintenance of the database

These functions are common to commercially available DBMS products. Commercially available
DBMS products generally fall under one of the following three categories, with some variations
on, and extensions to, the preceding list of functions supported:

•	 Relational Database Management Systems (RDBMS). These systems are based on the
relational data model. The data model is primarily developed on tabular data which has
limited data types. This technology is the most mature and very popular, however, it does
not allow the definition of complex data types and typically does not offer easy and
efficient solutions to problems such as spatial data access. Some systems can be configured
to interface with an external spatial index to provide efficient spatial searching.

•	 Object Oriented Database Management Systems (OODBMS). This technology allows the
application to define complex objects with attributes and methods which operate on them.
A data model can be defined in terms of class hierarchies using the object oriented
paradigm. OODBMSs are primarily used in computer aided design and manufacturing
(CAD/CAM) and computer aided software engineering (CASE) tools where the data types
are very complex and contain many objects interconnected in a predetermined fashion. The
primary access methodology is navigational through a programmatic interface.

•	 Object Relational Database Management Systems (ORDBMS). These are considered
object relational because they support all the features of the relational data model and also
partially support the object oriented paradigm. They allow the application to define
complex objects with attributes and methods and also a class hierarchy. The classes in the
data model map to tables.

Each of these product categories present the potential to implement data server functional
requirements beyond those traditionally performed by a DBMS. The Sybase RDBMS has been
selected to support Release A capabilities due to the established history of the Sybase product and
the essential functionality this product provides the SDSRV (e.g. backup, SQL, availability of
third party tools, etc.). The issue of spatial query performance is being addressed via the Spatial
Query Server under development by Autometric Inc. Additional issues concerning query
performance extensibility are being addressed by the vendor. Though Sybase may not be the final
solution to the ECS metadata problem, it is apparent from trade studies and prototyping that there
is no complete off-the-shelf solution at this point in time. Most solutions tested and specifically
those that reached the evaluation “finals” had merits and problems associated with their
implementation. Sybase does represent a viable solution that will effectively support Release A
data rates and flows. The use of Sybase does not, in any way, break the objects paradigm being
used by the SDSRV. The Release B team is continuing the database trade studies begun by Release
A, and the encapsulation strategy being used by the development team will minimize the
ramifications of any potential DBMS replacement in Release B and beyond.

3-12 305-CD-008-001

The Role of COTS Storage Management Products

The ECS program will make use of COTS storage management products to perform the majority
of the file and volume management functions required in the ECS archive. There are numerous File
Storage Management Products (FSMS), (also known as Hierarchical Storage Management (HSM)
products) on the market today. These products can generally be divided into three basic groups
based on the method they use to interface with the Unix File System (UFS) and thus with the user.
The groups are:

a.	 Unix Resident Products - which reside entirely within the confines of UFS. This allows
native, RPC, API, and network-based (nfs, ftp, etc.) access to the data. These products use
the UFS Index Node (Inode) structures to manage the data. Examples are EMASS's
FileServ and EMC's EpochServ.

b.	 Separate File System Products - reside entirely outside of UFS. These products manage
files in a separate proprietary system compatible with UFS in some ways. In almost all
cases, access is exclusively via network-based access methods. An example of these
products is the UniTree family.

c.	 Unix / Separate File System Hybrids - are products that use a separate file system for file
management but are linked to UFS via the Virtual File System (VFS) Virtual Node (Vnode)
in the Unix kernel. (This is the same point where nfs interfaces with UFS.) These products
allow native, RPC, API and network-based access to file data but do not manage files using
Inodes. Examples are Legent's OSM, EMASS's AMASS, Qstar's Mastermind, ANT's
Metior, and LSC's Sam-FS.

FSMS products have primarily been designed to fill a long standing need in the user community.
This need is to maximize the effective use of storage resources while minimizing cost. This is
accomplished via the HSM paradigm. This paradigm assumes that as data ages in the system it
becomes less frequently accessed. This lead to the Hot - to - Cold life cycle and a hierarchy of
storage. When data enters a system it is “hot” and frequently accessed. Therefore it is stored on
high speed secondary disk storage for rapid retrieval. As the data “cools” it is “migrated” to slower
disk storage (e.g. magneto optical), then to tertiary storage devices such as magnetic tapes, and
finally it may reside on a shelf in an “off-line” archive. FSMS products migrate files from
secondary to tertiary to off-line storage and manage the location of these files either with Inodes or
with a separate database. The location of the file is tied to the account of the user that owns the file.
By using the user's path name in conjunction with the file name, this establishes a unique name for
each file. The file still appears to be resident on secondary storage from a user's perspective. There
is just a somewhat longer delay when the file is “staged” from tertiary storage back to secondary
storage. Thus tertiary storage provides users with an almost limitless virtual disk for there files.

Unfortunately, the HSM Paradigm will not cost effectively fit into the ECS environment. HSM
performance is based upon the frequency of data being located in an associated disk cache. Thus,
these systems are designed to maximize “cache hits”. This requires secondary storage resources to
equal 10 percent or more of all storage managed. In a 10 Terabyte or smaller system this may be
feasible but in a multi-Petabyte system, like ECS, the cost of magnetic disk resources quickly
becomes prohibitive. Another limitation, from an ECS perspective, is the path to file name
association used by HSM systems to manage unique file names. This system requires a file to
return to its root (e.g. Inode or directory position) before it can be modified or moved.

3-13 305-CD-008-001

ECS requires an Archive Management Server (AMS). This system encapsulates the capabilities of
an existing HSM or FSMS product via APIs and RPCs. The COTS software will still manage files
and the associated media volumes and it will insure long term archive viability. The inherent data
movement capabilities of the COTS software, however, will be overridden by an ECS cache
management scheme. The ECS system will augment the existing capabilities of a COTS software
package to fit an AMS environment.

The AMS Paradigm is not a virtual disk system. AMS relies on two general storage tiers: Working
Storage and Permanent Archive. The working storage tier hold data that can be thought of as or
hot. This tier will temporarily hold data either before or after processing, and as a buffer for
ingestion and distribution. As system requirements grow other tiers of storage devices will
augment the disk resources in working storage. The Permanent Archive will form the tertiary layer
of the system and will store all data designated by the system. The encapsulated FSMS or HSM
product will move the data between storage tiers and will insure the data remains error free.
Encapsulation will also allow replacement of obsolete HSM products as newer products emerge.
Data will not move through the system based on a user name and associated path. The goal is to
serve data directly to a designated user's disk without moving it through a specific directory
hierarchy. Thus this approach will support horizontal scaling by allowing multiple servers in a
network environment to manage the Permanent Archive, and evolvability of both the archive and
the technology that supports it.

The FSMS product selected for Release A is the Archival Management and Storage System
(AMASS) product marketed by EMASS Inc. The VFS-linked separate file system design allows
all Unix File System (UFS) access methods to be employed (e.g. ftp, rcp, uucp, nfs, RPC, native,
etc.) while removing some of the limitations of the UFS. Primary among these is reliance on Unix
Index Node (Inode) structures. AMASS maintains all inode information in database files rather
than in associated disk structures. This minimizes or eliminates many of the file search problems
inherent in large numbers of files in multiple directories. In addition, AMASS organizes files as
groups of blocks which can be individually retrieved. This differs from UFS resident systems
which require staging the entire file. AMASS utilizes a disk based I/O buffer for communications
rate matching between disk and tape resources. The I/O buffer scheme fits the AMS paradigm of
encapsulating HSM storage and data viability functions while allowing the Data Server Storage
Management CSCI manage the associated Working Storage.

3.2.2.2 Layering of GUIs

The Data Server Subsystem must be operable and controllable. This is made difficult by the size
and complexity of the Subsystem. Our approach to operator control is to “layer” our operator
interfaces (GUIs). The subsystem level GUIs will provide normal operational control and insight
into system operations. These views into the system are grouped into system management and
request management functions. CI level information, both software and hardware, are available to
the operator if he or she wants to “drill down” into the internals of the system, a request, or an active
system user. The subsystem level GUIs are described here in Tables 3.2.2.2-1 and 3.2.2.2-2. Each
of the CI GUI interfaces are described in the appropriate CI section.

3-14 305-CD-008-001

Table 3.2.2.2-1. Data Server Subsystem System Management GUI
GUI Description Data Operations

Data Server
Subsystem
Management

Primary Screen for Data Server
System Management.
screen for the following GUIs.

References to:
System State,
Log & Reports,
Configuration,
Client Management and
Resource Management GUIs.

Logon
Realizes and/or makes
the GUIs visible.

System State
GUI

Allows operators to manage the
state of the overall Data Server.

Subsystem name
Subsystem state (active,
degraded, down)

Startup
Shutdown
Restart

Log & Reports
GUI

Allows operators to view and
manage DSS logs.
will utilize the logging and
reporting GUIs provided by
MSS.

Logged information including
status, errors, faults

View log contents
Sort
Generate Report (print)

Configuration
GUI

Allows operators to manage the
configuration of DSS
component software.

Persistent Configuration
information (file or database)

View
Update

Client
Management
GUI

Allows operators to manage the
DSS clients.
utilize the GUIs provided by
MSS.

Client information including:
name,
email address,
privilege information.
(for further definition see MSS

User Profile)

View
Register
Logon
Unregister
Update

Resource
Management
GUI

Allows operators to manage
overall DSS resources.

Scope/Filter (DSS-wide,
Process, HWCI, Client)
Resource identified
Location
Description
State
Utilization data

Update State
View

Root

This GUI

This GUI will

3-15 305-CD-008-001

Table 3.2.2.2-2. Data Server Subsystem Request Management GUI
GUI Description Data Operations

Data Server
Request
Management

Primary Screen for Data Server
Requests.
the following GUIs (drill-down
support).

Request information:
ID,
CSCI,
Process,
State,
Current Status,
Client,
Priority

References to:
Request,
Log & Reports,
Configuration,
Client Management and
Resource Management GUIs.

Logon
Filters on:
Client, CSCI, Process,
Priority)
View Requests
Delete Requests
Update Requests
Realizes and/or makes
the GUIs visible.

Request
Lineage

Allows operators to determine
the relationships between
requests.

Request information:
ID,
CSCI,
Process,
State
Current Status,
Priority
Child Request
Parent Request

View
Print
See lineage
Show Parent
Show Child

Client
Information

Allows operators to manage the
DSS clients.
provided to support a “drill
down” information about a
request.
the GUIs provided by MSS.

Client information including:
name,
email address,
privilege information.
(for further definition see MSS

User Profile)

View
Register
Logon
Unregister
Update

Process
Resource
Management

Allows operators to manage
overall DSS resources utilized
by a request.
is provided to support a “drill
down” information about a
request.

Scope/Filter (DSS-wide,
Process, HWCI, Client
[default])
Resource identified
Location
Description
State
Utilization data

Update State
View

Also root screen for All, State,

This information is

This GUI will utilize

This information

3-16 305-CD-008-001

4. SDSRV - Science Data Server CSCI

4.1 CSCI Overview
The Science Data Server CSCI provides the interface via which clients request the functions
offered by the data server subsystem. There may be one or several implementations of the Science
Data Server CSCI (called Science Data Servers) at any given site. Each Science Data Server
provides access to a collection of earth science and related data. The scope of data and services
offered by a Science Data Server are defined in the following manner:

•	 The Science Data Server makes its data types and operations on those data types known to
the ECS community by advertising itself to the Advertising Server (ADSRV, part of the
Interoperability Subsystem, see Volume 6 of this design specification). The contents of
Advertisements include the identifier of the specific science data server (the service
provider), the name of the data type (ESDT) offering that service, and the name of the
service being offered, as well as descriptions of the general services being offered for the
collection and the required interface definition of the service.

•	 The Science Data Server uses formal descriptions of its ESDTs, including their attributes
and operations, as a Data Server Descriptor. The Descriptor for an ESDT contains many
pieces of information about the specific ESDT that are required for the ESDT to participate
in the ECS. Data search and access operations are expressed in terms provided by this
Descriptor. For example, searching for LIS03 data based on 'spatial coverage' and
'temporal coverage' is only possible if 'spatial coverage' and 'temporal coverage' have been
defined in the LIS03 Descriptor; the definition would specify, for example, what types of
input parameters can be used in the search. Requirements for this schema-type information
contained within the Descriptor are laid down in the ECS Core Meta Data Model.

•	 The Science Data Server provides a description of the meaning of each ESDT, each
attribute, and each operation or service. This information is an integral part of the database
managed by the Science Data Server, is available for access by queries sent to a Data
Server, and is made available for access by and input into the Data Dictionary Services
CSCI (DDICT, part of the Data Management Subsystem, not a Release A component). The
source of this information is also in the ESDT's Descriptor.

4.2 CSCI Context
Figure 4.2-1 provides the context diagram for the SDSRV CI. This context diagram shows the
Release A interfaces to other ECS CSCIs.

4-1 305-CD-008-001

S
ci

en
ce

D

at
a

S
er

ve
r

P
R

O
N

G

P
LA

N
G

V
er

si
on

_0
 G

at
ew

ay

IN
G

S
T

A
IT

T
L

D
D

IS
T

C
S

M
S

A
D

S
R

V

S
T

M
G

T

A
dm

in
/O

P

C
lie

nt
In

fo
, S

es
si

on
Id

,
R

eq
ue

st
Id

, S
ea

rc
hC

rit
er

ia
,

D
at

aO
bj

ec
tR

ef
er

en
ce

s,

A
cq

ui
re

In
fo

, E
S

D
T

In
fo

,
S

ub
se

tIn
fo

C
lie

nt
In

fo
, S

es
si

on
Id

,
R

eq
ue

st
Id

, E
S

D
T

In
fo

S
es

si
on

Id
, S

ta
tu

s,

N
ot

ifi
ca

tio
n,

S

ub
sc

rip
tio

nI
d,

 R
es

ul
ts

S
et

,
R

eq
ue

st
Id

S
es

si
on

Id
, S

ta
tu

s,
 N

ot
ifi

ca
tio

n,

S
ub

sc
rip

tio
nI

d,

R
es

ul
ts

S
et

, R
eq

ue
st

Id

S
es

si
on

Id
, S

ta
tu

s,

N
ot

ifi
ca

tio
n,

 R
eq

ue
st

Id

S
es

si
on

Id
, S

ub
sc

rip
tio

nI
d,

S

ta
tu

s,
 N

ot
ifi

ca
tio

n,

R
eq

ue
st

Id

S
es

si
on

Id
, S

ta
tu

s,

R
es

ul
ts

S
et

,
R

eq
ue

st
Id

C
lie

nt
In

fo
, S

es
si

on
Id

, R
eq

ue
st

Id
, S

ub
sc

rip
tio

nI
nf

o,

S
ub

sc
rip

tio
nI

d,
 S

ea
rc

h
C

rit
er

ia
, D

at
aO

bj
ec

tR
ef

er
en

ce
s,

A

cq
ui

re
In

fo
, B

ro
w

se
In

fo
,

M
et

ad
at

aI
nf

o

C
lie

nt
In

fo
, S

es
si

on
Id

, R
eq

ue
st

Id
, S

ub
sc

rip
tio

nI
nf

o,

S
ub

sc
rip

tio
nI

d,
 S

ea
rc

hC
rit

er
ia

, D
at

aO
bj

ec
tR

ef
er

en
ce

s,

A
cq

ui
re

In
fo

, E
S

D
T

In
fo

, B
ro

w
se

In
fo

,,
M

et
ad

at
aI

nf
o

C
lie

nt
In

fo
, S

es
si

on
Id

,
S

ub
sc

rip
tio

nI
nf

o,
 S

ub
sc

rip
tio

nI
d,

R

eq
ue

st
Id

A
dv

er
tis

em
en

t,
C

an
ce

lA
dv

er
tis

em
en

tR
eq

ue
st

S
ta

tu
s

S
es

si
on

Id
, S

ta
tu

s,

N
ot

ifi
ca

tio
n,

 R
eq

ue
st

Id

C
lie

nt
In

fo
, S

es
si

on
Id

,
R

eq
ue

st
Id

, E
S

D
T

In
fo

S
ta

tu
s,

U

til
iz

at
io

n

R
eq

ue
st

Id
, D

at
aR

ef
er

en
ce

,
D

is
tr

ib
ut

io
nM

od
e,

D

is
tr

ib
ut

io
nF

or
m

at
,

C
lie

nt
Id

A
llo

ca
tio

nI
de

nt
ifi

er
,

D
at

aT
yp

eO
bj

ec
t,

C
on

fir
m

at
io

n,

S
ta

tu
s,

 E
ve

nt
, U

til
iz

at
io

n

S
ta

tu
s,

 R
eq

ue
st

Id
, D

at
aR

ef
er

en
ce

,
P

rio
rit

y,
 D

at
aT

yp
eO

bj
ec

t,
C

lie
nt

Id
,

A
llo

ca
tio

nI
de

nt
ifi

er
, R

eq
ue

st
or

N
am

e,

R
es

ou
rc

e,
 S

iz
e

C
on

fig
ur

at
io

nT
ok

en
, C

on
fig

ur
at

io
nV

al
ue

, S
ch

em
aI

nf
o,

A

ct
iv

ity
D

om
ai

n,
 D

at
aO

bj
ec

tR
ef

er
en

ce
, C

lie
nt

In
fo

, S
es

si
on

Id
,

R
eq

ue
st

Id
, S

ub
sc

rip
tio

nI
nf

o,
 S

ub
sc

rip
tio

nI
d,

 S
ea

rc
hC

rit
er

ia
,

A
cq

ui
re

In
fo

, E
S

D
T

In
fo

, B
ro

w
se

In
fo

S
ta

tu
s,

 C
on

fig
ur

at
io

nV
al

ue
,

A
ct

iv
ity

S
ta

tu
s,

 S
es

si
on

Id
, N

ot
ifi

ca
tio

n,

S
ub

sc
rip

tio
nI

D
, R

es
ul

ts
S

et

F
ig

u
re

 4
.2

-1
.

S
D

S
R

V
 C

o
n

te
xt

 D
ia

g
ra

m

4-2 305-CD-008-001

Table 4.2-1 provides a mapping for the SDSRV CI interfaces provided to other ECS CSCI's. The
table defines the interfaces in terms of the SDSRV-provided classes (from the Client CSC), and the
specific service to be used to accomplish that interface. The response (return parameter) from that
member function is also included.

Table 4.2-1. SDSRV CI Interfaces (1 of 3)
Interface Interface Input Interface

Output
Description

ConnectServer
(Session)

DsClESDTReferenceCollect
or::DsClESDTReferenceColl
ector ()

*DsClESDTR
eferenceColl
ector

This interface is used by SDSRV
clients to initiate a session with the
SDSRV.
session for this client and return a
reference to that session.

GetStatus (Session
| Request)

DsClRequest::GetStatus() GlStatus This interface is used by SDSRV
clients to obtain the current status of
a specified session, or a specified
request within that session.
SDSRV will return the status of the
request.

Terminate (Session
| Request)

DsClESDTReferenceCollect
or::~DsClESDTReferenceCo
llector ()

void This interface is used by SDSRV
clients to terminate the entire
session with the SDSRV.

ChangePriority
(Session | Request)

DsClRequest::SetPriority(Ds
TRequestPriority)

GlStatus This interface is used by the SDSRV
clients to alter the priority of a given
request within a session.
SDSRV will respond with a status.

Notify (Session |
Request)

none GlNotification This interface is used by the SDSRV
to send notifications to its clients.
The notification may be either a
direct message (for example,
information to be displayed within a
dialogue box on the desktop) or an
e-mail message (utilizing the CSS e
mail services).

Search DsClESDTReferenceCollect
or::Search(DsClQuery)

GlStatus This interface is used by SDSRV
clients to search a collection of data
objects. The search will either define
or refine the domain of data objects
that the client has in their context of
the SDSRV holdings.
will return a status of the search and
populate the
DsClESDTReferenceCollector with
DsClESDTReference objects for
each search "hit".

AddtoCollection DsClESDTReferenceCollect
or::Insert(DsClESDTReferen
ce)

GlStatus This interface is used by SDSRV
clients to add data objects to the
client’s current collection of data
objects.
status of the collection modification.

The SDSRV will create a

The

The

The SDSRV

The SDSRV will return the

4-3 305-CD-008-001

Table 4.2-1. SDSRV CI Interfaces (2 of 3)
Interface Interface Input Interface

Output
Description

GetResultsSet DsClRequest::GetResults() GlParameter
List

This interface is used by SDSRV
clients to assess the results of a
completed request. A ResultsSet is a
implemented as a GlParameterList.

Acquire DsClESDTReferenceCollect
or::Submit(DsClRequest)

GlStatus This interface is used by SDSRV
clients to submit request for the
acquire service of ESDT data
objects.
information about the acquisition
(e.g. other support files [QA
Statistics, ProductionHistory, etc.])
as a GlParameterList within the
request. The SDSRV will return a
status of the acquisition request.

Insert DsClESDTReferenceCollect
or::Submit(DsClRequest)

GlStatus This interface is used by SDSRV
clients to submit a request for the
insert service of an ESDT.
interface which is expected to be
rather limited in terms of availability
to general users.
return the status of the insert
request.

Browse DsClESDTReference::Submi
t(DsClRequest)

GlStatus This interface is used by SDSRV
clients to
browse service of an ESDT data
object.
status of the browse request.

Change
Configuration

DsAdRequestCollector::Upd
ate(GlParameter)

GlStatus This interface is used by SDSRV
administrator/operators to modify
the configuration of the SDSRV.
administrator/operator will submit
the configuration item as a token and
the new value that the configuration
item is to have. The SDSRV will
return a status of the
ChangeConfiguration service.

GetConfiguration DsAdRequestCollector(GlPa
rameter&)

GlParameter This interface is used by SDSRV
administrator/operators to retrieve
the value of an SDSRV configuration
item.
submit the desired configuration item
token and the SDSRV will return the
value of that configuration item.

The client will submit

This is an

The SDSRV will

submit a request for the

The SDSRV will return the

The

The administrator/operator will

4-4 305-CD-008-001

Table 4.2-1. SDSRV CI Interfaces (3 of 3)
Interface Interface Input Interface

Output
Description

UpdateSchema DsAdDescriptor::Update(GlP
arameterList)

GlStatus This interface is used by SDSRV
administrator/operators modify the
existing data type schema.
administrator/operators will submit
the new schema information, or a
reference to where it is held.
SDSRV will update the schema and
return the status of the
UpdateSchema service.

MonitorActivity DsAdRequestCollector::List
AllRequests()

DsClSRVColl
ector

This interface is used by SDSRV
administrator/operators to monitor
the activity of the SDSRV.
SDSRV will respond with a vector of
all currently submitted requests.

The

The

The

4.3 CSCI Object Model
This section provides and describes the object model for the Science Data Server CSCI's design.
The model is depicted in Figures 4.3-1 through 4.3-18. Each of the objects in this figure is
described in the subsequent paragraphs. The Science Data Server Object model consists of a series
of OMT class diagrams. The SDSRV CI's design has been decomposed into a set of class
categories. A class category is a collection cooperating classes that fulfill a common set of
responsibilities to other classes in the system. Each class category can be viewed from two
perspectives: the public view and the implementation view. The public view is the interfaces
(method signatures) of those classes that the users (other software classes, outside this class
category) have access to, or will interface with. The implementation view is the entire set of
classes that comprise the class category. This includes both those classes in the public view, as
well as the collaborating classes used by those public classes. Each class category has at least one
OMT class diagram. The public view is defined as those classes adorned as [PUBLIC]. Due to
complexity, some class categories are modeled in more than one OMT class diagram.

General Notes: In the following object class descriptions, classes always inherit attributes,
operations, and associations from their parent classes. Where all attributes in the current design
are inherited from the parent class, this is indicated by the text "All Attributes inherited from the
parent class" (and analogously for operations). If a derived class has additional attributes of its
own, those new attributes are listed, but the attributes from the parent class are not repeated
(analogously for operations).

4-5 305-CD-008-001

[DISTR OBJ]

+

: GlParameterList +

+

+

~DsAdDataTypeCollector()

ListTypes()

NewType(ur: GlUR&, name: RWCString&, vsn: RWCString&, descripfile: istream&)

DsAdDataTypeCollector(GlUR&)

DsAdDataTypeCollector

MSSLog

DsAdLog

DsAdLog()

~DsAdLog()

+

+

[DISTR OBJ]

DsAdRequestInterface

DsAdDescriptor

DsClDescriptor
DsAdRequestInterface(GlUR&, GlClient&)

ListAllRequests()

ListAllQueuedRequests()

SetQueueSize(threshold: int)

~DsAdRequestInterface()

DsAdDescriptor(type: RWCString&, vsn: RWCString&, client: GlClient&, ds: GlUR&)

DsAdDescriptor(type: RWCString&, vsn: RWCString&, client: GlClient&, ds: GlUR&,

strm: iostream&)

Update(GlParameterList&)

~DsAdDescriptor()

[DISTR OBJ]

+

+ : GlStatus&

+ : GlStatus&

+ : RWBoolean

+

+

+

+

+

4-6
305-C

D
-008-001

Figure 4.3-1. DsAdAdmin Object Model Diagram

<T> RWTPtrOrderedVector <T>

4-7
305-C

D
-008-001

DsClCollector

DsClSubscriptionCollector <RWVector> DsClESDTReferenceCollector <RWVector>

DsClESDTReference

DsClTypeInfo

DsClSubscription

DsClCollectorVector <T:class>

DsGeTypeID

DsClRequest <RWVector>

DsClCommand

DsClRequestVector <RWVector>

Public Public

Public

Public

Public

Public

Public

Public

DsClSubmittedRequest

DsClESDTReferenceVector

DsClCollectorVector()

~DsClCollectorVector()

GetCollector(const GlUr &dataserver)

DsClCollector(GlUR &dataserver, MSS_UserProfile &)

~DsClCollector()

SubmitToServer(DsClRequest&)

GetConnectionID()

myStatus

DsClSubscriptionCollector(GlUR &dataserver, MSS_UserProfile &)

~DsClSubscriptionCollector()

BuildList(MSS_UserProfile &)

BuildList(Advertisement&)

CancelSubscription(DsClSubscription*)

CreateSubscription(RWBoolean SubmittedFlag, istream &Stream,

DsClSubscriptionCollector *me)

myStatus

mySearchCallback

DsClESDTReferenceCollector(GlUR &dataserver, MSS_UserProfile &, DsTSessionID =

NULL)

~DsClESDTReferenceCollector()

UpdateState(GlParameterList &)

Search(DsClQuery &)

Reset()

SetStatusCallback(GlCallback&)

SetDialogCallback(GlCallback&)

SetSearchCallback(GlCallback&)

GetSessionLog(ostream &outfile)

ResumeSession(GlUR &SuspendedSession)

SuspendSession(GlUR &SuspendedSession)

DeleteESDTReference(DsClESDTReference*)

CreateESDTReference(GlUR &)

AddESDTReference(const DsClESDTReference *ERef)

GetRequestVector()

Submit(DsClRequest &)

GetRequests(GlURVector &)

BuildRequestVector(GlURVector &)

myTypeInfo

DsClESDTReferenceVector()

DsClESDTReferenceVector(DsClTypeInfo &)

~DsClESDTReferenceVector()

getTypeID()

setTypeInfo(DsClTypeInfo*)

getTypeInfo()

myStatus

myMetadata

myQueryableParameters

myScienceParameters

GetName(RWCString &)

GetVersion(RWCString &)

GetMetadata(GlParameterList &)

GetQueryableParameters(GlParameterList &)

GetScienceParameters(GlParameterList &)

[DISTR OBJ]

[DISTR OBJ]

<RWVector>

[DISTR OBJ]

<RWVector>

<T:class>

P[PERSISTENT CLASS]

<RWVector>

<RWVector>

P[DISTR OBJ][PERSISTENT CLASS]

+

+

+ : T&

+

+

± : const GlStatus &

+ : DsESrConnectionID

_ : GlStatus

+

+

+ : const GlStatus &

+ : const GlStatus &

_ : const GlStatus &

_ : DsClSubscription*

_ : GlStatus

_ : GlCallback

+

+

± : const GlStatus &

+ : const GlStatus &

+ : const GlStatus &

+ : void

+ : void

± : void

+ : const GlStatus &

+ : const GlStatus &

+ : const GlStatus &

± : RWBoolean

± : DsClESDTReference*

+

+ : const DsClRequestVector &

+ : const GlStatus &

± : const GlStatus &

± : const GlStatus &

_ : DsClTypeInfo*

+

+

+

+

+

+

_ : GlStatus

_ : GlParameterList

_ : GlParameterList

_ : GlParameterList

+ : GlStatus &

+ : GlStatus &

+ : GlStatus &

+ : GlStatus &

+ : GlStatus &

collected by

1+

1+

Figure 4.3-2. DsClCollector Object Model Diagram

Public Public

[DISTR OBJ]

DsClDescriptor

ourCollectorVector

myTypeID

myStatus

DsClDescriptor(GlClient &, GlUR &,DsGeTypeID &)

GetCollector()

GetMCF(ostream &)

GetQueryableParameters(GlParameterList &)

GetTypeID()

SetTypeID(DsGeTypeID &)

Validate(istream &metadata)

~DsClDescriptor()

_ : RWVector *

_ : DsGeTypeID *

_ : GlStatus

_

_ : DsClDescriptorCollector*

+ : GlStatus

+ : RWBoolean

+ : DsGeTypeID &

+

+ : GlStatus

+

DsClESDTReference

myUR

myCreateDate

mySize

myCollector

ourCollectorVector

myTypeInfo

myStatus

myReferenceVector

DsClESDTReference(theDSS:GlUR &, theBoss:DsClESDTReferenceCollector *= NULL)

GetCollector()

GetCreateDate()

GetQueryableParameters(GlParameterList &)

GetReferenceVector()

GetServiceApplet(theSvc:RWCString &, svcUR:GlUR&, theVersion:RWCString &=NULL)

GetServiceConfiguration(theSvc:RWCString &, theConfig:GlParameterList &)

GetSize()

GetTypeID()

GetTypeInfo()

GetUR()

Inspect(GlParameterList &)

SetCollector(DsClESDTReferenceCollector *)

SetCreateDate(RWDate &)

SetReferenceVector(DsClESDTReferenceVector *)

SetSize(size_t)

SetTypeInfo(DsClTypeInfo *)

SetUR(GlUR &)

SetVersion(RWCString &)

Submit(DsClRequest &)

~DsClESDTReference()

_ : UR

_ : RWDate

_ : size_t

_ : DsClESDTReferenceCollector * = NULL

_ : DsClCollectorVector<DsClESDTReferenceCollector>

_ : DsClTypeInfo *

_ : GlStatus

_ : DsClESDTReferenceVector *

+

+ : const DsClESDTReferenceCollector &

+ : const RWDate &

+ : const GlStatus &

_ : DsClESDTReferenceVector *

+ : const GlStatus &

+ : const GlStatus &

+ : size_t

+ : const DsGeTypeID &

_ : const DsClTypeInfo &

+ : const GlUR &

+ : const GlStatus &

_ : void

_ : void

_ : void

_ : void

_ : void

_ : void

_ : void

+ : const GlStatus &

+

4-8
305-C

D
-008-001

DsGeTypeID

Public

myVersion

myCode

myName

DsGeTypeID(RWCString &theCode)

DsGeTypeID(RWCString &theName, RWCString &theVersion)

GetTypeCode()

GetTypeName()

GetTypeVersion()

SetTypeCode(unsigned long)

SetTypeName(RWCString &)

SetTypeVersion(RWCString &)

~DsGeTypeID()

P[PERSISTENT CLASS]

_ : RWCString

_ : unsigned long

_ : RWCString

+

+ : unsigned long &

+ : RWCString

+ : RWCString

_

_

_

+

Figure 4.3-3. DsClESDT Object Model Diagram

DsClQuery

myStatus
QueryType
AttributesToReturn
Constraints
MaxHits
myLocalCallback

_ : GlStatus
_ : DsTQueryType = Inventory
_ : GlParameterList = ("all", char, "*")
_ : GlParameterList
_ : int
_ : GlCallback

DsClQuery()
DsClQuery(GlParameterList &)
~DsClQuery()
SetQueryType(DsTQueryType)
GetQueryType()
SetAttributesToReturn(GlParameterList &)
GetAttributesToReturn(GlParameterList &)
SetConstraints(GlParameterList &)
GetConstraints(GlParameterList &)
SetMaxHits(int)
GetMaxHits(int &)
SetCallback(GlCallback &)
GetCallback(GlCallback &)
ConvertFromSQL(RWCString &)
ConvertToSQL(RWCString &)
ConvertToCommand(DsClRequest &)

+
+
+
+ : GlStatus &
+ : DsTQueryType
+ : GlStatus &
+ : GlStatus &
+ : GlStatus &
+ : GlStatus &
+ : GlStatus &
+ : GlStatus &
+ : GlStatus &
+ : GlStatus &
+ : GlStatus &
+ : RWCString &
± : DsClRequest &

DsClSubscription

ourCollectorvector
myCollector
mySubmittedFlag
myDescription
myUserInfo
myExpirationDate
myAction
myDurationType

$± : DsClSubscriptionCollectorVector &
± : DsClSubscriptionCollector&
± : RWBoolean = RWTrue
± : RWCString
± : DsClClient&
± : RWDate
± : DsClAction
± : enum DsEClSubscriptionType = {ONCE, OUTSTANDING}

DsClSubscription()
DsClSubscription(submittedflag, DsClSubscriptionCollector&, Stream)
DsClSubscription(userinfo, Advertisement&, DsClSubscriptionCollector&)
GetAction(DsClAction &)
GetDescriptoin()
GetDurationtype()
GetExpirationdate()
GetSubmittedflag()
GetUserinfo(GLClient&)
SetAction(DsClAction&)
SetDescription(RWCString)
SetDurationType(DsEClSubscriptionType)
SetExpirationDate(RWDate)
SetSubmittedFlag(RWBoolean)
Submit()
Withdraw()
~DsClSubscription()

+
+
+
+ : void
+ : RWCString
+ : DsEClSubscriptionType
+ : RWDate
_ : RWBoolean
+
+ : void
+ : void
+ : void
+ : void
+ : void
+ : GlStatus&
+ : GlStatus&
+

Figure 4.3-4. DsClQuery_Subscription Object Model Diagram

4-9 305-CD-008-001

[PERSISTENT CLASS] [DISTR OBJ]P

4-10
305-C

D
-008-001

DsClAction

DsClCommand

DsClRequest <RWVector>

DsClSubscription

DsClSubmittedRequest

RWTPtrOrderedVector <T>

DsClNotificationReceiver

DsSrRequestBase

DsSrCommandBase

DsSbActionBase

myCallback

myReceiveFlag

DsClNotificationReceiver()

DsClNotificationReceiver(server: GlUR, callback: GlCallback)

~DsClNotificationReceiver()

SetCallback(callback: GlCallback)

StartReceiving()

StopReceiving()

GetOneNotification()

myRequest

DsClAction()

DsClAction(DsClRequest &, RWBoolean = FALSE, RWCString * = NULL)

DsClAction(RWCString &text, DsClRequest * = NULL)

~DsClAction()

GetRequest()

SetRequest(DsClRequest &)

ClearRequest()

DsClCommand()

DsClCommand(adv: Advertisement &, parms: GlParameterList &)

DsClCommand(svc: RWCString&, pl: GlParameterList&, cat: DsESrCommandCategory)

DsClCommand(SpecialCommand)

~DsClCommand()

Textify()

myStatus

myResults

myCallback

myUser

myConnection

mySubmitTime

myFinishTime

myID

myInfo

DsClSubmittedRequest(DsESrConnectionID, MSS_UserID, DsClRequest&)

~DsClSubmittedRequest()

SetStatus(GlStatus *)

GetStatus()

GetResults()

SetCallback(GlCallback)

GetUser()

GetConnectionID()

GetSubmitTime()

GetFinishTime()

GetID()

GetInfo()

WaitStatus()

SetPriority(DsESrRequestPriority)

mySubmittedFlag

myCollector

myCallback

myQuery

DsClRequest()

DsClRequest(cmd: DsClCommand *, pty: DsESrRequestPriority)

~DsClRequest()

Textify()

Submit(DsClESDTReference &)

Submit(DsClESDTReferenceCollector &, GlURVector * = NULL)

Cancel()

SetStatusCallback(GlCallback *)

GetResults()

SetQuery(DsClQuery *)

GetQuery()

<RWVector>

<T>

[DISTR OBJ]

_ : GlCallback

_ : RWBoolean

+

+

+

+ : void

+ : void

+ : void

± : GlStatus

_ : DsClRequest

+

+

+

+

+ : const DsClRequest&

+ : void

+ : void

+

+

+

+

+

+ : RWCString

_ : GlStatus

_ : GlParameterList

_ : GlCallback

_ : MSS_UserID

_ : DsESrConnectionID

_ : RWTime

_ : RWTime

_ : DsClSubmittedRequestID

_ : DsSrRequestInfo*

+

+

+ : void

+ : const GlStatus &

+ : GlParameterList &

+ : void

+ : MSS_UserID

+ : DsESrConnectionID

+ : RWTime

+ : RWTime

+ : DsClSubmittedRequestID

± : DsSrRequestInfo*

+ : void

+ : void

_ : RWBoolean = FALSE

_ : DsClESDTReferenceCollector *

_ : GlCallback

_ : DsClQuery * = NULL

+

+

+

+ : RWCString

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : void

+ : const GlParameterList &

+ : void

+ : DsClQuery *

action of

Figure 4.3-5. DsClRequest Object Model Diagram

4-11
305-C

D
-008-001

DsCnConfiguration

DsCnDSSStartup

DsCnDSSConfiguration

GetProcessesToStart()

DsGeESDTConfiguration

DsDeESDTDescriptor <RWVector>

StartProcesses()

InitializeESDTs()

RestartESDTs()

myFile

Add(const RWCString&, const RWCString&)

Add(const RWCString&, const RWCString&, const RWCString&)

DsSdConfiguration(const RWCString&)

Get(const RWCString&)

Get(const RWCString&, const RWCString&)

GetSectionToken(const RWCString&, RWCString&)

ReDoFile()

Remove(const RWCString&)

Remove(const RWCString&, const RWCString&)

Update(const RWCString&, const RWCString&, const RWCString&)

Update(const RWCString&, const RWCString&)

~DsSdConfiguration()

P[PERSISTENT CLASS]

+

P[PERSISTENT CLASS]

<RWVector>

+

+ : RWBoolean

+ : RWBoolean

_ : RWCString

+ : RWBoolean

+ : RWBoolean

+ : const RWString

+ : const RWString

± : RWBoolean

± : const RWBoolean

+ : RWBoolean

+ : RWBoolean

+ : RWBoolean

+ : RWBoolean

enquires

initializes

enquires
enquires

Figure 4.3-6. DsCnConfiguration Object Model Diagram

DsSdCSDT

Insert

Extract

GetSize

mySize

myFormat

myDate

GetView

GetLocation

DsGeESDT

myPermissions

GetPermissions

GetFormat

SetPermissions

DeleteCSDT

UpdateCSDT

NewCSDT

myCompressionType

myVersionNo

GetVersionNo

_ : integer = 0

_ : typedef = Raw

_ : char = yyyy/mmm/ddd

+ {abstract}

_ : char = RW

+ : typedef {abstract}

_ : typedef = None

4-12
305-C

D
-008-001

DsSdImage

Subsample(rectangle)

Overlay

DsSd8BitImage DsSd24BitImage

DsSdGrid DsSdSwathDsSdPoint

Subset(rectangle)

Subset(polygon)

Subset(time)

Subsample(rectangle)

Subsample(polygon)

ExtractRows

Subsample(row)

Subsample(scanline)

Subsample(time)ApplyProjection

Subset(parameter)

Subset(parameter)

GetSize

myImageType

myResolution

myLength

myWidth

ExtractSlice

DsSdRaw

GetSize

EosHdfPoint

EosHdf8BitImage EosHdf24BitImage

EosHdfGrid

EosHdfSwath

DsSdLookUpTable

myname

myname

my size

mylocation

myresolution

mytime

myvector

mylables

GetRecordType

ParameterSubset

mysize

mylocation

GetLabels

SetLabels

mySwathType

myOrbitRepresentation

mySize

myName

myDimensions

myCompression

myLocation

myResolution

myLabels

myTime

GetRecordType

GetSize

Compress

Uncompress

DeleteRows

CreateRows

myGridType

myName

myCompression

myResolution

myDimension

myArrayLabels

myGeophysicalParameters

Compress

Uncompress

GetOrbitModelName

myBitDepth

myName

Uncompress

Compress

Subset(rectangle)

SetContrast

SetColor(id)

myName

myColorNames

Animate

EosHdfLUT

. . .

.

. . .

. . .

. . .

+

+

+

+

+

+ +

++

+

+

_

_

_

_

Figure 4.3-7. DsCsCSDT Object Model Diagram

[PERSISTENT CLASS] P

4-13
305-C

D
-008-001

DsDbAccess

DsDbGranuleToDbVector

DsDbAttributeToTableVector

DsDbInterface

myAttributeToTableVector

GetTableColumnName(DsTMdAttributeTableXref& attribute, DsMdDbConnection&

connection)

PutTableColumnNames(DsTMdAttributeTableXref& newAttribute, DsMdDbConnection&

connection)

UpdateTableColumnName(DsTMdAttributeTableXref& attribute, DsMdDbConnection&

connection)

Initialize(DsMdDbConnection& connection)

myGranuleToDBVector

UpdateProductDb(DsTMdProductDbXrefList& productDbList, DsMdDbConnection&

connection)

GetProductDb(DsTMdProductDbXref& product, DsTMdProductDbXrefList& result,

DsMdDbConnection& c onnection)

PutProductDb(DsTMdProductDbXrefList& productDbList, DsMdDbConnection&

connection)

Initialize(DsMdConnection& connection)

DsDbEngine

myUserName

myPassWord

myServerName

myContext

myConnection

myCommand

myExecStatus

myState

DsDbInterface()

~DsDbInterface()

Connect(char* userName, char* password, char* serverName)

Disconnect()

ReConnect()

ConnectionState()

ExecutionStatus()

Execute(char* SQLCmd)

FetchQueryResult(GlParameterList& result)

FetchQueryResult(RWTPtrOrderedVector<void*>& result)

VerifyConnection()

myDatabase

myDBConnections

myObjectType

myObjectIdentifier

myPersistenceType

myLocation

myPrimaryKey

myAssociations

myForeighKeys

myIndexableColumns

myStuff

DsDbAccess()

DsDbAccess(CollectableObject &)

~DsDbAccess()

OpenDatabase()

CloseDatabase()

GetDBHandle()

ReturnDBHandle(DsDbInterface)

Fill(const CollectableObject &, ostream &)

Update(const CollectableObject &, istream &)

Store.(const CollectableObject &)

UnStore(CollectableObject &)

NextTypeCode()

_ : DsTMdAttributeTableXrefList = null

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

_ : DsMdProductDbXrefList = NULL

+ : GlStatus

+ : GlStatus

+ : GlStatus

_ : char* = null

_ : char* = null

_ : char* = null

_ : CS_CONTEXT* = null

_ : CS_CONNECTION* = null

_ : CS_COMMAND* = null

_ : DsTDbExecStatus = EXEC_NONE

_ : DsTDbConnectionState = NOT_CONNECTED

+

+

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : DsTDbConnectionState

+ : DsTDbExecStatus

+ : DsTDbExecStatus

+ : DsTDbExecStatus

+ : DsTDbExecStatus

+ : GlStatus

$/_ : RWCString & DBName

$/_ : RWTPtrOrderedVector<DsDbInterface>

_ : DsEDbObjectType

_ : int

_ : DsEDbPersistenceType

_ : RWCString

_ : RWCString = myObjectIdentifier

_ : RWTPtrOrderedVector<RWCString>

_ : RWTPtrOrderedVector<RWCString>

_ : RWTPtrOrderedVector<RWCString>

_ : binary

+

+

+

$± : const GlStatus &

$± : const GlStatus &

± : DsDbConnection

± : const GlStatus &

+ : const GlStatus &

+ : const GlStatus &

+ : int

+ : const GlStatus &

+ : int

Figure 4.3-8. DsDbWrapper Object Model Diagram

This page intentionally left blank.

4-14 305-CD-008-001

DsDeESDTDescriptor <RWVector>

DsDeMetadataDef

DsDeServiceDsDeEvent

DsDeValid <T:class>

DsDeDD

DsDeRange <T:class> DsDeMathOp <T:class> DsDeSeries <T:class>

DsDeScienceParameter

DsDeDDVector(from: istream &)
ExportDD()
Find(theName: RWCString &)

DsDeDDVector <RWVector>

~DsDeDDVector()

DsDeEventVector(from: istream &)
FindEvent(theName: RWCString)
Register()
~DsDeEventVector()

myDescription
myName

DsDeDD(from: istream &)
ExportDD()
GetName()
~DsDeDD()

DsDeServiceVector <RWVector>DsDeEventVector <RWVector>

DsDeCoreValidVector <RWVector>

DsDeCoreValid

DsDeScienceParameterVector <RWVector>

myHigh
myLow

DsDeRange(from: istream &)
~DsDeRange()

myMathOperation
myDomain

DsDeMath(from: istream &)
~DsDeMath()

DsDeCoreValidVector(from: istream &)
Find(myName: RWCString)
Validate(myCoreMetadata:istream &, GlStatus &)
~DsDeCoreValids()

myName
myType
myValid

DsDeCoreValid(from: istream &)
Validate(theName:RWCString&, theValue:RWCString &)
~DsDeCoreValid()

myDomainValues

DsDeSeries(from: istream &)

DsDeMetadataDefVector <RWVector>

~DsDeSeries()

DsSbEvent

DsGeTypeID

DsGeESDT

DsDeServiceVector(from:istream &)
Advertise()
Find(svc:RWCString&)
Withdraw()
~DsDeServiceVector()

DsDeStaticMetadataVector <RWVector>

DsDeStaticMetadata

DsDeStaticMetadataVector(from:istream &)
Externalize(to:GlParameterList &, status: GlStatus&)
FindEntry(theName: RWCString)
~DsDeStaticMetadataVector()

myName
myType
myValue

DsDeStaticMetadata(from: istream &)
Externalize(to: GlParameterList &, status: GlStatus &)
GetValue()
~DsDeStaticMetadata()

DsDeValidVector

DsDeValidVector(from:istream &)
Find(what: RWCString &)
Validate(mdfile:istream &)
~DsDeValidVector()

myAttributeName
myDataLocation
myValue
myMandatoryFlag
myType

DsDeMetadataDef(from: istream &)
Externalize(to: ostream &)
Parameterize()
~DsDeMetadataDef()

DsDeMetadataDefVector(from: istream &)
Externalize(theMCF: ostream &)
GetQueryableParameters(theParameters:GlParameterList &)
FindEntry(theName: RWCString, theEntry: DsDeMetadataDef &)
Parameterize(theParms:GlParameterList &)
HasMandatory(theMet: istream &, status: GlStatus)
~DsDeMetadataDefVector()

myEventID
myEventName
myReturnInformation
myDescription

DsDeEvent(from: istream &)
GetDescription()
GetName()
Register()
Unregister()
~DsDeEvent()

DsGeESDTEventTable <RWVector>

myName
myInternalName
myDescription

DsDeScienceParameter(from: istream &)
GetInternalName()
GetDescription()
~DsDeScienceParameter()

DsDeScienceParameterVector(from: istream &)
FindScienceParameter(theName: RWCString)
~DsDeScienceParameterVector()

myName
myParameterList
myRequiredParameters
myDescription

DsDeService(from: istream&)
Advertise()
Withdraw()
Validate(parms:GlParameterList &, result:GlStatus &)
~DsDeService()

myName

DsDeValid(from:istream &)
IsValid(theValue: T&)
~DsDeValid()

myAdvertisedServices
myCoreMetadataConfiguration
myDataDictionaryInfo
myEvents
myProductMetadataConfiguration
myScienceParameters
myStaticMetadata
myStatus
myType
myValids
ourCoreValids

DsDeESDTDescriptor(theType: DsGeTypeID &)
ConvertToPlist(theMD:istream &, theList:GlParameterList &)
Externalize(ostream)
GetCollectionGroup(staticMD: GlParameterList&, status:GlStatus &)
GetMCF(theMCF: ostream &)
GetParameter(name: DsTpname)
GetQueryableParameters(theParameters: GlParameterList &)
Initialize()
Internalize(theDef: istream &)
Validate(MetadataFile, GlStatus &)
Validate(theCmd: DsSrCommand, status: GlStatus &)
Withdraw()
~DsDeESDTDescriptor()

P[PERSISTENT CLASS]

<RWVector>

<T:class>

<T:class> <T:class> <T:class>

+
+ : GlStatus
+ : DsDeDD

<RWVector>

+

+
+ : DsDeEvent *
+ : GlStatus
+

_ : RWCString = NULL
_ : RWCString

+
+ : GlStatus
+ : RWCString &
+

<RWVector><RWVector>

<RWVector>

P[PERSISTENT CLASS]

<RWVector>

_ : T
_ : T

+
+

_ : RWCString
_ : T

+
+

+
+ : DsDeCoreValid *
+ : RWBoolean

_ : RWCString
_ : DsTAttributeType = STRING
_ : DsDeValid

+

+

_ : RWVector<T>

+

<RWVector>

+

P[DISTR OBJ]
[PERSISTENT CLASS]

P[PERSISTENT CLASS]

+
+ : RWBoolean
+ : DsDeService*
+ : RWBoolean
+

<RWVector>

+
+ : RWBoolean
+ : DsDeStaticMetadata *
+

_ : RWCString
_ : DsTAttributeType = STRING
_ : RWCString

+
+ : RWBoolean
+ : GlParameter &
+

+
+ : DsDeValid *
+ : GlStatus
+

_ : RWCString
_ : RWCString
_ : RWCString = NULL
_ : RWBoolean = False
_ : DsTAttributeType = STRING

+
+ : GlStatus
+ : GlParameter
+

+
+ : RWBoolean
+ : RWBoolean
+ : RWBoolean
+
+ : RWBoolean
+

_ : RWCString
_ : RWCString
_ : GlParameterList
_ : RWCString

+
+ : RWCString &
+ : RWCString &
+ : GlStatus
+ : GlStatus
+

<RWVector>

_ : RWCString
_ : RWCString
_ : RWCString

+
+ : RWCString &
+ : RWCString &
+

+
+ : DsDeScienceParameter *
+

_ : RWCString
_ : GlParameterList
_ : RWVector<RWCString>
_ : RWCString

+
+ : RWBoolean
+ : RWBoolean
+ : RWBoolean
+

_ : RWCString

+
+ : RWBoolean
+

_ : DsDeServiceVector
_ : DsDeMetadataDefVector
_ : DsDeDDVector
_ : DsDeEventVector
_ : DsDeMetadataDefVector
_ : DsDeScienceParameterVector
_ : DsDeStaticMetadataVector
_ : GlStatus
_ : DsGeTypeID
_ : RWVector<DsDeValid>
_ : DsDeCoreValidVector

+
+ : void
+ : RWBoolean
+ : RWBoolean
+ : void
+ : RWCString
+ : void
+ : RWBoolean
+ : GlStatus
+ : RWBoolean
+ : RWBoolean
+ : RWBoolean
+

has core metadata valids for

registers

creates

DsDeESDTDescriptorSet

DsDeESDTDescriptorSet()
Add(theName: RWCString, theVersion: RWCString, theDef: istream &)
Remove(theType: DsGeTypeID)
Externalize()
Initialize()
Replace(theType:DsGeTypeID, newDefinition:istream &)
~DsDeESDTDescriptorSet()

+
+ : GlStatus
+
+ : ostream &
+ : GlStatus
+ : GlStatus
+

Figure 4.3-9. DsDeESDTDescriptor Object
Model Diagram

4-15/4-16 (blank) 305-CD-008-001

DsGeECSDataProduct

DsLiLIS DsCeCERES

Figure 4.3-10. DsGeECSDataProductsRelA Object Model Diagram

4-17 305-CD-008-001

4-18
305-C

D
-008-001

DsGeESDTServiceProvider

DsGeESDTServiceProvider()

ExecuteCommand(theCmd: DsSrCommand &)

IsServiceAvailable(svcName: RWCString &)

~DsGeESDTServiceProvider()

DsGeESDTWrapper
DsGeESDT

DsGeTypeID

DsGeESDTEventTable <RWVector>

myVersion

myCode

myName

GetTypeVersion()

GetTypeCode()

GetTypeName()

SetTypeVersion(RWCString &)

SetTypeCode(unsigned long)

SetTypeName(RWCString &)

DsGeTypeID(RWCString &theCode)

DsGeTypeID(RWCString &theName, RWCString theVersion=NULL)

~DsGeTypeID()

DsGeESDTDynamicLibrary

DsGeDynamicLibrary

DsGeScienceData DsDoReferencePaper DsNsQAStatistics DsNsProductionHistory DsGeBrowseProduct
DsNsScienceSoftwareArchivePackage

DsGeECSDataProduct

DsGeSummaryProduct

DsSbEvent

DsGeESDTConfiguration

DsCnConfiguration

DsSdCSDT

myNewFunction

myTypeID

myDLLFileName

DsGeESDTDynamicLibrary(DsGeTypeID &)

newESDT()

~DsGeESDTDynamicLibrary()

myHandle

DsGeDynamicLibrary()

GetSymbol(theSymbol:RWCString)

LoadLibrary(libName: RWCString)

Unload()

~DsGeDynamicLibrary()

myDll

myESDT

DsGeESDTWrapper(datatype: DsGeTypeID &)

DsGeESDTWrapper(metadata: DsMdMetadata)

~DsGeESDTWrapper()

myArchive

myInterfaceConfigList

myMetadata

mySize

myType

myUR

Archive()

Externalize(toWhere: ostream &)

Fill(theMD:

GetGUIConfiguration(svc: RWCString)

GetQueryableParameters(GlParameterList &)

GetServiceList()

GetSize()

Inspect(whatEntries:GlParameterList &)

Internalize(theArgs: GlParameterList)

Type()

Update(newMDValues: GlParameterList &)

Validate(MetadataFile: RWCString &, Results: GlParameterList &)

myESDTTypes

GetDefinitionFileForType(theType:DsGeTypeID &)

GetLibraryForType(theType:DsGeTypeID &)

GetEventTableForType(theType:DsGeTypeID &)

DsGeESDTConfiguration(filename:RWCString &)

GetAllDataTypes()

~DsGeESDTConfiguration()

GetESDTToken(theType:DsGeTypeID &)

myAlgorithmUR

mySummaryList

myPGE

mySSAP

Subset(pars:GlParameterList)

Subsample(pars:GlParamterList)

GetSSAP()

HasSummaryStats()

GetSummaryStats()

GetPGEInfo()

myReferencePapers

myQAStatistics

myProductHistory

myBrowseList

GetReferencePapers()

GetQADataStatistics()

GetProductionHistory()

AddReferencePaper(thePaper:GlUR &)

RemoveReferencePaper()

HasBrowse()

Browse(pars:GlParameterList &)

myGranuleList

ListGranules()

AddGranule(data:GlUR &)

RemoveGranule()

+

+ : GlStatus

+ : RWBoolean

+

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

<RWVector>

_ : RWCString

_ : unsigned long

_ : RWCString

+ : RWCString

+ : unsigned long &

+ : RWCString

_

_

_

+

+

+

P[PERSISTENT CLASS]

P[DISTR OBJ][PERSISTENT CLASS]

P[PERSISTENT CLASS]

_ : DsGeESDT *()

_ : DsGeTypeID

_ : RWCString

+

+ : DsGeESDT *

+

_ : void *

+

+ : void *

+ : RWBoolean

+

+

_ : DsSdESDTDynamicLibrary * = NULL

_ : DsGeESDT * = NULL

+

+

+

_

_ : DsCnESDTGUIConfiguration

_ : DsMdMetadata

_ : size_t

_ : DsGeTypeID

_ : GlUR

± : GlStatus

± : GlStatus

+ : void

± : GlStatus

± : RWBoolean

± : RWVector<RWCString>

± : size_t

± : GlStatus

± : GlStatus

± : RWCString

± : GlStatus

± : GlStatus

_ : RWTPtrOrderedVector<DsGeTypeID>

+ : RWCString

+ : RWCString

+ : RWCString

+

+ : RWTPtrOrderedVector<DsGeTypeID>

+

_ : RWCString

_ : GlUR

_ : GlUR

_ : GlUR

_ : GlUR

+ : GlUR

+ : GlUR

+ : GlUR

+ : RWBoolean

+ : GlUR

+ : GlUR

_ : GlUR

_ : GlUR

_ : GlUR

_ : GlUR

+ : GlUR

+ : GlUR

+ : GlUR

+

+ : GlStatus

+ : RWBoolean

+

_ : GlUR

+ : GlUR

+

+ : RWBoolean

summarizes

is used to create

is described by

has

wraps

describes generation of

has

restores

from

is loaded by

triggers

is informed by

DsMdMetadata)

Figure 4.3-11. DsGeGeneralESDT Object Model Diagram

4-19
305-C

D
-008-001

DsMdMetadata

DsMdCatalog

DsDbGranuleToDbVector

DsDbAttributeToTableVector

DsDbInterface

myResultVector

mySQLQuery

Search(GlParameter& searchConstraints, RWTPtrOrderedVector<DsMdMetadata>*,

GlStatus&)

GranuleSearch(InvQuery& query, RWPtrOrderedVector<DsMdMetadata>& metadata)

Initialize(void)

GetEphemeris(DsTMdIdentifier id, DsMdMetadata &metadata)

GetHouseKeeping(DsTMdIdentifier id, DsMdMetadata &metadata)

GetProductionHistory(DsTMdIdentifier collectionId, DsMdMetadata& metadata)

GetDistributionMetadata(DsTMdIdentifier id, DsMdMetadata &metadata)

GetCollectionMetadata(DsTMdIdentifier collectionId, DsMdMetadata& metadata)

GetCollectionMetadataTh(char *collectionName, DsMdMetadata& metadata)

InsertCollectionMetadata(DsTMdIdentifier collectionId, DsMdMetadata& metadata)

UpdateCollectionMetadata(DsTMdIdentifier collectionId, DsMdMetadata&

newMetadata)

UpdateCollectionMetadata(char *collectionName, DsMdMetadata& newMetadata)

DeleteCollectionMetadata(DsTMdIdentifier collectionId)

DeleteCollectionMetadata(char *collectionName)

GetGranuleMetadata(DsTMdIdentifier id, DsMdMetadata &metadata)

~DsmdCatalog(void)

DsMdCatalog(void)

InsertGranuleMetadata(DsMdMetadata& metadata)

InsertGranuleMetadata(DsTMdIdentifier granuleId, DsMdMetadata& granuleMetadata)

UpdateGranuleMetadata(DsTMdIdentifier granuleId, DsMdMetadata& newMetadata)

DeleteGranuleMetadata(DsTMdIdentifier granuleId)

InsertGranuleMetadata(RWTPtrOrderedVector<DsMdMetadata>)

GetUniqueID(DsTMdIdentifier& id)

CollectionSearch(char *pvlString, RWTPtrOrderedVector<DsMdMetadata>&

collectionMetadata)

myId

myType

myScienceMetadata

myNonScienceMetadata

myUpdatedAttributes

DsMdMetadata()

~DsMdMetadata()

MyId()

MyType()

SetMyId(DsTMdIdentifier& Id)

SetMyType(char* type)

LoadFromExternal(char* externalForm)

SaveToExternal(char*& externalForm)

GetAttribute(char* attributeName, GlParameter& attribute)

PutAttribute(const GlParameter& attribute)

GetAttributes(GlParameterList& attributes)

PutAttributes(const GlParameterList& attributes)

UpdateAttribute(const GlParameter& attribute)

UpdateAttributes(const GlParameterList& attributes)

GetUpdatedAttributes(GlParameterList& modifiedAttributes)

_ : RWPtrOrderedVector<DsMdMetadata> = null

_ : char * = null

_ : GlStatus

+ : GlStatus

+

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : void

+ : void

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

_ : DsTMdIdentifier = null

_ : char* = null

_ : GlParameterList

_ : GlParameterList

_ : GlParameterList

+

+

+ : DsTMdIdentifier

+ : char*

+

+

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

: GlStatus

Figure 4.3-12. DsMdMetadata Object Model Diagram

DsNpNonECSDataProduct

4-20
305-C

D
-008-001

DsViVIRS DsNpPlatformDsPrRadar DsTmTMI DsGvRadar DsCoCombination DsSsSSMI DsNmNMC

Figure 4.3-13. DsNpNonECSDataProduct Object Model Diagram

DsGeScienceData

4-21
305-C

D
-008-001

DsNpCalibration DsNpCorrelative DsNpAncillary DsNpOA

DsNsNonECSDataProduct

DsNpVersion0

Figure 4.3-14. DsNpNonECSScienceData Object Model Diagram

4-22
305-C

D
-008-001

DsNsScienceSoftwareArchivePackage
DsNsQAStatistics DsNsProductionHistory DsNsMPR

DsGeESDT

DsGeScienceData

DsGeECSDataProduct

myGranuleUR

GetGranule()

DsNsHistoricalData DsNsProdPlans

myGranuleList

myBinaryList

myHostList

mySourceCode

GetBinary(hostType)

ListGranules(theUR: GlUR)

AddGranule(theUR: GlUR)

RemoveGranule()

ListHosts(hostType)

HasBinary(hostType)

GetSource()

_

+

_ : RWVector<GlUR>

_ : RWVector<istream>

_ : RWVector<RWCString>

_ : RWCString

+ : ostream &

+ : RWVector<GlUR>

+ : RWBoolean

+ : RWBoolean

+ : RWVector<RWCString>

+ : RWBoolean

+ : RWCString

describes generation of

has

is used to

create

Figure 4.3-15. DsNsNonScienceESDT Object Model Diagram

4-23
305-C

D
-008-001

DsSbEvent

DsSbEventHandler

DsSbEventTimer

DsSbCallBackTimer

DsSbTimer

DsSbSubscriptionInterface

DsSbRegisteredEvent

DsSbSubscription

DsSbAction

RegisterEvent()

DsSrRequest <RWVector>

myCallbackFunction

SetCallback()

DsSbActionBase

myEventId

CancelSubscription()

AddSubscription()

ExecuteSubscriptions(GlParameterList)

GetSubscriptions()

~DsSbRegisteredEvent()

DsSbRegisteredEvent()

CancelSubscriptions()

EventOccurred(GlParameterList&)

~DsSbEventHandler()

DsSbEventHandler()

ReportStatus()

myInterval

DsSbTimer()

~DsSbTimer()

Reset()

DsSbSubscriptionInterface()

AddSubscription()

CancelSubscription()

CheckExpirations()

ExecuteCommand()

GetAllEvents()

GetAllSubscriptions()

RegisterEvent()

UnregisterEvent()

UpdateSubscription()

~DsSbSubscriptionInterface()

myText

myNotifyFlag

myRequestFlag

DsSbActionBase()

DsSbActionBase(RWBoolean notify = FALSE, const RWCString *text = 0)

ClearRequest()

GetNotify()

GetText()

HasRequest()

SetNotify(RWBoolean)

SetText(RWCString &)

~DsSbActionBase()

myUserId

myExpirationDate

myType

NotifyExpiration()

NotifyCancel()

SetExpiration(Date)

DsSbSubscription()

~DsSbSubscription()

Execute(GlParameterList)

DsSbFactory

DsSbFactory()

~DsSbFactory()

MakeEvent()

myDescription

myName

myEventID

myCategory

DsSbEvent()

Register()

Unregister()

Trigger(GlParameterList&)

~DsSbEvent()

DsSbAction(DsSbRequest &, RWBoolean = TRUE, RWCString * = NULL)

DsSbAction(RWCString &text, DsSbRequest * = NULL)

GetRequest()

SetRequest(const DsSbRequest&)

~DsSbAction()

P[DISTR OBJ][PERSISTENT CLASS]

+ : RWBoolean

P[PERSISTENT CLASS]

<RWVector>

_ : GlCallback

+ : RWBoolean

_ : RWCString

+ : RWBoolean

+ : RWBoolean

+ : RWBoolean

+ : RWBoolean

+

+

+ : RWBoolean

+ : RWBoolean

+

+ : RWBoolean

+

_ : float

+

+

+ : RWBoolean

+

+ : RWBoolean

+ : RWBoolean

+ : RWBoolean

+ : RWBooolean

+ : RWBoolean

+ : RWBoolean

+ : RWBoolean

+ : RWBoolean

+ : RWBoolean

+

_ : RWCString

_ : RWBoolean

_ : RWBoolean

+

+

+ : void

+ : RWBoolean

+ : const RWCString &

+ : RWBoolean

+ : void

+ : void

+

_ : RWCString

_ : RWDate

_ : RWCString

+ : RWBoolean

+ : RWBoolean

+ : RWBoolean

+

+

+ : RWBoolean

+

+

+ : GlStatus

_ : RWCString

_ : RWCString

_ : int

_ : RWCString

+

+ : RWBoolean

+ : RWBoolean

+ : RWBoolean

+

+

+

+ : const DsSbRequest&

+ : void

+

alarms

manages

{ordered}

manages

notifies

activates

{ordered}

processed by

managed by

Figure 4.3-16. DsSbSubscription Object Model Diagram

4-24
305-C

D
-008-001

DsSrServer

DsSrSession

DsSrClient

DsSrRequest <RWVector>

DsSrCommandBase

DsSrRequestVector <RWVector>

DsSrWorkingCollection

DsSrConnection

DsSrCommand

DsSrRequestBase

DsSbSubscriptionInterface

DsSrQueuedConnection

DsSrSubmittedRequestVector <RWVector>

DsClSubmittedRequest

DsSrRequestInfo

myPriority

myDomain

myCommands

DsFactory

DsFactory()

~DsFactory()

MakeConnection(MSS_UserProfile)

MakeSession(MSS_UserProfile, DsESrConnectionID = 0)

DsSrCommandInfo

myInfo

DsSrCommandBase()

DsSrCommandBase(svc: RWCString &, pl: GlParameterList *, DsESrCommandCategory)

~DsSrCommandBase()

SetParameters(pl: GlParameterList &)

GetParameters()

SetServiceName(svc: const RWCString &)

GetServiceName()

SetCategory(DsESrRequestCategory)

GetCategory()

GetInfo()

DsSrSubmittedRequestVector()

~DsSrSubmittedRequestVector()

Find(DsClSubmittedRequestID)

myLog

myTimeOut

myStatus

myLoggingFlag

myTimeoutInterval

DsSrConnection(prof: MSS_UserProfile, DsESrConnectionID = NULL)

~DsSrConnection()

Refresh()

Terminate()

GetStatus()

SetTimeOut(secs: unsigned int)

GetTimeOut()

StopLogging()

StartLogging()

Submit(rq: DsClSubmittedRequestID)

Execute(rq: DsSrRequest &)

Authorize(DsSrCommand)

mySystemLog

myProfile

DsSrClient(MSS_UserProfile*)

~DsSrClient()

SufficientFunds(rq: DsSrRequest &)

ConvertToDollars(rq: DsSrRequest &)

Debit(amt: float)

GetBalance()

GetProfile()

DsSrSession(MSS_UserProfile, DsESrConnectionID)

~DsSrSession()

Submit(DsClSubmittedRequestID)

Execute(DsSrRequest&)

DsSrRequest(DsSrRequestInfo*)

~DsSrRequest()

Cancel()

SetStatus(GlStatus *)

GetStatus()

GetResults()

mySubmittedRequest

myInfo

DsSrRequestBase(DsESrRequestPriority = NORMAL)

~DsSrRequest()

SetPriority(DsESrRequestPriority)

GetPriority()

GetStatus()

SetDomain(GlURVector &)

GetDomain()

GetInfo()

GetSRID()

myServiceName

myParameterList

myCategory

DsSrCommand(DsSrCommandInfo*)

~DsSrCommand()

DsSrQueuedConnection(prof: MSS_UserProfile, resume: DsESrConnectionID = 0)

~DsSrQueuedConnection()

Suspend(ref: DsESrConnectionID &)

CancelRequest(DsClSubmittedRequestID)

GetNextRequest()

Submit(DsClSubmittedRequestID)

myStatus

myESDTs

DsSrWorkingCollection()

~DsSrWorkingCollection()

ExecuteCommand(DsSrCommand, res: GlParameterList &, GlStatus &)

ExecuteCommand(DsSrCommand, GlURVector, res: GlParameterList &, GlStatus &)

Reset()

GetStatus()

myConnectionThreshold

mySystemLog

DsSrServer(cf: DsSrConfig)

~DsSrServer()

SetConnectionThreshold(int)

GetConnectionThreshold()

Connect(DsSrConnection &)

DeleteConnection(conn: DsSrConnection&)

ListConnections()

ReportStatus()

GetSRVector()

P[PERSISTENT CLASS]

<RWVector>

<RWVector>

P[PERSISTENT CLASS]

P[DISTR OBJ][PERSISTENT CLASS]

P[PERSISTENT CLASS]

<RWVector>

P[DISTR OBJ][PERSISTENT CLASS]

± : DsESrRequestPriority

± : GlURVector

± : RWTPtrOrderedVector<DsSrCommandInfo>

+

+

+ : DsSrConnection*

+ : DsSrSession*

: DsSrCommandInfo*

+

+

+

+ : void

+ : const GlParameterList &

+ : void

+ : const RWCString &

+ : void

+ : DsESrRequestCategory

+ : DsSrCommandInfo*

+

+

+ : DsClSubmittedRequest*

± : GlLog

± : RWDate

± : GlStatus

± : RWBoolean

± : unsigned int

+

+

+ : void

+ : GlStatus

+ : GlStatus

+ : void

+ : RWTime

+ : void

+ : void

+ : GlStatus

+ : GlStatus

+ : GlStatus

_ : GlLog

_ : MSS_UserProifle*

+

+

+ : RWBoolean

+ : RWBoolean

+ : void

+ : float

+ : MSS_UserProfile

+

+

+ : GlStatus

+ : GlStatus

+

+

+ : RWBoolean

+ : void

+ : GlStatus&

+ : GlParameterList &

± : DsClSubmittedRequest * = NULL

± : DsSrRequestInfo*

+

+

+ : void

+ : DsESrRequestPriority

+ : const GlStatus &

+ : void

+ : GlURVector &

± : DsSrRequestInfo*

± : DsClSubmittedRequestID

± : RWCString

± : GlParameterList

± : DsESrCommandCategory

+

+

+

+

+ : GlStatus

+ : GlStatus

+ : DsSrRequest*

+ : GlStatus

_ : GlStatus

_ : DsSrESDTWrapperVector

+

+

+

+

+ : void

+ : GlStatus

_ : int

_ : GlLog

+

+

+ : void

+ : int

+ : GlStatus

+ : GlStatus

+ : const DsSrConnectionVector

+ : GlStatus

+ : DsSrSubmittedRequestVector &

registers

informs

routes

referenced by
inserts self

searches

Figure 4.3-17. DsSrScienceServer Object Model Diagram

GlParameter

GlParameterList <RWVector>

GlLongP GlStringP GlDateP GlDoubleP

myName

myDescription

GlParameter(name: char * = NULL)

~GlParameter()

Restore(RWvistream &)

Flatten(RWvostream &)

saveOn(ostream &)

Textify(RWCString &)

SetName(RWCString &)

GetName()

SetDescription(RWCString &)

GetDescription()

myStringBase

GlStringP()

GlStringP(RWCString, name: char* = NULL)

~GlStringP()

operator=(val: RWCString)

Textify(RWCString&)

value()

GlBinaryP GlTimeP

myBinaryBase

myLength

GlBinaryP()

GlBinaryP(buffer: char*, length: unsigned long, name: char* = NULL)

~GlBinaryP()

Set(buffer: char*, length: unsigned long)

Textify(RWCString&)

value()

length()

myDateBase

GlDateP()

GlDateP(RWDate, name: char* = NULL)

~GlDateP()

operator=(val: RWDate)

Textify(RWCString&)

value()

myTimeBase

GlTimeP()

GlTimeP(RWTime, name: char* = NULL)

~GlTimeP()

operator=(val: RWTime)

Textify(RWCString&)

value()

myDoubleBase

GlDoubleP()

GlDoubleP(double, name: char* = NULL)

~GlDoubleP()

operator=(val: double)

Textify(RWCString&)

value()

myLongBase

GlLongP()

GlLongP(long, name: char * = NULL)

~GLongP()

operator =(val: long)

Textify(RWCString &)

value()

myParms

GlParameterList()

GlParameterList(GlParameter *, name: char * = 0)

GlParameterList(RWvistream &)

GlParameterList(name: char *)

~GlParameterList()

Flatten(filename: RWCString &)

Flatten(RWvostream &)

Flatten(buffer: void *, length: unsigned int)

Restore(filename: RWCString &)

Restore(RWvistream&)

Restore(buffer: void*, length: unsigned int)

FindParameter(name: const RWCString &)

<RWVector>

± : RWCString

± : RWCString

+

+

+ : GlStatus {abstract}

+ : GlStatus {abstract}

+ : void

+ : void {abstract}

+ : void

+ : const RWCString &

+ : void

+ : const RWCString &

_ : RWCString

+

+

+

+ : GlStringP&

+ : void

+ : const RWCString&

_ : char*

_ : unsigned long

+

+

+

+ : void

+ : void

+ : char*

+ : unsigned long

_ : RWDate

+

+

+

+ : GlDateP&

+ : void

+ : RWDate

_ : RWTIme

+

+

+

+ : GlTimeP&

+ : void

+ : const RWTime&

_ : double

+

+

+

+ : GlDoubleP&

+ : void

+ : double

_ : long

+

+

+

+ : GlLongP&

+ : void

+ : long

_ : RWOrdered

+

+

+

+

+

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+

+ : GlParameter *

4-25
305-C

D
-008-001

Figure 4.3-18. GlParameter Object Model Diagram

4.3.1 DsAdDataTypeCollector Class

Parent Class: Not Applicable
Public: No Distributed Object: Yes
Purpose and Description:
Provides administration/operations and interface to collectively handle descriptors (i.e.,
from the database).

Attributes:

None

Operations:

DsAdDataTypeCollector -
Arguments: GlUR&
Return Type: Void
Privilege: Public

ListTypes - Lists all data types (i.e., in the database).

Arguments:

Return Type: GlParameterList

Privilege: Public

NewType
Arguments: ur: GlUR&, name: RWCString&, vsn: RWCString&, descripfile: istream&

Return Type: Void

Privilege: Public

~DsAdDataTypeCollector
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsAdDataTypeCollector class has associations with the following classes:
None

4-26 305-CD-008-001

4.3.2 DsAdDescriptor Class

Parent Class: DsClDescriptor
Public: No Distributed Object: No
Purpose and Description:
Provides more functionality than the client descriptor with the ability to update descriptors
as an administrative interface to them.

Attributes:

All Attributes inherited from parent class

Operations:

DsAdDescriptor - Constructs an operations descriptor for a particular dataserver and stream.
Arguments: type: RWCString&, vsn: RWCString&, client: GlClient&, ds: GlUR&
Return Type: Void
Privilege: Public

DsAdDescriptor
Arguments: type: RWCString&, vsn: RWCString&, client: GlClient&, ds: GlUR&, strm:

iostream&

Return Type: Void

Privilege: Public

Update - Update the descriptors given a list of parameters.

Arguments: GlParameterList&

Return Type: Void

Privilege: Public

~DsAdDescriptor
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsAdDescriptor class has associations with the following classes:
None

4-27 305-CD-008-001

4.3.3 DsAdLog Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
Provides administrative logging functions as defined by the MSS object. This allows the
operations staff to categorize messages, reports, of errors, and view resources used/
allocated by the client.

Attributes:

None

Operations:

DsAdLog - Constructs DsAdLog class.
Arguments:
Return Type: Void
Privilege: Public

~DsAdLog
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsAdLog class has associations with the following classes:
None

4.3.4 DsAdRequestInterface Class

Parent Class: Not Applicable
Public: No Distributed Object: Yes
Purpose and Description:
Provides administration/operations staff an interface to look at active and queued requests
as well as status information of requests.

4-28 305-CD-008-001

Attributes:

None

Operations:

DsAdRequestInterface - Constructs the administration/operations request interface given a
particular dataserver and client.
Arguments: GlUR&, GlClient&
Return Type: Void
Privilege: Public

ListAllQueuedRequests - Accesses client queued requests classes in order to view, get

stats, and delete requests.

Arguments:

Return Type: GlStatus&

Privilege: Public

ListAllRequests -

Arguments:

Return Type: GlStatus&

Privilege: Public

SetQueueSize - Allows the operations staff to set threshold for the number of service

requests to be queued for processing.

Arguments: threshold: int

Return Type: RWBoolean

Privilege: Public

~DsAdRequestInterface
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsAdRequestInterface class has associations with the following classes:
None

4-29 305-CD-008-001

4.3.5 DsCeCERES Class

Parent Class: DsGeECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
This class represents products generated from the TRMM CERES Instrument data.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsCeCERES class has associations with the following classes:
None

4.3.6 DsClAction Class

Parent Class: DsSbActionBase
Public: No Distributed Object: No
Purpose and Description:
A client interface object that represents the components of the action to be performed when
a subscription is triggered. The possibilities are that the client will receive a notification
(including all parameters that are returned by the object that triggers the subscription and
an optional piece of client-specified text) and/or a request that will be executed. The client
is required to specify an action for each subscription.

Attributes:

myRequest - The request that is currently associated with this action.
Data Type: DsClRequest
Privilege: Private
Default Value:

4-30 305-CD-008-001

Operations:

ClearRequest - Used to clear any request that has been set for the action.
Arguments:
Return Type: void
Privilege: Public

DsClAction - Used to construct an action from a piece of text and, optionally, a request.

The notification flag is set.

Arguments: RWCString &text, DsClRequest * = NULL

Return Type: Void

Privilege: Public

DsClAction - Used to construct an action from a request and, optionally, a value for the

notification flag and a piece of text.

Arguments: DsClRequest &, RWBoolean = FALSE, RWCString * = NULL

Return Type: Void

Privilege: Public

DsClAction - Constructs a default action.

Arguments:

Return Type: Void

Privilege: Public

GetRequest - Returns the request currently set for the action.

Arguments:

Return Type: const DsClRequest&

Privilege: Public

SetRequest - Sets the request to be executed when the subscription fires.

Arguments: DsClRequest &

Return Type: void

Privilege: Public

~DsClAction - Used to destroy an action.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsClAction class has associations with the following classes:
Class: DsClSubscription actionof

4-31 305-CD-008-001

4.3.7 DsClCollector Class

Parent Class: Not Applicable
Public: No Distributed Object: Yes
Purpose and Description:
This is an abstract, distributed base class for the Collector distributed objects. This class is
the client portion of an IDL definition (the corresponding server portion is Connection).
This division of function relieves all classes in the DS public class library from having to
be knowledgeable of the dataserver object realm. This class inherits from the Rogue Wave
RWTPtrOrderedVector and provides all the normal vector behaviors to the specialized
classes. There are no attributes for this object.

Attributes:

None

Operations:

DsClCollector
Arguments: GlUR &dataserver, MSS_UserProfile &

Return Type: Void

Privilege: Public

GetConnectionID - This public operation allows client software to retrieve the dataserver

assigned session ID so that users can turn off their terminals during long-running request

processing, then log on later and reconnect to the session.

Arguments:

Return Type: DsESrConnectionID

Privilege: Public

SubmitToServer - This protected operation passes a request from a DsClRequest to the

dataserver after the DsClRequest has established the DsClSubmittedRequest to handle the

distributed callback. This operation is fully implemented on the server side (i.e. in either

DsSdConnection or the specialized connection object DsSdSession). All return values are

handled by the DsClRequest object, which contains imbedded return parameters for this

purpose.

Arguments: DsClRequest&

Return Type: const GlStatus &

Privilege: Protected

4-32 305-CD-008-001

~DsClCollector
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClCollector class has associations with the following classes:
Class: DsClCollectorVector collectedby

4.3.8 DsClCollectorVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This private class is maintained in static memory by DsCl items (DsClSubscription and
DsClESDTReference). Those items contain a DsClCollectorVector. This class supports
the "hidden construction" of collector objects (and hence, connections to a dataserver). It
is a RWTPtrOrderedVector, which is parameterized so that the item which is maintaining
it can decide what type of collector to store and track. This class represents a table of
available DsCl<item>Collectors which were created by item-level DsCl public classes
(i.e., DsClSubscription or DsClESDTReference). This table will contain a pointer to one
DsCl<item>Collector per dataserver. All item-level objects created in the client space
independently of a client-created DsCl<item>Collector will be assigned to the default
DsCl<item>Collector as defined by the entry in the DsClCollectorVector which
corresponds to the dataserver for which the client is creating the independent item. (phew!)

Attributes:

None

Operations:

DsClCollectorVector - This is the default constructor, for initial startup.
Arguments:
Return Type: Void
Privilege: Public

GetCollector - This operation finds the existing collector for the given dataserver (if any)
or creates one if none exists. It returns the reference to the chosen collector. Because the

4-33 305-CD-008-001

class is a template, the return value will match (be the right kind of collector for) the object

which is calling this operation.

Arguments: const GlUr &dataserver

Return Type: T&

Privilege: Public

~DsClCollectorVector - The destructor should presumably be called only when the vector

is empty, but it might be a good idea to check for any collectors here and close them down.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsClCollectorVector class has associations with the following classes:
Class: DsClCollector collectedby

4.3.9 DsClCommand Class

Parent Class: DsSrCommandBase
Public: No Distributed Object: No
Purpose and Description:
A specialization of the DsCommand class for client interfaces. Adds constructors that ease
building of commands based on advertisements, or special direct commands that are "built
in" to the data server and do not correspond to advertisements.

Attributes:

All Attributes inherited from parent class

Operations:

DsClCommand - Used to construct "special" commands, i.e. commands that are not
advertised. For example, the command to reset the working collection.
Arguments: SpecialCommand
Return Type: Void
Privilege: Public

DsClCommand - Used to construct a command from an advertisement. The
GlParameterList gives the parameters required by the chosen command.

4-34 305-CD-008-001

Arguments: adv: Advertisement &, parms: GlParameterList &

Return Type: Void

Privilege: Public

DsClCommand - Constructs an empty command.

Arguments:

Return Type: Void

Privilege: Public

DsClCommand - Used to construct a command from its basic parts: service name,

parameters, and category.

Arguments: svc: RWCString&, pl: GlParameterList&, cat: DsESrCommandCategory

Return Type: Void

Privilege: Public

Textify - Used to convert a command into a human-readable format.

Arguments:

Return Type: RWCString

Privilege: Public

~DsClCommand - Used to destroy a command.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsClCommand class has associations with the following classes:
DsClRequest (Aggregation)

4.3.10 DsClDescriptor Class

Parent Class: Not Applicable
Public: No Distributed Object: Yes
Purpose and Description:
This object provides access to services pertaining to the definition of a specific data type.
This includes access to metadata configuration information and queriable parameters. This
object validates metadata.

4-35 305-CD-008-001

Attributes:

myStatus - The status attribute captures status information about activities that are performed
on this instance.
Data Type: GlStatus
Privilege: Private
Default Value:

myTypeID - Reference to an object that uniquely identifies the specific type of this

descriptor.

Data Type: DsGeTypeID *

Privilege: Private

Default Value:

ourCollectorVector - Reference to a static vector of collectors. Each collector is

connected to a data server. Upon construction, the descriptor must check to see if there is

a collector connected to its data server. If so, the descriptor add itself to that collectors list

of items. If not, the descriptor creates a collector that talks to the desired data server and

adds it to the static vector collector set.

Data Type: RWVector *

Privilege: Private

Default Value:

Operations:

DsClDescriptor - Constructor for the descriptor. The arguments are references to a client
object, a dataserver, and a typeID object indicating the type of the descriptor to create.
Arguments: GlClient &, GlUR &,DsGeTypeID &
Return Type: Void
Privilege: Private

GetCollector - Returns a pointer to the DescriptorCollector that contains this descriptor.

Arguments:

Return Type: DsClDescriptorCollector*

Privilege: Private

GetMCF - Returns a stream containing the metadata configuration file (MCF) data.

Arguments: ostream &

Return Type: GlStatus

Privilege: Public

4-36 305-CD-008-001

GetQueryableParameters - The service takes a reference to an empty GlParameterList

and fills that list in with the queriable parameters and their associated types for this data

type.

Arguments: GlParameterList &

Return Type: RWBoolean

Privilege: Public

GetTypeID - Returns a reference to the DsSdTypeID object which contains information to

uniquely identify the type of this descriptor.

Arguments:

Return Type: DsGeTypeID &

Privilege: Public

SetTypeID - This is a private function to set the typeid for this object.

Arguments: DsGeTypeID &

Return Type: Void

Privilege: Public

Validate - This service takes a stream which contains metadata and validates this metadata.

The GlStatus object that is returns provides an indication of whether the validation was

successful.

Arguments: istream &metadata

Return Type: GlStatus

Privilege: Public

~DsClDescriptor - Destructor for the descriptor. If this is the last descriptor of the hidden

collector to be destroyed, then the collector is also destroyed.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsClDescriptor class has associations with the following classes:
None

4.3.11 DsClESDTReference Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:

4-37 305-CD-008-001

This object is a reference to an ESDT that is within a DataServer's holdings. This object
provides services that are homogeneous for all ESDTs.

Attributes:

myCollector - A pointer to the collector that this reference is a member of. If this pointer is
null, then this reference is a member of one of the collectors in the static collector vector.
Data Type: DsClESDTReferenceCollector *
Privilege: Private
Default Value: NULL

myCreateDate - The creation date of the ESDT that this reference represents.

Data Type: RWDate

Privilege: Private

Default Value:

myReferenceVector
Data Type: DsClESDTReferenceVector *

Privilege: Private

Default Value:

mySize - This number of MB that the underlying granule would occupy if the ESDT that

this reference points to was externalized.

Data Type: size_t

Privilege: Private

Default Value:

myStatus
Data Type: GlStatus

Privilege: Private

Default Value:

myTypeInfo - A pointer to an object which contains information related to all ESDT

references of the same type.

Data Type: DsClTypeInfo *

Privilege: Private

Default Value:

myUR - The unique reference that is assigned to this ESDT reference.

Data Type: UR

Privilege: Private

Default Value:

4-38 305-CD-008-001

ourCollectorVector - A static vector of ESDT collectors. Each ESDT reference is

collected by an ESDT collector. The collector vector is used to allow creation of an ESDT

reference without first establishing a collector.

Data Type: DsClCollectorVector<DsClESDTReferenceCollector>

Privilege: Private

Default Value:

Operations:

DsClESDTReference
Arguments: theDSS:GlUR &, theBoss:DsClESDTReferenceCollector *= NULL

Return Type: Void

Privilege: Public

GetCollector
Arguments:

Return Type: const DsClESDTReferenceCollector &

Privilege: Public

GetCreateDate - Returns the date that the underlying ESDT granule was created.

Arguments:

Return Type: const RWDate &

Privilege: Public

GetQueryableParameters - This service is used to obtain the queryable parameters for

this ESDT type. The queryable parameters will be the same for all ESDT references of the

same type. For example, all CER03s have the same queryable parameters. The input

argument is a reference to an empty parameter list. The return value is a boolean indicating

success or failure of the request. If the request was successful, the parameter list will have

the names and types (but no values) of all queryable parameters for this TYPE.

Arguments: GlParameterList &

Return Type: const GlStatus &

Privilege: Public

GetReferenceVector
Arguments:

Return Type: DsClESDTReferenceVector *

Privilege: Private

GetServiceApplet
Arguments: theSvc:RWCString &, svcUR:GlUR&, theVersion:RWCString &=NULL

Return Type: const GlStatus &

Privilege: Public

4-39 305-CD-008-001

GetServiceConfiguration
Arguments: theSvc:RWCString &, theConfig:GlParameterList &

Return Type: const GlStatus &

Privilege: Public

GetSize - Returns the size of data granule associated with this ESDT Reference. This is

the size of the granule if externalized.

Arguments:

Return Type: size_t

Privilege: Public

GetTypeID - Returns a reference to an object that contains all of the information that

uniquely identifies this type.

Arguments:

Return Type: const DsGeTypeID &

Privilege: Public

GetTypeInfo
Arguments:

Return Type: const DsClTypeInfo &

Privilege: Private

GetUR - Returns the UR that is associated with this ESDT reference.

Arguments:

Return Type: const GlUR &

Privilege: Public

Inspect - This service returns values for given parameters. The parameter list has the

names of the parameters for which values are desired and this service returns the same

parameter list with the values and associated types filled in. A boolean is also returned to

indicate success or failure of the service request.

Arguments: GlParameterList &

Return Type: const GlStatus &

Privilege: Public

PDL:

DsClESDTReference::Inspect(GlParameterList &theParms)

This operation gets the values for the metadata attributes specified in the

given GlParameterList. This information is actually obtained from the real

ESDT in the corresponding DsSrWorkingCollection on the Data Server

Subsystem. A request is created and submitted to the DSS through the

DsClESDTReferenceCollector for this object.

4-40 305-CD-008-001

SEQUENCE

Create DsClCommand with arguments ("INSPECT", theParms, ESDT)

Create DsClRequest with arguments (Command, NORMAL)

SetCallback of DsClRequest to ReturnResults

Submit the request myCollector

Retrieve results from request

Return results to client

END SEQUENCE

SetCollector - This is a private member function used to set the value of the myCollector

attribute.

Arguments: DsClESDTReferenceCollector *

Return Type: void

Privilege: Private

SetCreateDate - This is a private service used to set the myCreateDate attribute.

Arguments: RWDate &

Return Type: void

Privilege: Private

SetReferenceVector - This is a private service used to set the myReferenceVector

attribute.

Arguments: DsClESDTReferenceVector *

Return Type: void

Privilege: Private

SetSize - This is a private member function used to set the mySize attribute.

Arguments: size_t

Return Type: void

Privilege: Private

SetTypeInfo - This is a private service used to set the myTypeInfo attribute.

Arguments: DsClTypeInfo *

Return Type: void

Privilege: Private

SetUR - This is a private service used to set the myUR attribute.

Arguments: GlUR &

Return Type: void

Privilege: Private

SetVersion
Arguments: RWCString &

4-41 305-CD-008-001

Return Type: void
Privilege: Private

Submit
Arguments: DsClRequest &

Return Type: const GlStatus &

Privilege: Public

~DsClESDTReference - Destructor for the ESDT Reference. If this descriptor is a

member of a collector in the static collector vector and this is the last descriptor to be

destroyed, then its collector is also destroyed.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsClESDTReference class has associations with the following classes:
None

4.3.12 DsClESDTReferenceCollector Class

Parent Class: DsClCollector
Public: No Distributed Object: Yes
Purpose and Description:
This public, distributed class is a specialization of the Collector class which handles
DsClESDTReferences. This class is much more complex than the base class. This class
provides, in addition to the normal set operations for ESDTReferences, the ability to
handle requests, working-collection synchronization, and sessions. It also contains private
operations to hand the ESDTReference-level actions to the dataserver.

Attributes:

mySearchCallback - This attribute is for specifying the local callback for a query.
Data Type: GlCallback
Privilege: Private
Default Value:

myStatus - This attribute allows the object to maintain information on current status.
Data Type: GlStatus

4-42 305-CD-008-001

Privilege: Private
Default Value:

Operations:

AddESDTReference - This operation is used to instantiate a DsClESDTReference when the
(empty) object has already been allocated. For example, if the client creates a
DsClESDTReference with a UR (which creates a DsClESDTReferenceCollector), this will
turn into a request for the given UR. However, once the ESDT has been found and
instantiated on the server side, and UpdateState will make the client side collection
"match", the DsClESDTReference object that the client created must be used to store the
reference, as the client software only knows about that actual memory address. So the
UpdateState method will use a "replace" command to "fill in" the existing object which the
client software has created. This is also useful for subsetting, when a DsClESDTReference
already exists, but the metadata which describes it may change (become a smaller set) as a
result of the subsetting operation. The same DsClESDTReference object should still be
used, even though its contents have changed.
Arguments: const DsClESDTReference *ERef
Return Type: Void
Privilege: Public

BuildRequestVector - This private operation allows the DsClESDTReferenceCollector

object to reconstruct the state of a session in the case that a user has "logged off" during a

long-running request, and reconnects to the session to find the results. This operation

reestablishes the client-side list of submitted requests (DsClSubmittedRequests) to check

the status of the actual requests on the server side.

Arguments: GlURVector &

Return Type: const GlStatus &

Privilege: Protected

CreateESDTReference - This operation actually creates a DsClESDTReference object. It

is used by the UpdateState method when an "add" command is received (i.e., no

DsClESDTReference currently exists for the given UR).

Arguments: GlUR &

Return Type: DsClESDTReference*

Privilege: Protected

PDL:DsClESDTReferenceCollector::CreateESDTReference(GlUR &ESDT)

This operation is invoked in either of the following two cases:

1) a user has created a DsClESDTReferenceCollector and invoked this method
directly

4-43 305-CD-008-001

 2) a user has created a DsClESDTReferenceCollector and submitted a Search
request

In either case, the metadata for the ESDT identified by the provided GlUR is
retrieved from the dataserver, and added to both the working collection (on the
server side), and to the DsClESDTReferenceCollector (on the client side).

This operation returns the pointer to a DsClESDTReference. It is the
responsibility of the calling procedure to manage the DsClESDTReference from
that point onward.

SEQUENCE
Create a request to retrieve the ESDT identified by the provided GlUR
Submit the request
Get new state information as a result of the request
Update the state of the client-side collection to match the server-side

working collection
Return the pointer to the new object

END SEQUENCE

DeleteESDTReference - This operation is used during in the UpdateState method to

actually remove client DsClESDTReference objects when their corresponding server-side

objects have been removed from the DsSrWorkingCollection.

Arguments: DsClESDTReference*

Return Type: RWBoolean

Privilege: Protected

DsClESDTReferenceCollector
Arguments: GlUR &dataserver, MSS_UserProfile &, DsTSessionID = NULL

Return Type: Void

Privilege: Public

GetRequestVector - This operation allows client software to get a reference to the set of

requests submitted during the current session, for whatever local processing (iteration)

desired.

Arguments:

Return Type: const DsClRequestVector &

Privilege: Public

GetRequests - This private operation allows the DsClESDTReferenceCollector object to

get a list of all the requests which have been submitted for the current session. This feature

is to support the situation where a user has logged out while a long request is processing,

then makes a new connection to the same SessionID to get the results. The collector object

will use this operation in the "rebuilding" of the session state.

Arguments: GlURVector &

4-44 305-CD-008-001

Return Type: const GlStatus &

Privilege: Protected

GetSessionLog - This is not for Release A. This operation allows the client software to

declare an output stream and have the dataserver send over the portion of the system log

which pertains to this particular session. All file-related programming is expected to occur

in the client software.

Arguments: ostream &outfile

Return Type: const GlStatus &

Privilege: Public

Reset - This operation removes all current state for the collection, i.e. removes all existing

ESDTReferences.

Arguments:

Return Type: const GlStatus &

Privilege: Public

ResumeSession - This is not for Release A. This operation takes the UR of a suspended

session and recreates the state of that session. This operation will not be available in

Release A.

Arguments: GlUR &SuspendedSession

Return Type: const GlStatus &

Privilege: Public

Search - This operation takes a DsClQuery object, which has been defined and filled in by

the client software, and creates a DsClRequest (and associated DsClSubmittedRequest) and

submits the request to the dataserver. The return values are included in the DsClRequest

object, as are whatever commands are necessary to update the client working collection

(this collection) to match the working collection on the server. The

DsClESDTReferenceCollector *callback* function, which gets called by DsClRequest

upon completion, will take the results of the DsClRequest, invoke UpdateState to make the

client-side working collection match the server side one, then get the DsClQuery pointer

from the DsClRequest so that it can call the Query object's callback function.

Arguments: DsClQuery &

Return Type: const GlStatus &

Privilege: Public

SetDialogCallback - This operation allows the client software to declare a callback for

handling dialog-type notifications. It is not expected to be used in Release A.

Arguments: GlCallback&

Return Type: void

Privilege: Public

SetSearchCallback - This operation allows the client software to set a local callback for a

query. This operation is private to the Search method.

4-45 305-CD-008-001

Arguments: GlCallback&

Return Type: void

Privilege: Protected

SetStatusCallback - This operation allows the client software to establish a callback

routine that will be the local callback function for all requests to report status to.

Arguments: GlCallback&

Return Type: void

Privilege: Public

Submit - This operation invokes the Submit of the DsClRequest object which establishes

a DsClSubmittedRequest to handle the callback stuff. The DsClRequest will call the

Collector (base class) SubmitToServer to actually send itself (request) across the network.

Arguments: DsClRequest &

Return Type: const GlStatus &

Privilege: Public

SuspendSession - This is not for Release A. This operation stores the state of the current

session for later resumption. The UR of the session may be created at this point or it may

be assigned when the session is first created. This operation will not be available in

Release A.

Arguments: GlUR &SuspendedSession

Return Type: const GlStatus &

Privilege: Public

UpdateState - This private operation is used to make the client-space representation of the

working collection match that on the server side. It takes commands from the

GlParameterList and executes them in turn. Because of the possibility of multiple

simultaneous queries, this operation must be concurrency-safe. Commands take one of the

following *logical* forms. remove (existing_UR) add (new_UR, type (parameters), date,

size) replace (existing_UR, new_type (parameters), date, size). If the

ESDTReferenceVector (by type) is retained, the logic is as follows. add: if type doesn't

exist, create type insert new_UR remove: remove existing_UR if last UR in type,

remove type replace: if new_type doesn't exist, create type set parameters of

existing_UR to new values if last UR in old_type, remove old_type

Arguments: GlParameterList &

Return Type: const GlStatus &

Privilege: Protected

PDL:DsClESDTReferenceCollector::UpdateState(GlParameterList &ResultCommands)

This operation is invoked when results of a request have come back from the

dataserver indicating a change in state of the server side working collection.

4-46 305-CD-008-001

The results are a set off commands. These are processed sequentially to change
the state of the client-side collection to match that of the server side
working collection.

This operation returns a GlStatus object.

DO WHILE (there are more results to process)
Get the next command from the list of ResultCommands
CASE (action portion of command)

CASE_ADD:
Create a DsClESDTReference from the data portion of the command
Find the DsClESDTReferenceVector matching the type portion of the

command
Insert the DsClESDTReference into the DsClESDTReferenceVector
Insert the DsClESDTReference into this DsClESDTReferenceCollector

CASE_REPLACE:
Find the DsClESDTReference matching the GlUR portion of the command
Get the original DsClESDTReferenceVector from the DsClESDTReference
Empty the DsClESDTReference of all information except its Collector
Fill the DsClESDTReference from the data portion of the command
IF (the original Type information differs from type portion of the

command)
Remove the DsClESDTReference from the original

DsClESDTReferenceVector
Find the DsClESDTReferenceVector matching the type portion of the

command
Insert the DsClESDTReference into the DsClESDTReferenceVector

END IF
CASE_REMOVE:

Remove the DsClESDTReference from its DsClESDTReferenceVector
Delete the DsClESDTReferenceVector

END CASE
END DO WHILE

~DsClESDTReferenceCollector
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClESDTReferenceCollector class has associations with the following classes:
None

4-47 305-CD-008-001

4.3.13 DsClESDTReferenceVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This private class is a vector of ESDTReferences organized by type. This vector is intended
to simplify management of ESDTs, which are presumed to be primarily accessed by type.
This arrangement also permits storing TypeInfo only once per occurence of the given type.

Attributes:

myTypeInfo - This attribute holds all the information specific to a given type of ESDT. "Type"
can mean product type, or newly-created type, as in the case of a subsetted ESDT.
Data Type: DsClTypeInfo*
Privilege: Private
Default Value:

Operations:

DsClESDTReferenceVector
Arguments:
Return Type: Void
Privilege: Public

DsClESDTReferenceVector
Arguments: DsClTypeInfo &

Return Type: Void

Privilege: Public

getTypeID - This operation returns the DsSdTypeID object for the given type. In the case

of newly created types (e.g. a subsetted ESDT), this information may not mean anything

(or even return anything).

Arguments:

Return Type: Void

Privilege: Public

getTypeInfo - This operation returns the DsClTypeInfo object for a set of

ESDTReferences.

Arguments:

4-48 305-CD-008-001

Return Type: Void

Privilege: Public

setTypeInfo - This operation sets the object's attribute to the given DsClTypeInfo object.

Arguments: DsClTypeInfo*

Return Type: Void

Privilege: Public

~DsClESDTReferenceVector
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClESDTReferenceVector class has associations with the following classes:
DsClESDTReferenceCollector (Aggregation)

4.3.14 DsClNotificationReceiver Class

Parent Class: Not Applicable
Public: No Distributed Object: Yes
Purpose and Description:
Handles asynchronous notifications from the data server to the currently logged-on client.
Client will specify a callback point in his application code to receive these events (e.g.
subscription triggering notifications) for each data server that s/he connects to.

Attributes:

myCallback - The callback that will be used when a notification is received.
Data Type: GlCallback
Privilege: Private
Default Value:

myReceiveFlag - Indicates whether notifications should be passed to callback; initially

FALSE.

Data Type: RWBoolean

Privilege: Private

Default Value:

4-49 305-CD-008-001

Operations:

DsClNotificationReceiver - Used to construct a notification receiver for a given server.
Notifications will be sent to the given callback.
Arguments: server: GlUR, callback: GlCallback
Return Type: Void
Privilege: Public

DsClNotificationReceiver - Constructs a default notification receiver.

Arguments:

Return Type: Void

Privilege: Public

GetOneNotification - Used to wait for a notification to arrive. Starts a thread to wait,

which can be stopped by StopReceiving().

Arguments:

Return Type: GlStatus

Privilege: Protected

SetCallback - Used to change the callback that is used when a notification arrives.

Arguments: callback: GlCallback

Return Type: void

Privilege: Public

StartReceiving - Used by the client to control when notifications may be received. Must

be called after creation to enable reception of notifications.

Arguments:

Return Type: void

Privilege: Public

StopReceiving - Used to stop notifications from being sent to the callback. No

notifications can be received in this state.

Arguments:

Return Type: void

Privilege: Public

~DsClNotificationReceiver - Used to destroy a notification receiver.

Arguments:

Return Type: Void

Privilege: Public

4-50 305-CD-008-001

Associations:

The DsClNotificationReceiver class has associations with the following classes:
None

4.3.15 DsClQuery Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This public, local object simplifies the passing of query information from the client to the
dataserver. The object is created in client space. The contents of the object will be used to
create a Request object which will be passed to the dataserver. It is assumed that the "from"
clause of an SQL query is inherent in specification of the dataserver to which the query is
issued, that is, that the query is against "the inventory" of the dataserver. Any conversion
to actual table names which may be necessary is done transparently to the client software.

Attributes:

AttributesToReturn - This attribute represents the projection of the query (i.e. the "select"
clause from an SQL statement). It is implemented as a GlParameterList because it has
additional usage in the "inspecting" of the results of the query.
Data Type: GlParameterList
Privilege: Private
Default Value: ("all", char, "*")

Constraints - This attribute represents the constraints of a query (i.e. the "where" clause

of an SQL statement).

Data Type: GlParameterList

Privilege: Private

Default Value:

MaxHits - This attribute indicates the maximum number of granules to return (regardless

of the number of actual hits, i.e. the granules which satisfy the search criteria). Perhaps in

the future, this can be used to indicate the amount to check "estimated hits" against.

Data Type: int

Privilege: Private

Default Value:

QueryType - This attribute controls the scope of the query. DsTQueryType is an enum,

where the possible query types are Inventory and WorkingCollection. Issuing a query

against the inventory results in a search of the Inventory object. Issuing a query against the

4-51 305-CD-008-001

WorkingCollection results in a refinement of the existing collection. Issuing a query against

an empty WorkingCollection will return null.

Data Type: DsTQueryType

Privilege: Private

Default Value: Inventory

myLocalCallback - This attribute identifies the local callback routine to be invoked when

any status is returned relative to this query. This attribute is passed to the DsClRequest

object which is created from the DsClQuery object. The DsClRequest object will use this

information to relate status from the DsClSubmittedRequest to the DsClRequest object. As

far as the DsClQuery object is concerned, this is just a pass-through.

Data Type: GlCallback

Privilege: Private

Default Value:

myStatus - This attribute allows the object to maintain information on current status.

Data Type: GlStatus

Privilege: Private

Default Value:

Operations:

ConvertFromSQL - This operation is to support incoming SQL queries, in the case that some
client software somewhere generates only SQL.
Arguments: RWCString &
Return Type: GlStatus &
Privilege: Public

ConvertToCommand - This operation converts the information in the Query object to a

command format that is interpretable by the dataserver. The command is then packaged

in a Request object prior to returning.

Arguments: DsClRequest &

Return Type: DsClRequest &

Privilege: Protected

ConvertToSQL - This operation provides the DsClQuery object in SQL format to support

client software that can only deal with SQL queries.

Arguments: RWCString &

Return Type: RWCString &

Privilege: Public

DsClQuery
Arguments:

4-52 305-CD-008-001

Return Type: Void

Privilege: Public

DsClQuery - This version of the constructor takes the Constraints in the form of a

ParameterList and uses the default for the AttributesToReturn.

Arguments: GlParameterList &

Return Type: Void

Privilege: Public

GetAttributesToReturn - This operation returns the currently defined set of display

attributes for a search.

Arguments: GlParameterList &

Return Type: GlStatus &

Privilege: Public

GetCallback - This operation allows the client software to get the current setting of the

query callback.

Arguments: GlCallback &

Return Type: GlStatus &

Privilege: Public

GetConstraints - This operation returns the currently set list of user-defined query

constraints.

Arguments: GlParameterList &

Return Type: GlStatus &

Privilege: Public

GetMaxHits - This operation returns the current setting of MaxHits. For Release A,

MaxHits indicates the maximum number of rows to return (regardless of the actual number

found by the query). This is in keeping with the definition of MaxHits in V0. In the future,

it may be used to indicate the cutoff limit for running a query, i.e. if the estimated number

of hits is greater than MaxHits, then don't run the query.

Arguments: int &

Return Type: GlStatus &

Privilege: Public

GetQueryType - This operation returns the current setting for the QueryType.

Arguments:

Return Type: DsTQueryType

Privilege: Public

SetAttributesToReturn - This operations allows the client software to define a subset of

available attributes as the display attributes for the result of a search.

Arguments: GlParameterList &

4-53 305-CD-008-001

Return Type: GlStatus &

Privilege: Public

SetCallback - This operation allows the client software to specify a local callback for

queries so that the DsClESDTReferenceCollector object (which is distributed) can return

interim status information to the client software.

Arguments: GlCallback &

Return Type: GlStatus &

Privilege: Public

SetConstraints - This operation allows the client software to pass a list of user- specified

query constraints.

Arguments: GlParameterList &

Return Type: GlStatus &

Privilege: Public

SetMaxHits - This operations allows the client software to specify the number of rows to

return in response to a query (this per the current definition of MaxHits in V0). Perhaps in

the future it can be used to specify the number of hits to compare to a query estimator; in

that case the query will not execute if the anticipated number of result objects is greater than

the value in MaxHits.

Arguments: int

Return Type: GlStatus &

Privilege: Public

SetQueryType - This operation sets the scope of the query, i.e., run against the Inventory

or against the WorkingCollection.

Arguments: DsTQueryType

Return Type: GlStatus &

Privilege: Public

~DsClQuery
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClQuery class has associations with the following classes:
None

4-54 305-CD-008-001

4.3.16 DsClRequest Class

Parent Class: DsSrRequestBase
Public: No Distributed Object: No
Purpose and Description:
A specialization of DsRequest for client interfaces. Allows the client to compose a request
and submit it to the data server. Once submitted, the status may be polled, or a callback can
be provided that is triggered on every status change.

Attributes:

myCallback - Callback that will be made anytime the status changes.
Data Type: GlCallback
Privilege: Private
Default Value:

myCollector - Reference to the collector to which this request belongs.

Data Type: DsClESDTReferenceCollector *

Privilege: Private

Default Value:

myQuery - This is the query object associated with this request. The query object is

needed during a search request because the collector needs to look up the callback for the

query after it is called-back by the request when the search status changes.

Data Type: DsClQuery *

Privilege: Private

Default Value: NULL

mySubmittedFlag - Indicates whether this request has been submitted.

Data Type: RWBoolean

Privilege: Private

Default Value: FALSE

Operations:

Cancel - Used to cancel a request. If the request is not executing (i.e. it's queued), then it is
removed from the queue. If it is executing, it will be terminated after the current command
completes.
Arguments:
Return Type: GlStatus
Privilege: Public

4-55 305-CD-008-001

DsClRequest - Used to construct an "empty" request, which should be filled-in by calling

SetPriority (and other functions) and adding commands.

Arguments:

Return Type: Void

Privilege: Public

DsClRequest - Constructs a request with the given command and priority.

Arguments: cmd: DsClCommand *, pty: DsESrRequestPriority

Return Type: Void

Privilege: Public

GetQuery - Returns the current query object associated with this request.

Arguments:

Return Type: DsClQuery *

Privilege: Public

GetResults - Returns the current results list from the associated DsClSubmittedRequest.

Arguments:

Return Type: const GlParameterList &

Privilege: Public

SetQuery - Used to set the query object associated with this request. The query object is

needed during a search request because the collector needs to look up the callback for the

query after it is called-back by the request when the search status changes.

Arguments: DsClQuery *

Return Type: void

Privilege: Public

SetStatusCallback - Used to provide a client entry point to be called on every change of

the status of the request.

Arguments: GlCallback *

Return Type: void

Privilege: Public

Submit - Used to submit a request to be executed by a single, specific ESDT. The request

is in turn submitted to the "implied" DsClESDTReferenceCollector, i.e. the one the

DsClESDTReference holds a pointer to.

Arguments: DsClESDTReference &

Return Type: GlStatus

Privilege: Public

PDL:IF this request has already been submitted

RETURN code indicating request-already-submitted

ELSE

CALL DsClESDTReference::GetCollector to obtain the collector that contains it

CALL GlURVector to create a new domain vector

4-56 305-CD-008-001

CALL DsClESDTReference::GetUR to obtain the ESDT's UR

CALL GlURVector::insert to add the ESDT's UR to the domain vector

CALL DsClRequest::Submit with the collector and domain vector

END IF

Submit - Used to submit a request that is to be executed over an entire collector, e.g. a

search that adds/removes ESDTs or operation(s) to be performed by all of the ESDTs. A

request can be submitted to a specific subset of ESDTs in the collection by passing a

GlURVector with the URs of the desired ESDTs.

Arguments: DsClESDTReferenceCollector &, GlURVector * = NULL

Return Type: GlStatus

Privilege: Public

PDL:IF this request has already been submitted

RETURN code indicating request-already-submitted

ELSE

IF the domain vector pointer != NULL

CALL DsClRequest::SetDomain to set the domain for this request
END IF
CALL DsClESDTReferenceCollector::SubmitToServer to send this request to the server
END IF

Textify - Used to convert a request into a human-readable format.

Arguments:

Return Type: RWCString

Privilege: Public

~DsClRequest - Used to destroy a request.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsClRequest class has associations with the following classes:
DsClAction (Aggregation)

4.3.17 DsClRequestVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No

4-57 305-CD-008-001

Purpose and Description:

An instantiation of RWVector over DsClRequest.

Attributes:

None

Operations:

None

Associations:

The DsClRequestVector class has associations with the following classes:
DsClESDTReferenceCollector (Aggregation)

4.3.18 DsClSubmittedRequest Class

Parent Class: Not Applicable
Public: No Distributed Object: Yes
Persistent Class: True
Purpose and Description:
This class is used when a client request is submitted to the data server. It represents the
"distributedness" of a request, and manages communication between the real request on the
server and the client's request. It provides status to the DsClRequest when the client
inquires for it, or by using the callback. It also gives the client access to the results of the
request execution through DsClRequest.

Attributes:

myCallback - On the client side, this is the callback that is used every time the status changes
for this request.
Data Type: GlCallback
Privilege: Private
Default Value:

myConnection - The ID of the connection with which this request is associated.

Data Type: DsESrConnectionID

Privilege: Private

Default Value:

4-58 305-CD-008-001

myFinishTime - The date and time on which this request finished.

Data Type: RWTime

Privilege: Private

Default Value:

myID - The system-wide ID for this submitted request.

Data Type: DsClSubmittedRequestID

Privilege: Private

Default Value:

myInfo - This is the core information for this request.

Data Type: DsSrRequestInfo*

Privilege: Private

Default Value:

myResults - This is a list of results returned from the execution of a request. The

parameters in the list are really other GlParameterList's, one for each command in the

request. Each of these is composed of GlParameterList's, one for each ESDT in the

collection. It is filled in by the DsSdWorkingCollection.

Data Type: GlParameterList

Privilege: Private

Default Value:

myStatus - The current status of the request, updated as the request moves through the data

server and executes. A mirror of the status field in the real request.

Data Type: GlStatus

Privilege: Private

Default Value:

mySubmitTime - The date and time on which this request was submitted.

Data Type: RWTime

Privilege: Private

Default Value:

myUser - The user ID of the user who submitted the request.

Data Type: MSS_UserID

Privilege: Private

Default Value:

4-59 305-CD-008-001

Operations:

DsClSubmittedRequest - Constructs a submitted request with the given connection ID and
user ID. The DsClRequest is used to fill-in myInfo. mySubmitTime and myUR are
automatically filled-in from information available from the system.
Arguments: DsESrConnectionID, MSS_UserID, DsClRequest&
Return Type: Void
Privilege: Public

GetConnectionID - Used to retrieve the ID of the connection with which the request was

submitted.

Arguments:

Return Type: DsESrConnectionID

Privilege: Public

GetFinishTime - Used to obtain the date and time on which this request finished execution.

Arguments:

Return Type: RWTime

Privilege: Public

GetID - Returns the ID of this submitted request.

Arguments:

Return Type: DsClSubmittedRequestID

Privilege: Public

GetInfo - Used to retrieve a pointer to the core information for this request.

DsSrConnection (and its sub-classes) use this to construct each DsSrRequest.

Arguments:

Return Type: DsSrRequestInfo*

Privilege: Protected

GetResults - Returns a reference to the current results list.

server side.

Arguments:

Return Type: GlParameterList &

Privilege: Public

GetStatus - Returns the current status of the request.

Arguments:

Return Type: const GlStatus &

Privilege: Public

Results are updated on the

GetSubmitTime - Used to obtain the date and time on which this request was submitted.
Arguments:

4-60 305-CD-008-001

Return Type: RWTime

Privilege: Public

GetUser - Used to retrieve the ID of the user that submitted the request.

Arguments:

Return Type: MSS_UserID

Privilege: Public

SetCallback - Sets the value of the callback that is called every time the status of the

request changes.

Arguments: GlCallback

Return Type: void

Privilege: Public

SetPriority - Used by client software to set the priority of a request that has been submitted.

On the server side, access the core request information directly to set the priority.

Arguments: DsESrRequestPriority

Return Type: void

Privilege: Public

SetStatus - Used to set the status of the request. Used exclusively on the server side.

Arguments: GlStatus *

Return Type: void

Privilege: Public

WaitStatus - Used on the client side to initiate a thread that waits for a change in status in

the request. Whenever a change occurs (on the server side), this call will return and the

client may check its value.

Arguments:

Return Type: void

Privilege: Public

~DsClSubmittedRequest - Used to destroy a submitted request.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsClSubmittedRequest class has associations with the following classes:
Class: DsSrRequestBase

4-61 305-CD-008-001

4.3.19 DsClSubscription Class

Parent Class: Not Applicable
Public: Yes Distributed Object: No
Purpose and Description:
This class is the client side subscription which can either be created from advertisements or
from exisiting subscriptions from the server side (through a stream.)

Attributes:

myAction - The action to be performed when the subscription fires.
Data Type: DsClAction
Privilege: Protected
Default Value:

myCollector - A pointer to the collector that this reference is a member of. If this pointer

is null, then this reference is a member of one of the collectors in the static collector vector.

Data Type: DsClSubscriptionCollector&

Privilege: Protected

Default Value:

myDescription - String which contains service of the subscription.

Data Type: RWCString

Privilege: Protected

Default Value:

myDurationType - Time duration of subscriptions (i.e., can be done one time or forever

(outstanding).

Data Type: enum DsEClSubscriptionType

Privilege: Protected

Default Value: {ONCE, OUTSTANDING}

myExpirationDate - Identifies when this subscription will expire and be removed from the

system. The value may be "never" (i.e. the subscription is permanent)

Data Type: RWDate

Privilege: Protected

Default Value:

mySubmittedFlag - Flag which shows whether the subscription has been submitted or not.

Data Type: RWBoolean

Privilege: Protected

Default Value: RWTrue

4-62 305-CD-008-001

myUserInfo - Client information, provided by client software.

Data Type: DsClClient&

Privilege: Protected

Default Value:

ourCollectorvector - Static vector of pointers to DsClSubscriptionCollector objects, one

per dataserver.

Data Type: DsClSubscriptionCollectorVector &

Privilege: Protected

Default Value:

This is a Class Attribute.

Operations:

DsClSubscription
Arguments:

Return Type: Void

Privilege: Public

DsClSubscription - Constructor for client software (therefore, public) which gets attribute

information from advertisements, such as service provider. If no collector has been

provided, it goes and finds one, based on the static nature of the collector.

Arguments: userinfo, Advertisement&, DsClSubscriptionCollector&

Return Type: Void

Privilege: Public

DsClSubscription - Constructor for already existing collector which gets already existing

subscriptions from the sever side through a stream.

Arguments: submittedflag, DsClSubscriptionCollector&, Stream

Return Type: Void

Privilege: Public

GetAction - Means of accessing myAction attribute (object), which will be communicated

to the server what this subscription should do when it fires.

Arguments: DsClAction &

Return Type: void

Privilege: Public

GetDescriptoin - Returns description, containing the service, as a roquewave string.

Arguments:

Return Type: RWCString

Privilege: Public

4-63 305-CD-008-001

GetDurationtype - Accesses myDurationType attribute as to whether subscriptions are

done one time or forever (outstanding).

Arguments:

Return Type: DsEClSubscriptionType

Privilege: Public

GetExpirationdate - Public access to myExpirationDate attribute, which provides the

expiration date of the subscription.

Arguments:

Return Type: RWDate

Privilege: Public

GetSubmittedflag - Public access to flag as to whether a subscription has been submitted.

Arguments:

Return Type: RWBoolean

Privilege: Private

GetUserinfo - Public access to user information which can be put into the DsSrClient

object.

Arguments: GLClient&

Return Type: Void

Privilege: Public

SetAction - Sets the myAction attribute for this particular subscription as determined by

the client software.

Arguments: DsClAction&

Return Type: void

Privilege: Public

SetDescription - Allows the client software to fill in the Description attribute with service

information.

Arguments: RWCString

Return Type: void

Privilege: Public

SetDurationType - Sets the attribute which determines the existence type of the

subscription.

Arguments: DsEClSubscriptionType

Return Type: void

Privilege: Public

SetExpirationDate - Sets the expiration date of the subscription itself.

Arguments: RWDate

Return Type: void

Privilege: Public

4-64 305-CD-008-001

SetSubmittedFlag - Sets the flag which indicates whether or not the DsClSubscription has

actually been submitted to the dataserver (i.e. the client software is finished with filling in

the information, and has invoked the Submit method).

Arguments: RWBoolean

Return Type: void

Privilege: Public

Submit - Submits subscription to the subscription collector.

Arguments:

Return Type: GlStatus&

Privilege: Public

Withdraw - Deletes a subscription from the subscription collector.

Arguments:

Return Type: GlStatus&

Privilege: Public

~DsClSubscription
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsClSubscription class has associations with the following classes:
None

4.3.20 DsClSubscriptionCollector Class

Parent Class: DsClCollector
Public: No Distributed Object: Yes
Purpose and Description:
This public, distributed class is a specialization of the Collector class which handles
DsClSubscriptions. This class provides, in addition to the normal vector operations, the
ability to create a list of all subscriptions for a given user or advertisement, and a means of
submitting and cancelling subscriptions. There are no attributes for this object.

4-65 305-CD-008-001

Attributes:

myStatus - This attribute allows the object to maintain information on current status.
Data Type: GlStatus
Privilege: Private
Default Value:

Operations:

BuildList - This operation creates a list of all subscriptions for a given event.
Arguments: Advertisement&
Return Type: const GlStatus &
Privilege: Public

BuildList
Arguments: MSS_UserProfile &

Return Type: const GlStatus &

Privilege: Public

CancelSubscription - This operation creates a request to cancel the specified subscription.

Arguments: DsClSubscription*

Return Type: const GlStatus &

Privilege: Private

CreateSubscription
Arguments: RWBoolean SubmittedFlag, istream &Stream, DsClSubscriptionCollector

*me

Return Type: DsClSubscription*

Privilege: Private

DsClSubscriptionCollector
Arguments: GlUR &dataserver, MSS_UserProfile &

Return Type: Void

Privilege: Public

~DsClSubscriptionCollector
Arguments:
Return Type: Void
Privilege: Public

4-66 305-CD-008-001

Associations:

The DsClSubscriptionCollector class has associations with the following classes:
None

4.3.21 DsClTypeInfo Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This private, local object provides the place for information related to a type of ESDT to
be stored. This information all comes from the Descriptor. This information will be stored
only once per Descriptor (i.e. product type) and referenced by all the ESDTReferences of
that type. This object contains a DsSdTypeID, which provides the name and version for
this type.

Attributes:

myMetadata - This attribute holds the metadata attributes which apply to all objects of the
given type. This metadata is both the core and the product specific metadata for this
granule.
Data Type: GlParameterList
Privilege: Private
Default Value:

myQueryableParameters - This attribute contains the list of attribute names for ESDT's

of this type. This list allows the client software to determine which attributes to use in

certain services, such as Inspect.

Data Type: GlParameterList

Privilege: Private

Default Value:

myScienceParameters - This attribute holds the Science Parameters from the Descriptor

for the ESDTReferences of this type. These are available for the client software to query

and use in constructing parameter lists for advertised services.

Data Type: GlParameterList

Privilege: Private

Default Value:

myStatus - This attribute allows the object to maintain information on current status.

Data Type: GlStatus

4-67 305-CD-008-001

Privilege: Private
Default Value:

Operations:

GetMetadata - This operation returns the GlParameterList which represents all the metadata
attributes for this granule, both Core and Product Specific.
Arguments: GlParameterList &
Return Type: GlStatus &
Privilege: Public

GetName - This operation returns the name from the DsGlTypeID object embedded in this

DsClTypeInfo object.

Arguments: RWCString &

Return Type: GlStatus &

Privilege: Public

GetQueryableParameters - This operation allows the client software to retrieve the list of

queryable parameters which apply to a specific ESDTReference. The information is

applicable to all ESDT's of the same type.

Arguments: GlParameterList &

Return Type: GlStatus &

Privilege: Public

GetScienceParameters - This operation returns the ParameterList which represents the

Science Parameters from the associated Descriptor.

Arguments: GlParameterList &

Return Type: GlStatus &

Privilege: Public

GetVersion - This object returns the version from the DsSdTypeID object embedded in

this DsClTypeInfo object.

Arguments: RWCString &

Return Type: GlStatus &

Privilege: Public

Associations:

The DsClTypeInfo class has associations with the following classes:
DsClESDTReferenceVector (Aggregation)

4-68 305-CD-008-001

4.3.22 DsCnConfiguration Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
Manages configuration parameters for various data server components in a token-value
style file. Often specialized where needed to provide higher level access to configuration
parameters.

Attributes:

myFile - The file with which this configuration object is associated.
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

Add - Add a token value to a configuration file under any section.
Arguments: const RWCString&, const RWCString&
Return Type: RWBoolean
Privilege: Public

Add - Add a token value to a configuration file under a specific section.

Arguments: const RWCString&, const RWCString&, const RWCString&

Return Type: RWBoolean

Privilege: Public

DsSdConfiguration
Arguments: const RWCString&

Get - Used to acquire a token value out of a file. Meant to be used as a general means to

get tokens out of files, but in this case is used for configuration-like files.

Arguments: const RWCString&

Return Type: const RWString

Privilege: Public

Get - Used to acquire a token value from any configuration-like file. This particular

function takes care of the case when a specific section is specified.

Arguments: const RWCString&, const RWCString&

4-69 305-CD-008-001

Return Type: const RWString

Privilege: Public

GetSectionToken - This is a general section parser from a file. It can parse multiple

sections from a file line.

Arguments: const RWCString&, RWCString&

Return Type: RWBoolean

Privilege: Protected

ReDoFile - Rewrites a file at the system level after lines have been modified, added, or

deleted.

Arguments:

Return Type: const RWBoolean

Privilege: Protected

Remove - Removes a line matching an input token key under any section.

Arguments: const RWCString&

Return Type: RWBoolean

Privilege: Public

Remove - Remove a configuration file line matching an input token key under a specific

section.

Arguments: const RWCString&, const RWCString&

Return Type: RWBoolean

Privilege: Public

Update - Update a line in a configuration file given a specific key with which to update.

This occurs for any section.

Arguments: const RWCString&, const RWCString&

Return Type: RWBoolean

Privilege: Public

Update - Update a line in a configuration given an input key under a specific section.

Arguments: const RWCString&, const RWCString&, const RWCString&

Return Type: RWBoolean

Privilege: Public

~DsSdConfiguration
Arguments:

4-70 305-CD-008-001

Associations:

The DsCnConfiguration class has associations with the following classes:
None

4.3.23 DsCnDSSConfiguration Class

Parent Class: DsCnConfiguration
Public: No Distributed Object: No
Purpose and Description:
This is a datserver configuration startup class that starts processes as defined in a
configuration file.

Attributes:

All Attributes inherited from parent class

Operations:

GetProcessesToStart - Uses the base configuration class to read processes from a file in order
to initiate processes in that file.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCnDSSConfiguration class has associations with the following classes:
Class: DsCnDSSStartup enquires

4.3.24 DsCnDSSStartup Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This starts up all processes for a particular dataserver by enquiring a particular
configuration file and initializing/restarting ESDTs.

4-71 305-CD-008-001

Attributes:

None

Operations:

InitializeESDTs - Creates descriptors for each type in configuration.
Arguments:
Return Type: RWBoolean
Privilege: Public

RestartESDTs - If something should happen to the advertisement server, then redo the

initialize ESDTs and "re-advertise" them.

Arguments:

Return Type: RWBoolean

Privilege: Public

StartProcesses - This is the means to interface with an MSS object which takes care of

initiating startup and shutdown procedures from a system-level perspective.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsCnDSSStartup class has associations with the following classes:
Class: DsCnDSSConfiguration enquires
Class: DsGeESDTConfiguration enquires
Class: DsDeESDTDescriptor initializes

4.3.25 DsCoCombination Class

Parent Class: DsNpNonECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
The class represents 'combined' products, generated using data from more than one satellite
or ground based instrument. An example would be the TRMM 2B-31 Level 2B product
generated using data from the PR or/and VIRS TRMM instruments.

4-72 305-CD-008-001

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsCoCombination class has associations with the following classes:
None

4.3.26 DsDbAccess Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
This object provides a layer of database-technology-independence to the dataserver
objects. Each object type in the dataserver is defined in this object (i.e. a given instantiation
of this object will collect the appropriate information about the provided object type from
the database and use that information to extract the appropriate data from the database to
fill in the attributes of the given object).

Attributes:

myAssociations - This attribute contains a list of table names with which the given
CollectableObject is associated. This attribute is assumed to be a one-to-one mapping with
the values in myForeignKeys, and it is further assumed that the order in which the
associated tables appear corresponds with the order of column names contained in attribute
myForeignKeys.
Data Type: RWTPtrOrderedVector<RWCString>
Privilege: Private
Default Value:

myDBConnections - This static attribute holds a set of database connections so that each
instantiation of the object can have immediate access to the database (i.e., without having
to login and open the database). This pool of database handles is established at dataserver
startup, and should have a configurable limit to be stored (that is, the actual number of
connections to create should be a configuration variable). This pool should be removed

4-73 305-CD-008-001

(each connection closed) at destructor time. In case of a crash, Sybase will probably clean

up broken connections anyway, so this case can be ignored. If Sybase does NOT clean up

broken connections, then whatever process is the norm for doing so (manual or otherwise)

can be used.

Data Type: RWTPtrOrderedVector<DsDbInterface>

Privilege: Private

Default Value:

This is a Class Attribute.

This is a Derived Attribute.

myDatabase - This is a derived attribute in that it is not stored anywhere. It is static

because all objects in the Dataserver will be stored in the same database. This attribute is

used to open the database after a connection (login) to the server has been established.

Data Type: RWCString & DBName

Privilege: Private

Default Value:

This is a Class Attribute.

This is a Derived Attribute.

myForeighKeys - This attribute contains a list of column names which are the primary

keys for the tables with which the given CollectableObject is associated. This attribute is

assumed to be a one-to-one mapping with the values in myAssociations, and it is further

assumed that the order in which the column names appear corresponds with the order of

associated tables contained in attribute myAssociations.

Data Type: RWTPtrOrderedVector<RWCString>

Privilege: Private

Default Value:

myIndexableColumns - This attribute contains a list of column names indicating which of

the attributes of the given CollectableObject type are stored separately from the rest of the

object. This allows indexes to be built on these fields. It also allows human perusal of the

values. It also allows joins on these fields. The fields in this list do not necessarily have

indexes built on them, as they may appear hear for one of the latter two reasons.

Data Type: RWTPtrOrderedVector<RWCString>

Privilege: Private

Default Value:

myLocation - This attribute identifies either the table name (for objects which are stored

in a DBMS) or the file (?path) name (for objects which are stored as files).

Data Type: RWCString

Privilege: Private

Default Value:

myObjectIdentifier - This attribute is used for those accesses which require the storing or

retrieval of a specific object (i.e. a specific instantation of the given class). The value in

4-74 305-CD-008-001

this object is used as a qualifier in selecting from the underlying database.

Data Type: int

Privilege: Private

Default Value:

myObjectType - This attribute indicates which of the dataserver objects is being handled

at this time. The object is known only by it's ancestor type CollectableObject at the time

that this object (DsDbAccess) is created. Each CollectableObject must be capable of

identifying its type. The value of this attribute allows the DsDbAccess object to know the

values for the rest of the attributes. Based on the ObjectType, DsDbAccess can read the

corresponding control information (rest of attributes) from the underlying database.

Data Type: DsEDbObjectType

Privilege: Private

Default Value:

myPersistenceType - This attribute identifies whether the given CollectableObject is to be

stored in a DBMS or in a file.

Data Type: DsEDbPersistenceType

Privilege: Private

Default Value:

myPrimaryKey - This attribute identifies which of the given CollectableObject's attributes

is to be used as a Primary Key for selecting information about this type of object. This

attribute will store the DBMS column name of the PK column in table "myLocation".

Data Type: RWCString

Privilege: Private

Default Value: myObjectIdentifier

myStuff - This attribute represents the given CollectableObject type in binary. This

attribute is not human readable, can not be indexed, and can not be used in joins.

Data Type: binary

Privilege: Private

Default Value:

Operations:

CloseDatabase - This protected operation allows this object to close all database connections
on system shutdown. This is a class operation because the pool of database handles is
static.
Arguments:
Return Type: const GlStatus &
Privilege: Protected
This is a Class Operation.

4-75 305-CD-008-001

DsDbAccess - The default constructor allows users of this object to create an empty one

in the case where specific values are to be found. An empty DsDbAccess object is created,

then the actual values in the CollectableObject which identify the data to be used can be

identified at a later time.

Arguments:

Return Type: Void

Privilege: Public

DsDbAccess - This version of the constructor takes the partially filled in CollectableObject

(which contains, at a minimum, the object type), and fills the object attributes prior to

returning.

Arguments: CollectableObject &

Return Type: Void

Privilege: Public

Fill - This operation supplies this object with the partially filled-in CollectableObject such

that this object (DsDbAccess) can find the data for the attributes of the CollectableObject.

For example, a given CollectableObject may contain an attribute called "name" which is

used to identify which instance is desired. The DsDbAccess object will find out what the

type of the Collectable Object is, get the definition information for that type of object,

identify that "name" is the primary key, and then construct a query using the supplied value

for "name" to get the rest of the data which corresponds to that name. This operation

returns the entire object in a binary stream. The calling object is responsible for interpreting

the stream according to its internal structure.

Arguments: const CollectableObject &, ostream &

Return Type: const GlStatus &

Privilege: Public

PDL:DsDbAccess::Fill(CollectableObject&, ostream &)

This operation is invoked when a previously-stored dataserver object is created.

The calling operation (which may be the constructor of the object) provides the

reference to the object. The calling operation has filled in those attributes

(from among the ones defined as "indexable") which will be used to identify

this object.

This operation uses the configuration information for the given object type and

the values supplied for this instance of the object type to construct a database

query. The configuration information includes an indicator of whether or not

an object can receive more than one result from the database. The results of

the query are sent to the stream provided as an input parameter. The calling

operation must have an operation to reconstruct as necessary from a stream.

This operation puts the results of the query via the stream parameter and

returns a GlStatus object. If an object is defined as unit-level (that is,

4-76 305-CD-008-001

"filling" the object involves finding a single entry in the database) and the
results of the query are not unit-level, the status will indicate an error.

SEQUENCE:
Get the object's type
Get the configuration information for that object type
Construct the projection of the query from the configuration information,

i.e., ("Select ", Config->myStuff)
Construct the location of the query from the configuration information,

i.e., ("from ", Config->Location)
Construct the restriction of the query from the supplied attributes,

i.e., ("where ")
FOR (each of the type's indexable columns)

IF (the supplied attribute is not null)
IF (this is not the first constraint)

Append a conjuctive to the query,
i.e., (" AND ")

END IF
Append a constraint to the query
EXAMPLE:

(Config->myIndexables->thisColumn,
Config->myIndexables->operator,

//(" = ", or " > ", etc.)
CollectableObject->(thisColumn))

becomes
(TypeCode, "=", Object->TypeID->myCode)

becomes
"TypeCode = 5"

END EXAMPLE
END IF

END FOR
Create a DsDbInterface object
Submit the query to the DsDbInterface object
IF (the configuration information indicates "set" level return values)

Get the results from the DsDbInterface routine which returns a vector of
results

Bind the return vector to the stream parameter supplied to this operation
ELSE

Get the results from the DsDbInterface routine which returns a single
result

Bind the return result to the stream parameter supplied to this operation
END IF
Set the GlStatus object to reflect the current status
Return the GlStatus object

END SEQUENCE

4-77 305-CD-008-001

GetDBHandle - This internal operation is used by the object on construction, to get the

next available DB handle from the static pool of handles. This handle is then used for all

the database operations performed by this instantiation.

Arguments:

Return Type: DsDbConnection

Privilege: Protected

NextTypeCode - This operation gets a unique code for a new (previously not existing)

TypeID.

Arguments:

Return Type: int

Privilege: Public

OpenDatabase - This protected operation allows this object to establish a pool of

connections to the database upon system startup. This is a class operation because the pool

of database handles is static.

Arguments:

Return Type: const GlStatus &

Privilege: Protected

This is a Class Operation.

ReturnDBHandle - This internal operation is used by the object on destruction, to return

the handle it used to the pool of available handles, so that another instantiation can use it.

Arguments: DsDbInterface

Return Type: const GlStatus &

Privilege: Protected

Store. - This operation takes the data in the provided CollectableObject and inserts it to the

database according to the definition information which is recorded for the

CollectableObject's type. This operation returns the ObjectID which is assigned by the

DBMS.

Arguments: const CollectableObject &

Return Type: int

Privilege: Public

PDL:DsDbAccess::Store(CollectableObject&)

This operation is invoked when a dataserver object which is identified as being

persistent is created in full (i.e. has all attributes set, as opposed to just

having the object constructed). The calling operation (which may be the

constructor of the object) provides the reference to the object.

This operation uses the configuration information for the given object type and

the values supplied for this instance of the object type to construct a

database insert statement.

4-78 305-CD-008-001

This operation returns a GlStatus object.

SEQUENCE:
Get the object's type
Get the configuration information for that object type
Construct the projection of the statement from the configuration information,

i.e., ("Insert ")
Construct the location of the statement from the configuration information,

i.e., (Config->Location)
Construct the restriction of the statement from the supplied attributes,

i.e., ("values ")
FOR (each of the type's indexable columns)

Append a value to the query, i.e., ("XXX, ")

END FOR

Create a DsDbInterface object

Submit the statement to the DsDbInterface object

Set the GlStatus object to reflect the current status

Return the GlStatus object

END SEQUENCE

UnStore - This operation removes the information of the current object from the

persistence store. It does *not* remove the object from existence, that is, it simply makes

the object volatile, that is, not persistent. The local object which has been "UnStore"d

should not use any persistence-related attributes (ObjectID) or make any assumptions that

previously associated objects will continue to "know" about this object. This bi-level

removal of an object from the persistent store is to provide greater control in the object

itself, that is, an object may have reason to be not-persistent at some point.

Arguments: CollectableObject &

Return Type: const GlStatus &

Privilege: Public

Update - This operation allows the object to change values of attributes without changing

the identity of the object itself. Attempting to change the attribute(s) which constitute the

primary key for the object is an error.

Arguments: const CollectableObject &, istream &

Return Type: const GlStatus &

Privilege: Public

~DsDbAccess - The destructor closes the database connection (returns the handle) and

anything else that is necessary.

Arguments:

Return Type: Void

Privilege: Public

4-79 305-CD-008-001

Associations:

The DsDbAccess class has associations with the following classes:
Class: DsDbInterface

4.3.27 DsDbAttributeToTableVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
This class contains the mappings of attributes to tables and columns within the database.
This class contains default locations for each attribute but also allows the table and column
names for an attribute to be overloaded on a product basis.

Attributes:

myAttributeToTableVector - This vector holds the mappings of attributes to table and
column names.
Data Type: DsTMdAttributeTableXrefList
Privilege: Private
Default Value: null

Operations:

GetTableColumnName - This method takes a DsTMdAttributeXref structure with the
product and attribute name filled in and updates the stucture adding the table and column
names.
Arguments: DsTMdAttributeTableXref& attribute, DsMdDbConnection& connection
Return Type: GlStatus
Privilege: Public

Initialize - This method queries the DsMdAttributeTableXref table and builds the

myAttributeToTableVector. This vector will hold all the mappings for the Catalog.

Arguments: DsMdDbConnection& connection

Return Type: GlStatus

Privilege: Public

4-80 305-CD-008-001

PutTableColumnNames - This method adds a row to the DsMdAttributeTableXref table

using the information passed in through the DsTMdAttributeXref structure.

Arguments: DsTMdAttributeTableXref& newAttribute, DsMdDbConnection&

connection

Return Type: GlStatus

Privilege: Public

UpdateTableColumnName - This method uses the product and attribute values in the

DsTMdAttributeXref structure to identify a row in the DsMdAttributeTableXref table and

update it to the table and column names provided in the structure.

Arguments: DsTMdAttributeTableXref& attribute, DsMdDbConnection& connection

Return Type: GlStatus

Privilege: Public

Associations:

The DsDbAttributeToTableVector class has associations with the following classes:
Class: DsDbInterface

4.3.28 DsDbEngine Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class represents the Sybase SQL server COTS product.

Attributes:

None

Operations:

None

Associations:

The DsDbEngine class has associations with the following classes:
Class: DsDbInterface

4-81 305-CD-008-001

4.3.29 DsDbGranuleToDbVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
This class holds the mappings of granules to databases. The class allows for granules to be
partitioned based upon product type and temporal range.

Attributes:

myGranuleToDBVector - This attribute holds the mappings of granules to database names.
Data Type: DsMdProductDbXrefList
Privilege: Private
Default Value: NULL

Operations:

GetProductDb
Arguments: DsTMdProductDbXref& product, DsTMdProductDbXrefList& result,

DsMdDbConnection& c onnection

Initialize - This method queries the DsMdProductDbXref table and populates the

myGranuleToDbList with all the mapping for the catalog.

Arguments: DsMdConnection& connection

Return Type: GlStatus

Privilege: Public

PutProductDb - This method adds a new product to database row to the

DsMdProductDbXref table.

Arguments: DsTMdProductDbXrefList& productDbList, DsMdDbConnection&

connection

Return Type: GlStatus

Privilege: Public

UpdateProductDb - This method updates the rows of the DsMdProductDbXref table

associated with the product names supplied in the DsTMdProductDbXref structures in the

supplied list. The database name columns are changed to the database names in the

structures. If a DsTMdProductXref item doesn't exist in the table, it is added. This method

4-82 305-CD-008-001

operates on a list to assure that no overlap exists in the date ranges for a given product.

Arguments: DsTMdProductDbXrefList& productDbList, DsMdDbConnection&

connection

Return Type: GlStatus

Privilege: Public

Associations:

The DsDbGranuleToDbVector class has associations with the following classes:
Class: DsDbInterface

4.3.30 DsDbInterface Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This object provides a lower level database wrapper for system applications. It makes all
the product-dependent database client library calls transparent to the high level user. It is
mainly responsible for establishing, maintaining database connection, executing utility
query (e.g. open database, begin/end transaction) or user query (which returns data). The
result of user query can be retrieved one at a time through a generic interface to bind result
attribute data to user variables.

Attributes:

myCommand - Handle for last command executed. This is a COTS product specific item (e.g.
Sybase). It is hidden from caller for product transparency. The SQL statement specified by
caller during ExecuteQuery() call is embedded inside the command structure.
Data Type: CS_COMMAND*
Privilege: Private
Default Value: null

myConnection - Handle to the current database connection. This is a COTS specific (in

this case - Sybase) data structure. It is hidden from the caller for product transparency.

Data Type: CS_CONNECTION*

Privilege: Private

Default Value: null

myContext - Database client-library programming context.

Data Type: CS_CONTEXT*

4-83 305-CD-008-001

Privilege: Private

Default Value: null

myExecStatus - Current database command execution status.

Data Type: DsTDbExecStatus

Privilege: Private

Default Value: EXEC_NONE

myPassWord - User password for database connection. It is expected to be set during the

Connect() operation.

Data Type: char*

Privilege: Private

Default Value: null

myServerName - Server name for database connection (e.g. SYBASE for default Sybase

server). It is expected to be set in the Connect() operation.

Data Type: char*

Privilege: Private

Default Value: null

myState - Current database connection state.

Data Type: DsTDbConnectionState

Privilege: Private

Default Value: NOT_CONNECTED

myUserName - User id for database connection. It is expected to be set during the

Connect() operation.

Data Type: char*

Privilege: Private

Default Value: null

Operations:

Connect - This operation establishes a database connection by logging to the specified
database server and sets the appropriate parameters. An error condition will be sent if the
connection fails. It is expected that this operation is invoked only when a thread of database
accesses are to be started. Connect/DisConnect for each individual database access is
prohibitively expensive.
Arguments: char* userName, char* password, char* serverName
Return Type: GlStatus
Privilege: Public

4-84 305-CD-008-001

ConnectionState - This operation returns the current databse connection status.

Arguments:

Return Type: DsTDbConnectionState

Privilege: Public

Disconnect - This operation disconnects an established database connection, resets ths

state parameters and cleans up internal data structures if appropriate. It is expected that this

operation to be invoked only when an application finishes all the databse access tasks.

Connect/DisConnect for each individual database access can be prohibitively expensive.

Arguments:

Return Type: GlStatus

Privilege: Public

DsDbInterface - Constructor to setup default values for state variables.

Arguments:

Return Type: Void

Privilege: Public

Execute - This operation allows caller to send a SQL statement and executes the command

on their behalf. The execution status will be returned. It does not differentiate between

utility command (no result data, e.g. open db, begin transaction,...) and regular query. The

regular query upon return sets up an internal handle and the result can be retrieved through

FetchQueryResult() calls.

Arguments: char* SQLCmd

Return Type: DsTDbExecStatus

Privilege: Public

ExecutionStatus - This operation returns the query execution status for the last

ExecuteQuery() call.

Arguments:

Return Type: DsTDbExecStatus

Privilege: Public

FetchQueryResult - This operation is another interface to retrieve query result. It allows

direct binding from a result row to application variables. The pointers (void*) for those

application variables are contained the vector argument, and the binding will directly copy

values from a result row to those variable pointers. Note that the caller is responsible for

setting the pointers in the vector in the exact same order as what's described in the SQL

select statement. The binding occurred here is not responsible for checking the type and

length of each variables since no such descriptor information is available at this level.

Arguments: RWTPtrOrderedVector<void*>& result

Return Type: DsTDbExecStatus

Privilege: Public

4-85 305-CD-008-001

FetchQueryResult - This operation fetches one row of query result and construct a

GlParameterList for it. Since more than one row may be contained in the result, caller is

expected to put this call into a loop and the loop tern]minates only when the return status

is EXEC_ENDOFRESULT. Note that it allocates memory space for each attribute value

field and store data in their native format (whatever is stored in the database). Caller is

responsible for cleaning up the allocated memory space in the GlParameterList.

Arguments: GlParameterList& result

Return Type: DsTDbExecStatus

Privilege: Public

ReConnect - This operation reestablishes a databse connection if needed. ReConnect()

uses the state information saved internally for the connection.

Arguments:

Return Type: GlStatus

Privilege: Public

VerifyConnection - This operation checks the current connection and reconnects if

necessary. This is recommended before each ExecuteQuery() call to make sure the database

conenction is alive.

Arguments:

Return Type: GlStatus

Privilege: Public

~DsDbInterface - Destructor to close any database connection if necessary and deallocate

any in-memory data structures.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDbInterface class has associations with the following classes:
Class: DsDbAccess
Class: DsDbAttributeToTableVector
Class: DsDbEngine
Class: DsDbGranuleToDbVector

4.3.31 DsDeCoreValid Class

Parent Class: Not Applicable
Public: No Distributed Object: No

4-86 305-CD-008-001

Persistent Class: True

Purpose and Description:

This class contains validation information for a core metadata attribute. This class is used

to perform the first level of validation of that core metadata attribute. The validation

criteria is not based on a specific data type. For example, an attribute might be

DSSBeginningDate. The validation criteria at this level will simply ensure that the value

for this attribute is a valid date. Further validation is performed by the ValidVector class

based on the data type where the value of this attribute would be compared against the valid

starting date for this type. It is not necessary that each data type have validation criteria for

each attribute if the core validation criteria is sufficient.

Attributes:

myName - The name of the core metadata attribute for which this object has validation criteria.
Data Type: RWCString
Privilege: Private
Default Value:

myType - An enumerated value that identifies the type of this attribute. Valid types include

string, date, time, short, long, char, and double.

Data Type: DsTAttributeType

Privilege: Private

Default Value: STRING

myValid - Contains an object that has the criteria for validating this attribute.

Data Type: DsDeValid

Privilege: Private

Default Value:

Operations:

DsDeCoreValid - This constructor reads from the given stream to create an instance of this
class.
Arguments: from: istream &
Return Type: Void
Privilege: Public

Validate
Arguments: theName:RWCString&, theValue:RWCString &

~DsDeCoreValid - There is no specific implementation for this destructor.
Arguments:

4-87 305-CD-008-001

Return Type: Void
Privilege: Public

Associations:

The DsDeCoreValid class has associations with the following classes:
DsDeCoreValidVector (Aggregation)

4.3.32 DsDeCoreValidVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class contains a collection of CoreValid objects. This class provides services that
operate over the collection. The DsDeCoreValidVector class is derived from a standard
Rogue Wave vector class.

Attributes:

None

Operations:

DsDeCoreValidVector - This constructor reads the section of the descriptor that contains core
valid entries until the end of that section is detected. Core Valid objects are created and
added to the vector.
Arguments: from: istream &
Return Type: Void
Privilege: Public

Find - This service finds a core valid entry with the given name. The implementation of

this method is inherent in the Rogue Wave class that this is derived from.

Arguments: myName: RWCString

Return Type: DsDeCoreValid *

Privilege: Public

Validate - This method takes a stream containing P=V metadata. It looks at each entry one

at a time and finds the associated CoreValid object in its vector. Then it uses the validate

service of that object. The GlStatus parameter is updated with errors during the process.

Arguments: myCoreMetadata:istream &, GlStatus &

4-88 305-CD-008-001

Return Type: RWBoolean
Privilege: Public

~DsDeCoreValids
Arguments:

Associations:

The DsDeCoreValidVector class has associations with the following classes:
Class: DsDeESDTDescriptor hascoremetadatavalidsfor - The CoreValidVector class
contains metadata validation criteria for many data type level ESDT Descriptors. The
purpose of this relationship is to allow some validation that is the same for all data types to
be shared, thus reducing duplication of information within the descriptors.

4.3.33 DsDeDD Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class contains Data Dictionary information that are specific to this data type. This
information is exported to the Data Management Subsystem.

Attributes:

myDescription - Detailed information that is exported to the Data Management Subsystem
which describes contents, formats, valid values, etc.
Data Type: RWCString
Privilege: Private
Default Value: NULL

myName - The name of this data dictionary entry.

Data Type: RWCString

Privilege: Private

Default Value:

Operations:

DsDeDD - This constructor reads from the given stream to construct itself. The stream has well
defined attributes in an ODL format that this object knows how to interpret.

4-89 305-CD-008-001

Arguments: from: istream &

Return Type: Void

Privilege: Public

ExportDD - This service is used to export this data dictionary entry to the Data

Management subsystem.

Arguments:

Return Type: GlStatus

Privilege: Public

GetName - This service returns the value in the myName private attribute.

Arguments:

Return Type: RWCString &

Privilege: Public

~DsDeDD - The destructor for this object has no special implementation.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDeDD class has associations with the following classes:
DsDeDDVector (Aggregation)

4.3.34 DsDeDDVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class contains a collection of Data Dictionary objects that are specific to this
descriptors type. This class provides services that operate over the collection. The
DsDeDDVector class is derived from a standard Rogue Wave vector class.

Attributes:

None

4-90 305-CD-008-001

Operations:

DsDeDDVector - This constructor reads the section of the descriptor that contains Data
Dictionary information until the end of that section is detected. DsDeDD objects are
created and added to the vector.
Arguments: from: istream &
Return Type: Void
Privilege: Public

ExportDD - This service iterates over all of the objects in its contents and exports each one

to the Data Management Subsystem.

Arguments:

Return Type: GlStatus

Privilege: Public

Find - This service finds a DsDeDD instance that has the given name. A pointer to this

instance is returned. If a DsDeDD object with this name is not found, then the pointer is

NULL.

Arguments: theName: RWCString &

Return Type: DsDeDD

Privilege: Public

~DsDeDDVector - The destructor destroys all of the objects in its contents and then

destroys itself.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDeDDVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4.3.35 DsDeESDTDescriptor Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
To describe the content, structure and behavior of an ESDT. The schema provides a
software description of each ESDT that a data server provides. The description includes
the structure and services available for each ESDT.

4-91 305-CD-008-001

Attributes:

myAdvertisedServices - Services that the associated ESDT provides that are advertised.
Data Type: DsDeServiceVector
Privilege: Private
Default Value:

myCoreMetadataConfiguration -

Data Type: DsDeMetadataDefVector

Privilege: Private

Default Value:

myDataDictionaryInfo - The description of the ESDT that this ESDT descriptor defines.

Data Type: DsDeDDVector

Privilege: Private

Default Value:

myEvents - Services of this specific ESDT that can have subscriptions against their

invokation. For example, the insert service may be subscribable and the browse service

may not be subscribable for the CER07 ESDT.

Data Type: DsDeEventVector

Privilege: Private

Default Value:

myProductMetadataConfiguration - Contains the name, validation information, and

type for product specific metadata attributes. Also contains a mapping of these attributes

to inventory attributes.

Data Type: DsDeMetadataDefVector

Privilege: Private

Default Value:

myScienceParameters - Specification of the parameters within the data that each granule

of this type has. This includes information related to the parameter names, their types and

their locations in the granule.

Data Type: DsDeScienceParameterVector

Privilege: Private

Default Value:

myStaticMetadata -

Data Type: DsDeStaticMetadataVector

Privilege: Private

Default Value:

4-92 305-CD-008-001

myStatus -

Data Type: GlStatus

Privilege: Private

Default Value:

myType - The specific data type that this ESDT Descriptor defines.

Data Type: DsGeTypeID

Privilege: Private

Default Value:

myValids - Valid values for each parameter that will potentially be validated.

Data Type: RWVector<DsDeValid>

Privilege: Private

Default Value:

ourCoreValids -

Data Type: DsDeCoreValidVector

Privilege: Private

Default Value:

Operations:

ConvertToPlist - This service converts the given metadata entries to a parameter list. The
given parameter list is filled in with this information.
Arguments: theMD:istream &, theList:GlParameterList &
Return Type: void
Privilege: Public

DsDeESDTDescriptor - The constructor for the descriptor. The TypeID argument must

specify the name of the ESDT and optionally its version. If the version is empty, then the

most recent version will be used.

Arguments: theType: DsGeTypeID &

Return Type: Void

Privilege: Public

Externalize - This service is used to create an external representation of the ESDT

Descriptor. This is most likely an ASCII file.

Arguments: ostream

Return Type: RWBoolean

Privilege: Public

GetCollectionGroup - This service creates a parameter list containing the static metadata

for this data type. The return value indicates whether the service completed successfully

4-93 305-CD-008-001

or not. If it did not, then the GlStatus parameter will reflect the problems/errors.

Arguments: staticMD: GlParameterList&, status:GlStatus &

Return Type: RWBoolean

Privilege: Public

GetMCF - This service streams the Metadata Configuration information to the given

ostream. This is done by telling the MetadataDefVector to externalize itself to the stream.

Arguments: theMCF: ostream &

Return Type: void

Privilege: Public

GetParameter - This service is used to get the name of a well-known parameter. The given

enumerated type can be FILENAME or CHECKSUM.

Arguments: name: DsTpname

Return Type: RWCString

Privilege: Public

GetQueryableParameters - This service is used to get the list of attributes that are

queryable for the data type. This is accomplished by getting the set of queryable parameters

from the MetadataDefVector.

Arguments: theParameters: GlParameterList &

Return Type: void

Privilege: Public

Initialize - This service performs the initialization of this data type. This includes creating

and registering events via the EventVector and creating and registering advertisements via

the ServiceVector. The expectation is that this service is only used upon startup or

configuration of a new data type.

Arguments:

Return Type: RWBoolean

Privilege: Public

Internalize - This service is used to add a new descriptor from a file in support of the

function of adding new data types. The file must have the appropriate format.

Arguments: theDef: istream &

Return Type: GlStatus

Privilege: Public

Validate - This service is used to validate a set of P=V metadata. This is done by a 2 step

validation process. First, the core metadata validation is done to check that the given

metadata at least meets that criteria. Then a validation that is specific to this data type is

done where the validation criteria is more restrictive than the core validation.

Arguments: MetadataFile, GlStatus &

Return Type: RWBoolean

Privilege: Public

4-94 305-CD-008-001

PDL:

DsDeESDTDescriptor::Validate(istream &theMetadata, GlStatus &theStatus)

This operation takes the given metadata which is in a P=V format and
validates that 1)all attributes are valid and 2)all required attributes
are present. The GlStatus object is filled with any problems

SEQUENCE
Validate theMetadata against the DsDeCoreValidVector
Validate theMetadata against the DsDeValidVector
Determine if all mandatory values are in theMetadata
IF any of the above returned FALSE it means validation failed
RETURN FALSE

ELSE
RETURN TRUE

END SEQUENCE

Validate - This service validates the given Command by finding the DsDeService vector

that matches the service in the command and then asking the service to validate the

parameters within the command. The return value indicates whether the command is valid

or not. If the command is invalid, the given GlStatus parameter indicates the reason that

the command failed validation.

Arguments: theCmd: DsSrCommand, status: GlStatus &

Return Type: RWBoolean

Privilege: Public

Withdraw - This service is used to remove this data type from the set of configured data

types for this DSS. This is the opposite of the initialization for an ESDT Descriptor. The

advertisements are withdrawn and the events are unregistered.

Arguments:

Return Type: RWBoolean

Privilege: Public

~DsDeESDTDescriptor - The destructor for this class has no specific implementation.

Arguments:

Return Type: Void

Privilege: Public

4-95 305-CD-008-001

Associations:

The DsDeESDTDescriptor class has associations with the following classes:
Class: DsGeESDT
Class: DsGeESDTEventTable creates - The ESDTDescriptor creates the ESDTEventTable
upon startup. This table has events that the ESDT instances will notice and report their
occurrence so that subscriptions can be fulfilled. The ESDTDescriptor also uses the
ESDTEventTable when shutdown occurs. The events must be located in the table and
unregistered.
Class: DsDeCoreValidVector hascoremetadatavalidsfor - The CoreValidVector class
contains metadata validation criteria for many data type level ESDT Descriptors. The
purpose of this relationship is to allow some validation that is the same for all data types to
be shared, thus reducing duplication of information within the descriptors.
Class: DsSbEvent registers - The ESDTDescriptor creates and registeres events with the
subscription server. These events are one of the mechanisms used for triggering
subscriptions.
DsDeESDTDescriptorSet (Aggregation)

4.3.36 DsDeESDTDescriptorSet Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
To provide a mechanism to contain multiple schema and provide a single reference to these
schema and their services. The SchemaSet is the collection of all the individual schemas
that a data server contains.

Attributes:

None

Operations:

Add - This service is used to add a new ESDT descriptor to this set of ESDT Descriptors.
Arguments: theName: RWCString, theVersion: RWCString, theDef: istream &
Return Type: GlStatus
Privilege: Public

DsDeESDTDescriptorSet
Arguments:

4-96 305-CD-008-001

Return Type: Void

Privilege: Public

Externalize - This service is used to externalize each individual ESDT descriptor in this

set of ESDT descriptors.

Arguments:

Return Type: ostream &

Privilege: Public

Initialize - This service is used to initialize all of the ESDT Descriptors that are in this set.

Initialization is performed during startup of the DSS.

Arguments:

Return Type: GlStatus

Privilege: Public

Remove - This service removes the given data type from the set of ESDTs that this DSS is

configured for.

Arguments: theType: DsGeTypeID

Return Type: Void

Privilege: Public

Replace - This service provides the capability to replace an existing ESDT Descriptor with

a new ESDT Descriptor.

Arguments: theType:DsGeTypeID, newDefinition:istream &

Return Type: GlStatus

Privilege: Public

~DsDeESDTDescriptorSet - The destructor for this class destroys each of its members

and then destroys itself.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDeESDTDescriptorSet class has associations with the following classes:
None

4-97 305-CD-008-001

4.3.37 DsDeEvent Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class contains events that any ESDT instance of this type detects the occurrence of and
provides notification of that occurrence.

Attributes:

myDescription - This is a description of the event that instances of this data type will detect.
For example, the description of the INSERT event for the CER02 data type might indicate
that the INSERT event occurs whenever a CER02 granule has been successfully archived
in this DSS. The description also would include information about what information is
made available when the event occurs. For example, in the case of INSERT, the UR of the
new granule would be provided.
Data Type: RWCString
Privilege: Private
Default Value:

myEventID - The identifier for this Event. This identifier along with the event name

uniquely identify an Event object.

Data Type: RWCString

Privilege: Private

Default Value:

myEventName - The name of the event. This name must be unique within the event id.

For example, there can only be one event named INSERT for the CER02 eventID.

However, there can be an INSERT for each unique eventID (i.e. CER02V1.0, CER02V1.1,

LIS01, etc.)

Data Type: RWCString

Privilege: Private

Default Value:

myReturnInformation - This GlParameterList contains the names and types of what data

will be provided when the event occurs. For example, an INSERT event's

myReturnInformation would include a GlParameter named UR that is of type RWCString.

This says that when the event occurs, the ESDT will provide a parameter list with a

GlParameter named UR that is of type RWCString and has a value of whatever the new UR

is for this new granule.

Data Type: GlParameterList

Privilege: Private

Default Value:

4-98 305-CD-008-001

Operations:

DsDeEvent - This constructor reads from the given stream to construct itself. The stream has
well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

GetDescription - Returns the information in the myDescription attribute.

Arguments:

Return Type: RWCString &

Privilege: Public

GetName - Returns the information in the myEventName attribute.

Arguments:

Return Type: RWCString &

Privilege: Public

Register - This service creates a DsSbEvent which gets registered as a subscribable event

with the subscription server.

Arguments:

Return Type: GlStatus

Privilege: Public

Unregister - This service obtains the DsSbEvent associated with this name and ID and

unregisters it as a subscribable event with the subscription server.

Arguments:

Return Type: GlStatus

Privilege: Public

~DsDeEvent - There is no special implementation for the destructor.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDeEvent class has associations with the following classes:
DsDeEventVector (Aggregation)

4-99 305-CD-008-001

4.3.38 DsDeEventVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class contains a collection of DsDeEvent objects that are specific to this descriptors
type. This class provides services that operate over the collection. The DsDeEventVector
class is derived from a standard Rogue Wave vector class.

Attributes:

None

Operations:

DsDeEventVector - This constructor reads the section of the descriptor that contains event
entries until the end of that section is detected. Event objects are created and added to the
vector.
Arguments: from: istream &
Return Type: Void
Privilege: Public

FindEvent - This service searches for an event of the given name in its contents. A pointer

to the event is returned. If the event is not found, the pointer is NULL.

Arguments: theName: RWCString

Return Type: DsDeEvent *

Privilege: Public

Register - This service iterates over the members in its contents telling each one of them

to register themselves with the subscription server.

Arguments:

Return Type: GlStatus

Privilege: Public

~DsDeEventVector - The destructor for this class destroys each of the objects in its

contents. The events are still known to the subscription server until the unregister service

for an event is invoked.

Arguments:

Return Type: Void

Privilege: Public

4-100 305-CD-008-001

Associations:

The DsDeEventVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4.3.39 DsDeMathOp Class

Parent Class: DsDeValid
Public: No Distributed Object: No
Purpose and Description:
This class has validation criteria that is mathematically based. This includes mathematical
functions such as "LT", "GT", "EQ", etc. The equivalent mathematical functions are used
to validate whether a given value satisfies the criteria.

Attributes:

myDomain - This attribute contains the domain for the mathematical operation. This domain
is used to evaluate the mathematical expression and determine whether a given value meets
the criteria. For example, the domain might be "CERES" and the MathOperation might be
"EQ".
Data Type: T
Privilege: Private
Default Value:

myMathOperation - This attribute contains the representation of the mathematical

operation. Valid math operations are "GT", "LT", "EQ", "GE", "LE", and "NE".

Data Type: RWCString

Privilege: Private

Default Value:

Operations:

DsDeMath - This constructor reads from the given stream to construct itself. The stream has
well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

~DsDeMath - The destructor for this class has no special implementation.
Arguments:

4-101 305-CD-008-001

Return Type: Void
Privilege: Public

Associations:

The DsDeMathOp class has associations with the following classes:
None

4.3.40 DsDeMetadataDef Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class contains configuration information about a metadata entry. This class is used for
core as well as product specific metadata. DsDeMetadataDef entries are used to build the
metadata configuration file (MCF).

Attributes:

myAttributeName - The name of the metadata attribute as defined in the Core Metadata
Model. Valid names/attributes are either core or product specific.
Data Type: RWCString
Privilege: Private
Default Value:

myDataLocation - This attribute indicates the location where this attribute is expected to

be found when the metadata is being generated. This location is used by the processing

subsystem to flag whether the PGE generates the value, whether it is in the process control

file (PCF), etc.

Data Type: RWCString

Privilege: Private

Default Value:

myMandatoryFlag - This flag indicates whether or not this metadata attribute is

mandatory.

Data Type: RWBoolean

Privilege: Private

Default Value: False

4-102 305-CD-008-001

myType - This indicates the type of this metadata attribute.

attribute are enumerated with the default being a STRING.

Data Type: DsTAttributeType

Privilege: Private

Default Value: STRING

myValue
Data Type: RWCString
Privilege: Private
Default Value: NULL

Operations:

The valid values for this

DsDeMetadataDef - This constructor reads from the given stream to construct itself. The
stream has well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

Externalize - This service streams this metadata definition instance to the given ostream.

The format of this is a well-defined ODL syntax that is agreed upon between the DSS,

Ingest, and Processing. This service is used in creation of the MCF for these external

customers.

Arguments: to: ostream &

Return Type: GlStatus

Privilege: Public

Parameterize - This service creates a Parameter whose name is myAttributeName, whose

type is myType, and whose value is myValue.

Arguments:

Return Type: GlParameter

Privilege: Public

~DsDeMetadataDef - The destructor for this class has no special implementation.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDeMetadataDef class has associations with the following classes:
DsDeMetadataDefVector (Aggregation)

4-103 305-CD-008-001

4.3.41 DsDeMetadataDefVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class contains a collection of Metadata definition objects that is specific to this
descriptors type. This class provides services that operate over the collection. The
DsDeMetadataDefVector class is derived from a standard Rogue Wave vector class.

Attributes:

None

Operations:

DsDeMetadataDefVector - This constructor reads the section of the descriptor that contains
metadata defintion entries until the end of that section is detected. Metadata definition
objects are created and added to the vector.
Arguments: from: istream &
Return Type: Void
Privilege: Public

Externalize - This service generates the MCF information for this metadata vector by

creating the appropriate section headers and writing them to the ostream and then telling

each one of its members to externalize itself to that same stream. Then it creates the section

footers in the same ostream to complete this service.

Arguments: theMCF: ostream &

Return Type: RWBoolean

Privilege: Public

FindEntry - This service finds a MetadataDef entry that has the same name as the given

string. The return value indicates whether the entry was found or not. If the entry was

found, the given MetadataDef reference will point to it.

Arguments: theName: RWCString, theEntry: DsDeMetadataDef &

Return Type: RWBoolean

Privilege: Public

GetQueryableParameters - This service fills in the names, types and values (if

applicable) of each of the metadata definition objects in its contents into the given

4-104 305-CD-008-001

parameter list. This is done by using the parameterize service of the metadata definition

objects.

Arguments: theParameters:GlParameterList &

Return Type: RWBoolean

Privilege: Public

HasMandatory - This service determines whether the given stream containing P=V

metadata has all of the metadata parameters that are defined as being mandatory. If the

return value indicates that all of the mandatory parameters are not present, then the given

GlStatus object provides details about which parameters were missing.

Arguments: theMet: istream &, status: GlStatus

Return Type: RWBoolean

Privilege: Public

Parameterize - This service parameterizes each of the objects in its contents into the given

parameterList.

Arguments: theParms:GlParameterList &

Return Type: Void

Privilege: Public

~DsDeMetadataDefVector - This destructor destroys all of the objects in its contents and

then destroys itself.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDeMetadataDefVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4.3.42 DsDeRange Class

Parent Class: DsDeValid
Public: No Distributed Object: No
Purpose and Description:
This class has validation criteria that specifies a range of values in which any valid entry
must fall. This class is templatized so that it can operate over any type.

4-105 305-CD-008-001

Attributes:

myHigh - This is the upper limit for the range. Any value that is greater than this value is
outside of the valid range.
Data Type: T
Privilege: Private
Default Value:

myLow - This is the lower bound for the range. Any value that is less than this value is

outside of the valid range.

Data Type: T

Privilege: Private

Default Value:

Operations:

DsDeRange - This constructor reads from the given stream to construct itself. The stream has
well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

~DsDeRange
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeRange class has associations with the following classes:
None

4.3.43 DsDeScienceParameter Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class contains the science parameters of this data type. These parameters are features
of the internal format of the science data.

4-106 305-CD-008-001

Attributes:

myDescription - This attribute provides a detailed information describing this science
parameter, maybe its meaning and units. This information is whatever the data provider
deems is a useful description for this science parameter.
Data Type: RWCString
Privilege: Private
Default Value:

myInternalName - This is the name within the science data information that this parameter

is referred as. This allows there to be a name that the user community sees and can use to

identify the parameter and a name that the DSS uses. An example of an internal name for

"Sea Surface Temperature" might be "SST".

Data Type: RWCString

Privilege: Private

Default Value:

myName - The name of a science parameter within this data types structure. An example

of this might be "Sea Surface Temperature".

Data Type: RWCString

Privilege: Private

Default Value:

Operations:

DsDeScienceParameter - This constructor reads from the given stream to construct itself. The
stream has well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

GetDescription - This service returns the myDescription private attribute of this science

parameter.

Arguments:

Return Type: RWCString &

Privilege: Public

GetInternalName - This service returns the internal name of this parameter.

Arguments:

Return Type: RWCString &

Privilege: Public

4-107 305-CD-008-001

~DsDeScienceParameter - The destructor for this class has no special implementation.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDeScienceParameter class has associations with the following classes:
DsDeScienceParameterVector (Aggregation)

4.3.44 DsDeScienceParameterVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class contains a collection of ScienceParameter objects that are specific to this
descriptors type. This class provides services that operate over the collection. The
DsDeScienceParameterVector class is derived from a standard RogueWave vector class.

Attributes:

None

Operations:

DsDeScienceParameterVector - This constructor reads the section of the descriptor that
contains Science Parameters until the end of that section is detected.
DsDeScienceParameter objects are created and added to the vector.
Arguments: from: istream &
Return Type: Void
Privilege: Public

FindScienceParameter - This service finds a science parameter whose name matches the

given name. A pointer to the science parameter is returned. If the science parameter is not

found, the pointer is NULL.

Arguments: theName: RWCString

Return Type: DsDeScienceParameter *

Privilege: Public

4-108 305-CD-008-001

~DsDeScienceParameterVector
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeScienceParameterVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4.3.45 DsDeSeries Class

Parent Class: DsDeValid
Public: No Distributed Object: No
Purpose and Description:

Attributes:

myDomainValues - This is a vector that contains an explicit list of valid values for this
attribute.
Data Type: RWVector<T>
Privilege: Private
Default Value:

Operations:

DsDeSeries - This constructor reads from the given stream to construct itself. The stream has
well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

~DsDeSeries - The destructor for this class has no special implementation.

Arguments:

Return Type: Void

Privilege: Public

4-109 305-CD-008-001

Associations:

The DsDeSeries class has associations with the following classes:
None

4.3.46 DsDeService Class

Parent Class: Not Applicable

Attributes:

myDescription - This attribute provides a description of the Service and its parameters and
whether they are required or not. In addition, the return values are described.
Data Type: RWCString
Privilege: Private
Default Value:

myName - The name of a service that this type provides. An example of this is INSERT.

Data Type: RWCString

Privilege: Private

Default Value:

myParameterList - This parameterList contains the Parameters that are valid for this

service. The parameterList parameter names and their types but no values. An example of

a parameter for the INSERT service might have the name "METADATAFILE" and the

type GlStringP.

Data Type: GlParameterList

Privilege: Private

Default Value:

myRequiredParameters - This vector contains the names of parameters that are required

for invocation of this Service. These names are a subset of the named parameters in

myParameterList.

Data Type: RWVector<RWCString>

Privilege: Private

Default Value:

4-110 305-CD-008-001

Operations:

Advertise - Advertises this DsDeService so that it is publicly available. The advertisement
includes all of the information necessary for a client to create a command that this DSS can
fulfill.
Arguments:
Return Type: RWBoolean
Privilege: Public

DsDeService - This constructor reads from the given stream to construct itself.

Arguments: from: istream&

Return Type: Void

Privilege: Public

Validate - Validate takes a GlParameterList as input and validates it against the required

and valid parameters for this DsDeService. If there is a problem in the validation, the

provided GlStatus object will contain the nature of the problem

Arguments: parms:GlParameterList &, result:GlStatus &

Return Type: RWBoolean

Privilege: Public

Withdraw - This service withdraws an advertisement indicating that this previously

advertised service is no longer publicly available.

Arguments:

Return Type: RWBoolean

Privilege: Public

~DsDeService - The destructor for this service has no special functionality.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDeService class has associations with the following classes:
DsDeServiceVector (Aggregation)

4.3.47 DsDeServiceVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No

4-111 305-CD-008-001

Purpose and Description:

This vector contains DsDeService objects. It is responsible for creating each and for

implementing services that operate over the collection of them.

Attributes:

None

Operations:

Advertise - This service iterates over all of its DsDeService objects and tells each one of them
to advertise themselves.
Arguments:
Return Type: RWBoolean
Privilege: Public

DsDeServiceVector - This service reads from the given istream and creates the

DsDeService objects. It is responsible for noticing when the end of the service information

is reached.

Arguments: from:istream &

Return Type: Void

Privilege: Public

Find - This service locates the service in its contents that has the same name as the given

argument. A pointer to a DsDeService object is returned. If the service is not found, this

pointer is NULL.

Arguments: svc:RWCString&

Return Type: DsDeService*

Privilege: Public

Withdraw - This service iterates over all of the DsDeService objects in this vector and

invokes the withdraw service.

Arguments:

Return Type: RWBoolean

Privilege: Public

~DsDeServiceVector - This destructor invokes the destructor for each of the objects in its

contents and then destroys itself.

Arguments:

Return Type: Void

Privilege: Public

4-112 305-CD-008-001

Associations:

The DsDeServiceVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4.3.48 DsDeStaticMetadata Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class contains metadata name, type, and value for each attribute that is static for the
collection of all granules of this type.

Attributes:

myName - The name of this static metadata attribute.
Data Type: RWCString
Privilege: Private
Default Value:

myType - This indicates the type of this metadata attribute.

attribute are enumerated with the default being a STRING.

Data Type: DsTAttributeType

Privilege: Private

Default Value: STRING

The valid values for this

myValue - This attribute contains the value of this static metadata entry. This value is by

definition the same for all granules of this data type.

Data Type: RWCString

Privilege: Private

Default Value:

Operations:

DsDeStaticMetadata - This constructor reads from the given stream to construct itself. The
stream has well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from: istream &
Return Type: Void
Privilege: Public

4-113 305-CD-008-001

Externalize - This service is used to populate the given parameterlist with the contents of

this static metadata instance. If necessary, the given GlStatus is updated to reflect

problems/errors.

Arguments: to: GlParameterList &, status: GlStatus &

Return Type: RWBoolean

Privilege: Public

GetValue - This service returns a GlParameter containing the value of this static metadata

attribute.

Arguments:

Return Type: GlParameter &

Privilege: Public

~DsDeStaticMetadata - The destructor for this class has no specific implementation.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDeStaticMetadata class has associations with the following classes:
DsDeStaticMetadataVector (Aggregation)

4.3.49 DsDeStaticMetadataVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class contains a collection of Static Metadata objects that are specific to this
descriptors type. This class provides services that operate over the collection. The
DsDeStaticMetadataVector class is derived from a standard Rogue Wave vector class.

Attributes:

None

Operations:

DsDeStaticMetadataVector - This constructor reads from the given stream to construct itself.
The stream has well defined attributes in an ODL format that this object knows how to
interpret.

4-114 305-CD-008-001

Arguments: from:istream &

Return Type: Void

Privilege: Public

Externalize - This service is used to populate the given parameter list with the contents of

each StaticMetadata object that is in this vectors contents. In its implementation, this

vector simply passes this request to each of its members.

Arguments: to:GlParameterList &, status: GlStatus&

Return Type: RWBoolean

Privilege: Public

FindEntry - This service finds a Static MetadataDef entry that has the same name as the

given string. The return value indicates whether the entry was found or not. If the entry

was found, the given MetadataDef reference will point to it.

Arguments: theName: RWCString

Return Type: DsDeStaticMetadata *

Privilege: Public

~DsDeStaticMetadataVector - The destructor for this class first calls the destructor of

each of its members and then deletes itself.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDeStaticMetadataVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4.3.50 DsDeValid Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class contains the validation criteria for a metadata attribute. This is an abstract base
class. All of the classes derived from this class must implement the isValid method. This
class is templatized based on the type of attribute being validated.

4-115 305-CD-008-001

Attributes:

myName - The name of the attribute that this object has validation criteria for.
Data Type: RWCString
Privilege: Private
Default Value:

Operations:

DsDeValid - This constructor reads from the given stream to construct itself. The stream has
well defined attributes in an ODL format that this object knows how to interpret.
Arguments: from:istream &
Return Type: Void
Privilege: Public

IsValid - This service is used to validate the given value. Because this is an abstract base

class, each of the subclasses must implement this service. The return of this service

indicates whether the value fell within the validation criteria.

Arguments: theValue: T&

Return Type: RWBoolean

Privilege: Public

~DsDeValid - The destructor for this class has no special implementation.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDeValid class has associations with the following classes:
DsDeValidVector (Aggregation)

4.3.51 DsDeValidVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class contains a collection of DsDeValid objects that are specific to this descriptors
type. This class provides services that operate over the collection. The DsDeValidVector
class is derived from a standard Rogue Wave vector class.

4-116 305-CD-008-001

Attributes:

None

Operations:

DsDeValidVector - This constructor reads the section of the descriptor that contains
Validation criteria entries until the end of that section is detected. DsDeValid objects are
created and added to the vector.
Arguments: from:istream &
Return Type: Void
Privilege: Public

Find - This service finds a DsDeValid object in the vector that has the given name. If there

is no match, a null pointer is returned. Otherwise a pointer to the object is returned.

Arguments: what: RWCString &

Return Type: DsDeValid *

Privilege: Public

Validate - This service is used to validate the given metadata file containing P=V metadata.

This is done by obtaining a metadata entry from the file, finding its validation criteria entry

in the vector, and then asking this entry if the value is valid.

Arguments: mdfile:istream &

Return Type: GlStatus

Privilege: Public

PDL:DsDeValidVector::Validate(istream &theMetadata, GlStatus &theStatus)

This operation takes the given metadata which is in a P=V format and

validates that the attributes are valid. Any problems are added to

theStatus, but validation continues until all attributes have been

validated.

SEQUENCE

Set ReturnStatus to SUCCESS

DO WHILE (there are more entries in theMetadata)

Get next entry from theMetadata

Find matching DsDeValid entry

IF not found THEN

Add error to status

Set ReturnStatus to FAILURE

ELSE

check value against DsDeValid using IsValid service

IF not valid THEN

Set ReturnStatus to FAILURE

4-117 305-CD-008-001

 ENDIF
ENDIF

END DO WHILE
RETURN ReturnStatus

END SEQUENCE

~DsDeValidVector
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDeValidVector class has associations with the following classes:
DsDeESDTDescriptor (Aggregation)

4.3.52 DsDoReferencePaper Class

Parent Class: DsGeESDT
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
To provide an interface to services for reference documents. ReferencePapers are
documents that may be used in support of understanding more about a particular science
data product.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

4-118 305-CD-008-001

Associations:

The DsDoReferencePaper class has associations with the following classes:
Class: DsGeScienceData isdescribedby - Each science data object class can be described
by zero or more instances of a reference paper. Note that this relationship is at the class
level for the science data object. For example, a set of reference papers describes all
CER03 data objects. This means that each instance of a CER03 data object is described by
the same set of reference papers.

4.3.53 DsFactory Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
An object of this class is used to establish all client connections to a data server. When a
"collector" object is created by the client, it finds the DsFactory object on the desired data
server (there is exactly one per data server) and asks it to create a "connection" object on
the server to correspond with it. The DsFactory will create this server-side object and
return to the "collector" a reference to it, that the collector object can use to perform
requests.

Attributes:

None

Operations:

DsFactory - Constructs a data server factory.
Arguments:
Return Type: Void
Privilege: Public

MakeConnection - Used to produce a new connection for the given profile.

Arguments: MSS_UserProfile

Return Type: DsSrConnection*

Privilege: Public

MakeSession - Used to produce a new session for the given profile and connection ID.

Arguments: MSS_UserProfile, DsESrConnectionID = 0

Return Type: DsSrSession*

Privilege: Public

4-119 305-CD-008-001

~DsFactory - Destroys this data server factory.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsFactory class has associations with the following classes:
None

4.3.54 DsGeBrowseProduct Class

Parent Class: DsGeESDT
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
To provide a standard access to data that will be used to aid scientists in assessing their
interest in data. The Browse product class is a specialization of the ESDT class. It will
provide the services that will allow manipulation of the browse data.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsGeBrowseProduct class has associations with the following classes:
Class: DsGeScienceData has - Each instance of a science data object has zero or more
browse products associated with it. A browse product is a representation of the associated
science data that can be used to determine whether a science data product should be
ordered. Each browse product can represent zero or more science data objects.

4-120 305-CD-008-001

4.3.55 DsGeDynamicLibrary Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class implements the loading and unloading of a dynamically linked library. The
reason this class is in the General ESDT class category is that this class is only being used
in support of dynamic ESDT configurations. However, anyone who has a need for
supporting dynamically linked libraries could use this class.

Attributes:

myHandle - A handle to the library. This is the return value from the OS command to open
the library. This handle is used by all other services that operate on the library.
Data Type: void *
Privilege: Private
Default Value:

Operations:

DsGeDynamicLibrary - Constructor for dynamic library doesn't do too much. All of the work
is done with the load, unload, and get symbol functions.
Arguments:
Return Type: Void
Privilege: Public

GetSymbol - This service is used to bind to the given symbol within the library. A pointer

to the symbol is returned. This service is used by the derived ESDTDynamicLibrary class

to obtain the function pointer for the newESDT service.

Arguments: theSymbol:RWCString

Return Type: void *

Privilege: Public

LoadLibrary - Service that opens the library and loads it for further use. The handle for

the library is established during this process.

Arguments: libName: RWCString

Return Type: RWBoolean

Privilege: Public

Unload - This service unloads a previously loaded dynamic linked library and frees the

associated address space.

Arguments:

4-121 305-CD-008-001

Return Type: Void

Privilege: Public

~DsGeDynamicLibrary - The destructor for this class unloads the dynamic linked library

that was previously loaded.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsGeDynamicLibrary class has associations with the following classes:
None

4.3.56 DsGeECSDataProduct Class

Parent Class: DsGeScienceData
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
To provide a general interface for services provided by ECS Data Product objects.
ECSDataProducts are the ESDTs that are science data objects generated by ECS.

Attributes:

myAlgorithmUR - UR of the delivered algorithm package that was used to generate this ECS
data product.
Data Type: GlUR
Privilege: Private
Default Value:

myPGE - UR of the science software delivery that was used to generate this ECS data

product.

Data Type: GlUR

Privilege: Private

Default Value:

mySSAP - The reference to the Delivered Algorithm Package (DAP) that was used to

generate this ECS data product.

Data Type: GlUR

4-122 305-CD-008-001

Privilege: Private

Default Value:

mySummaryList - Reference to the list of URs that contain summary products for this

ECS data product.

Data Type: GlUR

Privilege: Private

Default Value:

Operations:

GetPGEInfo - This service is used to get information about the PGE that was used to generate
this ECS data product.
Arguments:
Return Type: GlUR
Privilege: Public

GetSSAP - This service obtains the science software archive package that was used to

generate this ECS data product.

Arguments:

Return Type: GlUR

Privilege: Public

GetSummaryStats - This service is used to obtain the summary statistics for this ECS data

product.

Arguments:

Return Type: GlUR

Privilege: Public

HasSummaryStats - This service is used to determine whether or not this ECS data

product has summary statistics associated with it.

Arguments:

Return Type: RWBoolean

Privilege: Public

Subsample - This service provides the ability to obtain a representation of the ECS Data

Product by using a consistent sampling scheme to extract data. This is a virtual function

which is defined in the subclasses.

Arguments: pars:GlParamterList

Return Type: GlUR

Privilege: Public

4-123 305-CD-008-001

Subset - This service provides the ability to extract a full resolution portion of the ECS data

product. It is a virtual function that is defined in a derived class.

Arguments: pars:GlParameterList

Return Type: GlUR

Privilege: Public

Associations:

The DsGeECSDataProduct class has associations with the following classes:
Class: DsNsScienceSoftwareArchivePackage isusedtocreate - An instance of a delivered
algorithm package (DAP) is used to create zero or more ECS data products. The DAP
contains the software, executables, makefiles, etc. The processing subsystem uses the DAP
to generate ECS data products. Each ECS data product was created using one DAP.
Class: DsGeSummaryProduct summarizes - A summary product is an ECS data product
that can summarize zero or more ECS data products. Each ECS data product can be
summarized by zero or more summary products. For example, an ECS data product can
have daily, weekly, and monthly summary products.

4.3.57 DsGeESDT Class

Parent Class: DsGeESDTServiceProvider
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
The Earth Science Data Type (ESDT) is a superclass for the various specializations that
represent the specific data types. The ESDT organizes and provides an interface to the
external and internal services. Most probably this class will be an abstract base class. If
there are instances of this class it will be to support a generic type of ESDT that has no data
type services other than get, put, and search.

Attributes:

myArchive - A reference to the archive that this ESDT is stored in.
Data Type:
Privilege: Private
Default Value:

myInterfaceConfigList - The list of interface configurations for the publicly available

services of the ESDTs.

Data Type: DsCnESDTGUIConfiguration

4-124 305-CD-008-001

Privilege: Private

Default Value:

myMetadata - This is a reference to a metadata object that contains all of the metadata for

this instance. This includes core and product specific metadata. This attribute's value gets

set by the Fill service. The inspect service uses the metadata object to obtain the values for

desired metadata attributes.

Data Type: DsMdMetadata

Privilege: Private

Default Value:

mySize - The size in bytes of this ESDT. This figure is based on the ESDT if it were

externalized.

Data Type: size_t

Privilege: Private

Default Value:

myType - Contains the type of the instance of an Earth Science Data Type object.

Data Type: DsGeTypeID

Privilege: Private

Default Value:

myUR - Universal reference for this ESDT. This is either given upon construction,

obtained from the given metadata, or generated during an insert.

Data Type: GlUR

Privilege: Private

Default Value:

Operations:

Archive - This service provides the ability to permanently save this ESDT. This is a protected
service used by the ESDT when performing the publically advertised insert service.
Arguments:
Return Type: GlStatus
Privilege: Protected

Externalize - This service is used to create an external representation of an ESDT from its

internal representation. This typically means creating one or more files. This is a virtual

service which is defined in derived classes.

Arguments: toWhere: ostream &

Return Type: GlStatus

Privilege: Protected

4-125 305-CD-008-001

Fill - The fill service uses the given metadata object to populate the attributes for this

object. For some of the attributes that are populates, the ESDT asks the metadata object for

the values. For example, the ESDT maintains the UR and the archive which it obtains from

the metadata object during this service.

Arguments: theMD: DsMdMetadata

Return Type: void

Privilege: Public

GetGUIConfiguration - This service is used by the ESDT to obtain the GUI configuration

associated with the given service.

Arguments: svc: RWCString

Return Type: GlStatus

Privilege: Protected

GetQueryableParameters - This service fills in the contents of the given parameter list

with the names of the metadata attributes for this ESDT. One of the ways that this could

be done is through the ESDT descriptor.

Arguments: GlParameterList &

Return Type: RWBoolean

Privilege: Protected

GetServiceList - This service is used by the ESDT to create a list of the services that this

ESDT can perform. It is used to perform the IsServiceAvailable function.

Arguments:

Return Type: RWVector<RWCString>

Privilege: Protected

GetSize - This service returns the size of this ESDT. This is the size in bytes that the file(s)

would consume if the ESDT were externalized.

Arguments:

Return Type: size_t

Privilege: Protected

Inspect - This service provides the capability to obtain the UR for this ESDT and to get any

optionally selected metadata values for this ESDT. The parameter list contains the name of

the metadata entries for which the values are desired. The resultant values are filled into

the given parameter list and a status is provided. The status indicates whether the call was

successful or not. If not, the reason for failure will be returned in the status.

Arguments: whatEntries:GlParameterList &

Return Type: GlStatus

Privilege: Protected

Internalize - This service is used to create an internal representation of an ESDT from an

external representation. This is typically a set of one or more files. This is a virtual service

which is defined in derived classes.

4-126 305-CD-008-001

Arguments: theArgs: GlParameterList

Return Type: GlStatus

Privilege: Protected

Type - This service reports the type of the ESDT that this object is.

Arguments:

Return Type: RWCString

Privilege: Protected

Update - The update service is used to selectively modify portions of the metadata for this

ESDT. This service will restricted to users with the appropriate authorization. This is the

service that would be used to update QA information about a data object. This method is

protected and only accessible through the execute command service.

Arguments: newMDValues: GlParameterList &

Return Type: GlStatus

Privilege: Protected

Validate - This service checks that the metadata values for this ESDT are valid and that the

required metadata is present. This service is protected and is used by the ESDT during

insertion of a new granule to ensure that the metadata is valid. This service is performed

in cooperation with the ESDT descriptor.

Arguments: MetadataFile: RWCString &, Results: GlParameterList &

Return Type: GlStatus

Privilege: Protected

Associations:

The DsGeESDT class has associations with the following classes:
Class: DsGeTypeID
Class: DsGeESDTEventTable restoresfrom - Part of an ESDTs definition is that it notices
when specific activities occur. Events corresponding to each of these activities are created
and saved to an event table when the data server starts up. Later when one of the activities
occurs, the ESDT is responsible for restoring the corresponding event from the event table.
Class: DsSbEvent triggers - The ESDT is responsible for triggering events. This is done to
indicate that a previously registered action occurred. The event is responsible for
performing whatever action(s) are required upon the occurrence of that event. For
example, an insert event is registered. When a granule is inserted, that event is triggered.
This tells the event that an insert has occurred. The event can ignore this occurrence or
notify subscribers to that event or whatever is appropriate.
Class: DsGeESDTWrapper wraps - The ESDT Wrapper is used as a means to access the
services of the ESDT. The Wrapper is the recipient of all commands that are destined for
an ESDT. These commands are simply passed through to the ESDT.

4-127 305-CD-008-001

4.3.58 DsGeESDTConfiguration Class

Parent Class: DsCnConfiguration
Public: No Distributed Object: No
Purpose and Description:
This object contains the configuration for all of the ESDTs for which services exist for this
data server. The configuration for each ESDT consists of a descriptor, an event table, and
a dynamically linked library. The services that this class provides may be subsumed by a
database implementation of the needed information based on DsGeTypeID. In the
prototype, this classes persistence is maintained in a file.

Attributes:

myESDTTypes - The ESDTs that this data server is configured for. This set of types does not
imply that there exist granules for each type but that there are services for each type.
Data Type: RWTPtrOrderedVector<DsGeTypeID>
Privilege: Private
Default Value:

Operations:

DsGeESDTConfiguration - The constructor takes the name of the file containing all of the
configuration information for the ESDTs for this data server.
Arguments: filename:RWCString &
Return Type: Void
Privilege: Public

GetAllDataTypes - Returns the list of all ESDTs that this data server is configured for.

This service is used during data server startup to initialize each of the ESDTs in the list.

Arguments:

Return Type: RWTPtrOrderedVector<DsGeTypeID>

Privilege: Public

GetDefinitionFileForType - Returns the name of the ESDT Descriptor file for the given

type.

Arguments: theType:DsGeTypeID &

Return Type: RWCString

Privilege: Public

4-128 305-CD-008-001

GetESDTToken - Returns a string containing the token within the configuration file for

the given TypeID.

Arguments: theType:DsGeTypeID &

Return Type: RWCString

Privilege: Private

GetEventTableForType - Returns the name of the event table file for the given TypeID.

Arguments: theType:DsGeTypeID &

Return Type: RWCString

Privilege: Public

GetLibraryForType - Returns the name of the dynamically linked library that is the

implementation of the given TypeID.

Arguments: theType:DsGeTypeID &

Return Type: RWCString

Privilege: Public

~DsGeESDTConfiguration - The destructor for this class has no implementation other

than that derived from the base class.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsGeESDTConfiguration class has associations with the following classes:
Class: DsGeESDTServiceProvider isinformedby - The ESDT configuration is used by the
ESDT service provider's derived classes to access various portions of the ESDTs
configuration. The ESDT Wrapper obtains the DLL information from it and the ESDT
obtains the Descriptor and Event Table information from it.

4.3.59 DsGeESDTDynamicLibrary Class

Parent Class: DsGeDynamicLibrary
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
This class provides the functionality needed to load dynamically linked libraries for an
ESDTs implementation. The specifics of loading the library are inherited from the
DsSdDynamicLibrary class. The library must include the implementation for 2 functions
that have C entry points. These functions are newESDT which returns a pointer to a new

4-129 305-CD-008-001

object of the actual type and deleteESDT which destroys an object that was generated using
newESDT.

Attributes:

myDLLFileName - The file name of the dynamic linked library that contains the
implementation for this ESDT.
Data Type: RWCString
Privilege: Private
Default Value:

myNewFunction - This attribute is used when obtaining a pointer to the function that

performs the new operation for the ESDT in this dynamic library. This means that each

dynamic library must have a function called newESDT which returns a pointer to the

ESDT base class. This is a C function that has been declared with extern "C" ESDT

*newESDT() so that the name does not get mangled when compiled with CC.

Data Type: DsGeESDT *()

Privilege: Private

Default Value:

myTypeID - The ESDT type information which is used to determine which dynamic

library to load. Each type has its own dynamic linked library implementation.

Data Type: DsGeTypeID

Privilege: Private

Default Value:

Operations:

DsGeESDTDynamicLibrary - The constructor loads the dynamic linked library for the given
TypeID. This requires that the DLL name be obtained based on the TypeID. This will most
likely be done using a DBAccess method which encapsulates access to a database to do a
find me the DLL name given the TypeID. If this is not the case, the ESDT configuration
will provide this information.
Arguments: DsGeTypeID &
Return Type: Void
Privilege: Public

newESDT - This service calls the newESDT service which each ESDT implementation

must provide. The newESDT service actually allocates an ESDT of the exact type. A

pointer of the base class type which references an object of the exact type is returned by this

call.

Arguments:

4-130 305-CD-008-001

Return Type: DsGeESDT *

Privilege: Public

~DsGeESDTDynamicLibrary - The destructor for this class which has no

implementation beyond its base class destructor.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsGeESDTDynamicLibrary class has associations with the following classes:
Class: DsGeESDTWrapper isloadedby - The ESDT Wrapper uses the ESDT Dynamic
Library to load the implementation for the desired data type and to return a pointer to a real
object of that type.

4.3.60 DsGeESDTEventTable Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:

Attributes:

None

Operations:

None

Associations:

The DsGeESDTEventTable class has associations with the following classes:
Class: DsGeESDT restoresfrom - Part of an ESDTs definition is that it notices when
specific activities occur. Events corresponding to each of these activities are created and
saved to an event table when the data server starts up. Later when one of the activities
occurs, the ESDT is responsible for restoring the corresponding event from the event table.

4-131 305-CD-008-001

4.3.61 DsGeESDTServiceProvider Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This abstract base class is a generalization of the ESDT and ESDT Wrapper classes. It has
virtual functions for all of the public services that are available for all ESDTs.

Attributes:

None

Operations:

DsGeESDTServiceProvider - The constructor for this abstract base class. There is really
nothing for this service to do.
Arguments:
Return Type: Void
Privilege: Public

ExecuteCommand - The service that provides a generic interface to the ESDTs. This

generic interface allows the services that this type can perform to be extended with no

changes to the base classes.

Arguments: theCmd: DsSrCommand &

Return Type: GlStatus

Privilege: Public

IsServiceAvailable - This service is implemented by each subclass and is used to

determine if a service with the given name is available for this instance.

Arguments: svcName: RWCString &

Return Type: RWBoolean

Privilege: Public

~DsGeESDTServiceProvider - The destructor for this abstract base class needs no

implementation.

Arguments:

Return Type: Void

Privilege: Public

4-132 305-CD-008-001

Associations:

The DsGeESDTServiceProvider class has associations with the following classes:
Class: DsGeESDTConfiguration isinformedby - The ESDT configuration is used by the
ESDT service provider's derived classes to access various portions of the ESDTs
configuration. The ESDT Wrapper obtains the DLL information from it and the ESDT
obtains the Descriptor and Event Table information from it.

4.3.62 DsGeESDTWrapper Class

Parent Class: DsGeESDTServiceProvider
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
This class provides a wrapper around the ESDT classes. Its main purpose in life is to load
the ESDTs implementation and to create an actual ESDT of the proper type. It has a few
other functions that are common to all ESDTs.

Attributes:

myDll - This is a pointer to the dynamic library class that holds the implementation of the
actual ESDT that this instance wraps.
Data Type: DsSdESDTDynamicLibrary *
Privilege: Private
Default Value: NULL

myESDT - This is a pointer to the actual ESDT that this instance wraps. This base class

pointer points to a real ESDT of the type that it is (i.e. CER03, LIS02, etc.).

Data Type: DsGeESDT *

Privilege: Private

Default Value: NULL

Operations:

DsGeESDTWrapper - The constructor for the ESDT wrapper is given the TypeID for the
desired data type. It constructs an ESDT Dynamic Library and issues the newESDT
function to obtain a pointer to a real ESDT of the actual type.
Arguments: datatype: DsGeTypeID &
Return Type: Void
Privilege: Public

4-133 305-CD-008-001

DsGeESDTWrapper - This constructor takes a metadata object and determines the

TypeID from that object to create an ESDT of the right type. After the right ESDT has been

created, it is given the metadata object to fill in its attributes.

Arguments: metadata: DsMdMetadata

Return Type: Void

Privilege: Public

~DsGeESDTWrapper - The destructor for the wrapper deletes the ESDT object allocated

during the creation of the ESDT dynamic library instance and then deletes the dynamic

library instance.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsGeESDTWrapper class has associations with the following classes:
Class: DsGeESDTDynamicLibrary isloadedby - The ESDT Wrapper uses the ESDT
Dynamic Library to load the implementation for the desired data type and to return a
pointer to a real object of that type.
Class: DsGeESDT wraps - The ESDT Wrapper is used as a means to access the services of
the ESDT. The Wrapper is the recipient of all commands that are destined for an ESDT.
These commands are simply passed through to the ESDT.

4.3.63 DsGeScienceData Class

Parent Class: DsGeESDT
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
To provide an interface to services for data that directly supports the earth science
investigations and queries. ScienceData is an ESDT that directly supports the services
provided on science data products as opposed to non-science data products such as
documents, product history and the like.

Attributes:

myBrowseList - Reference to the URs that are browse products for this science data product.
Alternatively this may be a single UR for a collection which contains the browse products
for this science data product.

4-134 305-CD-008-001

Data Type: GlUR

Privilege: Private

Default Value:

myProductHistory - Reference to the list of URs for the products that were used to

generate this product.

Data Type: GlUR

Privilege: Private

Default Value:

myQAStatistics - Reference to the UR that represents the QA statistics for this data object.

Data Type: GlUR

Privilege: Private

Default Value:

myReferencePapers - A list of URs for the Reference Papers that describe this science

data. Alternatively, this may be a UR for a collection that contains multiple reference

papers.

Data Type: GlUR

Privilege: Private

Default Value:

Operations:

AddReferencePaper - This service is used to add a reference paper to the set of reference
papers that describe this science data.
Arguments: thePaper:GlUR &
Return Type: Void
Privilege: Public

Browse - This service is used to obtain a browse product(s) that is related to a specific

instance of a science data object.

Arguments: pars:GlParameterList &

Return Type: Void

Privilege: Public

GetProductionHistory - This service is used to get the production history for this instance

of a science data object.

Arguments:

Return Type: GlUR

Privilege: Public

4-135 305-CD-008-001

GetQADataStatistics - This service is used to get QA statistics that this science data may

have.

Arguments:

Return Type: GlUR

Privilege: Public

GetReferencePapers - This service is used to get the set of reference papers that describe

this science data. Note that the set of reference papers describing a class of science data is

the same for all instances of the class.

Arguments:

Return Type: GlUR

Privilege: Public

HasBrowse - This service reports on whether this instance of a science data object has at

least one browse product associated with it.

Arguments:

Return Type: RWBoolean

Privilege: Public

RemoveReferencePaper - This service is used to delete a reference paper from the list of

reference papers that describe this science data. Note that this is not the same as deleting

the reference paper.

Arguments:

Return Type: GlStatus

Privilege: Public

Associations:

The DsGeScienceData class has associations with the following classes:
Class: DsNsProductionHistory describesgenerationof - Science data is generated using
various algorithms on a variety of host machines and with various input data. Production
history is used to describe the specific inputs, processing, and environment related to the
generation of the associated science data object. Each instance of a science data object has
an instance of a production history.
Class: DsGeBrowseProduct has - Each instance of a science data object has zero or more
browse products associated with it. A browse product is a representation of the associated
science data that can be used to determine whether a science data product should be
ordered. Each browse product can represent zero or more science data objects.
Class: DsNsQAStatistics has - An instance of a science data object may or may not have
an instance of QA data statistics. An instance of QA data statistics indicates the quality of
the associated science data object.
Class: DsDoReferencePaper isdescribedby - Each science data object class can be
described by zero or more instances of a reference paper. Note that this relationship is at

4-136 305-CD-008-001

the class level for the science data object. For example, a set of reference papers describes
all CER03 data objects. This means that each instance of a CER03 data object is described
by the same set of reference papers.

4.3.64 DsGeSummaryProduct Class

Parent Class: DsGeECSDataProduct
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
A summary product is an ECS data product that represents a summary of the information
contained in another ECS data product. For example, a monthly product is and ECS data
product but it may also be the summary product for a daily product.

Attributes:

myGranuleList - A list of URs that are summarized by this summary product.
Data Type: GlUR
Privilege: Private
Default Value:

Operations:

AddGranule - This service adds the given granule to the list of granules summarized by this
instance of a summary product.
Arguments: data:GlUR &
Return Type: Void
Privilege: Public

ListGranules - This service lists the granules that are summarized by this instance of a

summary product. The UR that is returned refers to a list containing the URs of these

products.

Arguments:

Return Type: GlUR

Privilege: Public

RemoveGranule - This service is used to remove granules from the list of granules

summarized by this instance of a summary product.

Arguments:

Return Type: RWBoolean

Privilege: Public

4-137 305-CD-008-001

Associations:

The DsGeSummaryProduct class has associations with the following classes:
Class: DsGeECSDataProduct summarizes - A summary product is an ECS data product
that can summarize zero or more ECS data products. Each ECS data product can be
summarized by zero or more summary products. For example, an ECS data product can
have daily, weekly, and monthly summary products.

4.3.65 DsGeTypeID Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
This object uniquely identifies each ESDT's type. The type consists of a type name and a
version number. Each type-version number pair is assigned a unique code. The set of all
TypeIDs is stored persistently in a database.

Attributes:

myCode - A unique number assigned to this type/version combination. Presumably it will be
more efficient to use this number instead of the name and version to identify the type of an
ESDT.
Data Type: unsigned long
Privilege: Private
Default Value:

myName - The name of this type. This name along with the version number is enough to

uniquely identify this type. An example of a type name is CER03.

Data Type: RWCString

Privilege: Private

Default Value:

myVersion - The version number of this ESDT. Version numbers are needed because an

ESDT of the same name may have several implementations.

Data Type: RWCString

Privilege: Private

Default Value:

4-138 305-CD-008-001

Operations:

DsGeTypeID - This constructor creates a TypeID instance from the given code. This code
uniquely identifies a TypeID.
Arguments: RWCString &theCode
Return Type: Void
Privilege: Public

DsGeTypeID - This constructor takes the name of the type and an optional version number

which it uses to create a TypeID. If the version number is not given, then the TypeID is

created using the highest version for the given name.

Arguments: RWCString &theName, RWCString theVersion=NULL

Return Type: Void

Privilege: Public

GetTypeCode - Returns the code for this TypeID.

Arguments:

Return Type: unsigned long &

Privilege: Public

GetTypeName - Returns the myName attribute which is the type name of this instance.

Arguments:

Return Type: RWCString

Privilege: Public

GetTypeVersion - Returns the string contained in the myVersion attribute. This is the

version of this TypeID.

Arguments:

Return Type: RWCString

Privilege: Public

SetTypeCode - This is a private member function used to set the value of the myCode

attribute.

Arguments: unsigned long

Return Type: Void

Privilege: Private

SetTypeName - This is a private member function used to set the value of the myName

attribute.

Arguments: RWCString &

Return Type: Void

Privilege: Private

4-139 305-CD-008-001

SetTypeVersion - This is a private member function used to set the value of the myVersion

attribute.

Arguments: RWCString &

Return Type: Void

Privilege: Private

~DsGeTypeID - The destructor for this type has no implementation at this time.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsGeTypeID class has associations with the following classes:
Class: DsGeESDT

4.3.66 DsGvRadar Class

Parent Class: DsNpNonECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
Class represents data derived directly from the TRMM Ground Based Validation Radar
(GV) network. This network is supported by a network of rain gauges.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsGvRadar class has associations with the following classes:
None

4-140 305-CD-008-001

4.3.67 DsLiLIS Class

Parent Class: DsGeECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
This class represents data products derived from the TRMM Lightening Imaging Sensor
(LIS).

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsLiLIS class has associations with the following classes:
None

4.3.68 DsMdCatalog Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class is used to provide access to the metadata database. It contains a single database
connection, thus a separate instance of this class is required for each thread of execution
requiring access to the database. This class represents the logical starting point for access
to the database. All Insert, Update, Add, Remove, and Delete methods are executed within
the bounds of a database transaction, thus consistency is gauranteed. This class interfaces
with the database in terms of Databases, Tables and SQL. It relies on the DsDbInterface
class for Sybase specific routines.

Attributes:

myResultVector - This vector is used to hold instances of DsMdMetadata objects. These
objects are created within the GranuleSearch method and represent the result set from the
query.
Data Type: RWPtrOrderedVector<DsMdMetadata>

4-141 305-CD-008-001

Privilege: Private

Default Value: null

mySQLQuery - This is a simple character string buffer used to hold the sql command that

is derived from the Query request.

Data Type: char *

Privilege: Private

Default Value: null

Operations:

CollectionSearch - This method searches the collection level metadata for the given PVL
constraints and returns a vector of DsMdMetadata objects through the vector parameter.
Arguments: char *pvlString, RWTPtrOrderedVector<DsMdMetadata>&
collectionMetadata
Return Type: GlStatus
Privilege: Public

DeleteCollectionMetadata - This method removes the collection level metadata object

identified by collectionId.

Arguments: DsTMdIdentifier collectionId

Return Type: GlStatus

Privilege: Public

DeleteCollectionMetadata - This method retrieves the collectionId of the named

collection and calls the DeleteCollectionMetadata method with the collectionId.

Arguments: char *collectionName

Return Type: GlStatus

Privilege: Public

DeleteGranuleMetadata - This method deletes all the metadata attributes associated with

the granuleId parameter.

Arguments: DsTMdIdentifier granuleId

Return Type: GlStatus

Privilege: Public

DsMdCatalog - This constructor simply calls the Initialize method. Initialization is

separate so that it can be isolated if necessary to guarantee success of the constructor.

Arguments: void

Return Type: void

Privilege: Public

4-142 305-CD-008-001

GetCollectionMetadata - This method retrieves the metadata attributes associated with

the collection identified by the collectionId parameter.

Arguments: DsTMdIdentifier collectionId, DsMdMetadata& metadata

Return Type: GlStatus

Privilege: Public

GetCollectionMetadataTh
Arguments: char *collectionName, DsMdMetadata& metadata

Return Type: GlStatus

Privilege: Public

GetDistributionMetadata - This method retrieves the Metadata that is distributed with a

granule.

Arguments: DsTMdIdentifier id, DsMdMetadata &metadata

Return Type: GlStatus

Privilege: Public

GetEphemeris - This method retrieves the ephermeris DsMdMetata object associated with

the Granule Identifier parameter.

Arguments: DsTMdIdentifier id, DsMdMetadata &metadata

Return Type: Void

Privilege: Public

GetGranuleMetadata - This method retrieves the metadata attributes associated with the

given granuleId.

Arguments: DsTMdIdentifier id, DsMdMetadata &metadata

Return Type: GlStatus

Privilege: Public

GetHouseKeeping - This method retrieves the DsMdMetadata object containing the

HouseKeeping attributes associated with the Granule Identifier parameter.

Arguments: DsTMdIdentifier id, DsMdMetadata &metadata

Return Type: GlStatus

Privilege: Public

GetProductionHistory - This method retrieves a DsMdMetadata object containing the

Production History attributes associated with a granule.

Arguments: DsTMdIdentifier collectionId, DsMdMetadata& metadata

Return Type: GlStatus

Privilege: Public

GetUniqueID - This method retrieves a unique identifier of type DsTMdIdentifier from the

database. The identifier is unique within the scope of the Database Server instance.

Arguments: DsTMdIdentifier& id

4-143 305-CD-008-001

Return Type: GlStatus

Privilege: Public

GranuleSearch - This method is responsible for parsing and executing database queries

for granules. The InvQuery object parameter contains a PVL based Query description.

This PVL is parsed, the databases to query are identified, and SQL is created for each

database. The SQL statments are exected using the DsDbInterface object. A

myResultVector is used to store results of the query. A new DsMdMetadata object is

created for each granule in the result set and inserted into the myResultVector. Finally a

new RWTPtrOrderedVector is created and myResultVector is copied to it and returned to

the calling routine. It is the responsibility of the calling routine to delete the returned

vector. Two options are being evaluated for processing the search: Option 1 basically

attempts to include all "single-valued" attributes (granuleId, name, boundingCooridinates,

etc) in the first SQL statement. The result set is then processed sequentially retrieving

"multi-valued" attributes (discipline keywords, geophysicalParameterKeywords,

temporalRange, etc.) by granuleId. This option offers the least complex programatic

interface but has questionable performance characteristics. Option 2 has two approaches.

Both attempt to retrieve as many attributes as possible in each SQL statement (thus

minimizing the number of SQL statements). Both approaches also feature a loop that

unloads results into one GlParameterList per unique granuleId. The variance is in the

approach to unloading the denormalized result sets: Approach 1 assumes a GlParameterList

with extentions for handling set logic. Thus all retrieved attributes can be inserted without

reqard to redundancy. The GlParameterList set features will handle the duplication of

attributes. The performance implications of this approach need to be evaluated. Approach

2 assumes that the unloading functions are responsible for determining when duplicate

values are possible and handling them using knowledge of result set context. This approach

will have the best performance but will require the most code and maintenance.

Arguments: InvQuery& query, RWPtrOrderedVector<DsMdMetadata>& metadata

Return Type: GlStatus

Privilege: Private

Initialize - This method creates a DsDbConnection object. The method then creates and

initializes a DsDbGranuleToDbVector object. Then a DsDbAttributeToTableVector

object is created and initialized.

Arguments: void

Return Type: GlStatus

Privilege: Public

InsertCollectionMetadata - This method inserts a new collection level metadata object

and returns the assigned id in the collectionId parameter.

Arguments: DsTMdIdentifier collectionId, DsMdMetadata& metadata

Return Type: GlStatus

Privilege: Public

4-144 305-CD-008-001

InsertGranuleMetadata - This method processes the vector of DsMdMetadata objects

and iteratively calls the single InsertGranuleMetadata method inserting each object.

Arguments: RWTPtrOrderedVector<DsMdMetadata>

Return Type: GlStatus

Privilege: Public

InsertGranuleMetadata - This method assignes a unique identifier to the granule and

inserts it's metadata attributes into the database. The identifier is returned in the granuleId

parameter.

Arguments: DsMdMetadata& metadata

Return Type: GlStatus

Privilege: Public

InsertGranuleMetadata - This method inserts a DsMdMetadata object. It is unique in the

fact that it allows the caller to specify the granuleId.

Arguments: DsTMdIdentifier granuleId, DsMdMetadata& granuleMetadata

Return Type: GlStatus

Privilege: Public

Search
Arguments: GlParameter& searchConstraints, RWTPtrOrderedVector<DsMdMetadata>*,

GlStatus&

UpdateCollectionMetadata - This method takes a DsMdMetadata object as a parameter

and updates the attributes associated with the collectionId parameter. This method is

equivalent to a delete and add in the case of multivalued attributes. An update is performed

for single valued attributes.

Arguments: DsTMdIdentifier collectionId, DsMdMetadata& newMetadata

Return Type: GlStatus

Privilege: Public

UpdateCollectionMetadata - This method simply offers a different signature for

UpdateCollectionMetadata. The method first determines the collectionId of the named

collection and then calls the UpdateCollectionMetadata with the collectionId as a

parameter.

Arguments: char *collectionName, DsMdMetadata& newMetadata

Return Type: GlStatus

Privilege: Public

UpdateGranuleMetadata - This method updates the metadata attributes associated with

the granuleId parameter. For multivalued attributes this is equivalent to a delete and add,

an update is preformed for single valued attributes.

Arguments: DsTMdIdentifier granuleId, DsMdMetadata& newMetadata

Return Type: GlStatus

Privilege: Public

4-145 305-CD-008-001

~DsmdCatalog - This is the destructor for the DsMdCatalog object. It disconnects from

the database by deleting the DsDbConnection object. It then deletes the

DsDbAttributeToTableVector and the DsDbGranuleToDbVector objects

Arguments: void

Return Type: void

Privilege: Public

Associations:

The DsMdCatalog class has associations with the following classes:
Class: DsDbAttributeToTableVector
Class: DsDbGranuleToDbVector
Class: DsDbInterface

4.3.69 DsMdMetadata Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
The DsMdMetadata class representes a metadata object in the data server subsystem. It
includes all the metadata attribute information and their lookup operations. The attributes
are stored in the format of a GlParameterList internally. It also supports operations like
importing and exporting metadata object from/to external sources such as PVL strings.
Metadata attribute update is also supported through this class. Note that any updates to the
metadata object only occurs in memory for this class. The update operation on the
DsMdCatalog has to be involked to make the change persistent.

Attributes:

myId - Object Id for a Metadata object.
Data Type: DsTMdIdentifier
Privilege: Private
Default Value: null

myNonScienceMetadata - The part of the metadata that is internal to the system. It

includes bookkeeping information on the scientific data object. (e.g. file archive name and

path for a granule)

Data Type: GlParameterList

4-146 305-CD-008-001

Privilege: Private

Default Value:

myScienceMetadata - The part of the metadata that is visible to the end users. It is stored

as a list of GlParameters containing attribute names and values. Note that a multi-valued

attribute is a single entry (GlParameter) in the GlParameterList which points to a

GlParameterList for its values.

Data Type: GlParameterList

Privilege: Private

Default Value:

myType - Type of the metadata object. The metadata object can be for collection, granual

and document object. It helps to identify the associated type of the object.

Data Type: char*

Privilege: Private

Default Value: null

myUpdatedAttributes - Updated attribute list of the metadata object. This is used for

performance enhancement in updating partial objects. It is constructed/expanded during

the update operation and used by the DsMdCatalog class to figure out which attributes got

updated and issue command to update only those attribute in the database.

Data Type: GlParameterList

Privilege: Private

Default Value:

Operations:

DsMdMetadata - Constructor to set up default values for state variables.
Arguments:
Return Type: Void
Privilege: Public

GetAttribute - This operation provides a way for caller to query any one attribute value

for the metadata object. It takes the name of the attribute of interest, and gets the value of

the attribute and store the value in the GlParameter. Note that for performance reason, the

the GlParameter returned is a shallow copy of the metadata attribute.

Arguments: char* attributeName, GlParameter& attribute

Return Type: GlStatus

Privilege: Public

GetAttributes - This operation allows caller to get a list of attribute values from the

metadata object. It takes a list of GlParamters that containing the attribute names and fills

rest of the value fields (even types). The values will be in their native format. Note that for

performance reason, the values are shallow copies of the GlParameters of the metadata

4-147 305-CD-008-001

object, the data value pointers are shared. This is a multi-scalar version of the

GetAttribute() operation.

Arguments: GlParameterList& attributes

Return Type: GlStatus

Privilege: Public

GetUpdatedAttributes - This operation returns a list of the metadata attributes that have

been updated by user (via either UpdateAttribute or UpdateAttributes). It is useful for the

DsMdCatalog class for making the updates persistent in the databse. The DsMdCatalog

update operation can take the return list and only issue databse update command on the

corresponding attributes.

Arguments: GlParameterList& modifiedAttributes

Return Type: GlStatus

Privilege:

LoadFromExternal - This operation imports the metadata object from its external format

(e.g. PVL string) to the in-memory format. It is responsible for parsing the PVL string and

storing attributes (in their native format) in the GlParameterList. Multi-valued attribute is

represented as a single GlParameter with its value being a GlParameter for the values. This

operation is useful for the ingest process.

Arguments: char* externalForm

Return Type: GlStatus

Privilege: Public

MyId - Return the Metadata object Id. (Identity function)

Arguments:

Return Type: DsTMdIdentifier

Privilege: Public

MyType - This operation reurns the type of the metadata object.

Arguments:

Return Type: char*

Privilege: Public

PutAttribute - This operation allows caller to add an attribute to the metadata object. It

takes an attribute (represented as a GlParameter) and insert a copy of it to the

GlParameterList.

Arguments: const GlParameter& attribute

Return Type: GlStatus

Privilege: Public

PutAttributes - This operation allows caller to add a list of attributes into the metadata

object. The input attributes are expected to be in the format of a list of GlParameterList and

the operation will create a deep copy of the list and append to its attribute list. This is a

multi-scalar version of the PutAttribute() operation.

4-148 305-CD-008-001

Arguments: const GlParameterList& attributes

Return Type: GlStatus

Privilege: Public

SaveToExternal - This operation exports the in-memory format of the metadata object to

its external format(e.g. PVL string). It is useful for the distribution process.

Arguments: char*& externalForm

Return Type: GlStatus

Privilege: Public

SetMyId - This operation sets the Id for the metadata object. This is useful for applications

that need to access the metadata object through OID handles (e.g. UR).

Arguments: DsTMdIdentifier& Id

Return Type: Void

Privilege: Public

SetMyType - This operation sets the type of the object.

Arguments: char* type

Return Type: Void

Privilege: Public

UpdateAttribute - This operation updates the specified attribute in the metadata object.

The attribute to be updated is represented in the format of GlParameter containing both the

attribute name and its value. Note the update only occurrs in memory, an update operation

to the DsMdCatalog is required to make the change persistent.

Arguments: const GlParameter& attribute

Return Type: GlStatus

Privilege: Public

UpdateAttributes - This operation updates a list of attributes of the metadata object. This

is a multi-scalar version of the UpdateAttribute() operation. Note that it only updates the

in-memory part of the object, to make the change persistent, a DsMdCatalog update

operation is needed.

Arguments: const GlParameterList& attributes

Return Type: GlStatus

Privilege: Public

~DsMdMetadata - Destructor to deallocate any in-memory data structures for the objects.

Arguments:

Return Type: Void

Privilege: Public

4-149 305-CD-008-001

Associations:

The DsMdMetadata class has associations with the following classes:
DsMdCatalog (Aggregation)

4.3.70 DsNmNMC Class

Parent Class: DsNpNonECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
National Meteorological Center data

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNmNMC class has associations with the following classes:
None

4.3.71 DsNpAncillary Class

Parent Class: DsNsNonECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
This class contains ancillary data products which were input in the generation of standard
data products. The type attribute inherited from the DsGeESDT is used to indicate which
of the ancillary data types an instance of this class is.

Attributes:

All Attributes inherited from parent class

4-150 305-CD-008-001

Operations:

All Operations inherited from parent class

Associations:

The DsNpAncillary class has associations with the following classes:
None

4.3.72 DsNpCalibration Class

Parent Class: DsNsNonECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
This class contains instrument and scientific calibration data. The contents and format of
this data are not relevant from the DSS perspective. The DSS must receive, store and
distribute this data.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNpCalibration class has associations with the following classes:
None

4.3.73 DsNpCorrelative Class

Parent Class: DsNsNonECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
This class contains data products that are used as correlative data to evaluate and validate
EOS data products.

4-151 305-CD-008-001

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNpCorrelative class has associations with the following classes:
None

4.3.74 DsNpNonECSDataProduct Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class represents science data that was not produced within ECS. This includes data
that is in non-standard formats as well as data that has been produced to recommendations/
specifications provided by ECS to the data producer.

Attributes:

None

Operations:

None

Associations:

The DsNpNonECSDataProduct class has associations with the following classes:
None

4-152 305-CD-008-001

4.3.75 DsNpOA Class

Parent Class: DsNsNonECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
This data type contains orbit and attitude data. From the data type perspective of the DSS,
the internal format and contents are irrelevant. The DSS services include receive, archive,
and distribute for this type.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNpOA class has associations with the following classes:
None

4.3.76 DsNpPlatform Class

Parent Class: DsNpNonECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
This class represents Satellite Housekeeping Data. The format need not be know to the Data
Server.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

4-153 305-CD-008-001

Associations:

The DsNpPlatform class has associations with the following classes:
None

4.3.77 DsNpVersion0 Class

Parent Class: DsNsNonECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
This class is the base class for all Version 0 data products. At this level, the DSS has no
knowledge of the contents and structure of the individual data types. Subclasses derived
from this class would be specific Version 0 data types and would require an
ESDTDescriptor that defines the type, its services, its metadata, etc.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNpVersion0 class has associations with the following classes:
None

4.3.78 DsNsHistoricalData Class

Parent Class: DsGeESDT
Public: No Distributed Object: No
Purpose and Description:
Historical data that the DSS archives and provides access to. This includes instrument
historical data and spacecraft historical data. These contain commands sent and indications
of success or failure of these commands. From the DSS perspective the contents of these
data type are not interpreted but merely archived and made available for distribution.

4-154 305-CD-008-001

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNsHistoricalData class has associations with the following classes:
None

4.3.79 DsNsMPR Class

Parent Class: DsGeESDT
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
The Metadata Problem Report (MPR) is an ESDT that has information submitted by users
related to problems with metadata. This information could be supplied to the QA staff via
a subscription.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNsMPR class has associations with the following classes:
None

4-155 305-CD-008-001

4.3.80 DsNsNonECSDataProduct Class

Parent Class: DsGeScienceData
Public: No Distributed Object: No
Purpose and Description:
This class represents science data that was not produced within ECS. This includes data
that is in non-standard formats as well as data that has been produced to recommendations/
specifications provided by ECS to the data producer.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNsNonECSDataProduct class has associations with the following classes:
None

4.3.81 DsNsProdPlans Class

Parent Class: DsGeESDT
Public: No Distributed Object: No
Purpose and Description:
This class contains production plans from the planning subsystem. These plans include
candidate plans and active plans. From the DSS perspective the format and content of these
plans is not relevant.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

4-156 305-CD-008-001

Associations:

The DsNsProdPlans class has associations with the following classes:
None

4.3.82 DsNsProductionHistory Class

Parent Class: DsGeESDT
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
To provide a heritage of an ECS data granule. Product History is an ESDT that denotes the
steps that have been taken in the production of a particular ESDT object.

Attributes:

myGranuleUR - The UR for the granule that this production history describes.
Data Type:
Privilege: Private
Default Value:

Operations:

GetGranule - This service provides the ability to obtain the granule that this production history
refers to.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsNsProductionHistory class has associations with the following classes:
Class: DsGeScienceData describesgenerationof - Science data is generated using various
algorithms on a variety of host machines and with various input data. Production history
is used to describe the specific inputs, processing, and environment related to the
generation of the associated science data object. Each instance of a science data object has
an instance of a production history.

4-157 305-CD-008-001

4.3.83 DsNsQAStatistics Class

Parent Class: DsGeESDT
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
To provide an interface to services for the quality data for a data object. QAStatistics are
a type of ESDT that indicates the quality of a particular ESDT object.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsNsQAStatistics class has associations with the following classes:
Class: DsGeScienceData has - An instance of a science data object may or may not have an
instance of QA data statistics. An instance of QA data statistics indicates the quality of the
associated science data object.

4.3.84 DsNsScienceSoftwareArchivePackage Class

Parent Class: DsGeESDT
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
To provide a single interface to the full content of data and information delivered by data
producer standard product Algorithm Integration and Test. The delivered algorithm
package (DAP) class is a specialization of the ESDT class. It provides services that are
specific to the DAP data type. The DAP is also known as a science software package.

Attributes:

myBinaryList - The set of binary executables that have been compiled for this delivered
algorithm package.
Data Type: RWVector<istream>

4-158 305-CD-008-001

Privilege: Private

Default Value:

myGranuleList - A list of all the granules that were generated using this science software

delivery.

Data Type: RWVector<GlUR>

Privilege: Private

Default Value:

myHostList - The set of hosts that the executable software will run on.

Data Type: RWVector<RWCString>

Privilege: Private

Default Value:

mySourceCode - The source code (ASCII text) of the delivered algorithm package. This

will include the programs, header files, and make files.

Data Type: RWCString

Privilege: Private

Default Value:

Operations:

AddGranule - This service adds a granule to the list of granules generated using this delivered
algorithm package.
Arguments: theUR: GlUR
Return Type: RWBoolean
Privilege: Public

GetBinary - This service provides this algorithm packages executable program which has

been compiled for the given host.

Arguments: hostType

Return Type: ostream &

Privilege: Public

GetSource - This service provides the source code from the delivered algorithm package.

Arguments:

Return Type: RWCString

Privilege: Public

HasBinary - This service indicates whether or not the delivered algorithm package has an

executable program that runs on the given host type.

Arguments: hostType

4-159 305-CD-008-001

Return Type: RWBoolean

Privilege: Public

ListGranules - This service provides a list all of the granules that were generated using this

algorithm package.

Arguments:

ListHosts - This service lists all of the host types that this delivered algorithm package has

been compiled for.

Arguments: hostType

Return Type: RWVector<RWCString>

Privilege: Public

RemoveGranule - This service removes a granule from the list of granules that were

generated using this delivered algorithm package.

Arguments: theUR: GlUR

Associations:

The DsNsScienceSoftwareArchivePackage class has associations with the following classes:
Class: DsGeECSDataProduct isusedtocreate - An instance of a delivered algorithm
package (DAP) is used to create zero or more ECS data products. The DAP contains the
software, executables, makefiles, etc. The processing subsystem uses the DAP to generate
ECS data products. Each ECS data product was created using one DAP.

4.3.85 DsPrRadar Class

Parent Class: DsNpNonECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
The class represents data specifically from the TRMM platform Precipitation Radar (PR)
instrument.

Attributes:

All Attributes inherited from parent class

4-160 305-CD-008-001

Operations:

All Operations inherited from parent class

Associations:

The DsPrRadar class has associations with the following classes:
None

4.3.86 DsSbAction Class

Parent Class: DsSbActionBase
Public: No Distributed Object: No
Purpose and Description:
This defines an activity to be performed on behalf of a server when a previously defined
and advertised event occurs. Currently, notifications and requests are valid actions.

Attributes:

All Attributes inherited from parent class

Operations:

DsSbAction - Constructor allowing attributes in the base class to be set.
Arguments: DsSbRequest &, RWBoolean = TRUE, RWCString * = NULL
Return Type: Void
Privilege: Public

DsSbAction - Constructor allowing the attributes in the base class to be set.

Arguments: RWCString &text, DsSbRequest * = NULL

Return Type: Void

Privilege: Public

GetRequest - Returns a subscription request.

Arguments:

Return Type: const DsSbRequest&

Privilege: Public

SetRequest - Sets a request object.

Arguments: const DsSbRequest&

4-161 305-CD-008-001

Return Type: void
Privilege: Public

~DsSbAction
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSbAction class has associations with the following classes:
DsSbSubscription (Aggregation)

4.3.87 DsSbActionBase Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:

Attributes:

myNotifyFlag - Flag which determines if this action is a notification.
Data Type: RWBoolean
Privilege: Private
Default Value:

myRequestFlag - Flag which determines if this action is a request.

Data Type: RWBoolean

Privilege: Private

Default Value:

myText - Defines text of an action.

Data Type: RWCString

Privilege: Private

Default Value:

4-162 305-CD-008-001

Operations:

ClearRequest - Provides the action base class the ability to have requests cleared.
Arguments:
Return Type: void
Privilege: Public

DsSbActionBase - Constructs a DsSbActionBase.

Arguments:

Return Type: Void

Privilege: Public

DsSbActionBase - Constructs an Action base class setting the notification flag and text

attribute.

Arguments: RWBoolean notify = FALSE, const RWCString *text = 0

Return Type: Void

Privilege: Public

GetNotify - Accesses the notification flag.

Arguments:

Return Type: RWBoolean

Privilege: Public

GetText - Accesses the text attribute.

Arguments:

Return Type: const RWCString &

Privilege: Public

HasRequest - Checks whether the action contains requests.

Arguments:

Return Type: RWBoolean

Privilege: Public

SetNotify - Sets notification flag.

Arguments: RWBoolean

Return Type: void

Privilege: Public

SetText - Sets the text attribute.

Arguments: RWCString &

Return Type: void

Privilege: Public

4-163 305-CD-008-001

~DsSbActionBase
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSbActionBase class has associations with the following classes:
None

4.3.88 DsSbCallBackTimer Class

Parent Class: DsSbTimer
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
To generate calls to another object after a specified interval.

Attributes:

myCallbackFunction - The (member) function that should be called every time the interval
occurs.
Data Type: GlCallback
Privilege: Private
Default Value:

Operations:

SetCallback - Used by the managing object to register its callback function.
Arguments:
Return Type: RWBoolean
Privilege: Public

Associations:

The DsSbCallBackTimer class has associations with the following classes:
Class: DsSbSubscriptionInterface alarms

4-164 305-CD-008-001

4.3.89 DsSbEvent Class

Parent Class: Not Applicable
Public: No Distributed Object: Yes
Persistent Class: True
Purpose and Description:
Defines events used by the server.

Attributes:

myCategory - This is a category which allows events of the same name to be distinguished
from each other.
Data Type: RWCString
Privilege: Private
Default Value:

myDescription - This is the description of the event.

Data Type: RWCString

Privilege: Private

Default Value:

myEventID - This is the event identification number.

Data Type: int

Privilege: Private

Default Value:

myName - This is the name of the event.

Data Type: RWCString

Privilege: Private

Default Value:

Operations:

DsSbEvent - Constructs an event.
Arguments:
Return Type: Void
Privilege: Public

4-165 305-CD-008-001

Register - Used to register a new event in the subscription server.

Arguments:

Return Type: RWBoolean

Privilege: Public

Trigger - Implements the triggering of an event.

Arguments: GlParameterList&

Return Type: RWBoolean

Privilege: Public

PDL:CALL DsSbEventHandler::DsSbEventHandler to create an event handler for this

event.

CALL DsSbEventHandler::EventOccured to indicate event has occured and parameters

containing information about the event is passed along.

Returns a success or failure status.

Unregister - Used to remove the registration information about this event from the

subscription server.

Arguments:

Return Type: RWBoolean

Privilege: Public

~DsSbEvent
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSbEvent class has associations with the following classes:
Class: DsSbEventHandler processedby
DsSbEventTimer (Aggregation)

4.3.90 DsSbEventHandler Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class:

4-166 305-CD-008-001

Purpose and Description:

Handles incoming asynchronous events as they occur.

DsSbRegisteredEvent when DsSbEvents are given to it.

Attributes:

None

Operations:

DsSbEventHandler
Arguments:

Return Type: RWBoolean

Privilege: Public

It activates the corresponding

EventOccurred - Indicates that an event has occured and eventually subscriptions against

the events are processed.

Arguments: GlParameterList&

Return Type: RWBoolean

Privilege: Public

ReportStatus - Used to return status of execution to calling object.

Arguments:

Return Type: Void

Privilege: Public

~DsSbEventHandler
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSbEventHandler class has associations with the following classes:
Class: DsSbRegisteredEvent notifies - The event handler finds and calls the registered
event corresponding to an event that just occurred to execute subscriptions.
Class: DsSbEvent processedby

4-167 305-CD-008-001

4.3.91 DsSbEventTimer Class

Parent Class: DsSbTimer
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
To maintain and generate time events to be submitted to the DsSdEventHanler at regular
intervals.

Attributes:

All Attributes inherited from parent class

Operations:

RegisterEvent - Used by the managing object to tell DsSdEventTimer to register its event.
Arguments:
Return Type: RWBoolean
Privilege: Public
PDL:CALL DsSbEvent::DsSbEvent to create a new event and fill in event attributes.

CALL DsSbEvent::Register to advertise an event and record it into the subscription system.

Returns a success or failure status.

Associations:

The DsSbEventTimer class has associations with the following classes:
Class: DsSbSubscriptionInterface managedby - DsSdEventTimers are created and
configured by the DsSdSubscriptionInterface to perform regular subscription activities.

4.3.92 DsSbFactory Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:

4-168 305-CD-008-001

Attributes:

None

Operations:

DsSbFactory - Constructs a subscription server factory.
Arguments:
Return Type: Void
Privilege: Public

MakeEvent - Used to construct a server-side event to be distributed with a new client-side

proxy event.

Arguments:

Return Type: GlStatus

Privilege: Public

~DsSbFactory - Destroys this subscription server factory.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsSbFactory class has associations with the following classes:
None

4.3.93 DsSbRegisteredEvent Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
Associates subscriptions with subscribable events. It executes all subscriptions that have
been registered for an event when that event occurs.

Attributes:

myEventId - Associates this DsSdRegisteredEvent with a DsSdEvent, so that the
DsSdEventHandler can find the right DsSdRegisteredEvent when an event is triggered.

4-169 305-CD-008-001

Data Type: RWCString
Privilege: Private
Default Value:

Operations:

AddSubscription - Adds a subscription to be executed each time the event associated with this
DsSdRegisteredEvent is triggered.
Arguments:
Return Type: RWBoolean
Privilege: Public

CancelSubscription - Used to remove a specific subscription from the list associated with

this DsSdRegisteredEvent.

Arguments:

Return Type: RWBoolean

Privilege: Public

CancelSubscriptions - Used to remove all subscriptions from the list of subscriptions

associated with this DsSdRegisteredEvent.

Arguments:

Return Type: RWBoolean

Privilege: Public

DsSbRegisteredEvent
Arguments:
Return Type: Void
Privilege: Public

ExecuteSubscriptions
Arguments: GlParameterList

Return Type: RWBoolean

Privilege: Public

GetSubscriptions - Creates a list of all subscriptions associated with this

DsSdRegisteredEvent.

Arguments:

Return Type: RWBoolean

Privilege: Public

~DsSbRegisteredEvent
Arguments:

4-170 305-CD-008-001

Return Type: Void
Privilege: Public

Associations:

The DsSbRegisteredEvent class has associations with the following classes:
Class: DsSbSubscription activates - Each DsSdRegisteredEvent maintains a list of
subscriptions that have been associated with its event, organized by event. The
subscription list is managed and subscriptions are executed via this association.
Class: DsSbSubscriptionInterface manages - DsSdSubscriptionInterface maintains a list of
all DsSdRegisteredEvents(s) and passes on all subscription requests to the appropriate one.
Class: DsSbEventHandler notifies - The event handler finds and calls the registered event
corresponding to an event that just occurred to execute subscriptions.

4.3.94 DsSbSubscription Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
Records all characteristics of a single subscription. It is responsible for executing the
requested action when the associated event occurs.

Attributes:

myExpirationDate - Identifies when this subscription will expire and be removed from the
system. The value may be "never" (i.e. the subscription is permanent).
Data Type: RWDate
Privilege: Private
Default Value:

myType - Stores the type of this subscription, i.e. whether it is a one-time only or repeating

subscription.

Data Type: RWCString

Privilege: Private

Default Value:

myUserId - Identifies the user that submitted the subscription.

Data Type: RWCString

4-171 305-CD-008-001

Privilege: Private
Default Value:

Operations:

DsSbSubscription -
Arguments:
Return Type: Void
Privilege: Public

Execute - Implements execution of the server side subscription.

Arguments: GlParameterList

Return Type: RWBoolean

Privilege: Public

NotifyCancel - Used to notify the client that the server side subscription has been

cancelled.

Arguments:

Return Type: RWBoolean

Privilege: Public

NotifyExpiration - Used to notify the client that the server side subscription is about to

expire.

Arguments:

Return Type: RWBoolean

Privilege: Public

SetExpiration - Sets the expiration of the server side subscription.

Arguments: Date

Return Type: RWBoolean

Privilege: Public

~DsSbSubscription -

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsSbSubscription class has associations with the following classes:
Class: DsSbRegisteredEvent activates - Each DsSdRegisteredEvent maintains a list of
subscriptions that have been associated with its event, organized by event. The

4-172 305-CD-008-001

subscription list is managed and subscriptions are executed via this association.
Class: DsSbSubscriptionInterface manages - DsSdSubscriptionInterface maintains a list of
all DsSdSubscriptions orgainized by expiration data and user id.

4.3.95 DsSbSubscriptionInterface Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
Provides an interface to subscription services. Other objects can use it to access all
administrative functions that are necessary for creating, removing and managing
subscriptions. It also handles event registration, and returns a handle to the
DsSdEventHandler to registering events.

Attributes:

None

Operations:

AddSubscription - Creates a new DsSbSubscription object for the client and adds it to the
appropriate DsSbRegisterEvent (to be used when the correponding event is triggered).
Arguments:
Return Type: RWBoolean
Privilege: Public

CancelSubscription - Notifies the appropriate DsSbRegisteredEvent to remove the

subscription from its list (and destroy the DsSdSubscription object).

Arguments:

Return Type: RWBoolean

Privilege: Public

CheckExpirations - Cycles through the entire list of DsSbSubscriptions, and cancels any

subscriptions that have expired (with notification to the owner). Also, sends owners

notification of subscriptions that will soon expire.

Arguments:

Return Type: RWBoolean

Privilege: Public

4-173 305-CD-008-001

DsSbSubscriptionInterface
Arguments:

Return Type: Void

Privilege: Public

ExecuteCommand - Used to cause DsSbSubscriptionInterface to execute a

DsSbCommand.

Arguments:

Return Type: RWBooolean

Privilege: Public

GetAllEvents - Creates (and returns) a list of all subscribable events.

Arguments:

Return Type: RWBoolean

Privilege: Public

GetAllSubscriptions - Creates (and returns) a list of all subscriptions that exist for a given

user.

Arguments:

Return Type: RWBoolean

Privilege: Public

RegisterEvent - Creates a DsSbRegisteredEvent object for the given event, and returns to

the calling object a handle to the DsSbEventHandler to be used when triggering the event.

Arguments:

Return Type: RWBoolean

Privilege: Public

UnregisterEvent - Removes a DsSbRegisteredEvent from the system, and thereby all of

the subscriptions associated with it.

Arguments:

Return Type: RWBoolean

Privilege: Public

UpdateSubscription - Modifies any/all attributes of an existing subscription.

Arguments:

Return Type: RWBoolean

Privilege: Public

~DsSbSubscriptionInterface
Arguments:
Return Type: Void
Privilege: Public

4-174 305-CD-008-001

Associations:

The DsSbSubscriptionInterface class has associations with the following classes:
Class: DsSbCallBackTimer alarms
Class: DsSbEventTimer managedby - DsSdEventTimers are created and configured by the
DsSdSubscriptionInterface to perform regular subscription activities.
Class: DsSbRegisteredEvent manages - DsSdSubscriptionInterface maintains a list of all
DsSdRegisteredEvents(s) and passes on all subscription requests to the appropriate one.
Class: DsSbSubscription manages - DsSdSubscriptionInterface maintains a list of all
DsSdSubscriptions orgainized by expiration data and user id.

4.3.96 DsSbTimer Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
To generate time events to be submitted to the subscription system. A timer will monitor
the system clock and generate the specified time events.

Attributes:

myInterval - Identifies how much time the timer should wait until generating the next trigger.
Data Type: float
Privilege: Private
Default Value:

Operations:

DsSbTimer
Arguments:

Return Type: Void

Privilege: Public

Reset - Used to tell the timer to start measuring the interval as if it had just been triggered.

Arguments:

Return Type: RWBoolean

Privilege: Public

4-175 305-CD-008-001

~DsSbTimer
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsSbTimer class has associations with the following classes:
None

4.3.97 DsSd24BitImage Class

Parent Class: DsSdImage
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
A computer science data type used for the representation of 24 bit images.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSd24BitImage class has associations with the following classes:
None

4.3.98 DsSd8BitImage Class

Parent Class: DsSdImage
Public: No Distributed Object: No
Persistent Class:

4-176 305-CD-008-001

Purpose and Description:

A computer science data type used the representation of 8 bit images.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSd8BitImage class has associations with the following classes:
None

4.3.99 DsSdCSDT Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
Computer Science Data Type. The CSDT is a data structure used by the data server
superclass that provides common services for the different types of CSDTs. The CSDT
provides the internal representation of data objects.

Attributes:

myCompressionType
Data Type: typedef

Privilege: Private

Default Value: None

myDate - The date when the CSDT was created.

Data Type: char

Privilege: Private

Default Value: yyyy/mmm/ddd

myFormat - Ths format of the CSDT.

Data Type: typedef

4-177 305-CD-008-001

Privilege: Private
Default Value: Raw

myPermissions
Data Type: char

Privilege: Private

Default Value: RW

mySize - The block size of the CSDT

Data Type: integer

Privilege: Private

Default Value: 0

myVersionNo

Operations:

DeleteCSDT
Arguments:

Extract
Arguments:

GetFormat
Arguments:

Return Type: typedef

Privilege: Public

This is an abstract operation

GetLocation
Arguments:

GetPermissions
Arguments:

GetSize - To display the size of the CSDT.
Arguments:

GetVersionNo
Arguments:

GetView
Arguments:

4-178 305-CD-008-001

Return Type: Void

Privilege: Public

This is an abstract operation

Insert -

Arguments:

NewCSDT
Arguments:

SetPermissions
Arguments:

UpdateCSDT
Arguments:

Associations:

The DsSdCSDT class has associations with the following classes:
DsGeESDT (Aggregation)

4.3.100DsSdGrid Class

Parent Class: DsSdCSDT
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
A computer science data type used for the representation of granules in the geolocated data
types.

Attributes:

myArrayLabels

myCompression

myDimension

myGeophysicalParameters

4-179 305-CD-008-001

myGridType

myName

myResolution

Operations:

ApplyProjection - To apply projection on the granules.
Arguments:
Return Type: Void
Privilege: Public

Compress
Arguments:

ExtractSlice - This service obtains one or more parameters (a slice) over the desired area

of interest.

Arguments:

GetOrbitModelName
Arguments:

Subsample - To select representative measurements across rectangle from data granules

using a consistant sampling scheme.

Arguments: rectangle

Return Type: Void

Privilege: Public

Subsample - To select representative measurements across polygon from data granules

using a consistant sampling scheme.

Arguments: polygon

Return Type: Void

Privilege: Public

Subset - To obtain data from granules based on a given rectangle.

Arguments: rectangle

Return Type: Void

Privilege: Public

Subset - To obtain data from granules based on a given 3-D polygon.

Arguments: polygon

4-180 305-CD-008-001

Return Type: Void

Privilege: Public

Subset - To obtain only specified parameters or parameter catagory from granule.

Arguments: parameter

Return Type: Void

Privilege: Public

Subset - To obtain data based on given time(s) or time interval(s).

Arguments: time

Return Type: Void

Privilege: Public

Uncompress
Arguments:

Associations:

The DsSdGrid class has associations with the following classes:
None

4.3.101DsSdImage Class

Parent Class: DsSdCSDT
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
A computer science data type used for the representation of the 2D raster data type,

primarily for the storage of the pixels for image visualization.

Attributes:

myBitDepth

myImageType - The type (bitmap, rastermap etc.,) of the image.

Data Type:

Privilege: Private

Default Value:

4-181 305-CD-008-001

myLength - The length of the image.

Data Type:

Privilege: Private

Default Value:

myName

myResolution - The pixel resolution of the image.

Data Type:

Privilege: Private

Default Value:

myWidth - The width of the image.

Data Type:

Privilege: Private

Default Value:

Operations:

Animate
Arguments:

Compress
Arguments:

Overlay - To overlay the image.

Arguments:

Return Type: Void

Privilege: Public

Subsample
Arguments: rectangle

Subset
Arguments: rectangle

Uncompress
Arguments:

4-182 305-CD-008-001

Associations:

The DsSdImage class has associations with the following classes:
None

4.3.102DsSdLookUpTable Class

Parent Class: Not Applicable

Attributes:

myColorNames

myName

Operations:

SetColor
Arguments: id

SetContrast
Arguments:

Associations:

The DsSdLookUpTable class has associations with the following classes:
DsSd8BitImage (Aggregation)

4.3.103DsSdPoint Class

Parent Class: DsSdCSDT
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
A computer science data type used for the representation of the point data.

4-183 305-CD-008-001

Attributes:

my size

mylables

mylocation

myname

myresolution

mytime

myvector

Operations:

GetLabels
Arguments:

GetRecordType
Arguments:

GetSize
Arguments:

ParameterSubset
Arguments:

SetLabels
Arguments:

Associations:

The DsSdPoint class has associations with the following classes:
None

4-184 305-CD-008-001

4.3.104DsSdRaw Class

Parent Class: DsSdCSDT

Attributes:

mylocation

myname

mysize

Operations:

GetSize
Arguments:

Associations:

The DsSdRaw class has associations with the following classes:
None

4.3.105DsSdSwath Class

Parent Class: DsSdCSDT
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
A computer science data type used for the representation of the swath of the images.

Attributes:

myCompression

myDimensions

myLabels

4-185 305-CD-008-001

myLocation

myName

myOrbitRepresentation

myResolution

mySize

mySwathType

myTime

Operations:

Compress
Arguments:

CreateRows
Arguments:

DeleteRows
Arguments:

ExtractRows
Arguments:

GetRecordType
Arguments:

GetSize
Arguments:

Subsample - To select representative measurements across scanline from data granules

using a consistant sampling scheme.

Arguments: scanline

Return Type: Void

Privilege: Public

Subsample - To select representative masurements across time from data granules using

a consistant sampling scheme.

Arguments: time

4-186 305-CD-008-001

Return Type: Void
Privilege: Public

Subsample
Arguments: row

Subset - To obtain data based on given parameters or parameter catagory from garnule.

Arguments: parameter

Return Type: Void

Privilege: Public

Uncompress
Arguments:

Associations:

The DsSdSwath class has associations with the following classes:
None

4.3.06 DsSrClient Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
Acts as an interface class to the CSMS subsystem to use the accounting and user profiling
capabilities.

Attributes:

myProfile - A pointer to the profile for this client, obtained from MSS.
Data Type: MSS_UserProifle*
Privilege: Private
Default Value:

mySystemLog - Identifies the log that is used by DsSdClient to log all activity by the

object.

Data Type: GlLog

Privilege: Private

Default Value:

4-187 305-CD-008-001

Operations:

ConvertToDollars - Used to convert a request to its cost.
Arguments: rq: DsSrRequest &
Return Type: RWBoolean
Privilege: Public

Debit - Used to subtract the given cost from the user's balance.

Arguments: amt: float

Return Type: void

Privilege: Public

DsSrClient - Constructs a client from the given profile.

Arguments: MSS_UserProfile*

Return Type: Void

Privilege: Public

GetBalance - Retrieves the current account balance for this user.

Arguments:

Return Type: float

Privilege: Public

GetProfile - Retrieves the contents of the profile for the user.

Arguments:

Return Type: MSS_UserProfile

Privilege: Public

SufficientFunds - Used to determine if the user has enough money to perform the request.

Arguments: rq: DsSrRequest &

Return Type: RWBoolean

Privilege: Public

~DsSrClient - Destroys this client.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsSrClient class has associations with the following classes:
Class: DsSrConnection informs

4-188 305-CD-008-001

4.3.107DsSrCommand Class

Parent Class: DsSrCommandBase
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
An implementation of the DsCommand abstract base class that provides services necessary
for data server creation and storage of command objects.

Attributes:

All Attributes inherited from parent class

Operations:

DsSrCommand - Used to construct a command from a command info object.
DsSrConnection uses this constructor to rebuild a command that has been submitted from
a client.
Arguments: DsSrCommandInfo*
Return Type: Void
Privilege: Public

~DsSrCommand - Used to destroy a command.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsSrCommand class has associations with the following classes:
DsSrRequest (Aggregation)

4.3.108DsSrCommandBase Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class:

4-189 305-CD-008-001

Purpose and Description:

This class provides a common interface to the core information of a command in the

system. It is inherited by both the client-side and server-side command classes.

Attributes:

myInfo - A pointer to the core command information for this command. (Which is, In OO
terms, the implementation for this interface).
Data Type: DsSrCommandInfo*
Privilege:
Default Value:

Operations:

DsSrCommandBase - Used to construct an empty command.
Arguments:
Return Type: Void
Privilege: Public

DsSrCommandBase - Used to construct a command with the given service, parameters,

and category.

Arguments: svc: RWCString &, pl: GlParameterList *, DsESrCommandCategory

Return Type: Void

Privilege: Public

GetCategory - Used to retrieve the current category for this command.

Arguments:

Return Type: DsESrRequestCategory

Privilege: Public

GetInfo - Returns a pointer to the underlying data (DsSrRequestInfo) for this request.

Arguments:

Return Type: DsSrCommandInfo*

Privilege: Public

GetParameters - Returns the parameters for this command.

Arguments:

Return Type: const GlParameterList &

Privilege: Public

GetServiceName - Returns the current service name for this command.

Arguments:

4-190 305-CD-008-001

Return Type: const RWCString &

Privilege: Public

SetCategory - Used to set the category for the command.

Arguments: DsESrRequestCategory

Return Type: void

Privilege: Public

SetParameters - Used to set the parameters for this command.

Arguments: pl: GlParameterList &

Return Type: void

Privilege: Public

SetServiceName - Used to set the service name for this command.

Arguments: svc: const RWCString &

Return Type: void

Privilege: Public

~DsSrCommandBase - Used to destroy a command.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsSrCommandBase class has associations with the following classes:
Class: DsSrCommandInfo referencedby

4.3.109DsSrCommandInfo Class

Parent Class: Not Applicable

Attributes:

myCategory - The category of the command indicates to the receiving connection object how
the command should be routed.
Data Type: DsESrCommandCategory
Privilege: Protected
Default Value:

4-191 305-CD-008-001

myParameterList - Designates the parameters values for the service requested.

Data Type: GlParameterList

Privilege: Protected

Default Value:

myServiceName - Indicates the name of the desired service.

Data Type: RWCString

Privilege: Protected

Default Value:

Operations:

None

Associations:

The DsSrCommandInfo class has associations with the following classes:
Class: DsSrCommandBase referencedby
DsSrRequestInfo (Aggregation)

4.3.110DsSrConnection Class

Parent Class: Not Applicable
Public: No Distributed Object: Yes
Persistent Class: True
Purpose and Description:
Manages all interaction between clients and the data server. Provides all necessary server
side housekeeping activities (logging, accounting, authorizing) as well as executing client
requests.

Attributes:

myLog - The log used to record all activity for this connection.
Data Type: GlLog
Privilege: Protected
Default Value:

myLoggingFlag - Indicates whether activity is currently being logged for this connection.
Data Type: RWBoolean

4-192 305-CD-008-001

Privilege: Protected

Default Value:

myStatus - The current status of this connection.

Data Type: GlStatus

Privilege: Protected

Default Value:

myTimeOut - The time when this connection will automatically expire unless activity is

detected.

Data Type: RWDate

Privilege: Protected

Default Value:

myTimeoutInterval - The amount of time (in seconds) after which this connection will

terminate if no activity is detected.

Data Type: unsigned int

Privilege: Protected

Default Value:

Operations:

Authorize
Arguments: DsSrCommand

Return Type: GlStatus

Privilege: Public

DsSrConnection - Constructs this connection for the given user profile. If the connection

ID is not 0, restores the previously suspended connection.

Arguments: prof: MSS_UserProfile, DsESrConnectionID = NULL

Return Type: Void

Privilege: Public

Execute - A pure-virtual function that is expected to be implemented by derived classes to

execute a request.

Arguments: rq: DsSrRequest &

Return Type: GlStatus

Privilege: Public

GetStatus - Returns the status of this connection.

Arguments:

Return Type: GlStatus

Privilege: Public

4-193 305-CD-008-001

GetTimeOut - Returns the time at which this connection will automatically terminate

without activity.

Arguments:

Return Type: RWTime

Privilege: Public

Refresh - Used to tell the connection to reload any configuration parameters that it uses,

usually so that it notices a change. myTimeoutInterval is a parameter that is loaded from

configuration.

Arguments:

Return Type: void

Privilege: Public

SetTimeOut - Used to set the interval when this connection will automatically terminate if

no activity is detected.

Arguments: secs: unsigned int

Return Type: void

Privilege: Public

StartLogging - Used to make this connection start logging all activity.

Arguments:

Return Type: void

Privilege: Public

StopLogging - Used to make this connection stop logging all activity.

Arguments:

Return Type: void

Privilege: Public

Submit - Used to submit a request to this connection. The request is evaluated to determine

its destination (within the data server), and its commands are passed to the appropriate

object.

Arguments: rq: DsClSubmittedRequestID

Return Type: GlStatus

Privilege: Public

PDL:CALL DsSrServer::GetSRVector to obtain a reference to the vector of submitted

requests

CALL DsSrSubmittedRequestVector::Find to find the DsClSubmittedRequest for the

given ID

IF the DsClSubmittedRequest is found

CALL DsClSubmittedRequest::GetInfo to get a reference to the core request information

Construct a new DsSrRequest with the core request information

CALL DsSrRequestVector::insert to add the new request to the vector of requests

ELSE

4-194 305-CD-008-001

Set return code to indicate "Invalid request ID"

END IF

Terminate - Used to terminate this connection.

Arguments:

Return Type: GlStatus

Privilege: Public

~DsSrConnection - Used to destory the connection.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsSrConnection class has associations with the following classes:
Class: DsSbSubscriptionInterface
Class: DsSrClient informs
Class: DsSrServer registers
Class: DsSrRequest routes
Class: DsSrSubmittedRequestVector searches

4.3.111DsSrQueuedConnection Class

Parent Class: DsSrConnection

Attributes:

All Attributes inherited from parent class

Operations:

CancelRequest
Arguments: DsClSubmittedRequestID

Return Type: GlStatus

Privilege: Public

DsSrQueuedConnection - Constructs this connection for the given user profile, and

creates a request vector to queue future requests. If the connection ID is not 0, restores the

previously suspended connection.

4-195 305-CD-008-001

Arguments: prof: MSS_UserProfile, resume: DsESrConnectionID = 0

Return Type: Void

Privilege: Public

GetNextRequest - Returns the next request to be executed from the request vector. The

vector is searched for the first HIGH-priority request, and if none is found then the first

NORMAL-priority request is returned. If the vector contains only LOW-priority requests,

the first one is returned.

Arguments:

Return Type: DsSrRequest*

Privilege: Public

Submit - Overrides function inherited from DsSrConnection to add new request to the

vector of requests.

Arguments: DsClSubmittedRequestID

Return Type: GlStatus

Privilege: Public

Suspend - Used to suspend this connection, saving the current state and returning an ID

that can be used to resume the connection.

Arguments: ref: DsESrConnectionID &

Return Type: GlStatus

Privilege: Public

~DsSrQueuedConnection - Destroys this connection.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsSrQueuedConnection class has associations with the following classes:
None

4.3.112DsSrRequest Class

Parent Class: DsSrRequestBase
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
This class presents the interface needed by other server objects to the core request

4-196 305-CD-008-001

information. It also acts as a vector of DsSrCommand objects that compose this request,
and maintains a connection to the client-side request via a DsClSubmittedRequest.

Attributes:

All Attributes inherited from parent class

Operations:

Cancel - Used to cancel a request. If the request is in the request vector, it is removed from the
vector. A TBD policy will be used to terminate a currently executing request.
Arguments:
Return Type: RWBoolean
Privilege: Public

DsSrRequest - This class presents the interface needed by other server objects to the core

request information. It also acts as a vector of DsSrCommand objects that compose this

request, and maintains a connection to the client-side request via a DsClSubmittedRequest.

Arguments: DsSrRequestInfo*

Return Type: Void

Privilege: Public

GetResults - Returns the current results for this request (from the

DsCLSubmittedRequest).

Arguments:

Return Type: GlParameterList &

Privilege: Public

GetStatus - Used to retrieve the current status of this request (from the

DsClSubmittedRequest).

Arguments:

Return Type: GlStatus&

Privilege: Public

SetStatus - Used to set the status of the request. This status is also updated in the

DsClSubmittedRequest that corresponds to this request.

Arguments: GlStatus *

Return Type: void

Privilege: Public

~DsSrRequest - Used to destory a request.

Arguments:

Return Type: Void

Privilege: Public

4-197 305-CD-008-001

Associations:

The DsSrRequest class has associations with the following classes:
Class: DsSrConnection routes
DsSrRequestVector (Aggregation)

4.3.113DsSrRequestBase Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
An abstract base class that represents a prioritized set of commands to be executed on the
data server. Inherits an instantiation of an RWVector.

Attributes:

myInfo - A pointer to the core request information for this request. (In OO terms, the
implementation for this interface).
Data Type: DsSrRequestInfo*
Privilege: Protected
Default Value:

mySubmittedRequest - The DsClSubmittedRequest that is associated with this request.

Value is NULL until one is created/found.

Data Type: DsClSubmittedRequest *

Privilege: Protected

Default Value: NULL

Operations:

DsSrRequestBase - Constructs a request with the given priority (LOW, NORMAL, HIGH).
Arguments: DsESrRequestPriority = NORMAL
Return Type: Void
Privilege: Public

GetDomain - Returns the current UR vector of this request.
Arguments:

4-198 305-CD-008-001

Return Type: GlURVector &

Privilege: Public

GetInfo - Returns a pointer to the underlying data (DsSrRequestInfo) for this request.

Arguments:

Return Type: DsSrRequestInfo*

Privilege: Protected

GetPriority - Returns the current priority of the request.

Arguments:

Return Type: DsESrRequestPriority

Privilege: Public

GetSRID - Used to obtain the ID of the submitted request associated with this request.

Arguments:

Return Type: DsClSubmittedRequestID

Privilege: Protected

GetStatus - Returns a reference to the current status of the request.

Arguments:

Return Type: const GlStatus &

Privilege: Public

SetDomain - Used to set the UR vector for this request.

Arguments: GlURVector &

Return Type: void

Privilege: Public

SetPriority - Used to set the priority of the request.

Arguments: DsESrRequestPriority

Return Type: void

Privilege: Public

~DsSrRequest - Destroys a request.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsSrRequestBase class has associations with the following classes:
Class: DsClSubmittedRequest

4-199 305-CD-008-001

4.3.114DsSrRequestInfo Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:

Attributes:

myCommands - A list of commands which comprise this request.
Data Type: RWTPtrOrderedVector<DsSrCommandInfo>
Privilege: Protected
Default Value:

myDomain - A list of URs (of ESDTs currently in the working collection) to which this

request should be applied. If this list is empty, the request will be applied to all ESDTs in

the collection.

Data Type: GlURVector

Privilege: Protected

Default Value:

myPriority - The priority of this request: LOW, NORMAL, HIGH

Data Type: DsESrRequestPriority

Privilege: Protected

Default Value:

Operations:

None

Associations:

The DsSrRequestInfo class has associations with the following classes:
DsSrRequestBase (Aggregation)

4.3.115DsSrRequestVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No

4-200 305-CD-008-001

Persistent Class:

Purpose and Description:

Manages multiple DsSrRequests for a DsSrQueuedConnection objects. Provides ordering

based on priority of DsSrRequests and order of receipt (FIFO).

Attributes:

None

Operations:

None

Associations:

The DsSrRequestVector class has associations with the following classes:
DsSrQueuedConnection (Aggregation)

4.3.116DsSrServer Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
A single DsSrServer object is instantiated in each data server. Its main job is to register and
keep track of connections. It also maintains a vector of current submitted requests.

Attributes:

myConnectionThreshold - The maximum number of connections that can be started by this
server.
Data Type: int
Privilege: Private
Default Value:

mySystemLog - Used to log general system activities.

Data Type: GlLog

Privilege: Private

Default Value:

4-201 305-CD-008-001

Operations:

Connect - Used to register a connection for this server.
Arguments: DsSrConnection &
Return Type: GlStatus
Privilege: Public

DeleteConnection - Used to terminate and delete an existing connection.

Arguments: conn: DsSrConnection&

Return Type: GlStatus

Privilege: Public

DsSrServer - Used to construct the DsSrServer object using the given configuration.

Arguments: cf: DsSrConfig

Return Type: Void

Privilege: Public

GetConnectionThreshold - Used to retrieve the current connection threshold.

Arguments:

Return Type: int

Privilege: Public

GetSRVector - Used to obtain a reference to the vector of all active submitted requests.

The vector can be modified or searched by the caller.

Arguments:

Return Type: DsSrSubmittedRequestVector &

Privilege: Public

ListConnections - Returns a list of all (currently active) connections known by the server.

Arguments:

Return Type: const DsSrConnectionVector

Privilege: Public

ReportStatus - Returns the current status of the server.

Arguments:

Return Type: GlStatus

Privilege: Public

SetConnectionThreshold - Used to set the maximum number of connections that can be

active for this server.

Arguments: int

Return Type: void

Privilege: Public

4-202 305-CD-008-001

~DsSrServer - Used to destroy the server object.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsSrServer class has associations with the following classes:
Class: DsSrConnection registers

4.3.117DsSrSession Class

Parent Class: DsSrQueuedConnection
Public: No Distributed Object: No
Persistent Class:
Purpose and Description:
To manage ESDT-oriented interaction between the external client and the data server. It
provides an interface for the other objects in the system to communicate with the client and
manages a DsSdWorkingCollection on behalf of the client. Adds request queueing and
DsSdWorkingCollection handling functionality to DsSdConnection (its super class).

Attributes:

All Attributes inherited from parent class

Operations:

DsSrSession - Constructs this connection for the given user profile, and creates an empty
working collection. If the connection ID is not 0, restores the previously suspended
connection.
Arguments: MSS_UserProfile, DsESrConnectionID
Return Type: Void
Privilege: Public

Execute - Executes a request (from the request vector) by passing each command from the
request to the working collection. Results and status are accumulated from each command,
and returned to the client through the request. Each request may be executed in a separate
thread, as long as the domains of the executing requests do not intersect. When a request
is found with a domain that intersects with an executing request, it is held until the
conflicting request finishes execution.

4-203 305-CD-008-001

Arguments: DsSrRequest&

Return Type: GlStatus

Privilege: Public

PDL:CALL GetNextRequest to obtain the next highest-priority request from the request

vector

DO WHILE the request has at least one command in it

CALL DsSrRequest::removeFirst to get the first command from the request

CALL Authorize to ensure that the execution of the command is authorized

IF authorization succeeds

Create a results GlParameterList to store the results of the command's execution

CALL DsSrCommand::GetCategory to obtain the category of the request

DO CASE (command category)

CASE INVENTORY:

CASE ESDT:

CASE DISTRIBUTION:

CASE WC:

CALL DsSrWorkingCollection::ExecuteCommand to handle the command

CASE CONNECTION:

Parse the command to determine what function is requested

Execute the function

END DO CASE

CALL DsSrRequest::GetResults to obtain a reference to the results list for the request

CALL GlParameterList::insert to insert the command's results into the request results list

CALL DsSrRequest::SetStatus to indicate that the execution of the command is done

ELSE

RETURN an indication that "Command authorization failed"

END IF

END DO WHILE

CALL DsSrRequest::SetStatus to indicate that the execution of the request is done

Delete the request

Submit - Overrides the function inherited from DsSrQueuedConnection to handle

submission of new requests to a session. As requests are added to the request vector, the

execution thread is notified of the presence of the new request.

Arguments: DsClSubmittedRequestID

Return Type: GlStatus

Privilege: Public

~DsSrSession - Used to destroy this session.

Arguments:

Return Type: Void

Privilege: Public

4-204 305-CD-008-001

Associations:

The DsSrSession class has associations with the following classes:
None

4.3.118DsSrSubmittedRequestVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This class is instantiated by the DsSrServer object to maintain a vector of all
DsClSubmittedRequests objects that currently exist for this data server. This list can be
searched to restore a client's state information after a client shutdown and restart.

Attributes:

None

Operations:

DsSrSubmittedRequestVector - Constructs an empty vector.
Arguments:
Return Type: Void
Privilege: Public

Find - Used to find a specific submitted request in the vector. If none is found, return value

will be NULL.

Arguments: DsClSubmittedRequestID

Return Type: DsClSubmittedRequest*

Privilege: Public

~DsSrSubmittedRequestVector - Destroys this vector.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsSrSubmittedRequestVector class has associations with the following classes:
Class: DsClSubmittedRequest insertsself

4-205 305-CD-008-001

Class: DsSrConnection searches
DsSrServer (Aggregation)

4.3.119DsSrWorkingCollection Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Persistent Class: True
Purpose and Description:
To provide an interface to the current set of ESDT objects. The working collection
provides the ability to iterate over this set to perform the requested service. This object
facilitates use of a results set as the input domain for further service requests.

Attributes:

myESDTs
Data Type: DsSrESDTWrapperVector

Privilege: Private

Default Value:

myStatus - The current status of this collection.

Data Type: GlStatus

Privilege: Private

Default Value:

Operations:

DsSrWorkingCollection - Constructs an empty working collection.
Arguments:
Return Type: Void
Privilege: Public

ExecuteCommand - Executes the given command over the entire collection, returning

results (in the parameter list) and status.

Arguments: DsSrCommand, res: GlParameterList &, GlStatus &

Return Type: Void

Privilege: Public

PDL:CALL DsSrCommand::GetCategory to obtain the category of the command

DO CASE (command category)

CASE WC:

4-206 305-CD-008-001

Parse the command to determine what function is requested

Execute the function

CASE ESDT:

DO WHILE (not every ESDT in the collection has executed the command)

Create a GlParameterList to hold the results of the execution for this ESDT

CALL DsGeESDTWrapper::ExecuteCommand to make the ESDT execute the command

CALL GlParamterList::insert to add the ESDT's results to the command results

END WHILE

CASE DISTRIBUTION:

Create a DsDdDistributionList object

Add the data file names for all ESDTs in the collection to the distribution list

CALL DsDdDistributionList::Distribute

CASE INVENTORY:

Create a DsMdCatalog object

CALL DsMdCatalog::Search to search the inventory for ESDTs matchine the criteria

DO WHILE (there are matches in the list returned from Search)

Create a DsGeESDTWrapper object for the corresponding match

END DO WHILE

END DO CASE

ExecuteCommand - Executes the given command over the domain given by the

GlURVector, returning results (in the parameter list) and status. The domain must specify

URs of ESDTs that are currently contained in the collection.

Arguments: DsSrCommand, GlURVector, res: GlParameterList &, GlStatus &

Return Type: Void

Privilege: Public

GetStatus - Returns the current status of the collection.

Arguments:

Return Type: GlStatus

Privilege: Public

Reset - Used to discard all ESDTs currently held in the collection and return it to the

"empty" state.

Arguments:

Return Type: void

Privilege: Public

~DsSrWorkingCollection - Destroys this working collection.

Arguments:

4-207 305-CD-008-001

Return Type: Void
Privilege: Public

Associations:

The DsSrWorkingCollection class has associations with the following classes:
DsSrSession (Aggregation)

4.3.120DsSsSSMI Class

Parent Class: DsNpNonECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
The class represents science data generated from the Sea Surface Microwave Imaging
instrument (SSMI), this data is primarily used as ancilliary data for the generation of certain
TSDIS products.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSsSSMI class has associations with the following classes:
None

4.3.121DsTmTMI Class

Parent Class: DsNpNonECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
This class represents all data derived directly from the TRMM platform Microwave Imager

4-208 305-CD-008-001

(TMI) instrument.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsTmTMI class has associations with the following classes:
None

4.3.122DsViVIRS Class

Parent Class: DsNpNonECSDataProduct
Public: No Distributed Object: No
Purpose and Description:
Represents all science data products derived directly from the TRMM platform Visible and
Infrared Scanner (VIRS).

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsViVIRS class has associations with the following classes:
None

4-209 305-CD-008-001

4.3.123EosHdf24BitImage Class

Parent Class: DsSd24BitImage

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The EosHdf24BitImage class has associations with the following classes:
None

4.3.124EosHdf8BitImage Class

Parent Class: DsSd8BitImage

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The EosHdf8BitImage class has associations with the following classes:
None

4-210 305-CD-008-001

4.3.125EosHdfGrid Class

Parent Class: DsSdGrid

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The EosHdfGrid class has associations with the following classes:
None

4.3.126EosHdfLUT Class

Parent Class: DsSdLookUpTable

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The EosHdfLUT class has associations with the following classes:
None

4-211 305-CD-008-001

4.3.127EosHdfPoint Class

Parent Class: DsSdPoint

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The EosHdfPoint class has associations with the following classes:
None

4.3.128EosHdfSwath Class

Parent Class: DsSdSwath

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The EosHdfSwath class has associations with the following classes:
None

4-212 305-CD-008-001

4.3.129GlBinaryP Class

Parent Class: GlParameter
Public: No Distributed Object: No
Purpose and Description:
This class represents parameters that contain a sequence of binary bytes. It records the
binary data and its length.

Attributes:

myBinaryBase - This is a pointer to the actual bytes which comprise this binary parameter.
Data Type: char*
Privilege: Private
Default Value:

myLength - This is the length (in bytes) of the data value of this binary parameter.

Data Type: unsigned long

Privilege: Private

Default Value:

Operations:

GlBinaryP - Constructs an empty binary parameter.
Arguments:
Return Type: Void
Privilege: Public

GlBinaryP - Constructs a binary parameter using the given buffer, length, and name.

Arguments: buffer: char*, length: unsigned long, name: char* = NULL

Return Type: Void

Privilege: Public

Set - Used to set the value of this binary parameter to the given buffer and length.

Arguments: buffer: char*, length: unsigned long

Return Type: void

Privilege: Public

Textify - Used to produce a human-readable form of this parameter in the given string.

Arguments: RWCString&

Return Type: void

Privilege: Public

4-213 305-CD-008-001

length - Used to retrieve the length (in bytes) of the binary data that is the value of this

parameter.

Arguments:

Return Type: unsigned long

Privilege: Public

value - Used to retrieve the buffer that holds the binary data for this paraemter.

Arguments:

Return Type: char*

Privilege: Public

~GlBinaryP - Used to destroy this binary parameter.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The GlBinaryP class has associations with the following classes:
None

4.3.130GlDateP Class

Parent Class: GlParameter
Public: No Distributed Object: No
Purpose and Description:
This class of parameters holds a single RWDate object.

Attributes:

myDateBase - This is the current value of this date parameter.
Data Type: RWDate
Privilege: Private
Default Value:

Operations:

GlDateP - Constructs a data parameter with a default value and no name.
Arguments:

4-214 305-CD-008-001

Return Type: Void

Privilege: Public

GlDateP - Constructs a date parameter with the given name and date.

Arguments: RWDate, name: char* = NULL

Return Type: Void

Privilege: Public

Textify - Used to produce a human-readable form of this parameter in the given string.

Arguments: RWCString&

Return Type: void

Privilege: Public

operator= - Used to set the value of this date parameter.

Arguments: val: RWDate

Return Type: GlDateP&

Privilege: Public

value - Used to retrieve the current value of this date parameter.

Arguments:

Return Type: RWDate

Privilege: Public

~GlDateP - Used to destroy this date parameter.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The GlDateP class has associations with the following classes:
None

4.3.131GlDoubleP Class

Parent Class: GlParameter
Public: No Distributed Object: No
Purpose and Description:
This class of parameters holds a single double value.

4-215 305-CD-008-001

Attributes:

myDoubleBase - This is the value of this double parameter.
Data Type: double
Privilege: Private
Default Value:

Operations:

GlDoubleP - Constructs a double parameter with a default value (0) and no name.
Arguments:
Return Type: Void
Privilege: Public

GlDoubleP - Creates a double parameter with the given value and name.

Arguments: double, name: char* = NULL

Return Type: Void

Privilege: Public

Textify - Used to produce a human-readable form of this parameter in the given string.

Arguments: RWCString&

Return Type: void

Privilege: Public

operator= - Used to set a new value for this double parameter.

Arguments: val: double

Return Type: GlDoubleP&

Privilege: Public

value - Used to retrieve the current value of this double parameter.

Arguments:

Return Type: double

Privilege: Public

~GlDoubleP - Used to destroy this double parameter.

Arguments:

Return Type: Void

Privilege: Public

4-216 305-CD-008-001

Associations:

The GlDoubleP class has associations with the following classes:
None

4.3.132GlLongP Class

Parent Class: GlParameter
Public: No Distributed Object: No
Purpose and Description:
This class of parameters holds a single long value.

Attributes:

myLongBase - Holds the value for this parameter.
Data Type: long
Privilege: Private
Default Value:

Operations:

GlLongP - Constructs an empty, unnamed long parameter.
Arguments:
Return Type: Void
Privilege: Public

GlLongP - Constructs a long parameter with the given value and name.

Arguments: long, name: char * = NULL

Return Type: Void

Privilege: Public

Textify - Returns a human-readable form of this parameter.

Arguments: RWCString &

Return Type: void

Privilege: Public

operator = - Used to assign a value to a long parameter.

Arguments: val: long

Return Type: GlLongP&

Privilege: Public

4-217 305-CD-008-001

value - Returns the current value for this parameter.

Arguments:

Return Type: long

Privilege: Public

~GLongP - Used to destroy a long parameter.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The GlLongP class has associations with the following classes:
None

4.3.133GlParameter Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is an abstract base class that represents a single parameter that can be passed to many
ECS objects. A parameter has a name and an optional description, as well as a value which
depends upon its type. Parameters are usually collected together (GlParameterList), and
used to dynamically specify values for service calls, result lists, etc. There are several types
derived from GlParameter, which implement the value() member function to return an
appropriately typed value.

Attributes:

myDescription - The description of this parameter (optional).
Data Type: RWCString
Privilege: Protected
Default Value:

myName - The name of this parameter.

Data Type: RWCString

Privilege: Protected

Default Value:

4-218 305-CD-008-001

Operations:

Flatten - Saves an image of this parameter to a binary stream.
Arguments: RWvostream &
Return Type: GlStatus
Privilege: Public
This is an abstract operation

GetDescription - Returns the current name of this parameter as a string.

Arguments:

Return Type: const RWCString &

Privilege: Public

GetName - Returns the name of this parameter as a string.

Arguments:

Return Type: const RWCString &

Privilege: Public

GlParameter - Constructs a parameter with the given name.

Arguments: name: char * = NULL

Return Type: Void

Privilege: Public

Restore - Constructs a parameter from an image stored in a binary stream.

Arguments: RWvistream &

Return Type: GlStatus

Privilege: Public

This is an abstract operation

SetDescription - Sets the name of this parameter.

Arguments: RWCString &

Return Type: void

Privilege: Public

SetName - Sets the name of this parameter.

Arguments: RWCString &

Return Type: void

Privilege: Public

Textify - Returns a human-readable form of the current value of this parameter.

Arguments: RWCString &

Return Type: void

4-219 305-CD-008-001

Privilege: Public

This is an abstract operation

saveOn
Arguments: ostream &

Return Type: void

Privilege: Public

~GlParameter - Destroys the parameter.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The GlParameter class has associations with the following classes:
GlParameterList (Aggregation)

4.3.134GlParameterList Class

Parent Class: GlParameter
Public: No Distributed Object: No
Purpose and Description:
This class represents a collection of parameters, and is itself derived from GlParameter.
Therefore, GlParameterLists can be embedded in themselves to any depth.

Attributes:

myParms - The actual list of parameters that comprise this GlParameterList.
Data Type: RWOrdered
Privilege: Private
Default Value:

Operations:

FindParameter - Used to search for a parameter in the list with the given name.
Arguments: name: const RWCString &
Return Type: GlParameter *
Privilege: Public

4-220 305-CD-008-001

Flatten - Used to save a machine-independent binary image of a parameter list in the given

file.

Arguments: filename: RWCString &

Return Type: GlStatus

Privilege: Public

Flatten - Used to save a machine-independent binary image of the parameter list into the

given memory buffer.

Arguments: buffer: void *, length: unsigned int

Return Type: GlStatus

Privilege: Public

Flatten - Used to save a machine-independent binary image of a parameter list on the given

stream.

Arguments: RWvostream &

Return Type: GlStatus

Privilege: Public

GlParameterList - Constructs an empty, unnamed parameter list.

Arguments:

Return Type: Void

Privilege: Public

GlParameterList - Constructs a parameter list with the given parameter and name.

Arguments: GlParameter *, name: char * = 0

Return Type: Void

Privilege: Public

GlParameterList - Constructs an empty parameter list with the given name.

Arguments: name: char *

Return Type: Void

Privilege: Public

GlParameterList - Constructs a parameter list from a binary stream image.

Arguments: RWvistream &

Return Type: Void

Privilege: Public

Restore - Used to build a parameter list from a machine-independent binary image from

the given file.

Arguments: filename: RWCString &

Return Type: GlStatus

Privilege: Public

4-221 305-CD-008-001

Restore - Used to build a parameter list from a machine-independent binary image from

the given stream.

Arguments: RWvistream&

Return Type: GlStatus

Privilege: Public

Restore - Used to build a parameter list from a machine-independent binary image from

the given memory buffer.

Arguments: buffer: void*, length: unsigned int

Return Type: Void

Privilege: Public

~GlParameterList - Used to destroy a paramter list.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The GlParameterList class has associations with the following classes:
None

4.3.135GlStringP Class

Parent Class: GlParameter
Public: No Distributed Object: No
Purpose and Description:
This class of parameters holds a single RWCString object.

Attributes:

myStringBase - This is the value of this string parameter.
Data Type: RWCString
Privilege: Private
Default Value:

4-222 305-CD-008-001

Operations:

GlStringP - Constructs an empty, unnamed string parameter.
Arguments:
Return Type: Void
Privilege: Public

GlStringP - Constructs a string parameter with the given value and name.

Arguments: RWCString, name: char* = NULL

Return Type: Void

Privilege: Public

Textify - Used to produce a human-readable form of this parameter in the given string.

Arguments: RWCString&

Return Type: void

Privilege: Public

operator= - Used to assign a new value to this string parameter.

Arguments: val: RWCString

Return Type: GlStringP&

Privilege: Public

value - Used to retrieve a reference to the current value of this string parameter.

Arguments:

Return Type: const RWCString&

Privilege: Public

~GlStringP - Destroys this string parameter.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The GlStringP class has associations with the following classes:
None

4.3.136GlTimeP Class

4-223 305-CD-008-001

Parent Class: GlParameter
Public: No Distributed Object: No
Purpose and Description:
This class represents parameters with an RWTime value.

Attributes:

myTimeBase - This is the value of this time parameter.
Data Type: RWTIme
Privilege: Private
Default Value:

Operations:

GlTimeP - Used to construct a time parameter with a default value and no name.
Arguments:
Return Type: Void
Privilege: Public

GlTimeP - Used to construct a time parameter with the given value and name.

Arguments: RWTime, name: char* = NULL

Return Type: Void

Privilege: Public

Textify - Used to produce a human-readable form of this parameter in the given string.

Arguments: RWCString&

Return Type: void

Privilege: Public

operator= - Used to set a new value for this time parameter.

Arguments: val: RWTime

Return Type: GlTimeP&

Privilege: Public

value - Used to retrieve the current value of this time parameter.

Arguments:

Return Type: const RWTime&

Privilege: Public

~GlTimeP - Used to destroy this time parameter.

Arguments:

4-224 305-CD-008-001

Return Type: Void
Privilege: Public

Associations:

The GlTimeP class has associations with the following classes:
None

4.3.137MSSLog Class

Parent Class: DsAdLog

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MSSLog class has associations with the following classes:
None

4.3.138RWTPtrOrderedVector Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description:
This is a COTS class from the Rogue Wave library that can be used to implement ordered
lists of objects. It is a template that can be instantiated over any class that implements the
== operator.

4-225 305-CD-008-001

Attributes:

None

Operations:

None

Associations:

The RWTPtrOrderedVector class has associations with the following classes:
None

4.4 CSCI Dynamic Model
This section describes several scenarios for the Science Data Server CSCI. A scenario delineates
the steps that occur in a particular execution through the system. The scenarios address the
following topics:

• Acquiring an ESDT

• Asynchronous Status Updates

• Auto-cancel a Subscription

• Canceling a Subscription

• Catalog Deleting a Metadata Entry

• Catalog Insert Collection Metada

• Catalog Insertion of Metadata

• Catalog Search

• Catalog Updating Metadata

• Changing a Request's Priority

• Client Browsing

• Client Connecting to a Data Server

• Client Request Submission

• Client Searching

• Deleting a Queued Request

• Ending Session No Active Requests

• Fulfilling a One-time Subscription

• Fulfilling Open Ended Subscription

• Inserting Composite ESDT

• Inserting a New ESDT

4-226 305-CD-008-001

• Inserting Single ESDT

• Instantiating an ESDT

• Operator Viewing Queued Requests

• Registering a Subscribable Event

• Returning a List of Subscriptions

• Server handling a Browse Request

• Server handling of a Search Request

• Server Request Handling

• Startup of a Science Data Server

• Submitting a Subscription

• Unregistering a Subscribable Event

• Update Server Configuration

• Updating a Subscription

• Validating Metadata

Figures 4.4-1 through 4.4-34 are event trace diagrams from OMT that define the class interactions
used to support these scenarios.

4.4.1 SDSRV_Acquiring_an_ESDT

Summary

This scenario begins at the point where the server session receives an Acquire command request
from the client (refer to scenario: SDRV_Server_Request_Handling). The session determines that
the already established working collection (containing one granule) is required to service the
command, the working collection in turn passes the command to the granule. The granule now
determines the type of service it is required to perform and, if available, calls that service
“Externalize” is the scenario. Two main operations are then performed. First the granule meta-data
is extracted from the database and written out to file, and second the granule science data files are
copied from the archive. The location and names of these files is returned to the working collection.
Following completion of all ESDT “Externalize” services (in this scenario there is only one) the
working collection then requests that the files be prepared for distribution.

Assumptions

• A work area has already been assigned.

• A connection has already been established to the data server.

• A search has been performed and a collection already contains one granule.

•	 An Acquire command request has been generated and submitted by the client to the data
server.

• Only one granule is being requested.

4-227 305-CD-008-001

•	 The Acquire command request has been handled be the Session and passed onto the
Working collection (see ET SDSRV_Server_Request_Handling).

• The data granule files are passed onto distribution for eventual staging/despatch to the user.

4-228 305-CD-008-001

4-229
305-C

D
-008-001

Continued from Scenario: SDSRV_Server_Request_Handling

DsSrRequest DsSrSession GlParameterList DsSrWorkingCollection DsSdDistFile DsSdDistList DsSrCommand DsGeESDTWrapper DsNsViVIRS1B DsMdMetaData DsMdCatalogue DsStArchive DsGeESDTDescriptor

SetStatus

GlParameterList

ExecuteCommand

ExecuteCommand

GetCategory

ExecuteCommand

GetServiceName

GetParameters
Externalize

DsMdMetadata

GetGranuleMetadata

GetParameter

GetAttribute

SaveToExternal

Retrieve

~DsMdMetaData

DsStArchive

~DsStArchive
Insert

DsSdDistFile

DsSdDistList

Insert

Distribute

Asynchronous Return

~DsMdCatalogue

Continued on Scenario: SDSRV_Server_Request_Handling

Figure 4.4-1. SDSRV_Acquiring_an_ESDT Dynamic Model

4.4.2 SDSRV_Asynchronous_Status_Updates

Summary

This scenario shows a common mechanism used in client interaction with the data server: the
asynchronous reporting of status updates. The basic mechanism is a callback function that is
established by the client software that is called every time the status of a the request changes. Thus
the client knows immediately of progress statuses (10%, 20%, etc.), error statuses, and when the
request finishes (status = DONE). On the diagram, the split between the client and the dataserver
(i.e. the network) occurs between the two classes labeled DsClSubmittedRequest.
DsClSubmittedRequest is a distributed object whose client-side (the "proxy") forwards function
calls to the server-side (the "real" object). Once the client creates a request and establishes a
callback, the proxy calls a function on the "real" DsClSubmittedRequest that will not return until
a status change occurs in the server ("WaitStatus"). This function runs in its own thread of control
so that the request may be canceled at any time. If all goes well, eventually the client receives the
DONE status and can obtain the results from the DsClRequest. Notice that the client never deals
directly with the DsClSubmittedRequest, only with the DsClRequest which forwards calls to the
DsClSubmittedRequest.

Assumptions

• all steps execute successfully

• filling the request with command(s) is left to other scenarios

• submitting the request to a collector is left to other scenarios

4-230 305-CD-008-001

4-231
305-C

D
-008-001

ClientApp GlCallback DsClRequest DsClSubmittedRequest DsClSubmittedRequest GlParameterList DsSrSubmittedRequestVector DsSrRequest DsSrSession

WaitStatus

Invoke

Invoke

GetStatus

GetStatus

GetResults

GetResults

~DsClRequest

~DsClSubmittedRequest

~DsClSubmittedRequest

DsClRequest

GlCallback

SetStatusCallback

DsClSubmittedRequest

SetCallback

SetStatus

GetResults

SetStatus

return WaitStatus

DsClSubmittedRequest

GlParameterList

insert

Figure 4.4-2. SDSRV_Asynchronous_Status_Updates Dynamic Model

4.4.3 SDSRV_Auto-cancel_A_Subscription

Summary

This scenario shows the steps that are executed when a subscription expires. Note that the user is
notified in advance of a subscription expiration, and it only expires if it's not renewed. The diagram
begins with the daily callback timer firing, which calls CheckExpirations on the
DsSbSubscriptionInterface object. The DsSbSubscriptionInterface searches the list of
DsSbSubscription objects for any that have expired, and when it finds one it calls NotifyCancel on
that object. This generates a notification that is sent to the user (either direct or email) informing
him of the expiration of the subscription. Finally, the subscription is canceled and removed from
the server.

Assumptions

• there is one subscription that has expired today

• the subscription interface callback timer is about to fire

• all steps execute successfully

4-232 305-CD-008-001

DsSbCallbackTimer DsSbSubscriptionInterface DsSbSubscription GlNotification GlStatus DsSbRegisteredEvent

CheckExpirations

NotifyCancel

GlNotification

GlStatus

SetText

SetCode

SendToUser

CancelSubscription

CancelSubscription

~DsSbSubscription

4-233
305-C

D
-008-001

Figure 4.4-3. SDSRV_Auto-Cancel_A_Subscription Dynamic Model

4.4.4 SDSRV_Canceling_a_Subscription

Summary

The scenario shows how the client cancels a subscription. The scenario shows steps used to
withdraw a subscription from the client side and then reflected on the server side. This is achieved
through the distributed object, DsClSubscriptionCollector. The object,
DsClSubscriptionCollector, has already been constructed, and the client implements the
withdrawal operation of the client side subscription. All objects on the server side cancel the
particular subscription.

Assumptions

• user has logged on and has proper permissions.

• DsClSubscriptionCollector has already been created.

4-234 305-CD-008-001

4-235
305-C

D
-008-001

ClientApp DsClSubscription DsClSubscriptionCollector DsSbSubscriptionInterface DsSbRegisteredEvent DsSbSubscription

Withdraw

~DsClSubscription

CancelSubscription

CancelSubscription

CancelSubscription

~DsSbSubscription

Figure 4.4-4. SDSRV_Canceling_a_Subscription Dynamic Model

4.4.5 SDSRV_Catalog_Deleting_a_Metadata_Entry

Summary

This scenario shows the sequence of events to delete a DsMdMetadata object from the database.
The granule identifier is passed to the DeleteGranuleMetadata operation of the DsMdCatalog class.
The DsMdCatalog class is responsible for formulating a database delete command. The execution
of the command is carried out in the DsDbInterface class. The logic for determining the tables
involved in the deletion and the order in which to delete is within the Sybase stored procedures.

Assumptions

•	 The DsMdMetadata object should already exist in the database before the deletion. The
initiator passes in a unique granule identifier. It is also assumed that an instance of the
DsMdCatalog is available for processing operations.

•	 The deletion is persistent. Any subsequent retrieval of the metadata object (either by the
same user or other user) will fail.

4-236 305-CD-008-001

DSSERVER DsMdCatalog DsDbInterface

DeleteGranuleMetadata

Execute

4-237
305-C

D
-008-001

Figure 4.4-5. SDSRV_Catalog_Deleting_a_Metadata_Entry Dynamic Model

4.4.6 SDSRV_Catalog_Insert_Collection_Metadata

Summary

This scenario shows the insertion of collection level metadata as a result of adding a new type to
the SDSRV. The DsMdCatalog class supports this operation through the InsertCollectionMetadata
method. This method updates the DsDbGranuleToDbVector with the name of the database storing
granules for the collection and uses the DsDbInterface class to invoke Sybase stored procedures to
insert the data.

Assumptions

•	 This scenario assumes the initiator must first create a DsMdCatalog which establishes a
connection to the database. The scenario also assumes the existence of a PVL string buffer
containing all the metadata for the collection to insert and that all attributes are valid for a
collection.

• The DsMdCatalog is not deleted and is available for other operations.

4-238 305-CD-008-001

DSSERVER DsMdMetadata DsMdCatalog DsDbInterface DsDbAttributeToTableVector DsDbGranuleToDbVector

4-239
305-C

D
-008-001

Connect

Initialize

new

new

PutAttributes

new

GetAttribute

new

Initialize

PutProductDb

InsertCollectionMetadata

Execute

Figure 4.4-6. SDSRV_Catalog_Insert_Collection_Metadata Dynamic Model

4.4.7 SDSRV_Catalog_Insertion_of_Metadata

Summary

This scenario shows how metadata, stored in PVL format, is parsed and inserted into the SDSRV
databases. The PVL is captured using the DsMdMetadata LoadFromExternal method. The
instance of the DsMdMetadata class is passed to the DsMdCatalog class where attributes are
mapped to databases, tables, and column names and inserted into the SDSRV database through the
InsertGranuleMetadata method. In addition, the scenario shows the use of the DsDbWrapper
classes (DsDbInterface, DsDbGranuleToTableVector, and DsDbAttributeToTableVector) for
establishing a connection to Sybase, executing Sybase commands, and mapping granules to the
appropriate database.

Assumptions

This scenario assumes the initiator must first create a DsMdCatalog which establishes a connection
to the database. The scenario also assumes the existence of a PVL string buffer containing all the
metadata for the granule and that all PVL attributes are valid for the product type and contain valid
values. The DsMdCatalog is not deleted and is available for other operations.

4-240 305-CD-008-001

DSSERVER DsDbGranuleToDbVector

new

LoadFromExternal

DsMdCatalog

DsDbInterface

DsDbAttributeToTableVectorDsMdMetadata

connect

Initialize

new

Initialize

InsertGranuleMetadata

new

new

new

4-241
305-C

D
-008-001

Figure 4.4-7. SDSRV_Catalog_Insertion_of_Metadata Dynamic Model

4.4.8 SDSRV_Catalog_Search

Summary

This scenario shows how a database query, expressed in PVL and stored in a GlParameterList, is
executed. It shows how the DsMdCatalog class uses the DsDbWrapper classes (DsDbInterface,
DsDbGranuleToTableVector, and DsDbAttributeToTableVector) for establishing a connection to
Sybase, executing Sybase commands, determining which databases need to be queried. In
addition, these classes map attributes names defined by the DsDeDiscriptor to table and column
names in the SDSRV databases. Finally it shows how the metadata attributes are loaded into an
instance of the DsMdMetadata class (one per result granule) and packaged in a
RWTPtrOrderedVector instance for return to the initiator.

Assumptions

•	 This scenario assumes the initiator must first create a DsMdCatalog which establishes a
connection to the database. The scenario also assumes a GlParameterList is passed in and
that the names of the attributes in the list use valid ECS database names.

• The DsMdCatalog is not deleted and is available for other operations.

4-242 305-CD-008-001

DSSERVER GlParameterList DsMdCatalog DsDbInterface DsDbAttributeToTableVector DsDbGranuleToDbVector DsMdMetadata RWTPtrOrderedVector<DsMdMetadata> DsDeDiscriptor

4-243
305-C

D
-008-001

connect

Initialize

new

new

new

new

Initialize

Search

FindParameter

GetProductDb

FindParamter

Execute

new

PutAttribute

insert

GetTableColumnName

GetQueryableParameters

Figure 4.4-8. SDSRV_Catalog_Search Dynamic Model

4.4.9 SDSRV_Catalog_Updating_Metadata

Summary

This scenario shows the sequence of events to update attributes of an existing metadata object and
make the change persistent in the SDSRV databases. The metadata object is first updated by the
initiator using DsMdMetadata operations. The instance of the DsMdMetata class is then passed
to the DsMdCatalog to make the update permanent in the database. The scenario shows the events
used by the DsMdCatalog class to establish the database context through the DsDbInterface class,
to perform attributes to databases, tables, columns mapping through database DsDbWrapper
classes (DsDbAttributeToTableVector and DsDbGranuleToDbVector) and to execute a SQL
update command using the DsDbInterface class.

Assumptions

•	 The DsMdMetadata object being updated should already exist before the update operation.
This scenario also assumes that the DsMdCatalog object does not exist before the update
operation. Otherwise the construction part of the DsMdCatalog object and the subsequent
initialization of other database wrapper objects will be skipped. In which case, a direct
UpdateGranuleMetadata is invoked using the DsMdCatalog class. It is preferable for
performance reason to avoid reestablishing database connections for each single update.

•	 The update is persistent. Any subsequent retrieval of the metadata object (either by the
same user or other user) will see the effect of the update.

4-244 305-CD-008-001

DSSERVER DsMdMetadata DsMdCatalog DsDbInterface DsDbAttributeToTableVector DsDbGranuleToDbVector

4-245
305-C

D
-008-001

Connect

Initialize

new

new

UpdateAttribute/UpdateAttributes

new

GetUpdatedAttributes

new

Initialize

GetProductDb

UpdateGranuleMetadata

Execute

GetTableColumnName

Figure 4.4-9. SDSRV_Catalog_Updating_Metadata Dynamic Model

4.4.10 SDSRV_Changing_A_Request_Priority

Summary

This scenario shows how a client changes the priority of a request that has been submitted to the
server but is not yet executing. The two DsClSubmittedRequest classes in the diagram represent
the client-side and server-side of the distributed DsClSubmittedRequest object. Changing the
priority of a request simply requires that the priority field in the server-side request information is
updated, since the code that gets the next request to execute searches the vector for the highest
priority request every time. Note that if the request was executing, the server-side
DsClSubmittedRequest would return a fail status.

Assumptions

• the client has all necessary permissions - the request is queued on the server

• all steps execute successfully

4-246 305-CD-008-001

4-247
305-C

D
-008-001

ClientApp DsClRequest DsClSubmittedRequest DsClSubmittedRequest

SetPriority

SetPriority

SetPriority

Figure 4.4-10. SDSRV_Changing_A_Request_Priority Dynamic Model

4.4.11 SDSRV_Client_Browsing

Summary

This scenario shows how the client classes are used to browse an item from a data server. The
client is assumed to have created an DsClESDTReferenceCollector connected to the desired
server, and is required to construct a DsClRequest containing the proper browse command. All of
the mechanics leading up to obtaining results are given in the
SDSRV_Client_Request_Submission scenario. The results are in a 3-level GlParameterList.

The top-level list is the results from executing the entire request. It is composed of a series of
GlParameterList(s), one for each command within the request. (Of course, in this case, there's only
one command in the request). Each of these command GlParameterList(s) is also composed of a
series of GlParameterList(s), one for each ESDT currently in the collection. (Again, this scenario
assumes only one ESDT in the collection). Given this structure, the first "at(0)" retrieves the
results for the command, and the second "at(0)" retrieves the results for the ESDT. This is a
parameter of type GlBinaryP which contains the actual browse data. Note that there could be
several parameters in this final list that give, for example, the UR of ESDT from which the browse
data came, or perhaps its size. If these values were provided, the parameters would be named and
typed appropriately, and the client could sift through the return parameters to find the ones that are
interesting.

Assumptions

• user has logged on and has proper permissions

• the steps in the SDSRV_Client_Request_Submission scenario occur but are not shown

• DsClESDTReferenceCollector is already created and populated with one ESDT

• the request will contain exactly one command

4-248 305-CD-008-001

ClientApp GlParameterList GlBinaryP DsClRequest SDSERVER

4-249
305-C

D
-008-001

GetResults()

at(0)

at(0)

value()

scenario: SDSRV_Client_Request_Submission

Figure 4.4-11. SDSRV_Client_Browsing Dynamic Model

4.4.12 SDSRV_Client_Connecting_to_a_Data_Server

Summary

The ECSNETWORK line in the event trace shows where the various objects exist with respect to
the platforms in the system. The DsClESDTReferenceCollector object is a distributed object on
the client side. When the client software creates the DsClESDTReferenceConnection on the server
side, the DsSrSession object is created on the server side. This is done via OODCE calls to the
Directory Naming Service and the DsFactory object via RPCs. Once the DsSrSession object has
been created, it registers to the DsSrServer object, which exists the entire time that the Dataserver
is running. Registering with the DsSrServer object provides the DsSrSession object with
knowledge of the internal structure of the Dataserver (address of well-known server processes,
such as DsSrSubscriptionInterface or DsSrSubmittedRequestVector). Once the DsSrSession has
been registered, it creates an empty DsSrWorkingCollection and an empty DsSrRequestVector to
handle future requests. When the DsSrSession is all set, it returns the ID which has been assigned
to it by the DsSrServer to the client DsClESDTReferenceCollector. The
DsClESDTReferenceCollector stores the ConnectionID for internal processing and also returns it
to the client software so that the session can be resumed if it is interrupted or suspended. (This last
part is not Release A.)

Assumptions

• Client software knows the address of the dataserver to which to connect

•	 Client software has already collected all user information (i.e., has a MSSUserProfile
object available)

• Client software wishes to create the connection directly

4-250 305-CD-008-001

4-251
305-C

D
-008-001

ECSNETWORK

ClientApp DsClESDTReferenceCollector

MakeSession

DsFactory DsSrSession DsSrServer DsSrWorkingCollection DsSrRequestVector

DsClESDTReferenceCollector

GetConnectionID

Connect

DsSrWorkingCollection

return ConnectionID

DsSrSession

DsSrRequestVector

Figure 4.4-12. SDSRV_Client_Connecting_to_a_Data_Server Dynamic Model

4.4.13 SDSRV_Client_Request_Submission

Summary

This scenario shows how the client classes handle a request. The
SDSRV_Asynchronous_Status_Updates scenario shows the details of the request's connection to
the data server; this scenario shows the steps used to submit it and how results are retrieved. The
DsClESDTReferenceCollector is assumed to be already created and connected, so the client is only
required to construct a request and submit it. The client regains

control when the status changes; this scenario shows only the return when status is DONE. The
client is then able to retrieve the results and clean up the objects.

Assumptions

•	 user has logged on and has proper permissions - DsClESDTReferenceCollector is already
created

• the steps in the SDSRV_Asynchronous_Status_Updates scenario occur but are not shown

• the request contains exactly one command - all steps execute successfully

4-252 305-CD-008-001

4-253
305-C

D
-008-001

ClientApp DsClCommand DsClRequest DsClESDTReferenceCollector SDSERVER

DsClCommand

DsClRequest

Submit

SubmitToServer

GetSRID

Submit

GetStatus

GetResults()

~DsClRequest

~DsClCommand

scenario: SDSRV_Asynchronous_Status_Updates

Figure 4.4-13. SDSRV_Client_Request_Submission Dynamic Model

4.4.14 SDSRV_Client_Searching

Summary

The client software creates a DsClQuery object. This is a container object which holds values for
parts of a query (e.g. - projection and constraints). The "from clause" of the query is presumed to
be defined by the data server to which the query is sent. That is, the dataserver does not require
table names to be provided; the data server catalog contains all the information necessary to locate
the metadata based on the constraints. Once the DsClQuery has been created, two attributes must
be set, the callback and the constraints. The client software creates a GlCallback object and sets
the DsClQuery object's Callback attribute to it. This callback is the local portion of the end-to-end
asynchronous message passing mechanism. This callback is a standard callback which is invoked
by the DsClESDTReferenceCollector once it (the DsClESDTReferenceCollector) has received
and processed the results of a user request. The second attribute of DsClQuery, (Constraints), takes
an already-packaged GlParameterList of search attributes and the values to be used for them. Once
the DsClQuery object attributes have been set, the client software sends the DsClQuery object to
the DsClESDTReferenceCollector as a parameter in the Search method. The
DsClESDTReferenceCollector calls the DsClQuery's conversion method to formulate a data server
command, which it then uses to construct a DsClRequest object. Once the request is created, it's
Submit method is invoked. The processing of the DsClRequest is documented in Scenario
SDSRV_Client_Request_Submission. The handling of the remote request status is described in
Scenario SDSRV_Asynchronous_Status_Updates. Once the request has completed (status has
been set to "done" and the local DsClRequest callback has been invoked), the
DsClESDTReferenceCollector retrieves the results from the DsClRequest object. The results are
a set of commands. The DsClESDTReferenceCollector UpdateState method iterates over the set
of commands, executing each in turn. In this example, all of the commands will be "add"
commands (because the working collection was empty prior to the search). The result of the
command processing is to make the DsClESDTReferenceCollector on the client-side match the
DsSrWorkingCollection on the server side. Once all the commands have been processed, the
DsClQuery object's (local) callback is invoked to alert the client software that the request has
completed. The client software uses standard vector commands to iterate over the set of
DsClESDTReferences. At any point in time after the DsClQuery callback has been invoked with
a status of DONE, the DsClQuery object can be deleted.

Assumptions

•	 Client software has already established a connection to the Data Server (see Scenario
SDSRV_Client_Connecting_to_a_Data_Server)

• Client software has already collected query constraints from the user

• Client software has already converted query constraints to a GlParameterList

• All parameters in the GlParameterList are valid queryable parameters

4-254 305-CD-008-001

ClientApp DsClESDTReferenceCollector DsClQuery GlCallback DsClESDTReference DsClRequest

4-255
305-C

D
-008-001

DsClQuery

GlCallback

SetCallback

SetConstraints

Search

DsClRequest

ConvertToCommand

DsClESDTWrapper

(potentially many times)

at(0)

GetResults

UpdateState

Submit

Scenario: SDSRV_Client_Request_Submission

Scenario: SDSRV_Asynchronous_Status_Updates

at(1)...

~Query

Invoke

~DsClRequest

Figure 4.4-14. SDSRV_Client_Searching Dynamic Model

4.4.15 SDSRV_Deleting_A_Queued_Request

Summary

This scenario shows the interaction between the client and server when a client cancels and deletes
a request that is queued on the server. Since the client creates and controls his DsClRequest
objects, he can simply call Cancel on the desired DsClRequest. This is passed through the
DsClESDTReferenceCollector distributed object to the server (DsSrSession), where the request is
cancelled. This returns a CANCEL status to the client through the
SDSRV_Asynchronous_Status_Updates scenario, which indicates to the client that the
DsClRequest may be deleted.

Assumptions

• the client has all necessary permissions - the request is queued on the server

• all steps execute successfully

4-256 305-CD-008-001

ClientApp DsClRequest DsClESDTReferenceCollector DsClSubmittedRequest DsSrSession DsSrRequestVector DsSrRequest

Cancel

CancelRequest

CancelRequest

find

Cancel

remove

~DsSrRequest

SetStatus

scenario: Asynchronous_Status_Updates

~DsClRequest

~DsClSubmittedRequest

4-257
305-C

D
-008-001

Figure 4.4-15. SDSRV_Deleting_A_Queued_Request Dynamic Model

4.4.16 SDSRV_Ending_Session_No_Active_Request

Summary

The ECSNETWORK line in the event trace shows where the various objects exist with respect to
the platforms in the system. The DsClESDTReferenceCollector object is a distributed object.
When the client software removes the DsClESDTReferenceCollector, that object must clean up on
both the client side and the server side. On the client side of the network, the
DsClESDTReferenceCollector removes the proxy objects DsClTypeInfo (potentially more than
one), and DsClESDTReference (potentially more than one). Because the
DsClESDTReferenceCollector is a distributed object, the corresponding server-side object
(DsSrSession) is also removed. The first thing that the DsSession does is unregister from the
DsSrServer object. This removes the DsSession from being considered "active" in the data server
system. After it is no longer registered, the DsSession object removes its DsSrWorkingCollection
(which in turn deletes all associated DsGeESDTWrappers) and its (empty) DsSrRequestVector.

Assumptions

• Client software has already executed a request, and the request has finished

• The WorkingCollection is holding some ESDT objects.

•	 Client software has previously cleaned up all no-longer-useful objects (i.e., if a previous
request was a query, the DsClQuery object and the DsClRequest has already been removed
from memory)

4-258 305-CD-008-001

ECSNETWORK

ClientApp DsGeESDTWrapper DsSrRequestVector

~DsClESDTReferenceCollector

DsClESDTReferenceCollector DsSrSession DsSrServer DsSrWorkingCollectionDsClESDTReferenceDsClTypeInfo

DeleteConnection

~DsSrSession

~DsSrWorkingCollection

~DsSrRequestVector

~DsClESDTReference

(potentially many times)

~DsClTypeInfo

(potentially many times)

~DsGeESDTWrapper

4-259
305-C

D
-008-001

Figure 4.4-16. SDSRV_Ending_Session_No_Active_Request Dynamic Model

4.4.17 SDSRV_Fulfilling_a_One-time_Subscription

Summary

This scenario shows how the SDSRV fulfills a previously submitted subscription. In this scenario
the originating object has detected the advertised and subscribed event. It then triggers that event
for processing within the Subscription Server. The subscription example illustrated here is a one
time subscription, meaning after one time the event detection is processed, the subscription will be
removed as an active subscription.

Assumptions

• The submitted subscription is for a simple notification to be sent.

4-260 305-CD-008-001

4-261
305-C

D
-008-001

DsGeESDT DsGeEventTable DsSbEvent DsSbEventHandler DsSbSubscriptionInterface DsSbRegisteredEvent DsSbSubscription DsSbAction GlNotification GlStatus GlParameterLIst

DsGeEventTable

Find

Trigger

EventOccurred

ExecuteSubscriptions

CancelSubscription

CancelSubscription

Execute

GetNotify

GetText

GlStatus

Textify

~DsClSubscription

SetText

GlNotifcation

SendToUser

Figure 4.4-17. SDSRV_Fulfilling_a_One-time_Subscription Dynamic Model

4.4.18 SDSRV_Fulfilling_Open_Ended_Subscription

Summary

This scenario shows how the SDSRV fulfills a previously submitted subscription. In this scenario
the originating object has detected the advertised and subscribed event. It then triggers that event
for processing within the Subscription Server. The subscription example illustrated here is a open
ended subscription, meaning it will continue to be active, waiting for future occurrences of the
event.

Assumptions

• The submitted subscription is for a simple notification to be sent.

4-262 305-CD-008-001

DsGeESDT DsGeEventTable DsSbEvent DsSbEventHandler DsSbRegisteredEvent DsSbSubscription DsSbAction GlNotification GlStatus GlParameterLIst

DsGeEventTable

Find

Trigger

EventOccurred

ExecuteSubscriptions

Execute

GetNotify

GetText

GlStatus

Textify

SetText

GlNotification

SendToUser

4-263
305-C

D
-008-001

Figure 4.4-18. SDSRV_Fulfilling_Open_Ended_Subscription Dynamic Model

4.4.19 SDSRV_Inserting_Composite_ESDT

Summary

This scenario begins at the point where the server session receives an Insert command request from
the client (refer to scenario: SDSRV_Server_Request_Handling). The client for this scenario is the
Ingest subsystem. The session determines that the already established working collection is
required to service the command. The working collection instantiates an 'empty' ESDT of the
correct type using dynamic binding (see scenario: SDSRV_Instantiating_an_ESDT). For each
composite granule represented as files within the command the 'Internalize' command is called (in
this scenario a browse ESDT granule). Each ESDT internalize returns a vector of populated
metadata objects and filenames. Three main operations are then performed by the 'anchor' ESDT
object (DsViVIRS1B). First the science data file(s) are sent to the archive for storage, second the
filenames and unique granule IDs are added to the granule metadata (and thus the product and
granule association is maintained) and third the metadata is written to the database.

Points to note:

The unique granule ID is set during insertion of the granule metadata. The ID is passed back to the
working collection as the result of a successful Externalize operation. Ultimately this ID will be
returned to the client. The associations between granules inserted in this manner are maintained by
adding the unique granule ID's into the relevant metadata streams sent to the database.

Assumptions

• Ingest supplies a validated file containing P=V metadata values

• Ingest supplies a file containing scientific data

• Ingest supplies a file containing related browse data.

• A work area has already been assigned

• A connection has already been established to the dataserver

• A working collection already exists

• Data has been staged ready for insertion into the database

• The Insert request is as a result of call from the Ingest Subsystem

• Metadata stream has already been validated

• Ingest supplies a validated file containing P=V metadata values

• Ingest supplies a file containing scientific data

• A work area has already been assigned

• A connection has already been established to the dataserver

• A working collection already exists

• Data has been staged ready for insertion into the database

• The Insert request is as a result of call from the Ingest Subsystem

• Metadata stream has already been validated

4-264 305-CD-008-001

4-265
305-C

D
-008-001

Continued from scenario: SDSRV_Server_Request_Handling

DsSrRequest DsSrSession GlParameterList GlParameter DsSrWorkingCollection DsSrCommand DsViVIRS1B DsGeBrowseProduct DsMdMetadata DsMdCatalogue DsStArchive DsGeEventTable DsSbEvent RWTPtrOrderedVector

ExecuteCommand

GetCategory

GetServiceName

GetParameters

FindParameter

Value

.

Internalize

DsMdCatalogue

DsMdMetadata

DsStArchive

Store

PutAttributes

InsertGranuleMetadata

GlParameter

Insert

~DsMdMetadata

~DsMdCatalogue

~DsStArchive

~DsViVIRS1B

SetStatus

ExecuteCommand
DsGeEventTable

Find

Trigger

Find

Trigger

~DsSbEvent

~DsGeEventTable

FindParameter

Value

Scenario: SDRV_

Instantiating_an_ESDT

ExecuteCommand

Internalize

Find

Trigger

RWTPtrOrderedVector

FindParameter

Value

Insert

Store

DsMdMetadata

PutAttributes

~RWTPtrOrderedVector

DsGeEventTable

Scenario: SDSRV_Instantiating_an_ESDT

Continued on Scenario: SDSRV_Server_Request_Handling

Figure 4.4-19. SDSRV_Inserting_Composite_ESDT Dynamic Model

4.4.20 SDSRV_Inserting_New_ESDT

Summary

The purpose of this scenario is to show how a new Data Type is incorporated into the currently
executing Science Data Server. The Data Server Administrator initiates this scenario from the
DsGuAdminGUI. This scenario begins after the administrator has selected the option to Add New
DataType, has supplied the required parameters for this option, and has selected Execute. The
required parameters for adding a new Data Type are the new Data Type's name and version
number, a file which is the dynamic linked library (DLL) containing its implementation and an
ASCII file containing the ESDT Descriptor information.

Upon receiving this Administrators request, the SDSRV performs a 3-step process for adding a
new Data Type which is controlled by the DsGeESDTAdmin object. First, the new type is
registered as a known Data Type within this SDSRV. Verification that the type is new is performed
and a unique identifier is assigned to this type. This information is persistently stored which
establishes this Data Type's existence.

Second, the given DLL filename is associated with this newly established Data Type. This
association is persistently stored which enables the Data Type's implementation to be used for
performing services of this new type.

Finally, the new ESDT Descriptor information is added to the set of descriptors that this SDSRV
knows about. The ESDT Descriptor file contains well-defined groups of information such as the
Core Metadata Group. The file is parsed to extract and store the individual groups persistently as
separately accessible entities. Once the file has been processed, the ESDT Descriptor initialization
process is begun. This process advertises the services that this Data Type provides, registers events
that will be reported (for triggering subscriptions), and exports data dictionary information to the
Data Management Subsystem.

Assumptions

• The Data Type does not already exist.

• The DLL file exists on the same host as the SDSRV.

• The Descriptor file exists and has the appropriate format.

4-266 305-CD-008-001

DsGeTypeID

4-267
305-C

D
-008-001

DsDeESDTAdmin

DsDeDDVector

DsDeValidVector

DsDeESDTDescriptor

DsDeStaticMetadataVector

DsDeEvent

DsDeEventVector

DsDeDD

DsDeESDTDescriptorSet

DsDbAccess DsGeESDTDynamicLibrary DsDeScienceParameterVector

DsDeServiceVector

DsDeService DsSbEventDsDeMetadataDefVector

DsGeESDTEventTable

DsGeTypeID

DsDbAccess

Fill

NextTypeCode

Store

DsGeESDTDynamicLibrary

DsDbAccess

~DsDbAccess

Store

~DsDbAccess

DsDeESDTDescriptorSet

Add

DsDeESDTDescriptor

DsDeStaticMetadataVector

DsDbAccess

Store

DsDeMetadataDefVector

Store

DsDeValidVector

Store

DsDeScienceParameterVector

Store

DsDeEventVector

DsDeEvent

Store

DsDeDDVector

DsDeDD

Store

DsDeServiceVector

DsDeService

Store

Initialize

Export

Export

Advertise

Register

Register

DsSbEvent

Register

Advertise

~DsSbEvent

~DsDeESDTDescriptor

~DsDeStaticMetadataVector

~DsDeMetadataDefVector

~DsDeValidVector

~DsDeScienceParameterVector

~DsDeEventVector

~DsDeEvent

~DsDeDDVector

~DsDeDD

~DsDeServiceVector

~DsDeService

DsGeESDTEventTable

Add

Figure 4.4-20. SDSRV_Inserting_New_ESDT Dynamic Model

4.4.21 SDSRV_Inserting_Single_ESDT

Summary

This scenario begins at the point where the server session receives an Insert command request from
the client (refer to scenario: SDSRV_Server_Request_Handling). The client for this scenario is the
Ingest subsystem. The session determines that the already established working collection is
required to service the command. The working collection instantiates an 'empty' ESDT of the
correct type using dynamic binding (see scenario: SDSRV_Instantiating_an_ESDT). Three main
operations are then performed. First the science data file(s) are sent to the archive for storage,
second the filenames and unique granule ID are added to the granule metadata and third the
metadata is written to the database.

Points to note:

The unique granule ID is set during insertion of the granule metadata. The ID is passed back to the
working collection as the result of a successful Externalize operation. Ultimately this ID will be
returned to the client.

Assumptions

• Ingest supplies a validated file containing P=V metadata values

• Ingest supplies a file containing scientific data

• A work area has already been assigned

• A connection has already been established to the dataserver

• A working collection already exists

• Data has been staged ready for insertion into the database

• The Insert request is as a result of call from the Ingest Subsystem

• Metadata stream has already been validated

4-268 305-CD-008-001

4-269
305-C

D
-008-001

Continued from scenario: SDSRV_Server_Request_Handling

DsSrRequest DsSrSession GlParameterList GlParameter DsSrWorkingCollection DsSrCommand DsViVIRS1B DsMdMetadata DsMdCatalogue DsStArchive DsGeEventTable DsSbEvent

ExecuteCommand

GetCategory

GetServiceName

GetParameters

FindParameter

Value

.

Internalize

DsMdCatalogue

DsMdMetadata

DsStArchive

Store

PutAttributes

InsertGranuleMetadata

GlParameter

Insert

~DsMdMetadata

~DsMdCatalogue

~DsStArchive

~DsViVIRS1B

SetStatus

ExecuteCommand
DsGeEventTable

Find

Trigger

Find

Trigger

~DsSbEvent

~DsGeEventTable

Scenario: SDSRV_Instantiating_an_ESDT

Continued on Scenario: SDSRV_Server_Request_Handling

Figure 4.4-21. SDSRV_Inserting_Single_ESDT Dynamic Model

4.4.22 SDSRV_Instantiating_an_ESDT

Summary

The scenario begins with the working collection determining what data type is to be instantiated.
The ESDTwrapper makes a call to the DsGeDynaminObject, including in that call the data type
required. Using appropriate lookup tables the relevant library for the data type in question is loaded
and the data type independent function newESDT called. This results in the calling of the data type
specific constructor, the end of result of which is the passing of an ESDT object handle back to the
ESDTWrapper. From this point on the ESDTWrapper can be treated as a specific data type.

Assumptions

• The data type is already defined (see scenario: SDSRV_Creating_a_new_datatype).

• A connection has already been established to the dataserver.

• A working collection already exists.

4-270 305-CD-008-001

DsSrWorkingCollection DsGeESDTWrapper DsGeESDTDynamicLibrary DsViVIRS

DsGeESDTWrapper

DsGeESDTDynamicLibrary

newESDT

DsViVIRS

~DsViVIRS

ExecuteCommand <see other scenarios>

~DsGeESDTDynamicLibrary

Figure 4.4-22. SDSRV_Instantiating_an_ESDT Dynamic Model

4-271 305-CD-008-001

4.4.23 SDSRV_Op_View_Queued_Requests

Summary

This scenario shows how an SDSRV operator's GUI gets the necessary information about currently
queued requests from a Science Data Server.

Assumptions

• GUI knows which SDSRV the operator is interested in.

• GUI formats the text representation of the queued requests in a scrollable text widget.

4-272 305-CD-008-001

DsGUAdminGUI DsAdRequestInterface DsSrServer DsSrSubmittedRequestVector DsClRequest DsClRequestVector

4-273
305-C

D
-008-001

DsAdRequestInterface

ListAllQueuedRequests

GetSrVector

first

DsClRequest

DsClRequestVector

insert

first

Textify

Figure 4.4-23. SDSRV_Op_View_Queued_Requests Dynamic Model

4.4.24 SDSRV_Registering_a_Subscribable_Event

Summary

This purpose of this scenario is to show how a subscribable event gets established. This occurs
within the context of a variety of scenarios including adding a new Data Type and Startup of the
Science Data Server. Although this scenario focuses on events that are generated by Data Types,
this is not meant to imply that all subscribable events are Data Type related. A subscribable event
might be the occurrence of a disk being full. This scenario begins after an DsDeESDTDescriptor
has been created and it has determined that it must establish its subscribable events.

The DsDeESDTDescriptor establishes a DsGeESDTEventTable for holding all of the events for
this Data Type and persistently stores it. Then for an event that the Data Type has the ability to
notice, the DsDeESDTDescriptor creates a DsSbEvent with a name, category, and description.
Since the DsSbEvent is a distributed object, this causes a creation of an DsSbEvent within the
Subscription Server process space. Then the DsDeESDTDescriptor registers the event which
notifies the SubscriptionInterface that this is now a known event. The SubscriptionInterface
coordinates with the Data Management Subsystem to advertise the fact that this event is
subscribable. After the event has been registered, it gets stored persistently in the previously
created DsGeESDTEventTable. This process is repeated for each event that this Data Type has the
ability to notice.

Assumptions

• The SDSRV has the UR of its Subscription Server Factory.

• The Subscription Server is active.

• There is just one event being registered.

• The DsDeEventVector and DsDeEvent are already created.

4-274 305-CD-008-001

DsDeESDTDescriptor DsDeEventVector DsDeEvent DsDbAccess DsGeESDTEventTable DsSbFactory DsSbEvent DsSbSubscriptionInterface DmAdAdvertisement

DsSbSubscriptionInterface

RegisterEvent

DmAdAdvertisement

Insert

~DmAdAdvertisement

MakeEvent

~DsSbSubscriptionInterface

~DsSbEvent

DsGeESDTEventTable

Add

~DsGeESDTEventTable

Register

Register

Register

Store

Store

DsSbEvent

4-275
305-C

D
-008-001

Figure 4.4-24. SDSRV_Registering_a_Subscribable_Event Dynamic Model

4.4.25 SDSRV_Returning_List_of_Subscriptions

Summary

This scenario shows how the DsClSubscriptionCollector is populated with the subscriptions for a
specified user. The client tells the DsClSubscriptionCollector (a distributed object) to BuildList,
which (server-side) asks the DsSbSubscriptionInterface to build a parameter list of references to
the subscriptions for a user. The client-side DsClSubscriptionCollector takes this list and builds a
DsClSubscription (only one in this case) from it and adds it to himself.

Assumptions

• There is one subscription for the user

• all steps execute successfully

4-276 305-CD-008-001

4-277
305-C

D
-008-001

SDCLIENT DsClSubscriptionCollector DsClSubscription DsSbSubscriptionInterface GlParameterList GlStringP

BuildList

DsClSubscription

insert

GlParameterList

GlStringP

insert

GetAllSubscriptions

Figure 4.4-25. SDSRV_Returning_List_Of_Subscriptions Dynamic Model

4.4.26 SDSRV_Server_Handling_A_Browse_Request

Summary

This scenario shows the execution of a browse request within the data server. A browse request is
really just a request with a single command ("browse") that is executed by an ESDT. The diagram
begins with the submission of the request to the DsSrSession, and assumes the steps of the top part
of the SDSRV_Server_Request_Handling scenario are executed. The DsSrWorkingCollection is
then handed the command to execute, and passes it to the DsGeESDTWrapper. The
DsGeESDTWrapper is a class that encapsulates the dynamic binding of ESDT services to the data
server process, and passes commands through to the actual ESDT code to execute. The diagram
shows the base class "DsGeESDT" executing the command, while in reality a leaf class would
perform the actual execution. This abstraction shows that neither the DsSrWorkingCollection nor
the DsGeESDTWrapper need to know the exact type of the ESDT, just that it inherits from
DsGeESDT. Once the execution of the command has finished, the results are added to the request
results, and the remainder of the SDSRV_Server_Request_Handling scenario is finished.

Assumptions

• the DsSrWorkingCollection contains a single ESDT, which is already instantiated

• the request contains exactly one command - the client has all necessary permissions

• all steps execute successfully

4-278 305-CD-008-001

4-279
305-C

D
-008-001

SDCLIENT DsSrSession GlParameterList DsSrWorkingCollection GlParameterList DsGeESDTWrapper DsGeESDT

Submit

scenario: SDSRV_Server_Request_Handling

scenario: SDSRV_Server_Request_Handling

GlParameterList

ExecuteCommand

insert

ExecuteCommand

~GlParameterList

ExecuteCommand

Browse

Figure 4.4-26. SDSRV_Server_Handling_A_Browse_Request Dynamic Model

4.4.27 SDSRV_Server_Handling_A_Search_Request

Summary

The manner in which the client software submits a request is described in Scenario
SDSRV_Client_Request_Submission. The data server processing of the request is described in
Scenario SDSRV_Server_Request_Handling. Once the request has been identified as a Search
request, a GlParamterList is created to hold the set of commands which will be returned to the
client-side of the system to update the client state to match the resulting DsSrWorkingCollection.
A GlStatus is also created to store status information about the search. The DsSrCommand
specifying the search, the GlStatus for passing status information and a GlParameterList for the
results are provided to the DsSrWorkingCollection's ExecuteCommand method. This method in
turn invokes the DsMdCatalog object's Search method. The processing of a science data query is
described in Scenario SDSRV_Catalog_Search. The search returns a set of objects containing the
metadata for the ESDT's which match the query constraints. The DsSrWorkingCollection iterates
over the list of return objects, creating a DsGeESDTWrapper for each. The DsGeESDTWrapper
associates a given set of metadata with the services available on that metadata. Each time a
DsGeESDTWrapper object is created, the DsSrWorkingCollection puts an "add" directive in the
GlParameterList. The manner in which the DsSrWorkingCollection returns the results to the
DsSrRequest is described in Scenario SDSRV_Server_Request_Handling. The GlParameterList
is returned as described in Scenario SDSRV_Asynchronous_Status_Updates.

Assumptions

• All corresponding client-side proxies have been established

• OODCE (or MSS) handles all of the telecommunications (finding objects, etc.)

• The WorkingCollection is empty at the start of this scenario

•	 Non-conflicting requests are handled asynchronously (i.e., queuing a request is an
independent action from taking the next request from the queue

4-280 305-CD-008-001

SDCLIENT DsSrSession
DsSrRequest

GlParameterList GlStatus DsSrWorkingCollection DsGeESDTWrapper SDCATALOG

Submit

Scenario: SDSRV_Client_Request_Handling

Search

Scenario: SDSRV_Catalog_Search

Scenario: SDSRV_Catalog_Search

DsGeESDTWrapper

GlParameterList

GlStatus

ExecuteCommand

Scenario: SDSRV_Instantiating_an_ESDT

SetResults

Scenario: SDSRV_Server_Request_Handling

Scenario: SDSRV_Asynchronous_Status_Updates

GetResults

DsSrRequest

Scenario: SDSRV_Server_Request_Handling

SetStatus

Scenario: SDSRV_Asynchronous_Status_Updates

4-281
305-C

D
-008-001

Figure 4.4-27. SDSRV_Server_Handling_a_Search_Request Dynamic Model

4.4.28 SDSRV_Server_Request_Handling

Summary

This scenario shows the interaction of classes in the data server to handle a newly submitted
request. The DsClESDTReferenceCollector is a distributed object whose server-side is the
DsSrSession. When the client submits the request to the collector, its core information is stored in
the (distributed) DsClSubmittedRequest, and the unique ID of the DsClSubmittedRequest is sent
to DsSrSession. DsSrSession uses this ID to find the DsClSubmittedRequest on the server side,
and

extracts the information necessary to build a DsSrRequest. In this scenario, since it's the only
request in the server, it's retrieved and executed immediately after it is queued by the DsSrSession.
In reality, the execution of requests runs in a separate thread, and would be waiting for a request to
arrive in the queue. As the request executes, each command is extracted from it, authorized against
the client information that was provided when the DsSrSession was created, and executed. The
scenario shows execution up to the point where the command is about to be handed to another class
to be handled. This is where other scenarios will fill in specific command execution steps. Once
the command has been executed, the server collects the results (see SDSRV_Client_Browsing) and
cleans up.

Assumptions

• the new request is the only one in the server - the request contains exactly one command

• the client has all necessary permissions

• all steps execute successfully

4-282 305-CD-008-001

SDCLIENT DsClSubmittedRequest GlParameterList DsSrSession DsSrRequestVector DsSrServer DsSrSubmittedRequestVector DsSrRequest DsSrCommand GlParameterList

4-283
305-C

D
-008-001

[Other scenarios will provide event tracing at this point]

Submit

GetSRVector

Find

GetInfo

DsSrRequest

DsSrCommand

insert

SetStatus

SetStatus

insert

Execute

removeFirst

GetCategory

GlParameterList

GetResults

insert

SetStatus

SetStatus

SetStatus

~DsSrRequest

~DsSrCommand

GetResults

Authorize

GetNextRequest

Figure 4.4-28. SDSRV_Server_Request_Handling Dynamic Model

4.4.29 SDSRV_Startup_of_a_Science_Data_Server

Summary

This scenario shows the steps required to startup a data server. The MSS_Object represents the
management provided by the MSS subsystem over project entities such as processes. It will
instantiate a DsCnDSSStartup object on the target system, which will handle all of the details of
starting the data server. All server processes are started, which causes the creation of the indicated
factory objects. Once the factories are created, new distributed objects may be created by clients
to interface with the server. After starting the processes, DsCnDSSStartup instantiates a
DsDeESDTDescriptorSet and initializes it, which walks through a list of all data types known for
this server and creates a DsDeESDTDescriptor for each and initializes it. The result of initializing
all of the types is the existence of advertisements for all of the services for every type, as well as
advertisements for the events which are subscribable for each type. The creation of these
advertisements can be traced in two other scenarios: SDSRV_Inserting_A_New_Data_Type and
SDSRV_Registering_A_Subscribable_Event.

Assumptions

• all steps execute successfully

4-284 305-CD-008-001

MSS_Object DsCnDSSStartup DsFactory DsSbFactory DsDeESDTDescriptorSet DsDeESDTDescriptor

DsCnDSSStartup

StartProcesses

DsFactory

DsSbFactory

InitializeESDTs

Initialize

DsDeESDTDescriptorSet

DsDeESDTDescriptor

Initialize

4-285
305-C

D
-008-001

Figure 4.4-29. SDSRV_Startup_Of_A_Science_Data_Server Dynamic Model

4.4.30 SDSRV_Submitting_a_Subscription

Summary

This scenario shows how a client can submit a subscription to the SDSRV. In this scenario the
client has retrieved a subscription advertisement from the Advertising server and has decided that
he/she would like to be notified upon the future occurrence of that advertised event.

Assumptions

•	 Client has retrieved an advertisement object from the Advertising Server that represents the
event that he/she is interested in.

4-286 305-CD-008-001

4-287
305-C

D
-008-001

ClientApp DsClSubscription DsClSubscriptionCollector DsSbSubscriptionInterface DsSbSubscription DsSbRegisteredEvent

DsClSubscription

DsSbSubscriptionInterface

SetAction

Submit

Insert

DsClSubscriptionCollector

AddSubscription

DsSbSubscription

GetEventId

AddSubscriptions

Figure 4.4-30. SDSRV_Submitting_a_Subscription Dynamic Model

4.4.31 SDSRV_Unregistering_a_Subscribable_Event

Summary

The purpose of this scenario is to show how a subscribable event which has been previously
established, gets unregistered. This would be done if a Data Type were being removed from the
Data Server. This scenario begins after an DsDeESDTDescriptor has been created and it has
determined that it must unregister its subscribable events.

The DsDeESDTDescriptor establishes the DsGeESDTEventTable for this Data Type which
contains the DsSbEvents that were previously stored when this Data Type was initialized. Because
this is a distributed object, an DsSbEvent is created in the Subscription Server execution space.
Then for each event that the Data Type has previously stored in the DsGeESDTEventTable, the
DsDeESDTDescriptor unregisters that event. This causes the SubscriptionInterface to cancel the
advertisement associated with this event. Finally, the DsSbEvent is removed from the persistent
DsGeESDTEventTable.

Assumptions

• The SDSRV has the UR of its Subscription Server Factory.

• The Subscription Server is active.

• All events of a Data Type are being unregistered.

4-288 305-CD-008-001

4-289
305-C

D
-008-001

DsDeESDTDescriptor DsGeESDTEventTable DsDbAccess DsSbFactory
DsSbEvent DsSbSubscriptionInterface DmAdAdvertisement

DsGeESDTEventTable

MakeEvent

at(0)

Unregister

~DsGeESDTEventTable

~DsSbEvent

DsDbAccess

Fill

Remove

Unstore

DsSbEvent

DsSbSubscriptionInterface

UnregisterEvent

Cancel

~DsSbSubscriptionInterface

~DmAdAdvertisement

DmAdAdvertisement

Figure 4.4-31. SDSRV_Unregistering_a_Subscribable_Event Dynamic Model

4.4.32 SDSRV_Update_Server_Configuration

Summary

This scenario shows how an operator may change the configuration of a SDSRV. In this scenario
an operator has updated the threshold of queued requests for SDSRV connections in a GUI widget.
The operator then selects an appropriate action widget (e.g. button) that triggers a callback, in this
case the SetQueueSize method of DsAdRequestInterface object.

Assumptions

• The operator has already identified the SDSRV of interest

•	 Active connections that already have more queued request than the new threshold allows
will continue processing, but no accept new requests until they have completed enough to
get below the threshold.

4-290 305-CD-008-001

4-291
305-C

D
-008-001

DsGUAdminGUI DsAdRequestInterface DsSrConfiguration DsSrServer DsSrConnection

DsAdRequestInterface

SetQueueSize

Set

ListConnections

Refresh

Figure 4.4-32. SDSRV_Update_Server_Configuration Dynamic Model

4.4.33 SDSRV_Updating_a_Subscription

Summary

The scenario shows how the client updates a subscription. The scenario shows steps used to update
a subscription from the client side and ultimately, reflected on the server side. This is achieved
through the distributed object, DsClSubscriptionCollector. The object,
DsClSubscriptionCollector, has already been constructed. This scenario shows that the client
wants to update the expiration date of the subscription. The client sets the expiration date of the
subscription. The older subscription is withdrawn as outlined in the scenario
SDSRV_Updating_a_Subscription. The subscription is submitted as outlined in the scenario
SDSRV_Submitting_a_Subscription.

Assumptions

• user has logged on and has proper permissions.

• DsClSubscriptionCollector has already been created.

4-292 305-CD-008-001

ClientApp DsClSubscription DsClSubscriptionCollector

SetExpirationDate

Withdraw

Scenario: SDSRV_Canceling_A_Subscription

Scenario: SDSRV_Submitting_A_Subscription

Submit

Figure 4.4-33. SDSRV_Updating_a_Subscription Dynamic Model

4-293 305-CD-008-001

4.4.34 SDSRV_Validating_Metadata

Summary

The purpose of this scenario is to show how validation of metadata is accomplished within the
Science Data Server. Metadata validation is accomplished by the Science Data Server for external
clients such as the Ingest Subsystem and the Processing Subsystem. In addition, metadata
validation occurs when a new granule is being inserted into the Science Data Server. This scenario
assumes that the validation is being done in the context of an insertion of a new granule.

This scenario begins when an instance of an DsGeESDT creates the DsDeESDTDescriptor
associated with its type and invokes the validation service. The client of this service, DsGeESDT
in this case, must provide the P=V metadata to be validated and a GlStatus reference that will be
updated during the validation process.

The first step in the validation process is to verify that the given metadata is valid with respect to
the core metadata valid values. This DsDeCoreValidVector which is the same for all
DsDeESDTDescriptors is created from its persistent location and it creates each of its
DsDeCoreValid objects. The DsDeESDTDescriptor then looks at each entry in the given metadata
and tries to find an associated entry in the vector. If an entry is found, the value of the input
metadata entry is compared for validity against the vector entry. This is repeated for all metadata
entries for the input metadata.

The second step in the validation process is to verify that the given metadata is valid with respect
to metadata validation criteria that is specific to the Data Type. These valids are a refinement of
the DsDeCoreValids. This process is nearly identical to the CoreValidVector validation except
that the vector obtained from persistent storage in this case is specific to the given type.

The last step in the validation process is to ensure that all mandatory metadata entries are present
in the given metadata. This is done with the MetadataDefVector that defines the metadata
attributes for this data type. The MetadataDefVector is obtained from persistent storage and is used
to look at each MetadataDef entry, see if it is mandatory, and ensure that the input metadata has
included this attribute. An indication of the success or failure of the validation is provided as a
result. If there are errors during the validation process, these will be recorded in the provided
GlStatus object.

Assumptions

• The client of this service provided a P=V metadata stream.

4-294 305-CD-008-001

4-295
305-C

D
-008-001

DsGeESDT
DsDeESDTDescriptor

DsDeCoreValidVector DsDeCoreValid DbAccess DsDeValid DsDeValidVector DsDeMetadataDefVector DsDeMetadataDef

Validate

DsDeESDTDescriptor

DsDeCoreValidVector

DbAccess

Fill

DsDeCoreValid

Validate

Find

Validate

IsValid

DsDeValidVector

Fill

DsDeValid

Validate

Find

~DsDeESDTDescriptor

IsValid

DsDeMetadataDefVector

Fill

HasMandatory

~DsDeCoreValidVector

~DsDeCoreValid

~DsDeValidVector

~DsDeValid

~DsDeMetadataDefVector

~DsDbAccess

DsDeMetadataDef

IsMandatory

~DsDeMetadataDef

Figure 4.4-34. SDSRV_Validating_Metadata Dynamic Model

4.5 CSCI Structure
Table 4.5-1 shows the components of the SDSRV CI, (its CSC's). Each CSC is described and
designated as being custom developed code (DEV), off-the-shelf (OTS) or a combination of the
two (DEV/OTS). If the custom developed code will be used for OTS integration purposes, it is
identified as WRAPPER. Following the table are a series of sections that describe each CSC and
lists the classes that comprise that CSC.

Table 4.5-1. SDSRV's Components
CSC Abbr. Description Implementation

Administration/Opera
tion

Ad The classes required to support Administrator and Op
erations functionality.

DEV

CERES CE The classes supporting the CERES Instrument Data
Products.

DEV

Client Cl The Public classes offered to SDSRV clients.
cludes the distributed classes.

DEV/OTS

Configuration/Startup Cn The classes supporting configuration and startup of the
SDSRV.

DEV

Metadata Md The classes and database implementations supporting
the storage and access of metadata.

DEV/WRAPPER

CSDT CS The CSDT classes. WRAPPER

DB Wrappers Db The COTS database wrapper classes. WRAPPER

Descriptors De The classes used to define and describe ESDTs and
their supporting functionality.

DEV/OTS

General ESDT Ge Those classes which provide the framework around
which specific ESDTs are built.

DEV

Global Gl Those classes that are intended to be globally avail
able for re-use.

DEV/OTS

GUI GU The classes and other software that is supplied to sup
port whatever GUI requirements that the SDSRV has.

DEV

LIS LI The classes supporting the LIS Instrument Data Prod
ucts.

DEV

Non-Product Science
ESDTs

NP The classes used to provide the interface to and imple
mentation of those ESDTs that are not ECS products,
but whose content is still Earth Science data.

DEV

Non-Science ESDTs NS The classes used to support the ESDTs that do not
contain Earth Science Data.

DEV

PR Pr The classes supporting the PR Data Products. DEV

Server Sr The classes used to provide the framework for the in
frastructure of the SDSRV.

DEV/OTS

Subscriptions Sb The classes used to support the subscription function
ality.

DEV/OTS

TMI Tm The classes supporting the TMI Data Products. DEV

VIRS Vi The classes supporting the VIRS Data Products. DEV

This in

4-296 305-CD-008-001

4.5.1 CSC Definitions

4.5.1.1 Administration/Operation

Purpose and Description

The classes required to support SDSRVAdmininstrator and Operations functionality.

Classes

DsAdDataTypeCollector
DsAdDescriptor
DsAdLog
DsAdRequestInterface

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.2 CERES

Purpose and Description

The classes supporting the CERES Instrument Data Products.

Classes

DsCeCERES

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.3 Client

Purpose and Description

The Public classes offered to SDSRV clients. This includes distributed classes.

Classes

DsClAction

DsClCollector

DsClCollectorVector

DsClCommand

DsClConnection

DsClDescriptor

DsClDescriptorCollector

DsClESDTReference

DsClESDTReferenceCollector

4-297 305-CD-008-001

DsClESDTReferenceVector

DsClNotificationReceiver

DsClQuery

DsClRequest

DsClRequestVector

DsClSubmittedRequest

DsClSubscription

DsClSubscriptionCollector

DsClTypeInfo

Candidate Products

RogueWave

ECS White Paper References

Not Applicable

4.5.1.4 Configuration/Startup

Purpose and Description

The classes supporting configuration and startup of the SDSRV.

Classes

DsCnConfiguration
DsCnDSSConfiguration
DsCnDSSStartup

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.5 Metadata

Purpose and Description

The classes and database implementations supporting the storage and access of metadata.

Classes

DsMdCatalog
DsMdMetadata

Candidate Products

Sybase/SQS

ECS White Paper References

Not Applicable

4-298 305-CD-008-001

4.5.1.6 CSDT

Purpose and Description

The CSDT classes.

Classes

DsCsCSDT
DsCsGrid
DsCsImage
DsCsPoint
DsCsRaw
DsCsSwath

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.7 DB Wrappers

Purpose and Description

The COTS database wrapper classes.

Classes

DsDbAccess
DsDbAttributeToTableVector
DsDbConnection
DsDbGranuleToDbVector
DsDbInterface

Candidate Products

Sybase

ECS White Paper References

Not Applicable

4.5.1.8 Descriptors

Purpose and Description

The classes used to define and describe ESDTs and their supporting functionality.

Classes

DsDeCoreValid
DsDeCoreValidVector
DsDeDD
DsDeDDVector
DsDeESDTDescriptor
DsDeESDTDescriptorSet

4-299 305-CD-008-001

DsDeEvent

DsDeEventVector

DsDeMathOp

DsDeMetadataDef

DsDeMetadataDefVector

DsDeRange

DsDeScienceParameter

DsDeScienceParameterVector

DsDeSeries

DsDeService

DsDeServiceVector

DsDeStaticMetadata

DsDeStaticMetadataVector

DsDeValid

DsDeValidVector

Candidate Products

RogueWave

ECS White Paper References

Not Applicable

4.5.1.9 General ESDT

Purpose and Description

Those classes which provide the framework around which specific ESDTs are built.

Classes

DsGeBrowseProduct
DsGeDynamicLibrary
DsGeECSDataProduct
DsGeESDT
DsGeESDTConfiguration
DsGeESDTDynamicLibrary
DsGeESDTEventTable
DsGeESDTServiceProvider
DsGeESDTWrapper
DsGeRange
DsGeScienceData
DsGeSummaryProduct
DsGeTypeID

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4-300 305-CD-008-001

4.5.1.10 Global

Purpose and Description

Those classes that are intended to be globally available for re-use.

Classes

GlBinaryP
GlDateP
GlDoubleP
GlLongP
GlParameter
GlParameterList
GlStringP
GlTimeP

Candidate Products

RogueWave

ECS White Paper References

Not Applicable

4.5.1.11 GUI

Purpose and Description

The classes and other software that is supplied to support whatever GUI requirements that the
SDSRV has.

Classes

DsGuAdminGUI

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.12 LIS

Purpose and Description

The classes supporting the LIS Instrument Data Products.

Classes

DsLiLIS

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4-301 305-CD-008-001

4.5.1.13 Non-Product Science ESDTs

Purpose and Description

The classes used to provide the interface to and implementation of those ESDTs that are not ECS
products, but whose content is still Earth Science data.

Classes

DsCoCombination

DsGvRadar

DsNmNMC

DsNpAncillary

DsNpCalibration

DsNpCorrelative

DsNpNonECSDataProduct

DsNpOA

DsNpPlatform

DsNpVersion0

DsSsSSMI

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.14 Non-Science ESDTs

Purpose and Description

The classes used to support the ESDTs that do not contain Earth Science Data.

Classes

DsNsHistoricalData

DsNsMPR

DsNsNonECSDataProduct

DsNsProductionHistory

DsNsQAStatistics

DsNsScienceSoftwareArchivePackage

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.15 PR

Purpose and Description

The classes supporting the PR Data Products.

4-302 305-CD-008-001

Classes

DsPrRadar

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.16 Server

Purpose and Description

The classes used to provide the framework for the infrastructure of the SDSRV.

Classes

DsFactory

DsSrClient

DsSrCommand

DsSrCommandBase

DsSrCommandInfo

DsSrCommandVector

DsSrConnection

DsSrQueuedConnection

DsSrRequest

DsSrRequestBase

DsSrRequestInfo

DsSrRequestVector

DsSrServer

DsSrSession

DsSrSubmittedRequestVector

DsSrWorkingCollection

Candidate Products

RogueWave

ECS White Paper References

Not Applicable

4.5.1.17 Subscriptions

Purpose and Description

The classes used to support the subscription functionality.

Classes

DsSbAction
DsSbActionBase
DsSbCallBackTimer
DsSbEvent

4-303 305-CD-008-001

DsSbEventHandler
DsSbEventTimer
DsSbRegisteredEvent
DsSbSubscription
DsSbSubscriptionInterface
DsSbTimer

Candidate Products

RogueWave

ECS White Paper References

Not Applicable

4.5.1.18 TMI

Purpose and Description

The classes supporting the TMI Data Products.

Classes

DsTmTMI

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.1.19 VIRS

Purpose and Description

The classes supporting the VIRS Data Products.

Classes

DsViVIRS

Candidate Products

Not Applicable

ECS White Paper References

Not Applicable

4.5.2 CSCI Dynamic Architecture

The dynamic architecture of the SDSRV CI is defined by the individual processes (or executables)
that comprise its implementation. The SDSRV CI is implemented as three separate, cooperating
UNIX processes. Those processes are the ScienceDataServer, SDSRVAdmin and
SubscriptionServer. These three processes, along with those executables that include the SDSRV
Client CSC library, will supply the SDSRV CI functionality to ECS. The implementation of the
SDSRV CI also depends on the various implementations of two of the other DSS software CIs

4-304 305-CD-008-001

(DDIST and STMGT CIs). The following paragraphs describe each of the three SDSRV CI
processes, along with some general information about other applications that will use the SDSRV's
Client CSC.

4.5.2.1 ScienceDataServer Process

The primary role of the ScienceDataServer Process is to provide an access mechanism for all the
advertised data type services and their implementations. For systems external to ECS and for ECS
subsystems outside the DSS, the ScienceDataServer Process is the repository of all ECS non
document data objects and the interface to their services.

This process depends on the SubscriptionServer Process as well as the implementation process
from the STMGT and DDIST CI's of the DSS. It also depends on implementations of various CSS
and MSS services.

The ScienceDataServer Process comprises the following SDSRV CI CSCs:

• Configuration/Startup

• Metadata

• CSDT

• DB Wrappers

• Descriptors

• General ESDT

• Global

• Non-ProductScienceESDTs

• Non-ScienceESDTs

• Server

• Subscription

It also comprises the interface class CSCs from STMGT, DDIST, ADSRV, MSS and CSS.
Additionally, the Release A implementation of the ScienceDataServer Process will comprise
implementations for the Release A data types. These implementations are the CERES, LIS, PR,
TMI and VIRS SDSRV CSCs.

4.5.2.2 SDSRVAdmin Process

The role of the SDSRVAdmin Process is to support Science Data Server Administrators and
Operators in performing their role in ECS. SDSRV administrators and operators for Release A are
primarily concerned with the configuration of the SDSRV and monitoring and controlling the
processing within the ScienceDataServer Process.

This process depends on the ScienceDataServer Process as well as the implementations of various
CSS and MSS services.

The SDSRVAdmin Process comprises the following SDSRV CI CSCs:

• Administration/Operation

• Client

4-305 305-CD-008-001

• Configuration/Startup

• DB Wrappers

• Global

• GUI

• Server

It also comprises the interface class CSCs from MSS and CSS.

4.5.2.3 SubscriptionServer Process

The role of the SubscriptionServer Process is to support the detection of previously defined events
and to perform specified actions on behalf of clients who have previously registered to those
events.

The SubscriptionServer Process depends on the implementations of various ADSRV, CSS and
MSS services. In order to actually perform its role in the ECS, the SubscriptionServer Process
requires that its client, namely the ScienceDataServer Process, be active and have previously
registered events with it.

The SubscriptionServer Process comprises the following SDSRV CI CSCs:

• Client

• Configuration/Startup

• Global

• Subscription

It is also comprised of the interface class CSCs from ADSRV, CSS and MSS.

4.5.2.4 General Application of SDSRV Client CSC

The applications that utilize ScienceDataServer Process capabilities are generically referred to as
"SDSRV Clients Applications", or "Clients" within the SDSRV context. There are a number of
ECS SDSRV Clients Applications as well as, potentially, non-ECS SDSRV Clients. Examples of
ECS Clients are the Ingest, Planning, Processing and CIDM subsystems. All of these Clients must
use the SDSRV Client CSC implementation. The implementation of this CSC is in the form of a
UNIX library. Public interfaces to the Client CSC will be provided in the form of header files that
may be included in the Client's source code. The Client process must be linked with the SDSRV
Client CSC implementation library. The public interface, as well as the implementation, of the
SDSRV Client CSC will be constructed in a way that will allow SDSRV Client Applications to
extend the Client CSC to more closely fit their own needs through the C++ implementation of
inheritance. The Client CSC's role is to provide an extensible interface to, and abstraction of the
ScienceDataServer Process. This CSC will hide from the Client the details of network location,
OODCE and other technologies used in support of the SDSRV CI's implementation. Restrictions
on SDSRV Client Applications include those imposed by the technology chosen for distributed
communication in ECS, namely OODCE. Indeed, applications that include the SDSRV Client
CSC implementation are, by definition, OODCE client applications. OODCE restrictions include
the requirement that SDSRV Client Applications exist within a DCE cell.

4-306 305-CD-008-001

4.6 SDSRV CSCI Management and Operation
The materials in the following paragraphs discuss the management and operations of software
components discussed in section 4.5.

4.6.1 System Management Strategy

The SDSRV CSCI is designed to provide robust data storage, search, and distribution services to
external data providers and requestors. Specifically, the design goal of the SDSRV CSCI is to
always return status (successful or unsuccessful) for every received request. To accomplish that
goal, the CSCI follows ECS project guidelines for:

• Process startup and shutdown;

• Error detection and reporting;

• Fault tolerance and error recovery

4.6.1.1 Startup/Shutdown

MSS provides life-cycle services for system startup and shutdown. The ScienceDataServer and
SubscriptionServer SDSRV processes act as an "object factory". As such each process instantiates
objects in process threads (pthreads) when a request is serviced. At DSS system startup, three
required processes are launched. The ScienceDataServer process is started as a standalone
processes. The primary role of the ScienceDataServer Process is to provide an access mechanism
for all the advertised data type services and their implementations. The SubscriptionServer process
will also routinely be started at system startup. The role of the SubscriptionServer Process is to
support the detection of previously defined events and to perform specified actions on behalf of
clients who have previously registered to those events. The third "process" that is required for
SDSRV functionality is the COTS DBMS product. The DBMS will be used for persistent storage
of science and operational system data.

The final process associated with the SDSRV is the SDSRVAdmin process. The role of the
SDSRVAdmin Process is to support Science Data Server Administrators and Operators in
performing their role in ECS. SDSRV administrators and operators for Release A are primarily
concerned with the configuration of the SDSRV and monitoring and controlling the processing
within the ScienceDataServer Process. The SDSRVAdmin process will be routinely started and
used for control and operation, but technically is not required for unattended operations of the
SDSRV CSCI.

4.6.1.2 Error Detection and Reporting

The Data Server CSCI is designed for primarily automated operations with little need for
operations involvement short of tuning and critical error conditions. CSS and MSS jointly provide
event logging services for logging and reporting errors and faults, for browsing error/status logs,
and for detecting and reporting critical errors. The Data Server CSCI will fully use those services
during operations. Errors/status may be reported in two error logs. MSS maintains the first log,
the MSS event log. It contains errors/status of interest to operations staff to evaluate system status
and to perform trend analysis. The Data Server subsystem maintains the second log. The Data

4-307 305-CD-008-001

Server event log contains selected errors/status from the MSS event log (for context) plus highly
detailed debug events. Software maintenance personnel use the Data Server event log to diagnose
system and software problems in response to trouble tickets.

Non-critical errors encountered during processing that will be handled at the application level will
be fully resolved and enumerated during development. Major conditions that require operator
intervention and/or are considered catastrophic in the processing of requests are listed in Table 4.6
1.

Table 4.6-1. SDSRV Error Categories

Error Category Actions to Be Taken

Initialization File/Environment
Corrupt

This would be seen during a system startup process and would
result in one or more executables not starting.
evaluate the condition and correct.

DB Transaction Log Full This condition would result in the inability to insert additional
persistent data into the Data Base engine(s) used within Data
Server.
and restore proper operation of the affected Data Base.

DB Connection Dropped This could be a serious failure of the Data Base or a short lived
problem with the connection.
evaluate the problem, possibly restarting the Data Base and the
Data Server processes.

Unable to establish link to/invoke
DLL

The use of DLLs is a fundamental aspect in the Data Server CSCI
design.
established and newly added data type services.
utilize or invoke any of these libraries would be a fundamental error
in the configuration and operation of the system.
issue a trouble ticket and need to have the problem analyzed and
resolved.

Internal queue overflow Errors reported along these lines represent a very poorly tuned and/
or faulty system.
service requests.
system processing thresholds and write a trouble ticket for future off
line analysis and tuning.

Unable to allocate disk space Unable to allocate working storage space using Data Server
STMGT CSCI services.
system.
lower system thresholds for requests.
analyze system off-line and tune.

dbcc error detection The Sybase Database Consistency Checker (dbcc) utility will be run
periodically to check for errors in database allocations for
databases, catalogs, tables and indexes.
the operator or Database Administrator will run the dbcc utility with
the "fix" option to correct the problem.

Operations staff

Operations (DBA) would need to dump the transaction log

Operations (DBA) would need to

DLLs will be installed and maintained in the system for
The inability to

Operations would

This type error would represent potential loss of
Operations staff would immediately throttle back

This is another system of a poorly tuned
Report alert to operations staff who would immediately

Operations staff would

When an error is reported

4-308 305-CD-008-001

4.6.1.3 Fault Tolerance and Error Recovery

Once a service request is accepted from a client (client being defined as any service requestor, not
just the ECS Desktop Client), it is the Data Server Subsystem design goal to complete the request
processing and return status (successful or unsuccessful) to the requestor. The Data Server CSCI
is built on the model of checkpointing processing at the command level (within a request) along
with the user's working collection (context in a manner of speaking). During restart or recovery
operations the CSCI will restore a user's working collection and resume processing at the next
unprocessed command. This model actually evolves over time into the suspend/resume feature of
the CSCI (Release B). Therefore, upon establishment of a user session, the SDSRV CSCI will
have the user's working collection checkpointed to the COTS data base. Likewise, Requests
(containing Commands) are also checkpointed. After each command is completed, the working
collection will be checkpointed if it has changed in value or state. After a process or system failure,
the checkpointed working collection and Requests are automatically restored to the last
checkpointed state and processing continues.

Failure scenarios with recovery methods:

a.	 Failure of a Data Server Executable. This process is immediately restarted as a Unix
standalone process. The User Working Collections and Requests are restored from their
checkpointed states. Data Base integrity is verified and transactions rolled back via COTS
procedures.

b.	 Loss of the data base tables used for checkpointing. The data base management system
automatically logs transactions to allow restorations of table information. This feature,
coupled with DBA generated Data Base backups, provide for recovery. Since high
reliability is required in this area, the Data Base tables will be stored on RAID.

c.	 Failure of the processor on which a SDSRV process is running. In general, the processor
automatically restarts. Restart of individual processes is handled as a combination of one
or more of the above process restarts. If the processor is disabled, the disablement is
detected my MSS SNMP services and a backup processor is restarted. The backup
processor has full access to the data base tables used for checkpointing. Again, restart of
individual processes is handled as described above.

d.	 Failure of an external application. After a given number of retries to transmit data or via
DCE services that alert us of failure of the recipient process, operations staff are notified
by means of an alert message. The DAAC operations staff will coordinate to diagnose the
failure.

4.6.2 Operator Interfaces

DAAC operations personnel are provided with an X-Windows/Motif-based GUI to access
operations data bases and system configuration information. Table 4.6-2 highlights the critical
SDSRV GUI screens.

4-309 305-CD-008-001

Table 4.6-2. Science Data Server Subsystem Administration Management GUI
GUI Description Data Operations

Science Data
Server Adminis
tration GUI

Primary Screen for
Data Server Re
quests.

References to:
Request,
Log&Reports,
Configuration,
Client Management and
Resource Management

GUIs.

Logon
Realizes and/or makes the
GUIs visible.

Data Type
Management
GUI

Allows operators to
manage the data
types offered by the
Science Data Server

List of data types (ESDTs)
Descriptor contents
Related Libraries

View Data Types
View a specific Data Type
Update a descriptor
Add a Data Type
Remove a Data Type

Subscription
Management
GUI

Allows operators to
manage the current
subscriptions.
ation, update, dele
tion of subscriptions
will be managed us
ing the standard Cli
ent Subscription GUI

Event Information:
Event ID
Event Description
Subscriptions on event

Subscription Information:
Event ID
Client Information
Subscription Type
Subscription Action

View Events
View Subscriptions
Filter Subscriptions (event,
client, action)
Access to Client Subscription
GUI

Database
COTS GUI

COTS provided GUI
to support database
management

COTS COTS

Cre

4-310 305-CD-008-001

4.6.3 Standard SDSRV Reports

Table 4.6.3-1. Standard Science Data Server Reports
Report Type Report Description Intended Audience

User Characterization Is a summary report identifying each user class and
the number of users in each class. The reporting
period is either the last 24 hours, the previous 7
days, previous 30 days, or number since a given
date. The report includes: the number of new dis
tinct users per time period, the number of repeat
distinct users per time period, summary of users by
class, by product interest, by mode of access, by
user affiliation.

System Operator
Resource Planner
Performance Analyst
Sr. Science Coordinator
Operations Supervisor
DAAC Manager

System Access Profile A summary report providing the profile of user sys
tem accesses and the time spent by each user on
the system. The reporting period is either the last 24
hours, the previous 7 days, previous 30 days, or
number since a given date. Information provided in
cludes: Number of Search/Browse requests for the
time period, the number of returned browse items
for the period, the number of separate system ac
cesses by DAAC staff, the number of separate sys
tem accesses by non-DAAC staff including guest
users and captive accounts, total number of sepa
rate accesses, total average session time over all
user sessions, total number of distinct users, total
number of guest users, total users accesses identi
fied by access method (e.g. ftp).

System Operator
Resource Planner
Performance Analyst
Sr. Science Coordinator
Operations Supervisor
DAAC Manager

Science Data Server Er
ror

The Science Data Server Error Report is a summa
ry report of the frequency of errors of different types
encountered during server operations. The report
consists of an Error Class Summary which counts
the reported errors for each error class and type.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

4-311 305-CD-008-001

This page intentionally left blank.

4-312 305-CD-008-001

5. DDSRV - Document Data Server CSCI

5.1 CSCI Overview
The Document Data Server (DDSVR) reflects many of the design principles used by the SDSVR
in its management of Earth Science Data Types. The DDSVR will have implementation
differences due to requirements unique to document search and retrieval, and the constraints placed
by WWW technology.

The design of the CI has been driven by the commitment to implementing the "data are data"
vision, the desire to retain design symmetry with the Science Data Server (SDSVR), the
requirement to interface with the V0/V1 Gateway services, the desire to minimize V0 document
migration costs, and the mandate to maximize the use of COTS, especially, WWW technology, in
the management of Earth Science document data types.

With these design goals in mind, the DDSVR maximizes the reuse of common functionality with
the SDSVR. Common base classes are used for client, server, command and request objects. This
provides a common interface for constructing and executing service requests. Similarly, common
data modeling abstractions are employed. Documents are modeled within a specialization
hierarchy derived from the ESDT base class. ESDTs are implemented using a CSDT
specialization hierarchy representing different document storage formats.

Services are statically bound to document objects. A stateless communication paradigm is used
reducing the design complexity. Object association multiplicity has been minimized within the
design, reflecting the design drivers behind the DDSVR.

A key design driver of the Data Server is the maintenance of a common data model for ECS data
objects. Although distinct programmatic interfaces will be implemented for the DDSVR and
SDSVR, a single common data model will be internally managed in order to support the navigation
between science and document objects, while maintaining integrity between the data objects in an
automated fashion. This approach is anticipated to reduce evolution costs when a common set of
data type services will be used to access both science and document objects.

5.2 CSCI Context
The external interface to the DDSVR is through HTTP. Search and acquire requests are formulated
as WAIS queries and HTTP Get commands respectively and issued by the V0 Client Guide
Subsystem using HTTP. For those document types not currently accessible through the V0 Client,
a Forms interface on a WWW Client will be used to formulate identical requests. These requests
are received directly by the DDSVR. A HTTP demon process monitors a TCP/IP port for
incoming requests and hands them off to the DDSVR using a CGI call. These requests are
packaged as internal command and request structures by a client object which is then executed by
the server object.

Documents are ingested into the ECS via the Ingest Subsystem. Insert requests are constructed by
Ingest specifying the document type, file location and metadata which is then submitted to the
DDSVR. The metadata is inserted into the DBMS through the DBMS Wrapper layer, the

5-1 305-CD-008-001

document indexed for free text queries using COTS indexing technology and the document data
inserted into the document repository.

Document search requests are received in WAIS query format which are interpreted into an
internal query format and submitted to the DBMS Wrapper. The search results are formatted in
HTML and returned across the HTTP connection to be rendered in the WWW Client.

Document acquire requests are received as HTTP Get commands which are interpreted as extract
commands to access documents in the document repository. A HTTP header is constructed
specifying the MIME type of the document and the document data returned across the HTTP
connection to be handled by the WWW Client.

Figure 5.2-1 provides a context diagram for this CSCI which shows the interfaces with other
CSCIs.

Table 5.2-1 provides a functional grouping of these interfaces along with the associated input and
output data.

WAIS Query in V1 Terms

WWW
Client

INGEST

DDIST

PLANG

Document Data
Server

Documents,
Keywords

GlStatus,
GlUR

Documents,
Keywords

Documents,
Search Results

HTTP
Request

GlStatus,
GlUR

HTTP
Request

Documents,
Search Results

WAIS Query in V0 Terms

DMS

Figure 5.2-1. DDSRVContext Diagram

5-2 305-CD-008-001

5.2-1. DDSRVContextevents Event Flow Summary Table
Sender Receiver Event Name Detailed Signature

Document Data Server WWW Client Documents

INGEST DocumentDataServer Documents

PLANG DocumentDataServer Documents

DocumentDataServer DDIST Documents

DocumentDataServer PLANG GlStatus

DocumentDataServer INGEST GlStatus

DocumentDataServer PLANG GlUR

DocumentDataServer INGEST GlUR

WWWClient DocumentDataServer HTTP Request

DDIST DocumentDataServer HTTP Request

PLANG DocumentDataServer Keywords

INGEST DocumentDataServer Keywords

DocumentDataServer DDIST Search Results

DocumentDataServer WWWClient Search Results

DocumentDataServer DMS WAIS Query in V0
Terms

DMS DocumentDataServer WAIS Query in V1
Terms

5.3 CSCI Object Model
This section provides an object model for the Document Data Server CSCI. The Document Data
Server Object model contains two main categories of objects. The first are the generic server
objects that support access to the Document Data Server. These objects include the Server, Client,
Request, and Command. The second category of objects are the Earth Science Data Type (ESDT)
objects and supporting objects. This includes the Guide, Algorithm Description, Production Plan
and Reference Paper. The supporting objects for the ESDTs include the Computer Science Data
Types (CSDT) that implement the ESDTs (ASCII, HTML, PDF, RTF, Postscript), and those
required for exporting configuration information to other CSCIs (Keyword, Keyword Locator).
Other objects appear in the object model, but are not described in the following section; they have
been allocated to other CSCIs and are replicated here for purpose of completeness.

General Notes: In the following object class descriptions, classes always inherit attributes,
operations, and associations from their parent classes. Where all attributes in the current design
are inherited from the parent class, this is indicated by the text "All Attributes inherited from the
parent class" (and analogously for operations). If a derived class has additional attributes of its
own, those new attributes are listed, but the attributes from the parent class are not repeated
(analogously for operations). "None" may indicate that the preliminary design has not resulted in
any specific attributes or operations (though over the course of the detailed design, such items may
be added).

5-3 305-CD-008-001

The Object Classes in the Object Model diagrams and descriptions each have an identified set of
attributes and public operations. The listed public services do not include two operations: a
constructor (often referred to as "Create") and a destructor (often referred to as "Destroy"). These
operations are not listed, but implied for all Object Classes in these models. In order to implement
these Object Classes constructors and destructors must be included, hence they are implied at the
preliminary design level. The specific constructor and destructor operations will be identified
through the detailed design activities. During the detailed design phase any overloading of
constructors and destructors (as well as other services) will also be defined.

5-4 305-CD-008-001

[DISTR OBJ]

DsDoRequest

DsDoServer

DsSd Server DsSvServer

DsCtRequest

DsCtClient

DsSdCommand

DsSdRequest <RWVector> DsSdSession DsDoClient

DsSdClient

DsCtCommand

DsDoCommand

[DISTR OBJ]

[DISTR OBJ]

<RWVector>

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

manages

serves

services

manages

Figure 5.3-1. DsDoServer Object Model Diagram

5-5 305-CD-008-001

$myDsCtAcquireCommand

DsSvServer

DsDoClient

DsDoRequest

DsDoServer

DsCtClient

DsDoCommand

DsCtCommand

DsCtRequest

DsCtAcquireCommand(DsCtCommand &)

~DsCtAcquireCommand()

AcquireCommand()

myCommndList

DsSeIndexer

DsSeWWWServer

myRequestStartTime

myRequestStatus

DsCtInsertCommand

myRequestTimeOut

$myRequestList

CancelRequest()

~DsCtRequest()

DsCtRequest()

ServiceRequest()

RequestStaus()

DsCtSearchcommand

myClientVersion

myClientName

mySystemLog

myCommandType

myRequest

ExecuteCommand()

DsCtAcquireCommand

myServer

myClient

myRequestName

myRequestType

ServiceRequest()

~DsCIRequest()

DsCIRequest()

$myServerList

mySecurityProtocolVersion

mySecurityProtocol

myProtocolVersion

myProtocolName

myPortNumber

myIPNumber

myHostAddress char *

myClientList

Listen()

ServiceRequest()

ShutDown()

StartUp()

~DsDoServer()

DsDoServer()

myServerVersion

$myClientList

mySecurityProtocolVersion

mySecurityProtocol

myProtocolVersion

myProtocolName

myPortNumber

myIPnumber

myHostAddress

myServer

DisConnectServer()

SubmitRequest(DsCtRequest)

ConnectServer(DsSvServer)

~DsCtClient()

DsCtClient(MSS_UserProfile)

myServerName

mySystemLog

ShutDown()

StartUp()

myCommandName

myCommandType

myCommandRequest

$myCommandList

ProcessCommand(int)

DsCtCommand(char * FileName)

~DsCtCommand()

DsCtCommand(istream *istr)

myCommand

myDsEsESDT

myDatafile

myMetaFile

$DsCtInsertCommandList

DsCtInsertCommand(DsCtCommand &)

InsertCommand()

myCommand

myWAISQuery

myParameterList

$myDsCtSearchCommandList

myResultsList

myHTMLResultsList

myKeywordResultsList

myFreeTextResultsList

DsCSearchCommand(DsCtCommand &)

~DsCtSearchCommand()

ExecuteSearch()

ExecuteKeywordSearch()

ExecuteFreeTextSearch()

FormatResults(ostream *ostr)

MergeResults()

myCommand

myHTTPRequest

myDsEsESDT

myOstr

_ : List <DsCtAcquireCommand> = null

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

+

+

+ : GlStatus

_ : List <DsCtCommand> = null

_ : RWDateTime & = null

_ : GlStatus & = null

[DISTR OBJ]

_ : RWDateTime & = null

_ : List <DsCtRequest> = null

+ : GlStatus

+

+

+ : GlStatus

+ : GlStatus

[DISTR OBJ]

_ : char * = null

_ : char * = null

_ : GlLog & = null

_ : enum {} = 0

_ : DsDoRequest & = null

+

[DISTR OBJ]

_ : DsDoServer & = null

_ : DsDoClient & = null

_ : char * = null

_ : int = null

+ : GlStatus

+

+

_ : List <DsSvServer> = null

_ : char * = null

_ : char * = null

_ : char * = null

_ : char * = null

_ : int = 0

_ : int = 0

_ : char * = null

_ : List <DsCtClient> = null

_ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+

+

_ : char * = null

_ : List <DsCtCleint> = null

_ : char * = null

_ : char * = null

_ : char * = null

_ : char * = null

_ : int = 0

_ : int = 0

_ : char * = null

_ : DsSvServer & = null

_ : GlStatus

+ : GlStatus

_ : GlStatus

+

+

_ : char * = null

_ : GlLog & = null

+ : GlStatus

+ : GlStatus

_ : char * = null

_ : enum = 0

_ : DsCtRequest & = null

_ : List <DsCtCommand> = null

+ : GlStatus

+

+

+

_ : DsCtCommand & = null

_ : DsEsESDT & = null

_ : char * = null

_ : char * = null

_ : List <DsCtInsertCommand> = null

+

+ : GlStatus

_ : DsCtCommand & = null

_ : char * = null

_ : GlParameterList * = null

_ : List <DsCtSearchCommand> = null

_ : GlParameterList * = null

_ : List <char *> = null

_ : List <char *> = null

_ : List <char *> = null

+

+

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

_ : DsCtCommand & = null

_ : char * = null

_ : DsEsESDT & = null

_ : ostream & = null

manages

services

constructs

Figure 5.3-2. DsDoDocumentServer Object Model Diagram

5-6 305-CD-008-001

DsGeESDT

DsCsCSDT

DsEsGuide

Externalize(format)

DsEsESDT

myURL: char *

myDsEsTypeID: DsEsTypeID *

myDsEsCSDT: DsEsCSDT *

myFilePath: char *

myTemplateName: char *

myTemplateVersion: char *

myDocumentVersion: char *

myDocuementCreated: char *

myDocuementUpdated: Date *

$myDsEsESDTList: Date List<DsEsESDT *>

Virtual Validate()

DsEsESDT(DsEsTypeID *, DsEsCSDT *)

~DsEsESDT

Externalize()

Internalize() Virtual

Update() Virtual

DsSdESDT

DsEsTypeID

myTypeID: enum{DsEsTyUn,
DsEsGuTy, DsEsRefTy,
DsEsAlgDesTy, DsEsPrPlTy};

myDsEsTypeList: <DsEsTypeID *>

DsEsTypeID(char *)

DsEsTypeID()

GetEsDsType()

SetDsEsType()

DsGeTypeID

DsEsReferencePaper

myDsEsReferencePaperType: enum{}

myReferencePaperName:

myScienceData: DsGeScienceData *

myDsEsReferencePaperList:List<DsEsreferncepaper *>

Externalize()

Internalize()

Update()

Internalize()

myDsEsGuideTypeID:DsEsGuideTypeID *

myGuideName: char *

myDataCenter: char *

myDsEsGuideList: List<DsEsGuide *>

DsEsGuideTypeID

myTypeID: enum{DsEsGuideTypeUn,
DsEsDataCenterGuideType, DsEsSourcePlatformGuideTy,
DsEsInstrumentGuideType, DsEsProjectCampignGuideTy};

myDsDoGuideTypeList: <DsDoGuideTypeID *>

DsDoGuideTypeID(char *DocumentType)

~DsDoGuideTypeID();

GetDsDoGuideType();

SetDsDoGuideType();

DsEsAlgorithmDescription

myDsEsAlgdescTyID:DsEsAlgDescTyID*

myDsEsScienceSoftWPkg:DsEsScienceSoftWPack *

myDsEsAlgdescList:List<DsEsAlgDesclist *>

Externalize();

Internalize();

Update();

DsEsProductionPlan

myDsEsProdPlTyID:DsEsPrPlTyID *

myDAAC: char *

myStartDate: Date*

myEndDate: Date *

myForcast: int:30,10,1}

myProductionPlanList: List<DsEsProductionPlan *>

Externalize();

Internalize();

Update()

DsSdESDT
myDsEsTypeList: <DsEsTypeID *>

DsEsProductionPlanTypeID

$myList: List<DsEsProductionPlanTypeId *>

myTypeID: enum{DsEsProductionPlanTyUn,
DsEsProductionPlanBinaryTy,DsEsProductionPlanReportTy};

GetTypeID();

SetTypeID();

DsEsAlgorithmDescriptionTypeID

mtTypeID: enum{DsEsAlgDescUn,
DsEsSysDescDocTy,DsEsFilesDescDocTy,
DsEsOpManTy,DsEsTestplTy,DsEsATBDTy,
DsEsDevStdDocTy,DsEsPrgGuideTy,
DsEsPerTestResTy,DsEsDetDesDocTy};

DsEsAlgDescTyID: char *

~DsEsAlgDescTyID

GetTypeID();

SetTypeID();

DsEsReferencePaperTypeID

myTypeID:enum{DsEsrefPapTyUn,
DsEsElectJouTy, DsEsJouArt,
DsEsStdADoc};

$myDsEsRefPapTy: List<DsEsRefPapTyID *>

DsEsRefPapTyID(char * name)

GetTypeID();

SetTypeID();

Update()

±

_

_

_

_

_

_

_

_

_

_

+

+

+

+

+

+

_

_

P[PERSISTENT CLASS]

_

_

_

_

±

±

±

±

_

_

_

_

_

_

+

+

+

+

_

_

_

±

±

±

_

_

_

_

_

_

±

±

±

_

_

_

+

+

_

+

+

+

+

_

_

+

+

+

is implemented with

Virtual

Figure 5.3-3. DsDoESDT Object Model Diagram

5-7 305-CD-008-001

5-8
305-C

D
-008-001

DsEsESDT DsGeCSDT

DsSdESDT

DsCdTypeID

DsCdCSDT
DsSdCSDT

DsCdKeywordLocator

DsCdKeyword

DsCdASCII

DsCdHTML DsCdPDF

DsCdRTF

myType = enum { DsCdUnknownTy,DsCdASCIITy,

DsCdHTMLTy,DsCdPDFTY,DsCdRTFTy,DsCdPSTy};

SetType()

GetType()

myType: DsCdTypeID

myFormat: char *

mySize: long

myVersion: char *

myPermissions:

myKeywordLocator: DsDoKeywordLocator *

myLineBreak: enum{Unix, Dos}

$myDsCdCSDTList: List<DsCdCSDT *>

Insert() virtual

Extract() virtual

UpdateCSDT() virtual

NewCSDT() virtual

DeleteCSDT() virtual

Internalize()

myKeywordsLocation: enum{DsCdKeyLocUn,

DsCdkeywLocEm, DsCdKeywExt};

mykeywTagRegExp: char *

myKeywextmet:

myKeywFilePath: char *

myOutputMCFPath: char *

myExpectedKeywordsList: List<DsDoKeyword *>

$myDsCdKeywordLocationList: List<DsCdkeywordLocator *>

Externalize()

ParseKeywords()

ExportKeywords()

myASCII_Type

$DsCdASCII_List: List

<DsCdASCII>

Insert()

Extract()

UpdateCSDT()

NewCSDT()

DeleteCSDT()

myHTMLVersion: char *

$myDsCdHTML_List:

List <DsCdHTML>

Insert()

Extract()

UpdateCSDT()

NewCSDT()

DeleteCSDT()

myPDFVersion

$myDsCdPDF_List:

List<DsCdPDF *>

Insert()

Extract()

UpdateCSDT()

NewCSDT()

DeleteCSDT()

myRTFVersion: char *

$myDsCdRTF_List:

List<DsCdRTF *>

Insert()

Extract()

UpdateCSDT()

NewCSDT()

DeleteCSDT()

myMimeType: char *

myMimeVersion: char *

DsCdPostScript

myPostScriptVersion: char *

$myDsCdPostScript_List:

List<DsCdPostScript>

Insert()

Insert()

Extract()

UpdateCSDT()

NewCSDT()

DeleteCSDT()

$myDsCdKeywList

myDomvalList

myFormat

myAliasList

myLength

myValue

myName

Validate()

~DsCdKeyword()

DsCdKeyword()

_

_

_

_

_

_

_

±

±

±

±

±

_

_

_

_

_

_

_

_

_

+

+

_

_

+

+

+

+

+

_

_

+

+

+

+

+

_

_

+

+

+

+

+

_

_

+

+

+

+

+

_

_

_

_

+

+

+

+

+

+

_ : List<DsCdKeyword> = Null

_ : List<char*> = Null

_ : enum (DsCdKeywFormun, DsCdKeywFormver, DsCdFormDomVal) = null

_ : List<char*> = null

_ : int = 0

_ : char* = null

_ : char* = null

+ : void

+ : void

+ : void

Figure 5.3-4. DsDoCSDT Object Model Diagram

5.3.1 DsCdASCII Class

Parent Class: DsCdCSDT
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the ASCII type for the document data.

Attributes:

$DsCdASCII_List
Data Type:
Privilege: Private
Default Value:

myASCII_Type
Data Type:
Privilege: Private
Default Value:

Operations:

DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

Extract
Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:
Return Type: Void
Privilege: Public

NewCSDT
Arguments:
Return Type: Void
Privilege: Public

5-9 305-CD-008-001

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCdASCII class has associations with the following classes:
None

5.3.2 DsCdCSDT Class

Parent Class: DsGeCSDT
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the CSDT of the Document ESDT.

Attributes:

$myDsCdCSDTList

myFormat
Data Type:
Privilege: Private
Default Value:

myKeywordLocator
Data Type:
Privilege: Private
Default Value:

myLineBreak
Data Type:
Privilege: Private
Default Value:

myMimeType
Data Type:

5-10 305-CD-008-001

Privilege: Private
Default Value:

myMimeVersion
Data Type:
Privilege: Private
Default Value:

myPermissions
Data Type:
Privilege: Private
Default Value:

mySize
Data Type:
Privilege: Private
Default Value:

myType
Data Type:
Privilege: Private
Default Value:

myVersion
Data Type:
Privilege: Private
Default Value:

Operations:

DeleteCSDT
Arguments:
Return Type: Void
Privilege: Protected

Extract
Arguments:
Return Type: Void
Privilege: Protected

Insert
Arguments:
Return Type: Void
Privilege: Protected

5-11 305-CD-008-001

NewCSDT
Arguments:

Return Type: Void

Privilege: Protected

UpdateCSDT
Arguments:

Return Type: Void

Privilege: Protected

Associations:

The DsCdCSDT class has associations with the following classes:
DsEsESDT (Aggregation)

5.3.3 DsCdHTML Class

Parent Class: DsCdCSDT
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the HTML CSDT type for the Document data.

Attributes:

$myDsCdHTML_List
Data Type:
Privilege: Private
Default Value:

myHTMLVersion
Data Type:
Privilege: Private
Default Value:

5-12 305-CD-008-001

Operations:

DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

Extract
Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:
Return Type: Void
Privilege: Public

NewCSDT
Arguments:
Return Type: Void
Privilege: Public

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCdHTML class has associations with the following classes:
None

5.3.4 DsCdKeyword Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This object represents the CSDT keyword for the document data type ESDT.

5-13 305-CD-008-001

Attributes:

$myDsCdKeywList
Data Type: List<DsCdKeyword>

Privilege: Private

Default Value: Null

myAliasList
Data Type: List<char*>
Privilege: Private
Default Value: null

myDomvalList
Data Type: List<char*>
Privilege: Private
Default Value: Null

myFormat
Data Type: enum (DsCdKeywFormun, DsCdKeywFormver, DsCdFormDomVal)

Privilege: Private

Default Value: null

myLength
Data Type: int
Privilege: Private
Default Value: 0

myName
Data Type: char*
Privilege: Private
Default Value: null

myValue
Data Type: char*
Privilege: Private
Default Value: null

Operations:

DsCdKeyword
Arguments:
Return Type: void
Privilege: Public

5-14 305-CD-008-001

Validate
Arguments:
Return Type: void
Privilege: Public

~DsCdKeyword
Arguments:
Return Type: void
Privilege: Public

Associations:

The DsCdKeyword class has associations with the following classes:
Class: DsCdKeywordLocator

5.3.5 DsCdKeywordLocator Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This object represnts the Keyword locator for the document CSDT's.

Attributes:

$myDsCdKeywordLocationList
Data Type:
Privilege: Private
Default Value:

myExpectedKeywordsList
Data Type:
Privilege: Private
Default Value:

myKeywFilePath
Data Type:
Privilege: Private
Default Value:

5-15 305-CD-008-001

myKeywextmet
Data Type:
Privilege: Private
Default Value:

myKeywordsLocation
Data Type:
Privilege: Private
Default Value:

myOutputMCFPath
Data Type:
Privilege: Private
Default Value:

mykeywTagRegExp
Data Type:
Privilege: Private
Default Value:

Operations:

ExportKeywords
Arguments:
Return Type: Void
Privilege: Public

Externalize
Arguments:
Return Type: Void
Privilege: Private

Insert
Arguments:
Return Type: Void
Privilege: Public

Internalize
Arguments:
Return Type: Void
Privilege: Private

5-16 305-CD-008-001

ParseKeywords
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCdKeywordLocator class has associations with the following classes:
Class: DsCdKeyword
DsCdCSDT (Aggregation)

5.3.6 DsCdPDF Class

Parent Class: DsCdCSDT
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the PDF CSDT type for the Document Data.

Attributes:

$myDsCdPDF_List
Data Type:
Privilege: Private
Default Value:

myPDFVersion
Data Type:
Privilege: Private
Default Value:

Operations:

DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

5-17 305-CD-008-001

Extract
Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:
Return Type: Void
Privilege: Public

NewCSDT
Arguments:
Return Type: Void
Privilege: Public

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCdPDF class has associations with the following classes:
None

5.3.7 DsCdPostScript Class

Parent Class: DsCdCSDT
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
Thie object represents the PostScript CSDT type for Document data.

Attributes:

$myDsCdPostScript_List
Data Type:
Privilege: Private
Default Value:

5-18 305-CD-008-001

myPostScriptVersion
Data Type:
Privilege: Private
Default Value:

Operations:

DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

Extract
Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:
Return Type: Void
Privilege: Public

NewCSDT
Arguments:
Return Type: Void
Privilege: Public

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCdPostScript class has associations with the following classes:
None

5-19 305-CD-008-001

5.3.8 DsCdRTF Class

Parent Class: DsCdCSDT
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the RTF CSDT type for the Document data.

Attributes:

$myDsCdRTF_List
Data Type:
Privilege: Private
Default Value:

myRTFVersion
Data Type:
Privilege: Private
Default Value:

Operations:

DeleteCSDT
Arguments:
Return Type: Void
Privilege: Public

Extract
Arguments:
Return Type: Void
Privilege: Public

Insert
Arguments:
Return Type: Void
Privilege: Public

NewCSDT
Arguments:
Return Type: Void
Privilege: Public

5-20 305-CD-008-001

UpdateCSDT
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsCdRTF class has associations with the following classes:
None

5.3.9 DsCdTypeID Class

Parent Class: Not Applicable

Attributes:

Operations:

GetType
Arguments:

SetType
Arguments:

Associations:

The DsCdTypeID class has associations with the following classes:
DsCdCSDT (Aggregation)

5.3.10 DsCsCSDT Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:

5-21 305-CD-008-001

Attributes:

None

Operations:

None

Associations:

The DsCsCSDT class has associations with the following classes:
DsEsESDT (Aggregation)

5.3.11 DsCtAcquireCommand Class

Parent Class: Not Applicable
Public: YesDistributed Object: Yes
Purpose and Description:
This object represents the document retrieval commands received for the document data.

Attributes:

$myDsCtAcquireCommand - List of all active acquire commands. Used mainly for fault
recovery and memory management.
Data Type: List <DsCtAcquireCommand>
Privilege: Private
Default Value: null

myCommand - Reference to the associated command.

Data Type: DsCtCommand &

Privilege: Private

Default Value: null

myDsEsESDT - Reference to the document ESDT associated with the acquire command.

The CSDT related to this ESDT is used to implement the extract operation.

Data Type: DsEsESDT &

Privilege: Private

Default Value: null

myHTTPRequest - HTTP Get command string. Used to identify the location of the

document to return.

5-22 305-CD-008-001

Data Type: char *

Privilege: Private

Default Value: null

myOstr - Output stream to write document data.

Data Type: ostream &

Privilege: Private

Default Value: null

Operations:

AcquireCommand
Arguments:

Return Type: GlStatus

Privilege: Public

DsCtAcquireCommand
Arguments: DsCtCommand &

Return Type: Void

Privilege: Public

~DsCtAcquireCommand - Object destructor - invoke ESDT destructor.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsCtAcquireCommand class has associations with the following classes:
DsCtCommand (Aggregation)

5.3.12 DsCtClient Class

Parent Class: DsDoClient
Public: YesDistributed Object: Yes
Purpose and Description:
This object is the client object for the server object of Document Data server.

5-23 305-CD-008-001

Attributes:

$myClientList - List of active clients.
Data Type: List <DsCtCleint>
Privilege: Private
Default Value: null

myHostAddress - Internet address of client's host.

Data Type: char *

Privilege: Private

Default Value: null

myIPnumber - IP address of the client's host.

Data Type: int

Privilege: Private

Default Value: 0

myPortNumber - TCP/IP port number of the client.

Data Type: int

Privilege: Private

Default Value: 0

myProtocolName - Name of the protocol used for the client/server connection. For

external connections the protocol will be HTTP V1.0

Data Type: char *

Privilege: Private

Default Value: null

myProtocolVersion - Version of the communication protocol used by the client. For

external connections the protocol will be HTTP V1.0

Data Type: char *

Privilege: Private

Default Value: null

mySecurityProtocol - Name of the security protocol used by the client.

Data Type: char *

Privilege: Private

Default Value: null

mySecurityProtocolVersion - Version of the client's security protocol.

Data Type: char *

Privilege: Private

Default Value: null

5-24 305-CD-008-001

myServer - Reference to the clients associated server.

Data Type: DsSvServer &

Privilege: Private

Default Value: null

Operations:

ConnectServer - Make a connection to the server. This connection is synchronous and is
established for the duration of the transaction to service the request.
Arguments: DsSvServer
Return Type: GlStatus
Privilege: Private

DisConnectServer - Disconnection of the client from the server. This operation is invoked

when the external client unexpectedly quits. For example the user may select the stop

button on the WWW Client interface, this breaks the TCP/IP socket and the server is

notified. All outstanding service requests for the client need to be aborted.

Arguments:

Return Type: GlStatus

Privilege: Private

DsCtClient - Object constructor - for internal ECS connections the MSS_UserProfile must

be specified. For external connections via HTTP, a default profile will be used which

allows read access only.

Arguments: MSS_UserProfile

Return Type: Void

Privilege: Public

SubmitRequest - Submit a request to be executed by the server. The DsCtCommand and

DsCtRequest structures should be constructed before this operation is invoked. The

parameters described in each command should be validated prior before it is submitted to

the server.

Arguments: DsCtRequest

Return Type: GlStatus

Privilege: Public

~DsCtClient - Object destructor - no specific implementation

Arguments:

Return Type: Void

Privilege: Public

5-25 305-CD-008-001

Associations:

The DsCtClient class has associations with the following classes:
Class: DsCtRequest constructs
Class: DsSvServer manages

5.3.13 DsCtCommand Class

Parent Class: DsDoCommand
Public: YesDistributed Object: Yes
Purpose and Description:
This object represents the client commands received for Document data.

Attributes:

$myCommandList - List of all active commands
Data Type: List <DsCtCommand>
Privilege: Private
Default Value: null

myCommandName - Name of the service to execute

Data Type: char *

Privilege: Private

Default Value: null

myCommandRequest - Associated request

Data Type: DsCtRequest &

Privilege: Private

Default Value: null

myCommandType - Command type to execute

Data Type: enum

Privilege: Private

Default Value: 0

Operations:

DsCtCommand - Constructor to read command from specified file.
Arguments: char * FileName

5-26 305-CD-008-001

Return Type: Void
Privilege: Public

DsCtCommand
Arguments: istream *istr

Return Type: Void

Privilege: Public

ProcessCommand - Called to execute this command. The appropriate sub-command

operation is invoked.

Arguments: int

Return Type: GlStatus

Privilege: Public

~DsCtCommand - Object destructor - no specific implementation

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsCtCommand class has associations with the following classes:
DsCtRequest (Aggregation)

5.3.14 DsCtInsertCommand Class

Parent Class: Not Applicable
Public: YesDistributed Object: Yes
Purpose and Description:
This object represents the insert commands received for the document data.

Attributes:

$DsCtInsertCommandList
Data Type: List <DsCtInsertCommand>

Privilege: Private

Default Value: null

myCommand
Data Type: DsCtCommand &

5-27 305-CD-008-001

Privilege: Private
Default Value: null

myDatafile
Data Type: char *
Privilege: Private
Default Value: null

myDsEsESDT
Data Type: DsEsESDT &

Privilege: Private

Default Value: null

myMetaFile
Data Type: char *
Privilege: Private
Default Value: null

Operations:

DsCtInsertCommand - Constructor with reference to assocaited command.
Arguments: DsCtCommand &
Return Type: Void
Privilege: Public

InsertCommand - Invoked for the insertion of a document into the document repository.

The associated DsEsESDT object is called with an internalize() method to insert the

metadata into the DBMS through the DBMS wrapper layer. Returns a GlStatus to indicate

success or failure.

Arguments:

Return Type: GlStatus

Privilege: Public

Associations:

The DsCtInsertCommand class has associations with the following classes:
DsCtCommand (Aggregation)

5-28 305-CD-008-001

5.3.15 DsCtRequest Class

Parent Class: DsDoRequest
Public: YesDistributed Object: Yes
Purpose and Description:
This object represents the requests from client to the Document Data Server.

Attributes:

$myRequestList - List of currently active requests. Used for fault recovery and memory
management.
Data Type: List <DsCtRequest>
Privilege: Private
Default Value: null

myCommndList - List of the commands associated with this request.

Data Type: List <DsCtCommand>

Privilege: Private

Default Value: null

myRequestStartTime - Date and time of request submition.

Data Type: RWDateTime &

Privilege: Private

Default Value: null

myRequestStatus - Current status of request.

Data Type: GlStatus &

Privilege: Private

Default Value: null

myRequestTimeOut - Date and Time for request to time out.

Data Type: RWDateTime &

Privilege: Private

Default Value: null

Operations:

CancelRequest - Called to cancel a currently active request.
Arguments:
Return Type: GlStatus
Privilege: Public

5-29 305-CD-008-001

DsCtRequest - Default constructor.

Arguments:

Return Type: Void

Privilege: Public

RequestStaus - Return the status of the currently executing request.

Arguments:

Return Type: GlStatus

Privilege: Public

ServiceRequest - Called to execute the commands associated with this request. Loop

through the command list and execute the appropriate service request.

Arguments:

Return Type: GlStatus

Privilege: Public

~DsCtRequest - Object destructor - call destructors for associated commands.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsCtRequest class has associations with the following classes:
Class: DsCtClient constructs
Class: DsSvServer services

5.3.16 DsCtSearchcommand Class

Parent Class: Not Applicable
Public: YesDistributed Object: Yes
Purpose and Description:
This object represents the search commands received for the document data.

Attributes:

$myDsCtSearchCommandList
Data Type: List <DsCtSearchCommand>

Privilege: Private

Default Value: null

5-30 305-CD-008-001

myCommand - Reference to associated command object.

Data Type: DsCtCommand &

Privilege: Private

Default Value: null

myFreeTextResultsList - The list of URLs returned as a result of a free text query

submitted to the COTS search engine.

Data Type: List <char *>

Privilege: Private

Default Value: null

myHTMLResultsList - The list of URLs to be packaged in a HTML document which is

returned to the WWW client across the HTTP connection.

Data Type: List <char *>

Privilege: Private

Default Value: null

myKeywordResultsList - The list of URLs returned as a result of a keyword search

submitted to the DBMS wrapper layer.

Data Type: List <char *>

Privilege: Private

Default Value: null

myParameterList - The GlParameterList which represents the query to be submitted to the

DBMS wrapper layer. These search parameters are extracted from the WAIS query string.

Data Type: GlParameterList *

Privilege: Private

Default Value: null

myResultsList - The results set returned from the DBMS wrapper layer. From this list the

matching URLs are copied to the keyword results list.

Data Type: GlParameterList *

Privilege: Private

Default Value: null

myWAISQuery - WAIS query to be executed. The query string is copied from the

QUERY_STRING environmental passed through the CGI interface call. The query may be

keyword or free text.

Data Type: char *

Privilege: Private

Default Value: null

5-31 305-CD-008-001

Operations:

DsCSearchCommand - Constructor with a reference to this object's associated command.
Arguments: DsCtCommand &
Return Type: Void
Privilege: Public

ExecuteFreeTextSearch - Used to search the COTS search engine for free text searches.

Arguments:

Return Type: GlStatus

Privilege: Public

ExecuteKeywordSearch - Used to submit a query to the DBMS wrapper layer. The

results are stored in the results list.

Arguments:

Return Type: GlStatus

Privilege: Public

ExecuteSearch - Called to execute the search.

executed as appropriate.

Arguments:

Return Type: GlStatus

Privilege: Public

Both a keyword and free-text search a

FormatResults - Format the merged results into a HTML document to be returned to the

WWW client across the HTTP connection. Write output to specified output stream.

Arguments: ostream *ostr

Return Type: GlStatus

Privilege: Public

MergeResults - Used to merge the results of a free text and keyword search. A list of

URLS are writted to the HTML results list.

Arguments:

Return Type: GlStatus

Privilege: Public

~DsCtSearchCommand - Object destructor - Deep distruction, all associated results lists

need to be freed. Call distructor for GlParameterList and lists of URLs.

Arguments:

Return Type: Void

Privilege: Public

5-32 305-CD-008-001

Associations:

The DsCtSearchcommand class has associations with the following classes:
DsCtCommand (Aggregation)

5.3.17 DsDoClient Class

Parent Class: Not Applicable
Public: YesDistributed Object: Yes
Purpose and Description:
This object represnts the client for Document Data server.

Attributes:

myClientName - Name of the client. Used to identify the protocol and behaviour of a WWW
client.
Data Type: char *
Privilege: Private
Default Value: null

myClientVersion - Version number of the client. Different WWW clients may have

differnt behaviour and different versions may present a different interface.

Data Type: char *

Privilege: Private

Default Value: null

mySystemLog - Reference to the system log for exception reporting and logging.

Data Type: GlLog &

Privilege: Private

Default Value: null

Operations:

None

Associations:

The DsDoClient class has associations with the following classes:
None

5-33 305-CD-008-001

5.3.18 DsDoCommand Class

Parent Class: Not Applicable
Public: YesDistributed Object: Yes
Purpose and Description:
This object represnts the commands for Document Data.

Attributes:

myCommandType - Type of command to execute. Relates to the service request type.
Data Type: enum {}
Privilege: Private
Default Value: 0

myRequest - Reference to the associated request.

Data Type: DsDoRequest &

Privilege: Private

Default Value: null

Operations:

ExecuteCommand - Called to invoke the appropriate service object according to the
command type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDoCommand class has associations with the following classes:
None

5.3.19 DsDoRequest Class

Parent Class: Not Applicable
Public: YesDistributed Object: Yes

5-34 305-CD-008-001

Persistent Class:

Purpose and Description:

This object represents the requests for document data received vy the Docuement Data

Server.

Attributes:

myClient - Reference to the associated client for this request.
Data Type: DsDoClient &
Privilege: Private
Default Value: null

myRequestName - Name of this request - taken from the GlParameterList for this request.

Data Type: char *

Privilege: Private

Default Value: null

myRequestType - Type of request to be serviced.

Data Type: int

Privilege: Private

Default Value: null

myServer - Reference to the associated server for this request.

Data Type: DsDoServer &

Privilege: Private

Default Value: null

Operations:

DsCIRequest - Object constructor - no specific implementation
Arguments:
Return Type: Void
Privilege: Public

ServiceRequest - Invoked for the execution of this service request, normally from the

server after the client has constructed the request and called service request to the server.

Arguments:

Return Type: GlStatus

Privilege: Public

~DsCIRequest - Object destructor - call the destructor of the associated commands.

Arguments:

5-35 305-CD-008-001

Return Type: Void
Privilege: Public

Associations:

The DsDoRequest class has associations with the following classes:
None

5.3.20 DsDoServer Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents server receiving requests for data from Data Server.

Attributes:

myServerName - Name of the server object.
Data Type: char *
Privilege: Private
Default Value: null

myServerVersion - Version of the server running.

Data Type: char *

Privilege: Private

Default Value: null

mySystemLog - Reference to the associated log file for fault and error logging.

Data Type: GlLog &

Privilege: Private

Default Value: null

Operations:

ShutDown - Shut down the server aborting outstanding requests.
Arguments:
Return Type: GlStatus
Privilege: Public

5-36 305-CD-008-001

StartUp - Start up server and return status indicaing readiness to service incomming

requests.

Arguments:

Return Type: GlStatus

Privilege: Public

Associations:

The DsDoServer class has associations with the following classes:
None

5.3.21 DsEsAlgorithmDescription Class

Parent Class: DsEsESDT
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the Algorthimic description for the ESDT's of document type.

Attributes:

myDsEsAlgdescList
Data Type:
Privilege: Private
Default Value:

myDsEsAlgdescTyID
Data Type:
Privilege: Private
Default Value:

myDsEsScienceSoftWPkg
Data Type:
Privilege: Private
Default Value:

5-37 305-CD-008-001

Operations:

Externalize
Arguments:

Return Type: Void

Privilege: Protected

Internalize
Arguments:

Return Type: Void

Privilege: Protected

Update
Arguments:

Return Type: Void

Privilege: Protected

Associations:

The DsEsAlgorithmDescription class has associations with the following classes:
None

5.3.22 DsEsAlgorithmDescriptionTypeID Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the ID of the Algorithm Description type for the ESDT's.

Attributes:

mtTypeID
Data Type:
Privilege: Private
Default Value:

5-38 305-CD-008-001

Operations:

DsEsAlgDescTyID: char *
Arguments:
Return Type: Void
Privilege: Public

GetTypeID
Arguments:
Return Type: Void
Privilege: Public

SetTypeID
Arguments:
Return Type: Void
Privilege: Public

~DsEsAlgDescTyID
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsEsAlgorithmDescriptionTypeID class has associations with the following classes:
DsEsAlgorithmDescription (Aggregation)

5.3.23 DsEsESDT Class

Parent Class: DsGeESDT
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the ESDT's of document type.

Attributes:

$myDsEsESDTList
Data Type:

5-39 305-CD-008-001

Privilege: Private
Default Value:

myDocuementCreated
Data Type:
Privilege: Private
Default Value:

myDocuementUpdated
Data Type:
Privilege: Private
Default Value:

myDocumentVersion
Data Type:
Privilege: Private
Default Value:

myDsEsCSDT
Data Type:
Privilege: Private
Default Value:

myDsEsTypeID
Data Type:
Privilege: Private
Default Value:

myFilePath
Data Type:
Privilege: Private
Default Value:

myTemplateName
Data Type:
Privilege: Private
Default Value:

myTemplateVersion
Data Type:
Privilege: Private
Default Value:

myURL
Data Type:

5-40 305-CD-008-001

Privilege: Private
Default Value:

Operations:

DsEsESDT
Arguments: DsEsTypeID *, DsEsCSDT *
Return Type: Void
Privilege: Public

Externalize
Arguments:
Return Type: Void
Privilege: Public

Internalize
Arguments:
Return Type: Void
Privilege: Public

Update
Arguments:
Return Type: Void
Privilege: Public

Virtual Validate
Arguments:
Return Type: Void
Privilege: Public

~DsEsESDT
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsEsESDT class has associations with the following classes:
Class: DsEsTypeID

5-41 305-CD-008-001

5.3.24 DsEsGuide Class

Parent Class: DsEsESDT
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the Guide information for ESDT's.

Attributes:

myDataCenter
Data Type:
Privilege: Private
Default Value:

myDsEsGuideList
Data Type:
Privilege: Private
Default Value:

myDsEsGuideTypeID
Data Type:
Privilege: Private
Default Value:

myGuideName
Data Type:
Privilege: Private
Default Value:

Operations:

Externalize
Arguments: format
Return Type: Void
Privilege: Protected

Internalize
Arguments:

Return Type: Void

Privilege: Protected

5-42 305-CD-008-001

Update
Arguments:

Associations:

The DsEsGuide class has associations with the following classes:
None

5.3.25 DsEsGuideTypeID Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the ID of the Guide type.

Attributes:

myDsDoGuideTypeList
Data Type:
Privilege: Private
Default Value:

myTypeID
Data Type:
Privilege: Private
Default Value:

Operations:

DsDoGuideTypeID
Arguments: char *DocumentType

Return Type: Void

Privilege: Public

GetDsDoGuideType
Arguments:
Return Type: Void
Privilege: Public

5-43 305-CD-008-001

SetDsDoGuideType
Arguments:
Return Type: Void
Privilege: Public

~DsDoGuideTypeID
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsEsGuideTypeID class has associations with the following classes:
DsEsGuide (Aggregation)

5.3.26 DsEsProductionPlan Class

Parent Class: DsEsESDT
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the Production Plan for the ESDT's of document type.

Attributes:

myDAAC
Data Type:
Privilege: Private
Default Value:

myDsEsProdPlTyID
Data Type:
Privilege: Private
Default Value:

myEndDate
Data Type:
Privilege: Private
Default Value:

5-44 305-CD-008-001

myForcast
Data Type:
Privilege: Private
Default Value:

myProductionPlanList
Data Type:
Privilege: Private
Default Value:

myStartDate
Data Type:
Privilege: Private
Default Value:

Operations:

Externalize
Arguments:
Return Type: Void
Privilege: Protected

Internalize
Arguments:
Return Type: Void
Privilege: Protected

Update
Arguments:
Return Type: Void
Privilege: Protected

Associations:

The DsEsProductionPlan class has associations with the following classes:
None

5-45 305-CD-008-001

5.3.27 DsEsProductionPlanTypeID Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the ID of the type of the Production Plan.

Attributes:

$myList
Data Type:
Privilege: Private
Default Value:

myTypeID
Data Type:
Privilege: Private
Default Value:

Operations:

GetTypeID
Arguments:
Return Type: Void
Privilege: Public

SetTypeID
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsEsProductionPlanTypeID class has associations with the following classes:
DsEsProductionPlan (Aggregation)

5-46 305-CD-008-001

5.3.28 DsEsReferencePaper Class

Parent Class: DsEsESDT
Public: NoDistributed Object: No
Purpose and Description:
This object represents the Reference Papers of Document type for the ESDT's.

Attributes:

myDsEsReferencePaperList
Data Type:
Privilege: Private
Default Value:

myDsEsReferencePaperType
Data Type:
Privilege: Private
Default Value:

myReferencePaperName
Data Type:
Privilege: Private
Default Value:

myScienceData
Data Type:
Privilege: Private
Default Value:

Operations:

Externalize
Arguments:

Return Type: Void

Privilege: Protected

Internalize
Arguments:

Return Type: Void

Privilege: Protected

5-47 305-CD-008-001

Update
Arguments:

Return Type: Void

Privilege: Protected

Associations:

The DsEsReferencePaper class has associations with the following classes:
None

5.3.29 DsEsReferencePaperTypeID Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the ID of the Reference Papers of ESDT's.

Attributes:

$myDsEsRefPapTy
Data Type:
Privilege: Private
Default Value:

myTypeID
Data Type:
Privilege: Private
Default Value:

Operations:

DsEsRefPapTyID
Arguments: char * name
Return Type: Void
Privilege: Public

GetTypeID
Arguments:

5-48 305-CD-008-001

Return Type: Void
Privilege: Public

SetTypeID
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsEsReferencePaperTypeID class has associations with the following classes:
DsEsReferencePaper (Aggregation)

5.3.30 DsEsTypeID Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class:
Purpose and Description:
This object represents the ID of the type of the ESDT.

Attributes:

myDsEsTypeList
Data Type:
Privilege: Private
Default Value:

myTypeID
Data Type:
Privilege: Private
Default Value:

Operations:

DsEsTypeID
Arguments: char *

5-49 305-CD-008-001

DsEsTypeID
Arguments:

GetEsDsType
Arguments:

SetDsEsType
Arguments:

Associations:

The DsEsTypeID class has associations with the following classes:
Class: DsEsESDT

5.3.31 DsGeCSDT Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:

Attributes:

None

Operations:

None

Associations:

The DsGeCSDT class has associations with the following classes:
None

5-50 305-CD-008-001

5.3.32 DsGeESDT Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
The Earth Science Data Type (ESDT) is a superclass for the various specializations that
represent the specific data types. The ESDT organizes and provides an interface to the
external and internal services. Most probably this class will be an abstract base class. If
there are instances of this class it will be to support a generic type of ESDT that has no data
type services other than get, put, and search.

Attributes:

None

Operations:

None

Associations:

The DsGeESDT class has associations with the following classes:
Class: DsGeTypeID

5.3.33 DsGeTypeID Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
This object uniquely identifies each ESDT's type. The type consists of a type name and a
version number. Each type-version number pair is assigned a unique code. The set of all
TypeIDs is stored persistently in a database.

Attributes:

None

5-51 305-CD-008-001

Operations:

None

Associations:

The DsGeTypeID class has associations with the following classes:
Class: DsGeESDT

5.3.34 DsSdCSDT Class

Parent Class: DsGeCSDT
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
Computer Science Data Type. The CSDT is a data structure used by the data server
superclass that provides common services for the different types of CSDTs. The CSDT
provides the internal representation of data objects.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSdCSDT class has associations with the following classes:
DsSdESDT (Aggregation)

5.3.35 DsSdClient Class

Parent Class: DsDoClient
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:

5-52 305-CD-008-001

Acts as an interface class to the CSMS subsystem to use the accounting and user profiling
capabilities.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSdClient class has associations with the following classes:
Class: DsSdSession services - The DsSdSession accesses all user profile and accounting
information via a DsSdClient.

5.3.36 DsSdCommand Class

Parent Class: DsDoCommand
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
An implementation of the DsCommand abstract base class that provides services necessary
for data server creation and storage of command objects.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSdCommand class has associations with the following classes:
DsSdRequest (Aggregation)

5-53 305-CD-008-001

5.3.37 DsSdESDT Class

Parent Class: DsGeESDT
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
The Earth Science Data Type (ESDT) is a superclass for the various specializations that
represent the specific data types. The ESDT organizes and provides an interface to the
external and internal services.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSdESDT class has associations with the following classes:
DsSdESDT (Aggregation)

5.3.38 DsSdESDT Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
The Earth Science Data Type (ESDT) is a superclass for the various specializations that
represent the specific data types. The ESDT organizes and provides an interface to the
external and internal services.

Attributes:

None

5-54 305-CD-008-001

Operations:

None

Associations:

The DsSdESDT class has associations with the following classes:
None

5.3.39 DsSdRequest Class

Parent Class: DsDoRequest
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
To store and track services requested by a client and used in the execution of services. The
Request contains all the information that has been provided by the requester as well as any
information that has been acquired during the execution of the request. It has the capability
to validate the components supplied in the request and to assign a unique identifier for new
requests entering the system.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSdRequest class has associations with the following classes:
Class: DsSdSession manages

5.3.40 DsSdServer Class

Parent Class: DsDoServer
Public: NoDistributed Object: No

5-55 305-CD-008-001

Persistent Class:

Purpose and Description:

To provide a single point of entry for external clients and to manage and create sessions.

The server is the single interface to the data server. It provides the interface for a user to

establish a connection with the data server.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsSdServer class has associations with the following classes:
None

5.3.41 DsSdSession Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
To manage ESDT-oriented interaction between the external client and the data server. It
provides an interface for the other objects in the system to communicate with the client and
manages a DsSdWorkingCollection on behalf of the client. Adds request queueing and
DsSdWorkingCollection handling functionality to DsSdConnection (its super class).

Attributes:

None

Operations:

None

5-56 305-CD-008-001

Associations:

The DsSdSession class has associations with the following classes:
Class: DsSdRequest manages
Class: DsSdClient services - The DsSdSession accesses all user profile and accounting
information via a DsSdClient.
DsSdServer (Aggregation)

5.3.42 DsSeIndexer Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This object represents the COTS Technology for free text Indexing.

Attributes:

None

Operations:

None

Associations:

The DsSeIndexer class has associations with the following classes:
Class: DsSvServer

5.3.43 DsSeWWWServer Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This object represents the COTS Technology for HTTP connections.

5-57 305-CD-008-001

Attributes:

None

Operations:

None

Associations:

The DsSeWWWServer class has associations with the following classes:
Class: DsSvServer

5.3.44 DsSvServer Class

Parent Class: DsDoServer
Public: YesDistributed Object: No
Persistent Class:
Purpose and Description:
The Object represents the server object for Document Data Server.

Attributes:

$myServerList - List of currently active servers. Used for fault recovery and memory
management.
Data Type: List <DsSvServer>
Privilege: Private
Default Value: null

myClientList - List of the active clients being serviced by the server.

Data Type: List <DsCtClient>

Privilege: Private

Default Value: null

myHostAddress char * - Internet address of the server host.

Data Type: char *

Privilege: Private

Default Value: null

myIPNumber - IP number of the server.

Data Type: int

5-58 305-CD-008-001

Privilege: Private

Default Value: 0

myPortNumber - TCP/IP port number on the host to monitor for incoming HTTP

requests.

Data Type: int

Privilege: Private

Default Value: 0

myProtocolName - Name of the communication protocol supported by the server.

Data Type: char *

Privilege: Private

Default Value: null

myProtocolVersion - Version of the communication protocol supported by the server.

Data Type: char *

Privilege: Private

Default Value: null

mySecurityProtocol - Name of the security protocol used by the server. Needs to be

compatable with the client security protocol for a secure connection.

Data Type: char *

Privilege: Private

Default Value: null

mySecurityProtocolVersion - Version of the security protocol used by the server.

Data Type: char *

Privilege: Private

Default Value: null

Operations:

DsDoServer - Object constructor - no specific implementation
Arguments:
Return Type: Void
Privilege: Public

Listen - Monitors the TCP/IP port for incomming requests.

Arguments:

Return Type: GlStatus

Privilege: Private

5-59 305-CD-008-001

ServiceRequest - Called by client to execute a service request.

Arguments:

Return Type: GlStatus

Privilege: Public

ShutDown - Shut down of an active server. Currently active clients will have their

associated service requests aborted.

Arguments:

Return Type: GlStatus

Privilege: Public

StartUp - Start up server. Return status to calling object indicating the server is ready to

service incoming requests.

Arguments:

Return Type: GlStatus

Privilege: Public

~DsDoServer - Object destructor - destroy associated client objects

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsSvServer class has associations with the following classes:
Class: DsSeIndexer
Class: DsSeWWWServer
Class: DsCtClient manages
Class: DsCtRequest services

5.4 CSCI Dynamic Model
This section describes several scenarios for the Science Data Server CSCI. A scenario delineates
the steps that occur in a particular execution through the system. The scenarios address the
following topics:

5.4.1 Inserting a document

5.4.2 Searching for a document

5.4.3 Acquiring a document

5.4.4 Fault Scenario : HTTP Connection Failure

5-60 305-CD-008-001

5.4.1 Inserting a Document

5.4.1.1 Summary

This scenario illustrates the classes and events which interact to insert a document and its metadata
into the DDSRV. The Ingest subsystem performs metadata extraction and range checking in a
manner analogous to that for science data, presenting the DDSRV with the document data file and
its metadata file. The DDSRV then uses the DBMS Wrappers to index the document from its
metadata file keywords. In addition, the DDSRV performs full text indexing for those document
types which have a free text search defined for its ESDT. After the document has been inserted
into the DDSRV a status indicating a successful insert request is returned to the Ingest Subsystem,
and the document is ready for searching.

5.4.1.2 Assumptions

In this scenario, the DDSRV will be ingesting a Data Center Guide document
(DsDoDataCenterGuide). The Ingest Subsystem has received a Data Center Guide document in
HTML format, from its client interface. The Ingest Subsystem has extracted keywords from the
document, performed range checking of the keywords using metadata configuration information,
and has produced a parameter value list file (PVL) containing the document keywords. The Ingest
Subsystem has established a connection with the DDSRV to complete the insertion of the HTML
document, and its keyword and free text indexing.

5-61 305-CD-008-001

INGEST

5-62
305-C

D
-008-001

DsCtRequest

DsCtClient
DsCsHTML

DsMdMetadata

DsSeIndexerDsEsGuide DsMdMetaCatalog

DsCtCommand
GLParameter

GLParameterList DsSvServer

DsCtCommand()

SetCatagory()

SetServiceName("Insert")

GLParameter("datatype","DsDoDataCenterGuide")

GLParameter("metafile",fname)

GLParameterList(GlParameter)

Insert(GLParamter)

Insert(GLParamter)

SetParameters(GLParameterList)
DsCtRequest(DsCtCommand)

Submitrequest(DsCtRequest)

SubmitRequest()

GetCommand(DsCtRequest)

DsCtCommand *

ExecuteCommand()

DsEsGuide("DsDpDataCenterGuide")

Internalize()
DsCsHTML(DsCsCSDT_Type)

DsMdMetadata("DsDoDataCenterGuide")

LoadFromExternal(char *)

DsMdCatalog()

Initialize()

InsertDocumentMetadata(DsTmdidentifier,DsMdMetadata *)

GLStatus

Insert()

IndexDocument

COTS Status

GLStatus, DsTmdIdentifier

GLStatus, DsTmdIdentifier

GLStatus, DsTmdIdentifier

Figure 5.4-1. DDSRV_Insert Dynamic Model

5-63
305-C

D
-008-001

V0Client DsSeWWWServer DsSvClient DsCtCommand GLParameter GLParameterList DsCtRequest DsSvServer

DsMdCatalog

WAIS Query
DsSeIndexer

CGI Call

SubmitSearch()

HTML Results

DsCtSearchCommand

ctor()

SetCatagory()

setServiceName("Search")

ctor("datatype","DsDoDataCenterGuide")

ctor("waisquery",waisquerystring)

ctor()

Insert(GLParameter)

SetParameters(GLParameterList)

ctor(DsCtCommand)

SubmitRequest(DsCtRequest)

ExecuteRequest(ostream)

ExecuteCommand(ostream)

DsCtSearchCommand(waisquery)

ExecuteSearch(ostream)

ExecuteKeywordSearch()
GLParameter("DataCenter",DAAC)

GLParameterList(GLParameter *)

Documentsearch()

KeywordresultsList, GLStatus

ExecuteFreeTextSearch

Mergeresults()

FormatResults()

GLStatus

GLStatus

GLStatus

GLStatus

HTML ResultsSet

FullTextQuery()

FreeTextResultsList

Figure 5.4-2. DDSRV_Search Dynamic Model

5-64
305-C

D
-008-001

V0 Client DsSeWWWServer DsSvClient DsCtCommand GLParameter GLParameterList DsCtRequest DsCtAcquire

DsCtCommand

SetCatagory

SetServicename("Acquire")

GL Parameter("httprequest", httprequeststring)

GLParameterList("GLParameter")

Insert(GLParameter)

Set Parameter*Gl Parameter List)

DsCtRequest

SubmitRequest(DsCtRequest)

executerequest(stream)

ExecuteCommand(ostream)

DsCtAcquireCommand(cstream)

DsEsESDT()

Retreive Document()

Externalize()

GL Status

GLStatus

GL Status

GL Status
HTTP Header +

DsSvserver Command DsEsESDT DsCdCSDT

HTTP Get

Request
SubmitAcquire()

CGI Call

Extract()

GL Status

HTTP Body

DsCdCSDT()

GL Status

Figure 5.4-3. DDSRV_Acquire Dynamic Model

5.4.2 Searching for a Document

5.4.2.1 Summary

The DDSRV provides both a free text index and keyword index on its document holdings. The
keyword index uses parameter names and values consistent with the ESDT metadata stored in the
SDSRV; the free text index is performed by a COTS product. Keyword integrity between the data
designs of the DDSRV and the SDSRV facilitates navigation between the various layers of the data
pyramid. The scenario ends with the presentation of an HTML formatted results list of references
to documents which meet the search criteria. Each document reference in the results list is
presented as a hyperlink in the HTML page, and points to the relevant document that is stored in
the DDSRV.

5.4.2.2 Assumptions

In this scenario, the client is requesting both a free text search and a keyword search for Data Center
Guide documents. The client has formulated the query in WAIS from an interactive client capable
of viewing HTML documents.

5.4.3 Acquiring a Document

5.4.3.1 Summary

The DDSRV provides storage for its documents and document metadata, and performs the on-line
distribution of documents to its HTTP clients.

5.4.3.2 Assumptions

In this scenario, the client has already located the document of interest, and is requesting
distribution of a Data Center Guide document via on-line HTTP connection from an interactive
client capable of viewing HTML documents.

5.4.4 Fault Scenario : HTTP Connection Failure

5.4.4.1 Summary

In this scenario, during the execution of a service request by the DDSVR, the WWW Client has
closed the HTTP connection. Typically this will be as a result of the user selecting the "Stop"
button on the WWW Client to abort the HTTP request. Under exceptional conditions, the HTTP
connection may have been closed as a result of network failure.

The HTTP server is alerted of the termination of the HTTP connection when the TCP/IP socket is
broken. The DDSVR is invoked to cancel the service request. The abort command propagates
through the command and request objects to the object executing the service. In this example, an
acquire service is being executed by the ESDT and CSDT objects, extracting a document from the
document repository.

Status information is propagated back through the call stack, to the server level. The server logs
an entry in the system log to report the error and returns an HTTP error 400 to indicate the
connection is broken.

5-65 305-CD-008-001

DsCtAcquire
V0 Client DsSeWWWServer DsSvServer DsCtRequest DsCtCommand Command DsCdCSDT

DsEsESDT

TCP/IP
Socket Broken HTTP Connection

Closed CancelRequest()

AbortCommand()

AbortAcquire()

CancelExternalize()

Cancelextract()

GLStatus

GLStatus

GL Status

GL Status

GL Status

LogCancelRequest

HTTP Status
(Connection Broken)

HTTP Status 400
(Connectio Broken)

Figure 5.4-4. Fault Scenario: HTTP Connection Failure

5-66 305-CD-008-001

5.4.4.2 Assumptions

A HTTP connection has been established between the WWW Client and WWW server and a
HTTP transaction is under way. The DDSVR maintains sufficient information about currently
active service requests to terminate those associated with the WWW Client. If possible, a HTTP
Status message indicating the error will be issued by the WWW Server to the WWW Client.

5.5 CSCI Structure

5.5.1 DDSRV CSCs

The following table shows the components (CSCs) of the CSCI. Each CSC is described and
designated as being custom developed code (DEV), off-the-shelf (OTS) or a combination of the
two (DEV/OTS).

Table 5.5.1. DDSRV Components
CSC Abbr. Description Type

DDSRV CSC Do The Document Data Server (DDSRV) CSC provides the base
classes for the access methods and infrastructure of the
DDSRV.
DDSRV Server CSC (Sv) and the DDSRV Client CSC (Ct) for
implementing the access methods and server functions.

DEV

DDSRV Server
CSC

Sv The Document Data Server (DDSRV) Server CSC provides
the primary server capabilities for this CSCI.
access methods and infrastructure for handling document
requests and start-up/shut down of the server.

DEV

DDSRV Client
CSC

Ct The Document Data Server (DDSRV) Client CSC provides the
request and command services for clients accessing the
Document Data Server.
through the instantiation of these classes.
contained in this CSC are Public and Distributed.

DEV/OTS

DDSRV ESDT
CSC

Es The Document Data Server (DDSRV) ESDT CSC consists of
the classes describing the structure and operations supported
for each of the document ESDTs.

DEV/OTS

DDSRV CSDT
CSC

Cd The Document Data Server (DDSRV) Server CSDT CSC
consists of the classes providing the Computer Science Data
Types (CSDTs) for the document ESDTs.

DEV/OTS

DDSRV Search
Engine CSC

Se The Document Data Server (DDSRV) Search Engine CSC
consists of off-the-shelf software for full-text indexing and
searching of documents, and hyperlinked access to ESDT
documents stored in the DDSRV.

OTS

The classes in this CSC are further specialized by the

It provides the

Clients connect to the DDSRV
The classes

5.5.1.1 Document Data Server (DDSRV) CSC

Purpose and Description

The Document Data Server (DDSRV) CSC provides the base classes for the access methods and
infrastructure of the DDSRV. The classes in this CSC are further specialized by the DDSRV
Server CSC (Sv) and the DDSRV Client CSC (Ct) for implementing the access methods and server
functions.

5-67 305-CD-008-001

Mapping to objects implemented by this component

DsDoServer
DsDoClient
DsDoCommand
DsDoRequest

The Document Data Server Process contains classes from this CSC.

Candidate products

N/A

ECS white paper references

N/A

5.5.1.2 Document Data Server (DDSRV) Server CSC

Purpose and Description

The Document Data Server (DDSRV) Server CSC provides the primary server capabilities for this
CSCI. It provides the access methods and infrastructure for handling document requests and start
up/shut down of the server.

Mapping to objects implemented by this component

DsSvServer

This class is contained in the Document Data Server Process.

Candidate products

N/A

ECS white paper references

N/A

5.5.1.3 Document Data Server (DDSRV) Client CSC

Purpose and Description

The Document Data Server (DDSRV) Client CSC provides the request and command services for
clients accessing the Document Data Server. Clients connect to the DDSRV through the
instantiation of these classes. The classes contained in this CSC are Public and Distributed.

Mapping to objects implemented by this component

DsCtClient
DsCtCommand
DsCtRequest
DsCtInsertCommand
DsCtSearchCommand
DsCtAcquireCommand

The Client Applications Process is comprised of classes from this CSC.

Candidate products

N/A

5-68 305-CD-008-001

ECS white paper references

N/A

5.5.1.4 Document Data Server (DDSRV) ESDT CSC

Purpose and Description

The Document Data Server (DDSRV) ESDT CSC consists of the classes describing the structure
and operations supported for each of the document ESDTs.

Mapping to objects implemented by this component

DsEsESDT

DsEsTypeID

DsEsAlgorithmDescription

DsEsAlgorithmDescriptionTypeID

DsEsGuide

DsEsGuideTypeID

DsEsProductionPlan

DsEsProductionPlanTypeID

DsEsReferencepaper

DsEsReferencepaperTypeID

The Document Data Server Process contains classes from this CSC.

Candidate products

N/A

ECS white paper references

N/A

5.5.1.5 Document Data Server (DDSRV) CSDT CSC

Purpose and Description

The Document Data Server (DDSRV) Server CSDT CSC consists of the classes providing the
Computer Science Data Types (CSDTs) for the document ESDTs.

Mapping to objects implemented by this component

DsCdCSDT

DsCdCSDT_TypeID

DsCdCSDT

DsCdKeywordLocator

DsCdKeyword

DsCdASCII

DsCdHTML

DsCdPDF

DsCdRTF

DsCdPostscript

The Document Repository Process is comprised of classes from this CSC.

5-69 305-CD-008-001

Candidate products

N/A

ECS white paper references

N/A

5.5.1.6 Document Data Server (DDSRV) Search Engine CSC

Purpose and Description

The Document Data Server (DDSRV) Search Engine CSC consists of off-the-shelf software for
full-text indexing and searching of documents, and hyperlinked access to ESDT documents stored
in the DDSRV.

Mapping to objects implemented by this component

DsSeWWWServer
DsSeIndexer

The WWW Server Process contains the DsSeWWWServer class; the DsSeIndexer is contained in
the Document Repository Process.

Candidate products

NetScape
CNIDR-ISite
Quadralay

ECS white paper references

N/A

5.5.2 DDSRV CI Processes

5.5.2.1 Document Data Server Process

The Document Data Server Process provides the server functions necessary for the execution of
the "factory model". The Document Data Server Process consists of classes from the following
CSCs :

DDSRV
DDSRV Server
DDSRV ESDT

5.5.2.2 WWW Server Process

The WWW Server process accepts client requests for searching document metadata and acquiring
documents, and consists of an HTTP server and a CGI interface to the Document Data Server
Process. The WWW Server process utilizes the CGI interface for mapping requests in HTTP to
service requests for additional processing by the Document Data Server Process. The WWW
Server Process consists of classes from the following CSC :

DDSRV Search Engine

5-70 305-CD-008-001

5.5.2.3 Document Repository Process

The Document Repository Process provides persistent storage for the document Earth Science
Data types. The Document Repository Process consists of classes from the following CSCs :

DDSRV CSDT
DDSRV Search Engine

5.5.2.4 Client Applications Process

The Client Applications Process provides the class library to be used by client applications for
sending requests to the DDSRV. The Client Applications Process consists of classes from the
following CSC :

DDSRV Client CSC

5.6 CSCI Management and Operation
The materials in the following paragraphs discuss the management and operations of software
components discussed in section 4.5.

5.6.1 System Management Strategy

The DDSRV CSCI is designed to provide robust document storage, search, retrieval, and
distribution services to external data providers and requestors via an encapsulated COTS product.
Specifically, the design goal of the DDSRV CSCI is to always return status (successful or
unsuccessful) for every received request. To accomplish that goal, the CSCI follows ECS project
guidelines for:

5.6.1.1 Process startup and shutdown;

5.6.1.2 Error detection and reporting;

5.6.1.3 Fault tolerance and error recovery

5.6.1.1 Startup/Shutdown

MSS provides life-cycle services for system startup and shutdown. The DDSRV uses the services
during operation. The DocumentDataServer process is started as a standalone processes. The
primary role of the DocumentDataServer Process is to provide an access mechanism for search and
repository requests. The WWWServer process will routinely be started at system startup. The
WWWServer Process provides document index and search capabilities in addition to a
communication infrastructure link for document transfer. The DocumentRepository process will
also routinely be started at system startup. The DocumentRepository process responds to storage
and retrieval command sent by the WWWServer process.

5.6.1.2 Error Detection and Reporting

The Document Data Server CSCI is designed for primarily automated operations with little need
for operations involvement short of tuning and critical error conditions. CSS and MSS jointly
provide event logging services for logging and reporting errors and faults, for browsing error/status
logs, and for detecting and reporting critical errors. The Document Data Server CSCI will fully
use those services during operations. Errors/status may be reported in two error logs. MSS

5-71 305-CD-008-001

maintains the first log, the MSS event log. It contains errors/status of interest to operations staff
to evaluate system status and to perform trend analysis. The Document Data Server CSCI
maintains the second log. The Document Data Server event log contains selected errors/status
from the MSS event log (for context) plus highly-detailed debug events. Software maintenance
personnel use the Data Distribution event log to diagnose system and software problems in
response to trouble tickets.

Non-critical errors encountered during processing that will be handled at the application level will
be fully resolved and enumerated during development. Major conditions that require operator
intervention and/or are considered catastrophic in the processing of requests are listed in Table 5.6
1.

Table 5.6-1. DDSRV Error Categories
Error Category Actions to Be Taken

Initialization File/Environment This would be seen during a system startup process and
would result in one or more executables not starting.
Operations staff evaluate the condition and correct.

Unable To Allocate Disk Space An indication disk space is running low for the COTS product.
Operations staff would need to offload data.

Communications Link Dropped This could be a serious failure of an internal component,
CSCI, or an external component. Operations would need to
analyze a local problem to determine in a hardware
component or local CSCI has failed. Operations would
coordinate external problems with the appropriate site.

Corrupt

5.6.1.3 Fault Tolerance and Error Recovery

Once a service request is accepted from a client (client being defined as any service requestor, not
just the ECS Desktop Client), it is the Document Data Server CSCI's design goal to complete the
request processing and return status (successful or unsuccessful) to the requestor. The Document
Data Server CSCI is a stateless entity. All internal request and distribution queuing will be in
accordance with the established http protocols of the encapsulated COTS product.

Failure scenarios with recovery methods include:

a. Failure of the Data Distribution Executable. 	This process is immediately restarted as a Unix
standalone process. The http-based COTS product will then utilize internal capabilities to
continue data distribution.

b. Failure of the processor on which the DDSRV process is running. 	In general, the processor
automatically restarts. Restart of individual processes is handled as a combination of one
or more of the above process restarts. If the processor is disabled, the disablement is
detected by MSS SNMP services and a backup processor is restarted.

5-72 305-CD-008-001

5.6.2 Operator Interfaces

DAAC operations personnel are provided with an X-Windows/Motif-based GUI to access
operations data bases and system configuration information. Table 5.6.2-1 highlights the critical
DDSRV GUI screens.

Table 5.6.2-1. Document Data Server Management GUI

GUI Description Data Operations

Document Data
Server
Management

Primary Screen for
access to the
following GUIs:
Document
Management and
COTS GUI

References to:
Document Management and
COTS GUIs

Logon
Realizes and/or makes visible
other GUIs

Document
Management
GUI

Allows operators
to manage the
documents within
the Document
Data Server

Document set information
(contents)
Documents

View contents
Insert a document
View a Document
Edit a Document
Delete a Document

COTS GUI Provides the
functionality for
operators to
manage the
Document Data
Server COTS
product

TBD TBD

5-73 305-CD-008-001

5.6.3 Standard DDSRV Reports

Table 5.6.3-1. Standard Document Data Server Reports
Report Type Report Description Intended Audience

Inventory Update
Report

Provides a record of new documents added to the DAAC,
and provides summary information associated with the
addition of new documents based on the reporting period
which is either the last 24 hours, the previous 7 days,
previous 30 days, or number since a given date.
Associated information includes: number of requests
received, number of successful and unsuccessful
requests, number of documents archived, average
documents archived per request, current number of
archived documents, and average number of documents
per request.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Document Error Is a summary report of the frequency of errors
encountered during document processing. The reporting
period is either the last 24 hours, the previous 7 days,
previous 30 days, or number since a given date.
Information for each unsuccessful request includes: date/
time stamp, request identifier,

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

error code, error message.

5-74 305-CD-008-001

 6. STMGT - Storage Management CSCI

6.1 CSCI Overview
The Storage Management CSCI is a generalization of the interfaces to the various data repositories
which the Data Server Subsystem includes. The STMGT CSCI provides a single interface for
making objects persistent, updating their persistent state, or removing them from persistent storage.
The Data Server Subsystem will include several different types of storage services; each may offer
specializations of that general interface which offer functions that are unique to that particular type
of storage.

The Data Storage class interface will allow callers to specify the semantics of storage requirements
which may then select a specific type or pool of storage. For example, SearchResult objects are
stored temporarily for transmission to the client or for packaging on media for subsequent shipment
to respective data requesters. From a resource management perspective, it is desirable to store the
search results on a specific set of devices and monitor storage allocation to protect the server
against shutdown due to storage overflow. One of the purposes of the data storage service class is
to separate the semantics of storage requirements from the semantics of device types, storage and
data management technologies, and interface syntax.

6.2 CSCI Context
Table 6.2-2 provides a mapping for the STMGT CI interfaces provided to other ECS CSCI's. The
table defines the interfaces in terms of the STMGT-provided classes and the specific service to be
used to accomplish that interface. The response (return parameter) from that member function is
also included.

6-1 305-CD-008-001

Allocate, Deallocate,

6-2
305-C

D
-008-001

STMGT

DDIST INTOP

Admin/OP

INGST

SDSRV

ChangeDeviceStatus,

ReportResourceStats,

GetDeviceStatus

DeviceStatus,

ResourceReports

Abort, RequestStatus,

SetPriority,

DistFrom

ResourceObject,

Status

ResourceObject,

Status

Allocate,

Deallocate,

IngestFrom,

RequestStatus

Allocate, Deallocate, RequestStatus, Store, Retrieve

ResourceObject,

Status,

DataObjects

Advertisement,

AdvertisementCancellation

Status

Figure 6.2-1. STMGT_events Event Flow Diagram

Table 6.2-1. STMGT_events Event Flow Summary Table
Sender Receiver Event Name

DDIST STMGT Abort

STMGT INTOP Advertisement

STMGT INTOP AdvertisementCancellation

DDIST STMGT Allocate

INGST STMGT Allocate

SDSRV STMGT Allocate

Admin/OP STMGT ChangeDeviceStatus

STMGT SDSRV DataObjects

DDIST STMGT Deallocate

INGST STMGT Deallocate

SDSRV STMGT Deallocate

STMGT Admin/OP DeviceStatus

DDIST STMGT DistFrom

Admin/OP STMGT GetDeviceStatus

INGST STMGT IngestFrom

Admin/OP STMGT ReportResourceStats

DDIST STMGT RequestStatus

INGST STMGT RequestStatus

SDSRV STMGT RequestStatus

STMGT SDSRV ResourceObject

STMGT INGST ResourceObject

STMGT DDIST ResourceObject

STMGT Admin/OP ResourceReports

SDSRV STMGT Retrieve

DDIST STMGT SetPriority

STMGT SDSRV Status

STMGT INGST Status

STMGT DDIST Status

INTOP STMGT Status

SDSRV STMGT Store

6-3 305-CD-008-001

Table 6.2-2. CSCI Interfaces
Interface Input Data Output Data Description

Advertisement
Request

Service Name
Service Description
Service Provider

Status This interface provides the capability to
request the advertisement of services
unique to the Storage Management CI

Advertisement
Cancellation
Request

Service Name
Service Provider

Status This interface provides the capability to
request the cancellation of advertisement of
services unique to the Storage
Management CI

Allocate Resource
Request

Requester name
Resource Size

Resource
Reference
Status

This interface provides the capability to
allocate resources.

Backup Archive
Request

Archive media Status This interface provides the capability to
operations personnel to request the backup
of

Deallocate Resource
Request

Allocation Identifier Status This interface provides the capability to
deallocate previously allocated resources.

Device Control
Request

Storage Device
Identifier Action

Status This interface provides operations
personnel the capability to control the
devices managed and monitored by storage
management services.

Dismount Archive volume Status This interface provides the capability to
operations personnel to request the
dismount of specific media.

Event Registration
Request

Event Description
Requester Identifier

Event
Notification

This interface provides the capability to
request notification of specific archive
related events.

Insert Request Data References
Priority

Status This interface provides the capability to
request the insertion of data objects from
archival storage.

Log Data Access
Request

Log Identifier Log Data
Status

This interface provides the capability to
request access to log data collected by the
Storage Management CI

Mount Request Archive volume Status This interface provides the capability to
operations personnel to request the mount
of specific media.

Reserve Resource
Request

Resource Identifier
Requester Identifier
Priority

Status This interface provides the capability to
reserve specific resources managed by the
Storage Management CI.

Restore Archive
Request

Archive media Status This interface provides the capability to
operations personnel to request the
restoration of archived data which has been
backed up.

Retrieve Request Data Reference Pri
ority
Profile Info
Size

Data Objects
Status

This interface provides the capability to
request the retrieval of data objects from
archival storage.

Status Request Request Identifier Status
Information

This interface provides the capability to
request the status of previously submitted
retrieve or insert requests.

archive data.

Request

6-4 305-CD-008-001

6.3 CSCI Object Model
This section provides an object model for the Storage Management CSCI. The model is depicted
in Figure 6.3-1. Each of the objects in this figure is described briefly in the subsequent paragraphs.
The attributes shown in the figure are described in the ECS Data Dictionary (305-CD-018 Volume
18). Other objects that may appear in the object model, but not described in the following section
are allocated to other CSCIs and are replicated here for the purpose of completeness.

General Notes: In the following object class descriptions, classes always inherit attributes,
operations, and associations from their parent classes. Where all attributes in the current design
are inherited from the parent class, this is indicated by the text “All Attributes inherited from the
parent class” (and analogously for operations). If a derived class has additional attributes of its
own, those new attributes are listed, but the attributes from the parent class are not repeated
(analogously for operations).

6-5 305-CD-008-001

6-6
305-C

D
-008-001

[DISTR OBJ]

DsStRequestManager

_

_

_

_

+

+

+

+

_

+

+

+

+

myRequestTable

myNumberRequests

StartService(RequestID:unsigned long)

EndService(RequestID:unsigned long)

ReportResourceStats(DeviceName: char *)

GetDeviceStatus(DeviceName: char *,DeviceStatus:char *)

ChangeDeviceStatus(DeviceName: char *,DeviceStatus: char *)

RequestStatus(RequestID:unsigned long)

LocateManager(RequestID:unsigned long,ResourceManager:ptr)

ChangeRequestPriority(RequestID:unsigned long,Priority:short)

MountVolume(VolName: char *)

DismountVolume(VolName: char *)

Abort(RequestID:unsigned long)

~DsStRequestManager()

: ptr

: unsigned short = 0

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

routes requests to

DsStPullMonitor

_

_

_

_

_

_

_

_

+

+

_

_

+

_

_

_

_

_

_

_

_

_

_

manages pull area
via

DsStPullList

_

_

_

_

_

_

_

_

_

_

[DISTR OBJ]

DsStPrinter

UpdateEntry(FileInfo:structure)

DsStResourceManager

DsStResourceSchedule

DsStReservation

DsStResource

DsStStorageResource

DsStStagingDisk

DsStArchive

DsStResourceQueue

myName

mySize

Backup

Restore

DsStStagingDataList

mypath

SetSize(FileSize: unsigned long)

GetSize(FileSize: unsigned long)

Put()

DeleteFile()

DsStFileDirectory

Get()

Close()

Open()

GetName(FileName: char *)

GetPath(PathName: char *)

DeleteFile(FileName: char *)

Put(FileName: char *)

GlLog

GlNotification

DsSdAdvertisement

DsStNetworkResource
DsStPhysicalResource

DsStTape DsStFax

DsStCDROM

myAvailableSpace

myPathname

mySize

myMaxSize

ExtendStaging(ExtendSize:short)

SetAvailableSpace(AvailableSpace:long)

GetAvailableSpace(AvailableSpace:long)

SetPathName(PathName:char *)

GetPathName(PathName:char *)

SetMaxSize(Size:long)

DsStStagingFile

DsStDirectory

DsStFile

GetMaxSize(MaxSize:long)

GetSize(CurrentSize:long)

SetSize(CurrentSize:long)

~DsStStagingDisk()

Print(FileName: char *)

~DsStPrinter()

DsStResourcePolicy

DsStArchivedFile

DsStStagingMonitor

$myPolicyConfig

$myDeviceTable

myMaxNumberMedia

myMountTime

myDismountTime

myTransferRate

myMediaTypes

myLowDensitySize

myMedDensitySize

myHighDensitySize

myEfficiencyFactor

myNumberDevices

BuildDevTable()

ProjectDuration(Size:long,MediaType:enum,Duration:short)

GetNumberDevices(Devices:short)

SetNumberDevices(unsigned short)

SetMountTime(MountTime:float)

SetDismountTime(real)

SetTransferRate(Rate:float)

myRewindTime

mySubmitTime

myReservationRef

myPriority

myEndTime

myStartTime

mySize

myResourceType

myRequester

Cancel(RequestID:unsigned long)

SetEndTime(TimeDate:char *)

SetStartTime(TimeDate:char *)

SetRequester(RequesterName:char)

Make()

Activate(RequestID:unsigned long,ResourceRef:ptr)

Submit(RequestID:unsigned long)

SetResSize(ReservationSize:unsigned short)

SetPriority(Priority:unsigned:short)

SetResourceType(char)

myDestination

mySource

SetDestination()

SetSource()

GetDestination()

GetSource()

myRemainingSectors

myCapacity

myNextFreeDirSector

myNextFreeDataSector

myFirstUsedSector

SetRemainingSectors(AvailSectors: long)

GetRemainingSectors(AvailSectors: long)

GetNextFreeDataSector(NextSector: long)

SetNextFreeDataSector(NextSector: long)

GetFirstUsedSector(FirstSector: long)

SetFirstUsedSector(FirstSector: long)

GetNextFreeDirSector(NextSector: long)

SetNextFreeDirSector(NextSector: long)

GetCapacity(MaxBytes: long)

SetCapacity(MaxBytes: long)

Dismount(VolName: char *)

Mount(VolName: char *)

~DsStCDROM()

myNumberFiles

myDirName

myDirSize

GetNextFile()

RemoveDir()

MakeDir()

ListDir(ResultsFile: char *)

SetDirName(DirName: char *)

SetNumberFiles(NumberFiles: short)

GetNumberFiles(NumberFiles: short)

Backup()

Restore()

~DsStDirectory()

myID

myNumDataTypes

myDataTypeNames

Retrieve(DataName:GlParameterList,DestLocation:char,Size:long int,Priority:short
int,RequestID:int)

Store(DataName:GlParameterList,SourceLocation:char,Size:long int,Priority:short
int,RequestID:int)

~DsStArchive()

SetNumDataTypes(numdatatypes: short int)

SetDataTypeName(ndtype: short int, dtypename:char)

GetID(archiveID:char)

SetID(archiveID:char)

GetNumDataTypes(numdatatypes:short int)

GetDataTypeName(ndtype: short int, dtypename:char)

myDirectoryFileName
myRemainingBlocks

myBlockCount

myNextBlock

myBlockSize

myCapacity

SetRemainingBlocks(AvailBlocks: long)

GetRemainingBlocks(AvailBlocks: long)

Rewind()

Dismount(VolName: char *)

Mount(VolName: char *)

GetBlockSize(BlockSize: long)

SetBlockSize(BlockSize: long)

GetBlockCount(BlockCount: long)

SetBlockCount(BlockCount: long)

SetNextBlock(NextBlock: long)

GetNextBlock(NextBlock: long)

~DsStFax()

mySleepTime

myFreeCache

myLowWaterMark

myHighWaterMark

$myCacheConfig

myMaxSize

Delete(Filename:char)

ReportStats()

SetFreeCache(Size:long int)

GetFreeCache(Size:long int)

SetHighWaterMark(Percent:real)

GetHighWaterMark(Percent:real)

ReclaimSpace()

GetSleepTime(Time:real)

SetSleepTime(Time:real)

SetLowWaterMark(Percent:real)

GetLowWaterMark(Percent:real)

GetMaxSize(Size: long int)

SetMaxSize(Size: long int)

myDirectoryFileName

myNumberFiles

DeleteEntry(FileID:long)

GetNextEntry(FileInfo:structure)

InsertEntry(FileInfo:structure)

RestoreFileDirectory()

myReservedResources

myMaxResources

myResourceType

myFreeResources

ReportResourceInformation()

GetReservedResources(NumResources:short int)

SetFreeResources(NumResources:short int)

GetFreeResources(NumResources:short int)

ChangePriority(RequestID:unsigned long,Priority:short int)

ChangeDeviceStatus(RequestID:unsigned long,NewStatus:short int)

AbortRequest(RequestID:unsigned long)

RequestStatus(RequestID:unsigned long)

AllocateResource(MediaType:enum,RequestID:unsigned
long,Priority:short,Size:short, ProfileInfo:ptr)

DeallocateResource(ResourceRef:ptr)

myStatus

myMediaSize

myResourceName

myPriority

RestoreResourceInformation()

DistFrom(SourceResource:char *,Operation:char *,DataItemName:char *)

GetDevTime(Size:ulong,MediaSize:enum,DeviceTime:unsigned short)

SetStatus(DeviceStatus:char *)

GetStatus(DeviceStatus:char *)

Deallocate(ResourceRef:ptr)

IngestFrom(SourceMachine: char *,SourceDirectory: char *,DestMachine: char *,
DestDirectory: char *)

Allocate(ResourceType: char *,MediaType:enum,RequestID: unsigned
long,Priority:short, Size:long,ProfileInfo: ptr)

~DsStResource()

GetResourceID(ResourceName:char *)

SetResourceID(ResourceName:char)

GetMediaSize(MediaSize:enum)

SetMediaSize(MediaSize:enum)

SetPriority(RequestID:int,NewPriority:short iint)

GetPriority(RequestID:unsigned long,CurrentPriority:unsigned short)

myScheduleFileName

myPoolName

$mySchedulingConfig

myEndDate

myStartDate

CancelReservation(ReservationRef:unsigned long,RequestID:unsigned long)

CreateSchedule()

ReportSchedule(DeviceUse: Enum,StartTime:char *,EndTime:char *)

RestoreSchedule()

SaveSchedule()

RollSchedule(NumberDays:unsigned short)

FindRequest(RequestID:unsigned long,RequestInfo:struct)

FindResource(StartTime:char *,EndTime:char *,ResourceRef:unsigned long)

ActivateReservation()

BookResource(ResourceRef:unsigned long,RequestID:unsigned long,StartTime:char
,EndTime:char Size:unsigned short,MediaType:enum,Priority:unsigned short,
ProfileINfo:ptr,Type:enum)

GetCurrentTime(CurrentTime:char *)

CheckReservations(CheckQueue: boolean)

RecordEndTime(ResourceRef:unsigned long,CompletionStatus:long)

mySize

myDeletionDate

myName

myArchiveDate

myFileID

myVolume

GetName(FileName:char *)

GetVolume(VolName:char *)

GetDeletionDate(DelTimeDate: char *)

SetDeletionDate(DelTimeDate:char *)

SetArchiveDate(ArcTimeDate: char *)

GetArchiveDate(ArcTimeDate: char *)

SetSize(FileSize: long)

SetName(FileName: char *)

SetVolume(VolName: char *)

DeleteFile(FileName: char *)

myTotalSize

myNextElement

myCurrentSize

GetTotalSize(TotalSize:long int)

SetTotalSize(TotalSize:long int)

GetCurrentSize(TotalFiles:short int)

SetCurrentSize(TotalFiles:short int)

SetExpiration(FileName:char *,TimeDate:char *)

DeleteElement(FileName:char *,RequestID:long)

ReadNextElement(NextFile:ptr)

AssociateElement(FileName:char *)

DisassociateElement(FileName:char *)

AddElement(FileName:char *,RequestID:unsigned long,Size:long,Priority:short)

myFreeCache

myLowWaterMark

myHighWaterMark

myConfirmTimeOut

mySleepTime

$myCacheConfig

myMaxSize

myNumberFiles

DeleteFile(FileName: char *)

ReportStats()

SetFreeCache(Size:long int)

GetFreeCache(Size:long int)

ReclaimSpace()

SetSleepTime(STime:float)

GetSleepTime(STime:float)

GetHighWaterMark(Percent:float)

GetLowWaterMark(Percent:float)

SetLowWaterMark(Percent:float)

SetHighWaterMark(Percent:float)

SetMaxSize(CacheSize:long int)

GetMaxSize(CacheSize:long int)

GetNumberFiles(TotalFiles:long)

SetNumberFiles(TotalFiles:long)

myCurrentSize

GetCurrentSize(CurrentSize:unsigned short)

SetCurrentSize(CurrentSize:unsigned short)

ReadNextElement(RequestInfo:struct)

DeleteElement(FileName:char *)

DissociateElement(FileName:char *,RequestID:unsigned long)

AssociateElement(FileName:char *,RequestID:unsigned long)

AddElement(FileName: char *,FileSize: long,RequestID:unsigned
long,Priority:short,ProfileInfo:ptr)

GetExpiration(FileName:char *,ExpTimeDate: char*)

SetExpiration(FileName:char *,ExpTimeDate:char *)

CopyFile(SourceFile:char *,DestFile:char *)

MountVolume(VolName:char *)

DismountVolume(VolName:char *)

myMaxSize

myCurrentqueued

Dequeue(RequestInfo: structure)

Queue(RequestInfo: structure)

RestoreQueue()

Update(RequestInfo: structure)

GetNextQueued(RequestInfo: structure)

FindRequest(RequestID:unsigned long)

SetPriority(Priority: unsigned short,RequestID: unsigned long)

GetCurrentQueued()

~DsStStagingFile()

~DsStReservation()

[DISTR OBJ]

[DISTR OBJ]

[DISTR OBJ]

+ : char *

+ : unsigned long

_ : GlStatus

_ : GlStatus

+ : char *

_ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

P[PERSISTENT CLASS]

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

[DISTR OBJ]

[DISTR OBJ] [DISTR OBJ]

[DISTR OBJ]

/+ : long int = 0

+ : char *

+ : long int = 0

_ : long int

[DISTR OBJ]

[DISTR OBJ]

+ : GlStatus

+ : GlStatus

+ : void

+ : GlStatus

+ : void

_ : ptr

_ : ptr

_ : int = 10

_ : float = 30.0

_ : float = 30.0

_ : float = 0.0

_ : int = 3

_ : int = 500

_ : int = 2000

_ : int = 10000

_ : float = 1.0

_ : unsigned short = 1

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : float = 60.0

+ : char *

+ : unsigned long = 0

+ : unsigned short = 0

+ : char *

+ : char *

+ : unsigned short = 1

+ : char *

+ : char *

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

_ : char *

_ : char *

/+ : long = 0

_ : long

_ : long

_ : long

_ : long

+ : GlStatus

+ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

+ : GlStatus

_ : GlStatus

+ : GlStatus

+ : GlStatus

+ : void

/+ : unsigned short = 0

+ : char *

+ : unsigned long

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : void

+ : char

+ : short int = 1

+ : char array

+ : DataRef:ptr

+ : GlStatus

+

_ : GlStatus

_ : GlStatus

+ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

+ : long = 0

+ : long = 0

_ : long = 0

_ : long = 0

: long = 0

_ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

_ : GlStatus

+ : GlStatus

_ : GlStatus

_ : GlStatus

+ : GlStatus

+

_ : real = 10

_ : long int

_ : real = 40

_ : real = 75

_ : ptr

_ : long int

_ : GlStatus

+ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : char

_ : short int = 0

_

_

_

/_ : unsigned short = 0

_ : unsigned short = 0

_ : char *

/_ : unsigned short = 0

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : ResourceRef: ptr

_ : void

+ : char *

+ : enum

+ : char *

+ : unsigned short = 0

_ : GlStatus

+ : GlStatus

_ : GlStatus

+ : GlStatus

+ : GlStatus

+ : GlStatus

+ : ResourceRef: ptr

+ : void

+ : GlStatus

+ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : char *

_ : char *

_ : char *

/_ : char *

/_ : char *

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

: GlStatus

_ : unsigned long = 0

_ : char *

_ : char*

_ : char *

_ : long

_ : char *

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_

_

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : long int = 0

/_ : ptr

/_ : short int = 0

+ : GlStatus

+ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

/ : long int

: float = 45.0

: float = 75.0

: boolean = false

: float = 10.0

: char *

: long int

/ : long = 0

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

/ : unsigned short = 0

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

: GlStatus

_ : GlStatus

_ : unsigned short

/_ : unsigned short = 0

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

_ : GlStatus

is
reflected

in

manages
access

to

is updated by

manages staged data
via

retains requests
queued by

updates

is updated by

provides scheduling
information to

utilizes

schedules resources
via

Figure 6.3-1. dsst Object Model Diagram

[PERSISTENT CLASS] P

6-7
305-C

D
-008-001

DsCnConfiguration

DsStResourceConfig DsStSCacheConfig DsStPullConfig DsStSchedulingConfig

Figure 6.3-2. dsstconfig Object Model Diagram

6.3.1 DsCnConfiguration Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
Manages configuration parameters for various data server components in a token-value
style file. Often specialized where needed to provide higher level access to configuration
parameters.

Attributes:

None

Operations:

None

Associations:

The DsCnConfiguration class has associations with the following classes:
None

6.3.2 DsSdAdvertisement Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
To provide service description and service provider information to the interoperability
layer. The Advertisement is a description of a service that the data server provides.

Attributes:

None

6-8 305-CD-008-001

Operations:

None

Associations:

The DsSdAdvertisement class has associations with the following classes:
None

6.3.3 DsStArchive Class

Parent Class: DsStStorageResource
Public: YesDistributed Object: Yes
Persistent Class:
Purpose and Description:
To provide storage for persistent data. The Archive is the repository for all the permanently
stored data in the DataServer.

Attributes:

myDataTypeNames - This attribute identifies the data types serviced by this archive.
Data Type: char array
Privilege: Public
Default Value:

myID - This is the ID of the Archive

Data Type: char

Privilege: Public

Default Value:

myNumDataTypes - This attribute indicates the number of data types serviced by this

archive.

Data Type: short int

Privilege: Public

Default Value: 1

Operations:

6-9 305-CD-008-001

GetDataTypeName - This operation gets the names of the data types serviced by this archive.
Arguments: ndtype: short int, dtypename:char
Return Type: GlStatus
Privilege: Private

GetID - This operation gets the name of this archive.

Arguments: archiveID:char

Return Type: GlStatus

Privilege: Public

GetNumDataTypes - This operation gets the number of data types serviced by the archive.

Arguments: numdatatypes:short int

Return Type: GlStatus

Privilege: Private

Retrieve - This service retrieves specified files from the archive.

Arguments: DataName:GlParameterList,DestLocation:char,Size:long

int,RequestID:int

Return Type: DataRef:ptr

Privilege: Public

PDL:// Log retrieval request received

// While (there are more files in the request and no errors)

// Get the next file in the request

// Initialize the data reference

// If the requested file is in staging cache

// If destination location is a private workarea

// Copy file from cache to destination location

// Set the data reference for file

// else

// Retrieve file from deep archive

// If retrieval was not successful

// Alert/Notify Operations of failure

// Log file retrieval failure

// Assign appropriate error number

// If failure requires marking hardware equipment off-line

// Mark appropriate hardware equipment off-line

// else

// Perform checksum on file

// Compare checksum obtained to metadata checksum value

// If checksums don't compare favorably

// Alert/Notify Operations personnel

// Log checksum error for file

// Assign appropriate error number

// else

// If destination location is a private workarea

int,Priority:short

6-10 305-CD-008-001

// Copy file to destination location

// else

// Get the current amount of available disk space in cache

// while (there is insufficient disk space in staging cache)

// wait for a small period of time

//

// Copy file to staging disk cache

// Add an entry in the staging disk cache list for the file

// Set the current size of available staging cache

// Set the data reference

//

// Log retrieval request completed

// return (operation status)

SetDataTypeName - This operation sets the name(s) of the data types serviced by this

archive.

Arguments: ndtype: short int, dtypename:char

Return Type: GlStatus

Privilege: Private

SetID - This operation sets the name of the archive.

Arguments: archiveID:char

Return Type: GlStatus

Privilege: Private

SetNumDataTypes - This operation sets the number of data types serviced by this archive.

Arguments: numdatatypes: short int

Return Type: GlStatus

Privilege: Private

Store - This operation stores data files into the archive.

Arguments: DataName:GlParameterList,SourceLocation:char,Size:long int,Priority:short

int,RequestID:int

Return Type: GlStatus

Privilege: Public

PDL:// Log store request received

// While (there are more files in the request)

// Get the next file in the request

// Archive the file

// If archive was successful

// Perform checksum on file

// Log successful archive of file

// Place entry for file in file directory

// else

// Log file archive failure

6-11 305-CD-008-001

// Alert/Notify Operations

// If failure reason requires marking hardware equipment off-line

// Mark appropriate hardware as off-line

// Assign appropriate error number

//

// Log store request completed

// return (operation status)

~DsStArchive - This is the destructor for the archive object.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsStArchive class has associations with the following classes:
Class: DsStFileDirectory updates

6.3.4 DsStArchivedFile Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description: This class provides information on files which have been
archived. Information contained on archived files includes file name, archive data, deletion
date, file size, and volume name.

Attributes:

myArchiveDate - This attribute indicates the time and date that the file was archived
Data Type: char *
Privilege: Private
Default Value:

myDeletionDate - This attribute indicates the deletion time and date for the archived file.

For most files, there is no deletion time.

Data Type: char *

Privilege: Private

Default Value:

myFileID - This attribute is a unique file identifying number.

Data Type: long

6-12 305-CD-008-001

Privilege: Private

Default Value:

myName - This attribute indicates the name of the archived file.

Data Type: char*

Privilege: Private

Default Value:

mySize - This attribute indicates the size (in KBYTES) of the archived file.

Data Type: unsigned long

Privilege: Private

Default Value: 0

myVolume - This attribute indicates the name of the tape volume on which the file was

archived.

Data Type: char *

Privilege: Private

Default Value:

Operations:

DeleteFile - This operation deletes the file from the appropriate volume in the archive.
Arguments: FileName: char *
Return Type: GlStatus
Privilege: Private

GetArchiveDate - This operation gets the time and date that the file was archived.

Arguments: ArcTimeDate: char *

Return Type: Void

Privilege: Private

GetDeletionDate - This operation gets the deletion time and date for the archived file.

Arguments: DelTimeDate: char *

Return Type: GlStatus

Privilege: Private

GetName - This operation gets the name of the archived file.

Arguments: FileName:char *

Return Type: GlStatus

Privilege: Private

GetVolume - This operation gets the name of the tape volume on which the file was

archived.

6-13 305-CD-008-001

Arguments: VolName:char *

Return Type: GlStatus

Privilege: Private

SetArchiveDate - This operation sets the time and date that the file was archived.

Arguments: ArcTimeDate: char *

Return Type: Void

Privilege: Private

SetDeletionDate - This operation sets the deletion time and date for the archived file.

Arguments: DelTimeDate:char *

Return Type: GlStatus

Privilege: Private

SetName - This operation sets the name of the archived file.

Arguments: FileName: char *

Return Type: GlStatus

Privilege: Private

SetSize - This operation sets the size of the file.

Arguments: FileSize: long

Return Type: GlStatus

Privilege: Private

SetVolume - This operation sets the name of the tape volume on which the file was

archived.

Arguments: VolName: char *

Return Type: GlStatus

Privilege: Private

Associations:

The DsStArchivedFile class has associations with the following classes:
DsStFileDirectory (Aggregation)

6.3.5 DsStCDROM Class

Parent Class: DsStPhysicalResource
Public: YesDistributed Object: Yes
Purpose and Description:
This class provides an interface to the CD-ROM resource. The Ingest Client to Storage

6-14 305-CD-008-001

Management can use CDROM devices for ingesting data. The Data Distribution Client to
Storage Managment can use these same resources for distributing data to requesting users.

Attributes:

myCapacity - This attribute indicates the capacity (in KBYTES) of the media currently
mounted.
Data Type: long
Privilege: Private
Default Value:

myFirstUsedSector - This attribute indicates the first used sector on the volume currently

mounted in the CDROM.

Data Type: long

Privilege: Private

Default Value:

myNextFreeDataSector - This attribute indicates the next free data sector on the volume

currently mounted in the CDROM.

Data Type: long

Privilege: Private

Default Value:

myNextFreeDirSector - This attribute indicates the next free directory sector on the

volume currently mounted in the CDROM.

Data Type: long

Privilege: Private

Default Value:

myRemainingSectors - This attribute indicates the number of unused (i.e., unwritten)

sectors remaining on the media.

Data Type: long

Privilege: Public

Default Value: 0

This is a Derived Attribute.

Operations:

Dismount - This public operation dismounts the specified volume from a CDROM resource.
Arguments: VolName: char *
Return Type: GlStatus
Privilege: Public

6-15 305-CD-008-001

GetCapacity - This operation gets the capacity of the volume currently mounted in the

CDROM resource.

Arguments: MaxBytes: long

Return Type: GlStatus

Privilege: Public

GetFirstUsedSector - This operation gets the value of the first used sector on the volume

currently mounted in the CDROM.

Arguments: FirstSector: long

Return Type: GlStatus

Privilege: Private

GetNextFreeDataSector - This operation gets the next free data sector on the volume

currently mounted in the CDROM.

Arguments: NextSector: long

Return Type: GlStatus

Privilege: Private

GetNextFreeDirSector - This operation gets the next free directory sector on the volume

currently mounted in the CDROM resource.

Arguments: NextSector: long

Return Type: GlStatus

Privilege: Private

GetRemainingSectors - This public service gets the number of free unwritten sectors on

the media currently mounted in the allocated CDROM device.

Arguments: AvailSectors: long

Return Type: GlStatus

Privilege: Public

Mount - This public operation mounts the specified volume on the CDROM resource.

Arguments: VolName: char *

Return Type: GlStatus

Privilege: Public

SetCapacity - This operation sets the capacity (in KBYTES) of the media currently

mounted in the CDROM resource.

Arguments: MaxBytes: long

Return Type: GlStatus

Privilege: Private

SetFirstUsedSector - This operation sets the first used sector used on the volume currently

mounted in the CDROM.

Arguments: FirstSector: long

6-16 305-CD-008-001

Return Type: GlStatus

Privilege: Private

SetNextFreeDataSector - This operation sets the value of the next free data sector of the

volume currently mounted in the CDROM.

Arguments: NextSector: long

Return Type: GlStatus

Privilege: Private

SetNextFreeDirSector - This operation sets the value of the next free sector on the volume

currently mounted in the CDROM resource.

Arguments: NextSector: long

Return Type: GlStatus

Privilege: Private

SetRemainingSectors - This operation sets the number of free and unwritten sectors

remaining on the media currently mounted on the CDROM device.

Arguments: AvailSectors: long

Return Type: GlStatus

Privilege: Public

~DsStCDROM - This is the destructor for the CDROM object.

Arguments:

Return Type: void

Privilege: Public

Associations:

The DsStCDROM class has associations with the following classes:
None

6.3.6 DsStDirectory Class

Parent Class: Not Applicable
Public: YesDistributed Object: Yes
Purpose and Description:
This class provides the capability to partition an allocated workarea on staging disk. The
allocated workarea can be made to have the appearance of an entire disk.

6-17 305-CD-008-001

Attributes:

myDirName - This attribute indicates the name of the directory in the staging disk workarea.
Data Type: char *
Privilege: Public
Default Value:

myDirSize - This attribute indicates the current size (in KBYTES) of the directory created

in the staging disk workarea.

Data Type: unsigned long

Privilege: Public

Default Value:

myNumberFiles - This attribute indicates the number of files that currently exist in the

directory.

Data Type: unsigned short

Privilege: Public

Default Value: 0

This is a Derived Attribute.

Operations:

Backup - This operation performs a backup of the directory.
Arguments:
Return Type: GlStatus
Privilege: Public

GetNextFile - This operation gets the name of the next file in the directory created in the

workarea on staging disk.

Arguments:

Return Type: GlStatus

Privilege: Public

GetNumberFiles - This operation gets the number of files in the directory.

Arguments: NumberFiles: short

Return Type: GlStatus

Privilege: Public

ListDir - This operation provides information about files in the directory.

Arguments: ResultsFile: char *

Return Type: GlStatus

Privilege: Public

6-18 305-CD-008-001

MakeDir - This operation creates a directory in the workarea.

Arguments:

Return Type: GlStatus

Privilege: Public

RemoveDir - This operation removes a previously created directory from the workarea on

staging disk.

Arguments:

Return Type: GlStatus

Privilege: Public

Restore - This operation restores a backed up directory to the state it was in when the

backup of the directory was performed.

Arguments:

Return Type: GlStatus

Privilege: Public

SetDirName - This operation sets the name of a directory which is created in an allocated

workarea on staging disk.

Arguments: DirName: char *

Return Type: GlStatus

Privilege: Public

SetNumberFiles - This operation sets the current number of files in the directory.

Arguments: NumberFiles: short

Return Type: GlStatus

Privilege: Public

~DsStDirectory - This is the destructor for the DsStDirectory object.

Arguments:

Return Type: void

Privilege: Public

Associations:

The DsStDirectory class has associations with the following classes:
DsStStagingDisk (Aggregation)

6-19 305-CD-008-001

6.3.7 DsStFax Class

Parent Class: DsStPhysicalResource
Public: YesDistributed Object: Yes
Purpose and Description:
This class provides an interface to FAX resources managed by the Storage Management
CI. This class is scheduled for full development in Release B.

Attributes:

All Attributes inherited from parent class

Operations:

~DsStFax - This is the destructor for the Fax object.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsStFax class has associations with the following classes:
None

6.3.8 DsStFile Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description: This class provides the capability to manipulate allocated
working storage at a file level. Common file services provided by this class include open,
close, read, write, and delete.

Attributes:

myName - This attribute indicates the name of the file.
Data Type: char *
Privilege: Public
Default Value:

6-20 305-CD-008-001

mySize - This attribute indicates the size of the file (in KBYTES).

Data Type: unsigned long

Privilege: Public

Default Value:

mypath - This attribute indicates the full path name of the file.

Data Type: char *

Privilege: Public

Default Value:

Operations:

Close - This operation closes files which have been previously opened.
Arguments:
Return Type: GlStatus
Privilege: Public

DeleteFile - This operation deletes the file from staging disk.

Arguments:

Return Type: GlStatus

Privilege: Public

Get - This operation reads a single record of the file.

Arguments:

Return Type: GlStatus

Privilege: Public

GetName - This operation gets the name of the staging disk file.

Arguments: FileName: char *

Return Type: GlStatus

Privilege: Public

GetPath - This operation gets the path name for the staging disk file.

Arguments: PathName: char *

Return Type: GlStatus

Privilege: Public

GetSize - This operation gets the size of the file.

Arguments: FileSize: unsigned long

Return Type: GlStatus

Privilege: Public

6-21 305-CD-008-001

Open - This operation opens files which have been created in an allocated workarea on

staging disk.

Arguments:

Return Type: GlStatus

Privilege: Public

Put - This operation writes a single record to the file.

Arguments:

Return Type: GlStatus

Privilege: Public

SetSize - This operation sets the size of a file which has been created in an allocated

workarea on staging disk.

Arguments: FileSize: unsigned long

Return Type: GlStatus

Privilege: Private

Associations:

The DsStFile class has associations with the following classes:
DsStDirectory (Aggregation)

6.3.9 DsStFileDirectory Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
To provide a collection of information on files which have been archived. Information
contained in the file directory includes location of data object, size of data object and
archive date of data object. The File Directory is used by the Storage Management CI to
help insure that all archived data objects are present and accounted for.

Attributes:

myDirectoryFileName - This is the name of the external file that holds file directory
information.
Data Type: char
Privilege: Private
Default Value:

6-22 305-CD-008-001

myNumberFiles - This attribute indicates the number of current files which have been

archived and are resident in the archive.

Data Type: short int

Privilege: Private

Default Value: 0

Operations:

DeleteEntry - This service will delete an entry from the file directory.
Arguments: FileID:long
Return Type: Void
Privilege: Private

GetNextEntry - This service will get the next entry in the file directory.

Arguments: FileInfo:structure

Return Type: Void

Privilege: Private

InsertEntry - This service will insert an entry in the file directory. The file directory

retains information about all files which have been archived.

Arguments: FileInfo:structure

Return Type: GlStatus

Privilege: Private

RestoreFileDirectory - This service will restore a file directory that has been lost, deleted,

corrupted by going back to a previous checkpointed copy.

Arguments:

Return Type: Void

Privilege: Private

UpdateEntry - This service will update an entry of the file directory.

Arguments: FileInfo:structure

Return Type: GlStatus

Privilege: Private

Associations:

The DsStFileDirectory class has associations with the following classes:
Class: DsStArchive updates

6-23 305-CD-008-001

6.3.10 DsStNetworkResource Class

Parent Class: DsStResource
Public: YesDistributed Object: Yes
Purpose and Description:
This class provides a push/pull interface to the network for transferring data for both ingest
and data distribution operations.

Attributes:

myDestination - This attribute identifies the destination machine for the network data transfer.
Data Type: char *
Privilege: Private
Default Value:

mySource - This attribute identifies the source machine for the network data transfer.

Data Type: char *

Privilege: Private

Default Value:

Operations:

GetDestination - This operation gets the name of the destination machine for the network data
transfer.
Arguments: nodename:char*
Return Type: GlStatus
Privilege: Public

GetSource - This operation gets the name of the source machine for the network data

transfer.

Arguments: nodename:char*

Return Type: GlStatus

Privilege: Public

SetDestination
Arguments: nodename:char*

Return Type: GlStatus

Privilege: Public

SetSource - This operation sets the name of the source machine for the network data

transfer.

Arguments: nodename:char*

6-24 305-CD-008-001

Return Type: GlStatus
Privilege: Public

Associations:

The DsStNetworkResource class has associations with the following classes:
None

6.3.11 DsStPhysicalResource Class

Parent Class: DsStResource
Public: NoDistributed Object: No
Purpose and Description:
This class provides a generic interface to all services provided by the physical ingest and
data distribution resources of the Data Server.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsStPhysicalResource class has associations with the following classes:
None

6.3.12 DsStPrinter Class

Parent Class: DsStPhysicalResource
Public: YesDistributed Object: Yes
Purpose and Description:
This class provides an interface to the resource pool of printers used by data distribution to
produce shipping labels, packing slips and media labels.

6-25 305-CD-008-001

Attributes:

All Attributes inherited from parent class

Operations:

Print - This operation writes text to the printer.
Arguments: FileName: char *
Return Type: GlStatus
Privilege: Public

~DsStPrinter - This operation destroys the Printer object.

Arguments:

Return Type: void

Privilege: Public

Associations:

The DsStPrinter class has associations with the following classes:
None

6.3.13 DsStPullConfig Class

Parent Class: DsCnConfiguration
Public: NoDistributed Object: No
Purpose and Description:
This class is a specialization of the DsCnConfiguration base class. It manages configuration
parameters for the designated electronic "pull" area on magnetic disk.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

6-26 305-CD-008-001

Associations:

The DsStPullConfig class has associations with the following classes:
None

6.3.14 DsStPullList Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
This class provides a mechanism for tracking the contents of the area on magnetic disk
designated as the electronic "pull" area. The dynamic record of the data files currently in
the pull area allows the Data Server to more efficiently and more quickly provide access to
files which users have indicated they desire to electronically pull to their own workstations/
workareas.

Attributes:

myCurrentSize - This attribute indicates the size (in KBYTES) of all files currently in the
distribution "pull" list (i.e., those data files that will be pulled by their respective requester).
Data Type: unsigned short
Privilege: Private
Default Value: 0
This is a Derived Attribute.

Operations:

AddElement - This operation adds a file to the distribution "pull" list.
Arguments: FileName: char *,FileSize: long,RequestID:unsigned
long,Priority:short,ProfileInfo:ptr
Return Type: GlStatus
Privilege: Private

AssociateElement - This operation searches the distribution "pull" list for a specific file

that has been previously distributed. If the file is found, the reference count for the file is

incremented by 1.

Arguments: FileName:char *,RequestID:unsigned long

Return Type: GlStatus

Privilege: Private

6-27 305-CD-008-001

DeleteElement - This operation removes the entry associated with a specific file from the

distribution "pull" list.

Arguments: FileName:char *

Return Type: GlStatus

Privilege: Private

DissociateElement - This operation decrements the reference count for a specific file and

a specific user in the distribution "pull" list.

Arguments: FileName:char *,RequestID:unsigned long

Return Type: GlStatus

Privilege: Private

GetCurrentSize - This operation gets the current total size (in KBYTES) of all files in the

distribution "pull" list.

Arguments: CurrentSize:unsigned short

Return Type: GlStatus

Privilege: Private

GetExpiration - This operation gets the expiration time and date for a specific file in the

distribution pull list.

Arguments: FileName:char *,ExpTimeDate: char*

Return Type: GlStatus

Privilege: Private

ReadNextElement - This operation provides access to the next entry for a file in the

distribution "pull" list.

Arguments: RequestInfo:struct

Return Type: GlStatus

Privilege: Private

SetCurrentSize - This operation sets the total size (in KBYTES) of all files in the

distribution "pull" list.

Arguments: CurrentSize:unsigned short

Return Type: GlStatus

Privilege: Private

SetExpiration - This operation appropriately sets the expiration date for a file which has

been temporarily stored in the distribution "pull" list.

Arguments: FileName:char *,ExpTimeDate:char *

Return Type: GlStatus

Privilege: Private

6-28 305-CD-008-001

Associations:

The DsStPullList class has associations with the following classes:
Class: DsStResource isupdatedby
Class: DsStPullMonitor managespullareavia

6.3.15 DsStPullMonitor Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description: To provide a mechanism to delete data objects appropriately from
the electronic “pull” data area and to report utilization of the pull area. The Pull Monitor
performs these functions by constantly monitoring the contents of the pull area and uses
information contained in the list of files contained in the pull area.

Attributes:

$myCacheConfig - This attribute identifies the configuration file for the disk area designated
as the "pull" area for electronically distributed files.
Data Type: char *
Privilege: Private
Default Value:

myConfirmTimeOut - This attribute indicates OPS personnel desire to confirm or not to

confirm deletion of pulled data files when the files presence in the pull area exceeds the

expiration time.

Data Type: boolean

Privilege: Private

Default Value: false

myFreeCache - This attribute indicates the amount of available (i.e., currently unused)

disk space (in KBYTES) in the distributed data cache area.

Data Type: long int

Privilege: Private

Default Value:

This is a Derived Attribute.

myHighWaterMark - This attribute indicates the percentage utilization of disk space in th

edistributed data cache area which determines nominally when cache reclamation

operations start.

Data Type: float

6-29 305-CD-008-001

Privilege: Private

Default Value: 75.0

myLowWaterMark - This attribute indicates the percentage amount of disk space usage

in the distribution data cache area which determines when cache reclamation operations

nominally cease.

Data Type: float

Privilege: Private

Default Value: 45.0

myMaxSize - This attribute indicates the size (in KBYTES) of the disk area designated as

the "pull" area.

Data Type: long int

Privilege: Private

Default Value:

myNumberFiles - This attribute indicates the total number of files currently resident in the

pull area.

Data Type: long

Privilege: Private

Default Value: 0

This is a Derived Attribute.

mySleepTime - This attribute indicates the time (in seconds) that the Distribution Cache

Monitor sleeps before starting cache reclamation (i.e., deleting expired files).

Data Type: float

Privilege: Private

Default Value: 10.0

Operations:

DeleteFile - This operation deletes a file from the designated "pull" area on magnetic disk.
Arguments: FileName: char *
Return Type: GlStatus
Privilege: Public

GetFreeCache - This operation gets the amount of unused disk space in the distributed

data cache area.

Arguments: Size:long int

Return Type: GlStatus

Privilege: Private

6-30 305-CD-008-001

GetHighWaterMark - This operation gets the high water mark for the pull area (i.e., the

percent utilization of the pull area at which the Pull Monitor starts to search for and delete

files from the pull area.

Arguments: Percent:float

Return Type: GlStatus

Privilege: Private

GetLowWaterMark - This operation gets the current low water mark for the pull area (i.e.,

the percent utilization at which the Pull Monitor stops searching for files to delete from the

pull area).

Arguments: Percent:float

Return Type: GlStatus

Privilege: Private

GetMaxSize - This operation gets the current total size (in KBYTES) of disk space

designated as the "pull" area for electronically distributed files.

Arguments: CacheSize:long int

Return Type: GlStatus

Privilege: Private

GetNumberFiles - This operation gets the total number of files currently in the pull area.

Arguments: TotalFiles:long

Return Type: GlStatus

Privilege: Private

GetSleepTime - This operation gets the time (in seconds) that the Pull Monitor sleeps

before checking for and deleting files from the pull area.

Arguments: STime:float

Return Type: GlStatus

Privilege: Private

ReclaimSpace - This operation searches the distributed data cache list for files to delete

and subsequently deletes files found.

Arguments:

Return Type: GlStatus

Privilege: Public

ReportStats - This operation reports disk space utilization statistics for the disk space

designated as the "pull" area for electronically distributed data files.

Arguments:

Return Type: GlStatus

Privilege: Public

SetFreeCache - This operation sets the amount of unused disk space in the distributed data

cache area.

6-31 305-CD-008-001

Arguments: Size:long int

Return Type: GlStatus

Privilege: Private

SetHighWaterMark - This operation sets the high water mark for the disk space

designated as the "pull" area for electronically distributed files.

Arguments: Percent:float

Return Type: GlStatus

Privilege: Private

SetLowWaterMark - This operation sets the low water mark for the disk space designated

as the "pull" area for electronically distributed data files.

Arguments: Percent:float

Return Type: GlStatus

Privilege: Private

SetMaxSize - This operation sets the size (in KBYTES) of the disk space designated as the

"pull" area for electronically distributed data files.

Arguments: CacheSize:long int

Return Type: GlStatus

Privilege: Private

SetNumberFiles - This operation sets the number of files that are currently in the pull area.

Arguments: TotalFiles:long

Return Type: GlStatus

Privilege: Private

SetSleepTime - This operation sets the time (in seconds) that the Pull Monitor sleeps

before checking for (and deleting when appropriate) files from the "pull" area.

Arguments: STime:float

Return Type: GlStatus

Privilege: Private

Associations:

The DsStPullMonitor class has associations with the following classes:
Class: DsStPullList managespullareavia

6-32 305-CD-008-001

6.3.16 DsStRequestManager Class

Parent Class: Not Applicable
Public: YesDistributed Object: Yes
Purpose and Description:
This class services selected service requests from operations staff and clients. It insures
that the service requests are properly routed to the appropriate resource manager(s).

Attributes:

myNumberRequests - This attribute indicates the number of requests for service which have
been received but are still in progress.
Data Type: unsigned short
Privilege: Private
Default Value: 0

myRequestTable - This attribute identifies the table of outstanding requests.

Data Type: ptr

Privilege: Private

Default Value:

Operations:

Abort - This public service causes the termination of processing of the specified request if the
request is currently queued.
Arguments: RequestID:unsigned long
Return Type: GlStatus
Privilege: Public

ChangeDeviceStatus - This public service provides operations staff the capability to

change the operational status of a specific resource device under control of the Storage

Management CI.

Arguments: DeviceName: char *,DeviceStatus: char *

Return Type: GlStatus

Privilege: Public

ChangeRequestPriority - This public service changes the priority of a queued request for

service. It has no effect on the request if the request is not currently queued.

Arguments: RequestID:unsigned long,Priority:short

Return Type: GlStatus

Privilege: Public

6-33 305-CD-008-001

DismountVolume - This operation dismounts a specific volume.

Arguments: VolName: char *

Return Type: Void

Privilege: Public

EndService - This operation marks the end of service of a request. It removes the entry in

the request table which corresponds to the specified request id.

Arguments: RequestID:unsigned long

Return Type: GlStatus

Privilege: Private

GetDeviceStatus - This public service gets the operational status of a specific resource

device.

Arguments: DeviceName: char *,DeviceStatus:char *

Return Type: GlStatus

Privilege: Public

LocateManager - This operation identifies and provides the appropriate resource manager

for requests which are still in-progress.

Arguments: RequestID:unsigned long,ResourceManager:ptr

Return Type: GlStatus

Privilege: Private

MountVolume - This operation mounts a specific volume.

Arguments: VolName: char *

Return Type: Void

Privilege: Public

ReportResourceStats - This public service provides various resource related reports for

all or specific devices managed by the Storage Management CI.

Arguments: DeviceName: char *

Return Type: GlStatus

Privilege: Public

RequestStatus - This public service requests the status of a previously submitted data store

or data retrieve request.

Arguments: RequestID:unsigned long

Return Type: GlStatus

Privilege: Public

StartService - This operation marks the start of service for a request. It places an entryu

in the Request Table which corresponds to the specified request id.

Arguments: RequestID:unsigned long

Return Type: GlStatus

Privilege: Private

6-34 305-CD-008-001

~DsStRequestManager - This is the destructor for the Request Manager object.
Arguments:

Associations:

The DsStRequestManager class has associations with the following classes:
Class: DsStResourceManager routesrequeststo

6.3.17 DsStReservation Class

Parent Class: Not Applicable
Public: YesDistributed Object: Yes
Persistent Class:
Purpose and Description:
This class requests preallocation aand/or reservation of a resource. The Reservation is an
internal mechanism to allocate a resource at some future time. The reservation request
identifies the requestor, the resource to be allocated and the future time the resource will is
required.

Attributes:

myEndTime - This attribute indicates the end time and date for the reservation.
Data Type: char *
Privilege: Public
Default Value:

myPriority - This attribute indicates the priority of the reservation request.

Data Type: unsigned short

Privilege: Public

Default Value: 0

myRequester - This attribute identifes the reservation requester.

Data Type: char *

Privilege: Public

Default Value:

myReservationRef - This attribute identifies the reservation confirmation number for the

resource.

Data Type: unsigned long

6-35 305-CD-008-001

Privilege: Public

Default Value: 0

myResourceType - This attribute indicates the kind of resource that is being reserved.

Possible values include Staging Disk, Network Resource, 4mm Tape, 8mm Tape and CD-

ROM.

Data Type: char *

Privilege: Public

Default Value:

mySize - This attribute indicates the amount of data that is anticipated to be transferred by

the reserved resource when the reservation becomes active.

Data Type: unsigned short

Privilege: Public

Default Value: 1

myStartTime - This attribute indicates the start time and date of the reservation.

Data Type: char *

Privilege: Public

Default Value:

mySubmitTime - This is the time that the reservation request is submitted.

Data Type: char *

Privilege: Public

Default Value:

Operations:

Activate - This public service activates the resource reservation (i.e., exchanges the resource
reservation for a resource allocation).
Arguments: RequestID:unsigned long,ResourceRef:ptr
Return Type: GlStatus
Privilege: Public

Cancel - This public service cancels a previously made reservation for a resource.

Arguments: RequestID:unsigned long

Return Type: GlStatus

Privilege: Public

Make - This public service creates an initial blank reservation request.

Arguments:

Return Type: GlStatus

Privilege: Public

6-36 305-CD-008-001

SetEndTime - This public operation sets the desired end time and date for the resource

reservation.

Arguments: TimeDate:char *

Return Type: GlStatus

Privilege: Public

SetPriority - This public service sets the priority of the reservation request.

Arguments: Priority:unsigned:short

Return Type: GlStatus

Privilege: Public

SetRequester - This operation sets the name of the requester of the resource reservation.

Arguments: RequesterName:char

Return Type: GlStatus

Privilege: Public

SetResSize - This public service sets the anticipated size of data (in KBYTES) to be

transferred/handled by the resource being reserved.

Arguments: ReservationSize:unsigned short

Return Type: GlStatus

Privilege: Public

SetResourceType - This public service sets the kind of resource that is being reserved.

Arguments: char

Return Type: GlStatus

Privilege: Public

SetStartTime - This operation sets the start time and date for the resource reservation.

Arguments: TimeDate:char *

Return Type: GlStatus

Privilege: Public

Submit - This public service submits the completed reservation request to reserve a

resource for some time into the future.

Arguments: RequestID:unsigned long

Return Type: GlStatus

Privilege: Public

~DsStReservation - This is the destructor for the Reservation object.

Arguments:

6-37 305-CD-008-001

Associations:

The DsStReservation class has associations with the following classes:
Class: DsStResourceSchedule isreflectedin

6.3.18 DsStResource Class

Parent Class: Not Applicable
Public: YesDistributed Object: Yes
Persistent Class:
Purpose and Description:
To provide an interface to the services provided by the resources of the data server. The
Resource is the generic interface to the specific resources within the Data Server.

Attributes:

myMediaSize - This attribute indicates the size of the media (i.e., small, medium, large) for
this allocation.
Data Type: enum
Privilege: Public
Default Value:

myPriority - This attribute indicates the priority of the current allocation of the device.

Data Type: unsigned short

Privilege: Public

Default Value: 0

myResourceName - This attribute uniquely identifies the specific device in the resource

pool.

Data Type: char *

Privilege: Public

Default Value:

myStatus - This attribute gives the current status of the resource. Valid values are on-line,

off-line, reserved, periodic maintainance, remedial maintenance.

Data Type: char *

Privilege: Public

Default Value:

6-38 305-CD-008-001

Operations:

Allocate -
Arguments: ResourceType: char *,MediaType:enum,RequestID: unsigned
long,Priority:short, Size:long,ProfileInfo: ptr
Return Type: ResourceRef: ptr
Privilege: Public
PDL:// Log allocation request received
// Project a device use time for the allocation
// If there are no available devices
// Queue request in resource queue
// else
// Check the resource schedule for an available device in the projected time period
// If such a device is found
// Place an entry in the schedule for this device allocation
// Decrement and set the number of available devices
// else
// Queue request in the resource queue
//
// return

Deallocate - This public service releases or frees a previously allocated resource.

Arguments: ResourceRef:ptr

Return Type: GlStatus

Privilege: Public

DistFrom - This public service supports the transfer of data files from internal storage to

specific distribution devices.

Arguments: SourceResource:char *,Operation:char *,DataItemName:char *

Return Type: GlStatus

Privilege: Public

GetDevTime - This public service gets the projected device use time for the requested

allocation of a resource device.

Arguments: Size:ulong,MediaSize:enum,DeviceTime:unsigned short

Return Type: GlStatus

Privilege: Private

GetMediaSize - This public service provides the size of the media for the allocated

resource device.

Arguments: MediaSize:enum

Return Type: GlStatus

Privilege: Public

6-39 305-CD-008-001

GetPriority - This operation gets the current priority of the resource.

Arguments: RequestID:unsigned long,CurrentPriority:unsigned short

Return Type: GlStatus

Privilege: Private

GetResourceID - This public service provides the name of the resource allocated.

Arguments: ResourceName:char *

Return Type: GlStatus

Privilege: Public

GetStatus - This public service gets the status of a device in the resource pool.

Arguments: DeviceStatus:char *

Return Type: GlStatus

Privilege: Public

IngestFrom - This public service transfers data files from specific ingest devices to an

internal ECS storage device.

Arguments: SourceMachine: char *,SourceDirectory: char *,DestMachine: char *,

DestDirectory: char *

Return Type: GlStatus

Privilege: Public

RestoreResourceInformation - This service will restore configurable parameters to preset

values. This will be used in restart or cold start situations.

Arguments:

Return Type: GlStatus

Privilege: Private

SetMediaSize - This operation sets the size of the media for the current allocation of the

resource device.

Arguments: MediaSize:enum

Return Type: GlStatus

Privilege: Private

SetPriority - This operation sets the current priority of the resource to a specified value.

The initial priority is set to the scheduling priority of the request.

Arguments: RequestID:int,NewPriority:short iint

Return Type: GlStatus

Privilege: Private

SetResourceID - This operation sets the name of the resource allocated.

Arguments: ResourceName:char*

Return Type: GlStatus

Privilege: Private

6-40 305-CD-008-001

SetStatus - This operation sets the status of a specific device of the resource.

Arguments: DeviceStatus:char *

Return Type: GlStatus

Privilege: Private

~DsStResource - This is the destructor for the resource object.

Arguments:

Return Type: void

Privilege: Public

Associations:

The DsStResource class has associations with the following classes:
Class: DsStPullList isupdatedby
Class: DsStStagingDataList isupdatedby
Class: DsStResourceManager managesaccessto
Class: DsStResourceSchedule providesschedulinginformationto
Class: DsStResourcePolicy utilizes

6.3.19 DsStResourceConfig Class

Parent Class: DsCnConfiguration
Public: NoDistributed Object: No
Purpose and Description:
This class is a specialization of the DsCnConfiguration base class. It manages
configuration parameters for resources managed by the Storage Management CI.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

6-41 305-CD-008-001

The DsStResourceConfig class has associations with the following classes:
None

6.3.20 DsStResourceManager Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
To manage and monitor the resources of the data server. The ResourceManager allocates
resources that it controls during the processing of requests.

Attributes:

myFreeResources - This attribute indicates the current number of available devices (i.e.,
devices which are operational and can be allocated or reserved) in a resource pool.
Data Type: unsigned short
Privilege: Private
Default Value: 0
This is a Derived Attribute.

myMaxResources - This attribute indicates the maximum number of devices in the

resource pool. In the case of staging disk it indicates the amount (in KBYTES) of disk

space available for workarea allocations and/or reservations.

Data Type: unsigned short

Privilege: Private

Default Value: 0

myReservedResources - This attribute indicates the current number of reservations for

devices in the resource pool. In the case of staging disk, it indicates the total current amount

of disk space (in KBYTES) for which there is a reservation.

Data Type: unsigned short

Privilege: Private

Default Value: 0

This is a Derived Attribute.

myResourceType - This attribute indicates the name of the resource pool.

Data Type: char *

Privilege: Private

Default Value:

6-42 305-CD-008-001

Operations:

AbortRequest - This service causes the abort and/or cancellation of a resource request which
has been queued. This service will not cause an abort of a request which is currently active.
Arguments: RequestID:unsigned long
Return Type: GlStatus
Privilege: Private

AllocateResource - This service allocates a device from a resource pool.

Arguments: MediaType:enum,RequestID:unsigned long,Priority:short,Size:short,

ProfileInfo:ptr

Return Type: ResourceRef: ptr

Privilege: Private

ChangeDeviceStatus - This operation enables operations personnel to change the

operational status of a specific resource device.

Arguments: RequestID:unsigned long,NewStatus:short int

Return Type: GlStatus

Privilege: Private

ChangePriority - This public service enables the changing of a resource request's priority.

This service will only change the priority of a request which is queued.

Arguments: RequestID:unsigned long,Priority:short int

Return Type: GlStatus

Privilege: Private

PDL:// Log change priority request received

// Search the resource queue for a specific requestID

// If the request was found in the queue

// Set the new priority for the request

// Notify requester that priority was changed

// Log priority changed for request

// else

// Search the resource schedule to ascertain if this is an active request

// If the request was found in the schedule

// Notify requester that priority is not changed for active requests

// else

// Notify requester that priority is not changed for requests which have completed

//

// Log change priority request completed

// return

DeallocateResource - This operation deallocates a previously allocated device in the

resource pool.

Arguments: ResourceRef:ptr

6-43 305-CD-008-001

Return Type: void

Privilege: Private

DismountVolume - This operation enables operations personnel to dismount a previously

mounted volume.

Arguments: VolName:char *

Return Type: GlStatus

Privilege: Private

GetFreeResources - This operation gets the current number of free resources in the

resource pool.

Arguments: NumResources:short int

Return Type: GlStatus

Privilege: Private

GetReservedResources - This operation gets the current number of reservations for

devices in the resource pool.

Arguments: NumResources:short int

Return Type: GlStatus

Privilege: Private

MountVolume - This operation enables operations personnel to mount a specific volume.

Arguments: VolName:char *

Return Type: GlStatus

Privilege: Private

ReportResourceInformation - This service reports information concerning devices in the

resource pool.

Arguments:

Return Type: GlStatus

Privilege: Private

RequestStatus - This operation provides a response to queries received requesting the

status of previously submitted store and retrieval requests.

Arguments: RequestID:unsigned long

Return Type: GlStatus

Privilege: Private

SetFreeResources - This operation sets the current number of available (i.e, unallocated)

devices.

Arguments: NumResources:short int

Return Type: GlStatus

Privilege: Private

6-44 305-CD-008-001

Associations:

The DsStResourceManager class has associations with the following classes:
Class: DsStResource managesaccessto
Class: DsStResourceQueue retainsrequestsqueuedby
Class: DsStRequestManager routesrequeststo
Class: DsStResourceSchedule schedulesresourcesvia

6.3.21 DsStResourcePolicy Class

Parent Class: Not Applicable
Public: No Distributed Object: No
Purpose and Description: This class maintains information concerning the operations staff
desired policy(ies) for scheduling resources. A Device Table created and maintained by this
class provides quick access to this information.

Attributes:

$myDeviceTable - This attribute identifies the table of projected device use times for each type
of resource (excepting those resources which are not allocated or reserved).
Data Type: ptr
Privilege: Private
Default Value:

$myPolicyConfig - This attribute identifies persistent policy configuration information for

each type of resource.

Data Type: ptr

Privilege: Private

Default Value:

myDismountTime - This attribute specifies the time in seconds required by OPS personnel

to dismount a single piece of media from a device in the resource pool.

Data Type: float

Privilege: Private

Default Value: 30.0

myEfficiencyFactor - This attribute specifies the efficiency factor reflecting how well and

how proficient OPS personnel are when handling media during mount and dismount

operations.

Data Type: float

Privilege: Private

Default Value: 1.0

6-45 305-CD-008-001

myHighDensitySize - This attribute specifies the maximum size (in KBYTES) that can be

stored on a single piece of media which is considered to be "Large" in size.

Data Type: int

Privilege: Private

Default Value: 10000

myLowDensitySize - This attribute indicates the maximum size of data (in KBYTES) that

can be stored on a single piece of media which is considered to be "Small" in size.

Data Type: int

Privilege: Private

Default Value: 500

myMaxNumberMedia - This attribute indicates the maximum number of media that are

allowed for a resource for a single distribution or ingest request.

Data Type: int

Privilege: Private

Default Value: 10

myMedDensitySize - This attribute specifies the maximum size (in KBYTES) of data that

can be stored on a single piece of media which is considered to be "Medium" in size.

Data Type: int

Privilege: Private

Default Value: 2000

myMediaTypes - This attribute indicates the number of different densities of media that

can be read/written by a device in the resource pool.

Data Type: int

Privilege: Private

Default Value: 3

myMountTime - This attribute specifies the time required in seconds for OPS personnel

to mount one piece of media on a device of the resource pool.

Data Type: float

Privilege: Private

Default Value: 30.0

myNumberDevices - This attribute specifes the number of physical devices of this type of

resource.

Data Type: unsigned short

Privilege: Private

Default Value: 1

myRewindTime - This operation indicates the time (in seconds) to rewind a single piece

of media on a device in the resource pool.

Data Type: float

6-46 305-CD-008-001

Privilege: Private

Default Value: 60.0

myTransferRate - This attribute specifies the transfer rate in KBYTES per second of a

device in the resource pool.

Data Type: float

Privilege: Private

Default Value: 0.0

Operations:

BuildDevTable - This operation constructs a table of values used to project the total time of
use (i.e., from the time the first piece of media for the device is mounted until the time the
last piece of media is unmounted) for a resource for which an allocation request has been
received.
Arguments:
Return Type: GlStatus
Privilege: Private

GetNumberDevices - This operation provides access to the number of devices in a specific

resource pool.

Arguments: Devices:short

Return Type: GlStatus

Privilege: Private

ProjectDuration - This operation provides an estimated time of use of a device. The

estimate is based upon the specified time to mount and dismount all media involved in the

request and the actual transfer time of data.

Arguments: Size:long,MediaType:enum,Duration:short

SetDismountTime - This operation set the time (in seconds) operations personnel take to

dismount a single piece of media from a device in the resource pool.

Arguments: real

Return Type: GlStatus

Privilege: Private

SetMountTime - This operation sets the time (in seconds) operations personnel take to

mount a single piece of media on a device in a specific resource pool.

Arguments: MountTime:float

Return Type: GlStatus

Privilege: Private

6-47 305-CD-008-001

SetNumberDevices - This operation sets the number of devices in the resource pool.

Arguments: unsigned short

Return Type: GlStatus

Privilege: Private

SetTransferRate - This operation sets the data transfer rate (in KBYTES/second) of a

device in the resource pool.

Arguments: Rate:float

Return Type: GlStatus

Privilege: Private

Associations:

The DsStResourcePolicy class has associations with the following classes:
Class: DsStResource utilizes

6.3.22 DsStResourceQueue Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
This class maintains a list of pending resource requests. Outstanding requests for
allocation of resources are queued based upon their respective priority. These requests are
dequeued based upon this same priority and resource availability. Each Resource Manager
maintains a unique queue for the resources it manages.

Attributes:

myCurrentqueued - This attribute indicates the current number of entries in the resource
queue.
Data Type: unsigned short
Privilege: Private
Default Value: 0
This is a Derived Attribute.

myMaxSize - This is the maximum size of the Resource Queue.

Data Type: unsigned short

Privilege: Private

Default Value:

6-48 305-CD-008-001

Operations:

Dequeue - This service will remove an entry from the queue
Arguments: RequestInfo: structure
Return Type: GlStatus
Privilege: Private

FindRequest - This operation locates a specific request in the resource queue.

Arguments: RequestID:unsigned long, RequestInfo: structure

Return Type: GlStatus

Privilege: Private

GetCurrentQueued - This operation indicates the number of requests currently in the

resource queue.

Arguments: NumRequests: short

Return Type: GlStatus

Privilege: Private

GetNextQueued - This operation provides information about the next element in the

resource queue. Elements are queued by high priority.

Arguments: RequestInfo: structure

Return Type: GlStatus

Privilege: Private

Queue - This service will add an item to the queue

Arguments: RequestInfo: structure

Return Type: GlStatus

Privilege: Private

RestoreQueue - This service will restore queue information to a previously checkpointed

condition.

Arguments:

Return Type: GlStatus

Privilege: Private

SetPriority - This operation sets the priority of a specific request in the resource queue.

Arguments: Priority: unsigned short,RequestID: unsigned long

Return Type: GlStatus

Privilege: Private

Update - This service will update information about an element in the queue.

Arguments: RequestInfo: structure

6-49 305-CD-008-001

Return Type: GlStatus
Privilege: Private

Associations:

The DsStResourceQueue class has associations with the following classes:
Class: DsStResourceManager retainsrequestsqueuedby

6.3.23 DsStResourceSchedule Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
To schedule the usage of resources of the data server. The ResourceSchedule is a
compilation of all future resource requirements.

Attributes:

$mySchedulingConfig
Data Type: char *

Privilege: Private

Default Value:

myEndDate - This attribute indicates the end time and date of the current view of the

schedule. This time and date are changed on a daily basis.

Data Type: char *

Privilege: Private

Default Value:

This is a Derived Attribute.

myPoolName - This attribute indicates the name of the resource pool (e.g., Staging disk,

CDROM, Archive, Tape).

Data Type: char *

Privilege: Private

Default Value:

myScheduleFileName - This is the external filename of the resource schedule for all

devices in the resource pool.

Data Type: char *

6-50 305-CD-008-001

Privilege: Private

Default Value:

myStartDate - This attribute indicates the start time and date of the current view of the

resource schedule. This time and date are changed appropriately on a daily basis.

Data Type: char *

Privilege: Private

Default Value:

This is a Derived Attribute.

Operations:

ActivateReservation - This operation confirms a resource reservation and provides a unique
reference to the reserved resource. It in effect, exchanges a reservation for a resource for
the actual resource object.
Arguments:
Return Type: GlStatus
Privilege: Private

BookResource - This operation makes an entry in the resource schedule for each allocation

made of a device in the resource pool.

Arguments: ResourceRef:unsigned long,RequestID:unsigned long,StartTime:char

,EndTime:char Size:unsigned short,MediaType:enum,Priority:unsigned short,

ProfileINfo:ptr,Type:enum

Return Type: GlStatus

Privilege: Private

CancelReservation - This public service cancels a previously made reservation for a

resource. Before cancelling a reservation, this service confirms that this is a valid request

(i.e., only the requester may cancel the reservation).

Arguments: ReservationRef:unsigned long,RequestID:unsigned long

Return Type: GlStatus

Privilege: Private

CheckReservations
Arguments: CheckQueue: boolean

Return Type: GlStatus

Privilege: Private

CreateSchedule - This operation creates the initial schedule for all devices in a resource

pool.

Arguments:

6-51 305-CD-008-001

Return Type: GlStatus

Privilege: Private

FindRequest - This operation searches the current view of the resource schedule for a

specific in-progress request. If the request is found then information about that request and

its resource usage is provided.

Arguments: RequestID:unsigned long,RequestInfo:struct

Return Type: GlStatus

Privilege: Private

FindResource - This operation searches the resource schedule for the first device which is

available (i.e., that is not currently allocated or reserved) in a designated timeframe. If such

a device is found, then a unique reference to the resource is provided.

Arguments: StartTime:char *,EndTime:char *,ResourceRef:unsigned long

Return Type: GlStatus

Privilege: Private

GetCurrentTime - This operation gets the current system time and puts it into the needed

format.

Arguments: CurrentTime:char *

Return Type: GlStatus

Privilege: Private

RecordEndTime - This operation records into the resource schedule the actual time at

which a resource is freed and released for subsequent use by another requester.

Arguments: ResourceRef:unsigned long,CompletionStatus:long

Return Type: GlStatus

Privilege:

ReportSchedule - This operation reports scheduling information about resources in the

current view of the resource schedule.

Arguments: DeviceUse: Enum,StartTime:char *,EndTime:char *

Return Type: GlStatus

Privilege: Private

RestoreSchedule - This operation restores a previously checkpointed resource schedule.

Arguments:

Return Type: GlStatus

Privilege: Private

RollSchedule - This operation sets the current view of the resource schedule. The current

view of the schedule is defined by the start time and end time attributes.

Arguments: NumberDays:unsigned short

Return Type: GlStatus

Privilege: Private

6-52 305-CD-008-001

SaveSchedule - This service will checkpoint a resource schedule.

Arguments:

Return Type: GlStatus

Privilege: Private

Associations:

The DsStResourceSchedule class has associations with the following classes:
Class: DsStReservation isreflectedin
Class: DsStResource providesschedulinginformationto
Class: DsStResourceManager schedulesresourcesvia

6.3.24 DsStSCacheConfig Class

Parent Class: DsCnConfiguration
Public: NoDistributed Object: No
Purpose and Description:
This class is a specialization of the DsCnConfiguration base class. It manages
configuration parameters for the staging disk cache area.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsStSCacheConfig class has associations with the following classes:
None

6-53 305-CD-008-001

6.3.25 DsStSchedulingConfig Class

Parent Class: DsCnConfiguration
Public: NoDistributed Object: No
Purpose and Description:
This class is a specialization of the DsCnConfiguration base class. It manages configuration
parameters for scheduling resources managed by the Storage Management CI. Resources
currently managed by the CI include 4mm Tape, 8mm Tape, CDROM, Staging Disk, the
ECS Archive and the ECS communications network.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DsStSchedulingConfig class has associations with the following classes:
None

6.3.26 DsStStagingDataList Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
This class provides an mechanism for tracking the contents of non-work areas of staging
disk used by the Data Server. The dynamic record of the data objects currently on staging
disk allows the Data Server to cache data files on staging disk and subsequently provide
quicker retrieval access to those data files.

Attributes:

myCurrentSize - This attribute indicates the current number of files resident in staging disk
cache.
Data Type: short int
Privilege: Private

6-54 305-CD-008-001

Default Value: 0

This is a Derived Attribute.

myNextElement - This attribute indicates the next file on the staging data list.

Data Type: ptr

Privilege: Private

Default Value:

This is a Derived Attribute.

myTotalSize - This attribute indicates the total size (in KBYTES) of all files currently in

staging disk cache.

Data Type: long int

Privilege: Private

Default Value: 0

Operations:

AddElement - This operation adds a file to the list of files currently in the staging disk cache
area. In addition to the file name, other information retained in the list includes: RequestID,
file size, priority, reference count and the time and date of insertion in the cache.
Arguments: FileName:char *,RequestID:unsigned long,Size:long,Priority:short
Return Type: GlStatus
Privilege: Private

AssociateElement - This operation searches the staging disk cache list for a specific file.

If the file is found, the reference count for the file is incremented by 1 to reflect an

additional request for the file.

Arguments: FileName:char *

Return Type: GlStatus

Privilege: Private

DeleteElement - This operation removes a file from the staging disk cache list.

Arguments: FileName:char *,RequestID:long

Return Type: GlStatus

Privilege: Private

DisassociateElement - This operation decrements the reference count for a specified file

by one. This decrementing indicates that the need for the file by the requester has been

satisfied.

Arguments: FileName:char *

Return Type: GlStatus

Privilege: Private

6-55 305-CD-008-001

GetCurrentSize - This operation gets the total size (in KBYTES) of all files currently in

the staging disk cache area.

Arguments: TotalFiles:short int

Return Type: GlStatus

Privilege: Private

GetTotalSize - This operation gets the total size (in KBYTES) of all files currently in

staging disk cache.

Arguments: TotalSize:long int

Return Type: GlStatus

Privilege: Public

ReadNextElement - This operation provides access to the next file in the staging data

cache list. This operation will be used while searching the staging data cache list for files

to delete.

Arguments: NextFile:ptr

Return Type: GlStatus

Privilege: Private

SetCurrentSize - This operation sets the total size (in KBYTES) of all files currently in the

staging disk cache area.

Arguments: TotalFiles:short int

Return Type: GlStatus

Privilege: Private

SetExpiration - This operation sets the file expiration time and date. At this time the file

becomes eligible for deletion from staging disk cache.

Arguments: FileName:char *,TimeDate:char *

Return Type: GlStatus

Privilege: Private

SetTotalSize - This operation sets the total size (in KBYTES) of all files currently in

staging disk cache.

Arguments: TotalSize:long int

Return Type: GlStatus

Privilege: Public

6-56 305-CD-008-001

Associations:

The DsStStagingDataList class has associations with the following classes:
Class: DsStResource isupdatedby
Class: DsStStagingMonitor managesstageddatavia

6.3.27 DsStStagingDisk Class

Parent Class: DsStStorageResource
Public: YesDistributed Object: Yes
Persistent Class:
Purpose and Description:
To provide an interface to the staging disk resource for the temporary storage of data. The
StagingDisk provides temporary and buffer storage.

Attributes:

myAvailableSpace - This attribute indicates the amount of free disk space (in KBYTES)
remaining for usage.
Data Type: long int
Privilege: Public
Default Value: 0
This is a Derived Attribute.

myMaxSize - This attribute indicates the maximum size (in KBYTES) of staging disk that

can be allocated to the user at any one time.

Data Type: long int

Privilege: Private

Default Value:

myPathname - This is the pathname to the directory associated with this staging disk.

Data Type: char *

Privilege: Public

Default Value:

mySize - This attribute indicates the size (in KBYTES) of the staging disk allocated.

Data Type: long int

Privilege: Public

Default Value: 0

6-57 305-CD-008-001

Operations:

CopyFile - This operation copies a file on staging disk.
Arguments: SourceFile:char *,DestFile:char *
Return Type: GlStatus
Privilege: Private

ExtendStaging - This operation extends the size of an allocation of staging disk up to but

not exceeding a hard limit. This hard limit is predetermined and set by operations

personnel.

Arguments: ExtendSize:short

Return Type: GlStatus

Privilege: Private

GetAvailableSpace - This operation gets the amount of available disk space for an

allocation.

Arguments: AvailableSpace:long

Return Type: GlStatus

Privilege: Public

GetMaxSize - This operation gets the maximum size of the staging disk allocation.

Arguments: MaxSize:long

Return Type: GlStatus

Privilege: Public

GetPathName - This operation gets the path name for the allocation of staging disk.

Arguments: PathName:char *

Return Type: GlStatus

Privilege: Private

GetSize - This operation gets the current size of the staging disk allocation.

Arguments: CurrentSize:long

Return Type: GlStatus

Privilege: Public

SetAvailableSpace - This operation sets the amount of available disk space for the

allocation.

Arguments: AvailableSpace:long

Return Type: GlStatus

Privilege: Private

SetMaxSize - This operation sets the maximum size for the allocation of staging disk.

Arguments: Size:long

6-58 305-CD-008-001

Return Type: GlStatus

Privilege: Private

SetPathName - This operation sets the path name for the allocation of staging disk.

Arguments: PathName:char *

Return Type: GlStatus

Privilege: Public

SetSize - This operation sets the current size of the staging disk allocation.

Arguments: CurrentSize:long

Return Type: GlStatus

Privilege: Private

~DsStStagingDisk - This operation is the destructor for the StagingDisk object.

Arguments:

Return Type: void

Privilege: Public

Associations:

The DsStStagingDisk class has associations with the following classes:
None

6.3.28 DsStStagingFile Class

Parent Class: DsStFile
Public: YesDistributed Object: Yes
Purpose and Description:
This class provides access to file level services for files created in allocated workareas on
staging disk. This class is a generalization of the superclass File.

Attributes:

All Attributes inherited from parent class

Operations:

DeleteFile - This operation deletes the specified file from a workarea on staging disk.
Arguments: FileName: char *
Return Type: GlStatus

6-59 305-CD-008-001

Privilege: Public

PDL:// Get the size of the file being deleted

// Delete the file from staging disk

// Decrement the size of the file from the running total of bytes associated with

// this allocation of staging disk

// Decrement the size of the file from the

// running total of bytes associated with the directory on staging disk

Put - This public service provides the capability to write data files to a workarea on staging

disk. It also keeps track of the total amount of disk used.

Arguments: FileName: char *

Return Type: GlStatus

Privilege: Public

PDL: // Get file size

// Add file size to running total for allocation

// If running total exceeds hard limit for disk

// usage

// Log hard limit exceeded

// Report error to OPS personnel

// else

// If running total exceeds soft limit for

// disk usage

// Log soft limit exceeded

// Increase soft limit by extension size

// Extend allocation to soft limit

// Add file size to running total for the directory

// Continue Put file operation

// .

// .

// return

~DsStStagingFile - This is the destructor for the StagingFile object.

Arguments:

Associations:

The DsStStagingFile class has associations with the following classes:
None

6-60 305-CD-008-001

6.3.29 DsStStagingMonitor Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
To privde a mechanism to delete data objects appropriately from non-work areas of staging
disk and to report utilization of staging disk. The StagingMonitor performs these functions
by constantly monitoring the contents of staging disk. Via information contained in
theStagingDataList, it determines the correct time to delete files which have been placed
on staging disk. It also deletes other data objects which have been distributed via
electronic push and/or physical media.

Attributes:

$myCacheConfig - This attribute identifies the configuration file for the staging disk cache.
Data Type: ptr
Privilege: Private
Default Value:

myFreeCache - This attribute indicates the total size of the staging disk cache area.

Data Type: long int

Privilege: Private

Default Value:

myHighWaterMark - This attribute indicates the percentage utilization of the staging disk

cache area which nominally determines the start of space reclamation operations.

Data Type: real

Privilege: Private

Default Value: 75

myLowWaterMark - This attribute indicates the percentage utilization of the staging disk

cache which nominally determines when space reclamation operations cease.

Data Type: real

Privilege: Private

Default Value: 40

myMaxSize - This attribute indicates the total size (in KBYTES) of the staging disk cache.

Data Type: long int

Privilege: Private

Default Value:

mySleepTime - This attribute indicates the time in seconds that the staging disk monitor

will sleep between the start of space reclamation operations.

6-61 305-CD-008-001

Data Type: real
Privilege: Private
Default Value: 10

Operations:

Delete - This operation deletes a specified file from the staging disk cache area.
Arguments: Filename:char
Return Type: GlStatus
Privilege: Private

GetFreeCache - This operation gets the size of staging disk which is currently free and not

in use.

Arguments: Size:long int

Return Type: GlStatus

Privilege: Private

GetHighWaterMark - This operation gets the high water mark (percent utilization) for the

staging disk cache area.

Arguments: Percent:real

Return Type: GlStatus

Privilege: Private

GetLowWaterMark - This operation gets the low water mark (percent utilization) for the

staging disk cache area.

Arguments: Percent:real

Return Type: GlStatus

Privilege: Private

GetMaxSize - This operation gets the maximum size of disk space in the staging disk

cache.

Arguments: Size: long int

Return Type: GlStatus

Privilege: Private

GetSleepTime - This operation gets the operations determined sleep time for the Staging

Monitor.

Arguments: Time:real

Return Type: GlStatus

Privilege: Private

ReclaimSpace - This operation searches the list of files currently resident in the staging

disk cache for files which can be deleted. Files found as a result of this operation are

6-62 305-CD-008-001

deleted.

Arguments:

Return Type: GlStatus

Privilege: Private

ReportStats - This operation provides reports on staging disk cache statistics.

Arguments:

Return Type: GlStatus

Privilege: Public

SetFreeCache - This operation sets the size of disk space currently available (i.e., unused)

in staging disk cache.

Arguments: Size:long int

Return Type: GlStatus

Privilege: Private

SetHighWaterMark - This operation sets the high water mark (percent utilization) for

staging disk cache.

Arguments: Percent:real

Return Type: GlStatus

Privilege: Private

SetLowWaterMark - This operation sets the low water mark (percent utilization) for the

staging disk cache area.

Arguments: Percent:real

Return Type: GlStatus

Privilege: Private

SetMaxSize - This operation sets the maximum size of staging disk cache (in KBYTES).

Arguments: Size: long int

Return Type: GlStatus

Privilege: Private

SetSleepTime - This operation sets the sleep time of the Staging Monitor. The Staging

Monitor periodically awakens from its hibernation state to check for and to subsequently

delete files on staging disk.

Arguments: Time:real

Return Type: GlStatus

Privilege: Private

6-63 305-CD-008-001

Associations:

The DsStStagingMonitor class has associations with the following classes:
Class: DsStStagingDataList managesstageddatavia

6.3.30 DsStStorageResource Class

Parent Class: DsStResource
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
To provide an interface to the services provided by the set of storage resources utilized by
the DataServer. The StorageResource is a type of resource that is used for providing
persistent storage devices for the DataServer.

Attributes:

All Attributes inherited from parent class

Operations:

Backup - This service will perform a backup of a storage resource.
Arguments:
Return Type: GlStatus
Privilege: Private

Restore - This service will restore the data files on a storage resource to its previous state

using a previously made backup of the storage resource.

Arguments:

Return Type: GlStatus

Privilege: Private

Associations:

The DsStStorageResource class has associations with the following classes:
None

6-64 305-CD-008-001

6.3.31 DsStTape Class

Parent Class: DsStPhysicalResource
Public: YesDistributed Object: Yes
Purpose and Description:
This class provides an interface to tape resources managed by Storage Management. The
Ingest Client to Storage Management can use tape resources to ingest data files. The Data
Distribution Client to Storage Management can use tape resources to distribute data files to
requesting users.

Attributes:

myBlockCount - This attribute indicates the current number of blocks which have been read
from or written to the media currently mounted on the tape device.
Data Type: long
Privilege: Public
Default Value: 0

myBlockSize - This attribute indicates the block size (in bytes) used for reading and

writing to tape.

Data Type: long

Privilege: Private

Default Value: 0

myCapacity - This attribute indicates the capacity (in KBYTES) of the media currently

mounted in the tape resource.

Data Type: long

Privilege:

Default Value: 0

myNextBlock - This attribute indicates the next block on the media which can be read or

written to.

Data Type: long

Privilege: Private

Default Value: 0

myRemainingBlocks - This attribute indicates the number of blocks remaining on the

media.

Data Type: long

Privilege: Public

Default Value: 0

6-65 305-CD-008-001

Operations:

Dismount - This public operation dismounts the specified volume from a tape device.
Arguments: VolName: char *
Return Type: GlStatus
Privilege: Public

GetBlockCount - This operation gets the current number of blocks which have been read

or written to the media currently mounted on the tape device.

Arguments: BlockCount: long

Return Type: GlStatus

Privilege: Public

GetBlockSize - This operation gets the blocksize (in bytes) used for read and write

operations to the tape device.

Arguments: BlockSize: long

Return Type: GlStatus

Privilege: Public

GetNextBlock - This operation gets the next block to be read or written from the volume

currently mounted on the tape resource.

Arguments: NextBlock: long

Return Type: GlStatus

Privilege: Public

GetRemainingBlocks - This public service gets the number of blocks remaining on the

tape media which can be used to record data files.

Arguments: AvailBlocks: long

Return Type: GlStatus

Privilege: Public

Mount - This public service mounts the specified volume onto a tape device.

Arguments: VolName: char *

Return Type: GlStatus

Privilege: Public

Rewind - This public service rewinds the media currently mounted on the tape device.

Arguments:

Return Type: GlStatus

Privilege: Public

SetBlockCount - This operation sets the number of blocks which have been currently read

or written from or to the media currently mounted.

Arguments: BlockCount: long

6-66 305-CD-008-001

Return Type: GlStatus

Privilege: Private

SetBlockSize - This operation sets the block size (in bytes) for read and write operations to

the tape resource.

Arguments: BlockSize: long

Return Type: GlStatus

Privilege: Private

SetNextBlock - This operation sets the next block to be read or written from the volume

currently mounted on the tape resource.

Arguments: NextBlock: long

Return Type: GlStatus

Privilege: Private

SetRemainingBlocks - This operation sets the number of blocks remaining which have

been read from or written to the tape media.

Arguments: AvailBlocks: long

Return Type: GlStatus

Privilege: Private

Associations:

The DsStTape class has associations with the following classes:
None

6.3.32 GlLog Class

Parent Class: Not Applicable

Attributes:

None

Operations:

None

6-67 305-CD-008-001

Associations:

The GlLog class has associations with the following classes:
None

6.3.33 GlNotification Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
To alert or inform clients of events. The Notification transmits data from a notification
source (e.g. Subscription that has been triggered) to a notification receiver (e.g. a user to
created a subscription). It attempts to notify the recipient directly (via the
DsClNotificationReceiver object), else via email.

Attributes:

None

Operations:

None

Associations:

The GlNotification class has associations with the following classes:
None

6.4 CSCI Dynamic Model
This section describes several scenarios for the Storage Management CSCI. A scenario delineates
the steps that occur in a particular execution through the system.

The scenarios address the following topics:

Resources

• Allocation of a Physical Resource

• Deallocation of a Physical Resource

• Deletion of Staging Disk Data

• Deletion of Pull Disk Data With Confirmation by Operations Personnel

6-68 305-CD-008-001

• Setting the state of a Tape Device to Off-line

• Submitting a Resource Reservation

• Activating a Resource Reservation

• Canceling a Resource Reservation

Requests

• Aborting a request

• Insert Data Requests

• Retrieve Data Requests

6.4.1 Aborting a Request for Service

Summary

The calling object issues a request to abort a previous request. The abort request is received and
logged. The request to be aborted is located in the resource queue and subsequently removed. The
abort is logged and a notification of abnormal termination is sent to the requester.

Assumptions

This scenario assumes that there are no errors.

6.4.2 Activating a Resource Reservation

Summary

The calling object submits a request to allocate the resource it has previously reserved. The request
is received and the reservation for the resource is confirmed by examining the resource schedule.
Appropriate counters are subsequently updated and the calling object receives a distributed object
indicated by the resource reference.

Assumptions

This scenario assumes that there are no errors.

6.4.3 Allocation of a Physical Resource, No Resource Available

Summary

The calling object indicates the type of resource desired in the allocate request. The allocation
request is received and based upon input parameters in the request a projected end time for the
allocation is made. No device of the desired resource type is found which satisfies the time
constraints for the request. The request is queued.

Assumptions

This scenario assumes that there are no errors. It also assumes that all devices of the desired
resource type are unavailable (i.e., they are all currently allocated and/or reserved for some other
client for a portion of the time period projected for the allocation request).

6-69 305-CD-008-001

6.4.4 Allocation of a Physical Resource, Resource Available

Summary

The calling object indicates the type of resource desired in the allocate request. The allocation
request is received and based upon input parameters in the request a projected end time for the
allocation is made. The first device of the desired resource type is found which satisfies the time
constraints for the request. The schedule is updated to reflect the specific resource allocated. The
calling object receives a distributed object indicted by the resource reference.

Assumptions

This scenario assumes that there are no errors. It also assumes that a device of the desired resource
type is available for allocation to a client.

6.4.5 Inserting Data into the Archive

Summary

The calling object requests that a specified file be inserted into the archive. The archive object
copies the file into the archive and returns a status to the caller.

Assumptions

This scenario assumes that there are no errors.

6.4.6 Retrieving Data from the Archive, Checksum Error

Summary

The calling object requests that a specified file be retrieved from the archive. The archive object
checks to see if the requested file is already located on the staging disk. If the file is not already
present, the file is retrieved from the archive. After retrieval of the file, a checksum is performed
and the results are compared to the checksum performed when the file was originally archived.
After the checksum error is detected proper notifications are sent and the error logged. The file is
not placed in the staging disk cache list.

Assumptions

There is only one file to be retrieved indicated in the request. The retrieve operation will succeed.
The requested file is not already on the staging disk.

6.4.7 Retrieving Data from the Archive, File not in Cache

Summary

The calling object requests that a specified file be retrieved from the archive. The archive object
checks to see if the requested file is already located on the staging disk. If the file is not already
present, the file is retrieved from the archive. After retrieval of the file, a checksum is performed
and the results are compared to the checksum performed when the file was originally archived.
Additionally, the file is now placed in the staging disk cache list.

Assumptions

There is only one file to be retrieved indicated in the request. The retrieve operation will succeed.
The requested file is not already on staging disk.

6-70 305-CD-008-001

6.4.8 Canceling a Resource Reservation

Summary

The calling object decides to cancel a previously made resource reservation. The cancellation
request is received and the reservation reference is verified. Appropriate counters are updated.

Assumptions

This scenario assumes that there are no errors.

6.4.9 Deallocation of a Physical Resource, Queued Requests

Summary

The calling object has completed its use of the physical resource and indicates this completion by
deallocating the resource. The deallocation request is received and the actual end time for the use
of the resource is recorded in the schedule. To prevent idle resources, the queue of requests for this
resource type is searched after determining that there is no imminent reservation for a resource of
the type deallocated. The highest priority queued request which can be satisfied is dequeued.

Assumptions

This scenario assumes that there are no errors. It also assumes that there is no reservation for the
device just deallocated.

6.4.10 Deallocation of a Physical Resource, Imminent Reservation for Resource

Summary

The calling object has completed its use of the physical resource and indicates this completion by
deallocating the resource. The deallocation request is received and the actual end time for the use
of the resource is recorded in the schedule. It is determined that there is pending reservation for
this device such that there is insufficient time to service any queued requests for this resource.
Hence, the resource queue is not searched for a request to satisfy in the available time between now
and when the reservation is scheduled to start.

Assumptions

This scenario assumes that there are no errors. It also assumes that there is a queue of requests for
the resource type just deallocated.

6.4.11 Deletion of Pull Disk Data with Operations Confirmation

Summary

The Pull Monitor periodically wakes up and checks the need to delete files in the pull disk area.
This initial check is to determine if the high water mark (highest desired percent utilization of the
pull area) has been reached. If it has been reached or surpassed the Pull Monitor searches through
the pull data list for files it can delete. It deletes eligible files found until all files on the list have
been checked or the low water mark (lowest desired percent utilization of the cache area) is
reached, whichever comes first. Before deleting a file, the Pull Monitor confirms the desire of
Operations personnel to actually delete the file. After confirmation is obtained, the Pull Monitor
deletes the file. After deleting appropriate files, the Pull Monitor returns to a hibernation state.

6-71 305-CD-008-001

Assumptions

This scenario assumes that there are no errors, that Operation has set the “confirm delete flag”, that
the high water mark has been surpassed, and that the operator immediately confirms the deletion
of the one file that was found eligible for deletion.

6.4.12 Deletion of Staging Disk Data

Summary

The Staging Monitor periodically wakes up and checks the need to delete files in the staging disk
cache. This initial check is to determine if the high water mark (highest desired percent utilization
of the cache area) has been reached. If it has been reached or surpassed the Staging Monitor
searches through the staging data list for files it can delete. It deletes eligible files until all files on
the list have been checked or the low water mark (lowest desired percent utilization of the cache
area) is reached, whichever comes first. After deleting appropriate files, the Staging Monitor
returns to a hibernation state.

Assumptions

This scenario assumes that there are no errors. It also assumes that the high water mark has been
surpassed and that only one file is eligible for deletion.

6.4.13 Setting the Operational State of a Tape Device

Summary

Operations personnel have determined that a specific tape device needs to be taken off-line. The
operator issues the appropriate request. The request is received and before setting the new
operational state, the current operational state is checked to verify that the state change is not illegal
or inappropriate.

Assumptions

This scenario assumes that the specific tape device designated to be taken off-line is on-line. The
system is quiescent.

6.4.14 Submitting a Resource Reservation

Summary

The resource reservation request is received and based upon input parameters in the request a
search of the resource's schedule is performed. The first device of the desired resource type is
found which satisfies the time constraints for the reservation request. The schedule is updated to
reflect a reservation for that specific device. The calling object receives a reservation reference
(confirmation number) to document the reservation for the resource.

Assumptions

This scenario assumes that there are no errors. It also assumes that a device of the desired resource
type is available for allocation to a client.

6-72 305-CD-008-001

6-73
305-C

D
-008-001

GlLog

DsStRequestManagerC DsStResourceManager

Calling Object

AbortRequest

return

status

DsStRequestManagerS
DsStResourceQueue

FindRequest

Dequeue

Log request abort

Notify requester that request was aborted

GlNotification

Abort

AbortRequest

StartService

EndService

EndService

return

status

Figure 6.4-1. ABORT_REQUEST Dynamic Model

6-74
305-C

D
-008-001

GlLog
DsStResourceSchedule

CallingObject DsStReservationS

DsStReservationC

Activate

resource

Activate

return

return
object

DsStRequestManagerS

StartService

ActivateReservation

GetFreeResources

SetFreeResources

GetReservedResources

SetReservedResources

EndService

resource

Log reservation activation

DsStResourceManager

object

6.4-2. ACTIVATE_RESERVATION Dynamic Model

DsStRequestManagerS

DsStResourceS

StartService

GetDevTime

DsStResourceQueue

DsStResourceManager

Calling Object DsStResourceC

Allocate
Allocate

AllocateResource

GetFreeResources

Queue

DsStResourcePolicy

ProjectDuration

6-75
305-C

D
-008-001

Figure 6.4-3. ALLOCATEPHYSRES_NORESAVAIL Dynamic Model

6-76
305-C

D
-008-001

DsStRequestManagerS

Calling Object
DsStResourceManager GlLog

DsStResourceC

DsStResourceS

DsStResourcePolicy

ProjectDuration

AllocateResource

GetFreeResources

FindResource

SetFreeResources

StartService

GetDevTime

resource

ResourceSchedule

Allocate

resource

Allocate

return

return object

GetCurrentTime

BookResource

Log resource allocation

object

Figure 6.4-4. ALLOCATEPHYSRES_RESAVAIL Dynamic Model

6-77
305-C

D
-008-001

DsStArchiveS
DsStArchiveC

DsStRequestManagerS

Compute Check Sum

Archive File

EndService

StartService

Log successful data store operation
return

status

GlLOg

Calling Object

Store

return

status

store

Figure 6.4-5. ARCHIVE_INSERT Dynamic Model

6-78
305-C

D
-008-001

DsStRequestManagerS

CallingObject DsStArchiveC

Retrieve

report

error

report

error

Retrieve

DsStArchiveS DsStStagingDiskS DsStStagingDataList GlLog
GlNotification

file not found

Copy File

verifies

checksum

report checksum error

report checksum error

AssociateElement

StartService

EndService

Figure 6.4-6. ARCHIVE_RETRIEVE_CHECKSUMERROR Dynamic Model

DsStArchiveS DsStStagingDataList
DsStRequestManagerS

DsStStagingDisk

DsStArchiveC
Calling Object

Retrieve

Retrieve

return
return status
status

GlLog

Compute Check Sum

not found

CopyFile

AddElement

StartService

AssociateElement

EndService

Log successful retrieve operation

6-79
305-C

D
-008-001

Figure 6.4-7. ARCHIVE_RETRIEVE_NOCACHEHIT Dynamic Model

6-80
305-C

D
-008-001

CallingObject DsStReservationS DsStResourceSchedule
GlLog

DsStReservationC

Cancel

Cancel

return

return status

status

DsStRequestManagerS

StartService

CancelReservation

GetReservedResources

SetReservedResources

Log cancellation of a reservation

EndService

ResourceManager

Figure 6.4-8. CANCEL_RESERVATION Dynamic Model

DsStRequestManagerS

6-81
305-C

D
-008-001

Calling Object DsStResourceS DsStResourceSchedule
DsStResourceQueue

DsStResourceC DsStResourceManager

Deallocate

DeallocateResource

Deallocate

GlLog

Log resource deallocation

CheckReservations

GetNextQueued

FindResource

BookResource

Dequeue

GetFreeResources

SetFreeResources

RecordEndTime

EndService

return()

return()

Figure 6.4-9. DEALLOCATEPHYSRES_QUEUED_REQUESTS Dynamic Model

6-82
305-C

D
-008-001

Calling Object DsStResourceS
DsStResourceSchedule

DsStResourceC

Deallocate

Deallocate

DeallocateResource

return()

return()

DsStResourceManager

SetFreeResources

RecordEndTime

EndService

GetFreeResources

GlLog DsStRequestManagerS

Log resource deallocation

CheckReservations

Figure 6.4-10. DEALLOCATEPHYSRES_RESERVATION Dynamic Model

6-83
305-C

D
-008-001

DsStPullMonitor DsStPullList GlNotification GlLog

Monitor awakes

File is Deleted

Send Operations a message to confirm deletion

ReadNextElement

Confirmation is received

Log file deleted from Pull Area

DeleteElement

GetCurrentSize

SetCurrentSize

GetNumberFiles

SetNumberFiles

Monitor goes

back to sleep

Figure 6.4-11. DELETE_PULLDISKDATA_CONFIRMED Dynamic Model

6-84
305-C

D
-008-001

DsStStagingMonitor DsStResourceManager DsStStagedDataList GlLog DsStStagingDisk

Monitor awakes

Monitor goes

back to sleep

GetCurrentSize

ReadNextElement

Delete

SetCurrentSize

Log file deletion from staging disk cache

DeleteElement

Figure 6.4-12. DELETE_STAGINGDISKDATA Dynamic Model

6-85
305-C

D
-008-001

CallingObject DsStRequestManagerS DsStTape

DsStRequestManagerC

StartService

EndService

DsStResourceManager

ChangeDeviceStatus

ChangeDeviceStatus

ChangeDeviceStatus

GetStatus

SetStatus

return status

return status

Figure 6.4-13. SET_TAPESTATE Dynamic Model

6-86
305-C

D
-008-001

CallingObject DsStResourceSchedule DsStResourceS
DsStReservationS

DsStReservationC

Submit

Reservation

Submit

return

return

reservation

reference

DsStResourceManager
DsStRequestManagerS

StartService

FindResource

GetCurrentTime

BookResource

GetReservedResources

SetReservedResources

Log resource reservation made

EndService

GetStatus

reservation

reference

GlLog

Figure 6.4-14. SUBMIT_RESERVATION Dynamic Model

6.5 CSCI Structure
Table 6.5-1 shows the components (CSCs) of the CSCI. Each CSC is described and designated as
being custom developed code (DEV), off-the-shelf (OTS) or a combination of the two (DEV/
OTS). If the custom developed code will be used for integration purposes, it is identified as
WRAPPER.

Table 6.5-1. STMGT's Components
CSC Description Type

Service Clients Provides client interface to ECS archives and the peripheral devices used for
data ingest and distribution

DEV/OTS

Resource
Management

Provides capability to manage all resources of the Data Server Subsystem DEV

Data Storage Provides capability to store and provide access to earth science data DEV/OTS

Peripherals Provides access to devices used for data ingest and distribution DEV

File Provides file level access to data on staging disk DEV

6.5.1 CSC Definitions

6.5.1.1 Service Clients CSC

Purpose and Description

All of the classes contained in this CSC, with the exception of one (DsStArchive) are products
custom developed by the Storage Management CSCI. These classes collectively provide an
interface to Data Server Subsystem resources and are categorized into four different groups, each
providing an interface for a different type of client.

Classes

Archive Clients will primarily want access to the ECS archives for storing or retrieving data files.
The SDSRV and DDSRV CSCIs are placed in this category.

The following are classes contained in the Archive Client CSC:

DsStArchive
DsStStagingFile
DsStStagingDisk
DsStResource
DsStStorageResource

The DsStArchive class encapsulates the AMASS File Storage Management System OTS product.

Peripheral Clients will similarly want access to the peripheral devices managed by the Storage
Management CI. The INGST Subsystem and the DDIST CSCI are placed in this category. The
following classes are contained in the Peripheral Clients CSC:

DsStResource
DsStPhysicalResource
DsStTape
DsStCDROM

6-87 305-CD-008-001

DsStPrinter

DsStFax

DsStNetworkResource

DsStReservation

The DsStNetworkResource class encapsulates the CSS supplied API which supports the OTS FTP
product.

In addition to their primary needs for either access to data files in the ECS archive or devices which
will be used to ingest or distribute data files, clients will also have a need for storing data, hence,
the third category of client, Storage Resources. The following classes are contained in the Storage
Resources Client CSC:

DsStResource
DsStStorageResource
DsStStagingDisk
DsStArchive
DsStFileDirectory

The fourth client category, OP-ADMIN, reflects the needs of Operations staff and/or
administrative users to interface with the Storage Management CSCI. The following classes are
contained in the OP-ADMIN Client CSC:

DsStResourceManager
DsStResourceQueue
DsStResourceSchedule
DsStResourcePolicy
DsStRequestManager

Candidate products

Not Applicable

ECS white paper references

Not Applicable

6.5.1.2 Resource Management CSC

Purpose and Description

The following classes provide the capability to manage all resources of the Data Server. The
classes contained in this CSC are products custom developed by the Storage Management CSCI.

Classes

DsStResourceManager
DsStResourceQueue
DsStResourceSchedule
DsStResourcePolicy
DsStStagingDataList
DsStStagingMonitor
DsStPullList
DsStPullMonitor

6-88 305-CD-008-001

DsStResource
DsStReservation
DsStSCacheConfig
DsStPullConfig
DsStSchedulingConfig
DsStResourceConfig

Candidate products

Not Applicable

ECS white paper references

Not Applicable

6.5.1.3 Data Storage CSC

Purpose and Description

The classes in this CSC provide the capability to store data on a persistent or non-persistent basis
and access it. These classes, with the exception of DsStArchive as indicated previously, are
products custom developed by the Storage Management CSCI.

Classes

DsStResource
DsStStorageResource
DsStStagingDisk
DsStArchive
DsStStagingFile

Candidate products

Not Applicable

ECS white paper references

Not Applicable

6.5.1.4 Peripherals CSC

Purpose and Description

The classes in this CSC represent the devices used to ingest and distribute data. These classes, with
one exception (DsStNetworkResource), are products custom developed by the Storage
Management CSCI. The DsStNetworkResource class encapsulates the CSS supplied API which
supports the OTS FTP product.

Classes

DsStResource

DsStPhysicalResource

DsStPrinter

DsStTape

DsStFax

DsStCDROM

DsStNetworkResource

6-89 305-CD-008-001

Candidate products

Not Applicable

ECS white paper references

Not Applicable

6.5.1.5 File CSC

Purpose and Description

The classes in this CSC provide clients file granularity level of access to data files on staging disk.
These classes are products custom developed by the Storage Management CSCI.

Classes

DsStDirectory
DsStFile
DsStStagingFile

Candidate products

Not Applicable

ECS white paper references

Not Applicable

6.5.2 CSCI Dynamic Architecture

Storage Management will consist of two distinct types of processes: resource managers, and disk
monitors. There are two disk monitors, a staging monitor, and a pull monitor.

ResourceManager Processes

The Resource Manager processes will be responsible for maintaining a schedule of current and
proposed resource activity and for distributing resource access keys which will allow resource
access for a specific period of time. Each type of resource pool will have its own resource manager.
Currently, five types of resource manager processes have been identified: network, staging disk,
tape, CD ROM, and printers. The ResourceManager process comprises the following CSCs:

Resource Management
Service Client
OP-Admin
Peripherals

StagingMonitor Process

The Staging Monitor will be responsible for managing the group of data files that have been
retrieved from the archive and placed into a cache area on staging disk. A list of these data files
will be maintained so that subsequent data retrieval requests can be fulfilled immediately without
requiring an additional archive access. The Staging Monitor will also be responsible for deleting
old or seldom accessed files in order to prevent the cache area from becoming too full. Several
potential (quite sophisticated) algorithms are available for monitoring and maintaining the data
levels at a pre-set capacity. The StagingMonitor process comprises the following CSC s:

6-90 305-CD-008-001

File

Data Storage

Resource Management

PullMonitor Process

The Pull Monitor will be responsible for managing the files in the user pull area. As files are
retrieved (i.e., electronically pulled) from the user pull area or as the files become stale (their time
out periods have expired) then the Pull Monitor will delete them. The PullMonitor process
comprises the following CSCs:

Service Clients

Peripherals

Resource Management

File

6.6 CSCI Management and Operation
The materials in the following paragraphs discuss the management and operations of software
components discussed in section 4.5.

6.6.1 System Management Strategy

The STMGT CSCI is designed to provide robust data storage, retrieval, and distribution services
to external data providers and requesters. Specifically, the design goal of the STMGT CSCI is to
always return status (successful or unsuccessful) for every received request. To accomplish that
goal, the CSCI follows ECS project guidelines for:

• Process startup and shutdown;

• Error detection and reporting;

• Fault tolerance and error recovery

6.6.1.1 Startup/Shutdown

MSS provides life-cycle services for system startup and shutdown. The
StorageResourceManagement SDSRV processes act as an “object factory”. As such each process
instantiates objects in process threads (pthreads) when a request is serviced. At STMGT system
startup, seven required processes are launched: 5 StorageResourceManagement processes (one per
type of resource), StagingMonitor, and PullMonitor. The StorageResourceManagement processes
are started as standalone processes. The primary role of the StorageResourceManagement
processes are to maintain a schedule of current and proposed resource activity and to distribute
resource access keys which will allow resource access for a specific period of time. Each type of
resource pool will have its own StorageResourceManager. Currently, five types of
StorageResourceManager processes have been identified: network, staging disk, tape, CD ROM,
and printers.

The StagingMonitor process will also routinely be started at system startup. This process will be
responsible for managing the files that have been retrieved from the archive and placed into a cache
area on staging disk. A list of the data files in this cache will be maintained so that subsequent
requests can be fulfilled immediately without requiring an additional archive access. The

6-91 305-CD-008-001

StagingMonitor will also be responsible for deleting old or seldom accessed files in order to
prevent the cache area from becoming too full. Several potential (quite sophisticated) algorithms
are available for monitoring and maintaining the data levels at a pre-set capacity.

The Pull Monitor will be responsible for managing the files in the user pull area. As files are
retrieved from the user pull area or as the files become stale (their time-out periods have expired)
the Pull Monitor will delete them.

6.6.1.2 Error Detection and Reporting

The STMGT CSCI is designed for primarily automated operations with little need for operations
involvement short of tuning and critical error conditions. CSS and MSS jointly provide event
logging services for logging and reporting errors and faults, for browsing error/status logs, and for
detecting and reporting critical errors. The STMGT CSCI will fully use those services during
operations. Errors/status may be reported in two error logs. MSS maintains the first log, the MSS
event log. It contains errors/status of interest to operations staff to evaluate system status and to
perform trend analysis. The STMGT subsystem maintains the second log. The STMGT event log
contains selected errors/status from the MSS event log (for context) plus highly-detailed debug
events. Software maintenance personnel use the STMGT event log to diagnose system and
software problems in response to trouble tickets.

Non-critical errors encountered during processing that will be handled at the application level will
be fully resolved and enumerated during development. Major conditions that require operator
intervention and/or are considered catastrophic in the processing of requests are listed in
Table 6.6.1.2-1.

6.6.1.3 Fault Tolerance and Error Recovery

Once a service request is accepted from a client process (client being defined as any service
requester), it is the STMGT design goal to complete the request processing and return status
(successful or unsuccessful) to the requester. The STMGT CSCI is built on the model of check
pointing processing at four points: the request, the staging data list, pull data list, and resource
tables. During restart or recovery operations the CSCI will restore all checkpointed data and
resume processing at the last unprocessed command. In the case of data retrieval, any data that has
been staged will be identified via the staging data list and not be retrieved a second time. Resources
that have been allocated to other processes will remain in that state until deallocation. Pull data
will be checked at startup for expiration and clean up operations.

Failure scenarios with recovery methods:

a.	 Failure of a STMGT executable. Any failed process is immediately restarted as a Unix
standalone process. The persistent data associated with the process is restored from their
checkpointed states. Any requests outstanding are then executed.

b.	 Loss of the data base tables used for check pointing. The data base used for persistent data
is actually outside of this CSCI. The data base management system will automatically log
transactions to allow restorations of table information. This feature, coupled with DBA
generated Data Base backups, provide for recovery. Since high reliability is required in this
area, the Data Base tables will be stored on RAID.

6-92 305-CD-008-001

Table 6.6.1.2-1. STMGT Error Categories
Error Category Actions to Be Taken

Initialization File/
Environment

This would be seen during a system startup process and would result in one or
more executables not starting.
correct.

Unable to archive data Internal Data Server fault.
external data provider.
errors off-line and request re-ingest as necessary.
vector ingested data to a different device in the event of a single device failure.)

Unable to read
peripheral media

Internal Data Server fault.
external data provider.
errors off-line and request re-ingest as necessary.
fails, Data Server will revector the media to a different peripheral.)

Unable to transfer data
to be archived

After a system-tunable number of retries, log errors to the event log and return
status to the external data provider.
staff evaluate errors off-line to evaluate and correct communications network
problems.

Internal queue
overflow

Errors reported along these lines represent a very poorly tuned and/or faulty
system.
Operations staff would immediately throttle back system processing thresholds
and write a trouble ticket for future off line analysis and tuning.

Unable to allocate disk
space

Unable to allocate working storage space using Data Server STMGT CSCI
services.
operations staff who would immediately lower system thresholds for requests.
Operations staff would analyze system off-line and tune.

Unable to set up
external data requester
session

Limit exceeded for allowable number of external data provider sessions.
errors to the event log and return status to the external data provider, indicating
that the session connection should be re-attempted later.
modeled transaction load, this error condition is expected to occur very rarely, if
at all.)

Corrupt Operations staff evaluate the condition and

Log errors to the event log and return status to the
Operations staff evaluate Report alert to operations staff.

Data Server will re
(Note:

Log errors to the event log and return status to the
Operations staff evaluate Report alert to operations staff.

if a peripheral device (Note:

Operations Report alert to operations staff.

This type error would represent potential loss of service requests.

Report alert to This is another symptom of a poorly tuned system.

Log

based on the (Note:

c.	 Failure of the processor on which a STMGT process is running. In general, the processor
automatically restarts. Restart of individual processes is handled as a combination of one
or more of the above process restarts. If the processor is disabled, the disablement is
detected by MSS SNMP services and a backup processor is restarted. The backup
processor has full access to the data base tables used for check pointing. Again, restart of
individual processes is handled as described above.

d.	 Failure of an external application. After a given number of retries to transmit data or via
DCE services that alert us of failure of the recipient process, operations staff are notified
by means of an alert message. The DAAC operations staff will coordinate to diagnose the
failure.

6.6.2 Operator Interfaces

DAAC operations personnel are provided with an X-Windows/Motif-based GUI to access
operations data bases and system configuration information. Table 6.6.2-1 highlights the critical
STMGT GUI screens.

6-93 305-CD-008-001

Table 6.6.2-1. Storage Management GUI
GUI Description Data Operations

Storage
Management
GUI

Primary Screen for Storage Man

agement GUIs

References to:
Request,
Log & Reports,
Configuration,
Client Management and
Resource Management GUIs.

Logon
Realizes and/or
makes the GUIs
visible.

Archive
Administration
GUI

Allows operators to manage non-
COTS storage resources

Resource Utilization information View
Backup
Restore
Retrieve

Device Control
GUI

Allows operators to manage vari

ous available media devices

Device information
Device alarms

View
Mount
Dismount
Bring on-line
Put off-line

COTS Archive
GUIs

COTS provided GUI(s) that sup

port management of the COTS
archive product

TBD TBD

6.6.3 Standard STMGT Reports

Table 6.6.3-1. Standard Storage Management Reports (1 of 2)
Report Type Report Description Intended Audience

Received
Service
Requests

Provides a chronological listing of requests. Each entry in

cludes:
eration, and request completion status.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Device Failure Provides a Chronological listing of device failures. Each en

try includes: device identifier, date/time stamp, error code,
failure message.

System Operator
Maintenance Technician
Maintenance Supervisor
Operations Supervisor
DAAC Manager

Archive Activity
Log

Provides a chronological listing of all archive activities, re

quests, and failures.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Selected
Archive Activity

Based on the information in the Archive Activity Log, this re

port allows operations personnel to select, and sort log en

tries by start/stop time, operation requested, and/or request
completion status.

System Operator
Performance Analyst
Maintenance Technician
Maintenance Supervisor
Operations Supervisor
DAAC Manager

Request Identifier, date/time stamp, requested op

6-94 305-CD-008-001

Table 6.6.3-1. Standard Storage Management Reports (2 of 2)
Report Type Report Description Intended Audience

Intermediate
Activity Log

Provides a
between the receipt of a Request
Information includes: a date/time stamp, operation identifier,
affiliated request identifier, disk space utilization (allocate/
deallocate), media utilization (mount/ dismount), file
utilization, (read/write/copy/ delete)

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Selected
Intermediate
Activity

Based on the information in the Intermediate Activity Log,
this report allows operations personnel to select, and sort
log entries by start/stop time, operation id, affiliated request
identifier,

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Inventory
Update Report

Provides a record of new data files added to the DAAC, and
provides summary information associated with the addition
of new data files based on the reporting period
either the last 24 hours, the previous 7 days, previous 30
days, or number since a given date. Associated information
includes: number of requests received, number of
successful and unsuccessful requests, volume of data
archived, average volume of data archived per request,
current number of archived files, and average number of
files per request.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Archive
Resource

Provides a current status of utilized and available resources
within the archive. Report includes: a date/time stamp, the
total unallocated media volumes by type and capacity, and
the total number of unpopulated media locations (slots) for
each archive unit.

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Archive Error Is a summary report of the frequency of errors encountered
during archive processing. The reporting period is either the
last 24 hours, the previous 7 days, previous 30 days, or
number since a given date. Information for each
unsuccessful request includes: date/time stamp, request
identifier,

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

Pull Area
Utilization

Provides information on the total staged data volume in
Gigabytes, and the number of product instances staged.

System Operator
Sr. Science Coordinator
Resource Planner
Performance Analyst
Operations Supervisor
DAAC Manager

listing of the resource activity that occurs
and Request Completion.

which is

error code, error message.

6-95 305-CD-008-001

This page intentionally left blank.

6-96 305-CD-008-001

 7. DDIST - Data Distribution CSCI

7.1 CSCI Overview
The Data Distribution CSCI provides the Data Server and Operations users the capability to
monitor and control processing for distribution requests. Data Distribution processing mainly
consists of preparing requested data objects for distribution on specified media or via the network
and subsequently delivering or causing the delivery of data products to requesting clients.

In addition to preparing the data, Data Distribution will also generate the necessary packaging
materials if the data is to be distributed on media and distribution metadata if the data is to be
distributed via the network. The packaging materials include the packing list, showing all data
objects stored on the delivery media. The media will include CD ROM and tape of various formats
(8mm, and 6250 bpi 9-track).

7.2 CSCI Context
Figure 7.2-1 provides an event flow diagram for this CSCI, which shows the interfaces with other
CSCIs; Table 7.2-1 summarizes the flow depicted in Figure 7.2-1.

Table 7.2-2 provides a mapping for the DDIST CI interfaces provided to other ECS CSCI's. The
table defines the interfaces in terms of the DDIST-provided classes (from the Client CSC), and the
specific service to be used to accomplish that interface. The response (return parameter) from that
member function is also included.

7-1 305-CD-008-001

DDSRV

Distribute, Abort,

WaitForCompletion

Distribute, Abort,
DDIST

Abort, SetPriority,
SDSRV

WaitForCompletion Suspend, Resume

Allocate, Deallocate,

Abort, SetPriority,

DistFrom, GetResourceID

7-2
305-C

D
-008-001

Admin/OPS

STMGT

Figure 7.2-1. DDIST Event Flow Diagram

Table 7.2-1. DDIST Event Flow Summary Table
Sender Receiver Event Name

DDIST STMGT Abort

SDSRV DDIST Abort

DDSRV DDIST Abort

Admin/OPS DDIST Abort

DDIST STMGT Allocate

DDIST STMGT Deallocate

DDIST STMGT DistFrom

SDSRV DDIST Distribute

DDSRV DDIST Distribute

DDIST STMGT GetResourceID

Admin/OPS DDIST Resume

DDIST STMGT SetPriority

Admin/OPS DDIST SetPriority

Admin/OPS DDIST Suspend

DDSRV DDIST WaitForCompletion

SDSRV DDIST WaitForCompletion

Table 7.2-2. DDIST CI Interfaces
Interface Input Data Output Data Description

Distribute Media Type,
User Profile

Distribution
Request

Request distribution of the items specified in the distribution
list.
invoke this service to start the distribution; the service
asynchronously returns a distribution request, which can
then be used to perform additional operation upon the
request.

WaitFor
Completion

none Completion
Status

Wait for a distribution request to complete. This service will
block the calling thread.

Abort none Completion
Status

Abort processing of a distribution request.
WaitForCompletion has also been called, this service would
be called from a separate thread.

SetPriority Priority none Change the priority of a distribution request.

Suspend none Status Suspend processing of a distribution request.

Resume none Status Resume processing of a suspended distribution request.

SDSRV will create the list of items to be distributed and

If

7-3 305-CD-008-001

7.3 CSCI Object Model
This section provides object models for the Data Distribution CSCI. Two models are presented,
DsDdInterfaceClasses and DsDdManager. Some classes appear on the diagrams for both models.

Figure 7.3-1, DsDdInterfaceClasses, depicts classes which are used by, and visible to, other CSCIs.
Interface classes may be, but are not necessarily, implemented as distributed objects. Classes
which become distributed objects, identified on the diagrams via the annotation [DISTR OBJ],
have both a client and a server representation which acts as a single object, i.e. an operation
requested via the client object results in action upon the server object. Distributed objects have
client and server specializations (designated via a suffix of C or S, respectively, for the class name)
of a common base class. Additionally, a distributed object may have different presentations for
different clients; for example, because an operator can perform operations which are not available
to a user, separate operator and user client specializations exist (DsDdOpsRequestC and
DsDdDistRequestC, respectively).

While the server specializations are not directly visible to other CSCIs, they are provided on the
DsDdInterfaceClasses diagram to promote understanding of the interfaces.

Figure 7.3-2, DsDdManager, depicts the classes involved in the distribution server; as such, it
contains (in addition to its other classes) server specializations of distributed objects, which are
also shown on DsDdInterfaceClasses.

General Notes: In the following object class descriptions, classes always inherit attributes,
operations, and associations from their parent classes. Where all attributes in the current design
are inherited from the parent class, this is indicated by the text “All Attributes inherited from the
parent class” (and analogously for operations). If a derived class has additional attributes of its
own, those new attributes are listed, but the attributes from the parent class are not repeated
(analogously for operations).

The Object Classes in the Object Model diagrams and descriptions each have an identified set of
attributes and public operations. In most cases the listed public services do not include two
operations: a constructor (often referred to as “Create”) and a destructor (often referred to as
“Destroy”). For most Object Classes in these models the constructor and destructor operations are
not listed; however, they are shown if they perform special processing beyond normal construction
and destruction, or if they are overloaded to allow for differing signatures.

7-4 305-CD-008-001

7-5
305-C

D
-008-001

DsDdDistRequestC

DsDdDistRequestS

DsDdDistFile

DsDdDataItem

DsDdDistList <RWVector>

DsDdPrivRequest

DsDdOpsRequestC

DsDdRequestList <RWVector>

DsDdDistRequest

DsDdRequestManager

Sort(Key:SortTypes)

RestartOutput()

SetPriority(Priority:DistPriority)

Suspend()

Resume()

DsDdDistRequestC()

DsDdOpsRequestC()

CreateDistRequest(List:DistList, Media:char *, User:MsUsProfile, Format:char *)

CreateDistRequest(List:DistList, Media:char *, User:MsUsProfile,

ElecDestntn:char *, Password:char *, Format:char *)

InventoryRequests()

DeleteDistRequest(id:uuid_t)

Distribute(Media:char *, User:MsUsProfile, Format:char *,)

Distribute(Media:char *, User:MsUsProfile, ElecDestn:char *, Password:char *,

Format:char *)

Deobjectize()

myPath

Deobjectize()

myID

myCompressionType

myWhetherCompressed

myUncompressedSize

myCompressedSize

Compress(Type:char *)

DsDdRequestManagerC DsDdRequestManagerS

myRequestList

Abort()

GetState()

Submit(Media:char *, User:MsUsProfile, ElecDestn:char *, Password:char *,

Format:char *)

Submit(Media:char *, User:MsUsProfile, Format:char *)

WaitForComplete()

myRequestId

myState

myTimeOfSubmission

myUserInfo

mySize

myDistFormat

myDistList

myRequestProcessor

myAbortFlag

myMedia

myPriority

[DISTR OBJ]

P[DISTR OBJ][PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

<RWVector>

[DISTR OBJ]

P[PERSISTENT CLASS]

<RWVector>

[DISTR OBJ]

[DISTR OBJ]

+ : DsDdRequestList

+ : EcStatus

+

+ : EcStatus

+ : EcStatus

+ : DCEObjRefT

+ : DCEObjRefT

+ : DCEObjRefT

+ : DCEObjRefT

+ : DsDdRequestList

+

+ : DsDdDistRequest

+ : DsDdDistRequest

+ : DistList

_ : char *

+ : DistFile

_ : char *

_ : char *

_ : RWBoolean = false

_ : int = 0

_ : int = 0

+ : DsDdDataItem

[DISTR OBJ] [DISTR OBJ]

_ : DsDdRequestList

+ : EcStatus

+ : DistState

_

_

+ : EcStatus

_ : char *

_ : DistState = pending

_ : RWDate

_ : MsUsProfile *

_ : int

_ : char *

_ : DsDdDistList *

_ : DsDdRequestProcessor *

_ : RWBoolean = False

_ : char *

_ : DistPriority = medium

1+

requests distribution of items in

creates

Figure 7.3-1. DsDdInterfaceClasses Object Model Diagram

DsDdRequestManager

+

+

+

+

DsDdPackingSlip

DsDdMedia

DsDdShippingLabel

EcNotification

DsDdDistList <RWVector>

DsDdDataItem

DsDdDistFile

DsDdDistRequestS

DsDdRequestProcessor

DsDdCDProcessor
DsDdTapeProcessor

DsDdPushProcessor

DsDdPullProcessor

DsDdRequestManagerS

DsDdRequestList <RWVector>

DsDdPrivRequest

DsDdDistRequest

DsDdLabeledMedia

DsDdElectronicMedia

DsDdTapeMediaDsDdCDMedia

DsDdPushMediaDsDdPullMedia

EcUtLogger

MsUsProfile

DsStResourceC

myDensity

CreateMedia()

myDestination

myDestPassword

myLogin

CreateMedia()

CreateMedia()

Distribute(Media:char *, User:MsUsProfile, Format:char *,)

Distribute(Media:char *, User:MsUsProfile, ElecDestn:char *, Password:char *,

Format:char *)

Deobjectize()

myPath

Deobjectize()

myID

myCompressionType

myWhetherCompressed

myUncompressedSize

myCompressedSize

Compress(Type:char *)

myRequest

DsDdRequestProcessor(Media:MediaType, Request:DsDdDistRequestS)

DsDdRequestProcessor(Media:MediaType, Request:DsDdDistRequestS,

ElecDestination:char, Password:char)

CreateMedia()

ServiceRequest()

CreateMedia()

Sort(Key:SortTypes)

myRequestList

CreateDistRequest(List:DistList, Media:char *, User:MsUsProfile, Format:char *)

CreateDistRequest(List:DistList, Media:char *, User:MsUsProfile,

ElecDestntn:char *, Password:char *, Format:char *)

InventoryRequests()

DeleteDistRequest(id:uuid_t)

CreateNotificationMsg()

CreateNotificationMsg()

myRequestId

myState

myTimeOfSubmission

myUserInfo

mySize

myDistFormat

myDistList

myRequestProcessor

myAbortFlag

myMedia

myPriority

RestartOutput()

SetPriority(Priority:DistPriority)

Suspend()

Resume()

Abort()

GetState()

Submit(Media:char *, User:MsUsProfile, ElecDestn:char *, Password:char *,

Format:char *)

Submit(Media:char *, User:MsUsProfile, Format:char *)

WaitForComplete()

mySourceDirectory

myCapacity

DsDdElectronicMedia()

~DsDdElectronicMedia()

CreateCpioFile()

CreateTarFile()

CreateOutputFile(DistFmt:char*)

myDesignatedPrinter

myItemList

myFileName

myNumVolumes

CreatePackSlip()

DsDdPackingSlip(ItemList:DsDdDistList&)

~DsDdPackingSlip()

Print()

myDesignatedPrinter

myFileLocation

myUserInfo

PrintShipLabel()

CreateLabel()

~DsDdShippingLabel()

DsDdShippingLabel(UserInfo:MsUsProfile &)

myDensity

DsDdTapeMedia(Density:char*)

~DsDdTapeMedia()

PrintMediaLabel()

myDesignatedPrinter

myNumVolumes

myCapacity

myShippingLabel

PrintMediaLabel()

CopyFiles(DistFmt:char*)

~DsDdLabeledMedia()

DsDdLabeledMedia(ShippingLabel:DsDdShippingLabel &)

DetermineNumVols()

CreateCpioCmd()

CreateTarCmd()

CreateShellCmd(DistFmt:char*)

TransferFiles(DistFmt:char*)

PrintMediaLabel()

myRemoteNode

myDirectory

myLogin

~DsDdPushMedia()

PushFiles()

DsDdPushMedia(Node:EcTChar*,

PushFmtFile(FileName:char*)

TransferFiles(DistFmt:char*)

DsDdPullMedia()

~DsDdPullMedia()

GetPackingListFile()

PullFiles()

TransferFiles(DistFmt:char*)

PullFmtFiles(FileName:FileName)

myDateCreated

myNumberOfItems

myFileListPtr

myResource

myMediaType

myDistributionList

myRequest

myPackingSlip

CreateFileLIst()

~DsDdMedia()

DsDdMedia(DistributionList:DsDdDistList &, Request:DsDdRequestProcessor &,

PackingSlip:DsDdPackingSlip &, Resource:DsStResourceC &, MediaType:MediaType)

TransferFiles(DistFmt:char*)

P[PERSISTENT CLASS]

<RWVector>

P[PERSISTENT CLASS]

P[DISTR OBJ] [PERSISTENT CLASS]

[DISTR OBJ]

P[PERSISTENT CLASS]

<RWVector>

[DISTR OBJ]

[DISTR OBJ]

_ : char * = "low"

±

_ : char

_ : char

_ : char

_

_

+ : DsDdDistRequest

+ : DsDdDistRequest

+ : DistList

_ : char *

+ : DistFile

_ : char *

_ : char *

_ : RWBoolean = false

_ : int = 0

_ : int = 0

+ : DsDdDataItem

_ : DsDdDistRequestS

+

+

_ {abstract}

+ : GlStatus

_

+ : DsDdRequestList

_ : DsDdRequestList

: DCEObjRefT

: DCEObjRefT

: DsDdRequestList

+ : RWCString

_ : RWCString

_ : char *

_ : DistState = pending

_ : RWDate

_ : MsUsProfile *

_ : int

_ : char *

_ : DsDdDistList *

_ : DsDdRequestProcessor *

_ : RWBoolean = False

_ : char *

_ : DistPriority = medium

+ : EcStatus

+

+ : EcStatus

+ : EcStatus

+ : EcStatus

+ : DistState

_

_

+ : EcStatus

_ : char*

_ : int

+

+

_

_

_ : FileName:char*

_ : char*

_ : DsDdDistList &

_ : FileName

_ : int = 0

+ : GlStatus

+

+

+ : GlStatus

_ : char*

_ : char*

_ : MsUsProfile &

+ : GlStatus

_

+

+

_ : char* = "low"

+

+

+

_ : char *

_ : int

_ : int

_ : DsDdShippingLabel &

+ {abstract}

_

+

+

_ : int

_ : ShellCmd:char*

_ : ShellCmd:char*

_ : ShellCmd:char*

+

+

_ : EcTChar*

_ : EcTChar*

_ : Login

+

_

+

+

+

+

+

+ : FileName

_

+

_

_ : GlDate

_ : int

_ : char *

_ : DsStResourceC

_ : MediaType

_ : DsDdDistList &

_ : DsDdRequestProcessor &

_ : DsDdPackingSlip

_

+

+ {abstract}

lists items in

orchestrates

distribution

of items in

manages

1+

maintains

Logs Events

Via

Gives Data Item

Info To

Allocates

Gets Transfer

Info From

Lists Items

Distributed By

notifies user via

Transfers

Data Items

To

Data Items

Transfered By

Uses for

mailing

physical

media

is for

user

identified

via

is used in

Login:Login, Directory:EcTChar*)

7-6
305-C

D
-008-001

Figure 7.3-2. DsDdManager Object Model Diagram

7.3.1 DsDdCDMedia Class

Parent Class: DsDdLabeledMedia
Public: No Distributed Object: No
Purpose and Description:
Initiates and monitors the transfer of data items via cpio or tar archive file to a CD resource.

Attributes:

All Attributes inherited from parent class

Operations:

PrintMediaLabel - This operation will be implemented in release B. It will be a polymorphic
operation which depends on the type of device for which the label is being printed.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDdCDMedia class has associations with the following classes:
None

7.3.2 DsDdCDProcessor Class

Parent Class: DsDdRequestProcessor
Public: NoDistributed Object: No
Purpose and Description:
Defines the concrete CreateMedia to perform the correct processing of distribution via CD.

Attributes:

All Attributes inherited from parent class

7-7 305-CD-008-001

Operations:

CreateMedia - Creates the instances of the objects needed for interfacing with the devices
needed for transfer of the data items
Arguments:
Return Type: Void
Privilege: Private

Associations:

The DsDdCDProcessor class has associations with the following classes:
None

7.3.3 DsDdDataItem Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class:
Purpose and Description:
Base class for items to be distributed. For now only a file specialization of this class exists
and is used, but the base class is defined to support possible future use of streams et al.

Attributes:

myCompressedSize - Size of the object after being compressed.
Data Type: int
Privilege: Private
Default Value: 0

myCompressionType - Type of compression, if any, performed on the item. Compression

types are TBD, and no compression is supported in Release A.

Data Type: char *

Privilege: Private

Default Value:

myID - Identifier, such as filename, for the data item.

Data Type: char *

Privilege: Private

Default Value:

myUncompressedSize - Size of the object before it was compressed.

Data Type: int

7-8 305-CD-008-001

Privilege: Private

Default Value: 0

myWhetherCompressed - Whether the object is compressed.

Data Type: RWBoolean

Privilege: Private

Default Value: false

Operations:

Compress
Arguments: Type:char *
Return Type: DsDdDataItem
Privilege: Public

Associations:

The DsDdDataItem class has associations with the following classes:
DsDdDistList (Aggregation)

7.3.4 DsDdDistFile Class

Parent Class: DsDdDataItem
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
File containing data to be distributed to the requestor.

Attributes:

myPath - Specification of where the file is located, including device and directory.
Data Type: char *
Privilege: Private
Default Value:

7-9 305-CD-008-001

Operations:

Deobjectize - Returns as a C++ struct the data stored by the class. This is necessary for the
data to be transported via OODCE, since OODCE does not support the transport of objects
as such.
Arguments:
Return Type: DistFile
Privilege: Public

Associations:

The DsDdDistFile class has associations with the following classes:
None

7.3.5 DsDdDistList Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
List of pointers to all the items to be distributed. This class is derived from a RogueWave
template, and so inherits all of the operations (not shown) to manipulate the list.

Attributes:

None

Operations:

Deobjectize - Returns as a C++ struct the data stored by the class. This is necessary for
transport of the data via OODCE, since OODCE does not transport objects as such.
Arguments:
Return Type: DistList
Privilege: Public

Distribute - Initiates distribution processing for all of the items in the list. This signature

definition supports all requests except for electronic push requests.

Arguments: Media:char *, User:MsUsProfile, Format:char *,

Return Type: DsDdDistRequest

Privilege: Public

7-10 305-CD-008-001

Distribute - Initiates distribution processing for items to be distributed via electronic push.

Arguments: Media:char *, User:MsUsProfile, ElecDestn:char *, Password:char *,

Format:char *

Return Type: DsDdDistRequest

Privilege: Public

Associations:

The DsDdDistList class has associations with the following classes:
Class: DsDdDistRequest requestsdistributionofitemsin - A distribution request is the
vehicle for performing the distribution of the items in the distribution list.

7.3.6 DsDdDistRequest Class

Parent Class: Not Applicable
Public: YesDistributed Object: Yes
Purpose and Description:
Base class for the client/server specialization of distribution requests. Specifies operations
which are available to any client.

Attributes:

None

Operations:

Abort - Terminate all processing of a distribution request. The termination may not occur
immediately, because the request may need to progress to a stable stage enabling clean
termination.
Arguments:
Return Type: EcStatus
Privilege: Public
PDL:// if (thread which called DsStResource.Allocate is blocked because resource is not
yet available)
{
call DsStRequestManager.Abort to abort the resource allocation
}
else
}
call SetAbortFlag to signal to ServiceRequest to abort processing

7-11 305-CD-008-001

}

GetState - Get the state of the distribution request. States defined in the L4 requirements

are: pending, active, waiting for shipment, shipped. An additional state of suspended is

possible.

Arguments:

Return Type: DistState

Privilege: Public

Submit - Submit a distribution request for processing. This definition of the submit

signature supports all distribution except electronic push, which requires additional

arguments.

Arguments: Media:char *, User:MsUsProfile, Format:char *

Return Type: Void

Privilege: Private

Submit - Submit a distribution request for processing. This definition of the submit

signature supports electronic push only.

Arguments: Media:char *, User:MsUsProfile, ElecDestn:char *, Password:char *,

Format:char *

Return Type: Void

Privilege: Private

WaitForComplete - Wait until a distribution request has completed. Since the submission

of a distribution request is asynchronous, this service allows a thread to block until (and

thereby be signalled when) the requests completes.

Arguments:

Return Type: EcStatus

Privilege: Public

Associations:

The DsDdDistRequest class has associations with the following classes:
Class: DsDdDistList requestsdistributionofitemsin - A distribution request is the vehicle
for performing the distribution of the items in the distribution list.

7.3.7 DsDdDistRequestC Class

Parent Class: DsDdDistRequest
Public: YesDistributed Object: Yes
Purpose and Description:
User client presentation of the distribution request. A specialization of the constructor is

7-12 305-CD-008-001

necessary to accomodate hiding of the request manager (which implements the OODCE
factory model) from the client.

Attributes:

All Attributes inherited from parent class

Operations:

DsDdDistRequestC - Constructor for the user client presentation of the distribution request.
This constructor implements the client side of the OODCE factory model; it first creates a
client factory object if it doesn't exist, then calls the appropriate factory service to create a
server-side distribution request.
Arguments:
Return Type: DCEObjRefT
Privilege: Public
PDL:// call DsDdDistList.Deobjectize to flatten the list for transfer to the server via
OODCE

// if (client representation of request manager - aka the OODCE factory - doesn't exist)
{

// construct DsDdRequestManagerC object
}

// call DsDdRequestManagerC.CreateDistRequest to create server-side representation of
the distribution request

// call OODCE's SetBinding to bind the client distribution request object to the server object
reference returned by CreateDistRequest

// call DsDdDistRequest.Submit to initiate processing of the request.

Associations:

The DsDdDistRequestC class has associations with the following classes:
None

7.3.8 DsDdDistRequestS Class

Parent Class: DsDdPrivRequest
Public: NoDistributed Object: Yes
Persistent Class: True

7-13 305-CD-008-001

Purpose and Description:

Server-side presentation of the distribution request. This side has all the services available

to all of the clients, and attributes which are maintained as such only on the server side. An

instantiation of this class exists for each distribution request in the system, and runs in a

separate thread which is created by the request factory (manager).

Attributes:

myAbortFlag - Set by a thread executing the Abort service, signals to a thread executing the
ServiceRequest service that the request is to be aborted.
Data Type: RWBoolean
Privilege: Private
Default Value: False

myDistFormat - Format - tar, cpio, or none - in which to write the distribution data to the

output media.

Data Type: char *

Privilege: Private

Default Value:

myDistList - List of items to be distributed.

Data Type: DsDdDistList *

Privilege: Private

Default Value:

myMedia - Type of media to be be used for the distribution. For release A possible values

are CD, 8mm tape, electronic push, electronic pull.

Data Type: char *

Privilege: Private

Default Value:

myPriority - Priority at which the distribution request is processed relative to other

distribution requests.

Data Type: DistPriority

Privilege: Private

Default Value: medium

myRequestId - Unique identifier for the request, which is written with any event log

messages and so can be used to reconstruct the events that occured for the given request.

The request id is of minimal value while a request is active, because all client software

interfaces to the request should be via of the request object; however, once a request

completes the object disappears, so the the request id can then be used to trace through the

request's audit trail.

Data Type: char *

7-14 305-CD-008-001

Privilege: Private

Default Value:

myRequestProcessor - Specialized request processor whose ServiceRequest service will

be invoked to generate the distribution products. The value for this attribute is assigned

based upon the media type; e.g., for a media type of CD the DsDdCDProcessor will be

used.

Data Type: DsDdRequestProcessor *

Privilege: Private

Default Value:

mySize - Total size of the data to be distributed in the request. Due to addressing limits (of

32-bit architecture), the units for this count may not be bytes, but may be some TBD unit

such as kilobytes.

Data Type: int

Privilege: Private

Default Value:

myState - Request states identified in the level 4 requirements are pending, active, waiting

for shipment, and shipped. An additional state of suspended is added to support the ability

to suspend a request. Pending request are requests which have been received but for which

a resource (media) to which to write the data is not yet available. The state changes to

active when the resource becomes available, and remains active until the generation of all

output media is complete, at which time the state changes to waiting to be shipped. The

state changes to shipped upon operator notification to the software that the media have been

physically shipped to the requestor.

Data Type: DistState

Privilege: Private

Default Value: pending

myTimeOfSubmission - Time when the Submit service was invoked upon the request.

Data Type: RWDate

Privilege: Private

Default Value:

myUserInfo - Information identifying the entity (user, DAAC, etc.) which requested the

distribution.

Data Type: MsUsProfile *

Privilege: Private

Default Value:

7-15 305-CD-008-001

Operations:

All Operations inherited from parent class

Associations:

The DsDdDistRequestS class has associations with the following classes:
Class: DsDdRequestManagerS creates
DsDdRequestList (Aggregation)

7.3.9 DsDdElectronicMedia Class

Parent Class: DsDdMedia
Public: NoDistributed Object: No
Purpose and Description:
Handles the interface to storage management for distribution which utilize network
communications for the distributions of the files. No physical shipment of the data items
selected is made so there is no need for media or shipping labels.

Attributes:

myCapacity - Capacity for holding data: size of a single tape or CD or the amount of staging
available for this request.
Data Type: int
Privilege: Private
Default Value:

mySourceDirectory - Directory local to distribution processing in which a tar or cpio file

will be created if necessary for the request.

Data Type: char*

Privilege: Private

Default Value:

Operations:

CreateCpioFile - Creates a Cpio archive file on local staging disk. The file will then be
distributed via electronic push or pull.
Arguments:
Return Type: Void
Privilege: Private

7-16 305-CD-008-001

CreateOutputFile - Determines if a tar or cpio archive file needs to be created for this

request based on the distribution format passed in.

Arguments: DistFmt:char*

Return Type: FileName:char*

Privilege: Private

PDL://switch DistFmt

{

// tar:

// FileName = CreateTarFile() create a tar archive file

// in local storage

// cpio:

// FileName = CreateCpioFile() create a cpio archive file

// in local storage

// raw:

// FileName = NULL

// default:

// signal an error

}

CreateTarFile - Creates a tar archive file of the data items. The file is then distributed via

electronic push or pull.

Arguments:

Return Type: Void

Privilege: Private

DsDdElectronicMedia - Constructor for the Electronic Media instance.

Arguments:

Return Type: Void

Privilege: Public

~DsDdElectronicMedia - Destructor for an instance of the Electronic Media class

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDdElectronicMedia class has associations with the following classes:
None

7-17 305-CD-008-001

7.3.10 DsDdLabeledMedia Class

Parent Class: DsDdMedia
Public: NoDistributed Object: No
Purpose and Description:
This object handles the transfer of data item files to labeled media such as CD and tape. It
is specialized for the operation of printing the label which may have different formats for
the different resources.

Attributes:

myCapacity - Size of a single tape (accounting for density) or single CD.
Data Type: int
Privilege: Private
Default Value:

myDesignatedPrinter - Holds the name of the printer designated for printing labels for

media. This will not be needed until Release B.

Data Type: char *

Privilege: Private

Default Value:

myNumVolumes - The number of volumes of removable media that were created for this

request.

Data Type: int

Privilege: Private

Default Value:

myShippingLabel - Reference to the shipping label object which will create the label

conataining the requestor's name and shipping address for use in the shipment of the media.

Data Type: DsDdShippingLabel &

Privilege: Private

Default Value:

Operations:

CopyFiles - Creates and executes a shell command file to move the requested data items into
an archive file of the requested type on the requested media.
Arguments: DistFmt:char*
Return Type: Void
Privilege: Private
PDL://ShellCmd = CreateShellCmd(DistributionFormat) to create a shell

7-18 305-CD-008-001

//command which will create the requested type of archive file
// on the requested type of media

//if ShellCmd is not NULL
{

// Execute the shell command to move the files to the allocated
// media resource

// DetermineNumVols() to determine the number of volumes created
// for this distribution

// DsDdPackingSlip::SetNumVolumes(myNumVolumes) to set the
// number of volumes in the Packing Slip object
}

CreateCpioCmd - Creates a shell command which will create a cpio archive file on the

requested media. The archive file will contain all of the data items listed in the list file.

Arguments:

Return Type: ShellCmd:char*

Privilege: Private

CreateShellCmd - Creates a shell command which will create a tar or cpio archive file on

the requested media.

Arguments: DistFmt:char*

Return Type: ShellCmd:char*

Privilege: Private

PDL://CreateFileList() to create a file containing the data items and

//their file paths.

//DsStResource::GetResourceId() to get the name of the device which

//has been allocated for this request.

//switch(DistributionFormat)

{

// tar:

// ShellCmd = CreateTarCmd() use the name of the resource and

// the name of the file containing the list of data items

// to create a command which will create a tar archive file

// on the allocated device

// cpio:

// ShellCmd = CreateCpioCmd() uses the name of the resource

// and the name of the file containing a list of the data

// items to create a command which will create a cpio

// archive file on the allocated device

// default:

7-19 305-CD-008-001

// ShellCmd = NULL

}

CreateTarCmd - Creates a shell command which will create a tar archive file of the data

items listed in the list file on the requested media.

Arguments:

Return Type: ShellCmd:char*

Privilege: Private

DetermineNumVols - A service to determine the number of volumes which were written

for a distribution using removable physical media.

Arguments:

Return Type: int

Privilege: Private

DsDdLabeledMedia - Constructor for the Media Label class instance.

Arguments: ShippingLabel:DsDdShippingLabel &

Return Type: Void

Privilege: Public

PrintMediaLabel - Prints the label whose format will be specific for different media on

the designated printer. This will be implemented in release B.

Arguments:

Return Type: Void

Privilege: Public

This is an abstract operation

TransferFiles - Concrete implementation of the interface with the Request Processor

object. This method handles the transfer of files to a tar or cpio archive file on the

requested media.

Arguments: DistFmt:char*

Return Type: Void

Privilege: Public

PDL:

//DsStResourceC::Allocate(ResourceType,MediaType,RequestId,

//Priority,Size,ProfileInfo) to allocate a resource of the

//requested type.

//CopyFiles(DistFmt) to copy the files to the requested device

//Call DsStResourceC::Deallocate() to free the requested device

//for other use

//DsDdPackingSlip::Create() to create the packing slip. This is

//done after the completion of the physical distribution to allow

7-20 305-CD-008-001

//inclusion of the number of volumes created.

//DsDdPackingSlip::Print() to send the packing slip to the

//designated printer

~DsDdLabeledMedia - Destructor for a labeled media instance.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDdLabeledMedia class has associations with the following classes:
None

7.3.11 DsDdMedia Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
To track the content of distribution media produced by the Data server. Physical
distribution media currently identified for distribution includes tapes (3480/3490, 4mm
8mm,6250) and CD ROM disks. The contents of media produced for distribution will be
reflected by a packing slip which will be included in the shipping container.

Attributes:

myDateCreated - Date that the file transfer to the requested media was initiated.
Data Type: GlDate
Privilege: Private
Default Value:

myDistributionList - Reference to the DsDdDistList object which is associated with this

request. Used to allow access to the list of data items for the request.

Data Type: DsDdDistList &

Privilege: Private

Default Value:

myFileListPtr
Data Type: char *
Privilege: Private

7-21 305-CD-008-001

Default Value:

myMediaType - Holds the type of media, i.e. tape, CDROM, network, source and

associated information.

Data Type: MediaType

Privilege: Private

Default Value:

myNumberOfItems - Number of Data Items distributed for this request.

Data Type: int

Privilege: Private

Default Value:

myPackingSlip - Reference to the DsDdPackingSlip object which will create the list of

data items which were transfered in this distribution.

Data Type: DsDdPackingSlip

Privilege: Private

Default Value:

myRequest - Reference to the DsDdRequestProcessor object which represents this request.

Allows access to the information in the request which is not part of the media object.

Data Type: DsDdRequestProcessor &

Privilege: Private

Default Value:

myResource - The name of the resource which is allocate for the transfer of the files.

Data Type: DsStResourceC

Privilege: Private

Default Value:

Operations:

CreateFileLIst - Creates a file with the list of all the files and their path names for use in
constructing the commands which will transfer the files and building the packing slip.
Arguments:
Return Type: Void
Privilege: Private

DsDdMedia
Arguments: DistributionList:DsDdDistList &, Request:DsDdRequestProcessor &,
PackingSlip:DsDdPackingSlip &, Resource:DsStResourceC &, MediaType:MediaType

TransferFiles - Interface routine to the Request Processor object. This operation will have
different methods depending on the media type requested . For this class, it is a pure virtual

7-22 305-CD-008-001

operation.

Arguments: DistFmt:char*

Return Type: Void

Privilege: Public

This is an abstract operation

~DsDdMedia - Destructor for the media object. Frees up all allocated memory used in

constructing the object.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDdMedia class has associations with the following classes:
Class: DsDdRequestProcessor DataItemsTransferedBy
Class: DsDdPackingSlip GetsTransferInfoFrom
Class: DsDdDistList GivesDataItemInfoTo
Class: DsStResourceC TransfersDataItemsTo

7.3.12 DsDdOpsRequestC Class

Parent Class: DsDdPrivRequest
Public: YesDistributed Object: Yes
Purpose and Description:
Presentation of the distribution request services to the operator client. This client has
access to privileged services which are not available to the user client.

Attributes:

All Attributes inherited from parent class

Operations:

DsDdOpsRequestC - The constructor for the operator client request interfaces to the request
factory (manager) for creation of the server-side request.
Arguments:
Return Type: DCEObjRefT
Privilege: Public

7-23 305-CD-008-001

Associations:

The DsDdOpsRequestC class has associations with the following classes:
None

7.3.13 DsDdPackingSlip Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This object serves as the list of items that were successfully transfered for a given
distribution request.

Attributes:

myDesignatedPrinter - Name of the printer designated for printing the packing list for
shipment of removable media.
Data Type: char*
Privilege: Private
Default Value:

myFileName - Name of the file containing the packing slip. The file will either be printed

for physical shipment, sent electronically with electronic distribution, or handled in some

other manner for future distribution options.

Data Type: FileName

Privilege: Private

Default Value:

myItemList - Reference to the distribution list for this distribution. The distribution list is

read item by item to create a file which contains a list of all the data items distributed.

Data Type: DsDdDistList &

Privilege: Private

Default Value:

myNumVolumes - The number of volumes for physical distribution.

Data Type: int

Privilege: Private

Default Value: 0

7-24 305-CD-008-001

Operations:

CreatePackSlip - Creates a file with a list of the data items that were included in this
distribution request.
Arguments:
Return Type: GlStatus
Privilege: Public

DsDdPackingSlip - Constructor for the packing slip instance.

Arguments: ItemList:DsDdDistList&

Return Type: Void

Privilege: Public

Print - Prints the packing slip to the printer designated for packing slips

Arguments:

Return Type: GlStatus

Privilege: Public

~DsDdPackingSlip - Destructor for the packing slip instance. The flle used to hold the

packing slip will be removed when the instance is removed.

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDdPackingSlip class has associations with the following classes:
Class: DsDdMedia GetsTransferInfoFrom
Class: DsDdRequestProcessor ListsItemsDistributedBy
Class: DsDdDistList listsitemsin

7.3.14 DsDdPrivRequest Class

Parent Class: DsDdDistRequest
Public: YesDistributed Object: No
Purpose and Description:
Specialization of the distribution request to provide access to privileged operations.
Privileged operations are available to operator clients but not user clients.

7-25 305-CD-008-001

Attributes:

All Attributes inherited from parent class

Operations:

RestartOutput - Restart the output to media of a distribution request. This service is provide
to support the operator restarting media output in the event of a failure, such as fatal tape
errors during writing of a tape.
Arguments:
Return Type: EcStatus
Privilege: Public

Resume - Resume processing of a distribution request for which processing was

suspended.

Arguments:

Return Type: EcStatus

Privilege: Public

SetPriority - Changes the priority of a distribution request, which the operator may need

to do when managing the flow of distribution requests.

Arguments: Priority:DistPriority

Return Type: Void

Privilege: Public

Suspend - Suspend the processing of a distribution request. Suspension may not occur

immediately, because the request processing may need to proceed to a stable point which

enables processing of the suspended request to be cleanly resumed when desired.

Arguments:

Return Type: EcStatus

Privilege: Public

Associations:

The DsDdPrivRequest class has associations with the following classes:
None

7-26 305-CD-008-001

7.3.15 DsDdPullMedia Class

Parent Class: DsDdElectronicMedia
Public: NoDistributed Object: No
Purpose and Description:
Initiates and monitors the distribution of data items to the pull staging area

Attributes:

All Attributes inherited from parent class

Operations:

DsDdPullMedia - Object constructor
Arguments:
Return Type: Void
Privilege: Public

GetPackingListFile - Returns the file name from the packing slip object. Its primary use

is to allow inclusion of the packing slip in the notification to the user for some distributions

(e.g. pull).

Arguments:

Return Type: FileName

Privilege: Public

PullFiles - Handles the interface with storage management to move the requested data

items to staging disk which is set aside for pull distribution.

Arguments:

Return Type: Void

Privilege: Private

PDL://DsDdPackingSlip::CreatePackSlip() to creaete the list of data

//items in this distribution

//DsStResourceC::Allocate(ResourceType,MediaType,RequestId,

//Priority,Size,ProfileInfo) to allocate storage for the Pull

//request

//while there are items to be distributed

{

// DataItem = DsDdDistList::GetNextItem() get then next

// data item for distribution

// Parse Data Item location information to get node and path

7-27 305-CD-008-001

// components

// DsStResourceC::DistFrom(DataItemNode,"PULL",DataItemPath) to
// move that data item to the pull storagae area

}

// DsStResourceC::Deallocate() to free up the resource for other
// uses

PullFmtFiles
Arguments: FileName:FileName

Return Type: Void

Privilege: Private

TransferFiles - Mediates the transfer of data items to the pull storage area. If needed, a tar

or cpio archive file is created.

Arguments: DistFmt:char*

Return Type: Void

Privilege: Public

PDL://FileName = CreateOutputFile(DistFmt) create a tar or cpio file

//containing the data items if needed. If no tar/cpio file has

//been requested, FileNmae will be Null

//if FileName is NULL
{

// PullFiles()
}

//else
{

// PullFmtFiles(FileName)

}

~DsDdPullMedia - Object destructor

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDdPullMedia class has associations with the following classes:
None

7-28 305-CD-008-001

7.3.16 DsDdPullProcessor Class

Parent Class: DsDdRequestProcessor
Public: NoDistributed Object: No
Purpose and Description:
Provides concrete instance of the CreateMedia which processes an electronic pull request.

Attributes:

All Attributes inherited from parent class

Operations:

CreateMedia - Creates the instances of the objects which will interface with the devices
needed for the transfer of data items associcated with this request.
Arguments:
Return Type: Void
Privilege: Private

CreateNotificationMsg
Arguments:

Return Type: RWCString

Privilege: Public

Associations:

The DsDdPullProcessor class has associations with the following classes:
None

7.3.17 DsDdPushMedia Class

Parent Class: DsDdElectronicMedia
Public: NoDistributed Object: No
Purpose and Description:
Initiates and monitors the push of DataItems or tar/cpio archive files consisting of
DataItems across the network to the requestor.

7-29 305-CD-008-001

Attributes:

myDirectory - Directory on the remote node where files will be copied by the push distribution
Data Type: EcTChar*
Privilege: Private
Default Value:

myLogin - login information supplied by the user: an account for the node and the

password for that account.

Data Type: Login

Privilege: Private

Default Value:

myRemoteNode - Indicates the node to which data items or tar/cpio archive files of data

items will be pushed

Data Type: EcTChar*

Privilege: Private

Default Value:

Operations:

DsDdPushMedia - Constructor for the push media object.
Arguments: Node:EcTChar*, Login:Login, Directory:EcTChar*
Return Type: Void
Privilege: Public

PushFiles - Distributes the requested data items without any format change to the node and

directory supplied by the request using the account and password also supplied by the

request.

Arguments:

Return Type: Void

Privilege: Private

PDL://DsDdPackingSlip::CreatePackSlip() create a file with a list of

//the data items which will be pushed to the requestor

//DsStResourceC.Allocate(ResourceType,MediaType,RequestId,Priority,

//Size,ProfileInfo) to allocate a network resource for "pushing"

//the data items to the requestor

//DsStResourceC::DistFrom(DistributionNode,"PUSH",PackSlip) to

//send the packing slip to the requestor

//while there are files to be distributed

{

7-30 305-CD-008-001

// DataItem = DsDdDistList.GetNextItem() to get the next data
// item for distribution

// Parse data item location to get node and path of the data
// item

// DsStResourceC::DistFrom(DataItemNode,"PUSH",DataItemPath)
// to push the data itme over the network resource
}

//DsStResourceC::Deallocate() to free the resource for other use

PushFmtFile - Creates a tar or cpio archvie file containing the data items. The tar/cpio

archive file is then pushed to the requestor along with the packing slip (a list of data items

that should be in the tar/cpio archive file).

Arguments: FileName:char*

Return Type: Void

Privilege: Public

PDL://DsDdPackingSlip::CreatePackSlip() create a file with the list of

//data items included in this distribution

//DsStResourceC::Allocate(RequestType,MediaType,RequestId,Priority,

//Size,ProfileInfo) to obtain a network resource for the push

//DsStResourceC::DistFrom(DistributionNode,"PUSH",PackingSlip) to

//transfer the packing slip to the node and directory specified

//by the requestor

//DsStResourceC::DistFrom(DistributionNode,"PUSH",FileName) to

//transfer the tar/cpio archive file which contains the requested

//data items

//DsStResourceC::Deallocate() to free up the resource for other use

//Remove the tar/cpio archive file from local storage

TransferFiles - Concrete specialization of the interface with the RequestProcessor object.

Creates a tar/cpio archive file if needed and sends the data items to the reqeustor.

Arguments: DistFmt:char*

Return Type: Void

Privilege: Public

PDL://FileName = CreateOutputFile(DistFmt) create a tar/cpio archive

//file if needed based on the distribution format submitted in the

//request

7-31 305-CD-008-001

//if FileName is NULL - no tar or cpio archive was created
{

// PushFiles() to push the files one at a time to the requestor
}

//else - data items have been put in a tar/cpio archive file
{

// PushFmtFile(FileName) to push a tar/cpio archive file to

// the requestor

}

~DsDdPushMedia - Destructor for the object

Arguments:

Return Type: Void

Privilege: Public

Associations:

The DsDdPushMedia class has associations with the following classes:
None

7.3.18 DsDdPushProcessor Class

Parent Class: DsDdRequestProcessor
Public: NoDistributed Object: No
Purpose and Description:
Defines the concrete CreateMedia which performs processing for electronic push
distribution.

Attributes:

myDestPassword - Password to use at the destination node.
Data Type: char
Privilege: Private
Default Value:

myDestination - Destination for the electronic push, which includes destination TCP/IP

address and directory path.

Data Type: char

Privilege: Private

Default Value:

myLogin - Login name to use at the destination node.

7-32 305-CD-008-001

Data Type: char
Privilege: Private
Default Value:

Operations:

CreateMedia - Creates the instances of the objects which will interface with the devices
needed for the transfer of data items for this request.
Arguments:
Return Type: Void
Privilege: Private

Associations:

The DsDdPushProcessor class has associations with the following classes:
None

7.3.19 DsDdRequestList Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
Set of pointers to all distribution requests.

Attributes:

None

Operations:

Sort - Sort the requests by a particular attribute. Level 4 requirements exist to display requests
by request id, state, or request type (electronic or physical media).
Arguments: Key:SortTypes
Return Type: DsDdRequestList
Privilege: Public

7-33 305-CD-008-001

Associations:

The DsDdRequestList class has associations with the following classes:
None

7.3.20 DsDdRequestManager Class

Parent Class: Not Applicable
Public: YesDistributed Object: Yes
Purpose and Description:
Base class for implementation of the OODCE factory model. Derived classes manufacture
server-side distribution requests and provide client-side presentations of those requests.

Attributes:

None

Operations:

CreateDistRequest - Creates a new distribution request. Two definitions of this service exists;
this definition creates a distribution request for all requests except for electronic push
requests, which require additional arguments.
Arguments: List:DistList, Media:char *, User:MsUsProfile, Format:char *
Return Type: DCEObjRefT
Privilege: Public
PDL:// construct server-side DsDdDistFile object
// construct server-side DsDdDistList object
// call DsDdDistList.Insert to place file object in the list

// construct DsDdDistRequestS

// call OODCE's RegisterObject to make the distribution request object visible as a

distributed object

// call and return DCE's GetObjectReference to provide the distributed object reference to

the client

CreateDistRequest -

Arguments: List:DistList, Media:char *, User:MsUsProfile, ElecDestntn:char *,

Password:char *, Format:char *

Return Type: DCEObjRefT

Privilege: Public

DeleteDistRequest - Service, in the OODCE factory model, to delete a distribution request

7-34 305-CD-008-001

which was created via the CreateDistRequest service.

Arguments: id:uuid_t

Return Type: Void

Privilege: Public

InventoryRequests - Provides an inventory - in the form of a list of distributed object

references - of all distribution requests.

Arguments:

Return Type: DsDdRequestList

Privilege: Public

Associations:

The DsDdRequestManager class has associations with the following classes:
None

7.3.21 DsDdRequestManagerC Class

Parent Class: DsDdRequestManager
Public: YesDistributed Object: Yes
Purpose and Description:
Client-side presentation of the request factory. The client's applications code will be

unaware of the existence of this object, because this object will be created and managed
from within the client instance of the distribution request. While this may seem to be a
chicken and egg paradox - the distribution request creates the factory, which creates the
distribution request - is isn't, because the logic is actually: 1- the client-side distribution
request is created, which 2- creates the factory, which 3- is used to create a server-side
instance of the distribution request, 4- whose OODCE distributed reference is returned,
to the client caller, as the client-side distribution request

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

7-35 305-CD-008-001

Associations:

The DsDdRequestManagerC class has associations with the following classes:
None

7.3.22 DsDdRequestManagerS Class

Parent Class: DsDdRequestManager
Public: NoDistributed Object: Yes
Purpose and Description:
Server-side presentation of the Distribution Request Factory. Manufactures Distribution
Requests, the distributed reference for which is returned to the client.

Attributes:

myRequestList - Pointer to list of all current distribution requests.
Data Type: DsDdRequestList
Privilege: Private
Default Value:

Operations:

All Operations inherited from parent class

Associations:

The DsDdRequestManagerS class has associations with the following classes:
Class: DsDdDistRequestS creates

7.3.23 DsDdRequestProcessor Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This base class provides to the distribution request a specialized class with the correct
ServiceRequest operation to perform the processing for the media specified in the
distribution request. This class and its specializations are a hybrid of the Template and
Strategy patterns described in the book "Design Patterns" by Gamma et al.

7-36 305-CD-008-001

Attributes:

myRequest - The request processor points back to the distribution request so it can access
request attributes. The request process will be designated as a friend of the distribution
request class.
Data Type: DsDdDistRequestS
Privilege: Private
Default Value:

Operations:

CreateMedia - Creates the instances of the objects needed to transfer the data items to the
requested media in the requested format.
Arguments:
Return Type: Void
Privilege: Private
This is an abstract operation

CreateNotificationMsg
Arguments:

Return Type: RWCString

Privilege: Private

DsDdRequestProcessor - Two definitions of the constructor exist; this definition handles

all requests except those for electronic push. Based upon the media type, this constructor

will create the appropriate specialized (DsDd..Processor) object.

Arguments: Media:MediaType, Request:DsDdDistRequestS

Return Type: Void

Privilege: Public

DsDdRequestProcessor - This definition contains the arguments needed for construction

of a DsDdPushProcessor.

Arguments: Media:MediaType, Request:DsDdDistRequestS, ElecDestination:char,

Password:char

Return Type: Void

Privilege: Public

ServiceRequest - Creates the auxillary objects needed to complete the request and

interfaces with external logging and notification services. This service is inhereted by all

of the subclasses and should not be overridden.

Arguments:

Return Type: GlStatus

Privilege: Public

PDL://

7-37 305-CD-008-001

EcUtLogger::Log(EventNumber,EventType,Disposition,Time,Message,[parameters
// for message]requestor,ReceiptTime,MediaType,RequestSize,Destination) to log
// the receipt of the message

//CreateMedia() create the objects needed for the transfer of the data items
// to the requested media

//myMedia->TransferFiles(DistFmt:char*) delegate the transfer of files to the
//created media object

//EcUtLogger::Log(EventNumber,EventType,Disposition,Time,Message,[parameters
//for message]requestor,CompletionTime,NumberofVolumes,NumberofItems,
//TotalSize,Destination) to log the completion of the request

//CreateNotificationMsg() creates a message to the requestor with the needed
//information

//GlNotification::SenndToUser(Message) to notify the requestor of the
//completion of the request

Associations:

The DsDdRequestProcessor class has associations with the following classes:
Class: DsStResourceC Allocates
Class: DsDdMedia DataItemsTransferedBy
Class: DsDdPackingSlip ListsItemsDistributedBy
Class: EcUtLogger LogsEventsVia
Class: DsDdShippingLabel Usesformailingphysicalmedia
Class: EcNotification notifiesuservia
DsDdDistRequestS (Aggregation)

7.3.24 DsDdShippingLabel Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class:
Purpose and Description:
To contain information indicating the shipping destination for distribution media. A media
label is produced for each shipment of distribution data on physical media.

7-38 305-CD-008-001

Attributes:

myDesignatedPrinter - Printer designated for printing the shipping label.
Data Type: char*
Privilege: Private
Default Value:

myFileLocation - Name of the file (including path) which contains the shipping Label.

Data Type: char*

Privilege: Private

Default Value:

myUserInfo - Reference to the object containing the profile of the requestor. Name and

shipping address of the requestor are needed.

Data Type: MsUsProfile &

Privilege: Private

Default Value:

Operations:

CreateLabel - Creates a shipping label using the user profile information from the request.
The shippping label consists of the requestor's name and shipping address and will be used
to address the physical shipment to the requestor. Since the required information for the
shipping label is present when the label object is created, the constructor for the object calls
this service and creates a file containing the shipping label.
Arguments:
Return Type: Void
Privilege: Private

DsDdShippingLabel - Constructor for the shipping label. Since all information needed for

the shipping label is present when the constructor is activated, the constructor creates a file

holding the shipping label.

Arguments: UserInfo:MsUsProfile &

Return Type: Void

Privilege: Public

PrintShipLabel - Sends the shipping label to the designated printer which is assumed to

have loaded the forms for the shipping label.

Arguments:

Return Type: GlStatus

Privilege: Public

~DsDdShippingLabel - Destructor of an instance of the shipping label. This operation

removes the file containing the shipping label.

7-39 305-CD-008-001

Arguments:
Return Type: Void
Privilege: Public

Associations:

The DsDdShippingLabel class has associations with the following classes:
Class: DsDdRequestProcessor Usesformailingphysicalmedia
Class: MsUsProfile isusedin

7.3.25 DsDdTapeMedia Class

Parent Class: DsDdLabeledMedia
Public: NoDistributed Object: No
Purpose and Description:
Handles the initiation and monitor of the transfer of data items to magnetic tape as part of
a tar or cpio archive file

Attributes:

myDensity - Requested density for the write to tape. Values are high, medium, and low
Data Type: char*
Privilege: Private
Default Value: "low"

Operations:

DsDdTapeMedia - Constructor for an instance of the Tape Media object.
Arguments: Density:char*

Return Type: Void

Privilege: Public

PrintMediaLabel - For release B implementation.

contents and formats between tape and cd

Arguments:

Return Type: Void

Privilege: Public

Will handle the differences in label

~DsDdTapeMedia - Destructor for an instance of the Tape Media object.
Arguments:

7-40 305-CD-008-001

Return Type: Void
Privilege: Public

Associations:

The DsDdTapeMedia class has associations with the following classes:
None

7.3.26 DsDdTapeProcessor Class

Parent Class: DsDdRequestProcessor
Public: NoDistributed Object: No
Purpose and Description:
Defines the concrete CreateMedia which performs the processing for tape media.

Attributes:

myDensity
Data Type: char *
Privilege: Private
Default Value: "low"

Operations:

CreateMedia - Creates instances of the objectes which will interface with the devices needed
for transfer of the data items associated with this request.
Arguments:
Return Type: Void
Privilege: Protected

Associations:

The DsDdTapeProcessor class has associations with the following classes:
None

7.3.27 DsStResourceC Class

Parent Class: Not Applicable

7-41 305-CD-008-001

Attributes:

None

Operations:

None

Associations:

The DsStResourceC class has associations with the following classes:
Class: DsDdRequestProcessor Allocates
Class: DsDdMedia TransfersDataItemsTo

7.3.28 EcNotification Class

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The EcNotification class has associations with the following classes:
Class: DsDdRequestProcessor notifiesuservia

7.3.29 EcUtLogger Class

Parent Class: Not Applicable

Attributes:

None

7-42 305-CD-008-001

Operations:

None

Associations:

The EcUtLogger class has associations with the following classes:
Class: DsDdRequestProcessor LogsEventsVia

7.3.30 MsUsProfile Class

Parent Class: Not Applicable

Attributes:

None

Operations:

None

Associations:

The MsUsProfile class has associations with the following classes:
Class: DsDdDistRequestS isforuseridentifiedvia
Class: DsDdShippingLabel isusedin

7.4 CSCI Dynamic Model
This section describes several scenarios for the Data Distribution CSCI. A scenario delineates the
steps that occur in a particular execution through the system.

Since all actions are initiated via a distribution request which may be a distributed object, the first
scenario (Distributed Creation of a New Distribution Request) presents both the client- and server
side events involved in the creation of a distribution request distributed object. The sequence of
events depicted in this scenario are unvarying for all additional scenarios involving the creation of
a new request. Since the client/server specializations of the request perform logically as a single
(albeit distributed) object, in subsequent scenarios the client-/server-side representation is omitted,
and the distribution request distributed object is treated as single object.

The scenarios presented in this section are:

• Distributed Creation of a New Distribution Request

7-43 305-CD-008-001

• Electronic Pull of Data

• Electronic Push of Data

• Physical Distribution to Tape

• Abort of an Active Request

• Tape Fault

7.4.1 Distributed Creation of a New Distribution Request

Summary

Figure 7.4.1-1 depicts the creation of a new distribution request. The client
(DsSrWorkingCollection) creates one or more objects of class DsDdDistFile, inserts them into a
DsDdDistList, and invokes the Distribute service. The Distribute service will create a new
distributed object DsDdDistRequest, which is created on the server via the OODCE factory model
implemented in DsDdRequestManager. The distributed creation of DsDdDistRequest also results
in the deobjectization of the client DsDdDistFile and DsDdDistList and their reconstruction on the
server side, which is necessary because OODCE does not provide a deep copy of referenced
objects.

In the remaining event traces the client/server distinction of classes and events presented in this
diagram will be depicted at a higher level which does not distinguish between client and server
events or classes; for instance, DsDdDistRequest will be shown instead of showing both
DsDdDistRequestC and DsDdDistRequestS. Additionally DsDdRequestManager, which
implements the OODCE factory model and is transparent to the client and ancillary to the main
event flow, will not be shown on subsequent traces.

Assumptions

• The user desktop has an active dataserver session.

• The job's working collection is populated with the correct ESDTs.

• The distribution interface is up on the client's desktop

7-44 305-CD-008-001

|

|

|

|

|

<--- Client Processing ---> <--- Server Processing --->

DsSrWorkingCollection DsDdDistFile DsDdDistList DsDdDistRequestC DsDdRequestManagerC DsDdRequestManagerS DsDdDistFile DsDdDistList DsDdDistRequestS

Deobjectize

ctor

ctor

insert

ctor

Deobjectize

ctor

Distribute

Insert

ctor

ctor

return(DCEObjRefT)
return(

DCEObjRefT)
asynchronous return

Submit

return(DCEOBJRefT)

GetObjectReference

CreateDistRequest
CreateDistRequest

ctor

7-45
305-C

D
-008-001

Figure 7.4.1-1. Creating a Distribution Request

7.4.2 Electronic Pull of Data

Summary

Figure 7.4.2-1 depicts the distribution of data via electronic pull. The scenario begins with
DsSrWorkingCollection invoking the Distribute service, which results in the creation and
asynchronous return of a DsDdDistRequest, followed by the submission of that request. The
request is added to the DsDdRequestList (a list of all current requests), and the media type (in this
case electronic pull) results in the construction of a DsDdPullProcessor object and the invocation
of its ServiceRequest operation. Concurrently with this, DsSrWorkingCollection invokes the
WaitForCompletion service, which is possible because of the asynchronous return of the
DsDdDistRequest via the Distribute service, and may be desired if the initiator
(DsSrWorkingCollection in this instance) wishes to know when the request completes.

In processing the request TransferFiles is next invoked, which results in invocation of Allocate to
obtain space in the user pull area. Additionally, CreatePackingSlip is called to create the list of
items distributed with associated information about the distribution, which is later used by
GetPackingListFile to incorporate the information into the EcNotification mail message sent to the
user. GetNextItem and DistFrom are called iteratively to respectively get each item to be
distributed and transfer it to the user pull area. Upon completion the mail message is sent, the
request is removed from the request list, and the WaitForCompletion returns.

Assumptions

• The user desktop has an active dataserver session.

• The job's working collection is populated with the correct ESDTs.

• The distribution interface is up on the client's desktop

7-46 305-CD-008-001

DsSrWorkingCollection DsDdDistList DsDdDistRequest DsDdRequestList DsDdPullProcessor DsDdPullMedia DsStResource DsDdPackingSlip EcNotification

Distribute

ServiceRequest

Submit

asynchronous

return
return

SetState

WaitForCompletion

Insert

return

DistFrom

Deallocate

GetPackingListFile

TransferFiles

GetNextItem

CreatePackingSlip

Allocate

SendToUser

7-47
305-C

D
-008-001

Figure 7.4.2-1. Electronic Pull of Data

7.4.3 Electronic Push of Data

Summary

Figure 7.4.3-1 depicts the distribution of data via electronic push. The scenario has only a few
differences from that for Electronic Pull of Data. With Electronic Push the destination resource for
DistFrom is the network vice staging disk for Electronic Pull. Also, in Electronic Push
GetPackingListFile is not used because the information from CreatePackingSlip is transferred as a
file to the push destination vice being included in the mail message to the requestor.

Assumptions

• The user desktop has an active dataserver session.

• The job's working collection is populated with the correct ESDTs.

• The distribution interface is up on the client's desktop

7-48 305-CD-008-001

7-49
305-C

D
-008-001

DsSrWorkingCollection DsDdDistList DsDdDDistRequest DsDdRequestLIst DsDdPushProcessor DsDdPushMedia DsStResourceC DsDdPackingSlip EcNotification

SetState

Submit

asynchronous

return

return

Insert

ServiceRequest

Distribute

WaitForCompletion

return

TransferFiles

Allocate

CreatePackingSlip

DistFrom

DistFrom

Deallocate

SendToUser

GetNextItem

Figure 7.4.3-1. Electronic Push of Data

7.4.4 Physical Distribution to Tape

Summary

Figure 7.4.4-1 depicts the distribution of data via tape. The scenario is the same as that for
Electronic Pull up to the Allocate of the resource. Once the resource is allocated, GetResourceID
is used to determine the tape drive id, which is used in a Posix system call to write the distribution
files in the requested format (tar or cpio) to the tape. The number of volumes written is determined
and a packing slip generated, after which the user is notified of completion of the request. Note
that for tape (and other physical media) the request is not removed from the request list; this
removal occurs only after operations personnel indicate that the distribution product has been
shipped to the requester.

Assumptions

• The user desktop has an active dataserver session.

• The job's working collection is populated with the correct ESDTs.

• The distribution interface is up on the client's desktop

7-50 305-CD-008-001

DsSrWorkingCollection DsDdDistList DsDdDistRequest DsDdRequestList DsDdTapeProcessor DsDdTapeMedia DsStResource DsDdPackingSlip CommandShell EcNotification

7-51
305-C

D
-008-001

SetState

Print

ServiceRequest

Allocate

GetResourceId

System

CreatePackSlip

Deallocate

Distribute

Submit

asynchronous

return
return

TransferFiles

Insert

SendToUser

SetNumVolumes

WaitForCompletion

return

GetNextItem

Figure 7.4.4-1. Distribution via Tape

7.4.5 User Abort of a Request Waiting for a Device

Summary

Figure 7.4.5-1 depicts a user-initiated abort of a request which is waiting for a device to become
available. The scenario begins with DsSrWorkingCollection invoking the Distribute service,
which results in the creation and asynchronous return of a DsDdDistRequest, followed by the
submission of that request. The request is added to the DsDdRequestList (a list of all current
requests), and the distribution media type (in this example CD) results in the construction of a
DsDdCDProcessor object and the invocation of its ServiceRequest operation. TransferFiles is then
requested, followed by Allocate, which requests that a CD device be made available. In this
example no device is currently available, so the Allocate will block until a device becomes
available. While the device availability is pending DsSrWorkingCollection issues an Abort of the
request. Because the thread which called Allocate is blocked, the Abort will be serviced by a
separate thread, which will request DsStRequestManager to Abort the allocation. When the abort
occurs the blocked Allocate thread returns, and SendToUser is called to notify the requestor of the
distribution that the abort has occurred. Additionally, the request is removed from
DsDdRequestList.

Assumptions

• The user desktop has an active dataserver session.

• The job's working collection is populated with the correct ESDTs.

• The distribution interface is up on the client's desktop

7-52 305-CD-008-001

7-53
305-C

D
-008-001

DsSrWorkingCollection DsDdDistList DsDdDistRequest DsDdRequestList DsDdCDProcessor DsDdCDMediia DsStResource DsStRequestManager EcNotification

Distribute

Submit

asynchronous

return

return(

DsDdDistRequest)

ServiceRequest

Abort

Insert

return

Abort

SendToUser

return return

TransferFiles

Allocate

return

return

Remove

return

Figure 7.4.5-1. Abort a Request

7.4.6 Tape Fault

Summary

Figure 7.4.6-1 depicts the handling of a recoverable tape fault, such as errors writing to a tape
which preclude further use of that tape, but not of the drive. The scenario is the same as Physical
Distribution to Tape, except that the tape fault is signaled via an exception, and an exception
handler responds to the fault by restarting the operation with a new tape.

Assumptions

• The user desktop has an active dataserver session.

• The job's working collection is populated with the correct ESDTs.

• The distribution interface is up on the client's desktop

7-54 305-CD-008-001

7-55
305-C

D
-008-001

DsSrWorkingCollection DsDdDistList DsDdDistRequest DsDdRequestLIst DsDdTapeProcessor DsDdTapeMedia DsStResource DsDdPackingSlip
CommandShell EcNotification

TransferFiles

Allocate

GetResourceId

System

ExceptionHandler

SetState

Print

CreatePackSlip

SetNumVolumes

System

Deallocate

Distribute

ServiceRequest

Submit

asynchronous

return

Insert

return

WaitForComplete

return

SendToUser

Figure 7.4.6-1. Handling a Tape Fault

7.5 CSCI Structure
Table 7.5-1 shows the components (CSCs) of the CSCI. Each CSC is described and designated as
being custom developed code (DEV), off-the-shelf (OTS) or a combination of the two (DEV/
OTS). If the custom developed code will be used for integration purposes, it is identified as
WRAPPER.

Table 7.5-1. DDIST's Components
CSC Description Implementation

Distribution Products The classes in this CSC represent the products and outputs
generated by the DDIST CSCI.

DEV

Distribution Client
Interface

The classes in this CSC are presented to client software for use
in initiating, tracking,

DEV

Distribution Request
Management

The classes in this CSC provide the control and coordination of
distribution request processing:

DEV

and manipulating distribution requests.

7.5.1 Distribution Products CSC

Purpose and Description

The classes contained in this CSC represent products generated by the DDIST CSCI. These classes
can be further categorized as follows:

• The following classes represent the media via which the data is distributed to the requestor:

DsDdMedia
DsDdElectronicMedia
DsDdPullMedia
DsDdPushMedia
DsDdLabeledMedia
DsDdCDMedia
DsDdTapeMedia

•	 The following classes represent products which track and route the data and the media via
which it is distributed:

DsDdPackingSlip
DsDdShippingLabel

•	 DsDdRequestList is a software entity which represents the requests presented to the
operator so the operator can manage distribution operations.

Objects instantiated from classes in this CSC reside in the distribution server executable.

Candidate products

Not Applicable

ECS white paper references

Not Applicable

7-56 305-CD-008-001

7.5.2 Distribution Client Interface CSC

Purpose and Description

This CSC contains classes which are presented to client software for use in initiating, tracking, and
manipulating distribution requests, further categorized as follows:

• The following classes define the data items which are to be distributed:

DsDdDistList
DsDdDataItem
DsDdDistFile

•	 The following classes define the client presentations of the distribution request, with
distinct classes for user and operator presentations:

DsDdDistRequestC
DsDdOpsRequestC

•	 DsDdRequestManagerC is the client presentation of the distributed object which
implements the OODCE factory model for the creation of distribution requests which are
themselves distributed.

Objects instantiated from DsDdDistRequestC, DsDdOpsRequestC, and DsDdRequestManagerC
reside in the client process. Objects instantiated from DsDdDistList and DsDdDistFile
(DsDdDataItem is an abstract class) may reside in either the client process or the distribution server
process.

Candidate products

Not Applicable

ECS white paper references

Not Applicable

7.5.3 Distribution Request Management CSC

Purpose and Description

The classes in this CSC provide the control and coordination of distribution request processing:

DsDdRequestManager
DsDdRequestManagerS
DsDdDistRequest
DsDdPrivRequest
DsDdDistRequestS
DsDdRequestProcessor
DsDdCDProcessor
DsDdTapeProcessor
DsDdPushProcessor
DsDdPullProcessor

Instantiations of these objects reside in the distribution server process.

Candidate products

Not Applicable

7-57 305-CD-008-001

ECS white paper references

Not Applicable

7.6 CSCI Management and Operation
The materials in the following paragraphs discuss the management and operations of software
components discussed in section 4.5.

7.6.1 System Management Strategy

The DDIST CSCI is designed to provide robust data distribution services to external data providers
and requesters. Specifically, the design goal of the DDIST CSCI is to always return status
(successful or unsuccessful) for every received request. To accomplish that goal, the CSCI follows
ECS project guidelines for:

• Process startup and shutdown;

• Error detection and reporting;

• Fault tolerance and error recovery

7.6.1.1 Startup/Shutdown

MSS provides life-cycle services for system startup and shutdown. The DistributionServer
process acts as an “object factory”. As such the process instantiates objects in process threads
(pthreads) when a request is serviced. The DistributionServer process is started as a standalone
process at system startup. The primary role of the DistributionServer Process is to provide a
distribution mechanism for physical media and electronic requests.

7.6.1.2 Error Detection and Reporting

The Data Distribution CSCI is designed for primarily automated operations with little need for
operations involvement short of tuning and critical error conditions. CSS and MSS jointly provide
event logging services for logging and reporting errors and faults, for browsing error/status logs,
and for detecting and reporting critical errors. The Data Distribution CSCI will fully use those
services during operations. Errors/status may be reported in two error logs. MSS maintains the
first log, the MSS event log. It contains errors/status of interest to operations staff to evaluate
system status and to perform trend analysis. The Data Distribution CSCI maintains the second log.
The Data Distribution event log contains selected errors/status from the MSS event log (for
context) plus highly-detailed debug events. Software maintenance personnel use the Data
Distribution event log to diagnose system and software problems in response to trouble tickets.

Non-critical errors encountered during processing that will be handled at the application level will
be fully resolved and enumerated during development. Major conditions that require operator
intervention and/or are considered catastrophic in the processing of requests are listed in Table
7.6.1.2-1.

7-58 305-CD-008-001

Table 7.6.1.2-1. DDIST Error Categories
Error Category Actions to Be Taken

Initialization File/
Environment
Corrupt

This would be seen during a system startup process and would result in one or more
executables not starting.

DB Connection
Dropped

This could be a serious failure of the Data Base or a short lived problem with the
connection.
the Data Base and the Data Server processes.

Internal Queue
Overflow

Errors reported along these lines represent a very poorly tuned and/or faulty system.
This type error would represent potential loss of service requests.
would immediately throttle back system processing thresholds and write a trouble ticket
for future off line analysis and tuning.

Unable To
Allocate Disk
Space

Unable to allocate working storage space using Data Server STMGT CSCI services.
This is another system of a poorly tuned system.
would immediately lower system thresholds for requests.
analyze system off-line and tune.

Unable To
Allocate
Distribution
Device

Unable to allocate a media distribution device due to device off-line, device powered
off, or device in use by another process. This could indicate an operations problem, or
a maintenance problem. Report alert to operations staff who would check device status,
perform corrective action or notify maintenance.

Communications
Link Dropped

This could be a serious failure of an internal component, CSCI, or an external
component. Operations would need to analyze a local problem to determine in a
hardware component or local CSCI has failed. Operations would coordinate external
problems with the appropriate site.

Operations staff evaluate the condition and correct.

Operations (DBA) would need to evaluate the problem, possibly restarting

Operations staff

Report alert to operations staff who
Operations staff would

7.6.1.3 Fault Tolerance and Error Recovery

Once a service request is accepted from a client (client being defined as any service requester, not
just the ECS Desktop Client), it is the Data Distribution CSCI's design goal to complete the request
processing and return status (successful or unsuccessful) to the requester. The Data Distribution
CSCI is built on the model of checkpointing processing at the command level (within a request)
along with the user's distribution item list (context in a manner of speaking). During restart or
recovery operations the CSCI will restore a user's distribution item list and resume processing at
the next unprocessed command. Therefore, upon establishment of a user session, the DDIST CSCI
will have the user's distribution item list checkpointed to the COTS data base. Likewise, Requests
(containing Commands) are also checkpointed. After each command is completed, the distribution
item list will be checkpointed if it has changed in value or state. After a process or system failure,
the checkpointed distribution item list and Requests are automatically restored to the last
checkpointed state and processing continues.

Failure scenarios with recovery methods:

a.	 Failure of the Data Distribution Executable. This process is immediately restarted as a
Unix standalone process. The User Distribution Item List and Requests are restored from
their checkpointed states. Data Base integrity is verified and transactions rolled back via
COTS procedures.

b.	 Loss of the data base tables used for checkpointing. The data base management system
automatically logs transactions to allow restorations of table information. This feature,
coupled with DBA generated Data Base backups, provide for recovery. Since high
reliability is required in this area, the Data Base tables will be stored on RAID.

7-59 305-CD-008-001

c.	 Failure of the processor on which the DDIST process is running. In general, the processor
automatically restarts. Restart of individual processes is handled as a combination of one
or more of the above process restarts. If the processor is disabled, the disablement is
detected my MSS SNMP services and a backup processor is restarted. The backup
processor has full access to the data base tables used for checkpointing. Again, restart of
individual processes is handled as described above.

d.	 Failure of an external application. After a given number of retries to transmit data or via
DCE services that alert us of failure of the recipient process, operations staff are notified
by means of an alert message. The DAAC operations staff will coordinate to diagnose the
failure.

7.6.2 Operator Interfaces

DAAC operations personnel are provided with an X-Windows/Motif-based GUI to access
operations data bases and system configuration information. Table 7.6.2-1 highlights the critical
DDIST GUI screens.

Table 7.6.2-1. Data Distribution Management GUI
GUI Description Data Operations

Data
Distribution
Management

Root screen for the
following GUIs.

References to:
Distribution Operator Control and Distribution
Shipping Management GUIs.

Logon
Realizes and/or
makes the GUIs
visible.

Distribution
Operator
Control GUI

Allows operators to see
and manage
distribution events

Distribution state events:
electronic transmission problems, media
problems, disk management problems

View
Abort
Change Priority
Suspend
Resume
Reprint Packing
List

7-60 305-CD-008-001

7.6.3 Standard DDIST Reports

Table 7.6.3-1. Standard Distribution Reports
Report Type Report Description Intended Audience

Distribution
Profile

This report will provide the total number of orders received
for the reporting period which is either the last 24 hours, the
previous 7 days, previous 30 days, or number since a given
date.

System Operator
Sr. Science Coordinator
Resource Planner
Performance Analyst
Operations Supervisor
DAAC Manager

Media
Distribution

Distribution of data by distribution media type. For each
media type the reported data will include: the distribution of
the requested data in Gigabytes, total number of product
instances and the total numbers of physical media.

System Operator
Sr. Science Coordinator
Resource Planner
Performance Analyst
Operations Supervisor
DAAC Manager

Electronic
Distribution

Distribution of data via network resources. For each
distribution location the reported data will include: the
distribution of the requested data in Gigabytes, total number
of product instances and the total numbers of requests.

System Operator
Sr. Science Coordinator
Resource Planner
Performance Analyst
Operations Supervisor
DAAC Manager

Push
Utilization

Total volume of data in Gigabytes and the number of product
instances pushed.

System Operator
Sr. Science Coordinator
Resource Planner
Performance Analyst
Operations Supervisor
DAAC Manager

Distribution
Error

Is a summary report of the frequency of errors encountered
during distribution processing. The reporting period is either
the last 24 hours, the previous 7 days, previous 30 days, or
number since a given date. Information for each
unsuccessful request includes: date/time stamp, request
identifier,

System Operator
Performance Analyst
Operations Supervisor
DAAC Manager

error code, error message, destination code.

7-61 305-CD-008-001

This page intentionally left blank.

7-62 305-CD-008-001

8. ACMHW - Access Control and Management HWCI

The Access hardware allows for client access (both the client subsystem and direct “push/pull” user
access) to the Data Server subsystem, provides tools and capabilities for system administration,
and supports many of the infrastructure requirements of the Data Server. This hardware
configuration item controls logical data server access, maintains client sessions, and directs service
requests to other appropriate Data Server subsystem configuration items. The Access Control and
Management hardware is broken down into two components; Administration Stations (AS) and
Access/Process Coordinators (APCs). The number, type, and configuration of the APCs and
Administration Stations vary according to site needs and number of data servers supported.

8.1 HW Design Drivers
The design of the Access Control and Management hardware is driven by the heterogeneity of the
client server interfaces as well as a large number of sessions and processes in progress at any one
time. The component's configuration must be flexible and its hardware expandable in order to
meet the requirements. Partitioning of the Access Control and Management hardware in two
categories of AS and APC provides modularity to facilitate the expandability.

The management responsibilities performed by AS component are twofold. The first type of
responsibility of the AS is to administer the logical data servers, providing logical resource
scheduling, arbitration and access control. The second task of the AS is to manage the physical
aspects of the subsystem functioning.

Direct user controlled access to data (i.e., remote mounts and data transfer functions) are isolated
to the APC component of this CI. This is done to more easily support security concerns of the
system, allow for better control and monitoring of user accesses, and to insure that overall system
performance and function is not adversely affected by the electronic ingest and distribution
functions.

Data that is to be distributed from the data server may need to be buffered for a period of time. This
is true when the data is being pre-processed/formatted for distribution, when the data is being
pushed out electronically from the system to the user, or whenever the user is pulling/accessing the
data from the data server. The buffering of data is done within the locally attached disk Storage.
The management of the user access to the data is the function of the APC. Only less critical data
is ingested via APCs. Data that is time-critical or requires very reliable and highly available ingest
is not ingested here, but enters the DAAC at the Ingest Subsystem.

8.1.1 Key Trade-off Studies and Prototypes

User Modeling data was used as follows.

a.	 “User Pull Analysis Notebook”, 160-TP-004-001, Dec. 94 - Jan. 95 Question 20 (Dec. 1,
1994), defined the rate (number per minute) of user requests for system services as a
function of time of day (across all DAACs).

b.	 “User Pull Analysis Notebook”, 160-TP-004-001, Dec. 94 - Jan. 95 Question 47 (Jan. 18,
1995), defined the service requests to each layer of the data pyramid by DAAC.

8-1 305-CD-008-001

8.1.2 Sizing and Performance Analysis

In Release A AS will run X-terminal applications for APC, therefore a small workstation will be
sufficient in Release A with a potential upgrade to higher capacity in subsequent releases.
Workstation, rather than X-terminal would allow for greater operational flexibility.

The APC must be sufficiently scalable to accommodate the throughput rates of the electronic
portion of the distribution data (as opposed to the hard media distribution). These rates are going
to grow substantially with every Release as the data holdings within the Data Server grow. A
server class host is appropriate for the anticipated data throughput rates.

8.1.3 Scalability, Evolvability, and Migration to Release B

Future scalability of the Access Control and Management component will be provided by adding
comparable capacity workstations or replacing/augmenting them by more powerful workstations
as necessary in the future releases. The role of this component is to assure de-coupling of the Data
Server management and service provider functions from an underlying physical data Server
implementation, such as COTS DBMS, FSMS, hardware structure etc. This de-coupling allows
replacement or addition of physical hardware supporting the component to increase performance
without any change in functionality.

The scalability required in the APCs will be supplied by adding I/O capability as necessary. No
functional changes would be required for such expansion.

When user demand increases in the future for direct data access capabilities, the access space
dedicated to users may need to become a virtualized disk (i.e., the disk will be supported by a
deeper archive with data movement controlled via an FSMS or similar product) accessible to the
user community. Access rights, longevity of data in the pull area, and data purging rules will be
driven by site policies and available site resources.

Some of the electronic user pull sessions from APC may be interrupted by the user after placing a
data order. The data will be staged for user pick-up at an unspecified later time. Such transaction
pattern could lead to the accumulated staged data needs exceeding the capacity of the staging
storage. Therefore, where warranted by data traffic patterns in the future, Hierarchical Storage
Management (HSM) may be used to establish data de-staging.

8.2 HWCI Structure
The block diagram Figure 8.2-1 illustrates partitioning of the Access Control and Management
hardware into two functional modules.

8.2.1 HWCI Connectivity

All external and internal interfaces will be as follows: data interface of the APC to the File Server
computer will be network type, all control interfaces will be of network type. Data flows will occur
between the APC hosts and the disk via a channel type interfaces, between the APCs and external
recipients via high capacity distribution networks (e.g., ATM), and between AS and assorted Data
Server interfaces via moderate capacity networks (e.g. FDDI).

The Data Server subsystem network connectivity is illustrated in Figure 8.2.1-1.

8-2 305-CD-008-001

To/From Data Repository FSMS Host
and Distribution

Administration
Workstations

Administration
Component

Access/Process
Coordinaton Component

Access/Process
Coordinator Servers

To/From DAAC External
Network Interface

Legend:
DS FDDI
DAAC External Network Interface

Figure 8.2-1. Access Control and Management HWCI Block Diagram

FDDI Concentrator

DM
Work

Station

DM
Server

DM
Server

FDDI
Switch

File
Server

APC
Host

DBMS
Server

DM
Work

Station
DM

Work
Station

DM
Work

Station

FDDI Concentrator

AS
Work

Station

APC
Host

File
ServerDBMS

Server

DDS
Host

DDS
Host

AS
Work

Station

Distr.
Server

Distr.
Server

Figure 8.2.1-1. Data Server Network Connectivity

8-3 305-CD-008-001

The Data Server servers and workstations will be directly connected to the DAAC FDDI network.
The Data Server hosts will be connected to the same FDDI ring as the Data Manager hosts, as is
illustrated in Figure 8.2.1-1.

The Data Server processors/servers will contain dual-attached station (DAS) cards, which will be
dual-homed to separate FDDI concentrators. This provides redundancy so that full connectivity
will exist to the servers even in the event of a concentrator failure. The workstations will contain
single-attached station (SAS) cards and each will be connected to a single concentrator, but they
will also be split across concentrators so that they are not all connected to the same unit. The FDDI
concentrators are in turn connected to the FDDI switch. (Refer to section 5.2 of DID305 Overview
Volume 305-CD-004-001 for a general description of DAAC networks.)

8.2.2 HWCI Components

Access Control and Management Hardware Configuration Item consists of two components
described below: Administration component and Access/Process Coordination component.

Administration Stations (AS) will host and/or allow access to the Administration Services for one
or more data servers. These services will provide Data Server Administrators with the capability
to modify and monitor the configuration of the data server. The data server configuration will
include resource availability, number and location of components, data server schema, advertised
services, data types and archiving strategy. In addition, this set of services will include the
capability to perform Archive maintenance functions. Depending on the site configurations, a
number of AS may be supported. Because of the modest I/O and processing requirements
imposed, these stations will take the form of mid-sized workstations running GUI packages.

The Access/Process Coordinators (APCs) will be used to interface the data server services to the
clients. The APCs will support Client session establishment and control. Sessions will be managed
by the APCs and are the vehicle through which clients (both user programs and other services)
access the data server's object services. Sessions will provide for the management (from a client
perspective) of a variety of data server service resources (results sets, cached compute-on-demand
data objects [not provided in Release A], search contexts, etc.). These functions will impose a
modest computational load and a moderate I/O load on the APC processors. Additionally, a much
higher I/O load will be imposed by the APCs functioning as data throughput mechanism for
electronic data distribution in Release A.

The APCs may in later releases also provide the compute resources and possible portions of the
search engines and tools that operate on data retrieved from the data repositories. Algorithms
operating on data at a site may execute on an APC or a resource in the Processing Subsystem. The
designation of what algorithms and functions execute where in the system is a site configuration
policy and may change over time. A general guideline for initial system analysis would be that
generic algorithms that perform non-specific operations on data (i.e., simple geographic
subsetting) would be hosted on the APCs while more data specific or computationally intensive
algorithms would be hosted in the Processing Subsystem. The sizing of the APC platforms will
stem primarily from the I/O responsibilities of the APCs in its function as data throughput
mechanism for electronic data distribution, and only as a minor consideration computational
capabilities.

8-4 305-CD-008-001

Table 8.2.2-1. Access Control and Management HWCI Component Descriptions
Component Name Class/Type Comments

Administration OPS Workstation Moderately sized workstations with private disk.
Host and/or allow access to the Administration Services
for one or more data servers.
Will be scaled up in subsequent releases by adding
workstations or upgrading workstation class.

Access/Process
Coordination (APC)

APC Data Server Initially, mid-capacity servers.
Interface the data server services to the clients; provide
the compute resources and possible portions of the search
engines that operate on data retrieved from the data
repositories.
Will be scaled up by server class upgrade or additional
servers.

Sizing is site specific.

8.2.3 Failover and Recovery Strategy

Two AS workstations configured identically will supply AS failover/recovery capability via
redundant operation. Either workstation can be used independently as an operator workstation. in
the event of failure of one of them the other can assume the full role.

The two APC servers in a cold standby configuration will share a common disk pool. One of the
servers will be configured as primary, the other as a cold standby secondary. The active server will
maintain the current system configuration files on disk. If a failure on a primary APC is reported
by a CSS agent running on that APC or the agent is not communicating within a set period of time
due to a catastrophic failure, a failover procedure will be initiated by the CSS. During a failover
the backup APC server will read the system status files from the shared disk and begin operation
as primary.

There are three types of network failures that may affect the Data Server subsystem. If the FDDI
cable between a host and the FDDI concentrator is severed or damaged, then a new cable would
need to be installed. No other configuration would be required. If an individual port on the FDDI
concentrator fails, then the attached host must be moved to another port, again with no other
configuration required. Finally, if the entire concentrator fails, then it will have to be replaced,
which can be done rapidly since the units require very little configuration.

Note that the above failures result in service interruption only to the workstations. Since all
servers/processors are attached to two hubs, they will communicate as normal in the event of a
cable or concentrator fault, and the applications will be unaware of and unaffected by the event.

8-5 305-CD-008-001

This page intentionally left blank.

8-6 305-CD-008-001

9. WKSHW - Working Storage HWCI

Working Storage (WS) hardware configuration item of the data server supplies a pool of storage
used for temporary file and buffer storage within the data Server architecture. In Release B and
later WS may also be used to support the higher levels of a hierarchical storage scheme that utilize
other data repositories as lower levels in the storage schema. Any data that resides in WS and is
not designated as temporary data will be copied to a permanent data repository (see DRPHW - Data
Repository HWCI) and maintained there.

WS provides the staging capacity for data acquires and inserts. Because of its role at the higher
levels of the archiving hierarchy, WS may hold production related data that is to be accessed in the
near future to increase performance. WS also improves performance by retaining copies of
frequently accessed data that has been copied to the deeper archives and servicing data requests for
that data in a faster, more efficient manner. In this regard WS behaves like a cache for frequently
accessed portions of the deep archives.

9.1 HW Design Drivers
The principal driver behind the WS is its ability to hold the data for the ease of access by the
requesting components. Therefore, although the WS portion of the Data Server architecture
contains limited amounts of storage as compared to the Permanent Data Repository, the WS allows
for faster access and relatively high throughput rates.

In order to assure availability of WS in the light of its moderate capacity intelligent data purging
methods will be exercised. Data retrieval profiles will be used to predict aging of the data so that
data not likely to be requested in the pre-set time frame will be de-staged to the secondary tier
(Release B and later) or removed from the WS altogether.

Working storage serves as a buffer to the Data Processing Subsystem (DPS) for high performance
data exchange between the Data Server Subsystem and the DPS. It is also used as a storage buffer
for data subsetting (post Release A) and ingest that are performed in the Data Server subsystem
(TSDIS ingest, some of the ancillary data in Release A, and V0 data migration).

The logical configuration of the WS component is consistent at all DAAC sites. The physical
instantiation of the WS hardware will vary in later Releases for the larger and smaller sites due to
the variation in the data storage capacities and data rates supported at the sites.

9.1.1 Key Trade-off Studies and Prototypes

In Release A WS will be used primarily for file server data transfer buffering. The studies listed
below explored the concept of shared storage, that, although not used in Release A, may be
applicable to the subsequent releases.

“Network Attached Storage. Concepts and Industry Survey for the ECS Project” White Paper,
440-TP-009-001. The study identified candidate methods and technologies of network attached
storage for a distributed archive and examined the associated implementations issues and risk
factors.

9-1 305-CD-008-001

“Network Attached Storage Technologies” Study (Draft). The paper examined some of the design
alternatives that can be used to satisfy the SDPS internal data transfer requirements. It examined
the options of network attached storage implementation as a method of optimizing overall SDPS
design. The focus was on the issues of network attached storage within SDPS. Network attached
Redundant Array of Inexpensive Disks (RAID) pools and network attached Automatic Tape
Library (ATL) were discussed.

9.1.2 Sizing and Performance Analysis

The capacity of the working storage disk for Release A use was determined based on the
Processing Subsystem's predicted needs for data pre-staging and production volumes and patterns,
staging needs for the electronic distribution, and the minimum FSMS staging requirements. The
Processing Subsystem activity assumptions were based on the Performance Modeling group's
dynamic analysis of the AHWGP data for epoch e. For sizing of the distribution disk area AHWGP
data for epoch e was used of the size of the largest data granule for TRMM products.

9.1.3 Scalability, Evolvability, and Migration to Release B

The overall approach to increasing the capacity of the WS is “horizontal” rather than “vertical” in
nature. The size of the temporary repository will be increased, if necessary, by the use of additional
modular storage units rather than by solely relying on such units becoming denser and higher in
capacity and throughput as part of technology evolution.

Segmentation of Repositories - The use of multiple file servers and the mixing of storage solutions
like FSMS based systems in the architecture lends itself to easy scaling. Adding more file servers
can enhance both file handling bandwidth and processing capabilities. The flat common access
nature of the robotic based tape repositories allows added file servers to gain access to the data
without burdening existing file servers.

Performance Enhancements and Scaling - The architecture maintains performance levels as
increasing number of files and I/O requirements are added by allowing for growth in the various
tiers of Working Storage. By enlarging Working Storage a high “cache hit” rate can be maintained
in the higher tiers of the architecture, thereby keeping the deep archive accesses down to a
minimum. Intelligent purging strategies, briefly discussed in HWCI Design rationale, will also be
instrumental in reducing capacity demand on the WS in the future Releases.

9.2 HWCI Structure
The DPS will place processed data in the WS for continued access in further reprocessing and for
transfer to the permanent data repository. The data may be retained in the WS for some time for
repeated access. After that time the data in the WS is deleted with intelligent purging strategies
playing dominant role in establishing deletion mechanisms. “High water mark” could be a
secondary back-up consideration in conjunction with intelligent purging record base and an
operational schedule. At this time a copy of all the permanent data is already in residence in the
Permanent Data Repository. The data may be copied to WS again if requested by the DPS for
reprocessing.

9-2 305-CD-008-001

To/From Data
Respository

Primary Tier Component

Legend:

Local SCSI Bus

Figure 9.2-1. Working Storage HWCI Block Diagram

9.2.1 HWCI Connectivity

The Data Server servers and workstations will be directly connected to the DAAC FDDI network.
The Data Server hosts will be connected to the same FDDI ring as the Data Manager hosts, as is
illustrated in Figure 8.2.1-1.

The Data Server processors/servers will contain dual-attached station (DAS) cards, which will be
dual-homed to separate FDDI concentrators. This provides redundancy so that full connectivity
will exist to the servers even in the event of a concentrator failure. The workstations will contain
single-attached station (SAS) cards and each will be connected to a single concentrator, but they
will also be split across concentrators so that they are not all connected to the same unit. The FDDI
concentrators are in turn connected to the FDDI switch. (Refer to section 5.2 of DID305 Overview
Volume 305-CD-004-001 for a general description of DAAC networks.)

9.2.2 HWCI Component Description

For the purposes of sizing and technology choices, product data was assumed to be inserted into
the data server and would initially be staged in Working Storage on the staging disks. All product
data would then be copied into the deep archive. The copy of data was placed in Working Storage
anticipating near term (i.e., 0-3 hours) data acquires that will be required for production processing
and the fulfillment of subscription requests.

In subsequent Releases Working Storage may be tiered with the first tier component configured
using RAID disks. Potential candidates for the second tier component of Working Storage, all of
which would be robotic based and erasable in nature, include magneto-optical disk storage (1 GB
platters), smaller tape formats (i.e., serpentine, such as IBM's New Tape Product (NTP), Digital
Linear Tape (DLT), smaller capacity helical scan tapes, etc.), and potentially cheaper and slower

Shared WS
RAID Pool

(Level 1 WS)

9-3 305-CD-008-001

magnetic disks. The access patterns required for this data (i.e., random access vs. sequential access
and processing) will be a large factor in determining the technologies to be used at a site.

The per site estimates of working storage requirements are shown in the appendices.

Table 9.2.2-1. Working Storage HWCI Component Descriptions
Component Name Class/Type Comments

Working Storage Primary
Tier

RAID (host attached) RAID storage amount will grow in the Releases
following A.
subject to RAID affordability as well as architectural
considerations.

The final RAID capacity at Release D is

9.2.3 Failover and Recovery Strategy

Fault tolerance of the WS will be provided by using RAID for storage implementation. The RAID
will provide degraded mode of operations for a single disk failure.

9-4 305-CD-008-001

10. DRPHW - Data Repository HWCI

Data Repositories (DRs) are the hardware components that store and maintain data permanently.
Different technologies can be used to instantiate DR depending on the volume and type of data to
be stored, the access patterns on this data, and any additional unique requirements that may be
imposed on the repository (i.e., data maintenance requirements, backup and restore functions,
media management and control, etc.).

DRs will be classified as “permanent”, meaning that the services necessary to monitor and
maintain data integrity for large data holdings will be supported by this repository's storage
technology. As a general configuration rule, every site will have at least one DR in the component
designated as a permanent repository. A copy of all data at a site that is not considered temporary
will eventually be maintained in a site's permanent DR.

10.1HWCI Design Rationale
DR hardware of the data server is designed for expandability and evolvability. The expandability
is very important in the light of unprecedented data volumes that are received, processed, stored,
and distributed by the larger DAACs. The evolvability must be provided because of the
historically rapid evolution and aging of storage technologies.

Among other design considerations is the complexity that is introduced by the different
requirements for sizing of the DR portion of different DAAC sites. In the subsequent Releases the
DR storage hardware will differ at the large and small DAAC. At that time, a single DR may have
heterogeneous storage elements within it in order to best accommodate data types at different
layers of the data pyramid.

10.1.1 Key Trades and Analysis

“Storage Technology Contingency Plan for the ECS Project” TRADE 193-0111TPP; DRAFT
The trade study outlined a plan for an organized approach to dealing with the potential
unavailability of the 3480 optical tape cartridge-based large volume archive storage technology
originally proposed for use in the ECS Data Server Data Repository. The plan included several
implementation scenarios. In each of the proposed scenarios the schedule impact, cost, and
reliability issues were examined. The plan was the first step in a progression of analysis leading
to the selection of the optimal archive architecture. The scenarios resulted from the storage market
survey and initial vendor meetings and evaluations. The overall approach tied the scenario
development to the four deliverable releases.

“Storage Technology Insertion Plan” White Paper 420-WP-003-001. This document reviewed
existing secondary storage technology solutions with the purpose of outlining technology use and
insertion strategy for the ECS Data Server Permanent Data Repository over Releases of ECS
project. The document reflected both past and ongoing analyses of the project requirements and
the storage technologies market. One of the primary objectives of the design of the archive portion
of the SDPS is to allow for an expandable and evolvable facility.

10-1 305-CD-008-001

In the course of past analysis a large number of solutions were found unacceptable because they
lacked in scalability, performance, or both. As a result of that analysis and of further refinement
of the SDPS architecture, the number of appropriate storage solutions narrowed to just a few
logical candidates.

One significant development resulting from the analysis was a move away from a homogeneous
archival implementation starting with Release B or later. Some combination of linear and helical
scan magnetic tape will be required in order to take advantage of the performance strengths of each
of the technologies.

“Network Attached Storage Technologies” Study (Draft). The paper examined some of the design
alternatives that can be used to satisfy the SDPS internal data transfer requirements. It examined
the options of network attached storage implementation as a method of optimizing overall SDPS
design. The focus was on the issues of network attached storage within SDPS. Network attached
Redundant Array of Inexpensive Disks (RAID) pools and network attached Automatic Tape
Library (ATL) were discussed.

“DBMS Benchmark Report”, 430-TP-003-001. Reported the results of the benchmarking study
of four DBMS comparing performance of the products relative to each other.

10.1.2 Scalability, Evolvability, and Migration to Release B

Analogously to the methods used in keeping the Working Storage easily scalable, the scaling
strategy in the Data Repository is primarily “horizontal”. Modularity assures that no functional
perturbations occur as a result of scaling.

Increasing Secondary Storage Capacity - Secondary storage capacity within the permanent
repository will be increased via two methods: 1) increasing the number of storage units and the
corresponding number of robotic arms and tape drives; 2) increasing the capacity of the individual
tape cartridges and the throughput rate of the supporting tape drives. The first method is assured
through the proper expansion planning through the Releases of the system and archive architecture
that allows such addition of hardware. The second method is dependent primarily on further
evolution of technology.

The archive, however, is designed in a modular way allowing migration to more efficient
technologies in the future with minimal disruption to the normal functioning. See the “Storage
Technology Insertion Plan”, summarized in 10.1.1. One concrete example of a possible future
technology migration would be in the event of market availability of suitable cartridge based
optical tape. The deep archives can also scale by the use of heterogeneous storage devices tailored
to specific data types and their storage needs. By storing data in hardware/software formats that
are optimized to the retrieval patterns seen by that data, overall high performance can be
maintained.

Another degree of modularity is introduced by the use of a Volume Server logically separate from
the File Server. While at smaller DAAC sites the two may reside on the same physical server host,
at larger sites File Server and Volume Server will likely reside on distinct hardware hosts.

10-2 305-CD-008-001

Performance Enhancements and Scaling - The architecture maintains performance levels as
increasing number of files and I/O requirements are added by allowing for growth in the various
tiers of storage as well as Working Storage. By enlarging Working Storage a reasonable “cache
hit” rate can be maintained in the higher tiers of the architecture, thereby keeping the deep archive
accesses down to a manageable level.

The deep archives can also scale by in the use of heterogeneous storage devices tailored to specific
data types and their storage needs. By storing data in hardware/software formats that are optimized
to the retrieval patterns seen by that data, overall high performance can be maintained. An example
would be allocating larger sized files to a high throughput storage device, such as helical scan tape.
Although an initial access penalty is incurred of a helical scan drive head spin up, high transfer rate
over the length of a sizable file compensates for the time loss. Conversely, smaller files will either
have to be blocked together for storage to realize a throughput benefit, or placed on a storage media
that imposes less penalty on access, even if the throughput rate is comparatively lowered.

10.2HWCI Structure
The sizing of Release A Data Repository components hardware was done using dynamic modeling
and based on the assumptions outlined below.

a.	 AHWGP (baseline 1/95) data was used for the GB/day flow estimates. The data was
assumed to cumulate over the time period of a year from the TRMM activation (17 Aug.
1997 through 17 Aug. 1998).

b.	 V0 PDR Baseline holdings based on quantities for the data sets in “12/1996 (Release A
Initial Operations)” plus quantities for the data sets defined in “12/1997 (Release B Initial
Operations)”.

c. Baseline 1/95 TRMM TSDIS estimates.

d. No media capacity is allowed for data backup at this time.

The FSMS host platform will be selected on the basis of FSMS/platform compatibility, available
memory cash and I/O bandwidth.

The Data Base Management System (DBMS) Repository component was sized as follows:

A multi-CPU SMP DBMS Server was selected based on the DBMS software manufacturer's
compatibility recommendations, benchmark data, and project benchmarking activities.

The disk was sized to hold the core metadata associated with TRMM data as well that associated
with the V0 data sets identified for migration within release A. The products lists have been
derived from the DAAC instrument teams representatives. All products are assumed to conform
to the Proposed ECS Core Metadata Standard v2.0, 420-TP-001-005, December 1994. The
metadata sizing has been calculated from the Metadata Expected with each granule table on page
94 in Core Metadata Standard v2.0

10-3 305-CD-008-001

To Access Control, Distribution and
Working Storage

DATA REPOSITORY
ROBOTICS

DBMS
RAID

FSMS
HOST

DBMS
HOST

Data Repository
Component

DBMS
Component

Legend:
DS FDDI
Local SCSI Data Bus

Figure 10.2-1. Data Repository HWCI Block Diagram

10.2.1 HWCI Connectivity

The Data Server servers and workstations will be directly connected to the DAAC FDDI network.
The Data Server hosts will be connected to the same FDDI ring as the Data Manager hosts, as is
illustrated in Figure 8.2.1-1.

The Data Server processors/servers will contain dual-attached station (DAS) cards, which will be
dual-homed to separate FDDI concentrators. This provides redundancy so that full connectivity
will exist to the servers even in the event of a concentrator failure. The workstations will contain

10-4 305-CD-008-001

single-attached station (SAS) cards and each will be connected to a single concentrator, but they
will also be split across concentrators so that they are not all connected to the same unit. The FDDI
concentrators are in turn connected to the FDDI switch. (Refer to section 5.2 of DID305 Overview
Volume 305-CD-004-001 for a general description of DAAC networks.)

10.2.2 HWCI Component Description

The technologies used for permanent data archiving will be used to instantiate one or more data
repositories that are designated as Permanent Archive Management (PAM) types. The Permanent
Data Storage Technologies study supplies analysis of the applicability of recording technologies
to the storage of data of specific data pyramid levels. For the bulk data holdings that form the lower
levels of the data pyramid (i.e., level 1a - level 4), large tape based robotic archives coupled with
other robotic based media will be the most cost effective and robust method of permanent data
storage. Data stored in this manner will be retrieved sequentially to staging and will be
characterized by relatively long seek times and high speed streaming reads.

For several of the largest sites the overwhelming necessity, due to the projected size of the data
holdings, will be the use of technology with the highest density of the data storage that is
reasonably suitable in Release B and thereafter. Under the suitability criteria are the following
factors: sufficient reliability, cost effectiveness, and adequate performance levels. An example of
currently available COTS products of that kind is helical scan tape technology. Data that
comprises the higher levels of the data pyramid may utilize a different data repository technology
for permanent storage, specifically the technology used for operational storage and access. Such
technologies can be, as an example, faster access linear tape or, for very fast access, RAID banks.

A large portion of the PAM will be realized in robotic assisted tape based storage schemes. FSMS
systems have been used in many field applications to date to control and manage large tape based
archives such as that for ECS. ECS will use FSMS products within the PAM, with a few specific
requirements and design goals in mind that are reflected in the hardware design. A guiding design
approach for releases subsequent to Release A is the separation of command and data paths within
the PAM architecture through the use of network attached peripherals. This could result in keeping
tape to disk I/O from flowing through the CPUs and limiting it to the network/channel connections
that exist between the peripheral devices. Logical separation of control and data paths will be
maintained to allow for physical separation.

An additional design goal related to FSMS selection is the separation of volume and file server
functions. This will allow for smaller common processors to be used for volume serving, allow for
different file management systems to be used within the Archive, and will allow for the sizing and
choice of file serving processors to be done with greater independence. At the larger sites File
Server and Volume Server will likely reside on distinct hardware hosts.

10-5 305-CD-008-001

Table 10.2.2-1. Data Repository HWCI Component Descriptions
Component Name Class/Type Comments

Data Repository Archive Robotics Single tower robotics for Release A.

Magnetic Tape
Drives

Linear tape is considered for Release A, while higher
density tape is planned for the subsequent releases.

SMP Server
Workstation (FSMS
Host)

Large Workstation with Multiprocessor Capabilities.
Single processor will suffice in Release A, but more
processors will be brought in the subsequent Releases.

Data Base
Management System
(DBMS) Repository

SMP DBMS Server

RAID (host attached) DBMS RAID.
A, but grow substantially in later Releases

The quantities are fairly small in the Release

10.2.3 Failover and Recovery Strategy

A single archive robotic arm will be provided. In the event of failure a repair will have to be
performed.

In Release A a quantity of magnetic drives in the archive will be double the calculated required
number. Thus, the redundant drive set will provide the failover capability for the primary set.

The SMP Server workstations serving as FSMS hosts will be configured identically and share a
single disk bank to supply failover/recovery capability. One of the workstations will be configured
as primary, the other as a cold standby secondary. The active workstation will maintain the current
FSMS configuration files on disk. If a failure on a primary workstation is reported by a CSS agent
running on that workstation or the agent is not communicating within a set period of time due to a
catastrophic failure, a failover procedure will be initiated by the CSS. During a failover the backup
workstation will read the system status files from the shared disk and begin operation as primary.

The Similarly, two SMP DBMS host machines in a cold standby configuration will share a
common disk pool.

There are three types of network failures that may affect the Data Server subsystem. If the FDDI
cable between a host and the FDDI concentrator is severed or damaged, then a new cable would
need to be installed. No other configuration would be required. If an individual port on the FDDI
concentrator fails, then the attached host must be moved to another port, again with no other
configuration required. Finally, if the entire concentrator fails, then it will have to be replaced,
which can be done rapidly since the units require very little configuration.

Note that the above failures result in service interruption only to the workstations. Since all
servers/processors are attached to two hubs, they will communicate as normal in the event of a
cable or concentrator fault, and the applications will be unaware of and unaffected by the event.

10-6 305-CD-008-001

11. �DIPHW - Distribution and Ingest Peripheral
Management HWCI

The hardware of the Distribution and Ingest Peripheral Management supports the hard media
distribution methods for data dissemination from the system, as well as hard media ingest of data
into the system. Hard media distribution and ingest is done by an assortment of data recording
peripherals. The selection of the peripherals is per project requirements. At the larger ingest/
distribution sites, such peripherals may be under robotic control.

Data that is to be distributed from the data server will be buffered for a period of 24 hours. The
buffering of that data is the function of the Distribution Storage Management hardware in the data
server. The second half of the CI's responsibilities is ingest of the hard media distributed data.

11.1HWCI Design Rationale
Both the data distribution and the data ingest requirements drive the design of this CI. The
Distribution and Ingest Peripheral hardware will supply the hard media intersite and user data
distribution as well as scheduling and management of such distribution.

Aside from hard media distribution, this CI's responsibility within the SDPS is hard media ingest.
Because of the inherent high reliability and availability requirements for the Ingest Subsystem, it
is important for both cost and design considerations that the Ingest Subsystem is kept as small in
capacity as possible. Placing the responsibility for that portion of ingest with the Distribution and
Ingest Management of the Data Server Subsystem relieves the Ingest Subsystem of the necessity
to accommodate the lower priority ingest functions at the site.

The ingest and distribution peripherals were selected on the basis of project requirements. The
number of each type of peripheral was chosen with regard for RMA. (At least two each of the
peripheral devices that were reported by V0 DAACs to be used with any degree of frequency. The
6250 Tape Drives and CD-ROM were reported to be used infrequently, less than once a month,
and do not warrant duplicate quantities at each facility.) The aggregate bandwidth of the peripheral
devices exceeds the estimated required bandwidth of media based data distribution in Release A.
The required bandwidth was computed based on the assumption of the hard media distribution
equal in volume to one time archive repository ingest and a 8 hours per day operation of the hard
media preparation. V0 re-ingest is included in these figures.

11.1.1 Key Trades and Analysis

Market surveys of data recording and data storage peripherals. Selection of optimal hardware is
based on the market surveys.

Analysis of V0 sites. V0 site analysis allows narrowing down of the market available peripherals
to those that are currently in use at the existing ECS sites.

11-1 305-CD-008-001

11.1.2 Scalability Strategies

Scalability of the hard media ingest/distribution portion of this HWCI will be assured by adding
peripheral devices as necessary. Where warranted by the performance and volume requirements,
robotics (for example, stackers and jukeboxes) will be used with the peripheral devices.

11.2HWCI Structure
Staging disk in the Distribution and Ingest CI of the Data Server subsystem serves as a 24 hour
buffering pull. The buffering pull is relied upon to optimize performance of the data retrieval for
distribution or data processing/archiving after ingest.

Heterogeneous peripheral devices are used here as required for user community needs as well as
the need of other DAACs for data exchange via hard media.

To/From Data Responsitory

Staging
Disk

Device 1

Device 2

Device n

Scheduling/Control
Host(s)

and Access Control

Legend:
DS FDDI
Local SCSI Bus

Figure 11.2-1. Distribution and Ingest Peripheral Management HWCI Block
Diagram

11.2.1 HWCI Connectivity

The Data Server servers and workstations will be directly connected to the DAAC FDDI network.
The Data Server hosts will be connected to the same FDDI ring as the Data Manager hosts, as is
illustrated in Figure 8.2.1-1.

The Data Server processors/servers will contain dual-attached station (DAS) cards, which will be
dual-homed to separate FDDI concentrators. This provides redundancy so that full connectivity
will exist to the servers even in the event of a concentrator failure. The workstations will contain
single-attached station (SAS) cards and each will be connected to a single concentrator, but they

11-2 305-CD-008-001

will also be split across concentrators so that they are not all connected to the same unit. The FDDI
concentrators are in turn connected to the FDDI switch. (Refer to section 5.2 of DID305 Overview
Volume 305-CD-004-001 for a general description of DAAC networks.)

11.2.2 HWCI Component Description

The hardware of the Distribution and Ingest Management consists of a variety of recording devices
used for both hard media data distribution and hard media data ingest. These devices will be
controlled from small workstations. The types of the ingest/distribution media devices will be
chosen to accommodate the prevalent types of media in the user community and at other sites. The
number of the devices as well the whether or not robotic equipment will be used will be determined
for each DAAC site. The use of an HSM with an associated HSM host will likewise be established
for each site.

The hardware of this CI constitutes a single component.

Table 11.2.2-1. Distribution and Ingest Peripheral HWCI Component Descriptions
Class/Type Comments

RAID (host attached) Hard Media Based Ingest/Distribution Staging
Working Storage could be relied upon in Releases B through D for off-loading
any peak in ingest/distribution storage need.

6250 Tape Drive Ingest/Distribution Peripherals:
Other peripheral devices may be added as required in Releases beyond A.
The actual devices will depend on the user community needs.

8-mm Tape Drives and
Stacker

CD-ROM Jukebox (with
Drives)

Operations Workstation Support for Data Distribution/Ingest Technician & Mail Clerk

11.2.3 Failover and Recovery Strategy

Workstations will be spared in a cold standby mode. Double quantities of tape and CD drives will
be supplied for failover purposes.

There are three types of network failures that may affect the Data Server subsystem. If the FDDI
cable between a host and the FDDI concentrator is severed or damaged, then a new cable would
need to be installed. No other configuration would be required. If an individual port on the FDDI
concentrator fails, then the attached host must be moved to another port, again with no other
configuration required. Finally, if the entire concentrator fails, then it will have to be replaced,
which can be done rapidly since the units require very little configuration.

Note that the above failures result in service interruption only to the workstations. Since all
servers/processors are attached to two hubs, they will communicate as normal in the event of a
cable or concentrator fault, and the applications will be unaware of and unaffected by the event.

11-3 305-CD-008-001

This page intentionally left blank.

11-4 305-CD-008-001

12. DDSRVHW - Document Data Server HWCI

The Document Data Server (DDSRV) provides storage and retrieval services on ESDT related
documents and their metadata. Full text and keyword searching is provided, as well as the support
for hypertext presentation of document metadata. Document Data Server supports user access to
the Guide and Reference Papers.

12.1HW Design Drivers
The design of the Document Data Server is driven by its function as user interface to the ECS data
product collections associated with the TRMM mission.

12.1.1 Key Trade-off Studies and Prototypes

“Portable File Formats” TRADE The trade study analyses major implementation alternatives
for standard formats for data other than product earth science data. The essential requirement is
portability of such data between platforms. Several document data formats will most likely be
adopted.

12.1.2 Scalability, Evolvability, and Migration to Release B

Future scalability of the Document Data Server component will be provided by adding comparable
capacity workstations or replacing/augmenting them by more powerful workstations as necessary
in the future releases. Disk storage will be increased as necessary.

12.2HWCI Structure
The block diagram below illustrates partitioning of the Access Control and Management hardware
into two functional modules.

12.2.1 HWCI Connectivity

The Data Server servers and workstations will be directly connected to the DAAC FDDI network.
The Data Server hosts will be connected to the same FDDI ring as the Data Manager hosts, as is
illustrated in Figure 7.6.2.1-1.

The Data Server processors/servers will contain dual-attached station (DAS) cards, which will be
dual-homed to separate FDDI concentrators. This provides redundancy so that full connectivity
will exist to the servers even in the event of a concentrator failure. The workstations will contain
single-attached station (SAS) cards and each will be connected to a single concentrator, but they
will also be split across concentrators so that they are not all connected to the same unit. The FDDI
concentrators are in turn connected to the FDDI switch. (Refer to section 5.2 of DID305 Overview
Volume 305-CD-004-001 for a general description of DAAC networks.)

12-1 305-CD-008-001

Document Data
Server

Document Data
Server Disk

Legend:
Local SCSI Bus

DS FDDI to other HWCIs

External Network Interface
DS FDDI

To/From DAAC External
Network Interface

Figure 12.2.1-1. Access Control and Management HWCI Block Diagram

12.2.2 HWCI Components

A 2 CPU SMP server was selected based upon operational experience with the EDF EDHS. A
WAIS-like, full text indexer, an http server, and additional custom developed software will reside
on this host. The disk was sized to hold the document metadata for the data product collections
associated with the TRMM mission, and for the V0 data sets identified for migration. Sizing for
document metadata was based on available V0 guide document sizing, and the 2.0 Core metadata
baseline. Growth was based on the phased migration of V0 data sets and the TRMM data product
collections acquired during Release A operations.

Table 12.2.2-1. Access Control and Management HWCI Component Descriptions
Component Name Class/Type Comments

Document Data Server 2 CPU SMP Server Large Workstation with Multiprocessor Capabilities
equipped with two processors.
sufficient for Release A, but can be supplemented in
subsequent Releases.

Internal disk (1GB) is

12.2.3 Failover and Recovery Strategy

Two Document Data server computers will supply redundant functionality. Either machine can
perform the function in the event of the loss of the other machine.

There are three types of network failures that may affect the Data Server subsystem. If the FDDI
cable between a host and the FDDI concentrator is severed or damaged, then a new cable would
need to be installed. No other configuration would be required. If an individual port on the FDDI

12-2 305-CD-008-001

concentrator fails, then the attached host must be moved to another port, again with no other
configuration required. Finally, if the entire concentrator fails, then it will have to be replaced,
which can be done rapidly since the units require very little configuration.

Note that the above failures result in service interruption only to the workstations. Since all
servers/processors are attached to two hubs, they will communicate as normal in the event of a
cable or concentrator fault, and the applications will be unaware of and unaffected by the event.

12-3 305-CD-008-001

This page intentionally left blank.

12-4 305-CD-008-001

Appendix. Requirements Trace

The Interim Release 1 (Ir1) and TRMM Development (Release A) Level 4 requirements listed in
the following table reflect the state of the RTM database on July 15, 1995.

Table A-1. Requirements Trace (1 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-00010 The SDSRV CI shall accept Data Requests for Data
that is managed within the STMGT CI.

DsClRequest

S-DSS-00015 The SDSRV CI shall insure that each Data Request
includes a User Identifier, a Request Priority, and a
Data Identifier.

DsClRequest

S-DSS-00020 The SDSRV CI shall accept Service Requests from
clients.

DsClESDTReferenceCollector

S-DSS-00023 The SDSRV CI shall perform services specified by
Service Requests.

DsSrSession

S-DSS-00023 The SDSRV CI shall perform services specified by
Service Requests.

DsSrSession

S-DSS-00025 The SDSRV CI shall insure that each Service Request
includes a User Identifier, a Request Priority, and all
other parameters required for that request.

DsClRequest

S-DSS-00030 The SDSRV CI shall provide the capability to queue
Service Requests prior to their execution.

DsSrQueuedConnection

S-DSS-00040 The SDSRV CI shall provide operations staff the
capability to view queued Service Requests.

DsAdRequestInterface

S-DSS-00050 The SDSRV CI shall process each Service Request on
the basis of Priority Information specified in the Service
Request.

DsSrQueuedConnection

S-DSS-00051 The SDSRV CI shall verify that each Service Request
has valid Priority Information.

DsClRequest

S-DSS-00055 The SDSRV CI shall initiate the processing of Service
Requests of equal priority in the order in which they are
received.

DsSrQueuedConnection

S-DSS-00060 The SDSRV CI shall acknowledge the receipt of
Service Requests from local and remote clients.

DsSrConnection

S-DSS-00065 The SDSRV CI shall accept Service Requests from the
Data Processing subsystem and, as a result, provide
access to Data for the purpose of standard processing.

DsClRequest

S-DSS-00080 The SDSRV CI shall process Data Insert Requests that
request the storage of Data Products and associated
Metadata.

DsGeESDT

S-DSS-00090 The SDSRV CI shall validate that each Data Insert
Request contains a List of Data Files.

DsGeESDT

S-DSS-00095 The SDSRV CI shall return a Reject Notification if a
Service Request fails validation.

DsClRequest

A-1 305-CD-008-001

Table A-1. Requirements Trace (2 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-00100 The SDSRV CI shall allow operations staff to set a
threshold for the number of Service Requests to be
queued for processing.

DsAdRequestInterface

S-DSS-00110 The SDSRV CI shall provide operations staff the
capability to determine the status of any or all existing
Service Requests.

DsAdRequestInterface

S-DSS-00120 The SDSRV CI shall accept Status Requests from
clients and, if requested, provide Service Request
Status for any specified pending Service Requests, in
return.

DsClRequest

S-DSS-00130 The SDSRV CI shall accept Status Requests from
clients and, if requested, provide Service Request
Status for all pending Service Requests submitted by a
specified user, in return.

DsClRequest

S-DSS-00140 The SDSRV CI shall validate that a Status Request
specifies either a valid pending Request Identifier or a
valid User Identifier.

DsClRequest

S-DSS-00150 The SDSRV CI shall accept and process Insert
Metadata Requests to insert Metadata into the
Inventory.

DsGeESDT

S-DSS-00160 The SDSRV CI shall accept and process Update
Metadata Requests to update Metadata that has been
previously stored in the Inventory.

DsMdCatalog

S-DSS-00165 The SDSRV CI shall update the Inventory with the
updated Metadata that was received.

DsMdCatalog

S-DSS-00170 The SDSRV CI shall accept and process Search
Requests to search the Inventory.

DsClESDTReferenceCollector

S-DSS-00190 The SDSRV CI shall provide the capability for
operations staff to delete a queued Data Request.

DsAdRequestInterface

S-DSS-00191 The SDSRV CI shall notify the client whenever
operations staff deletes a queued Data Request.

DsSrQueuedConnection

S-DSS-00216 The SDSRV CI shall provide the capability for
operations staff to submit Service Requests under that
user's User Identifier.

DsClRequest

S-DSS-00220 The SDSRV CI shall provide operations staff the
capability to cancel any Service Request.

DsAdRequestInterface

S-DSS-00450 The SDSRV CI shall provide Advertisements that
indicate the class of data available from the Data
Server.

DsDeService

S-DSS-00460 The SDSRV CI shall provide Advertisements that
indicate the services available from the Data Server.

DsDeService

S-DSS-00470 The SDSRV CI shall log all access to data in a Data
Access Log.

DsSrConnection

S-DSS-00480 The SDSRV CI shall provide the capability for
operations staff to view the Data Access Log.

DsAdLog

S-DSS-00500 The SDSRV CI shall provide the capability for
operations staff to sort the Data Access Log by time
frame, source of access and data type.

DsAdLog

A-2 305-CD-008-001

Table A-1. Requirements Trace (3 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-00510 The SDSRV CI shall provide the capability for
operations staff to select for viewing from the Data
Access Log entries related to data type, source of
access, or time frame.

DsAdLog

S-DSS-00520 The SDSRV CI shall return a successful completion
status to the provider of data only after all data and
associated Metadata has been successfully stored.

DsGeESDT

S-DSS-00530 The SDSRV CI shall provide Data Dictionary
Information to the Data Management subsystem.

DsDeDD

S-DSS-00540 The SDSRV CI shall provide Schema Information to
the Data Management subsystem.

DsDeDD

S-DSS-00550 The SDSRV CI shall provide the capability for
operations staff to view Schema Information.

DsAdDataTypeCollector

S-DSS-00560 The SDSRV CI shall provide the capability for
operations staff to create Schema Information.

DsAdDescriptor

S-DSS-00570 The SDSRV CI shall provide the capability for
operations staff to update Schema Information.

DsAdDescriptor

S-DSS-00610 The SDSRV CI shall provide the capability for
operations staff to delete Schema Information.

DsAdDescriptor

S-DSS-00620 The SDSRV CI shall provide the capability to
categorize messages to operations staff into
informational, warnings or error categories.

DsAdLog

S-DSS-00630 The SDSRV CI shall notify operations staff of any
system error or fault.

DsAdLog

S-DSS-00640 The SDSRV CI shall report to operations staff all errors
involving file accesses.

DsAdLog

S-DSS-00650 The SDSRV CI shall expect an acknowledgment for all
messages sent to internal components of ECS

DsSrConnection

S-DSS-00660 The SDSRV CI shall acknowledge all messages from
internal components of ECS

DsSrConnection

S-DSS-00670 The SDSRV CI shall be capable of receiving data from
the PRONG CI.

DsClRequest

S-DSS-00680 The SDSRV CI shall be capable of receiving data from
the AITTL CI.

DsClRequest

S-DSS-00690 The SDSRV CI shall be capable of receiving data from
the PLANG CI.

DsClRequest

S-DSS-00692 The SDSRV CI shall be capable of receiving data from
the DDSRV CI.

DsClRequest

S-DSS-00694 The SDSRV CI shall be capable of receiving data from
the STMGT CI.

DsClRequest

S-DSS-00696 The SDSRV CI shall be capable of receiving data from
the DDIST CI.

DsClRequest

S-DSS-00700 The SDSRV CI shall be capable of receiving data from
FOS.

DsClRequest

S-DSS-00702 * The SDSRV CI shall be capable of sending
management directives to DDSRV CI.

DsAdRequestInterface

A-3 305-CD-008-001

Table A-1. Requirements Trace (4 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-00704 * The SDSRV CI shall be capable of sending
management directives to DDIST CI.

DsAdRequestInterface

S-DSS-00710 The SDSRV CI shall be accept Data Insert Requests
from other Data Servers.

DsClESDTReferenceCollector

S-DSS-00720 The SDSRV CI shall accept Metadata Problem
Reports.

DsNsMPR

S-DSS-00734 The SDSRV CI shall provide the capability to store
Data Availability Schedules.

DsGeESDT

S-DSS-00820 * The SDSRV CI shall provide a mechanism to control
changes to the Configuration Management Data.

DsCnConfiguration

S-DSS-00850 The SDSRV CI shall provide the capability to control
access to Data Server services.

DsSrConnection

S-DSS-00860 The SDSRV CI shall inform a client that a requested
service is not accessible if the client attempts to access
services outside their access level.

DsSrConnection

S-DSS-00870 The SDSRV CI shall allow Data Access Privileges to
be configurable by User Identifier and Data Type for
read, write, update, delete, and any combination
thereof.

DsAdLog

S-DSS-00880 The SDSRV CI shall use the User Identifier of the user
on whose behalf a Service Request is issued as the
basis for access control decisions.

DsAdLog

S-DSS-00900 The SDSRV CI shall support the interruption of a data
base administrative or maintenance activity and its
restart without loss of information.

DsDbEngine

S-DSS-00901 The SDSRV CI shall provide tools for database backup
and restore.

DsDbEngine

S-DSS-00902 The SDSRV CI shall provide a database management
capability that maintains database integrity during
concurrent user interactions.

DsDbEngine

S-DSS-00950 The SDSRV CI shall support the processing of Data
Requests subject to access controls of read, write,
update and delete, singly or in a any combination,
based on data types.

DsSrConnection

S-DSS-00960 The SDSRV CI shall support the processing of Data
Requests subject to access controls of read, write,
update and delete, singly or in a any combination,
based on data ownership.

DsSrConnection

S-DSS-00970 The SDSRV CI shall provide the capabilities to add,
delete, or modify ECS Metadata to authorized users
only.

DsMdCatalog

S-DSS-01060 The SDSRV CI shall send a Notification to a client that
issued a Data Request once the Data Product has
been produced or when the STMGT CI has made the
Data available.

DsClRequest

S-DSS-01070 The SDSRV CI shall respond to a Data Request with a
response that shall contain a status and a pointer to the
data.

DsClRequest

A-4 305-CD-008-001

Table A-1. Requirements Trace (5 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-01090 The SDSRV CI shall maintain a list of all active Service
Requests within the Data Server.
Request Priorities, Distribution Instructions, and all
information necessary to process each request.

DsSrSubmittedRequestVector

S-DSS-01100 The SDSRV CI shall provide the capability for
operations staff to view the list of active Service
Requests within the Data Server.

DsAdRequestInterface

S-DSS-01120 The SDSRV CI shall provide the capability to manage
multiple Service Requests from clients.

DsClRequestVector

S-DSS-01130 The SDSRV CI shall provide the capability to process
Service Requests asynchronously.

DsSrConnection

S-DSS-01140 The SDSRV CI shall provide the capability to list and
status, Service Requests initiated by a client.

DsClRequestVector

S-DSS-01150 The SDSRV CI shall log all Service Requests entered
during a client session.

DsSrConnection

S-DSS-01160 * The SDSRV CI shall provide periodic, asynchronous
status messages to the client during the execution of a
Search Request.

DsClQuery

S-DSS-01180 For each Data Request, the SDSRV CI shall log the
processing performed, the Data Products produced,
any supporting data used and the recipient of the data.

DsGeScienceData

S-DSS-01190 The SDSRV CI shall provide the capability for
operations staff to view the resources used and
allocated by a client.

DsClSubscriptionCollector

S-DSS-01210 The SDSRV CI shall provide Request Status to a
client, concerning pending Service Requests, as
specified in Appendix A.

DsClRequest

S-DSS-01400 The SDSRV CI shall log the termination of the
processing of a Service Request.

DsSrConnection

S-DSS-01405 The SDSRV CI shall log the termination of client
session.

DsSrConnection

S-DSS-01430 The SDSRV CI shall log the initiation of the processing
of a Service Request.

DsSrConnection

S-DSS-01460 The SDSRV CI shall accept Subscription Requests
that specify an action to be taken and an event to
initiate the action.

DsSbSubscriptionInterface

S-DSS-01470 The SDSRV CI shall validate Subscription Requests
for receipt of data type events.

DsSbSubscriptionInterface

S-DSS-01472 The SDSRV CI shall validate Subscription Requests
for change in core metadata events.

DsSbSubscriptionInterface

S-DSS-01480 The SDSRV CI shall validate Subscription Requests
for distribution of data actions.

DsSbSubscriptionInterface

S-DSS-01482 The SDSRV CI shall validate Subscription Requests
for send notification actions.

DsSbSubscriptionInterface

S-DSS-01484 The SDSRV CI shall validate Subscription Requests
for collection of data for later distribution actions.

DsSbSubscriptionInterface

The list shall include

A-5 305-CD-008-001

Table A-1. Requirements Trace (6 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-01488 The SDSRV CI shall validate Subscription Requests
for a Data Request action.

DsSbSubscriptionInterface

S-DSS-01490 The SDSRV CI shall process Subscription Requests at
the occurrence of the specified event.

DsSbRequestHandler

S-DSS-01500 In the event that more than one Subscription is linked
to a single event, the SDSRV CI shall process the
actions defined in the Subscriptions on a first-come,
first-serve basis.

DsSbRegisteredEvent

S-DSS-01510 The SDSRV CI shall provide the capability to notify
users when data has been archived and is available for
access.

DsSbSubscription

S-DSS-01525 The SDSRV CI shall accept Subscriptions for Data
Availability Schedules from the PLANG CI.

DsClSubscription

S-DSS-01530 The SDSRV CI shall provide the capability for
Subscriptions to notify users via email or directly to a
program interface.

DsSbSubscription

S-DSS-01550 The SDSRV CI shall provide the capability for a user to
request notification of data arrival.

DsSbSubscription

S-DSS-01570 The SDSRV CI shall provide the capability for
operations staff to view the stored Subscriptions.

DsClSubscriptionCollector

S-DSS-01600 The SDSRV CI shall provide the capability for
operations staff to delete any stored Subscription.

DsClSubscriptionCollector

S-DSS-01610 The SDSRV CI shall provide the capability for a user to
delete their own stored Subscription.

DsClSubscriptionCollector

S-DSS-01630 The SDSRV CI shall provide the capability to notify a
subscriber of QA changes.

DsGeESDT

S-DSS-01640 The SDSRV CI shall provide the capability to notify a
subscriber on individual data granule basis.

DsGeESDT

S-DSS-01760 The SDSRV CI shall log all reported error conditions. DsSrConnection

S-DSS-01760 The SDSRV CI shall log all reported error conditions. DsSrConnection

S-DSS-01770 The SDSRV CI shall log all reported warning
conditions.

DsSrConnection

S-DSS-01780 The SDSRV CI shall be capable of canceling the
execution of a Service Request.

DsClRequest

S-DSS-01800 The LaRC DAAC SDSRV CI shall support TRMM end
to-end testing 9 months before TRMM launch.

SDSRV CI

S-DSS-01810 The MSFC DAAC SDSRV CI shall support TRMM end
to-end testing 9 months before TRMM launch.

SDSRV CI

S-DSS-01820 The SDSRV CI shall support TRMM end to end testing SDSRV CI

S-DSS-01840 The Science Data Server shall accept and validate
Data Requests per hour as derived
of Appendix E.

SDSRV CI

S-DSS-01850 The Science Data Server shall be capable of
supporting 200% growth in the number of Data
Requests it accepts and validates without architecture
or design change.

SDSRV CI

from Section E.6

A-6 305-CD-008-001

Table A-1. Requirements Trace (7 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-01860 The Science Data Server shall support making stored
Data Products available on physical media within 24
hours of receipt of a Media Distribution Request.

SDSRV CI

S-DSS-01870 The Science Data Server shall support distributing
product QA data produced at the collocated Data
Processing Subsystem within 1 hour from the time it is
ready.

SDSRV CI

S-DSS-01880 The Science Data Server shall support making archive
data associated with a predefined ECS standard
format available to the network in that format within an
average of 2 minutes.

SDSRV CI

S-DSS-01890 The Science Data Server shall support making archive
data associated with a predefined ECS standard
format available to the network in a different format
within an average of 5 minutes.

SDSRV CI

S-DSS-01900 The Science Data Server shall be capable of receiving
a combined maximum number of Data Requests per
hour (across ECS) from the Data Management
Subsystem and/or the client Subsystem as derived
from

SDSRV CI

S-DSS-01910 The Science Data Server shall be capable of receiving
a combined maximum number of Browse Requests per
hour (across ECS) from the Data Management
Subsystem and/or the Client Subsystem as derived
from

SDSRV CI

S-DSS-01920 The Science Data Server shall support making pre
computed Browse Data available to a requester in 58
seconds after accepting and validating the request in
the number of seconds specified in Appendix E.

SDSRV CI

S-DSS-01930 The Science Data Server and Science Management
within the Data Server shall be capable of accepting
and storing Data Products derived from Section E.1 of
Appendix E
standard product retrieval and browse data access
load

DSS Subsystem

S-DSS-01940 The Science Data Server and Science Management
within the Data Server shall be capable of ingesting
product data at a maximum rate (three times the
nominal rate derived from Section E.1 of Appendix E
bytes per day from the PRONG CI until the backlog is
pr

DSS Subsystem

S-DSS-01950 The Science Data Server shall support distributing the
number of bytes of data per day derived from Sections
E.1 & E.3 of Appendix E to the PRONG CI (in support
of production) by accepting and validating the number
requests per day from the PRONG CI

SDSRV CI

S-DSS-01960 The Science Management within the Data Server shall
support distributing the bytes of data per day derived
from
CI (in support of production) by retrieving and staging
the number of bytes per day for the PRON

DSS Subsystem

Section E.6 of Appendix E.

Section E.6 of Appendix E.

from the PRONG CI while supporting

Sections E.1 & E.3 of Appendix E to the PRONG

A-7 305-CD-008-001

Table A-1. Requirements Trace (8 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-02000 The ACMHW CI shall be sized to support the bytes/
second rates derived from Appendix E on the
electronic data distribution interfaces.
push/pull electronic distribution)

ACMHW CI

S-DSS-02010 The ACMHW CI shall be sized to support the number
of operations/second derived from Appendix E.

ACMHW CI

S-DSS-02020 The ACMHW CI shall be configured to support the
SDPS function of local Data Request Submission's
Availability requirement of 0.96000 and Mean Down
Time (MDT) requirement of <4 hours.

ACMHW CI

S-DSS-02030 The ACMHW CI shall be configured to support the
SDPS function of data order submission across
DAACs Availability requirement of 0.96000 and Mean
Down Time (MDT) requirement of < 4 hours.

ACMHW CI

S-DSS-02032 The ACMHW CI shall support the RMA Requirements
specified for the ECS Program.

ACMHW CI

S-DSS-02900 The SDSRV CI shall provide processing services on
ECS Data as listed in Appendix F.

DsGeScienceData

S-DSS-03010 The SDSRV CI shall be capable of receiving
Calibration Data.

NsNpCalibration

S-DSS-03020 The SDSRV CI shall be capable of receiving Metadata
associated with Calibration Data.

NsNpCalibration

S-DSS-03030 The SDSRV CI shall be capable of receiving Science
Software Archive Packages.

DsNsScienceSoftwareArchive-
Package

S-DSS-03040 The SDSRV CI shall be capable of receiving Metadata
associated with Science Software Archive Packages.

DsNsScienceSoftwareArchive-
Package

S-DSS-03110 The SDSRV CI shall be capable of receiving
Instrument Calibration Data.

NsNpCalibration

S-DSS-03120 The SDSRV CI shall be capable of receiving Metadata
associated with Instrument Calibration Data.

NsNpCalibration

S-DSS-03130 The SDSRV CI shall be capable of receiving
Instrument Characterization Data.

DsGeESDT

S-DSS-03150 The SDSRV CI shall be capable of receiving
Instrument Historical Data.

DsNsHistoricalData

S-DSS-03160 The SDSRV CI shall be capable of receiving Metadata
associated with Instrument Historical Data.

DsNsHistoricalData

S-DSS-03170 The SDSRV CI shall be capable of receiving Inventory
Data.

DsMdMetadata

S-DSS-03210 The SDSRV CI shall be capable of receiving
Production History.

DsNsProductionHistory

S-DSS-03210 The SDSRV CI shall be capable of receiving
Production History.

DsNsProductionHistory

S-DSS-03230 The SDSRV CI shall be capable of receiving
Production Plans.

DsNsProdPlans

S-DSS-03250 The SDSRV CI shall be capable of receiving QA
Statistics.

DsNsQAStatistics

(Supports user

A-8 305-CD-008-001

Table A-1. Requirements Trace (9 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-03260 The SDSRV CI shall be capable of receiving Metadata
associated with QA Statistics.

DsNsQAStatistics

S-DSS-03270 The SDSRV CI shall be capable of receiving scientific
calibration data.

NsNpCalibration

S-DSS-03280 The SDSRV CI shall be capable of receiving Metadata
associated with scientific calibration data.

NsNpCalibration

S-DSS-03310 The SDSRV CI shall be capable of receiving TBD
correlative data.

NsNpCorrelative

S-DSS-03320 The SDSRV CI shall be capable of receiving Metadata
associated with TBD correlative data.

NsNpCorrelative

S-DSS-03350 The SDSRV CI shall be capable of receiving V0
Migration Data in native format

DsNpVersion0

S-DSS-03360 The SDSRV CI shall be capable of receiving Metadata
associated with V0 Migration Data in native format

DsNpVersion0

S-DSS-03370 Upon receipt of data types the SDSRV CI shall perform
data type specific checking.

DsGeESDT

S-DSS-03380 Upon receipt of valid data types the SDSRV CI shall
pass the data to the STMGT CI.

DsGeESDT

S-DSS-03390 The SDSRV CI shall update the Inventory after the
Data it received for insertion into its data holdings have
passed the validity checks applicable to the respective
data types.

DsGeESDT

S-DSS-03412 The SDSRV CI shall interface with the STMGT CI to
provide storage for L0 - L4 Data.

DsGeScienceData

S-DSS-03414 The SDSRV CI shall interface with the STMGT CI to
provide storage for Ancillary Data.

DsNpAncillary

S-DSS-03416 The SDSRV CI shall interface with the STMGT CI to
provide storage for Metadata associated with Ancillary
Data.

DsMdCatalog

S-DSS-03420 The SDSRV CI shall interface with the STMGT CI to
provide storage for calibration data.

NsNpCalibration

S-DSS-03430 The SDSRV CI shall interface with the STMGT CI to
provide storage for Metadata associated with
calibration data.

DsMdCatalog

S-DSS-03440 The SDSRV CI shall interface with the STMGT CI to
provide storage for Science Software Archive
Packages.

DsNsScienceSoftwareArchive-
Package

S-DSS-03450 The SDSRV CI shall interface with the STMGT CI to
provide storage for Metadata associated with Science
Software Archive Packages.

DsMdCatalog

S-DSS-03480 The SDSRV CI shall interface with the STMGT CI to
provide storage for instrument calibration data.

NsNpCalibration

S-DSS-03490 The SDSRV CI shall interface with the STMGT CI to
provide storage for Metadata associated with
instrument calibration data.

NsNpCalibration

A-9 305-CD-008-001

Table A-1. Requirements Trace (10 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-03500 The SDSRV CI shall interface with the STMGT CI to
provide storage for instrument characterization data.

DsGeESDT

S-DSS-03520 The SDSRV CI shall interface with the STMGT CI to
provide storage for instrument history data.

DsNsHistoricalData

S-DSS-03540 The SDSRV CI shall interface with the STMGT CI to
provide storage for inventory characteristic data.

DsMdCatalog

S-DSS-03560 The SDSRV CI shall interface with the STMGT CI to
provide storage for Orbit/Attitude data.

DsNpOA

S-DSS-03570 The SDSRV CI shall interface with the STMGT CI to
provide storage for Metadata associated with Orbit/
Attitude data.

DsMdCatalog

S-DSS-03580 The SDSRV CI shall interface with the STMGT CI to
provide storage for Production History data.

DsNsProductionHistory

S-DSS-03600 The SDSRV CI shall interface with the STMGT CI to
provide storage for production plan data.

DsNsProdPlans

S-DSS-03620 The SDSRV CI shall interface with the STMGT CI to
provide storage for QA Statistics.

DsNsQAStatistics

S-DSS-03630 The SDSRV CI shall interface with the STMGT CI to
provide storage for Metadata associated with QA
Statistics.

DsMdCatalog

S-DSS-03640 The SDSRV CI shall interface with the STMGT CI to
provide storage for scientific calibration data.

NsNpCalibration

S-DSS-03650 The SDSRV CI shall interface with the STMGT CI to
provide storage for Metadata associated with scientific
calibration data.

DsMdCatalog

S-DSS-03650 The SDSRV CI shall interface with the STMGT CI to
provide storage for Metadata associated with scientific
calibration data.

DsMdCatalog

S-DSS-03680 The SDSRV CI shall interface with the STMGT CI to
provide storage for

NsNpCorrelative

S-DSS-03690 The SDSRV CI shall interface with the STMGT CI to
provide storage for Metadata associated with
correlative data.

DsMdCatalog

S-DSS-03712 * The SDSRV CI shall interface with the STMGT CI to
provide storage for Research results (articles,
algorithms, data sets, software).

DsStArchive

S-DSS-03720 The SDSRV CI shall interface with the STMGT CI to
provide storage for V0 migration data.

DsNpVersion0

S-DSS-03730 The SDSRV CI shall interface with the STMGT CI to
provide storage for Metadata associated with V0
migration data.

DsMdCatalog

S-DSS-03740 The SDSRV CI shall interface with the STMGT CI to
provide storage for validated Inventory data.

DsMdCatalog

S-DSS-03745 The SDSRV CI shall interface with the STMGT CI to
provide storage for File Format Descriptions (e.g., HDF
Spec.).

DsDeESDTDescriptor

correlative data.

A-10 305-CD-008-001

Table A-1. Requirements Trace (11 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-03750 The SDSRV CI shall support Schema Information for
each Data Type.

DsDeESDTDescriptor

S-DSS-03760 The SDSRV CI Schema Information shall include for
each Data Type the

DsDeScienceParameter

S-DSS-03770 The SDSRV CI Schema Information shall include for
each Data Type the services available for that Data
Type.

DsDeService

S-DSS-03780 The SDSRV CI Schema Information shall include for
each Data Type the Data Type Attributes for that Data
Type and the Valid Values associated with each Data
Type Attribute.

DsDeValid

S-DSS-03810 The SDSRV CI shall have the ability to cancel the
advertising of publicly available services.

DsDeService

S-DSS-03820 Each SDSRV CI Advertisement shall identify the
service's interface.

DsDeService

S-DSS-03830 Each SDSRV CI Advertisement shall include Service
Descriptions.

DsDeService

S-DSS-03860 The SDSRV CI shall be capable of receiving status
from the PRONG CI.

DsGeESDT

S-DSS-03862 The SDSRV CI shall be capable of sending status to
the PRONG CI.

DsClRequest

S-DSS-03864 The SDSRV CI shall be capable of receiving status
from the PLANG CI.

DsGeESDT

S-DSS-03865 The SDSRV CI shall be capable of receiving
scheduling data from the PLANG CI.

DsClRequest

S-DSS-03866 The SDSRV CI shall be capable of sending status to
the PLANG CI.

DsClRequest

S-DSS-03868 The SDSRV CI shall be capable of sending status to
the WKBCH CI.

DsClRequest

S-DSS-03870 The SDSRV CI shall be capable of receiving status
from the INGST CI.

GlStatus

S-DSS-03872 The SDSRV CI shall be capable of sending status to
the INGST CI.

DsClRequest

S-DSS-03874 * The SDSRV CI shall be capable of receiving status
from the LIMGR CI.

GlStatus

S-DSS-03876 * The SDSRV CI shall be capable of sending status to
the LIMGR CI.

GlStatus

S-DSS-04035 The SDSRV CI shall supply the Data Products listed in
Appendix F to the DDIST CI.

DsGeScienceData

S-DSS-04037 The SDSRV CI shall the Metadata associated with the
Data Products listed in Appendix F to the DDIST CI.

DsGeScienceData

S-DSS-04040 The SDSRV CI shall supply calibration data to the
DDIST CI.

NsNpCalibration

S-DSS-04050 The SDSRV CI shall supply Metadata associated with
calibration data to the DDIST CI.

NsNpCalibration

structure of that Data Type.

A-11 305-CD-008-001

Table A-1. Requirements Trace (12 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-04060 The SDSRV CI shall supply Science Software Archive
Packages to the DDIST CI.

DsNsScienceSoftwareArchive-
Package

S-DSS-04070 The SDSRV CI shall supply Metadata associated with
Science Software Archive Packages to the DDIST CI.

DsNsScienceSoftwareArchive-
Package

S-DSS-04090 * The SDSRV CI shall supply Metadata associated with
FDF repaired orbit data for AM-1 instruments to the
DDIST CI.

DsGeESDT

S-DSS-04100 The SDSRV CI shall supply instrument calibration data
to the DDIST CI.

NsNpCalibration

S-DSS-04110 The SDSRV CI shall supply Metadata associated with
instrument calibration data to the DDIST CI.

NsNpCalibration

S-DSS-04120 The SDSRV CI shall supply instrument
characterization data to the DDIST CI.

DsGeESDT

S-DSS-04130 The SDSRV CI shall supply Metadata associated with
instrument characterization data to the DDIST CI.

DsGeESDT

S-DSS-04140 The SDSRV CI shall supply instrument historical data
to the DDIST CI.

DsNsHistoricalData

S-DSS-04150 The SDSRV CI shall supply Metadata associated with
instrument historical data to the DDIST CI.

DsNsHistoricalData

S-DSS-04160 The SDSRV CI shall supply inventory characteristic
data to the DDIST CI.

DsMdCatalog

S-DSS-04170 The SDSRV CI shall supply Metadata associated with
inventory characteristic data to the DDIST CI.

DsMdCatalog

S-DSS-04200 The SDSRV CI shall supply Production History data to
the DDIST CI.

DsNsProductionHistory

S-DSS-04200 The SDSRV CI shall supply Production History data to
the DDIST CI.

DsNsProductionHistory

S-DSS-04210 The SDSRV CI shall supply Metadata associated with
Production History data to the DDIST CI.

DsNsProductionHistory

S-DSS-04220 The SDSRV CI shall supply production plan data to the
DDIST CI.

DsNsProdPlans

S-DSS-04230 The SDSRV CI shall supply Metadata associated with
production plan data to the DDIST CI.

DsNsProdPlans

S-DSS-04240 The SDSRV CI shall supply QA Statistics to the DDIST
CI.

DsNsQAStatistics

S-DSS-04250 The SDSRV CI shall supply Metadata associated with
QA Statistics to the DDIST CI.

DsNsQAStatistics

S-DSS-04260 The SDSRV CI shall supply scientific calibration data
to the DDIST CI.

NsNpCalibration

S-DSS-04270 The SDSRV CI shall supply Metadata associated with
scientific calibration data to the DDIST CI.

NsNpCalibration

S-DSS-04280 The SDSRV CI shall supply spacecraft historical data
to the DDIST CI.

DsNsHistoricalData

S-DSS-04290 The SDSRV CI shall supply Metadata associated with
spacecraft historical data to the DDIST CI.

DsNsHistoricalData

A-12 305-CD-008-001

Table A-1. Requirements Trace (13 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-04300 The SDSRV CI shall supply correlative data sets to the
DDIST CI.

NsNpCorrelative

S-DSS-04310 The SDSRV CI shall supply Metadata associated with
correlative data sets to the DDIST CI.

NsNpCorrelative

S-DSS-04360 The SDSRV CI shall include granule-specific
information as defined in the SDPS Core Metadata
Baseline (194-00269TPW).

DsMdCatalog

S-DSS-04370 The STMGT CI shall have the ability to store product
specific Metadata.

DsMdCatalog

S-DSS-04380 The STMGT CI shall store the following Metadata:
granule id, date and time of storage, physical storage
location, data check status and data format type.

DsMdMetadata

S-DSS-04390 Standard Product related Metadata at the Data Server
shall include Metadata associated with static
subsetted, subsampled, and summary products.

DsMdMetadata

S-DSS-04400 The STMGT CI shall have the ability to store
references to calibration data as Metadata for science
data.

DsMdMetadata

S-DSS-04420 The STMGT CI shall have the ability to store
references to instrument engineering data as Metadata
for science data.

DsMdMetadata

S-DSS-04430 The STMGT CI shall have the ability to store
references to Science Software Archive Packages as
Metadata for science data.

DsMdMetadata

S-DSS-04440 The STMGT CI shall have the ability to store
references to data generation software as Metadata for
science data.

DsMdMetadata

S-DSS-04450 The STMGT CI shall have the ability to store
references to Production History data as Metadata for
science data.

DsMdMetadata

S-DSS-04460 The STMGT CI shall have the ability to store
references to data recipients as Metadata for science
data.

DsAdLog

S-DSS-04470 The STMGT CI shall have the ability to store
references to the data production facility as Metadata
for science data.

DsMdMetadata

S-DSS-04475 The STMGT CI shall have the ability to store
documents and/or data from the DDSRV CI.

DsStArchive

S-DSS-04476 The DDSRV CI shall provide the ability to store
documents and/or data.

DsEsESDT;
DsCdCSDT;

S-DSS-04480 The STMGT CI shall have the ability to store
references to QA Statistics as Metadata for science
data.

DsMdMetadata

S-DSS-04490 The STMGT CI shall have the ability to store
references to reference documentation as Metadata
for science data.

DsMdMetadata

DsEsTypeID;
DsCdTypeID

A-13 305-CD-008-001

Table A-1. Requirements Trace (14 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-04510 The STMGT CI shall provide the capability to logically
group a set of granule ids such that the set can be
referenced by a single identifier.

DsMdCatalog

S-DSS-04520 The STMGT CI shall provide the capability to validate
metadata before insertion into the Inventory.

DsDeValid

S-DSS-04530 The STMGT CI shall provide the capability to validate
updated metadata before insertion into the Inventory.

DsDeValid

S-DSS-04540 The STMGT CI shall reject metadata which fails one or
more validations constraints.

DsDeValid

S-DSS-04570 The SDSRV CI shall provide services to add to the
existing Inventory

DsMdCatalog

S-DSS-04580 The SDSRV CI shall provide services to delete from
the existing Inventory

DsMdCatalog

S-DSS-04590 The SDSRV CI shall provide services to modify the
existing Inventory

DsMdCatalog

S-DSS-04600 The SDSRV CI shall update the Metadata for a data
item whenever an unexpected loss occurs.

DsGeESDT

S-DSS-04610 The SDSRV CI shall update the Metadata whenever a
data item is updated.

DsMdCatalog

S-DSS-04640 The SDSRV CI shall provide services to retrieve
Metadata from the Inventory.

DsMdCatalog

S-DSS-04650 The SDSRV CI shall accept Search Requests DsMdCatalog

S-DSS-04660 The SDSRV CI shall provide Result Sets to the client,
in response to Search Requests

DsMdCatalog

S-DSS-04670 The SDSRV CI shall support Inventory searches based
on the Core Inventory Metadata.

DsMdCatalog

S-DSS-04680 The SDSRV CI shall support Inventory searches based
on the Product Specific Metadata.

DsMdCatalog

S-DSS-04690 The SDSRV CI shall support Inventory searches based
on a combination of the Core Inventory Metadata and
Product Specific Metadata.

DsMdCatalog

S-DSS-04700 The SDSRV CI shall provide Search Results to
requesting agencies.

DsMdCatalog

S-DSS-04710 The SDSRV CI shall respond to a query with a null
Result Set, if no products in the Inventory meet the
specified criteria.

DsMdCatalog

S-DSS-10010 The guide shall be maintained on-line by the DDSRV
CI.

DsEsGuide;

S-DSS-10030 The DDSRV CI shall support storage, retrieval and
searching of documents in HTML format.

DsCdHTML

S-DSS-10040 The DDSRV CI shall accept Documents from the
INGST CI.

DsDoClient;
DoRequest;
DsCtCommand;
mand;

DsEsGuideTypeID

Ds-DsCtClient;
DsCtRequest;

DsDoCom
DsCtInsertCommand

A-14 305-CD-008-001

Table A-1. Requirements Trace (15 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-10050 The DDSRV CI shall provide documents to requesting
agencies.

DsDoClient;
DoRequest;
DsCtCommand;
mand;

S-DSS-10051 The DDSRV CI shall provide the capability to add,
delete, or modify individual ECS Metadata entries.

DsEsESDT;

S-DSS-10052 The DDSRV CI shall generate an update to metadata
reflecting changes in data holdings resulting from a
purge operation.

DsEsESDT;

S-DSS-10053 The DDSRV CI shall generate an update to metadata
reflecting changes in data holdings resulting from an
unexpected loss.

DsEsESDT;

S-DSS-10054 The DDSRV CI shall generate an update to metadata
reflecting changes in data holdings resulting from an
intra-site data transfer or some other update.

DsEsESDT;

S-DSS-10060 The DDSRV CI shall provide access to the ECS guide
(documentation/reference material) and guide
services.

DsEsESDT;
DsEsGuide;
DsEsReferencePaper;
ReferencePaperTypeID;
DoClient;
DsDoRequest;
DsCtCommand;
mand;
DsCtAcquireCommand

S-DSS-10070 The DDSRV CI shall store, maintain and provide data
management services for ECS guide (documentation/
reference material).

DsEsESDT;
DsEsGuide;
DsEsReferencePaper;
ReferencePaperTypeID;
DoClient;
DsDoRequest;
DsCtCommand;
mand;

S-DSS-10080 The DDSRV CI shall provide the capability to add,
delete, or modify groups of ECS Metadata entries.

DsEsESDT;
DsEsGuide;
DsEsReferencePaper;
ReferencePaperTypeID

S-DSS-10090 The DDSRV CI shall be capable of receiving
documentation of processing algorithms used for EOS
and other Earth Science Data Products generated by
the ECS

DsEsAlgorithmDescription;
DsEsAlgorithmDescription-
TypeID

S-DSS-10100 The DDSRV CI shall be capable of receiving
references to results of science data quality
assessments of EOS data

DSNsQAStatistics

S-DSS-10110 The DDSRV CI shall be capable of receiving
bibliography information of published and unpublished
literature (as available) derived from the project

DsEsReferencePaper;
ReferencePaperTypeID

S-DSS-10120 The DDSRV CI shall be capable of providing cross
references between differing studies of the same data

DsGeESDT

S-DSS-10130 The DDSRV CI shall be capable of receiving other
documents relevant to quality assessment of EOS data

DSNsQAStatistics

Ds-DsCtClient;
DsCtRequest;

DsDoCom
DsCtAcquireCommand

DsEsTypeID

DsEsTypeID

DsEsTypeID

DsEsTypeID

DsEsTypeID;
DsEsGuideTypeID;

DsEs-
Ds-

DsCtClient;
DsCtRequest;

DsDoCom
DsCtSearchCommand;

DsEsTypeID;
DsEsGuideTypeID;

DsEs-
Ds-

DsCtClient;
DsCtRequest;

DsDoCom
DsCtInsertCommand

DsEsTypeID;
DsEsGuideTypeID;

DsEs-

DsEs-

A-15 305-CD-008-001

Table A-1. Requirements Trace (16 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-10140 The DDSRV CI shall provide the capability to receive
data describing format and media options available for
a given data set.

DsEsESDT;
DsEsGuide;

S-DSS-10150 The DDSRV CI shall be capable of receiving
instrument specifications

DsEsESDT;
DsEsGuide;

S-DSS-10160 The DDSRV CI shall provide the capability to receive
summaries of data sets derived from observation logs

DsEsESDT;
DsEsGuide;

S-DSS-10170 The DDSRV CI shall receive user supplied documents
in HTML & ASCII

DsCdCSDT;
DsCdASCII;

S-DSS-10180 The DDSRV CI shall provide the capability to receive
data describing subsetting, subsampling, and
transformation options available for a given data set.

DsEsESDT;
DsEsGuide;

S-DSS-10184 The DDSRV CI shall notify operations staff of any
system error or fault.

DsDoServer;

S-DSS-10186 The DDSRV CI shall report to operations staff all errors
involving file accesses.

DsDoServer;
DoClient;
DoRequest;
DsCtCommand;
mand;
DsCtAcquireCommand;
DsCdCSDT;

S-DSS-10190 The DDSRV CI shall receive Guide Data from Version
0 in HTML & ASCII

DsEsESDT;
DsEsGuide;
DsCdCSDT;
DsCdASCII;

S-DSS-10200 The DDSRV CI shall provide the capability to ingest
documentation in ASCII text format.

DsCdCSDT;
DsCdASCII

S-DSS-10204 The DDSRV CI shall provide the capability to ingest
documentation in HTML format.

DsCdCSDT;
DsCdHTML

S-DSS-10209 The DDSRV CI shall provide the capability to ingest
documentation in Postscript format.

DsCdCSDT;
DsCdPostScript

S-DSS-10209 The DDSRV CI shall provide the capability to ingest
documentation in Postscript format.

DsCdCSDT;
DsCdPostScript

S-DSS-10210 The DDSRV CI shall receive information that describes
spacecraft-housekeeping and Ancillary Data
parameters stored in the Science Data Server.

DsEsESDT;
DsEsGuide;

S-DSS-10220 The DDSRV CI shall receive Guide Data from Version
0.

DsEsESDT;
DsEsGuide;

S-DSS-10241 Upon receipt of all supported document formats and
descriptive data, the DDSRV CI shall provide storage
for the document and descriptive data.

DsEsESDT;
DsCdCSDT;

S-DSS-10241 Upon receipt of all supported document formats and
descriptive data, the DDSRV CI shall provide storage
for the document and descriptive data.

DsEsESDT;
DsCdCSDT;

S-DSS-10250 Upon receipt and successful storage of all supported
document formats and descriptive data, the DDSRV CI
shall provide access to the document and/or data.

DsCtSearchCommand;
AcquireCommand

DsEsTypeID;
DsEsGuideTypeID;

DsEsTypeID;
DsEsGuideTypeID;

DsEsTypeID;
DsEsGuideTypeID;

DsCdTypeID;
DsCdHTML

DsEsTypeID;
DsEsGuideTypeID;

DsSvServer

Ds-DsSvServer;
Ds-DsCtClient;

DsCtRequest;
DsDoCom

DsCtInsertCommand;

DsCdTypeID

DsEsTypeID;
DsEsGuideTypeID;
DsCdTypeID;
DsCdHTML

DsCdTypeID;

DsCdTypeID;

DsCdTypeID;

DsCdTypeID;

DsEsTypeID;
DsEsGuideTypeID

DsEsTypeID;
DsEsGuideTypeID

DsEsTypeID;
DsCdTypeID

DsEsTypeID;
DsCdTypeID

DsCt-

A-16 305-CD-008-001

Table A-1. Requirements Trace (17 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-10290 The DDSRV CI shall supply documents to the DDIST
CI.

DsCtSearchCommand;
AcquireCommand

S-DSS-10292 * The DDSRV CI shall receive management directives
from the SDSRV CI.

DsAdRequestInterface

S-DSS-10320 The Document Data Server shall accept and validate
the number of Distribution Requests per hour derived
from

DDSRV CI

S-DSS-10330 The Document Data Server shall be capable of
supporting 200% growth in the number of Distribution
Requests it accepts and validates without architecture
or design change.

DDSRV CI

S-DSS-10340 The Document Data Server shall support making
stored documents available on physical media within
24 hours of receipt of a Media Distribution Request.

DDSRV CI

S-DSS-10350 The Document Data Server shall be capable of
receiving a combined maximum of product orders per
hour as derived from
(across ECS) from the Data Management Subsystem
and/or the Client subsystem.

DDSRV CI

S-DSS-10360 The Document Data Server shall be capable of
accepting and storing documents and related data at a
nominal rate derived from
from external clients while supporting standard data
retrieval and access loads.

DDSRV CI

S-DSS-20010 The STMGT CI shall validate all Service Requests. DsStArchive;

S-DSS-20020 The STMGT CI shall accept Insert Requests for
insertion of data into the archive.

DsStArchive

S-DSS-20025 The STMGT CI shall place an entry in the Archive
Activity Log corresponding to each Insert Request.

DsStArchive

S-DSS-20030 The STMGT CI shall check each Insert Request it
receives for the correct type of data in all fields.
that shall be checked include Request Identifier, date
of request, Priority Information, data type and original
identifier.

DsStArchive

S-DSS-20040 The STMGT CI shall accept Retrieve Requests for
data.
id(s) for the data.
granule was originally archived.
as a unique data identifier.

DsStArchive

S-DSS-20045 The STMGT CI shall place an entry in the Archive
Activity Log corresponding to each Retrieve Request.

DsStArchive

S-DSS-20050 The STMGT CI shall check each Retrieve Request it
receives for correct type of data in all fields.
shall be checked include Request Identifier, date of
request, date and time for requested data, Priority
Information, and data type.

DsStArchive

S-DSS-20060 The STMGT CI shall accept Archive Status Requests
for the status of ongoing Insert and Retrieve Requests.

DsStRequestManager

DsCt-

Section E.6 of Appendix E.

Section E.6 of Appendix E

Section E.1 of Appendix E

DsStResource

Fields

Each Retrieve Request shall include the granule
Granule id was assigned when

The granule id serves

Fields that

A-17 305-CD-008-001

Table A-1. Requirements Trace (18 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-20065 The STMGT CI shall place an entry in the Archive
Activity Log corresponding to each Archive Status
Request.

DsStRequestManager

S-DSS-20070 The STMGT CI shall check each Archive Status
Request it receives for the correct type of data in all
fields.
Request Identifier and Request Identifier of previous
Insert or Retrieve Requests to be statused.

DsStRequestManager

S-DSS-20080 The STMGT CI shall maintain an Archive Activity Log
of all Service Requests received.
Requests shall be in chronological order and shall
include a Request Identifier, the operation requested,
completion status of request and a date/tim

DsStArchive

S-DSS-20090 The STMGT CI shall maintain an Inventory Update
Log. The following information shall be recorded:
and date of update, unique data identifier, archive
media name, source of data, storage device name and
requester.

DsStArchive

S-DSS-20095 The STGMT CI shall have the capability to mount
archival media via automated means.

DsStArchive

S-DSS-20100 The STMGT CI shall provide operations staff
personnel the capability to manually access archive
media resident in storage devices.

DsStResource

S-DSS-20110 The STMGT CI shall provide operations staff the
capability to insert archive media into storage devices
which support removable media.

DsStArchive

S-DSS-20120 The STMGT CI shall provide operations staff the
capability to remove archive media from storage
devices which support removable media.

DsStArchive

S-DSS-20125 The STMGT CI shall, where appropriate, comply with
the evolving guidelines and standards emerging from
the IEEE Reference Model for Open Storage Systems
Interconnection.

STMGT CI

S-DSS-20130 The STMGT CI shall provide operations staff the
capability to manually dismount archive media.

DsStArchive

S-DSS-20140 The STMGT CI shall provide operations staff the
capability to manually mount archive media.

DsStArchive

S-DSS-20150 The STMGT CI shall provide operations staff the
capability to manually dismount backup archive media.

DsStArchive

S-DSS-20160 The STMGT CI shall provide operations staff the
capability to manually mount backup archive media.

DsStArchive

S-DSS-20162 The STMGT CI shall provide the capability to mount
on-line backup media via automated means.

DsStArchive

S-DSS-20170 The STMGT CI shall automatically request operations
staff to load a new archive media to store data if no
media exists with sufficient space for the new data.

DsStArchive

Fields that shall be checked include Current

The log of Service

time

A-18 305-CD-008-001

Table A-1. Requirements Trace (19 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-20180 The STMGT CI shall have the capability to
automatically dismount archive media from storage
devices which support removable media when different
archive media must be mounted to store data.

DsStArchive

S-DSS-20190 The STMGT CI shall have the capability to
automatically dismount archive media from storage
devices which support removable media when different
archive media must be mounted to retrieve data.

DsStArchive

S-DSS-20200 The STMGT CI shall provide a mechanism to remove
archive media from storage devices to allow insertion
of new or different archive media in the storage device.

DsStArchive

S-DSS-20220 If an uncorrectable error occurs during archive, the
STMGT CI shall notify the operations staff, select a
different piece of Media and complete the archive
operation. Note: Contents of original media shall be
recreated on new media and the original remove

DsStArchive

S-DSS-20230 The STMGT CI shall notify operations staff to discard
source archive media after its contents have been re
created on the new media.

DsStArchive

S-DSS-20240 If the end of the archive media is encountered before
completing a write operation, the STMGT CI shall
select new media and complete the write operation
with the new archive media.

DsStArchive

S-DSS-20250 If an uncorrectable error occurs during retrieval
operations, STMGT CI shall terminate the operation
and notify operations staff and the user/data requester
of the failure.

DsStArchive

S-DSS-20255 If an uncorrectable error occurs during retrieval
operations, STMGT CI shall automatically recreate the
contents on new media.

DsStArchive

S-DSS-20300 The STMGT CI shall provide operations staff the
capability to display information about the archive
media resident in storage devices. Such information
shall include:
date, archive volume status.

DsStArchive

S-DSS-20350 The STMGT CI shall use a fully described file structure
to store data.

DsStArchive

S-DSS-20360 The STMGT CI shall use a fully described physical file
organization to store data.

DsStArchive

S-DSS-20370 The STMGT CI shall use openly published and non
proprietary data formats to store data.

DsStArchive

S-DSS-20380 The STMGT CI shall provide the capability to continue
operations in a degraded mode despite hardware
failures of individual archive storage devices, archive
media and/or operator consoles.

DsStArchive

S-DSS-20390 The STMGT CI shall provide operations staff a
mechanism for recovery of data as a result of failed
archive media. Note: Failed archive media are media
which can not be read.

DsStArchive

archive volume name, creation time/

A-19 305-CD-008-001

Table A-1. Requirements Trace (20 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-20400 The STMGT CI shall provide operations staff a
mechanism for recovery of data as a result of failed
archive storage devices.

DsStArchive

S-DSS-20420 The STMGT CI shall be capable of producing backup
archive media which uses openly published and non
proprietary formats for recording data.

DsStArchive

S-DSS-20430 The STMGT CI shall be capable of producing backup
archive media which has a fully described file structure.

DsStArchive

S-DSS-20440 The STMGT CI shall be capable of producing backup
archive media which has a fully described physical file
organization.

DsStArchive

S-DSS-20442 The STMGT CI shall provide the capability to archive
Data Availability Schedules.

DsStArchive

S-DSS-20444 The STMGT CI shall provide the capability to retrieve
Data Availability Schedules.

DsStArchive

S-DSS-20465 The STMGT CI shall provide the capability to archive
non-EOS data required for standard production.

DsStArchive

S-DSS-20475 The STMGT CI shall provide the capability to retrieve
non-EOS data to be used for standard product
production.

DsStArchive

S-DSS-20480 The STMGT CI shall provide operations staff the
capability to perform physical inventories of archive
media resident in archive storage devices.

DsStArchive

S-DSS-20490 The STMGT CI shall control access to archived data to
prevent unauthorized access.

DsStArchive

S-DSS-20500 The STMGT CI shall report unauthorized attempts to
access archived data when detected to operations
staff.

DsStArchive

S-DSS-20510 The STMGT CI shall provide operations staff the
capability to obtain configuration information about
operator selected storage devices.

DsStResource

S-DSS-20520 The STMGT CI shall provide operations staff the
capability to change the allocation of storage devices
to individual Data Servers.

DsStResourcePolicy

S-DSS-20530 The STMGT CI shall provide the capability to display/
view/print the allocation of storage devices to Data
Servers.

DsStResourcePolicy

S-DSS-20540 The STMGT CI shall provide an automatic capability
during startup to allocate storage devices to Data
Servers.

DsStResource;
Config

S-DSS-20590 The STMGT CI shall provide archival storage which is
field-expandable. Field-expandable is defined as
increasing the capacity or size of archive storage
without removing archive storage device from site.

DsStArchive

S-DSS-20600 The STMGT CI shall provide the capability to uniquely
identify each data granule that is archived.

DsMdCatalog

S-DSS-20620 The STMGT CI shall provide the capability to retrieve
each individual data granule that is stored.

DsStArchive

DsStResource-

A-20 305-CD-008-001

Table A-1. Requirements Trace (21 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-20650 The STMGT CI shall provide operations staff the
capability to generate a backup of all data holdings.

DsStArchive

S-DSS-20660 The STMGT CI shall provide operations staff the
capability to restore backups of specified data
holdings.

DsStArchive

S-DSS-20670 For each data item archived, the STMGT CI shall
record the event in the Inventory Update Log.

DsStArchive

S-DSS-20690 The STMGT CI shall provide the capability to display/
view/print the Inventory Update Log.

DsStArchive

S-DSS-20700 The STMGT CI shall provide the capability to select/
extract Inventory Update Log records for time periods
selected by operations staff.

DsStArchive

S-DSS-20710 The STMGT CI shall assign a unique identifier to new
archive media.

DsStArchive

S-DSS-20740 The STMGT CI shall provide operations staff the
capability to retrieve data that has been safe-stored at
an external facility.

DsStArchive

S-DSS-20760 The STMGT CI shall provide operations staff the
capability to view/display/print the Archive Activity Log.

DsStStorageResource

S-DSS-20770 The STMGT CI shall provide the capability to sort,
extract and/or select Archive Activity Log entries by the
following:
of request.

DsStStorageResource

S-DSS-20780 The STMGT CI shall provide operations staff the
capability to view/display/print the Intermediate Activity
Log.

DsStResource

S-DSS-20790 The STMGT CI shall provide the capability to sort,
extract and/or select Intermediate Activity Log entries
by the following:
operation, Request Identifier, and staging resource(s).

DsStResource

S-DSS-20880 The STMGT CI shall maintain an Intermediate Activity
Log. It shall include date/time stamp, operation id (file
space alloc./dealloc., media mount/dismount/loads/
unload, file read/write/delete), affiliated Request
Identifier and associated staging resource

DsStResource

S-DSS-20890 The STMGT CI shall provide operations staff the
capability to load media into storage devices which
support removable media.

DsStResource

S-DSS-20900 The STMGT CI shall provide operations staff the
capability to initialize media in storage devices which
support removable media.

DsStResource

S-DSS-20910 The STMGT CI shall provide operations staff the
capability to unload media from storage devices which
support removable media.

DsStResource

S-DSS-20980 The STMGT CI shall provide the SDSRV CI the
capability to open files on archive storage media in the
DRPHW CI.

DsStArchive

start/stop time, operation requested, result

start/stop time, intermediate

A-21 305-CD-008-001

Table A-1. Requirements Trace (22 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-20985 The STMGT CI shall provide the SDSRV CI the
capability to open files on archive storage media in the
WKSHW CI.

DsStStagingFile

S-DSS-20990 The STMGT CI shall provide the SDSRV CI the
capability to close files on archive storage media in the
DRPHW CI.

DsStArchive

S-DSS-20995 The STMGT CI shall provide the SDSRV CI the
capability to close files on archive storage media in the
WKSHW CI.

DsStStagingFile

S-DSS-21000 The STMGT CI shall provide the SDSRV CI the
capability to read information from files on archive
storage media in the DRPHW CI.

DsStArchive

S-DSS-21005 The STMGT CI shall provide the SDSRV CI the
capability to read information from files on archive
storage media in the WKSHW CI.

DsStStagingFile

S-DSS-21010 The STMGT CI shall provide the SDSRV CI the
capability to write information into files on archive
storage media in the DRPHW CI.

DsStArchive

S-DSS-21015 The STMGT CI shall provide the SDSRV CI the
capability to write information into files on archive
storage media in the WKSHW CI.

DsStStagingFile

S-DSS-21020 The STMGT CI shall provide the SDSRV CI the
capability to allocate archive storage devices for
Service Request processing in the DRPHW CI.

DsStArchive

S-DSS-21025 The STMGT CI shall provide the SDSRV CI the
capability to allocate archive storage devices for
Service Request processing in the WKSHW CI.

DsStStagingDisk

S-DSS-21030 The STMGT CI shall provide the SDSRV CI the
capability to deallocate archive storage devices in the
DRPHW CI.

DsStArchive

S-DSS-21035 The STMGT CI shall provide the SDSRV CI the
capability to deallocate archive storage devices in the
DRPHW CI.

DsStArchive

S-DSS-21040 The STMGT CI shall provide the SDSRV CI the
capability to open files on staging devices in the
WKSHW CI.

DsStStagingFile

S-DSS-21050 The STMGT CI shall provide the SDSRV CI the
capability to close files on staging devices in the
WKSHW CI.

DsStStagingFile

S-DSS-21060 The STMGT CI shall provide the SDSRV CI the
capability to write information into files on staging
devices in the WKSHW CI.

DsStStagingFile

S-DSS-21070 The STMGT CI shall provide the SDSRV CI the
capability to read information from files on staging
devices in the WKSHW CI.

DsStStagingFile

S-DSS-21080 The STMGT CI shall provide the SDSRV CI the
capability to delete files on staging devices in the
WKSHW CI.

DsStStagingFile

A-22 305-CD-008-001

Table A-1. Requirements Trace (23 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-21080 The STMGT CI shall provide the SDSRV CI the
capability to delete files on staging devices in the
WKSHW CI.

DsStStagingFile

S-DSS-21090 The STMGT CI shall provide the SDSRV CI the
capability to rename files on staging devices in the
WKSHW CI.

DsStStagingFile

S-DSS-21100 The STMGT CI shall provide the SDSRV CI the
capability to obtain information concerning files on
staging devices in the WKSHW CI. Note: File info.
includes file name, size, type, organization, creation
date, protections, owner, last access time and id of

DsStDirectory

S-DSS-21110 The STMGT CI shall provide the SDSRV CI the
capability to allocate storage on staging devices in the
WKSHW CI.

DsStStagingDisk

S-DSS-21120 The STMGT CI shall provide the SDSRV CI the
capability to deallocate storage on staging devices in
the WKSHW CI.

DsStStagingDisk

S-DSS-21160 The STMGT CI shall provide operations staff the
capability to set the operational state (UP or DOWN) of
storage devices.

DsStStorageResource

S-DSS-21170 The STMGT CI shall provide operations staff the
capability to query the operational state (UP or DOWN)
of storage devices.

DsStStorageResource

S-DSS-21180 The STMGT CI shall provide operations staff the
capability to backup storage system unique files, which
shall include all logs, files used by the storage system
and files indicating the allocation of storage devices to
Data Servers.

DsStStorageResource

S-DSS-21190 The STMGT CI shall provide operations staff the
capability to restore storage system unique files.

DsStStorageResource

S-DSS-21200 The STMGT CI shall provide operations staff a
mechanism to display/view storage system data
storing operations by ECS element.

DsStStorageResource

S-DSS-21210 The STMGT CI shall provide operations staff a
mechanism to display/view storage system data
retrieval operations by ECS element.

DsStArchive

S-DSS-21220 The STMGT CI shall provide operations staff a
mechanism to display/view storage system archive
media backup/restore operations by ECS element.

DsStArchive

S-DSS-21230 The STMGT CI shall provide operations staff a
mechanism to display/view storage system
allocations by ECS element.

DsStArchive

S-DSS-21270 The STMGT CI shall provide the operations staff the
capability to display information about archive storage
devices.
current operation, # operations completed, # errors
reported, time/date of last error.

DsStArchive

storage

Such information shall include current status,

A-23 305-CD-008-001

Table A-1. Requirements Trace (24 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-21330 The STMGT CI shall notify operations staff whenever a
device failure condition occurs.
be logged in the Archive Activity Log.

DsStResource

S-DSS-21360 The STMGT CI shall use a hierarchy of disk and/or
tape storage devices and associated storage media to
store data.

DsStArchive

S-DSS-21363 The STMGT CI shall provide location-transparent
access to the archived data.

DsStArchive

S-DSS-21365 The STMGT CI shall provide storage for the Data
Products listed in Appendix F.

DsStArchive

S-DSS-21366 The STMGT CI shall provide storage for the Metadata
associated with the Data Products listed in Appendix F.

DsMdCatalog

S-DSS-21370 The STMGT CI shall use, where appropriate, a
hierarchy of disk and/or tape storage devices and
associated storage media to retrieve data.

DsStArchive

S-DSS-21380 In the event of storage device or archive media failure,
the STMGT CI shall notify operations staff and provide
appropriate information to include failed device name
or media, failure code or reason and time/date of
failure.

DsStArchive

S-DSS-21390 The STMGT CI shall maintain a File Directory of all
data files which have been archived and under its
control.

DsStFileDirectory

S-DSS-21400 The STMGT CI shall provide operations staff a
mechanism to create the File Directory.

DsStFileDirectory

S-DSS-21410 The STMGT CI shall provide operations staff a
mechanism to append records to the File Directory.

DsStFileDirectory

S-DSS-21420 The STMGT CI shall provide operations staff a
mechanism to display selected records in the File
Directory.

DsStFileDirectory

S-DSS-21440 The STMGT CI shall provide operations staff a
mechanism to update records in the File Directory.

DsStFileDirectory

S-DSS-21450 The STMGT CI shall provide operations staff the
capability to backup the contents of the File Directory.

DsStFileDirectory

S-DSS-21460 The STMGT CI shall provide operations staff the
capability to recover the contents of the File Directory
in the case of file corruption.

DsStFileDirectory

S-DSS-21470 The STMGT CI shall provide operations staff the
capability to view/display/print contents of the File
Directory.

DsStFileDirectory

S-DSS-21480 The STMGT CI shall maintain a unique data set id for
each data item in its File Directory.

DsStFileDirectory

S-DSS-21490 The STMGT CI shall be capable of tracking the
physical location of each data granule via use of the
File Directory.

DsStFileDirectory

S-DSS-21500 The Science Management within the Data Server shall
support making stored Data Products available on
physical media within 24 hours

DSS Subsystem

Such failures shall also

A-24 305-CD-008-001

Table A-1. Requirements Trace (25 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-21510 The Science Management within the Data Server shall
be capable of providing of 200% expansion in capacity
without architecture or design change.

DSS Subsystem

S-DSS-21520 The Science Management within the Data Server shall
be capable of processing a combined maximum
number of Data Requests per hour (across ECS) from
the Data Management Subsystem and/or the Client
Subsystem as derived from
E.

DSS Subsystem

S-DSS-21540 The Science Management within the Data Server shall
support distributing product QA data produced at the
collocated Data Processing Subsystem within 1 hour
from the time it is ready.

DSS Subsystem

S-DSS-21570 The Science Management within the Data Server shall
have the capacity to archive the total bytes of data
derived from

DSS Subsystem

S-DSS-21600 The MSFC DAAC Science Management within the
Data Server shall archive original TSDIS standard
products (Level 1B-3) after reprocessing for a
minimum of 6 months

DSS Subsystem

S-DSS-21630 The GSFC DAAC Science Management within the
Data Server shall archive original TSDIS standard
products (Level 1B-3) after reprocessing for a
minimum of 6 months

DSS Subsystem

S-DSS-21640 The Science Management within the Data Server shall
support making archive data associated with a pre
defined ECS standard format available to the network
in that format within an average of 2 minutes.

DSS Subsystem

S-DSS-21650 The Science Management within the Data Server shall
support making archive data associated with a pre
defined ECS standard format available to the network
in a different format within an average of 5 minutes.

DSS Subsystem

S-DSS-21655 The Science Management within the Data Server shall
utilize media with a rated shelf life of at least 10 years
as determined by National Archives and Record
Administration (NARA), National Institute for
Standards and Technology (NIST), NASA or an
industry

DSS Subsystem

S-DSS-21700 The WKSHW CI shall be sized to temporarily store the
number of bytes of data derived from Section E.1 of
Appendix E.

WKSHW CI

S-DSS-21710 The WKSHW CI shall be sized to support a sustained
I/O rate derived from Section E.1 of Appendix E in
bytes/second of data.

WKSHW CI

S-DSS-21720 The DRPHW CI shall be sized to support a sustained I/
O rate of 1x the production volume from electronic
distribution, where 1x production volume is derived
from Section E.1 of, Appendix E.

DRPHW CI

S-DSS-21730 The DRPHW CI shall be sized to permanently store
and maintain the total number of bytes of product data
derived from Appendix E (Section E.1).

DRPHW CI

Section E.6 of Appendix

Section E.1 of Appendix E.

A-25 305-CD-008-001

Table A-1. Requirements Trace (26 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-21740 The DRPHW CI shall be sized to permanently store
and maintain the total number of bytes of record based
data derived from Appendix E (Section E.1).

DRPHW CI

S-DSS-21750 The DRPHW CI shall provide a bit error rate after
correction less than 1 in 1 X 10**12. (This requirement
may be fulfilled with a combination of hardware and
software components.)

DRPHW CI

S-DSS-21760 The DRPHW CI shall utilize archive media with a
manufactured shelf life of at least 10 years when stored
in a controlled environment

DRPHW CI

S-DSS-21770 The DRPHW CI shall be capable of providing of 200
percent expansion in capacity without architecture or
design change.

DRPHW CI

S-DSS-21800 The DRPHW CI shall be configured to provide an
Availability for archiving data of 0.98000/ and a Mean
Down Time (MDT) of <2 hours availability for archiving
data.

DRPHW CI

S-DSS-21810 The DRPHW CI shall be configured to provide an
Availability for accepting and updating metadata of
0.96000/ and a Mean Down Time (MDT) of <4 hours
availability for accepting and updating metadata.

DRPHW CI

S-DSS-21811 The DRPHW CI shall be configured to provide an
Availability for information searches in the ECS
Directory of 0.993/ and a Mean Down Time (MDT) of
<2 hours availability for information searches on the
ECS directory.

DRPHW CI

S-DSS-21813 The DRPHW CI shall be configured to provide an
Availability for searches on local holdings of 0.96/ and
a Mean Down Time (MDT) of
searches on local holdings.

DRPHW CI

S-DSS-21814 The DRPHW CI shall be configured to provide an
Availability for database management and
maintenance interface functions of 0.96/ and a Mean
Down Time (MDT) of <4 hours availability for database
management and maintenance interface functions.

DRPHW CI

S-DSS-21815 The DRPHW CI shall support the RMA Requirements
specified for the ECS Program.

DRPHW CI

S-DSS-30010 The DDIST CI shall accept Electronic Distribution
Requests or Media Distribution Requests.

DsDdDistRequest

S-DSS-30020 Distribution Requests shall have the format described
in Appendix A.

DsDdDistRequest

S-DSS-30030 The DDIST CI shall validate each Electronic
Distribution Request and verify that the format
conforms to that specified in Appendix A.

DsDdDistRequest

S-DSS-30040 The DDIST CI shall log the following on the Distribution
Activity Log whenever an Electronic Distribution
Request fails validation:
Identifier, Date and Time, and an explanation of the
failure.

DsDdRequestProcessor

<4 hours availability for

User Identifier, Request

A-26 305-CD-008-001

Table A-1. Requirements Trace (27 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-30045 The DDIST CI shall send Notifications to users via
email in the event that the request is canceled by
operations staff and the user has an active session.

DsDdRequestProcessor

S-DSS-30046 The DDIST CI shall send Notifications to the user's
desktop application in the event that the request is
canceled by operations staff and the user has an active
session.

DsDdRequestProcessor

S-DSS-30050 The DDIST CI shall send a Notification to the source of
the request if an Electronic Distribution Request fails
validation.

DsDdRequestProcessor

S-DSS-30060 The DDIST CI shall validate each Media Distribution
Request and verify that it conforms to the format
specified in Appendix A.

DsDdDistRequest

S-DSS-30070 The DDIST CI shall log a Distribution Failure Message
whenever a Media Distribution Request fails validation.

DsDdRequestProcessor

S-DSS-30080 The DDIST CI shall send a Notification to the source of
the request if a Media Distribution Request fails
validation.

DsDdRequestProcessor

S-DSS-30090 The DDIST CI shall provide the capability to prioritize
requests for data based on whether the request is an
Electronic Distribution Request or a Media Distribution
Request.

DsDdRequestManager

S-DSS-30100 The DDIST CI shall provide operations staff the
capability to change the Priority Information for a
Distribution Request before the processing of the
request has begun.

DsDdPrivRequest

S-DSS-30110 The DDIST CI shall provide the capability for
operations staff to list Distribution Requests according
to whether the request is an Electronic Distribution
Request or a Media Distribution Request.

DsDdRequestList

S-DSS-30115 The DDIST CI shall provide the capability for
operations staff to list Distribution Requests according
to Request Identifier and status.

DsDdRequestList

S-DSS-30120 The DDIST CI shall provide the capability for
operations staff to select for viewing Media Distribution
Requests and Electronic Distribution Requests.

DsDdRequestList

S-DSS-30130 The DDIST CI shall provide the capability for
operations staff to cancel the processing of Electronic
Distribution Requests prior to the start of the
transmission of the data.

DsDdDistRequest

S-DSS-30140 The DDIST CI shall provide the capability for
operations staff to cancel the data transmission
initiated by the processing of an Electronic Distribution
Request.

DsDdDistRequest

S-DSS-30150 The DDIST CI shall provide the capability for
operations staff to cancel the processing of a Media
Distribution Request prior to the shipment of the media.

DsDdDistRequest

A-27 305-CD-008-001

Table A-1. Requirements Trace (28 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-30160 The DDIST CI shall send a Notification to the originator
of a Distribution Request in the event that the request
is canceled by operations staff.

DsDdRequestProcessor

S-DSS-30163 The DDIST CI shall authenticate the User Identifier of
operations staff submitting an Ingest Cancellation
Request.

DsDdDistRequest

S-DSS-30165 The DDIST CI shall log a Distribution Request
Cancellation Message whenever a Distribution
Request is cancelled by the operations staff.

DsDdRequestProcessor

S-DSS-30167 The DDIST CI shall log a Distribution Request
Cancellation Message whenever a Distribution
Request is cancelled by the science user.

DsDdRequestProcessor

S-DSS-30170 The DDIST CI shall respond to Status Requests from
science users with a Request State indicating that the
specified Distribution Request is “pending”, “active”, or
“not found”.

DsDdDistRequestC

S-DSS-30171 The DDIST CI shall respond to Status Requests from
operations staff with a Request State indicating that the
specified Distribution Request is “pending”, “staging”,
“transferring” or “not found”.

DsDdOpsRequestC

S-DSS-30175 Status Requests shall have the format given in
Appendix A.

DsDdDistRequest

S-DSS-30180 The DDIST CI shall process queued Distribution
Requests in prioritized order.

DsDdRequestManager

S-DSS-30245 * The DDIST CI shall provide the capability to report
accounting data to the SDSRV CI.

DsAdRequestInterface

S-DSS-30250 Upon the receipt of a status request, DDIST shall
validate and provide the status of previously submitted
distribution request.

DsDdDistRequest

S-DSS-30260 The DDIST CI shall log the receipt of a Data
Distribution Request in the Distribution Activity Log.

DsDdRequestManager

S-DSS-30270 The DDIST CI shall log the following to the Distribution
Activity Log, for each Media Distribution Request: User
Identifier, Media Identifiers, Media Type/Form Factor,
and the Distribution Size.

DsDdRequestProcessor

S-DSS-30280 The DDIST CI shall log the following to the Distribution
Activity Log, for each Electronic Distribution Request:
User Identifier, Data Destination, and the Distribution
Size.

DsDdRequestProcessor

S-DSS-30288 The DDIST CI shall forward the Distribution Activity
Log entries to the SMC.

DsDdDistRequest

S-DSS-30290 The DDIST CI shall provide operations staff with the
capability to display the Distribution Activity Log.

DsDdDistRequest

S-DSS-30295 The DDIST CI shall alert operations staff when
electronic transmission problems are encountered.

DsDdPushProcessor

S-DSS-30300 The DDIST CI shall provide the capability to view
entries according to type of distribution, by time period
or by Request Identifier (i.e., source of request).

DsDdRequestList

A-28 305-CD-008-001

Table A-1. Requirements Trace (29 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-30305 The DDIST CI shall provide the capability to view
entries according to type of distribution, by time period
or by data type (i.e., source of request).

DsDdRequestList

S-DSS-30310 The DDIST CI shall provide the capability to sort the
Distribution Activity Log by distribution type (i.e.,
electronic (push/pull) and physical media type (tape,
CD-ROM, etc.)).

DsDdDistRequest

S-DSS-30320 The DDIST CI shall record in the Distribution Activity
Log the occurrence of correctable errors.

DsDdRequestProcessor

S-DSS-30330 If the DDIST CI is unable to distribute data
electronically, the User Identifier, the list of data, and
the reason for the failure will be logged.

DsDdPushProcessor

S-DSS-30340 If the DDIST CI is unable to distribute data
electronically, the user shall be sent a Notification.

DsDdPushProcessor

S-DSS-30350 The DDIST CI shall provide the capability to generate
reports on the distribution activity for a period specified
by operations staff.

DsDdRequestManager

S-DSS-30355 The DDIST CI shall provide the capability to generate
reports on the distribution backlog.

DsDdRequestList

S-DSS-30370 The DDIST CI shall log the number of physical media
that is created during distribution.

DsDdRequestProcessor

S-DSS-30380 The DDIST CI shall log the Media Destination and the
number of data items distributed in a physical media
distribution.

DsDdRequestProcessor

S-DSS-30390 The DDIST CI shall log the Data Destination and the
number of data items distributed in an electronic
distribution.

DsDdPushProcessor

S-DSS-30400 The DDIST CI shall log the User Identifier for the user
that originated the Data Distribution Request.

DsDdRequestProcessor

S-DSS-30430 The DDIST CI shall provide the capability for the
operations staff to manually enter the status of a
physical media shipment.
“waiting for shipment” to “shipped”.

DsDdDistRequest

S-DSS-30431 The DDIST CI shall log a physical media shipment
using the following categories: pending, active, waiting
for shipment.

DsDdRequestProcessor

S-DSS-30440 The DDIST CI shall provide the capability to distribute
on 8mm tape.

DsDdTapeProcessor

S-DSS-30470 The DDIST CI shall provide the capability to distribute
on CD ROM.

DsDdCDProcessor

S-DSS-30480 The DDIST CI shall provide the capability to distribute
on 6250 tape.

DsDdTapeProcessor

S-DSS-30490 If an uncorrectable error occurs while writing to
distribution media, the operation shall be aborted and
a new piece of media automatically requested from
operations staff.

DsDdRequestProcessor

Status will be updated from

A-29 305-CD-008-001

Table A-1. Requirements Trace (30 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-30520 The DDIST CI shall provide the capability to place Data
in publicly available disks for users to “pull” the data,
via ftp, at their discretion.

DsDdPullProcessor

S-DSS-30530 The DDIST CI shall provide the capability to limit
access to Data in the user pull area to the science user
and the operations staff.

DsStPullList

S-DSS-30540 The DDIST CI shall monitor the percentage of space
utilized in the user pull area.

DsStPullMonitor

S-DSS-30550 The DDIST CI shall provide a mechanism for
operations staff to view/display the percentage of
space utilized in the user pull area.

DsStPullMonitor

S-DSS-30560 The DDIST CI shall notify operations staff if the percent
utilization in the user pull area exceeds a specified
threshold.

DsStPullMonitor

S-DSS-30570 When Data is placed in the user pull area, requesting
user shall be notified that the Data is available for a
limited time.

DsDdPullProcessor

S-DSS-30575 The DDIST CI shall notify operations staff when the
time limit has expired for Data in the user pull area.

DsStPullMonitor

S-DSS-30580 The DDIST CI shall, after operator confirmation, delete
expired Data from the user pull area.

DsStPullMonitor

S-DSS-30585 Operations staff shall be able to turn off the function of
operator confirmation associated with the automatic
deletion of Data in the user pull area.

DsStPullConfig

S-DSS-30600 The DDIST CI shall provide the capability to distribute
Data electronically via ftp (push).

DsDdPushMedia

S-DSS-30640 The DDIST CI shall provide the capability for
operations staff to change the state (on-line vs. off-line)
of a peripheral device that is used for distribution.

DsStResource

S-DSS-30650 The DDIST CI shall provide the capability for
operations staff to display the state (on-line vs. off-line)
of peripheral distribution devices.

DsStResource

S-DSS-30660 In the event of media failure (i.e., tape breaks), the
DDIST CI shall provide the capability to restart the
distribution on a new piece of media.

DsDdMedia

S-DSS-30670 If an electronic push distribution fails, DDIST CI shall
make a system defined number of additional attempts
before aborting the transmission and notifying the
originator of the failure.
shall be included in the Distribution Act

DsDdPushProcessor

S-DSS-30680 The DDIST CI shall provide the capability for
operations staff to change the system defined number
of additional attempts for re-transmission.

DsDdPushProcessor

S-DSS-30705 For physical media distributions, DDIST CI shall
generate a packing list describing the data on the
media.

DsDdPackingSlip

These additional attempts

A-30 305-CD-008-001

Table A-1. Requirements Trace (31 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-30710 The DDIST CI shall provide the capability to distribute
any Data, or appropriate subset, listed in the Inventory.
Note:
determined by and depends on the subject data type.

DsDsDistRequest

S-DSS-30730 The DDIST CI shall provide the capability for
operations staff to manually load media into the
peripheral devices.

DsStResource

S-DSS-30740 The DDIST CI shall provide the capability for
operations staff to manually unload media from the
peripheral devices.

DsStResource

S-DSS-30750 The DDIST CI shall provide the capability for the
operations staff to specify a percent utilization
threshold for the user pull area above which operations
staff will be notified.

DsStPullConfig

S-DSS-30780 The DDIST CI shall make appropriate use of standards
for data structures and data transport as defined for
use within the publications of CCSDS and ISO/OSI for
distribution of TRMM data to the TSDIS.

DsDdDistRequest

S-DSS-30797 The DDIST CI shall receive management directives
from the SDSRV CI.

DsDdDistRequestC

S-DSS-30800 The Data Distribution within the Data Server shall
support making stored products available on physical
media within 24 hours.

DDIST CI

S-DSS-30810 The Data Distribution within the Data Server shall be
capable of distributing Data via physical media
generated a rate equivalent to the daily rate data are
ingested at that site.

DDIST CI

S-DSS-30840 The Data Distribution within the Data Server shall
support distributing product QA data produced at the
collocated Data Processing Subsystem within 1 hour
from the time it is ready.

DDIST CI

S-DSS-30850 The Data Distribution within the Data Server shall
support making archive data associated with a
predefined ECS standard format available to the
network in that format within an average of 2 minutes.

DDIST CI

S-DSS-30860 The Data Distribution within the Data Server shall
support making archive data associated with a
predefined ECS format available to the network in a
different format within an average of 5 minutes.

DDIST CI

S-DSS-30870 The DAAC Data Distribution within the Data Server
shall be capable of electronically distributing data to
users in support of Electronic Distribution Requests at
a rate equivalent to daily product volume, L1-L4.

SDSRV CI

S-DSS-30875 The Data Distribution within the Data Server shall be
capable of providing 200% expansion in capacity
without architecture or design change.

SDSRV CI

S-DSS-30890 The Data Distribution within the Data Server shall be
capable of distributing the number of bytes of data per
day derived from Section E.6 of Appendix E to TSDIS
(for the purpose of reprocessing).

SDSRV CI

The appropriate subset of a data item is

A-31 305-CD-008-001

Table A-1. Requirements Trace (32 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-30950 The DIPHW CI shall be sized to temporarily store the
total number of bytes of distribution data derived from
Section E.1 of Appendix E.

DIPHW CI

S-DSS-30960 The DIPHW CI shall be sized to support a sustained I/
O rate of 1x the production volume for media
distribution, where 1x production volume is derived
from Section E.1 of, Appendix E.

DIPHW CI

S-DSS-31000 The DIPHW CI shall be configured to support the
SDPS function of Archiving and Distributing data
Availability requirement of 0.98000 and a Mean Down
Time requirement of <2 hours.
distributing data and ingesting hard media.)

DIPHW CI

S-DSS-31005 The DIPHW CI shall support the RMA Requirements
specified for the ECS Program.

DIPHW CI

S-DSS-60010 The electrical power requirements for ACMHW CI
equipment shall be in accordance with the ECS
Facilities Plan (DID 302/DV2).

ACMHW CI

S-DSS-60020 The air conditioning requirements for the ACMHW CI
equipment shall be in accordance with the ECS
Facilities Plan (DID 302/DV2).

ACMHW CI

S-DSS-60030 The grounding requirements for ACMHW CI
equipment shall be in accordance with ECS Facilities
Plan (DID 302/DV2).

ACMHW CI

S-DSS-60040 The fire alarm requirements for ACMHW CI equipment
shall be in accordance with ECS Facilities Plan (DID
302/DV2).

ACMHW CI

S-DSS-60050 The acoustical requirements for ACMHW CI
equipment shall be in accordance with ECS Facilities
Plan (DID 302/DV2).

ACMHW CI

S-DSS-60060 The physical interface requirements between ACMHW
CI equipment and the facility shall be in accordance
with ECS Facilities Plan (DID 302/DV2).

ACMHW CI

S-DSS-60070 The footprint size and the physical layout of ACMHW
CI equipment shall be in accordance with the ECS
Facilities Plan (DID 302/DV2).

ACMHW CI

S-DSS-60110 The operating system for each Unix platform in the
ACMHW CI shall conform to the POSIX.2 standard.

ACMHW CI

S-DSS-60120 The ACMHW CI POSIX.2 compliant platform shall
have the following
emacs, gzip, tar, imake, prof, gprof, nm.

ACMHW CI

S-DSS-60130 The ACMHW CI POSIX.2 compliant platform shall
have the following POSIX.2 user Portability Utilities
installed at a minimum: man, vi.

ACMHW CI

S-DSS-60140 The ACMHW CI POSIX.2 compliant platform shall
have the following POSIX.2 Software Development
Utilities installed at a minimum: make.

ACMHW CI

S-DSS-60150 The ACMHW CI POSIX.2 compliant platform shall
have the following POSIX.2 C-Language Development
Utilities installed at a minimum: lex, yacc.

ACMHW CI

(This applies to

utilities installed at a minimum: perl,

A-32 305-CD-008-001

Table A-1. Requirements Trace (33 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-60160 The ACMHW CI POSIX.2 compliant
have the following Unix shells installed at a minimum:
C shell, Bourne shell, Korn shell.

ACMHW CI

S-DSS-60170 The ACMHW CI POSIX.2 compliant platform shall
have on-line documentation or printed documentation
for each installed tool.

ACMHW CI

S-DSS-60180 The ACMHW CI POSIX.2 compliant platform
have installed one or more development environment
supporting the following languages:

ACMHW CI

S-DSS-60190 Each development environment associated with the
POSIX.2 compliant platform in the ACMHW CI
have the capability to compile and link strictly
conformant POSIX-compliant source code.

ACMHW CI

S-DSS-60195 Each development environment associated with the
POSIX.2 compliant platform in the ACMHW CI
have an interactive source level debugger for ECS
supported languages.

ACMHW CI

S-DSS-60930 The ACMHW CI at the GSFC DAAC shall be capable
of ingesting data from TSDIS at the nominal rate
specified in Sections E.2 & E.3 of Appendix E.

ACMHW CI

S-DSS-60940 The ACMHW CI at the GSFC DAAC shall be capable
of ingesting data at a maximum rate that is three times
the nominal rate specified in Sections E.2 & E.3 of
Appendix E.

ACMHW CI

S-DSS-60950 The ACMHW CI at the GSFC DAAC shall be capable
of ingesting Version 0 data at the nominal rate
specified in Section E.4 of Appendix E.

ACMHW CI

S-DSS-60970 The ACMHW CI at the GSFC DAAC shall be capable
of ingesting data at a nominal rate of TBD bytes per
day from the DAO by network data transfer.

ACMHW CI

S-DSS-61010 The ACMHW CI at the LaRC DAAC shall be capable of
ingesting Version 0 data by network data transfer at the
nominal rate specified in Section E.4 of Appendix E.

ACMHW CI

S-DSS-61020 The ACMHW CI at the LaRC DAAC shall be capable of
ingesting data at a nominal rate of TBD bytes per day
from the DAO by network data transfer.

ACMHW CI

S-DSS-70010 The electrical power requirements for WKSHW CI
equipment shall be in accordance with the ECS
Facilities Plan (DID 302/DV2).

WKSHW CI

S-DSS-70020 The air conditioning requirements for the WKSHW CI
equipment shall be in accordance with the ECS
Facilities Plan (DID 302/DV2).

WKSHW CI

S-DSS-70030 The grounding requirements for WKSHW CI
equipment shall be in accordance with ECS Facilities
Plan (DID 302/DV2).

WKSHW CI

S-DSS-70040 The fire alarm requirements for WKSHW CI equipment
shall be in accordance with ECS Facilities Plan (DID
302/DV2).

WKSHW CI

platform shall

shall

shall

shall

A-33 305-CD-008-001

Table A-1. Requirements Trace (34 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-70050 The acoustical requirements for WKSHW CI
equipment shall be in accordance with ECS Facilities
Plan (DID 302/DV2).

WKSHW CI

S-DSS-70060 The physical interface requirements between WKSHW
CI equipment and the facility shall be in accordance
with ECS Facilities Plan (DID 302/DV2).

WKSHW CI

S-DSS-70070 The footprint size and the physical layout of WKSHW
CI equipment shall be in accordance with the ECS
Facilities Plan (DID 302/DV2).

WKSHW CI

S-DSS-70075 The WKSHW CI shall support the RMA Requirements
specified for the ECS Program.

WKSHW CI

S-DSS-80010 The electrical power requirements for DRPHW CI
equipment shall be in accordance with
Facilities Plan (DID 302/DV2).

DRPHW CI

S-DSS-80020 The air conditioning requirements for the DRPHW CI
equipment shall be in accordance with the ECS
Facilities Plan (DID 302/DV2).

DRPHW CI

S-DSS-80030 The grounding requirements for DRPHW CI equipment
shall be in accordance with ECS Facilities Plan (DID
302/DV2).

DRPHW CI

S-DSS-80040 The fire alarm requirements for DRPHW CI equipment
shall be in accordance with ECS Facilities Plan (DID
302/DV2).

DRPHW CI

S-DSS-80050 The acoustical requirements for DRPHW CI equipment
shall be in accordance with ECS Facilities Plan (DID
302/DV2).

DRPHW CI

S-DSS-80060 The physical interface requirements between DRPHW
CI equipment and the facility shall be in accordance
with ECS Facilities Plan (DID 302/DV2).

DRPHW CI

S-DSS-80070 The footprint size and the physical layout of DRPHW
CI equipment shall be in accordance with the ECS
Facilities Plan (DID 302/DV2).

DRPHW CI

S-DSS-80110 The operating system for each Unix platform in the
DRPHW CI shall conform to the POSIX.2 standard.

DRPHW CI

S-DSS-80120 The DRPHW CI POSIX.2 compliant platform shall
have the following
emacs, gzip, tar, imake, prof, gprof, nm.

DRPHW CI

S-DSS-80130 The DRPHW CI POSIX.2 compliant platform shall
have the following POSIX.2 user Portability Utilities
installed at a minimum: man, vi.

DRPHW CI

S-DSS-80140 The DRPHW CI POSIX.2 compliant platform shall
have the following POSIX.2 Software Development
Utilities installed at a minimum: make.

DRPHW CI

S-DSS-80150 The DRPHW CI POSIX.2 compliant platform shall
have the following POSIX.2 C-Language Development
Utilities installed at a minimum: lex, yacc.

DRPHW CI

the ECS

utilities installed at a minimum: perl,

A-34 305-CD-008-001

Table A-1. Requirements Trace (35 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-80160 The DRPHW CI POSIX.2 compliant
have the following Unix shells installed at a minimum:
C shell, Bourne shell, Korn shell.

DRPHW CI

S-DSS-80170 The DRPHW CI POSIX.2 compliant platform shall
have on-line documentation or printed documentation
for each installed tool.

DRPHW CI

S-DSS-80180 The DRPHW CI POSIX.2 compliant platform
have installed one or more development environment
supporting the following languages:

DRPHW CI

S-DSS-80190 Each development environment associated with the
POSIX.2 compliant platform in the DRPHW CI
have the capability to compile and link strictly
conformant POSIX-compliant source code.

DRPHW CI

S-DSS-80195 Each development environment associated with the
POSIX.2 compliant platform in the DRPHW CI
have an interactive source level debugger for ECS
supported languages.

DRPHW CI

S-DSS-90010 The electrical power requirements for DIPHW CI
equipment shall be in accordance with
Facilities Plan (DID 302/DV2).

DIPHW CI

S-DSS-90020 The air conditioning requirements for the DIPHW CI
equipment shall be in accordance with the ECS
Facilities Plan (DID 302/DV2).

DIPHW CI

S-DSS-90030 The grounding requirements for DIPHW CI equipment
shall be in accordance with ECS Facilities Plan (DID
302/DV2).

DIPHW CI

S-DSS-90040 The fire alarm requirements for DIPHW CI equipment
shall be in accordance with ECS Facilities Plan (DID
302/DV2).

DIPHW CI

S-DSS-90050 The acoustical requirements for DIPHW CI equipment
shall be in accordance with ECS Facilities Plan (DID
302/DV2).

DIPHW CI

S-DSS-90060 The physical interface requirements between DIPHW
CI equipment and the facility shall be in accordance
with ECS Facilities Plan (DID 302/DV2).

DIPHW CI

S-DSS-90070 The footprint size and the physical layout of DIPHW CI
equipment shall be in accordance with the ECS
Facilities Plan (DID 302/DV2).

DIPHW CI

S-DSS-90110 The operating system for each Unix platform in the
DIPHW CI shall conform to the POSIX.2 standard.

DIPHW CI

S-DSS-90120 The DIPHW CI POSIX.2 compliant platform shall have
the following
emacs, gzip, tar, imake, prof, gprof, nm.

DIPHW CI

S-DSS-90130 The DIPHW CI POSIX.2 compliant platform shall have
the following POSIX.2 user Portability Utilities installed
at a minimum: man, vi.

DIPHW CI

S-DSS-90140 The DIPHW CI POSIX.2 compliant platform shall have
the following POSIX.2 Software Development Utilities
installed at a minimum: make.

DIPHW CI

platform shall

shall

shall

shall

the ECS

utilities installed at a minimum: perl,

A-35 305-CD-008-001

Table A-1. Requirements Trace (36 of 36)
L4 Rqmt ID L4 Requirement Text Subsystem, Object Class,

CSC, or CI

S-DSS-90150 The DIPHW CI POSIX.2 compliant platform shall have
the following POSIX.2 C-Language Development
Utilities installed at a minimum: lex, yacc.

DIPHW CI

S-DSS-90160 The DIPHW CI POSIX.2 compliant
the following Unix shells installed at a minimum: C
shell, Bourne shell, Korn shell.

DIPHW CI

S-DSS-90170 The DIPHW CI POSIX.2 compliant platform shall have
on-line documentation or printed documentation for
each installed tool.

DIPHW CI

S-DSS-90180 The DIPHW CI POSIX.2 compliant platform
installed one or more development environment
supporting the following languages:

DIPHW CI

S-DSS-90190 Each development environment associated with the
POSIX.2 compliant platform in the DIPHW CI
have the capability to compile and link strictly
conformant POSIX-compliant source code.

DIPHW CI

S-DSS-90195 Each development environment associated with the
POSIX.2 compliant platform in the DIPHW CI
have an interactive source level debugger for ECS
supported languages.

DIPHW CI

S-DSS-90300 The DIPHW CI at the GSFC DAAC shall be capable of
ingesting Version 0 data from physical media agreed
upon between ECS and Version 0, at the nominal rate
specified in Section E.45 of Appendix E.

DIPHW CI

S-DSS-90310 The DIPHW CI at the MSFC DAAC shall be capable of
ingesting Version 0 data from physical media agreed
upon between ECS and Version 0, at the nominal rate
specified in Section E.4 of Appendix E.

DIPHW CI

S-DSS-90320 The DIPHW CI at the LARC DAAC shall be capable of
ingesting Version 0 data from physical media agreed
upon between ECS and Version 0, at the nominal rate
specified in Section E.4 of Appendix E.

DIPHW CI

platform shall have

shall have

shall

shall

* Fulfilled in Release B

A-36 305-CD-008-001

Abbreviations and Acronyms

ADSRV advertising service CSCI

AHWGP Ad Hoc Working Group for Production

AMASS archival management and storage system

APC Access/Process Coordinators

API application program interface

AS Administration Stations

ASCII American Standard Code for Information Interchange

ATL automatic tape library

ATM asynchronous transmission mode

CD-ROM compact disk - read only memory

CGI common gateway interface

configuration item

COTS commercial off-the-shelf

CPU central processing unit

CSC computer software component

CSCI computer software configuration item

CSS Communication Services Subsystem

DAAC distributed active archive center

DAS Dual-Attached Station

DBA database administrator

DBMS database management system

DCE distributed computing environment

DDICT data dictionary CSCI

DDIST data distribution CSCI

DDSRV document data server CSCI

DEV developed code

DLT Digital Linear Tape

DPS data processing subsystem

DSS data server subsystem

ECS EOSDIS Core System

EDF ECS development facility

EDHS Electronic Document Handling System

AB-1 305-CD-008-001

CI

EOSDIS Earth Observing System Data and Information System

ESDT Earth science data types

FDDI fiber distributed data interface

FSMS File Storage Management System

FTP file transfer protocol

GUI graphical user interface

HSM hierarchical storage management

HTML hypertext markup language

HTTP hypertext transfer protocol

HW hardware

I/O input/output

INGST Ingest Subsystem

INTOP Interoperability CSCI

MSS management subsystem

NTP New Tape Product (IBM designation of the 3590 tape)

OMT Object Modeling Technique

OODCE object oriented DCE

OPS operations

OTS off-the-shelf

PAM Permanent Archive Management

pdf portable document format

RAID redundant array of inexpensive disks

RMA reliability, maintainability, availability

RTF Relocatable Transfer Format

SAS Single-Attached Station

SDPS Science Data Processing Segment

SDSRV Science Data Server CSCI

SMP symmetric multi-processor

SNMP simple network management protocol

STMGT Storage Management Software CSCI

TRMM Tropical Rainfall Measuring Mission

TSDIS TRMM Science Data and Information System

V0 Version 0

V1 Version 1

AB-2 305-CD-008-001

WAIS Wide Area Information Service

WS working storage

WWW World Wide Web

AB-3 305-CD-008-001

	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Document Organization
	1.4 Status and Schedule

	2. Related Documents
	2.1 Parent Documents
	2.2 Applicable Documents
	2.3 Information Documents Not Referenced

	3. Subsystem Overview
	3.1 Introduction and Context
	3.2 Subsystem Overview
	3.2.1 Subsystem Structure
	3.2.2 Subsystem Design Rationale

	4. SDSRV - Science Data Server CSCI
	4.1 CSCI Overview
	4.2 CSCI Context
	4.3 CSCI Object Model
	4.3.1 DsAdDataTypeCollector Class
	4.3.2 DsAdDescriptor Class
	4.3.3 DsAdLog Class
	4.3.4 DsAdRequestInterface Class
	4.3.5 DsCeCERES Class
	4.3.6 DsClAction Class
	4.3.7 DsClCollector Class
	4.3.8 DsClCollectorVector Class
	4.3.9 DsClCommand Class
	4.3.10 DsClDescriptor Class
	4.3.11 DsClESDTReference Class
	4.3.12 DsClESDTReferenceCollector Class
	4.3.13 DsClESDTReferenceVector Class
	4.3.14 DsClNotificationReceiver Class
	4.3.15 DsClQuery Class
	4.3.16 DsClRequest Class
	4.3.17 DsClRequestVector Class
	4.3.18 DsClSubmittedRequest Class
	4.3.19 DsClSubscription Class
	4.3.20 DsClSubscriptionCollector Class
	4.3.21 DsClTypeInfo Class
	4.3.22 DsCnConfiguration Class
	4.3.23 DsCnDSSConfiguration Class
	4.3.24 DsCnDSSStartup Class
	4.3.25 DsCoCombination Class
	4.3.26 DsDbAccess Class
	4.3.27 DsDbAttributeToTableVector Class
	4.3.28 DsDbEngine Class
	4.3.29 DsDbGranuleToDbVector Class
	4.3.30 DsDbInterface Class
	4.3.31 DsDeCoreValid Class
	4.3.32 DsDeCoreValidVector Class
	4.3.33 DsDeDD Class
	4.3.34 DsDeDDVector Class
	4.3.35 DsDeESDTDescriptor Class
	4.3.36 DsDeESDTDescriptorSet Class
	4.3.37 DsDeEvent Class
	4.3.38 DsDeEventVector Class
	4.3.39 DsDeMathOp Class
	4.3.40 DsDeMetadataDef Class
	4.3.41 DsDeMetadataDefVector Class
	4.3.42 DsDeRange Class
	4.3.43 DsDeScienceParameter Class
	4.3.44 DsDeScienceParameterVector Class
	4.3.45 DsDeSeries Class
	4.3.46 DsDeService Class
	4.3.47 DsDeServiceVector Class
	4.3.48 DsDeStaticMetadata Class
	4.3.49 DsDeStaticMetadataVector Class
	4.3.50 DsDeValid Class
	4.3.51 DsDeValidVector Class
	4.3.52 DsDoReferencePaper Class
	4.3.53 DsFactory Class
	4.3.54 DsGeBrowseProduct Class
	4.3.55 DsGeDynamicLibrary Class
	4.3.56 DsGeECSDataProduct Class
	4.3.57 DsGeESDT Class
	4.3.58 DsGeESDTConfiguration Class
	4.3.59 DsGeESDTDynamicLibrary Class
	4.3.60 DsGeESDTEventTable Class
	4.3.61 DsGeESDTServiceProvider Class
	4.3.62 DsGeESDTWrapper Class
	4.3.63 DsGeScienceData Class
	4.3.64 DsGeSummaryProduct Class
	4.3.65 DsGeTypeID Class
	4.3.66 DsGvRadar Class
	4.3.67 DsLiLIS Class
	4.3.68 DsMdCatalog Class
	4.3.69 DsMdMetadata Class
	4.3.70 DsNmNMC Class
	4.3.71 DsNpAncillary Class
	4.3.72 DsNpCalibration Class
	4.3.73 DsNpCorrelative Class
	4.3.74 DsNpNonECSDataProduct Class
	4.3.75 DsNpOA Class
	4.3.76 DsNpPlatform Class
	4.3.77 DsNpVersion0 Class
	4.3.78 DsNsHistoricalData Class
	4.3.79 DsNsMPR Class
	4.3.80 DsNsNonECSDataProduct Class
	4.3.81 DsNsProdPlans Class
	4.3.82 DsNsProductionHistory Class
	4.3.83 DsNsQAStatistics Class
	4.3.84 DsNsScienceSoftwareArchivePackage Class
	4.3.85 DsPrRadar Class
	4.3.86 DsSbAction Class
	4.3.87 DsSbActionBase Class
	4.3.88 DsSbCallBackTimer Class
	4.3.89 DsSbEvent Class
	4.3.90 DsSbEventHandler Class
	4.3.91 DsSbEventTimer Class
	4.3.92 DsSbFactory Class
	4.3.93 DsSbRegisteredEvent Class
	4.3.94 DsSbSubscription Class
	4.3.95 DsSbSubscriptionInterface Class
	4.3.96 DsSbTimer Class
	4.3.97 DsSd24BitImage Class
	4.3.98 DsSd8BitImage Class
	4.3.99 DsSdCSDT Class
	4.3.100 DsSdGrid Class
	4.3.101 DsSdImage Class
	4.3.102 DsSdLookUpTable Class
	4.3.103 DsSdPoint Class
	4.3.104 DsSdRaw Class
	4.3.105 DsSdSwath Class
	4.3.06 DsSrClient Class
	4.3.107 DsSrCommand Class
	4.3.108 DsSrCommandBase Class
	4.3.109 DsSrCommandInfo Class
	4.3.110 DsSrConnection Class
	4.3.111 DsSrQueuedConnection Class
	4.3.112 DsSrRequest Class
	4.3.113 DsSrRequestBase Class
	4.3.114 DsSrRequestInfo Class
	4.3.115 DsSrRequestVector Class
	4.3.116 DsSrServer Class
	4.3.117 DsSrSession Class
	4.3.118 DsSrSubmittedRequestVector Class
	4.3.119 DsSrWorkingCollection Class
	4.3.120 DsSsSSMI Class
	4.3.121 DsTmTMI Class
	4.3.122 DsViVIRS Class
	4.3.123 EosHdf24BitImage Class
	4.3.124 EosHdf8BitImage Class
	4.3.125 EosHdfGrid Class
	4.3.126 EosHdfLUT Class
	4.3.127 EosHdfPoint Class
	4.3.128 EosHdfSwath Class
	4.3.129 GlBinaryP Class
	4.3.130 GlDateP Class
	4.3.131 GlDoubleP Class
	4.3.132 GlLongP Class
	4.3.133 GlParameter Class
	4.3.134 GlParameterList Class
	4.3.135 GlStringP Class
	4.3.136 GlTimeP Class
	4.3.137 MSSLog Class
	4.3.138 RWTPtrOrderedVector Class

	4.4 CSCI Dynamic Model
	4.4.1 SDSRV_Acquiring_an_ESDT
	4.4.2 SDSRV_Asynchronous_Status_Updates
	4.4.3 SDSRV_Auto-cancel_A_Subscription
	4.4.4 SDSRV_Canceling_a_Subscription
	4.4.5 SDSRV_Catalog_Deleting_a_Metadata_Entry
	4.4.6 SDSRV_Catalog_Insert_Collection_Metadata
	4.4.7 SDSRV_Catalog_Insertion_of_Metadata
	4.4.8 SDSRV_Catalog_Search
	4.4.9 SDSRV_Catalog_Updating_Metadata
	4.4.10 SDSRV_Changing_A_Request_Priority
	4.4.11 SDSRV_Client_Browsing
	4.4.12 SDSRV_Client_Connecting_to_a_Data_Server
	4.4.13 SDSRV_Client_Request_Submission
	4.4.14 SDSRV_Client_Searching
	4.4.15 SDSRV_Deleting_A_Queued_Request
	4.4.16 SDSRV_Ending_Session_No_Active_Request
	4.4.17 SDSRV_Fulfilling_a_One-time_Subscription
	4.4.18 SDSRV_Fulfilling_Open_Ended_Subscription
	4.4.19 SDSRV_Inserting_Composite_ESDT
	4.4.20 SDSRV_Inserting_New_ESDT
	4.4.21 SDSRV_Inserting_Single_ESDT
	4.4.22 SDSRV_Instantiating_an_ESDT
	4.4.23 SDSRV_Op_View_Queued_Requests
	4.4.24 SDSRV_Registering_a_Subscribable_Event
	4.4.25 SDSRV_Returning_List_of_Subscriptions
	4.4.26 SDSRV_Server_Handling_A_Browse_Request
	4.4.27 SDSRV_Server_Handling_A_Search_Request
	4.4.28 SDSRV_Server_Request_Handling
	4.4.29 SDSRV_Startup_of_a_Science_Data_Server
	4.4.30 SDSRV_Submitting_a_Subscription
	4.4.31 SDSRV_Unregistering_a_Subscribable_Event
	4.4.32 SDSRV_Update_Server_Configuration
	4.4.33 SDSRV_Updating_a_Subscription
	4.4.34 SDSRV_Validating_Metadata

	4.5 CSCI Structure
	4.5.1 CSC Definitions
	4.5.2 CSCI Dynamic Architecture

	4.6 SDSRV CSCI Management and Operation
	4.6.1 System Management Strategy
	4.6.2 Operator Interfaces
	4.6.3 Standard SDSRV Reports

	5. DDSRV - Document Data Server CSCI
	5.1 CSCI Overview
	5.2 CSCI Context
	5.3 CSCI Object Model
	5.3.1 DsCdASCII Class
	5.3.2 DsCdCSDT Class
	5.3.3 DsCdHTML Class
	5.3.4 DsCdKeyword Class
	5.3.5 DsCdKeywordLocator Class
	5.3.6 DsCdPDF Class
	5.3.7 DsCdPostScript Class
	5.3.8 DsCdRTF Class
	5.3.9 DsCdTypeID Class
	5.3.10 DsCsCSDT Class
	5.3.11 DsCtAcquireCommand Class
	5.3.12 DsCtClient Class
	5.3.13 DsCtCommand Class
	5.3.14 DsCtInsertCommand Class
	5.3.15 DsCtRequest Class
	5.3.16 DsCtSearchcommand Class
	5.3.17 DsDoClient Class
	5.3.18 DsDoCommand Class
	5.3.19 DsDoRequest Class
	5.3.20 DsDoServer Class
	5.3.21 DsEsAlgorithmDescription Class
	5.3.22 DsEsAlgorithmDescriptionTypeID Class
	5.3.23 DsEsESDT Class
	5.3.24 DsEsGuide Class
	5.3.25 DsEsGuideTypeID Class
	5.3.26 DsEsProductionPlan Class
	5.3.27 DsEsProductionPlanTypeID Class
	5.3.28 DsEsReferencePaper Class
	5.3.29 DsEsReferencePaperTypeID Class
	5.3.30 DsEsTypeID Class
	5.3.31 DsGeCSDT Class
	5.3.32 DsGeESDT Class
	5.3.33 DsGeTypeID Class
	5.3.34 DsSdCSDT Class
	5.3.35 DsSdClient Class
	5.3.36 DsSdCommand Class
	5.3.37 DsSdESDT Class
	5.3.38 DsSdESDT Class
	5.3.39 DsSdRequest Class
	5.3.40 DsSdServer Class
	5.3.41 DsSdSession Class
	5.3.42 DsSeIndexer Class
	5.3.43 DsSeWWWServer Class
	5.3.44 DsSvServer Class

	5.4 CSCI Dynamic Model
	5.4.1 Inserting a Document
	5.4.2 Searching for a Document
	5.4.3 Acquiring a Document
	5.4.4 Fault Scenario : HTTP Connection Failure

	5.5 CSCI Structure
	5.5.1 DDSRV CSCs
	5.5.2 DDSRV CI Processes

	5.6 CSCI Management and Operation
	5.6.1 System Management Strategy
	5.6.2 Operator Interfaces
	5.6.3 Standard DDSRV Reports

	6. STMGT - Storage Management CSCI
	6.1 CSCI Overview
	6.2 CSCI Context
	6.3 CSCI Object Model
	6.3.1 DsCnConfiguration Class
	6.3.2 DsSdAdvertisement Class
	6.3.3 DsStArchive Class
	6.3.4 DsStArchivedFile Class
	6.3.5 DsStCDROM Class
	6.3.6 DsStDirectory Class
	6.3.7 DsStFax Class
	6.3.8 DsStFile Class
	6.3.9 DsStFileDirectory Class
	6.3.10 DsStNetworkResource Class
	6.3.11 DsStPhysicalResource Class
	6.3.12 DsStPrinter Class
	6.3.13 DsStPullConfig Class
	6.3.14 DsStPullList Class
	6.3.15 DsStPullMonitor Class
	6.3.16 DsStRequestManager Class
	6.3.17 DsStReservation Class
	6.3.18 DsStResource Class
	6.3.19 DsStResourceConfig Class
	6.3.20 DsStResourceManager Class
	6.3.21 DsStResourcePolicy Class
	6.3.22 DsStResourceQueue Class
	6.3.23 DsStResourceSchedule Class
	6.3.24 DsStSCacheConfig Class
	6.3.25 DsStSchedulingConfig Class
	6.3.26 DsStStagingDataList Class
	6.3.27 DsStStagingDisk Class
	6.3.28 DsStStagingFile Class
	6.3.29 DsStStagingMonitor Class
	6.3.30 DsStStorageResource Class
	6.3.31 DsStTape Class
	6.3.32 GlLog Class
	6.3.33 GlNotification Class

	6.4 CSCI Dynamic Model
	6.4.1 Aborting a Request for Service
	6.4.2 Activating a Resource Reservation
	6.4.3 Allocation of a Physical Resource, No Resour...
	6.4.4 Allocation of a Physical Resource, Resource ...
	6.4.5 Inserting Data into the Archive
	6.4.6 Retrieving Data from the Archive, Checksum E...
	6.4.7 Retrieving Data from the Archive, File not i...
	6.4.8 Canceling a Resource Reservation
	6.4.9 Deallocation of a Physical Resource, Queued ...
	6.4.10 Deallocation of a Physical Resource, Immine...
	6.4.11 Deletion of Pull Disk Data with Operations ...
	6.4.12 Deletion of Staging Disk Data
	6.4.13 Setting the Operational State of a Tape Dev...
	6.4.14 Submitting a Resource Reservation

	6.5 CSCI Structure
	6.5.1 CSC Definitions
	6.5.2 CSCI Dynamic Architecture

	6.6 CSCI Management and Operation
	6.6.1 System Management Strategy
	6.6.2 Operator Interfaces
	6.6.3 Standard STMGT Reports

	7. DDIST - Data Distribution CSCI
	7.1 CSCI Overview
	7.2 CSCI Context
	7.3 CSCI Object Model
	7.3.1 DsDdCDMedia Class
	7.3.2 DsDdCDProcessor Class
	7.3.3 DsDdDataItem Class
	7.3.4 DsDdDistFile Class
	7.3.5 DsDdDistList Class
	7.3.6 DsDdDistRequest Class
	7.3.7 DsDdDistRequestC Class
	7.3.8 DsDdDistRequestS Class
	7.3.9 DsDdElectronicMedia Class
	7.3.10 DsDdLabeledMedia Class
	7.3.11 DsDdMedia Class
	7.3.12 DsDdOpsRequestC Class
	7.3.13 DsDdPackingSlip Class
	7.3.14 DsDdPrivRequest Class
	7.3.15 DsDdPullMedia Class
	7.3.16 DsDdPullProcessor Class
	7.3.17 DsDdPushMedia Class
	7.3.18 DsDdPushProcessor Class
	7.3.19 DsDdRequestList Class
	7.3.20 DsDdRequestManager Class
	7.3.21 DsDdRequestManagerC Class
	7.3.22 DsDdRequestManagerS Class
	7.3.23 DsDdRequestProcessor Class
	7.3.24 DsDdShippingLabel Class
	7.3.25 DsDdTapeMedia Class
	7.3.26 DsDdTapeProcessor Class
	7.3.27 DsStResourceC Class
	7.3.28 EcNotification Class
	7.3.29 EcUtLogger Class
	7.3.30 MsUsProfile Class

	7.4 CSCI Dynamic Model
	7.4.1 Distributed Creation of a New Distribution R...
	7.4.2 Electronic Pull of Data
	7.4.3 Electronic Push of Data
	7.4.4 Physical Distribution to Tape
	7.4.5 User Abort of a Request Waiting for a Device...
	7.4.6 Tape Fault

	7.5 CSCI Structure
	7.5.1 Distribution Products CSC
	7.5.2 Distribution Client Interface CSC
	7.5.3 Distribution Request Management CSC

	7.6 CSCI Management and Operation
	7.6.1 System Management Strategy
	7.6.2 Operator Interfaces
	7.6.3 Standard DDIST Reports

	8. ACMHW - Access Control and Management HWCI
	8.1 HW Design Drivers
	8.1.1 Key Trade-off Studies and Prototypes
	8.1.2 Sizing and Performance Analysis
	8.1.3 Scalability, Evolvability, and Migration to ...

	8.2 HWCI Structure
	8.2.1 HWCI Connectivity
	8.2.2 HWCI Components
	8.2.3 Failover and Recovery Strategy

	9. WKSHW - Working Storage HWCI
	9.1 HW Design Drivers
	9.1.1 Key Trade-off Studies and Prototypes
	9.1.2 Sizing and Performance Analysis
	9.1.3 Scalability, Evolvability, and Migration to ...

	9.2 HWCI Structure
	9.2.1 HWCI Connectivity
	9.2.2 HWCI Component Description
	9.2.3 Failover and Recovery Strategy

	10. DRPHW - Data Repository HWCI
	10.1 HWCI Design Rationale
	10.1.1 Key Trades and Analysis
	10.1.2 Scalability, Evolvability, and Migration to...

	10.2 HWCI Structure
	10.2.1 HWCI Connectivity
	10.2.2 HWCI Component Description
	10.2.3 Failover and Recovery Strategy

	11. DIPHW - Distribution and Ingest Peripheral Man...
	11.1 HWCI Design Rationale
	11.1.1 Key Trades and Analysis
	11.1.2 Scalability Strategies

	11.2 HWCI Structure
	11.2.1 HWCI Connectivity
	11.2.2 HWCI Component Description
	11.2.3 Failover and Recovery Strategy

	12. DDSRVHW - Document Data Server HWCI
	12.1 HW Design Drivers
	12.1.1 Key Trade-off Studies and Prototypes
	12.1.2 Scalability, Evolvability, and Migration to...

	12.2 HWCI Structure
	12.2.1 HWCI Connectivity
	12.2.2 HWCI Components
	12.2.3 Failover and Recovery Strategy

	List of Figures

